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We describe mathematical models and practical algorithms for a problem concerned with monitoring the air pollution in a large
city. We have worked on this problem within a project for assessing the air quality in the city of Rome by placing a certain number
of sensors on some of the city buses. We cast the problem as a facility location model. By reducing the large number of data
variables and constraints, we were able to solve to optimality the resulting MILP model within minutes. Furthermore, we designed
a genetic algorithm whose solutions were on average very close to the optimal ones. In our computational experiments we studied
the placement of sensors on 187 candidate bus routes. We considered the coverage provided by 10 up to 60 sensors.

1. Introduction

A current project is concerned with the quality of air in the
city of Rome. Part of this project is devoted to measuring the
air pollutants in the city. This is a large scale task which, in
principle, could call for many expensive measuring devices
to be placed on certain chosen sites or mounted on dedicated
vehicles.

In order to reduce the costs and at the same time assure a
good significance to themeasurements, it has been decided to
mount the sensors on the public buses.These sensorsmeasure
the pollutants and immediately send the data to a central
station, while they are moving within the city according to
the bus route.

Clearly only the air pollution in the proximity of a bus
route can be measured with a good degree of accuracy. Given
that there are only a relatively small number of available
sensors, one needs to choose which buses to place the sensors
on in order to get the best possible covering of the city area.

Notice that any individual bus on a particular bus route
could be used to measure the level of air pollution within the
area in proximity of the route itself. Therefore, more than the
choice of a set of buses, the problem consists in the choice of
a set of bus routes. Once a bus route is chosen in the solution,
the sensor can be placed on any of the buses assigned to that
route, as long as this bus is not moved from a route to another
for a sufficiently long period of time.

The exact number of sensors that will be used in the
experiment is not a given parameter. In particular, since
sensors are expensive pieces of equipment, one has to face the
trade off between the cost of the sensors and the percentage
of the urban area that can be covered in the sampling. Hence
the goal of our study is to find all Pareto optimal solutions
under the objectives of maximizing the sampled area and
minimizing the cost of the sensors.

We have been contacted by people involved in the project
in order to mathematically model the problem and suggest
possible solution procedures. In this paper we report on the
outcome of this particular application in which we had to
pursue a twofold goal.

On one side we wanted to develop an exact procedure
despite the large size of the data set. Having an exact solution
is important because it makes it possible to check the quality
of the solutions provided by heuristic procedures.

On the other side we wanted also to develop a simple
procedure that could be later implemented by persons with
a very limited knowledge of operations research tools. This
procedure had not to be a black box to be plugged into a larger
code, since the people in charge of the final implementation
of the project wanted to have full control of each line of the
code and they did not want to rely on proprietary software.

As for the exact procedure, we had to overcome the
difficulty of dealing with the very large data set which, at
first sight, gave no possibility to solve a typical integer linear
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programmingmodel. However, thanks to the particular form
of the objective function, it has been possible to dramatically
reduce the number of variables and consequently to solve the
exact model.

As for the heuristics, our choice was to use a genetic
algorithm due to its implementation simplicity and its
potential in solving complex optimization problems. The
comparison between the exact solution and the heuristic one
has shown a satisfactory quality of the obtained solutions
and, in accordance with the people responsible for the
final implementation, the genetic heuristic was accepted to
generate solutions.

Problems of sensor placement have obtained a consider-
able attention in the literature.These problems strongly differ
from each other depending on the particular application
context (for recent surveys we direct the reader to [1, 2]).

In wireless sensor networks [3] sensors transmit data
among themselves thus constituting a communication net-
work. Moreover, part of the nodes (both target nodes and
sensor nodes) can be mobile, there can be only a partial
location awareness, messages can require a routing to reach
the central station, energy consumption may affect the
activity of the sensors, and obstacles may cause imprecise
measurements. Therefore different objective functions are
considered in order to take care of all these issues [4–7].
Another research field concerns sensor placement problems
in real-time early warning systems, expecially in water distri-
bution networks [2]. In this case the minimization of both the
expected (or worst-case) impact of a contamination and the
contaminationdetection time [8–10] is themost relevant task.

Concerning the special application of detecting pollu-
tants, besides placing the sensors in fixed sites [11], in recent
years the idea of placing sensors on urban transportation
has gained popularity [12–15]. All these contributions focus
mainly on the technological aspects of both building the
sensors and the network infrastructure, but they do not
consider the problemof placing the sensors in an optimalway.
In this paper we focus essentially on this aspect.

Thepaper is organized as follows. In Section 2 wedescribe
the problem and the way we have formally modeled it. In
Section 3 we present an exact integer linear programming
model and describe how we can reduce its size. In Section 4
wedescribe the genetic algorithm that we use as a heuristic. In
Section 5 we describe the computational tests we have carried
out both on the exact model and on the heuristic model for
our specific application. Finally, in Section 6 we present the
computational results.

2. Problem Modeling

Let𝑁 be the number of all bus routes in the urban area under
study (in our case the city of Rome). Among these 𝑁 routes
wemust select a subset of 𝑛 routes which cover the area in the
best possible way. In order to assess the dependence of the
coverage on the number of used sensors, the value of 𝑛 will
be varied within a given range.

In order to solve the problem, it is convenient to first
discretize the urban area so it becomes a set of 𝑚 equally

Figure 1: Discretization grid.

spaced points of a grid (which we will simply call points
hereafter). The higher the refinement of this discretization
is, the larger 𝑚 becomes, and this can affect significantly the
computing time needed to obtain a solution. In this study we
have opted for a discretization of the city into a regular grid
of squares of size 100m× 100m. Due to the shape of Rome the
grid is inscribed in an ellipsis (see Figure 1) and the resulting
total number𝑚 of points within the ellipsis is 21615.

Each bus route can be approximated by a sequence of
consecutive segments, where each segment is identified by
a pair of points (its endpoints). In Rome there are 187 bus
routes and the number of segments in each route is variable
(it obviously depends on the road being relatively straight or
having a lot of turns).

Given the city map data, we have computed an 𝑚 × 𝑁
matrix 𝐷 = (𝑑𝑖𝑗) storing the distance 𝑑𝑖𝑗 of each point 𝑖 from
each route 𝑗. Even if obtaining the distance matrix is com-
putationally quite demanding (there are 4,042,005 distances
to be determined and each distance requires computing a
distance for each of the segments of a bus route), the matrix
can be computed once and for all in a preprocessing phase.

The computation is based on the following straightfor-
ward procedure. The distance of a point 𝑝 = (𝑝1, 𝑝2) from a
segment defined by its endpoints 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2)
is achieved by a point 𝑞 = (𝑞1, 𝑞2) that can be an internal
point of the segment or one of the endpoints, according to
the following cases:

(1) (𝑝 − 𝑎)𝑇(𝑏 − 𝑎) ≤ 0 ∧ (𝑝 − 𝑏)𝑇(𝑎 − 𝑏) ≥ 0 󳨐⇒ 𝑞 = 𝑎,
(2) (𝑝 − 𝑎)𝑇(𝑏 − 𝑎) ≥ 0 ∧ (𝑝 − 𝑏)𝑇(𝑎 − 𝑏) ≤ 0 󳨐⇒ 𝑞 = 𝑏,

(3) (𝑝 − 𝑎)𝑇(𝑏 − 𝑎) > 0 ∧ (𝑝 − 𝑏)𝑇(𝑎 − 𝑏) > 0 󳨐⇒ 𝑞
internal point.
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For cases (1) and (2) the respective distances are

√(𝑝1 − 𝑎1)2 + (𝑝2 − 𝑎2)2),

√(𝑝1 − 𝑏1)2 + (𝑝2 − 𝑏2)2).
(1)

In case (3), the well-known formula for computing the
distance of a point from a line yields the value

󵄨󵄨󵄨󵄨(𝑏2 − 𝑎2) 𝑝1 + (𝑎1 − 𝑏1) 𝑝2 − 𝑎1𝑏2 + 𝑏1𝑎2󵄨󵄨󵄨󵄨
√(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2

. (2)

In order to compute the distance of a point 𝑝 = (𝑝1, 𝑝2)
from a broken line defined as an ordered set of points
𝑎𝑘 = (𝑎𝑘1 , 𝑎𝑘2 ), we can simply repeat the above computations
for each line segment and then return the smallest of the
distances thus computed.

It is reasonable to assume that the route which best covers
a given point 𝑖 is the closest one among those that have been
equipped with a sensor. Hence, if 𝐽 is a subset of routes on
which sensors have been placed (i.e., routes that have been
“activated”), we can define the distance of 𝑖 from 𝐽 as

𝑑𝑖 (𝐽) fl min
𝑗∈𝐽
𝑑𝑖𝑗. (3)

A crucial constraint of the air-pollution monitoring
process is that, in order to cover a point, the sensor, i.e., the
bus route, needs to pass sufficiently close to the point. If the
distance from a route to a point exceeds some given threshold
(and it does not matter if it is much larger or just a little)
that point is not covered by the route. Given the distance
threshold, we can redefine each distance as

𝑑𝑖𝑗 =
{
{
{

0 if 𝑑𝑖𝑗 ≤ 𝑑
1 otherwise.

(4)

Alternatively, we can use a continuous distancemeasure, such
as

𝑑𝑖𝑗 =

{{{{{{{{
{{{{{{{{
{

0 if 𝑑𝑖𝑗 ≤ 𝑑2 ,

2𝑑𝑖𝑗𝑑 − 1 if 𝑑2 ≤ 𝑑𝑖𝑗 ≤ 𝑑,

1 if 𝑑𝑖𝑗 ≥ 𝑑.

(5)

Either way, the important aspect is that each distance
exceeding the threshold is a constant; namely, its value is 1.
Let us define

𝑑𝑖 (𝐽) fl min
𝑗∈𝐽
𝑑𝑖𝑗. (6)

Then, the total coverage of the solution 𝐽 can be measured as

∑
𝑖

𝑑𝑖 (𝐽) . (7)

If we use 𝑑 as defined in (4), the objective is the minimization
of the uncovered points, which can be seen as representative
of the uncovered urban area. If we adopt𝑑 as defined in (5) the
objective, as before, assigns a penalty to the uncovered points,
but it also penalizes the remaining points with a penalty
proportional to their distance from the solution.

In accordance with the people responsible for the project
we have adopted the definition (5) with 𝑑 = 400. For this
threshold value there are 2941 points out of 21615 which
are further away than from each existing route and which
therefore cannot be possibly covered by any solution.

Bymodeling the problem in the waywe just described, we
obtain a problem that falls in the class of “Facility Location”
problems and is generally referred to in the literature as the
“Simple Plant Location Problem” (SPL). See [16, 17] among
the many bibliographical sources. In SPL there is a set of
candidate sites for the construction of a certain number of
facilities each of which offers the same service. Each client
needs to be served by a facility, so that he will choose, among
the activated facilities, the most convenient one (depending
on the distance or someother cost). Clearly, the activation of a
facility is expensive. The SPL problem requires to decide how
many facilities need to be activated and which are the sites for
their construction, so as to minimize the construction cost
plus the cost of servicing the customers.

If we interpret each sensor as a facility, each bus route as
a site for a facility, and each point as a customer, it is clear
that our problem is similar to SPL.The only difference is that
while in SPL the costs of activation and service are combined
into a unique objective, in our case these two aspects (on one
side the cost of the sensors and on the other the quality of
themonitoring) are not combined, rather they are considered
within a multiobjective approach. In particular, as we already
mentioned, the mathematical problem requires determining
a good coverage for a fixed value of 𝑛 and the problem is
then solved several times for various values of 𝑛.The problem
that has to be solved for each 𝑛 is known as the 𝑝-median
problem [18].This problem has been studied in the literature,
with different heuristic approaches proposed for its solution
[19–21] (although, in general, for smaller instances than the
ones we consider). We were told that a possible number of
sensors could be around forty, but the decision was not taken
yet and indeed our study was supposed to provide concrete
suggestions. Therefore we decided to let 𝑛 vary in the range
{10, 11, . . . , 59, 60}.

3. A Mixed Integer Linear
Programming Model

We can readily express the above problem by aMixed Integer
Linear Programming (MILP) formulation as follows. There
are binary variables 𝑦𝑗 equal to one if the route 𝑗 is activated



4 Mathematical Problems in Engineering

and binary variables 𝑥𝑖𝑗 equal to one if the route 𝑗 is the
closest, among the activated ones, to the point 𝑖.Themodel is

V1 = min
𝑚

∑
𝑖=1

𝑁

∑
𝑗=1

𝑑𝑖𝑗𝑥𝑖𝑗
𝑁

∑
𝑗=1

𝑥𝑖𝑗 = 1 𝑖 = 1, . . . , 𝑚

𝑥𝑖𝑗 ≤ 𝑦𝑗 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑁
𝑁

∑
𝑗=1

𝑦𝑗 = 𝑛

𝑥𝑖𝑗 ≥ 0 𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑁

𝑦𝑗 ∈ {0, 1} 𝑗 = 1, . . . , 𝑁.

(8)

The 𝑥𝑖𝑗 variables need not be constrained to be binary since
they are guaranteed to be binary in all optimal solutions.
The main issue with (8) is its huge number of variables and
constraints. In particular, there are 4,042,005 𝑥𝑖𝑗 variables
and even more constraints. This makes the resolution of (8)
prohibitive.

By exploiting the fact that all distances are set to 1 when
the actual distance exceeds the threshold, we can simplify
model (8). Indeed, in this case we can remove from (8) all the
pairs (𝑖, 𝑗) for which 𝑑𝑖𝑗 = 1, since we already know that when
any of the 𝑥𝑖𝑗 variables takes the value 1, it will contribute
exactly 1 to the objective function.

The simplification of (8) proceeds as follows. Let

𝑄 fl {(𝑖, 𝑗) : 𝑑𝑖𝑗 < 1} (9)

We only define variables 𝑥𝑖𝑗 for (𝑖, 𝑗) ∈ 𝑄. If 𝑥𝑖𝑗 = 1 (i.e., 𝑗 is
the closest route to point 𝑖), we associate a ’profit’ (1 − 𝑑𝑖𝑗) to
the variable 𝑥𝑖𝑗, and we try to maximize the total profit. The
new model is then

V2 = max ∑
(𝑖,𝑗)∈𝑄

(1 − 𝑑𝑖𝑗) 𝑥𝑖𝑗

∑
𝑗:(𝑖,𝑗)∈𝑄

𝑥𝑖𝑗 ≤ 1 𝑖 = 1, . . . , 𝑚

𝑥𝑖𝑗 ≤ 𝑦𝑗 (𝑖, 𝑗) ∈ 𝑄
𝑁

∑
𝑗=1

𝑦𝑗 ≤ 𝑛

𝑥𝑖𝑗 ≥ 0 (𝑖, 𝑗) ∈ 𝑄
𝑦𝑗 ∈ {0, 1} 𝑗 = 1, . . . , 𝑁.

(10)

In our case with 𝑑 = 400, the cardinality of 𝑄 is 108,387,
which is a significant improvement over 4,042,005. Thanks
to this reduction it has become possible to solve (10) in a
reasonable time by using CPLEX as the MILP solver, as shown
in Section 5. The values V1 and V2 are clearly correlated by
V1 + V2 = 𝑚.

We may further reduce the size of the model by the
following considerations. If there is a set 𝐼𝑘 of points such that

𝑖 ∈ 𝐼𝑘 is close to a line 𝑘 (𝑑𝑖𝑘 < 1, for all 𝑖 ∈ 𝐼𝑘) but far away
from all other lines (𝑑𝑖𝑗 = 1 for all 𝑗 ̸= 𝑘 and all 𝑖 ∈ 𝐼𝑘), then
the variables 𝑥𝑖𝑘, 𝑖 ∈ 𝐼𝑘 will be all equal to zero if line 𝑘 is not
activated and all equal to one if line 𝑘 is activated. We may
therefore consider just one of these variables as representative
of all others and measure its profit as

∑
𝑖∈𝐼𝑘

(1 − 𝑑𝑖𝑗) (11)

By exploiting this idea in our case wemay reduce the number
of variables by 2320. However, we have judged that the
improvement with respect to 108,387 is not worth the extra
effort of a new implementation with an ad hoc data structure.
Hence we have used model (10) in our computations.

We could also decide to reduce the number of constraints
by replacing the |𝑄| constraints 𝑥𝑖𝑗 ≤ 𝑦𝑗 with𝑁 constraints

∑
𝑖:(𝑖,𝑗)∈𝑄

𝑥𝑖𝑗 ≤ 𝑚𝑦𝑗 𝑗 = 1, . . . , 𝑁. (12)

In this case, however, we would obtain a much weaker model
than the original one. We have not pursued this idea.

4. The Genetic Algorithm

Due to the problem size, we have considered the use of
heuristic algorithms. In particular, genetic algorithms (GAs)
have proved to be a powerful approach when faced with
hard optimization problems [22], and they seem appropriate
in our case for two main reasons. First, in genetic algo-
rithms it is very easy to implement changes in the objective
function (such as introducing penalties, even nonlinear, or
having costs expressed in the form of a big “if-then-else”
switch). This feature is quite appealing in our case, since our
preliminary model can then be adapted to more complex
objective functions that could arise in the future. Second,
each solution has a natural representation as a binary vector
of 𝑁 components (one for each bus route) in which the bits
set to one correspond to the activated routes. Consequently,
each binary vector that has exactly 𝑛 ones represents a
potential solution to the problem. It is well-known that binary
vectors of fixed size are the most common representation for
chromosomes in a GA.

In the general paradigm for genetic algorithms, at each
iteration there is a population of𝑃 individuals (i.e., solutions).
In a selection phase, a subset of 𝑝 individuals are randomly
chosen from the current population (with a probability biased
toward the most fit individuals), and then they breed a new
generation. In particular, the pairs of selected solutions are
used to randomly generate new solutions (their “offspring”)
whichwill form the population for the next iteration.Thenew
individuals also undergo a process of random mutations, in
which they may acquire features that are not shared by any
of their parents. The whole procedure is then repeated until
there is no improvement for a certain number (decided by the
user) of consecutive iterations.
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Themain characteristic of a genetic algorithm is probably
its cross-over procedure, i.e., the way in which a new indi-
vidual is generated starting from its parents. In the genetic
algorithm that we have designed the cross-over works as
follows. After generating a randomnumber 𝑘, with 1 < 𝑘 < 𝑛,
a set 𝑄 of 𝑘 routes is randomly chosen among the activated
routes of the first parent. These routes are inherited by the
offspring. Then, a set of 𝑛 − 𝑘 routes is randomly chosen
among the routes activated in the second parent and not
belonging to 𝑄 (it is easy to see that this choice is always
possible). These routes are then added to the offspring.

The remaining aspects of aGAare the selection procedure
and the mutation phase. For selection, we have used the
standard approach in which individuals with better fitness
(i.e., objective function value) are more likely to be selected
than others. As for the mutations, we proceed as follows.
Let 𝐹 be the set of routes activated in a newly gener-
ated individual. Then, 𝑅 routes are eliminated randomly
from 𝐹 and replaced with 𝑅 random routes which do not
belong to 𝐹. We have noticed that 𝑅 = 2 yields the best
results for the values of 𝑛 in the range of interest for our
instance.

5. Computational Results

We expected the computational effort required to run a full
set of tests on the real data to be substantial. In particular, in
such tests we would have varied the number of sensors and
some parameters of the genetic algorithm (most notably, the
population size). Furthermore, we would have also tried to
compute the optimal solutions so as to assess the effectiveness
of the heuristics. Therefore, we decided to run a set of
preliminary tests in which we tried to get an estimate of
the running time for the MILP and the genetic algorithm.
For these preliminary tests we have used a relatively low
threshold, i.e., 𝑑 = 300 m, so as to have a smaller number of
variables and constraints in the MILP model. Furthermore,
we set the number of sensors to 𝑛 = 40, i.e., the possible value
suggested by the people responsible for the project. All the
computational experiments were run on an Intel Core I3
machine with 4GB RAM. The algorithm was coded in C and
compiled under Linux with gcc 4.7.

In these tests we used both the binary distance (4) and the
continuous distance (5).The running time of GA was around
one minute, while the time needed for MILP was about 15
minutes.

We were then able to evaluate the relative error of the
genetic algorithm, which turned out to be less than 0.6% in
both cases. The error was quite low, so that we took the deci-
sion to use GA for the real computations. Some further tests
were run to decide the best parameters for GA, like the popu-
lation size, the number of iterations, and the rate ofmutations.

After the above preliminary tests, we first made some
computations to assess the quality of the solutions provided
by the genetic algorithm by using the distance function that
was considered adequate with respect to the project goal,
namely the distance (5) with 𝑑 = 400, i.e.,

𝑑𝑖𝑗 =

{{{{{{{
{{{{{{{
{

0 if 𝑑𝑖𝑗 ≤ 200

𝑑𝑖𝑗
200 − 1 if 200 ≤ 𝑑𝑖𝑗 ≤ 400

1 if 𝑑𝑖𝑗 ≥ 400.

(13)

The genetic algorithm and the exact MILP formulation were
run for 𝑛 ∈ {10, 20, 30, 40, 50, 60}. The genetic algorithm
was tested with three values of the population size, namely,
𝑃 = 1000, 𝑃 = 2000, and 𝑃 = 5000 and we used selection
values of 𝑝 = 50, 𝑝 = 60, and 𝑝 = 100, respectively.
As a stopping criterion, we fixed the maximum number of
iterations to 200 and the maximum number of iterations
without improvements in the incumbent value to 100. For
each choice of 𝑛 and 𝑃 we carried out 10 computations.
In Table 1 we report the average, minimum, and maximum
values of V1 out of the 10 runs and inTable 2 the corresponding
relative errorswith respect to the optimal valuesmultiplied by
104.

As expected, the errors are increasing with 𝑛 and decreas-
ing with 𝑃. We note that for the case 𝑃 = 5000 the GA almost
always produces the optimal solution for 𝑛 = 10 and 𝑛 = 20.
The average errors are low for 𝑛 = 30 and 𝑛 = 40 (less
than 1%).The average error is also acceptable (1.3%) and the
minimum error is low (0.55%) for 𝑛 = 50. Only for 𝑛 = 60
there is a sharp increase in the errors; namely, we have 3.4%,
3.0%, and 3.8% for the average, minimum, and maximum
errors. Moreover, the range between the minimum and the
maximum value is quite narrow.Hence we concluded that the
genetic algorithm applied to our specific case exhibits a good
performance around the values of 𝑛 which are more likely to
be chosen.

Since the final goal was to provide a tool to the decision
makers to analyze the situation and decide about the number
of sensors to buy, we had tomake a final computation for each
value of 𝑛 in the range {10, 11, . . . , 59, 60}. In spite of the fact
that the running time of the MILP solution was high (about
one hour) for the larger values of 𝑛, we let the MILP solver
go and compute the optimal solutions for all values of 𝑛, so as
to be able to further evaluate the performance of the genetic
algorithm by comparison.

We ran GA, only once for each value of 𝑛, with value
𝑃 = 5000. Although the optimal values are monotonically
decreasing with respect to 𝑛, we have observed that this is
not necessarily the case for the solutions provided by GA,
clearly because it is a heuristic. To avoid such nonsense
outcomes we have devised a reoptimization procedure that
can exploit the information contained in the various runs.
The reoptimization procedure works in a greedy way for
increasing values of 𝑛. For any given 𝑛 > 10, we take the
solution obtained for 𝑛 − 1 and then add the 𝑛-th sensor to it
by choosing the best route among those not already selected.
This way, we are able to obtain a monotonic behavior of the
suboptimal values.

In Figure 2 we report the optimal values obtained by
the MILP (in black) and the values obtained by the genetic
algorithm with the reoptimization phase (in red). The same
data are displayed in Table 3 (the values for 𝑛 = 10 are not
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Table 1: Average, minimum, and maximum values over 10 iterations.

𝑛 10 (opt = 15045.3) 20 (opt = 11168.7) 30 (opt = 8799.4)
avr min max avr min max avr min max

P = 1000 15045.3 15045.3 15045.3 11175.3 11168.7 11201.7 8867.77 8817.23 8943.52
P = 2000 15045.3 15045.3 15045.3 11172.6 11168.7 11207.9 8850.17 8809.70 8907.81
P = 5000 15045.3 15045.3 15045.3 11168.7 11168.7 11168.7 8819.73 8803.65 8856.41
𝑛 40 (opt = 7287.6) 50 (opt = 6267.5) 60 (opt = 5570.)

avr min max avr min max avr min max
P = 1000 7385.03 7336.87 7470.71 6413.64 6364.73 6514.23 5818.69 5766.51 5848.62
P = 2000 7380.44 7353.98 7440.74 6402.17 6345.66 6468.70 5822.14 5771.60 5885.14
P = 5000 7352.48 7337.17 7377.81 6349.29 6302.23 6416.40 5760.82 5735.26 5782.13

Table 2: Relative errors multiplied by 104.

𝑛 10 20 30
avr min max avr min max avr min max

𝑃 = 1000 0 0 0 6 0 30 78 20 164
𝑃 = 2000 0 0 0 4 0 35 58 12 123
𝑃 = 5000 0 0 0 0 0 0 23 5 65
𝑛 40 50 60

avr min max avr min max avr min max
𝑃 = 1000 134 68 251 233 155 394 446 353 500
𝑃 = 2000 127 91 210 215 125 321 453 362 566
𝑃 = 5000 89 68 124 131 55 238 343 297 381

20 30 40 50 60
n

8000

10000

12000

14000
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Figure 2: Solution values as a function of 𝑛.

shown) where in addition the relative errors with respect to
the optimal values multiplied by 104 are also shown.

We also provide a particular plot (see Figure 3) in which
we may better understand how the points are covered by
the solution. The red line (bottom) reports the number of
uncovered points, i.e., the points with distance exceeding 400
m from each activated route. The blue line (top) shows the
number of uncovered points plus the number of partially
covered points, i.e., with distance between 200 m and 400 m.
The black line shows the values of the objective function V1.
Since the black line is almost halfway between the other two
lines, this shows that the number of partially covered points
is distributed in a quite uniform way in the range 200-400m.

In Figure 4 we show in a third different way the solution
values (obtained by GA) for 10, 20, 30, 40, 50, and 60

20 30 40 50 60
n

6000

8000

10000

12000

14000

16000
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Figure 3: Covered, partially covered, and uncovered points.

sensors. The black points are the 2941 points that cannot
be possibly covered by any solution. The red points are the
uncovered points, i.e., the points exceeding 400 m from each
activated route (these points could be covered by some of
the nonactivated routes). The purple points are the partially
covered points (i.e., with distance between 200m and 400m)
while the blue points are the points whose distance from the
activated routes is smaller than 200 m.

6. Conclusions

In this paper we have investigated a particular problem
of sensor placement originated by a real application. The
application is related to a project aimed at assessing and
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Table 3: Optimal values, GA values, and errors for all n from 11 to 60.

𝑛 11 12 13 14 15 16 17 18 19 20
opt MILP 14542.5 14051.8 13606.0 13216.4 12832.9 12481.3 12135.4 11803.5 11472.5 11168.7
GA + reopt 14542.5 14051.8 13606.0 13216.4 12832.9 12481.3 12135.4 11803.5 11472.5 11168.7
error x 104 0 0 0 0 0 0 0 0 0 0
𝑛 21 22 23 24 25 26 27 28 29 30
opt MILP 10881.5 10589.9 10314.0 10068.2 9827.6 9593.8 9374.9 9179.0 8986.2 8799.5
GA + reopt 10881.5 10589.9 10314.0 10068.2 9827.6 9593.8 9374.9 9179.0 8986.2 8803.6
error x 104 0 0 0 0 0 0 0 0 0 5
𝑛 31 32 33 34 35 36 37 38 39 40
opt MILP 8614.6 8437.0 8257.5 8084.3 7920.1 7781.5 7648.0 7519.0 7400.3 7287.7
GA + reopt 8668.9 8448.8 8290.8 8168.6 7977.5 7813.6 7699.8 7577.9 7468.9 7349.6
error x 104 63 14 40 104 72 41 68 78 93 85
𝑛 41 42 43 44 45 46 47 48 49 50
opt MILP 7176.4 7069.6 6964.3 6859.5 6 6754.9 6650.8. 6548.0 6445.3 6354.2 6267.6
GA + reopt 7226.2 7106.0 7001.9 6890.2 6824.1 6760.0 6583.4 6481.1 6414.2 6365.9
error x 104 69 51 54 45 102 164 54 56 94 157
𝑛 51 52 53 54 55 56 57 58 59 60
opt MILP 6181.7 6106.1 6032.3 5960.2 5890.8 5821.9 5758.2 5694.8 5629.0 5570.1
GA + reopt 6263.4 6219.1 6144.4 6085.6 6019.2 5927.3 5850.4 5800.1 5714.7 5684.2
error x 104 132 185 186 210 218 181 160 185 152 205

30 sensors20 sensors10 sensors

60 sensors50 sensors40 sensors

Figure 4: GA coverage for various numbers of sensors.
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improving the air quality in the city of Rome. One of the
issues of the project is concerned with the determination of
the number of sensors in order to have a good coverage of the
measured air, taking into account the decision of mounting
the measuring devices on the urban buses.

It turned out that a Facility Location model (in particular
the 𝑝-median problem) best fits the real problem. In spite of
the large number of data we have been able to develop a viable
integer linear programming model to find exact solutions.
Although only a genetic algorithm will be eventually used
in the real application, we found that it is mandatory to
have available also the exact solutions to check the quality
of the heuristic solutions. We have found out that a genetic
algorithm meets in a satisfactory way the two goals of having
a simple procedure to be implemented and at the same time
a reliable solution.
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