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Abstract.  This paper is devoted to the design and simulation of a rover equipped with 4 preloaded 

structure legs. Space exploration vehicles (rovers) are employed for moving sensors, transporting plan-

et samples and manipulating small modules. In order to perform such tasks with high accuracy, high 

mechanical stiffness frames are required. At the same time, a certain degree of compliance is required 

to mitigate mechanical stress caused by motion over a rough surface or in case of unexpected colli-

sions. For this reasons, preloaded structures could represent a suitable solution. They present sharp 

stiff-to-compliant transitions at design-determined load thresholds. The paper describes the dynamic 

model of a single rover leg, the simulation of an impact event and the overall design of system. 
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1 Introduction 

 Space exploration vehicles (rovers) are employed for moving sensors, trans-
porting planet samples and manipulating small modules [1]. In order to perform 
such tasks with high accuracy, high mechanical stiffness frames are required. At 
the same time, a certain degree of compliance is required to mitigate mechanical 
stress caused by motion over a rough surface or in case of unexpected collisions 
[2]. Preloaded structures can be the effective solution to the problem. These struc-
tures are fitted with preloaded springs, in such a way that they exhibit a compliant 
behavior only when a threshold load is reached [3]. 

In mechanics, for a single DoF, elasticity is modelled as a linear relation 
� = �� between force � and deformation �, where � is the elastic coefficient. 
However, for the preloaded structures high stiffness is exhibited up to a certain 
load, and past that, compliance: this non-linear behaviour (bilinear) is shown in 
Fig. 1.  Indeed, the simplest “soft” linearly elastic compliant link or actuator 
would have very poor performances, causing oscillations and poor dynamic stabil-
ity during normal operation. One solution to this problem is applying a preload to 
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the relevant elastic components. This arrangement effectively splits the elastic 
field in two areas, based on loading conditions: one where the system is as rigid as 
the material which is used for the structure (elastic coefficient ��) and the other 
where rigidity is given by the elastic components (coefficient ��); typically 
�� ≫ ��. In the plot, �� is the preload force: indeed, if the applied force � < ��, 

then, in this case, the resulting deformation x can be less substantial. 

 
Fig. 1 Force � versus displacement � in a preloaded structure.  

Preloaded structures are employed especially in the field of the collaborative 
robots (cobots) to keep positional accuracy high, while at the same time allowing 
for collision mitigation through compliance after a certain force threshold is 
reached [3]. The use of preload to increase the rigidity of structures can be found 
also in several areas of structural engineering, e.g. in the design of large telescopes 
[4], in space docking systems [5] in variable-stiffness mechanisms [6] and even in 
pipe joints [7]. Usually, these applications were concerned mainly on single-doF 
systems, such as active or passive joints, link structures etc. In a previous research, 
we have produced a comprehensive n-DoF dynamic model [8]. 

In this paper we show the design of a 4 legs rover equipped with 4 inde-
pendently steering wheels, as shown in Fig. 2. Each leg is made up of a chain of 
links connected by a series of preloaded mechanisms similar to those described by 
Medina et al. [9]. In order to verify the dynamic behaviour of the rover during an 
impact event, a “quarter model” of the rover has been implemented. 

In Section 2, the overall design of the rover is presented. Section 3 is devoted to 
the n-DoF model of the preloaded structures. Simulation results are presented in 
Section 4.  

2 Planar n-D.o.F . Model 

Let us consider a sequence of � serial links, as visible in Fig. 3 a), each of 
length ��, … , ��, mass ��, … , ��, and rotational inertia ��, … , ��. A preloaded elas-
tic connection is placed between each contiguous link. The elastic connection can 
be modeled as a device producing a torque �(��), where �� is the relative angle 
between the ith link and the next. The torque ��(��) follows a trend similar to that 
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shown in Fig. 1 for �(�); however, since this would require discontinuities (split-
field) in the elastic relation, a parametric curve was instead arbitrarily selected to 
approximate the nominal behaviour, as follows,  

 
Fig. 2 Design of the rover equipped with 4 preloaded structure legs. In a) an overview is illustrated, 

whereas in b) the main dimensions are shown in mm. 

��(��)  ≅ �
��,��

�
� atan(����) + ����,   (1) 

where the parameter ��,� represents the preload torque, �� the stiffness of joint 

and �� is an approximation factor. This type of formulation, being continuous in 

ℂ�(as opposed to a split-field one), helps avoiding numerical noise during simula-

tions.  

The independent coordinates, in vector form, are � = {�� , ��, ��, … , ��}, where 

��and �� are respectively the vertical position and orientation of the robot chassis. 

A small-angles approximation is applied to the entire model. The left end-point is 

constrained horizontally, while it is free to move vertically. This way it is possible 

to simulate the dynamic behaviour of a single leg (the quarter model of the vehi-

cle). As Fig. 3b shows, the wheel is connected to the 4th link and the mass of the 

rover quarter is concentrated in ��.  



4 S. Seriani, L. Scalera, A. Gasparetto and P. Gallina 

 

 
Fig. 3 Diagram of n-DoF preloaded structures. In a) a n-DoF free body diagram is shown as im-

plemented in the general model. In b) a 3-DoF model is shown as implemented in the simulation for 
the rover limb; indeed the location of the body and of the wheel can be seen as well as the modelization 
for the contact interface. 

From the principle of virtual works, it follows that: 

�Ω + ����� = 0,  (2) 

where the first term represents the inertial forces virtual work, and the second the 

external forces virtual work. These can be expanded as follows, 

�Ω = ∑ ���̈����
���
��� + ∑ ���̈����

���
��� ,  (3) 

����� = −����� − ����� + ����� + ������� + ∑ �(��)���
���
��� +

∑ ���̇����
���
��� + ∑ �����

���
��� ,  (4) 

In matrix form, Eq. (3) can be written as, 

�Ω = ��� � �̈ + ��� � �̈,  (5) 
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where �� = {���, … , ���}� and �� = {���, … , ���}� are the vector of virtual 

displacements, � is the mass matrix, � is the matrix of moments of inertia, 

�̈ = {�̈�, … , �̈���}� and �̈ = ��̈�, … , �̈����
�
 are the vectors of the vertical acceler-

ations of points ��, … , ����, and of angles ��, … , ���� respectively. Accelerations 

along the longitudinal axis x are neglected since small vertical displacements are 

assumed. In order to reach a formalism based on �, some changes in variables are 

necessary. Indeed, based on simple geometric considerations, we can write, 

⎩
⎪
⎨

⎪
⎧

��

��

⋮
��

����⎭
⎪
⎬

⎪
⎫

≅

⎣
⎢
⎢
⎢
⎡
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1 �  ⋯ ⋯ � � 2⁄ ⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

��

��

⋮
��

����⎭
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⎪
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= �
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⎧
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. (6) 

It is clear that an approximation (sin �� ≅ ��  if �� is small) is applied to get, from 

the exact formalism, to the linearized one that appears in matrix �. Similarly, it 

can be said that, 

⎩
⎪
⎨
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��

��

⋮
��

����⎭
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⋮ ⋮  1 0
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⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

��

��

��

⋮
��⎭

⎪
⎬

⎪
⎫

= � �, (7) 

It follows immediately that, 

�� = � � �,  (8) 

On a similar note, to write � in terms of the absolute angles �, the following can 

be written, 

�

��

⋮
⋮

����

� = �

0 1 0 ⋯ 0 
⋮ ⋮ ⋱  ⋱ ⋮ 
⋮ ⋮  ⋱ 0 
0 1 ⋯ ⋯ 1

� � = � �, (9) 

At this point, Eq. (5) can be written into the following matrix form, 

�Ω = (� � ��)�� � � �̈ + (� ��)��� �̈ =

 = ���(������� + ����)�̈
, (10) 
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Regarding the external forces and considering the situation illustrated in Fig. 3, we 

can write the expression in Eq. (4) as follows, 

����� = ����, ���, ���,�, ������ �

−��

−��

��

��

� + {���, … , ���} ��
�(��)

⋮
�(��)

� +

�� �
�̇�

⋮
�̇�

�� + �{���, … ���} �

��

⋮
��

�,  (11) 

In the above equation, we call {��, … , ��}� = �; in order to find the first vector 

in the first term on the right, we can write, 

�

���

���

���,�

�����

� = �

1 0 0 ⋯ 0 0
0 1 0 ⋯ 0 0
1 � � ⋯ � �
0 1 1 ⋯ 1 1

� � �� = � ��, (12) 

Finally, if {��, … , ��}� = � �, where � is obvious, ���� = {−��, −��, ��, ��}�, 

and considering Eq. (8) we can write the following matrix form for Eq. (4), 

����� = ���(������ + ����(��) + ������̇) + (��)���, 

where the �� operator is defined as ��(�) = {��(��), … , ��(��)}, with � =

{��, … , ��} a general vector.  

Reassembling Eq. (2) with the expressions in Eq. (10) and (11), it follows that 

(������� + ����)�̈ + ������̇ + ����(��) + ������ + (��)��� = 0, thus, 

��̈ + ��̇ + �(�) + ������ + (��)��� = 0, (13) 

Where � and � are the inertial coefficients matrix and the viscous damping coeffi-

cient matrix respectively; the term �(�) is the internal forces matrix and models 

the joints elasticity. It is non-linear with respect to �. 

Upon impact, considering the wheel stiffness ��, the vertical force produced on 

the structure is 

�� = �
−������ �� ���� < 0

0 �� ���� ≥ 0
  (14) 

The torque exerted by the wheel is null: �� = 0. �� is the internal force exerted 

by the rest of the rover on the quarter; since the first link has to remain always 
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horizontal, such requirement has been fulfilled by introducing a high stiffness 

�� and the following boundary condition: �� = ����. Notice that also �� = 0. The 

interaction between the ground and the wheel is modeled as a spring system of 

������� stiffness (see Fig. 3b), where the contact force is �� = ����������� , with 

���� is the ground compenetration measure. In order to produce viable and stable 

results, the model expressed in Eq. 13 was time-integrated using the classic “RK4” 

Runge-Kutta method. 

3 Simulation of an impact event 

During deployment, a rover experiences high loads due to impacts with the 
ground. For this reason, as can be seen on the left in Fig. 4, we defined a use case 
with a 0.200 � vertical drop at a gravity level equal to that of earth, which is a 
conservative approach. Considering that the clearance of the rover is 0.250 �, we 
elected to limit the deceleration phase to 90% of that value in order to avoid colli-
sion between the ground and the belly of the rover. As the plots in Fig. 4 show, the 
results of the simulation show the first impact at approximately � = 0.2 �, with a 
rebound take-off starting at � = 0.56 s, a subsequent free-flight phase that ends 
with a secondary impact at � = 0.87 �. 

 
Fig. 4. Impact simulation. On the left, a summary of the main values is reported. On the right, in 

the top-most plot the acceleration of the wheel joint �� is shown; in the middle, the acceleration can be 
seen of the body of the rover, corresponding to joint ��; the bottom-most chart shows the evolution in 
time of the contact force between the ground and the wheel. 

The lowest point reached by the rover belly is � = −0.220 � compared with the 
standstill value. It is important to note the peak values of the acceleration at point 
�� and ��; indeed, if we recall that the body of the rover is integral to the former, 
whereas the wheel is connected to the latter, we can appreciate how the rover body 
experiences lower magnitude accelerations. More specifically, not considering 
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low-energy peaks (very small duration), the wheel experiences accelerations in 
excess of 500 �/��, whereas the body sees this value limited to less than 
20 �/��, sustained, and approximately 60 �/�� peak value. As a comparison, 
these values are close to only 4 times the static force exerted by gravity on the 
ground. In the top and middle plots of Fig. 4, during the free-flight phase, a strong 
oscillation can be seen that is highly irregular in nature; this is due to the bi-elastic 
behavior of the joints. Results show that this type of mechanism can be used effec-
tively to limit accelerations on the body of the rover, while at the same time acting 
as a stiff structural component when loads are below a certain threshold. 

6 Conclusions 

This paper described the design and the dynamic simulation of a rover for space 
exploration, equipped with 4 preloaded structure legs. The proposed solution 
guarantees a high stiffness behavior during conventional operations, as well as a 
compliance behavior when an expected load (collision or motion over an irregular 
surface) occurs.  At the same time, a certain degree of compliance is required to 
mitigate mechanical stress caused by motion over a rough surface or in case of un-
expected collisions. Simulation results show the benefit introduced by the pre-
loaded structures. 
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