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Abstract: In relation to Itzkowitz’s problem [5], we show that a c-bounded P-group is balanced if and only if it
is functionally balanced. We prove that for an arbitrary P-group, being functionally balanced is equivalent to
being strongly functionally balanced. A special focus is given to the uniform free topological group de�ned
over a uniform P-space. In particular, we show that this group is (functionally) balanced precisely when its
subsets Bn , consisting of words of length at most n, are all (resp., functionally) balanced.
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1 Introduction and preliminaries
A topological group G is balanced if its left and right uniformities coincide. Recall that the left uniformityLG
of a topological group G is formed by the sets UL := {(x, y) ∈ G2 : x−1y ∈ U}, where U is a neighborhood
of the identity element of G. The right uniformity RG is de�ned analogously. A topological group G is called
functionally balanced [14] in case every bounded left-uniformly continuous real-valued function on G is also
right-uniformly continuous. Omitting the term “bounded" we obtain the de�nition of a strongly functionally
balanced group. In the sequel we extend these de�nitions, in a natural way, to include also the symmetric
subsets of a topological group (see De�nition 2.5). The question of whether every strongly functionally
balanced group is balanced was raised by Itzkowitz [5]. This longstanding problem is still open.

Nevertheless, it is known that a functionally balanced group is balanced whenever G is either locally
compact [5, 6, 14], metrizable [14] or locally connected [7]. Recall that a topological group is non-archimedean
if it has a local base at the identity consisting of open subgroups. A strongly functionally balanced non-
archimedean group is balanced in case it is ℵ0-bounded [4] or strongly functionally generated by the set of
all its subspaces of countable o-tightness [16]. For more known results concerning Itzkowitz’s problem we
refer the reader to the survey paper [2].

The class of all non-archimedean groups contains the class of all P-groups (see De�nition 2.1). We prove
that a P-group is functionally balanced if and only if it is strongly functionally balanced (Corollary 2.7). This
gives a positive answer to [2, Question 3] for P-groups. One of themain results we obtain is that a c-bounded P-
group is balanced if and only if it is functionally balanced (Theorem 2.9). So, a negative solution to Itzkowitz’s
problem cannot be found in the class of c-bounded P-groups.

A uniform space whose uniformity is closed under countable intersection is called a uniform P-space
(see also De�nition 2.1). Such a space is necessarily non-archimedean, which means that it possesses a base
of equivalence relations (Lemma 2.2). In Section 3 we discuss the coincidence of some universal free objects
over the same uniform P-space.

For a free group F(X), over a nonempty set X, we denote by Bn its subset containing all words of length
not greater than n. In Section 4 we show that the uniform free topological group F(X,U), over a uniform P-
space, is (functionally) balanced if and only if Bn is (resp., functionally) balanced for every n ∈ N. Hopefully,
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this theorem can be useful in providing a negative solution to Itzkowitz’s problem.
Given a symmetric subset B of a topological group G we denote by LBG the trace of the left uniformity

LG on B. That is, ε ∈ LBG if and only if there exists δ ∈ LG such that δ ∩ (B × B) = ε. The uniformity RBG is
the trace of RG. In case {An}n∈N is a countable collection of subsets of G, we write LnG (RnG) instead of LAnG
(resp., RAnG ). The character of G is the minimum cardinal of a local base at the identity. For a uniform space
(X,U), the weight w(X,U) denotes the minimal cardinality of a base of (X,U). For ε ∈ U and a ∈ X we let
ε[a] := {x ∈ X : (a, x) ∈ ε}. All topological groups and uniform spaces in this paper are assumed to be
Hausdor�. Unless otherwise is stated the uniformity of a topological group G is the two-sided uniformity,
that is, the supremum LG ∨RG . Finally, TGr,NA and NAb denote, respectively, the classes of all topological
groups, non-archimedean groups and non-archimedean balanced groups.

2 P-groups and uniform P-spaces
De�nition 2.1. (see [1], for example) A P-space is a topological space in which the intersection of countably
many open sets is still open. A topological group which is a P-space is called a P-group. A uniform P-space
(X,U) is a uniform space in which the intersection of countably many elements of U is again in U.

Lemma 2.1. [1, Lemma 4.4.1.a] If G is a P-group, then G is non-archimedean.

Proof. Let U be a neighborhood of the identity element e.Wehave to show that U contains an open subgroup
H. For every n ∈ N there exists a symmetric neighborhood Wn such that Wn

n ⊆ U . Since G is a P-group the
set W = ∩n∈NWn is a neighborhood of e. Let H be the subgroup generated by W . Clearly, H is open and
H ⊆ U .

Lemma 2.2. If (X,U) is a uniform P-space, then (X,U) is non-archimedean.

Proof. Let ε ∈ U. We will �nd an equivalence relation δ ∈ U such that δ ⊆ ε. For every n ∈ N there exists
a symmetric entourage δn ∈ U such that δnn ⊆ ε. Since (X,U) is a uniform P-space, the equivalence relation
δ =

⋃
m∈N(∩n∈Nδn)m ⊆ ε is an element of U.

De�nition 2.2. (see [1, 10], for example) Let τ be an in�nite cardinal.
1. A topological group G is called τ-bounded if for every neighborhood U of the identity, there exists a set F

of cardinality not greater than τ such that FU = G.
2. A uniform space (X,U) is τ-narrow if for every ε ∈ U, there exists a set {xα : α < τ} such that X =⋃

α<τ ε[xα].

Lemma 2.3. Let τ be an in�nite cardinal. Let G be a topological group in which the intersection of any family
of cardinality at most τ of open sets is open. If G is also τ-bounded, then G is balanced.

Proof. Let H be an open subgroup of G. We will show that there exists a normal open subgroup N of G such
that N ⊆ H. Let N = ∩x∈GxHx−1. Clearly, N is a normal subgroup of G and N ≤ H. We show that N is
open. Since G is τ-bounded, there exists a subset F ⊆ G with |F| ≤ τ such that FH = G. It is easy to see
that N = ∩x∈FxHx−1. Since |F| ≤ τ, this intersection must be open and applying Lemma 2.1 completes the
proof.

Corollary 2.3. [1, Lemma 4.4.1.b] An ℵ0-bounded P-group is balanced.

Lemma 2.4. Let (X,U) be a uniform P-space. A function f : (X,U) → R is uniformly continuous if and only if
there exists ε ∈ U such that (x, y) ∈ ε ⇒ f (x) = f (y).
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Proof. The “if" part is trivial for every uniform space (even if it is not a uniform P-space). We prove the “only
if" part. Since f : (X,U) → R is uniformly continuous, for every n ∈ N there exists εn ∈ U such that (x, y) ∈
ε ⇒ |f (x) − f (y)| < 1

n . Let ε = ∩n∈Nεn . Since (X,U) is a uniform P-space, we have ε ∈ U. Now, (x, y) ∈ ε
implies that f (x) = f (y).

Corollary 2.4. Let G be a P-group with a symmetric subset B. A function f : B → R is LBG-(RBG-)uniformly
continuous if and only if there exists an open subgroup H of G such that f is constant on B ∩ xH (resp.,
B ∩ Hx) for every x ∈ B.

Proof. Clearly, (B,LBG) ((B,RBG)) is a uniform P-space. Now use Lemma 2.4 and the de�nition of the left (resp.,
right) uniformity to conclude the proof.

De�nition 2.5. We say that a symmetric subset B of a topological group G is:
– balanced if the left and right uniformities of G coincide on B.
– functionally balanced if every bounded LBG-uniformly continuous function f : B → R is RBG-uniformly

continuous.
– strongly functionally balanced if every LBG-uniformly continuous function f : B → R is RBG-uniformly

continuous.

Theorem 2.6. Let G be a P-group with a symmetric subset B. Then the following assertions are equivalent:
1. B is strongly functionally balanced.
2. B is functionally balanced.
3. If ε ∈ LBG is an equivalence relation with at most c equivalence classes, then ε ∈ RBG .

Proof. (1)⇒ (2) : Trivial.
(2) ⇒ (3) : Let ε ∈ LBG be an equivalence relation with at most c equivalence classes. It follows that

there exists a function f : B → [0, 1] ⊆ R such that f (x) = f (y) if and only if (x, y) ∈ ε. Clearly, f : B → R
is a bounded LBG-uniformly continuous function. Since B is functionally balanced, then f : B → R is also
RBG-uniformly continuous. By Corollary 2.4, there exists an open subgroup H of G such that f is constant on
B ∩ Hx for every x ∈ B. By the de�nition of the right uniformity, {(t, s) ∈ B2| ts−1 ∈ H} ∈ RBG . The de�nition
of f implies that {(t, s) ∈ B2| ts−1 ∈ H} ⊆ ε, and thus ε ∈ RBG .

(3) ⇒ (1): Let f : B → R be a LBG-uniformly continuous function. By Corollary 2.4, there exists
an open subgroup H such that f is constant on B ∩ xH for every x ∈ B. We have {(t, s) ∈ B2| t−1s ∈
H} ⊆ ε := {(t, s)| f (t) = f (s)}. Hence, ε ∈ LBG and clearly ε has at most c equivalence classes. By
(3), ε = {(t, s)| f (t) = f (s)} ∈ RBG . Therefore, f isRBG-uniformly continuous and we conclude that B is strongly
functionally balanced.

Letting B = G in Theorem 2.6 we obtain the following:

Corollary 2.7. Let G be a P-group. Then G is functionally balanced if and only if it is strongly functionally
balanced.

Recall the following result of Hernández:

Theorem 2.8. [4, Theorem 2] Let G be a non-archimedean ℵ0-bounded topological group. Then G is balanced
if and only if it is strongly functionally balanced.

In case the non-archimedean group is a P-group it su�ces to require c-boundedness, as it follows from the
following theorem.

Theorem 2.9. Let G be a c-bounded P-group. Then G is balanced if and only if it is functionally balanced.

Proof. If H is a subgroup of index at most c, then ε := {(t, s)| t−1s ∈ H} has at most c equivalence classes. So,
in case G is a c-bounded P-group, condition (3) of Theorem 2.6 is equivalent to the coincidence of the left and
right uniformities. This completes the proof.

Remark 2.5.
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(a) Theorem 2.9 means that a negative solution to Itzkowitz’s problem cannot be found in the class of c-
bounded P-groups.

(b) Theorem2.9 canbe viewed also as a corollary of Theorem2.6. The latter plays an important role in proving
Theorem 4.4. As pointed out by the referee, Theorem 2.9 admits a much shorter proof. Indeed, one can
take an open subgroup U of G and amap f : G → [0, 1], so that f is constant on each xU and injective on
distinct cosets. Since f is left uniformly continuous and G is a functionally balanced P-group, there is an
open subgroup V such that f is constant on each Vx. Then Vx is contained in xU and G is balanced.

3 Coincidence of free objects
De�nition 3.1. [8, De�nition 3.1] Let Ω be a subclass of TGr and (X,U) be a uniform space. By an Ω-free
topological groupof (X,U)wemeanapair (FΩ(X,U), i),where FΩ(X,U) ∈ Ω and i : X → FΩ(X,U) is a uniform
map satisfying the following universal property. For every uniformly continuous map φ : (X,U)→ G, where
G ∈ Ω, there exists a unique continuous homomorphism Φ : FΩ(X,U)→ G for which the following diagram
commutes:

(X,U)

φ
%%

i // FΩ(X,U)

Φ
��
G

For Ω = TGr the universal object FΩ(X,U) is the uniform free topological group of (X,U). This group was
invented byNakayama [9] and studied, among others, byNumella [11] andPestov [12, 13]. In particular, Pestov
described its topology.
Let (X,U) be a non-archimedean uniform space.

1. For Ω = NA we obtain the free non-archimedean group FNA.
2. In case Ω = NAb, the universal object is the free non-archimedean balanced group FbNA.

These groups were de�ned and studied by Megrelishvili and the author in [8].

We collect some known results from [8, 12]. Denote by j2 the mapping (x, y) 7→ x−1y from X2 to F(X) and
by j*2 the mapping (x, y) 7→ xy−1.

De�nition 3.2. [3, Chapter 4] If P is a group and (Vn)n∈N a sequence of subsets of P, de�ne

[(Vn)] :=
⋃
n∈N

⋃
π∈Sn

Vπ(1)Vπ(2) · · ·Vπ(n).

Remark 3.1. [8, Remark 4.3] Note that if (Vn)n∈N is a constant sequence such that

V1 = V2 = · · · = Vn = · · · = V ,

then [(Vn)] =
⋃
n∈N V

n . In this case we write [V] instead of [(Vn)]. It is easy to see that if V = V−1, then [V] is
simply the subgroup generated by V .

De�nition 3.3.
1. [12] For every ψ ∈ UF(X) let

Vψ :=
⋃

w∈F(X)

w(j2(ψ(w)) ∪ j*2(ψ(w)))w−1.
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2. [8, De�nition 4.9.2] As a particular case in which every ψ is a constant function we obtain the set

ε̃ :=
⋃

w∈F(X)

w(j2(ε) ∪ j*2(ε))w−1.

Theorem 3.4.
1. (Pestov [12, Theorem 2]) Let (X, U) be a uniform space. The set {[(Vψn )]}, where {ψn} extends over the

family of all possible sequences of elements from UF(X), is a local base at the identity element of the
uniform free topological group F(X,U).

2. [8, Theorem 4.13] Assume that (X, U) is a non-archimedean uniform space. Then,
(a) The set {[Vψ] : ψ ∈ UF(X)} is a local base at the identity element of FNA(X,U), the uniform free

non-archimedean group.
(b) The family (of normal subgroups) {[ε̃] : ε ∈ B} is a local base at the identity element of FbNA(X,U),

the uniform free non-archimedean balanced group.

Remark 3.2. Let (X,U) be a non-archimedean uniform space. By the universal properties of the universal
objects it is clear that:
1. the topology of FNA(X,U) is the maximal non-archimedean group topology on F(X) that is coarser than

the topology of F(X,U).
2. the topology of FbNA(X,U) is the maximal non-archimedean balanced group topology on F(X) that is

coarser than the topology of F(X,U).
In particular, if F(X,U) is non-archimedean, then F(X,U) coincides with FNA(X,U). If F(X,U) is also
balanced, then these groups coincide also with FbNA(X,U).

Theorem 3.5. Let (X,U) be a uniform space. Suppose that there exists an in�nite cardinal τ such that
⋂
i∈I εi ∈

U for any family of entourages {εi : i ∈ I} ⊆ U with |I| ≤ τ. Then,
1. the intersection of any family of cardinality at most τ of open subsets of F(X,U) is open. In particular,
F(X,U) is a P-group and we have F(X,U) = FNA(X,U).

2. if the uniform space (X,U) is also τ-narrow then

F(X,U) = FNA(X,U) = FbNA(X,U).

Proof. (1) : Let I be an arbitrary set with |I| ≤ τ. For every i ∈ I let {ψin} be a sequence of elements fromUF(X)

(see Theorem 3.4.1). We de�ne a function φ as follows. For every w ∈ F(X) let φ(w) =
⋂
i∈I,n∈N ψ

i
n(w). By our

assumption on the cardinal τ, we have φ ∈ UF(X).
Clearly, Vφ ⊆ Vψin ∀i ∈ I, ∀n ∈ N. It follows that [Vφ] ⊆

⋂
i∈I [(Vψin )]. By [12, Theorem 2] (see also Theorem

3.4.1) and Remark 3.1, [Vφ] is a neighborhood of the identity of F(X,U). It follows that the intersection of any
family of cardinality at most τ of open subsets of F(X,U) is open. Therefore, F(X,U) is a P-group. By Lemma
2.1 and Remark 3.2, F(X,U) = FNA(X,U).
(2): It is known that the universal morphism i : (X,U) → F(X,U) is a uniform embedding and that i(X)
algebraically generates F(X,U). Since (X,U) is τ-narrow,we obtain by [1, Theorem 5.1.19] (see also [1, Exercise
5.1.a]) that F(X,U) is τ-bounded. By item (1) and Lemma 2.3, we conclude that the non-archimedean group
F(X,U) is also balanced and so we have F(X,U) = FNA(X,U) = FbNA(X,U).

Omitting the τ-narrowness assumption from Theorem 3.5.2, we obtain the following counterexample.

Example 3.3. By [10, Example 3.14], for every cardinal τ > ℵ1, there exists a Hausdor� uniform P-space such
that w(X,U) = ℵ1 < τ < χ(F(X,U)). In view of Theorem 3.5.1 and [8, Theorem 4.16.1], we have F(X,U) =
FNA(X,U) = ̸ FbNA(X,U).

As corollaries we obtain the following two results of Nickolas and Tkachenko.

Corollary 3.6. [10, Lemma 3.12] If (X,U) is an ℵ0-narrow uniform P-space, then the group F(X,U) has a base
at the identity consisting of open normal subgroups.

Proof. By Theorem 3.5.2, F(X,U) = FbNA(X,U). Now use item (b) of Theorem 3.4.2.
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Corollary 3.7. [10, Theorem 3.13] If (X,U) is an ℵ0-narrow uniform P-space, then χ(F(X,U)) = w(X,U).

Proof. If (X,U) is an ℵ0-narrow uniform P-space, then by Theorem 3.5.2 we have F(X,U) = FbNA(X,U). On the
other hand, by [8, Theorem 4.16.1], we have χ(FbNA(X,U)) = w(X,U). We conclude that χ(F(X,U)) = w(X,U).

4 The subsets Bn

Theorem 4.1. Suppose that τ is a topological P-group topology on a free group F(X) and µ is either the right,
left or two-sided uniformity of (F(X), τ). Then, ε ∈ µ if (and only if) ε ∩ (Bn × Bn) ∈ µ ∩ (Bn × Bn) ∀n ∈ N.

Proof. It is clear that if (F(X), τ) is a P-group, then (F(X), µ) is a uniform P-space. Let us assume that ε∩ (Bn ×
Bn) ∈ µ ∩ (Bn × Bn) ∀n ∈ N. Then, for every n ∈ N there exists δn ∈ U such that ε ∩ (Bn × Bn) = δn ∩ (Bn × Bn).
Since (F(X), µ) is a uniform P-space, we have δ = ∩n∈Nδn ∈ µ. Hence,

δ =
⋃
n∈N

(δ ∩ (Bn × Bn)) ⊆
⋃
n∈N

(δn ∩ (Bn × Bn)) =
⋃
n∈N

(ε ∩ (Bn × Bn)) = ε,

and we conclude that ε ∈ µ.

Corollary 4.2. Let (X,U)be auniform P-space and µ be either the right, left or two-sideduniformity of F(X,U).
Then, ε ∈ µ if (and only if)

ε ∩ (Bn × Bn) ∈ µ ∩ (Bn × Bn) ∀n ∈ N.

Proof. By Theorem 3.5, F(X,U) is a P-group. Now the proof follows from Theorem 4.1.

Corollary 4.3. Let (X,U) be a uniform P-space. Then, F(X,U) is balanced if and only if Bn is balanced for every
n ∈ N.

Theorem 4.4. Let (X,U) be a uniform P-space. The following are equivalent:
1. Bn is strongly functionally balanced for every n ∈ N.
2. Bn is functionally balanced for every n ∈ N.
3. F(X,U) is functionally balanced.
4. F(X,U) is strongly functionally balanced.

Proof. G := F(X,U) is a P-group by Theorem 3.5. So, the implications (1) ⇐⇒ (2) and (3) ⇐⇒ (4) can be
derived from Theorem 2.6.

(2)⇒ (3) : Using Theorem 2.6, it su�ces to show that if ε ∈ LG with at most c equivalence classes, then
ε ∈ RG . For such an ε it is clear that εn := ε∩ (Bn ×Bn) has at most c equivalence classes in Bn . It follows from
our assumption (2) and from Theorem 2.6 (with B = Bn) that εn ∈ RnG . Corollary 4.2 implies that ε ∈ RG , as
needed.

(3) ⇒ (2) : Suppose that F(X,U) is functionally balanced and �x an arbitrary n ∈ N. We show that Bn
is functionally balanced. Let εn := ε ∩ (Bn × Bn) ∈ LnG be an equivalence relation with at most c equivalence
classes in Bn , where ε ∈ LG is an equivalence relation on F(X). Let

δ := ε ∪ ((F(X) \ ε[Bn]) × (F(X) \ ε[Bn])).

We will show that δ has the following properties:

(a) δ is an equivalence relation with ε ⊆ δ.
(b) δn = δ ∩ (Bn × Bn) = εn .
(c) δ has at most c equivalence classes in F(X).

Brought to you by | Universita Degli Studi Udine
Authenticated

Download Date | 12/14/18 12:49 PM



Balanced and functionally balanced P-groups | 59

We prove the nontrivial part of (a). Namely, the transitivity of δ. Let (x, y), (y, z) ∈ δ. If (x, y), (y, z) ∈ ε or
(x, y), (y, z) ∈ (F(X) \ ε[Bn]) × (F(X) \ ε[Bn]) the assertion is trivial. So, without loss of generality assume that
(x, y) ∈ ε and (y, z) ∈ (F(X) \ ε[Bn]) × (F(X) \ ε[Bn]). Since (x, y) ∈ ε and y ∈ (F(X) \ ε[Bn]), it follows that
x ∈ (F(X) \ ε[Bn]). Since z is also in (F(X) \ ε[Bn]), we have (x, z) ∈ (F(X) \ ε[Bn]) × (F(X) \ ε[Bn]) ⊆ δ.

To see that property (b) is satis�ed, �rst observe that Bn ⊆ ε[Bn]. Therefore,

δn = δ ∩ (Bn × Bn) = (ε ∪ ((F(X) \ ε[Bn]) × (F(X) \ ε[Bn]))) ∩ (Bn × Bn) =

= (ε ∩ (Bn × Bn)) ∪ ((F(X) \ ε[Bn]) × (F(X) \ ε[Bn])) ∩ (Bn × Bn)) =

= (ε ∩ (Bn × Bn)) ∪ ∅ = εn .

To prove (c) combine the following two observations. On the one hand, the fact that εn has at most c
equivalence classes in Bn , implies that there exist at most c equivalence classes δ[x],where x ∈ ε[Bn]. On the
other hand, by the de�nition of δ, the number of equivalence classes δ[x], with x /∈ ε[Bn] is less than two.
So, δ has at most c equivalence classes in F(X).
Now, using (a) and (c) together with our assumption that F(X,U) is functionally balanced, we obtain by
Theorem 2.6 that δ ∈ RG . Finally, we use property (b) and Corollary 4.2 to conclude that εn ∈ RnG .
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