
fphar-09-01101 October 1, 2018 Time: 16:43 # 1

ORIGINAL RESEARCH
published: 04 October 2018

doi: 10.3389/fphar.2018.01101

Edited by:
Guilherme Suarez-Kurtz,

Instituto Nacional de Câncer (INCA),
Brazil

Reviewed by:
Rosane Vianna-Jorge,

Universidade Federal do Rio
de Janeiro, Brazil

Alessio Squassina,
Università degli Studi di Cagliari, Italy

*Correspondence:
Elena De Mattia

edemattia@cro.it
Erika Cecchin

ececchin@cro.it

†Shared last authorship

Specialty section:
This article was submitted to

Pharmacogenetics
and Pharmacogenomics,

a section of the journal
Frontiers in Pharmacology

Received: 23 July 2018
Accepted: 10 September 2018

Published: 04 October 2018

Citation:
De Mattia E, Dreussi E, Montico M,

Gagno S, Zanusso C, Quartuccio L,
De Vita S, Guardascione M,

Buonadonna A, D’Andrea M, Pella N,
Favaretto A, Mini E, Nobili S,

Romanato L, Cecchin E and Toffoli G
(2018) A Clinical-Genetic Score
to Identify Surgically Resected

Colorectal Cancer Patients Benefiting
From an Adjuvant

Fluoropyrimidine-Based Therapy.
Front. Pharmacol. 9:1101.

doi: 10.3389/fphar.2018.01101

A Clinical-Genetic Score to Identify
Surgically Resected Colorectal
Cancer Patients Benefiting From an
Adjuvant Fluoropyrimidine-Based
Therapy
Elena De Mattia1* , Eva Dreussi1, Marcella Montico2, Sara Gagno1, Chiara Zanusso1,
Luca Quartuccio3, Salvatore De Vita3, Michela Guardascione1, Angela Buonadonna4,
Mario D’Andrea5, Nicoletta Pella6, Adolfo Favaretto7, Enrico Mini8, Stefania Nobili8,
Loredana Romanato1, Erika Cecchin1*† and Giuseppe Toffoli1†

1 Experimental and Clinical Pharmacology Unit, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere
Scientifico, Aviano, Italy, 2 Scientific Directorate, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy,
3 Department of Medical Area (DAME), Rheumatology Clinic, Santa Maria della Misericordia University Hospital, Udine, Italy,
4 Medical Oncology Unit B, CRO Aviano National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano,
Italy, 5 Medical Oncology Unit, “San Filippo Neri Hospital”, Rome, Italy, 6 Medical Oncology Unit, University Hospital, Udine,
Italy, 7 Medical Oncology Unit, Ospedale di Treviso, Treviso, Italy, 8 Department of Health Sciences, University of Florence,
Florence, Italy

There are clinical challenges related to adjuvant treatment in colorectal cancer (CRC)
and novel molecular markers are needed for better risk stratification of patients. Our
aim was to integrate our previously reported clinical-genetic prognostic score with
new immunogenetic markers of 5-year disease-free survival (DFS) to evaluate the
recurrence risk stratification before fluoropyrimidine (FL)-based adjuvant therapy. The
study population included a total of 270 stage II-III CRC patients treated with adjuvant
FL with (FL+ OXA, n = 119) or without oxaliplatin (FL, n = 151). Patients were genotyped
for a panel of 192 tagging polymorphisms in 34 immune-related genes. The IFNG-
rs1861494 polymorphism was associated with worse DFS in the FL + OXA (HR = 2.14,
95%CI 1.13–4.08; P = 0.020, q-value = 0.249) and FL (HR = 1.97, 95%CI 1.00–3.86;
P = 0.049) cohorts, according to a dominant model. The integration of IFNG-rs1861494
in our previous clinical genetic multiparametric score of DFS improved the patients’
risk stratification (Log-rank P = 0.0026 in the pooled population). These findings could
improve the discrimination of patients who would benefit from adjuvant treatment. In
addition, the results may help better elucidate the interplay between the immune system
and chemotherapeutics and help determine the efficacy of anti-tumor strategies.

Keywords: colorectal cancer, fluoropyrimidines, interferon-γ, immune system, immunogenetics, adjuvant
treatment

INTRODUCTION

For more than two decades 5-FU-based adjuvant chemotherapy has been the standard of care for
patients with stage III and selected stage II CRC. Adding oxaliplatin (OXA) to therapy based on FLs
(5-FU and capecitabine) further improves the disease-free (DFS) and OS rates in patients with stage
III disease. However, the results from the QUASAR and MOSAIC trials demonstrated no further
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GRAPHICAL ABSTRACT |

benefit when adding OXA to 5-FU in stage II patients, even those
at high risk. This result supported that FLs monotherapy is the
preferred treatment for a patient with stage II disease, even if the
routine administration of adjuvant therapy is not recommended
in these patients. Furthermore recent findings suggest that a
shorter adjuvant chemotherapy (3 months instead of 6) could
be considered for low-risk stage III disease (T1-3 N1 tumors)
(Shi et al., 2017; Grothey et al., 2018). The introduction of the
new targeted agents in the adjuvant setting has not brought any
significant benefit (Dienstmann et al., 2015; Gustavsson et al.,
2015; Loree and Cheung, 2016).

In this context, there is a need for new predictive markers,
beyond the tumor stage, to select what patients will benefit

Abbreviations: 5-FU, 5-fluorouracil; 95% CI, 95% confidence interval; CCDN1,
Cyclin D1; CRC, colorectal cancers; DFS, disease-free survival; FDR, false
discovery rate; FL, fluoropyrimidine; FOXO3, forkhead box O3; GSTP1,
glutathione-S-transferase P1 isoform; HLA-G, leukocyte antigen; HR, hazard ratio;
IFN-γ (IFNG), interferon-gamma; IFNGR1/-2, interferon gamma receptor 1/-
2; IL-X, interleukin-X; MAF, minor allele frequency; MDSC, myeloid-derived
suppressor cell; MTHFR, 5,10-methylenetetrahydrofolate reductase; OS, overall
survival; OXA, oxaliplatin; SMAD3, SMAD family member 3; STAT1, signal
transducer and activator of transcription 1; STAT5A/–B, signal transducer and
activator of transcription 5A/-B; TagSNP, tagging polymorphism; TAM, tumor-
associated macrophage; TGFBR1/-2, transforming growth factor beta receptor
1/-2; TIL, tumor infiltrating lymphocyte; TNFα, tumor necrosis factor alpha;
TYMS, thymidylate synthase; VEGFA, vascular endothelial growth factor A; XPD,
Xeroderma pigmentosum group D; XRCC1, X-ray repair complementing defective
repair in Chinese hamster cells 1.

from an adjuvant treatment and to better tailor treatment
schemes and schedules. Mismatch repair (MMR) status has
been proposed as a useful marker in patients with sporadic
stage II CRC, together with additional parameters of high risk
disease (age, T4 disease, tumor perforation, bowel obstruction,
poor differentiation, perineural and/or lymphovascular invasion,
and suboptimal number of lymph nodes examined) (Sargent
et al., 2010). Pharmacogenetic studies have been also performed
in order to evaluate the role of host genetic variants in the
prediction of recurrence risk and response to adjuvant treatment
with FLs and OXA. These investigations focused mainly on
polymorphisms in genes encoding phase I and II enzymes
(GSTP1), proteins involved in DNA repair (XRCC1 and XPD),
folate-pathways (TYMS) and 5,10-methylenetetrahydrofolate
reductase (MTHFR), and cell cycle control (CCDN1) (Libra
et al., 2004; De Mattia et al., 2015; Smolle et al., 2015; Horvat
et al., 2016; Kap et al., 2016). This group previously reported
a clinical-genetic score based on the MTHFR polymorphism
rs1801133, which significantly stratified a group of stages II–III
CRC patients, receiving adjuvant FL-based treatment, according
to DFS (Cecchin et al., 2015). However, the current methods
for selecting CRC patients who would benefit from an adjuvant
treatment are still sub-optimal.

The molecular and immune classification of CRC
provided a new scenario for precision medicine, highlighting
innovative prognostic and predictive factors for chemo and
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immunotherapies. Recently, the so-called immunoscore and
tumor immune infiltration emerged as the best classifiers of
CRC patients according to the prognosis and risk of tumor
recurrence (Mlecnik et al., 2016; Pagès et al., 2018). The balance
between pro- and anti-tumorigenic cytokines was found to
modulate the inflammatory milieu in tumor tissues and to
potentially contribute to CRC development, progression, and
patient survival (Mager et al., 2016). An active interplay has
been demonstrated to go on between these same cytokines, as
interleukins (i.e., IL-1b, IL-6, IL-17, IL-15), TNFα, and interferon
gamma (IFN-γ), and conventional chemotherapeutics, including
5-FU and OXA, eventually affecting the overall therapeutic
outcome in patients undergoing anti-tumor treatments (Tesniere
et al., 2010; Vincent et al., 2010; Apetoh et al., 2011; Cressman
et al., 2012; De Mattia et al., 2013, 2018; Ni et al., 2013;
Ghiringhelli and Apetoh, 2014; Guo et al., 2014; Wang et al.,
2016; Wu et al., 2016; Hu et al., 2018).

This group previously reported how the germline profile of
the leukocyte antigen gene family (HLA) can contribute to inter-
individual differences in the therapy outcome of CRC patients
receiving FL-containing therapy (De Re et al., 2014; Garziera
et al., 2015). The present study was planned to broaden our
immunogenetic analysis to genes encoding proteins involved in
the immune system and related networks to highlight germ-
line markers of DFS in two cohorts of stage II-III CRC patients
receiving FL-based adjuvant therapy. The aim was to integrate
these immunogenetic markers in our previously published
clinical-genetic score (Cecchin et al., 2015) to improve the pre-
treatment identification of patients who may benefit from an
adjuvant FL-based treatment.

PATIENTS AND METHODS

Patients’ Cohorts and Treatment
This retrospective study included a total of 270 patients, in
two cohorts, with stages II–III CRC who were resected with a
curative intent. All patients were treated with adjuvant FLs with
or without OXA (Cecchin et al., 2013, 2015). All the patients
were aged ≥18 years and had histologically confirmed stages II–
III CRC, radiologically confirmed absence of distant metastases,
a performance status (WHO) of 0–2, and normal bone marrow,
renal and liver function. The FL + OXA cohort consisted of 151
CRC patients who underwent radical surgery between January
2004 and March 2011, and were treated with FOLFOX4 or
CAPOX regimens, as previously reported (Haller et al., 2011;
Cecchin et al., 2013). The FL cohort included 119 independent
CRC patients who underwent radical surgery between May 1995
and May 2011, and subsequently received adjuvant FL-alone.
Patients were treated with 5-FU/folinic acid according to the
International Multicentre Pooled Analysis of Colon Cancer Trials
(IMPACT) Investigators (1995), or capecitabine according to
Twelves et al. (2005).

All the patients in the study were self-reported Caucasian.
The study protocol complied with the ethical guidelines of the
1975 Declaration of Helsinki. The protocol was approved by the
Comitato Etico Indipendente-Centro di Riferimento Oncologico

di Aviano. All patients provided written informed consent for
the genetic analysis before entering the study. All experiments
were carried out in accordance with the relevant guidelines
and regulations of Centro di Riferimento Oncologico di Aviano.
Information on disease status and survival was obtained through
the standard follow-up protocol for stages II/III surgically
resected CRC patients. This consisted of a physical examination
with routine blood tests, pulmonary X-ray, and abdominal ultra-
sonography or computed tomography. Patients were assessed
every 3 months during the treatment, every 6 months within the
first 3 years, and then yearly (Cecchin et al., 2015).

Candidate Genes and Polymorphism
Selection
Target genes were selected on the basis of a literature search
(PubMed-MEDLINE) focusing on genes encoding for proteins
crucial for the regulation of the immune network and its potential
interaction with chemotherapeutics to modulate antitumor
response. For each candidate gene, genetic variants were chosen
using the TagSNP approach. Genotype frequency data were
downloaded from the HapMap website1 using the genomic
coordinate defined according to the UCSC genome browser;
the regions of interest were extended 5000 nucleotides further
up- and downstream of the target gene to reasonably include
all the regulatory regions. The filter parameters were the
HapMap CEU database (release #27) and Minor allele frequencies
(MAF) ≥ 0.05. The genotype data were then uploaded to the
Tagger program implemented in Haploview2 (Broad Institute,
Cambridge, MA, United States) to define the block of linkage
polymorphisms at a stringency of r2 = 0.80. For each block, a
TagSNP was picked, while prioritizing the polymorphisms with
a predicted biological effect according to HaploRegv2 software3

and/or literature evidences. The highest priority was given
to missense variants and polymorphisms previously associated
with cancer or immune system activity. Next, variants located
in a promoter or enhancer sequences or in regions bound
by a transcription factor or other regulatory proteins were
selected. At the end of this bioinformatics workflow, a set
of 192 molecular markers in 34 candidate genes, correlated
with immune system and cancer, were selected (Supplementary
Table S1) and were introduced into the immunogenetic
analysis.

Genetic Analysis
Genomic DNA was extracted from peripheral blood using the
High Pure PCR Template Preparation Kit (Roche Diagnostics
GmbH, Mannheim, Germany). DNA samples were genotyped
using the Illumina BeadXpress platform based on Golden
Gate chemistry. A 192-plex Illumina VeraCode GoldenGate
Genotyping Assay (Illumina, Inc., San Diego, CA, United States)
was developed using the Assay Design Tool (ADT) available on
the Illumina website4. The bioinformatics tool assigned a final

1http://hapmap.ncbi.nlm.nih.gov/
2http://www.broad.mit.edu/mpg/haploview
3https://pubs.broadinstitute.org/mammals/haploreg/haploreg_v2.php
4https://illumina.com
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score (ranging from 0 to 1.1) and designability score (ranging
from 0 to 1) for each variant and these scores correlated with
the quality and robustness of the assay. Only assays with a high
final score (≥0.7) and optimal designability (=1) were considered
compatible with successful GoldenGate genotyping and were
introduced into the final custom panel. Samples were prepared
for the analysis according to the manufacturer’s protocol.
VeraScan software (version 2.0) was employed for fluorescence
detection and the GenomeStudio V2011.1 tool (Illumina, Inc.)
was used for genotype clustering with a polymorphism call-
threshold of 0.25 (on a scale of 0–1). The clusters generated by
the program were manually reviewed to ensure high quality data.
The control dashboard was checked to evaluate the overall quality
of the analyses and to exclude samples with low performance.
Sample replicates were introduced into each analysis to assess the
robustness of the output records and to provide duplicate data
to aid in the redefinition of clustering. Only the polymorphisms
with a call rate > 80% were retained in the final report.
More details about the analytical procedures are available upon
request.

Study Design and Statistical Analysis
The main study endpoint was DFS. A stepwise selection of
significant markers of DFS was performed. The first step
consisted of screening the entire set of polymorphisms for
associations with DFS in the FL + OXA cohort (151 subjects),
that was selected as discovery cohort due to the larger sample size
providing stronger statistical power. Only the polymorphisms
significantly associated with DFS in the first cohort (P < 0.05)
were genotyped for association with DFS in the FL cohort
(119 subjects), applying the same genetic model. The genetic
variants with significant (P < 0.05) associations with DFS in
both cohorts were integrated in the previously published multi-
parametric score of DFS in the pooled population. The score
included four previously identified prognostic markers (i.e.,
MTHFR-rs1801131 polymorphism, gender, primary tumor site,
and stage). As a secondary analysis, the genetic variants with
a concordant effect on DFS in the FL + OXA and FL cohorts
were further evaluated for their association with OS in the pooled
population.

The effect of the polymorphisms on DFS or OS was assessed
through HRs and corresponding 95% CIs, estimated by COX
proportional hazard models. The HRs were adjusted for gender,
age, primary tumor site, and tumor TNM stage. Dominant,
recessive, and additive genetic models were considered; the
best-fitting model was selected according to the Wald χ2 test.
A P-value < 0.05 (two-sided) was adopted as the significance
threshold. To assess the effect of the multiple testing in the
FL+OXA cohort, where the genetic markers have been selected,
a q-value (FDR-adjusted P-value) was evaluated (Benjamini and
Hochberg, 1995). Survival analysis was performed by the Kaplan–
Meier method, and the log-rank test was used to test the
differences between groups. The DFS was calculated from the
time of surgery to the most recent, available medical examination
or the date of recurrence. The OS was measured from the date of
surgery to the most recent follow-up or the date of death. Patient
follow-up was truncated at 5 years.

TABLE 1 | Demographic and clinical characteristics of the two patients cohorts
included in the study (discovery and replication cohort).

FL + OXA (n = 151) FL (n = 119)

Characteristic N (%) N (%)

Sex

Male 79 (52.3) 68 (57.1)

Female 72 (47.7) 51 (42.9)

Age (median, IQR) 62 (53–68) 67 (58–74)

Primary tumor site

Colon 118 (78.1) 89 (74.8)

Right 41 (27.2) 30 (25.2)

Left 72 (47.7) 51 (42.9)

Transverse 5 (3.3) 8 (6.7)

Rectum 33 (21.9) 30 (25.2)

Stage at diagnosisa

II 20 (13.2) 55 (46.2)

III 131 (86.7) 64 (53.8)

Fluoropyrimidine

5-fluorouracil 119 (78.8) 97 (81.5)

capecitabine 32 (21.2) 22 (18.5)

DFS at 5 years

Number of recurrencesb 39 (25.8) 35 (29.4)

DFS rate (95% CI) 65.9% (55.9–74.1) 67.8% (58.1–75.8)

OS at 5 years

Number of deathsb 20 (13.2) 20 (16.8)

Survival rate (95% CI) 82.2% (73.5–88.3) 80.5% (71.3–87.0)

aTumor node metastasis scale (TNM).
bThe number of events that occurred during the 5 years of follow-up.
DFS, disease-free survival; IQR, interquartile range; OS, overall survival; 95% CI:
95% confidence interval.

RESULTS

Patients Characteristics and Genotyping
The main demographic and clinical characteristics of the two
cohorts are reported in Table 1. The FL + OXA and FL cohorts
were well-balanced for gender, age, primary tumor site, and the
FL administration (5-FU or capecitabine); while the tumor stage
distribution at diagnosis was different between the two cohorts
with a higher prevalence of stage III CRC in the FL + OXA
group.

Genotyping was successful for 164/192 assays by a custom-
designed GoldenGate Genotyping analysis (BeadXpress,
Illumina). Twenty-eight markers failed at the analysis and were
excluded from the study. The average genotype call rate was
0.98 (range: 0.84–1.00). All 270 patients eligible for the study
were successfully genotyped with an average call rate of 0.98
(range: 0.68–1.00). The average concordance rate was 100% for
replicated samples included in the analyses.

Markers of Disease-Free Survival
In the FL + OXA cohort, nine polymorphisms in SMAD3,
FOXO3, interferon gamma (IFNG), transforming growth factor
beta receptor 1 and -2 (TGFBR1/-2), signal transducer and
activator of transcription 5A and 5B (STAT5A/–B), and one
angiogenesis regulator (VEGFA) were associated with the
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TABLE 2 | Hazard ratio (HR) and 95% confidence interval (95% CI) for 5-years disease-free survival (DFS) in the FL + OXA (n = 151), FL (n = 119), and pooled (n = 270)
cohorts of stages II–III colorectal patients according to gene polymorphisms (SNPs).

Gene SNP Base change FL + OXA (n = 151) FL (n = 119)

Mod HR (95% CI)a p-value q-valueb HR (95% CI)a p-value

SMAD3 rs11636161 G > A Rec 2.81 (1.38–5.71) 0.004 0.108 1.67 (0.81–3.45) 0.168

SMAD3 rs1545161 A > G Add 0.53 (0.33–0.85) 0.008 0.185 1.03 (0.65–1.64) 0.892

FOXO3 rs12203787 G > C Dom 0.33 (0.13–0.86) 0.024 0.203 1.37 (0.52–3.64) 0.522

IFNG rs1861494 A > G Dom 2.14 (1.13–4.08) 0.020 0.249 1.97 (1.00–3.86) 0.049

VEGFA rs2146323 C > A Dom 0.43 (0.22–0.84) 0.014 0.203 0.86 (0.41–1.80) 0.688

TGFBR1 rs928180 A > G Dom 2.40 (1.21–4.75) 0.012 0.194 1.63 (0.61–4.40) 0.333

TGFBR2 rs1346907 A > G Rec 2.49 (1.24–4.98) 0.010 0.194 0.57 (0.18–1.77) 0.329

STAT5A rs7217728 A > G Rec 3.58 (1.71–7.48) 0.001 0.032 0.58 (0.17–2.06) 0.404

STAT5B rs8080122 G > A Rec 4.57 (1.9–10.99) 0.001 0.032 0.58 (0.17–2.06) 0.402

95% CI, 95% confidence interval; FL, fluoropyrimidines; HR, hazard ratio; OXA, oxaliplatin; SNP, single nucleotide polymorphism.
aEstimated from Cox model, adjusted for gender, age, cancer site, stage at diagnosis.
bFalse discovery rate-adjusted p-value.
Only the associations with P < 0.05 are reported in the FL + OXA set and replicated in the FL cohort. Markers with the same predictive effect and below the cut-off for
statistical significance (P < 0.05) in all cohorts are evidenced in bold.

patients’ DFS (Table 2). Of the nine identified markers, six were
associated with an increased risk of recurrence, with HRs ranging
from 2.40 to 4.57, and the remaining three were associated with
a lower risk of recurrence, with HRs ranging from 0.33 to 0.53.
FDR analysis pointed out that the nine markers associated with
DFS (P < 0.05) in the FL + OXA cohort had a q-value below
0.250, ranging from 0.032 to 0.249.

Among the nine polymorphisms highlighted in the FL+OXA
cohort, IFNG-rs1861494 was successfully replicated in the
FL cohort. Particularly, the G allele of IFNG-rs1861494 was
significantly associated with a worse DFS in the FL + OXA
(HR = 2.14, P = 0.020, q-value = 0.249) and FL (HR = 1.97,
P = 0.049) cohorts, according to a dominant model. When
considering the pooled population of patients (FL + OXA plus
FL), the association was more significant (HR = 1.91, P = 0.006).
The DFS Kaplan–Meier curves, according to the IFNG-rs1861494
genotype, in the pooled population are shown in Figure 1. At
5-years follow-up, 72.2% of patients harboring the rs1861494-
AA genotype were free of tumor recurrence (95% CI: 64.0–
78.8) versus 55.7% (95% CI: 43.5–66.4) of those carrying the
rs1861494-AG/GG genotype (Log-rank P = 0.0067).

Three markers out of nine, SMAD3-rs11636161, TGFBR1-
rs928180, and VEGFA-rs2146323, had an effect on DFS that
was in the same direction in both the FL + OXA and FL
cohorts according to the same genetic model; although, it was
not significant (P > 0.05) in the FL cohort. Five markers out
of nine (i.e., SMAD3-rs1545161, FOXO3-rs12203787, TGFBR2-
rs1346907, STAT5A-rs7217728, STAT5B-rs8080122) selected for
their significant impact (P < 0.05) on DFS in the FL + OXA
cohort, displayed an opposite effect, although not significant
(P > 0.05), in the FL cohort. The genotype distribution of the
nine markers highlighted for their significant effect on DFS in the
discovery cohort is reported in Supplementary Table S2. MAFs
were checked and found to be in line with the data reported for
the Caucasian population5.

5http://www.ncbi.nlm.nih.gov/snp

Markers of Overall Survival
The only marker associated with DFS with P < 0.05 in the
two cohorts (IFNG-rs1861494) was tested for its effect on OS,
according to the same genetic model. Due to the low number
of events, the survival analysis was performed on the pooled
population of patients. The IFNG-rs1861494-G allele, associated
with low DFS, exhibited a tendency toward an increased risk of
death (HR = 1.69, 95% CI: 0.90–3.19, P = 0.105). Kaplan–Meier
curves of OS according to the IFNG-rs1861494 variant are shown
in Figure 2.

At 5-years follow-up, the percentage of patients who were
still alive was 83.5% (95% CI: 76.1–88.8) among those harboring
the rs1861494-AA genotype vs. 75.3% (95% CI: 63.1–84.0)
among those carrying the rs1861494-AG/GG genotype (Log-rank
P = 0.1288).

Risk Model in the Pooled Population
A multiparametric score of DFS integrating the genetic MTHFR-
rs1801131 marker with clinical factors (i.e., gender, primary
tumor site, and tumor stage) was previously developed, where
the MTHFR-rs1801131-CC genotype (vs. rs1801131-AA/AC
genotype), male sex (vs. female), colon primary tumor site (vs.
rectum), and tumor stage III (vs. stage II) were considered
negative prognostic factors for DFS (Cecchin et al., 2015). In
the present study, the IFNG-rs1861494 polymorphism, selected
by a stepwise procedure as a significant marker of DFS, was
integrated in the risk model to improve its prediction power.
The detrimental prognostic effect of carrying 0 to 3 non-
genetic features, according to the previous study, was compared
with the effect of carrying both the detrimental genetic factors
(i.e., MTHFR-rs1801131-CC or IFNG-rs1861494-AG/GG) in the
pooled population (Figure 3A, Log-rank P = 0.0007).

A significant increase in the risk of recurrence according
to the number (0–1 vs. 2 vs. 3) of clinical-demographic risk
parameters in patients with a favorable genetic background (i.e.,
MTHFR-rs1801131-AA/AC or IFNG-rs1861494-AA genotype)
was observed, in line with previous data (Cecchin et al., 2015).
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FIGURE 1 | Kaplan–Meier estimates of disease-free survival (DFS) according to the IFNG-rs1861494 polymorphism in the pooled group of patients.

Nevertheless, carrying either one of the detrimental genetic
factors (i.e., MTHFR-rs1801131-CC or IFNG-rs1861494-AG/
GG genotype) discriminated the patients with the worse
prognosis, independently from other non-genetic characteristics
(Table 3).

The same result was obtained also when only pathological
stage III was considered (Log-rank P = 0.0026, Supplementary
Figure S1). The performance of the multiparametric score
in stratifying patients with different OS outcomes was then
evaluated. This analysis demonstrated the same trend observed
for DFS in the different classes of patients (Figure 3B, Log-
rank P = 0.0340; Table 3). The distribution of the clinical-
demographic risk factors in the two cohorts of patients harboring
at least one detrimental genetic factor (MTHFR-rs1801131-CC
or IFNG-rs1861494-AG/GG genotype) or a favorable (MTHFR-
rs1801131-AA/AC and IFNG rs1861494-AA genotype) genetic
background was well-balanced (χ2 for association P = 0.951).

DISCUSSION

To date, pathologic tumor staging remains the key determinant
for choosing adjuvant treatment in CRC even if a considerable
stage-independent outcome variability is observed. Therefore,
there is still a need for prognostic/predictive markers to better
stratify patients in the adjuvant setting. The main finding of
this study was the identification of IFNG-rs1861494 as a marker
of DFS in two independent cohorts of patients, treated with
FL with or without OXA. In the pooled set of patients, the
same marker showed also a trend toward shorter OS. The

IFNG-rs1861494 polymorphism was successfully integrated in
a previously published clinical-genetic score including other
clinical risk factors (i.e., gender, primary tumor site, and tumor
stage) and the patient’s genotype for MTHFR-rs1801131. It
came out that carriers of the MTHFR-rs1801131-CC or IFNG-
rs1861494-AG/GG genotype had the worst prognosis than all the
rest of the patients and this was independent from the other risk
factors, including tumor stage.

IFNG encodes for interferon-γ (IFN-γ), also known as type
II interferon, a pro-inflammatory cytokine that participates in
the regulation of both innate and adaptive immunity against
pathogens or cancer cells (Schroder et al., 2004; Kosmidis
et al., 2018). This cytokine induces a protective and anti-tumor
response in CRC patients (Evans et al., 2006; Kantola et al.,
2012; Ganapathi et al., 2014); accordingly, reduced expression
of IFN-γ in peripheral blood mononuclear cells of CRC patients
could contribute to CRC progression and recurrence (Ganapathi
et al., 2014). In addition to the importance of an adequate IFN-
γ signal for maintaining a tumor-prohibitive environment, a
significant interaction between this cytokine and the mechanism
of action of 5-FU has been reported. In vitro and in vivo data
from experimental tumor models have demonstrated that 5-
FU has the capacity to eliminate the MDSCs that contribute to
the immune tolerance of cancer by inhibiting the function of
CD8(+) T cells. This mechanism was reported to enhance the
secretion of IFN-γ by tumor specific CD8(+) T cells and to
promote T-cell dependent antitumor responses (Vincent et al.,
2010; Apetoh et al., 2011). Other in vitro and in vivo data (Patras
et al., 2016; Malesci et al., 2017) further indicated there was an
interplay between 5-FU and the TAMs, another class of immune
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FIGURE 2 | Kaplan–Meier estimates of overall survival (OS) according to the IFNG-rs1861494 polymorphism in the pooled population.

FIGURE 3 | Multiparametric score of disease free survival (DFS) (A) and overall survival (OS) (B) in the pooled group of patients according to an increasing number of
clinical (gender, tumor site, and stage) and genetic (MTHFR-rs1801131, IFNG-rs1861494) risk factors. ∗refers to MTHFR-rs1801131 variant; ∗∗ refers to
IFNG-rs1861494 variant.

cells whose activity is partially regulated by IFN-γ (Poh and
Ernst, 2018), in determining CRC cell death and the efficacy of
adjuvant 5-FU-based therapy. Furthermore, a direct interaction
between 5-FU and IFN-γ was observed by in vitro analyses that
showed sensitization of human colon carcinoma cell lines to 5-
FU that was induced by the cytokine through modulation of
the expression of specific genes involved in apoptosis regulation
(Adachi et al., 1999; Schwartzberg et al., 2002).

In the present study, the IFNG-rs1861494-G allele was
associated with an increased risk of CRC recurrence after
FL-based adjuvant therapy. The phenotypic consequences of this
polymorphism, located within a conserved regulatory region
of the third intron of IFNG, is well-characterized. Specifically,
functional analyses showed that the rs1861494 T to C change
(corresponding to A to G in the current analysis) introduces
a new CpG methylation dinucleotide site that changes the
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TABLE 3 | Hazard ratio (HR) and 95% confidence interval (95% CI) for 5-yeras disease free survival (DFS) and overall survival (OS) in the pooled group of patients
according to an increasing number of clinical (gender, tumor site and stage) and genetic (MTHFR-rs1801131, IFNG-rs1861494) risk factors.

Number of genetic risk factorsˆ Number of clinical risk factors Number of patients§ HR (95% CI)

DFS OS

0 0–1 40 1 1

0 2 78 2.28 (0.78–6.67) 2.08 (0.44–9.85)

0 3 50 3.91 (1.34–11.39) 4.65 (1.03–21.03)

≥1 Any 99 5.20 (1.92–14.08) 4.81 (1.14–20.38)

ˆ0 = rs1801131-AA/AC and rs1861494-AA; 1 = rs1801131-AA/AC and rs1861494-AG/GG or rs1801131-CC and rs1861494-AA; 2 = rs1801131-CC and rs1861494-
AG/GG.
§ Three patients were not genotyped for both the MTHFR-rs1801131 and IFNG-rs1861494 variants.
DFS, disease-free survival; 95% CI, 95% confidence interval; HR, hazard ratio; OS, overall survival.

methylation pattern of the gene, resulting in a distorted
transcription factor binding to this region and an altered IFN-
γ transcriptional level. Consequently, the common rs1861494-A
allele was correlated with enhanced expression and secretion
of IFN-γ; while, the minor rs1861494-G allele correlated with
inferior production of the cytokine (Gonsky et al., 2014). These
functional data are in line with the results of the present work.
A decreased IFN-γ level, associated with the rs1861494-G allele,
could both deregulate the anti-proliferative activity of IFN-γ
and alter the 5-FU cytotoxicity toward cancer cells (Figure 4),
resulting in an increased risk of CRC recurrence and poor
prognosis, as reported by the current paper.

In the present study, the IFNG-rs1861494 genotype was
also combined with other genetic (i.e., MTHFR-rs1801131
genotype) and non-genetic factors (gender, primary tumor site,
stage) to integrate a previously developed risk model for DFS
(Cecchin et al., 2015). The incorporation of IFNG-rs1861494 in
the multiparametric score strongly improved the stratification
of patients according to their different recurrence risks or
survival profiles. MTHFR is a key enzyme for intracellular
folate homeostasis and metabolism, catalyzing the irreversible
conversion of 5,10-methylenetetrahydrofolate, required for DNA
synthesis, to 5-methyltetrahydrofolate, the primary methyl donor
indispensable for nucleic acid methylation (Toffoli et al., 2003;
De Mattia and Toffoli, 2009; De Re et al., 2010). The missense
MTHFR-rs1801131 polymorphism (1298A > C; Glu29Ala)
was associated with decreased enzyme activity and higher 5-
FU cytotoxicity. The influence of the MTHFR genotype on
FL sensitivity could be related to mechanisms as a change
in the distribution of folate pools, a modification in DNA
methylation patterns as well as an influence on the development
of microsatellite instable (MSI) CRC (Cecchin et al., 2015).
A genetic MTHFR deficiency, and the related disruption in folate
metabolism, may impact the immune response by altering the
expression of inflammatory mediators, including IFN-γ (Mikael
et al., 2013; Meadows et al., 2014). In this respect, the risk score
combining the two functionally relevant variants in MTHFR and
IFNG optimally integrated the impact of the markers on the
same biological pathway. This finding further corroborates the
effectiveness of combining genetic and non-genetic factors and
of simultaneously evaluating the joint effect of multiple genetic
markers when looking for new prognostic biomarkers in cancer
(Di Francia et al., 2010; De Mattia et al., 2015).

The integration of IFNG-rs1861494 in the clinical-genetic
score allowed the identification of a larger group of patients with
a bad prognosis, further refining the stratification of patients
and suggesting different therapeutic approaches tailored to the
patient’s genetic profile. Moreover, when looking at patients with
the same tumor stage, this score was still able to significantly
stratify patients into different prognosis groups (Supplementary
Figure S1). This demonstrates not only that the score is tumor
stage independent, but first of all that a classification of CRC
patients based only on tumor stage is no longer appropriate.
A large inter-individual variability in the response to adjuvant
treatment was reported among patients of the same stage (Sargent
et al., 2010; Shi et al., 2017) and additional diagnostic parameters
are needed to personalize patients’ therapeutic strategies. The
present study highlights that, within the same tumor stage,
there are classes of patients with extremely different prognoses
and that patients’ germline variations play an important role.
These findings should be considered when planning adjuvant
treatment.

In the preset study, some polymorphisms, SMAD3-
rs11636161, TGFBR1-rs928180, and VEGFA-rs2146323,
SMAD3-rs1545161, FOXO3-rs12203787, TGFBR2-rs1346907,
STAT5A-rs7217728, STAT5B-rs8080122, had a significant effect
on DFS in the discovery cohort, that was not replicated in the
replication cohort. This lack of replication does not exclude a
regimen-specific (FL-alone or FL + OXA) prognostic effect.
However, no adequate clinical and molecular information
are available to provide insights of this possible interaction.
It could also be that the lower number of patients in the
replication cohort prevents to observe an effect, that could
have been significant with a larger replication cohort. It
must therefore pointed out that the predictive value on
FL-based therapy outcome of these genetic variants should
be considered as exploratory but is worthy of further
evaluations.

Some limitations of the present study need to be considered.
First, a number of clinical and molecular features that are well-
known to influence the prognosis of CRC patients treated with
post-operative chemotherapy were not evaluated in the current
analysis. It should be noted that, when controlling the analysis
for multiple testing, the FDR for the association between IFNG-
rs1861494 and DFS was 25.0%, pointing out that the study results
should be considered only as hypothesis-generating. Despite this,
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FIGURE 4 | Interferon-γ in the modulation of the anti-tumor efficacy of fluoropyrimidine-based treatment. (A) Different immune cells, such as T-cells, MDSCs, TAMs,
and a complex network of cytokines that mediate cell interactions, significantly contribute to the formation of the CRC microenvironment. (B) Treatment with FLs, as
well as the genetic profile, influenced the level of IFN-γ, a key cytokine for shaping the tumor microenvironment and determining the antitumor response to treatment.
Particularly, FLs induce MDSC apoptosis, promoting the activity of CD8+ T cells and a higher secretion of IFN-γ. On the other hand, the IFNG-rs1861494
polymorphism modulates IFN-γ expression: the G-allele introduces a new CpG methylation dinucleotide site that leads to inferior production of this cytokine;
whereas the A-allele is correlated with its enhanced expression. (C) It could be speculated that higher levels of IFN-γ (1), as the result of increased release by
immune cells activated through a FL-dependent mechanism in a compliant genetic context (i.e., IFNG-rs1861494-AA genotype), leads to an increased activation of
TAMs (2) that finally promote CRC cell death (3) and potentially a more efficient FL-based treatment. The presence of the rs1861494-AG/GG genotype could
contribute to this hypothesized mechanism with a negative impact of the FL-based treatment outcome. CRC, colorectal cancer; FLs, fluoropyrimidines; IFN-G,
interferon gamma; IL-1β/-6, Interleukin-1β/-6; MDSCs, myeloid derived suppressor cells; NK, natural killer; TAMs; tumor associated macrophages, T-cell,
T-lymphocyte; TNFα, tumor necrosis factor alpha.

replicating a significant association in an independent set of
patients (i.e., the FL cohort), as in the present study, strengthens
the reliability of the data and the interest in further clarifying its
potential clinical implication.

The results from our study help better define the complex
and multifaceted mechanism of action of FL and its crucial
interplay with IFN-γ. The findings of the current study
further confirm the pivotal role of the immune system in
determining the effectiveness of the FLs as well as the
interaction between the immune system and the anticancer
drug itself. This interaction between chemotherapy and immune
pathway in cancer is of great interest due to the success of

immunotherapy for different tumor types. These data could
contribute to improving the clinical use of the novel immune
checkpoint inhibitors (i.e., anti-programmed cell death protein
1, PD-1) (Toh et al., 2016; Passardi et al., 2017; Arora and
Mahalingam, 2018) by suggesting a potential synergism between
immunotherapy and the traditional chemotherapeutics (Van
Der Kraak et al., 2016; Di Franco et al., 2017; Emambux
et al., 2018). In this context, the discovery of novel markers
that predict the impact of chemotherapy on tumor immunity
could be important for selecting patients who could benefit
from immune modulators in combination with anticancer
agents.
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CONCLUSION

The risk model of the present study, where the genetic features
had a high prognostic capacity even in a pathologic stage-
independent manner, could represent a useful tool for the
clinician to optimize adjuvant treatment in CRC patients. Indeed,
the identification of novel markers that can better stratify patient’s
risk is of great importance to avoid more extensive interventions
and the associated toxicity, inconvenience, and cost for low-risk
patients. On the other hand, these markers could help intensify
therapy for those who are at higher risk for recurrence.
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