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Abstract

Proteins are the main bulding blocks of biological systems. Their structure
and function have been extensively studied so far both by experiments
(Nuclear Magnetic Resonance, X-ray crystallography, Mass Spectrom-
etry, etc.) and modeling strategies (Molecular Dynamics and Monte

Carlo simulations, Density Functional Theory. etc.). in vivo in general and in solu-
tion in particular, they mostly adopt different and unique secondary and tertiary
configurations, owing to their conformational freedom. The route and mecha-
nism by which a specific shape is formed, i.e. the folding, which is not reversible
in many cases, is not fully understood for several protein models nothwithstand-
ing the fulgurant advances achieved in experimental and in silico techniques in
the last decades. Under specific conditions (pH, temperature, concentration, etc.)
such three-dimensional arrangement as well as the intra/inter-chains interactions
can be lost and species such as disordered or fibrilar aggregates involved in sev-
eral known human pathologies may develop.

In this thesis we probe the atomistic scale conformational dynamics of two amy-
loidogenic proteins, transthyretin and β2-microglobulin, using molecular dynam-
ics simulations. We aim at understanding the major factors driving the misfold-
ing and/or (un)folding of the latter specified proteins which play a precursor
and prominent role in neurodegrative deseases. To this end the dynamics and
dissociation of wild-type and mutant transthyretin is simulated. In particular the
behaviour of a triple mutant (designed by Prof. R. Berni and coworkers to be
monomeric) is studied. It comes out that the mutation considerably shifts the
tetramer-folded monomer equilibrium towards the monomer, making this triple
mutant a useful tool for structural and dynamical studies. The interaction of
β2-microglobulin with hydrophobic surfaces is studied by molecular dynamics
and the thermodynamics of the process is addressed using end-point free energy
calculations. The results rationalize experimental observations reported in the
literature.

Protein conformational dynamics and thermodynamics are currently experimen-
tally probed by the backbone amide hydrogen exchange experiment (HX). The
Bluu-Tramp experiment developed by prof. Esposito and coworkers allows the
measurement of free energy, enthalpy and entropy of exchange in a single exper-
iment. A proper comparison between experimental and simulation data require
modeling of the process at atomic detail. Hence, we analyze also this aspect and
try to relate the amide hydrogen protection observed in NMR experiments to
various microscopic properties of the protein structure computed in the simula-
tions. Using free energy calculations we aim at reproducing also the temperature
dependence of the process.
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Given the predominant role of protein association in most biological functions,
we introduce a modeling approach to estimate the entropy loss upon complex
formation, a contribution which is almost always neglected in many free energy
calculation methodologies due to the high dimensionality of the degrees of free-
dom and adequate theoretical methods. The approach is applied to the case pro-
teins considered in this thesis and an exact and approximate estimation of the full
rotational-translational entropy are obtained in the context of nearest neighbor-
based entropy formulation.

Overall, this thesis explores various aspects favouring the formation of misfolded
and/or (un)folded protein species, ranging from dissociation of an homotetramer
of transthyretin engineered in silico, through the interaction of β2-microglobulin
with an hydrophobic surface model, to the backbone amide hydrogen exchange
pattern of protection of the latter. Lastly and not the least, the thesis presents a
computational methodology to address the roto-translational entropy loss upon
complex formation of biomolecules.

Keywords : Molecular dynamics simulations, Free energy, Unfolding, Confor-
mational changes, Amyloidogenic proteins.
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kcl closing exchange rate kop opening exchange rate
kexp experimental rate of exhange ρg(r) pair correlation function
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General Introduction

Proteins are found in almost all living systems, even in the simplest free-
living organisms (Fraser et al., 1995) and they represent a large class of
biomolecular assemblies made up by monomeric units of amino acid
residues. After being synthesized in the cells, they may often adopt dif-

ferent conformational states to achieve their biological functions (Teague, 2003),
and as such, they are the workhorses of biology (Jacobs et al., 2016). In most in-
stances, their functionality is optimized in the near-native conformation, known
to be a non trivial three-dimensional folded object, the exact shape of which being
dependent upon the constituted amino acids primary sequence1 and the physico-
chemical parameters of their milieu (Anfinsen, 1972). This clearly states that,
under specific conditions, for instance at a given pH, a primary considered se-
quence will always lead to firmly similar three-dimensional folds. Several factors
come into play to maintain the folded structure of proteins, essentials of which
are cohesive forces between the constituent amino acids such as van de Waals and
coulombic interactions, hydrogen bonding, hydrophobic packing and so forth.
As a matter of fact, with various degrees of flexibility, proteins are dynamics soft-
matter moieties.

The flexible nature of protein assemblies enables them to achieve different func-
tions in vivo including but not limted to substrate and cofactor binding, intra-
cellular transport and enzymatic catalysis (Teague, 2003; Chevalier-Larsen and
Holzbaur, 2006; Kamerlin and Warshel, 2010). This plasticity-like potential is
even at the core of amyloidoses formation (Dobson, 2002). In fact, there is an
intrinsic interplay between flexibility, stability and function and identifying the
proper folding pathways may provide insightful knowledge about how protein’s
function is performed.

In the specific case of amylodogenic proteins, it is widely accepted that the onset
of fibril formation is linked with partial unfolding and the many mutants pro-
duced and studied worldwide correlate protein instability and amyloid forma-
tion. To be concise, with amyloids we mean the insoluble fibrillar plaques de-
posited in living organisms as a result of globular proteins disruption. This pro-
ceeds through a conformational transition into a misfolded cross-beta form,
leading to cellular dysfunction at the origin of many human neurological diseases
ranging from Alzheimer to Parkinson through Huntington and Creutzfeldt-Jakob
(Chiti and Dobson, 2006; Roberts, 2016; Chiti and Dobson, 2017). The interest
in amyloid degeneration of proteins from the viewpoint of biophysics has been
rather high over the last twenty years also due to the obvious link to protein fold-
ing.

1Apart from intrinsically disordered proteins
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in vitro protein conformational (thermo)dynamics is mainly investigated through
NMR spectroscopy (Wüthrich, 1986) and/or MS spectrometry (Chowdhury, Katta,
and Chait, 1990) and to some extent also by X-ray crystallography (Kendrew et
al., 1958). In the last years, we witnessed significant progress in quantitative
experimental measurements and nowadays a range of techniques such as cryo-
electron microscopy (Frank et al., 1995) and small-angle X-ray scattering (Sver-
gun, 1999) are often used alongside with fluorescence spectroscopic techniques
(Ha et al., 1999; Michalet, Weiss, and Jäger, 2006) to study the dynamics of pro-
teins in real time. Most of them can provide highly resolved atomic-level clues
on protein conformational changes and rugged free energy landscapes. How-
ever, in general, they are less informative in monitoring the fast kinetics events
and/or short lifetime species2. Furthermore, several of them can only provide
static frames on the systems of interest but no (or less) informations on the con-
formational dynamics. In this regards, with the recent developments, NMR spec-
troscopy constitutes a method of choice as it can access all time scales of protein
dynamics (Kleckner and Foster, 2011; Rennella et al., 2012a; Rennella et al., 2012b;
Palmer, 2015). Moreover, in silico methodologies such as molecular dynamics
(MD) (Alder and Wainwright, 1957) have been proven to be relevant to address
theoretically many of the issues just discussed.

MD simulations can adequately describe the dynamics of (bio)molecules at full
atomistic scale representation with a much higher temporal and spatial resolu-
tion than most experimental techniques (Shea, and III, 2001; Karplus and Mc-
Cammon, 2002; Scheraga, Khalili, and Liwo, 2007; Dror et al., 2010; Dror et al.,
2012). Indeed, the latter condition (atomic scale resolution) was thought to be
a necessary requirement in understanding the biological functions of biomacro-
molecules (Anfinsen, 1972). Nevertheless, even though the simulation timescales
accessible by all-atom MD simulations have remarkably evolved to nearly mil-
liseconds and beyond, they remain however, several orders of magnitude less
significant than typical timescales for conformational changes relevant for key
biochemical processes (Dror et al., 2010; Lane et al., 2013; Da et al., 2014).

Significant efforts have been made in understanding and elucidating the amy-
loid formation pathways and its relevance in the healthy-like and destructive
behaviour of biological systems3. Nothwithstanding these achievements, still, a
number of factors promoting the disruption of many globular protein structures
and rendering them more amyloidgenic-prone have not yet been exhaustively
elucidated4. Indeed, proteins in their natural cellular environments are consid-
ered as a component of a complex solution that may undergo, for either natural
or traumatic events, a transition. In other words the whole thermodynamic sys-
tem of the protein and the surrounding environment evolves from stability into
metastability, a precarious condition which may explain the disruptive charac-
teristics of the amyloid transition to restore a steady free energy minimum (Ki-
tayama et al., 2013; Ikenoue et al., 2014; Lin et al., 2014).

2On the femto scale or so
3A clear differenciation is now been set between bad and good amyloids (Roberts, 2016)
4These broadly include the physico-chemical environment and the complexicity of tertiary and

quaternary folds adopted by proteins under different conditions
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This thesis explores the conformational dynamics of two paradigmatic protein
models5 for amyloidogenesis studies through all-atoms molecular dynamics sim-
ulations. Although they both belong to all-β structural class type, the first one,
β2-microglobulin (β2m), adopts an Ig-like fold and is mainly involved in dialysis-
related amyloidosis while the second one, transthyretin (TTR), with a prealbumin-
like structural fold is known to form Senile Systemic Amyloidosis (SSA). Without
the pretension of being exhaustive, the goal is the understanding of the major
factors dragging the misfolding and/or (un)folding of these proteins.

To achieve this task, the dynamics and dissociation of wild-type and mutant ho-
motetramer of TTR is simulated. More precisely, the behaviour of a triple mutant
engineered in silico (no crystal structure was available when doing this work)6 is
studied. In addition, the interaction of β2m with hydrophobic surfaces is inves-
tigated and the thermodynamics of the binding process is addressed using end-
point free energy calculations. Finally, the backbone amide hydrogen exchange
(HDX) of the latter system is computed. The comparison of the amide hydrogen
protection observed in NMR experiments7 with a number of microscopic proper-
ties of the protein structure averaged in the simulations is attempted. By employ-
ing free energy calculations we aim at replicating the temperature dependence of
the process as well.

On a more methodological perspective, a theoretical approach to estimate the en-
tropy loss upon complex formation is presented. It is worth noting that this term
is mostly unaccounted in many free energy calculation methodologies, obviously
due to computational cost associated to the high dimensionality of the degrees of
freedom and adequate sampling methods.

The conformational dynamics has provided clues into the molecular machinery
of protein stability and function, thereby opening-up further design strategies
with targeted responses (Childers and Daggett, 2017; Soler et al., 2017). Moreover,
the structural diversity and intricate behaviour of amyloid fibril oligomers self-
assembly under various circumstances confer to them a unique property poten-
tially integrated in engineering novel responsive biopolymers and biomaterials
(Knowles et al., 2007; Cherny and Gazit, 2008). Understanding the factors lead-
ing to the formation of misfolded/(un)folded protein species and later the mech-
anisms of precarious protein stability has technological and medical implications
and could help rationalizing the development of novel therapeutic strategies with
which to prevent and/or treat amyloidosis. An outstanding example is provided
by medical devices which are currently used for removing β2-microglobulin from
the blood of hemodialysis patients in medical devices (Suzuki, Shimazaki, and
Kutsuki, 2003). Thus, our study may help enlighten our understanding of the
complex machinery and the physico-chemical factors behind amyloidogenesis,
thereby potentially inspire new design strategies.

5Both forming extracellular amyloid deposits
6The X-ray structure has just been released (Zanotti et al., 2017)
7Bluu-Tramp experiment (Rennella et al., 2012a; Rennella et al., 2012b)
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Outline

This thesis is subdivided in three generic parts.

The first part is referred as a more theoretical one and covers two chapters. In
Chapter 1, the fundamentals of protein structure in general and of amyloidogenic
proteins in particular with emphasis on the case systems considered here, namely
TTR and β2m are discussed. More in details, we state what is already known
about amyloidogenic proteins in relation to both their structure, (thermo)dynamics
and function. This chapter stresses on the relevance of the chosen systems and
wraps up by an outlook on the actual work. In Chapter 2 we recall the theoretical
backgrounds as far as molecular dynamics simulation is concerned. We aim not
only at laying the background for the methodologies used, but also to clarify the
readers about some concepts and terminology to be used thereafter.

The second part is a more methodological one. It essentially embodies Chapter 3,
wherein a novel approach to address the full roto-translational entropy loss upon
complex formation, deriving from the nearest neighgour entropy formalism is in-
troduced. Theoretical foundations of the method are discussed and applications
are made on the model systems considered in this thesis.

The third part comprises three chapters and is a more applicative one. In Chap-
ter 4 the dynamics and dissociation pathways of human wild-type and of a par-
ticular triple mutant homotetramer of TTR is simulated. Chapter 5 deals with
the interaction of β2m with a model cubic hydrophobic box and subsequently
the thermodynamics of the binding process addressed by the mean of end-point
free energy calculations. Chapter 6 presents the preliminary results of backbone
amide hydrogen exchange of β2m and the comparison of the averaged simulated
miscroscopic quantities with experimentally NMR measured amide protection
factors. The thesis ends by the Concluding Remarks and Outlook which summa-
rizes the findings of this work and frames some future outlooks.
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Chapter 1

Amyloidogenic proteins:
State-of-the-art

This chapter opens up by a short overview on the essential notions and
nomenclature in relation to protein geometry in general. Afterwards,
we outline the common features peculiar to amyloidogenic proteins that
make them so diverse. We subsquently discuss the major amyloid for-

mation mechanisms and pathways and the methods used for their detection as
well as the correlated human diseases. The chapter closes up by targeting atten-
tion on the case systems selected for this thesis i.e. TTR and β2m emphasizing on
their structure and function in relation to their amyloid propensity.

1.1 Protein structure: what a complex machinery?

Synthesized on the ribosome as unstructured linear chains of amino acid (a.a.)
residues, proteins like other biological macromolecules such as carbohydrates,
nucleic acids, etc. are fundamental pillars supporting the molecular foundation of
life. Each of them play a cutting edge function in life’s machinery, but what make
proteins so unique is their capability to perform cellular functions and thus be-
ing ranked as the most versatile macromolecules. The a.a. residues building the
protein structures are recruited amongst the 20 naturally occuring ones (Schulz
and Schirmer, 1979b), each embedding two essentials chemical functions : amino
(H2N–) and carboxylic acid (HOOC–), the differences lying on the nature of the
constituted side-chains groups (R) substituents on the alpha carbon (Cα).

It is worth mentioning that the 20 naturally occuring a.a. bulding block dic-
tate 20N random possible heteropolymer sequences of lenght N. However, in the
midst of this innumerable ensemble of theoretical feasible protein-like sequences,
only energetically favourable with relevant folding rates, i.e. thermodynamically
and kinetically foldable on the relevant biological timescale will be observed
in nature (Onuchic et al., 1997). Indeed, if proteins would have had to search
through all their possible random conformations, their folding time would have
been on the order of magnitude of the universe’s age (Levinthal, Cyrus, 1968).
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The composition of the side-chain groups could range from single hydrogen as in
the case for glycine (the simplest a.a. residue) to aromatic rings through aliphatic
moieties. They are routinely subdivided in four classes, nonpolar (hydrophobic),
polar uncharged, negatively charged (basic) and positively charged (acidic) (see
Fig. 1.1). In solution, a.a. residues are found essentially as dipolar ions, i.e.
NH2 becomes NH3

+ after accepting a proton donated by COOH to become COO–.
Therefore, the primary structure of the protein corresponds to the stretched and

untangled chain of a.a. residues connected through peptide bonds C

O

N

H
as a

result of a condensation reaction between NH3
+ tail of the first and COO– tail of

the second as schematised in Fig. 1.2. The Cα of all a.a. residues1 is an asymmetric
(chiral) centre, but only one enantiomer (L) is used to make proteins (Taylor et al.,
2001).

At this stage, the protein primary structure encoded in the Deoxyribonucleic acid
(DNA) has not yet acquired any shape but urges to do so to be biologically ac-
tive. The pathways by which a protein goes from this messy-like assembly to its
native state, also known as protein folding, is perhaps one of the most vital pro-
cesses in biology. It is intriguing to note that amongst the large set of all possible
heteropolymer conformations, each protein naturally encountered has a unique
three-dimensional native fold dictated essentially by its sequence. Several factors
come into play to maintain the folded globular threedimensional shape of the
native state, essentials of which are cohesive forces between the constituent a.a.
such as van der Waals and coulombic interactions, hydrogen bonding, hydropho-
bic packing, as well as covalent interactions including disulfide bridges (Schulz
and Schirmer, 1979c).

The folding process is organized by levels of hierarchy (Fig. 1.3), even though
intrisically disordered proteins partially keep their initial unstructured shape.
Thus, in their native environment soon after the condensation of a.a. residues to
set up a ramdom linear chain (Fig. 1.3-A), proteins adopt a well defined (unique)
tertiary native structure (Fig. 1.3-C). Throughout the pathways, there is the ap-
pearance of canonical local shapes lay out by a.a. backbones connected in an
order defining the protein main-chain. Not all the values of the backbone dihe-
dral angles φ (C, N, Cα, C) and ψ (N, Cα, C, N) are allowed and each of these
local folds known as secondary structures (Fig. 1.3-B) fall within a precise range
of (φ, ψ) values (Hovmöller, Zhou, and Ohlson, 2002). The secondary structure is
then the protein’s intermediate level of structural organization and is mainly sta-
bilized by backbone hydrogen bonding networks between spatially neighboring
a.a. residues. Two main types of secondary structural motifs are usually adopted
by proteins, α-helices and β-strands (see Fig. 1.3-C), that later assemble in ter-
tiary structure. When a protein consists of more than one monomeric units as in
the case of hemoglobin, its tertiary structure could further self-aggregate into a
complex molecular assembly to form the quaternary structure (Fig. 1.3-D).

1Except for glycine
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FIGURE 1.1: Representation of side-chains R for the 20 naturally oc-
curing a.a. bulding block, adapted from (Koehl, 2006). The classifi-
cation depends upon their chemical affinity with water. One-letter
designation scheme for each a.a. is used. Red, blue, yellow and
dark-grey represent oxygen, nitrogen, sulphur and carbon atoms re-

spectively. Hydrogen atoms are omitted for the sake of lisibility.
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FIGURE 1.2: Illustration of a planar peptide bond resulting from the
condensation between amino and carboxylic acid groups of two a.a.
residues with side-chains R and R’ to put up a dipetide. The ex-
tension of this chemistry leads to a long heteropolymer sequence

bulding up the protein primary structure.

Protein structures usually fall within one of these three classes : fibrous, mem-
brane or globular. Fibrous proteins are insoluble in water and their secondary
structures dictate almost all their shapes. Membrane proteins can be inserted into
phospho-lipid bilayer membrane that surrounds the cells and many sub-cellular
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FIGURE 1.3: Schematic representation of folding pathway levels
of hierarchy from structureless primary sequence to more complex
well organised quaternary fold. Proteins are represented in cartoon

view.

organelles. Globular proteins are soluble in water and usually fold into a precise
compact block deriving from a non-repetitive a.a. sequence. Further differences
among the protein classes can be found in the literature (Taylor et al., 2001; Koehl,
2006; Alberts et al., 2009; Schulz and Schirmer, 1979a). Whereas most globular
proteins fold into a unique tridimensional shape, there are instances of structural
fluctuation and mis-assembly leading to fibrillar aggregates. This is likely dic-
tated either by an improper protein trafficking or denaturating conditions, albeit
a number of proteins also form amyloid deposits under (near)-physiological con-
ditions. More importantly, it is the conformational freedom of protein structures
that confers to them such an ability to interconvert between several states.

These insoluble aggregated proteins may damage the cells and even the whole
tissue. This precarious conformational state underlies a number of neurode-
generative disorders linked to cognitive impairments such as Huntington and
Alzheimer diseases. It is worth recording that the intrinsic forces observed in
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proteins should normally drive the correct folding without external factors. Nev-
ertheless, it is seen that molecular chaperones (Ellis and Hartl, 1999; Hartl and
Hayer-Hartl, 2002) strongly enhance the protein folding and considerably inhibit
fibril formation.

1.2 Amyloids structure & characterization methods

Outstanding progresses have recently been made toward the structure elucida-
tion of amyloid fibrils at a molecular level. As imaged in vitro by transmission
electron microscopy (TEM) and/or atomic force microscopy (AFM), amyloid fib-
rils are filamentous assemblies of about 70-130 Å in diameter. They merely consist
of nearly 2-6 protofilaments in number, with about 20-50 Å in diameter each that
twist around each other to build a thread-like object (Sunde and Blake, 1997; Ser-
pell et al., 2000). The evolvement of experimental protocols makes it possible to
prepare samples of isolated amyloid fibrils from tissues, thereby allowing their
characterization by a number of techniques such as X-ray diffraction (Eanes and
Glenner, 1968; Bonar, Cohen, and Skinner, 1969) and NMR experiments (Lans-
bury et al., 1995).

It was showed that fibrils are molecular assemblies owning an extended cross-β
conformation connected through hydrogen bonding networks displayed along
the fibril axis in which their β-strands are arranged perpendicularly to the latter
axis (Sunde and Blake, 1997). Several methods have confirmed this structural fea-
tures of amyloid fibrils like Fourier transform infrared spectroscopy (FTIR) (Zan-
domeneghi et al., 2004), solid-state nuclear magnetic resonance (ssNMR) (Par-
avastu et al., 2008) and X-ray crystallography (Serpell et al., 2000). Moreover,
as it is the case for many active biological compounds, amyloid fibers could po-
tentially bind small molecule ligands2 such as thioflavin-T (ThT) and Congo red
(CR). Subsequently, upon binding, the well-ordered arrays parallel to fibril axis
are imaged when interacting with polarized light (Nilsson, 2004). Therefore, the
factors that underlie a protein aggregate as an amyloid fibril are typically the fol-
lowing : cross-β-like secondary structure, fibrillar morphology and characteristic
binding abilities (Sipe and Cohen, 2000).

In this thesis we explore the conformatiomal dynamics of TTR (Hörnberg et al.,
2000) and β2m (Saper, Bjorkman, and Wiley, 1991), given that conformational
changes mediate amyloids formation. Both are well characterized and adopt
well-defined tertiary folds in addition to form extracellular-like aggregates. There-
fore, they are useful structural models for amyloidogenesis studies.

2Essentially dyes
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1.3 TTR and β2m : a look into their structure and
function

TTR and β2m are among the 37 proteins (Chiti and Dobson, 2017) whose ability
and propensity to misfold and form fibrillar aggregates has been associated to
human degenerative diseases. Their common pattern is mainly found in their
canonical local shapes (secondary structure) as both belong to all-β-like structural
class. Indeed, their amyloid potential seems to be inherited from this secondary
structural content which has been established to drive amyloid fibrils formation.

1.3.1 Transthyretin

TTR-origin and function

Formerly known as prealbumin, TTR is a 55 kDa globular oligomeric protein
made up by four identical monomeric units (I-IV, see Fig. 1.4-(b)) each composed
by 127 a.a. residues. Before being released into plasma, TTR is principally pro-
duced in liver, choroids plexus and retina (Hamilton and Benson, 2001; Rodrigues
et al., 2010; Ferreira et al., 2013; Reinés et al., 2014). It is mainly a carrier protein
that binds to retinol binding protein (RBP) to transport vitamin A in plasma and
represents the leading transporter of thyroxine (T4) in cerebrospinal fluid (CSF)
(Jiang et al., 2001; Lim et al., 2013; Banerjee et al., 2013).

TTR-structure

The 3D-conformation of all TTR-tetramers display great order of similarities as
shown at high resolution by Blake and coworkers (Blake et al., 1978) and Hörn-
berg et al. (Hörnberg et al., 2000). TTR structure is overall a rich-β-sheets content
protein with a small α-helix domain between strands E and F (see Fig. 1.4-(b)).
The structure is highly ordered with a flexible N-terminal region that could not
be resolved in many crystallographic studies. In each TTR monomer, about 45 %
of residues are arranged in a sandwich immunoglobulin-like topology made up
by two four antiparallel-stranded β-sheets; the inner sheet DAGH opposed to the
outer sheet CBEF. Its secondary structure also exhibits a short β-strand portion A*
(see Fig. 1.4-(c)) which is antiparallel (folded back) to strand A through a π-turn
(i+5) and which is involved in dimer-dimer contact (Haupt et al., 2014).

The dimer I-II (Fig. 1.4-(c & d)) also known as primary dimer is the first crystallo-
graphic asymmetric unit structurally symmetric to the dimer III-IV. It is stabilized
by a network of six main chain hydrogen bond interactions established by three
pairs of residues (A120(NH)�(OC)Y114, T118(NH)�(OC)Y116, Y116(NH)�(OC)T118)
at the HH’ interface (Fig. 1.4-(a)). Monomer I inner sheets DAGH form with its
homologue H’G’A’D’ in monomer II a kind of symmetric antiparallel pseudo-
continous eight β-sheets like network centered on HH’ (DAGH-H’G’A’D’), Fig.
1.4-(c) (Haupt et al., 2014; Cianci et al., 2015). Whereas at the opposite side, the
pseudo-continuity in outer sheets CBEFF’E’B’C’(Fig. 1.4-(d)) is rather loose and
only 4 backbone hydrogen bonds (F87(CO)�(HN)T96 and E89(NH)�(OC)V94)
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FIGURE 1.4: (a) Topology arrangement of main chain - main chain
hydrongen bonds (blue lines) within WT-TTR monomeric subunits
and at monomer - monomer interfaces H-H’ (c) and F-F’ (d), where
the letters A to H designate the β-strands in one monomer while H’
and F’ belong to the other monomer of the same dimer. Red arrows
indicate the connection between strands and show the loop regions
and blue ones go from donnor (NH) to acceptor (OC). Coloured
residues3(yellow) are the ones invloded in the mutation and α is
the helical region between strands E and F. (b) Cartoon view of
tetrameric assembly of WT-TTR on which the residues involved in
the mutation (F87 (orange), L110 (cyan) & S117 (purpleblue)) are
shown explicitely (stick representation) as well as the label of dif-
ferent β-strands schematised in (a). PDB id 1F41 (Hörnberg et al.,

2000)
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are established (Fig. 1.4-(a)). While dimers are mainly kept together by hydro-
gen bonds at monomer-monomer interface, tetramers result to be the dimers of
dimers essentially stabilized by hydrophobic contacts established within neig-
bouring subunits at the dimer-dimer interface via AB-GH loop interactions in-
volving mainly residues L17, A19, V20, L110, P113, T119 and V121.

TTR-related amyloidoisis

TTR-related amyloidosis can be inherited in the case of genetic mutations or can
be non-hereditary when it is due to wild-type (WT-TTR) (Dubrey, Ackermann,
and Gillmore, 2015). WT-TTR amyloidosis also termed senile systemic amyloido-
sis (SSA) is the prevalent form of TTR amyloidosis which principally affects the
heart. It develops with ageing and requires TTR tetramer dissociation and partial
unfolding. Mutation-induced TTR amylodosis is instead associated to familial
amyloid polyneuropathy (FAP) which impatcs essentially on nervous system and
familial amyloid cardiomyopathy (FAC) with broad implication on heart (Baner-
jee et al., 2013; Dubrey, Ackermann, and Gillmore, 2015). The inter-connection
between protein structure and stability and its capability to form amyloid fibrils
has motivated several structural studies. To date, about 80 point mutations have
been correlated to human inherited amyloidosis (Pasquato et al., 2007).

Motivations to triple mutant engineering mutation

WT-TTR displays a very stable tetrameric molecular assembly. It is established
that its structure is resistant to dissociation at physiological concentrations within
the pH range 5 - 7 (Lai, Colón, and Kelly, 1996). Several amyloid fibril formation
models have been proposed and reviewed (Chiti and Dobson, 2006; Invernizzi
et al., 2012; Chiti and Dobson, 2017). However, it is almost a consensus that
common mechanism involves the dissociation of the native tetrameric TTR into
unstable but folded monomers, followed by local unfolding of the latters into
multiple non-native amyloidogenic intermediate states that self-assembled in so-
lution (see Fig.1.5) (Chiti and Dobson, 2006; Rodrigues et al., 2010; Invernizzi
et al., 2012; Lim et al., 2013; Greene et al., 2015; Chiti and Dobson, 2017). Fur-
thermore, evidence has been provided pointing to the dissociation of the native
tetramer as the rate-limiting step towards aggregation (Lashuel, Lai, and Kelly,
1998; Quintas, Saraiva, and Brito, 1999; Quintas et al., 2001; Jiang, Buxbaum, and
Kelly, 2001; Jiang et al., 2001).

It arises therefore that knowledge of the dynamics and dissociation of TTR na-
tive structure is an important issue as tetramer dissociation, monomer misfold-
ing and self-assembly of amyloidogenic monomers into amyloid and other ag-
gregate morphologies is known to be linked to several human degenerative dis-
eases. Specifically, TTR represents one of the few examples whereby disease in-
tervention, through the stabilization of a native structure, has yielded a drug for
TTR amyloidogenesis (Johnson et al., 2012), thus indicating that thermodynamics
studies and modeling of tetramer dissociation is a very important target.

3More details in Chapter 4
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To mimic the pathological situation, previous site-directed mutagenesis (muta-
tions Phe87Met/Leu110Met (MT-TTR)) was carried out to promote the dissoci-
ations of the TTR tetramer into monomers (Jiang et al., 2001). To further shift
the equilibrium towards monomers to obtain a more homogeneous dissociated
species, an additional a.a. replacement has been introduced in MT-TTR molecule
(Ser117Glu) by Berni and coworkers. Indeed, the latter mutant containing three
mutations (3M-TTR) proved to be markedly more prone to in vitro aggregation in
comparison with the double mutant MT-TTR (Zanotti et al., 2017).
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FIGURE 1.5: Schematic illustration of possible intermediate confor-
mational states and their inter-conversion pathways adopted by var-
ious heteropolymer polypetides since their biosynthesis in the ribo-
some. From bottom left to bottom right respectively, common pro-
tein aggregation pathways can lead to the formation of amorphous
deposits (as in the case of α-synuclein and islet amyloid polypep-
tide), amyloid fibrils (such as in TTR and β2m) or native-like de-
posits (as seen in prion protein and insulin). The figure is taken

from (Chiti and Dobson, 2017).
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TTR-amyloidosis therapeutics

As mentioned previously, the dissociation of TTR tetramer is the initial step into
its fibrillation pathway (Kelly and Lansbury, 1994). Therefore, many strategies
to TTR amyloidosis prevention exploit its ability to bind small molecules in the
T4 binding channel (see Fig. 1.4-b), mimicking its hormone binding capabil-
ity, thereby producing kinetic stabilization of the tetramer (Peterson et al., 1998;
Almeida et al., 2005). Other clinical remedies to FAC and FAP amyloidosis often
employ organs transplantation (e.g. liver), even though not all the affected organs
can be transplanted (e.g. choroids plexus), where TTR is procuded as well (Ando
and Ueda, 2012). Furthermore, additional treatments against TTR amyloidosis
have been experimented, among which the exercise of gene therapy (Nakamura
and Ando, 2004) and the resorption of amyloid deposits (Sebastião et al., 2000),
just to cite two.

1.3.2 β2m

β2m-origin and function

β2m is a 99-residue subunit of the major histocompatibility complex class I (MHC
I). With a molecular mass of about 12 kDa, it is a small β-sandwich globular
protein interacting noncovalently with the human leukocyte antigen HLA-A2
through its α-chain. Thus, the conformation of α-chain is dependent on the pres-
ence of β2m. Therefore, being the subunit of the MHC I, its biological role ap-
pears to be more structural. Upon dissociation from MHC I, β2m is released in
the blood and is essentially cleared by glomerular filtration followed by proximal
tubular (in the kidneys) reabsorption and catabolism (Floege et al., 1991; Scarpi-
oni et al., 2016). In renal insufficient patients undergoing long-term dialysis, it is
the responsible for dialysis related amyloidosis (DRA) where insoluble amyloid
fibrils of the protein are deposited in joints and connective tissue (Gejyo et al.,
1985; Yamamoto and Gejyo, 2005; Naiki et al., 2016).

β2m-structure

The secondary structure of β2m consists of seven β-strands A to G (Fig. 1.6 (Fo-
golari et al., 2011)) assembled into two antiparallel pleated β-sheets (of 3+4 β-
strands) connected by a central disulfide bridge (linking strands B & F) (see Fig.
1.7) highly resembling a β-sandwich immunoglobulin-like type (Ig) C1 domain
(Becker and Reeke, 1985; Saper, Bjorkman, and Wiley, 1991; Verdone et al., 2002).
No transmembrane domain is found in its structure and it holds a characteristic
molecular assembly called a constant-1 Ig superfamily domain shared with other
adaptative immune molecules including MHC I and II (Ohta et al., 2011).

β2m-related amyloidoisis

β2m is mainly responsible for dialysis-related amyloidosis (DRA). DRA is a com-
mon incidence of both chronic hemodialysis and peritoneal dialysis, resulting
from the increase in the protein level in the serum of patients affected by re-
nal dysfunction. This abnormal incresase in protein concentration leads to the
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FIGURE 1.6: Schematic view of the topology of β2m alongside with
the secondary structure description.

maturation of amyloid fibrils that accumulate principally in the osteoarticular
tissues (ligaments, bone, muscle, etc.) and viscera, causing organs dysfunctions
like carpal tunnel syndrome and bone cysts. It is worth noting that at pH 7 β2m
structure is well folded and does not spontaneously forms amyloids (Bellotti et
al., 1998; Myers et al., 2006), albeit its concentration is steady high in patients
undergoing long-term haemodialysis (Gejyo et al., 1985). Therefore, the extrinsic
factors that potentially trigger β2m amyloid formation have been investigated.

It was seen that interaction with metal ions such as Cu2+ destabilizes the folded
state of the protein against thermal and urea denaturation, thus promoting amy-
loid fiber formation (Morgan et al., 2001; Calabrese and Miranker, 2007; Calabrese
and Miranker, 2009). The acidic pH (McParland et al., 2000; Narang, Singh,
and Mukhopadhyay, 2017) and the interaction with lysophosphatidic acid (Ya-
mamoto et al., 2004) also induce the formation of β2m amyloid plaques under
physiological conditions. One variant of β2m, ∆N6, a truncated conformer in-
volved in DRA was found to be more stable than wild-type (2.5 kcalmol-1 lower)
(Esposito et al., 2000; Giorgetti et al., 2005; Eichner and Radford, 2011) and ca-
pable of triggering the fibrillogenesis process of the wild-type by promoting its
direct conversion to a highly prone aggregation intermediate state, mimicking
the pathogenic action of prion proteins (Eichner and Radford, 2009; Eichner et
al., 2011). Nevertheless, in spite of the multiple hypothesis drawn, its detailled
fibrillogenesis mechanism remains elusive. However, in general, the conforma-
tional dynamics of the natively folded wild-type favoured by the cis to trans
His31-Pro32 shift to promote the non-native aggregation-competent intermedi-
ate species4 is commonly accepted as the initiation step into the β2m amyloid
formation pathway (Verdone et al., 2002; Eichner et al., 2011) in a process glob-
ally schematized in Fig. 1.5.

4Usually a partially unfolded state is a prerequisite into amyloid fibrils



Chapter 1. Amyloidogenic proteins: State-of-the-art 16

FIGURE 1.7: Cartoon view of β2m structure (blue) bounds to human
histocompatibility antigen HLA-A2 (green). Residues Cys25 and
Cys80 connecting strands B and F through disulfure bridge (yellow)
are shown in stick representation. PDB id 3hla (Saper, Bjorkman,

and Wiley, 1991)

Motivation to the in silico studies of β2m structure in this work

Our group has a long term expertise in characterizing5 a number of amyloido-
genic proteins including β2m (Esposito et al., 2000; Verdone et al., 2002; Esposito
et al., 2005; Fogolari et al., 2007; Corazza et al., 2010; Fogolari et al., 2011). Besides,
its structure is in overall well described, facilitating comparison with computer
generated microscopic data. More specifically, β2m is a quite small system in
size, therefore adequate model for molecular dynamics simulations. In particu-
lar, a NMR method, Bluu-Tramp, has recently been developed by Prof. Espos-
ito and coworkers (Rennella et al., 2012a; Rennella et al., 2012b) that allows the
estimation of (sub)-global unfolding thermodynamics parameters (free energy,
enthalpy, entropy and heat capacity) at a single residue resolution in a single ex-
periment using two temperature ramps. These data will serve to benchmark our

5Either in silico or in vitro using mainly NMR experiments
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atomistic MD simulations and improve our knowledge of the temperature de-
pendence of the free energy, namely the entropy, that still lacks full description
at the atomic level. On the other side, β2m is a promising cancer therapeutic tar-
get (Shi et al., 2009) and is part of the FDA-Approved OVA1 panel’s biomarkers
(including also TTR) for ovarian cancer (Rein et al., 2011), striking to a detailed
investigation of its molecular structure as well as a number of factors promoting
its unfolding, typically at the atomistic scale resolution.

β2m amyloidosis therapeutics

Amyloids deposits usually impaired the normal regulation of vital organs. As for
FAC and FAP amyloidosis, organs transplantation is a cornerstone therapeutical
strategy. Therefore, renal replacement has been proposed for the prevention and
treatment of DRA (Campistol, 2001). In addition, a number of dialysis methods
such as hemofiltration and hemodiafiltration (Rabindranath et al., 2005) and the
use of biocompatible and high-flux membranes (Hoshino et al., 2016) are often
employed in this regard. Recently, in vitro and in silico investigations showed
that the fibrilogenis of even a pathological variant of β2m, D76N, is hindered by
citrate-gold nanoparticles (Cantarutti et al., 2017). Moreover, a specific nanobody
Nb24 was proved to efficiently block the fibrillogenesis of the latter variant re-
sponsible for hereditary systemic amyloidosis of β2m (Raimondi et al., 2017).
These latest findings open up promising therapeutic issues.

1.4 Summary

This chapter has covered the key notions behind protein assemblies in general
and amyloidogenic proteins in particular, bearing emphasis on TTR and β2m, the
two model systems explored in this thesis. Our understanding of protein confor-
mational dynamics have greatly benefited from years of experimental endeav-
ours, primarily using X-ray crystallography and/or NMR spectroscopy meth-
ods that have now been considerably evolved. However, the dissection of pro-
tein misfolding and aggretation at a molecular level raises a spectrum of intri-
cate methodological issues mainly related to the size, heterogeneity and tran-
sient hallmark of the intermediates involved. In this regard, in silico techniques
and mainly molecular dynamics (the focus of the forthcoming chapter) even on
shorter timescale proved to be markedly of help, highlighting detailed mechanis-
tic and structural insights to complement and benchmark experiments (Karplus
and McCammon, 2002; Ma and Nussinov, 2006; Vaart, 2006; Fogolari et al., 2007;
Scheraga, Khalili, and Liwo, 2007; Moroni, Scarabelli, and Colombo, 2009; Dror
et al., 2010; Avila et al., 2011; Fogolari et al., 2011; Dror et al., 2012).
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Chapter 2

Molecular dynamics :
Overview and fundamentals of
the method

This chapter emphasizes on the essential traits peculiar to computer simu-
lation techniques in general and in molecular dynamics (MD) approach
in particular. It starts by discussing the theoretical backgrounds of the
method in the context of classical MD simulations, bearing interest in

all-atoms representation of the system, using either explicit or implicit solvent
models since both are employed in this thesis. Thereafter, some enhanced MD
simulation strategies also applied to part of the MD simulations in this thesis
are discussed. The accuracy of computer experiments depends on the reliabil-
ity of the computational procedure also called algorithm. Nowadays, develop-
ing faster and more efficient algorithms occupies a very good place in computer-
based research community. Another key aspect and perhaps the most important
is the interaction potential often called empirical energy function or force-field,
which describes the interaction between different atoms within the system. The
availability of accurate force-fields whose parameters are tuned to compensate
for the simplifications introduced in the model is a prerequisite for all reliable
MD simulations. This chapter closes up by highlighting part of the force-field
improvement initiated by using the Generalized Born-Suface Area (GB/SA) con-
tinuum solvation model of Onufriev-Bashford-Case (OBC) (Onufriev, Bashford,
and Case, 2004), to refit the Born radii and OBC parameters of the amber99sb-ildn
force-field (Lindorff-Larsen et al., 2010) to best reproduce the average solvation
forces in comparison to the explicit solvent model. Albeit we could not foster
much more attention on this latter aspect in this thesis, mainly because of time
constraints, it shows up promising results that could be extended later on.
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2.1 Classical molecular dynamics

MD simulations are largely employed in materials science and biophysics. Nowa-
days, the steady increase in computer powers, alongside with the heavily opti-
mized and massively parallelized codes have extensively raised by several or-
ders of magnitude the system sizes and timescales accessible in most MD com-
putations. Subsequently, although short, atomic-level simulations can now sam-
ple the timescales relevant for fundamental biological processes such as small
and large-scale conformational changes, protein folding, stability, flexibility and
recognition (ligands, DNA, membranes). By providing highly spatial (atomistic)
and temporal (femtosecond) resolution than most experimental techniques, MD
simulation is becoming a computational microscope and an invaluable tool in
molecular biology.

2.1.1 Basic ideas of MD simulation

Compared to electrons (which constitute with nuclei the building block of atoms),
nuclei are heavy enough to be treated as classical point objects with mass mi

and are modelled independently from electrons1. Indeed, the mass of an atom
is essentially concentrated in its nucleus. The motion of a set of atoms can then
solely be related to their nuclei motions. Consequently, the time dependence of
a conservative system should follow the Newtonian mechanics. In clear, MD
simulation computes the time-based equilibrium and transport properties of a
classical many-body system, by numerically solving the Newton’s equations of
motion (2nd Newton’s law), see Eq. 2.1.

Fi = miai = mi
d2ri
dt2

, with i = 1, 2, . . . , N (2.1)

With all-atoms description of the system, the force acting on atoms can also be
expressed as the negative first order derivative of the potential with respect to
the spatial coordinates, i.e. the negative gradient of the potential energy function,
Fi = −∇iU . Thus,

mi
d2ri
dt2

= −∇iU(r1, r2, . . . , rN) = − ∂

∂ri
U(r1, r2, . . . , rN) (2.2)

In Eqs. 2.1 and 2.2, Fi is the force acting on the ith particle of the system, mi, ri and
ai its mass, spatial coordinates and acceleration respectively. U(r1, r2, . . . , rN) is
the system potential energy. N is the total number of particles in the system and
t is the time. Bold-written variables are vector quantities.

Since Eq. 2.2 describes the classical state of the system, it enables the complete de-
termination of the matrix of atomic coordinates and velocities at any time, given

1Born-Oppenheimer approximation (Born and Oppenheimer, 1927)
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the initial positions and velocities. However, in general, due to the high complex-
ity nature of the potential energy function, it is not possible to provide an analyt-
ical solution to Eq. 2.2, apart from particular cases. Anyway, a unique solution
to the latter equation relies on the initial set of coordinates and velocities, prereq-
uisites for a MD computation. Therefore, an approximate solution to Eq. 2.2 is
obtained step-by-step, based on numerical integrations. In all MD simulations,
the trajectory consists of a suite of snapshots that represents each microstate of the
system. Once at equilibrium and provided that the system has sampled enough
microstates, one could then estimate the macroscopic ensemble2.

The procedural workflow of a MD calculation embodies the followings :

1. Bulding up the system by defining the set of inputs including the start-
ing coordinates/velocities (ri/vi), but also the system topology, the inter-
action potential (U(r1, r2, . . . , rN)), temperature (T), integration time-step
(∆t), etc.;

2. Compute the forces exerted on different atoms in the system : Fi = − ∂
∂ri
U ;

3. Numerical integration of Newton’s equations of movement : d2ri
dt2

= Fi
mi

,
vi = dri

dt
, dvi
dt

= Fi
mi

;

4. Loop steps 2 and 3 until the chosen time-scale;

5. Estimate the average computed observables.

Bulding up the system

Independently of the type of MD computation one is interested in, one must al-
ways define the initial set of coordinates and velocities. As far as protein struc-
tures are concerned, the coordinates that could be either a single frame (when
coming from X-ray) or a set of conformers (when coming from NMR solution
structure) are often retrieved from the Protein Data Bank3 (Berman et al., 2000).
Atomic velocities vi are usually assigned randomly based on the system temper-
ature T, which is also an input term, according to the Maxwell-Boltzmann distri-
bution function P(vi), following the relation P(vi) =

√
mi

2πkBT
exp
(
− miv

2
i

2kBT

)
, where

kB is the Boltzmann’s constant.

Forces computation

The force acting on each particle is related to the interaction energy function
(U). Subsequently, the computation of forces involves the calculation of bonded
(bond, angle, dihedral) and non-bonded (electrostatics and van der Walls) energy
terms, see Molecular Mechanics Force Field. This step is a very time consuming
one, notably for the computation of the non-bonded energy terms which could
scale up to an order of magnitude of N2 for each unit cell, N being the total num-
ber of atoms. In the simulation, one usually replicates the unit cell employing

2Ergodic principle : the numerical solution (time average) is statistically equivalent to the true
solution (ensemble average) within a truncation error.

3Coordinates could also be obtained in silico by homology modeling
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the periodic boundaries conditions (PBC) in order to avoid the finite system ef-
fect and to simulate the bulk system. In the PBC-like description, a particle that
leaves the simulation cell along one face re-enters on the opposite face and only
views the closest image of other atoms. This condition underlies the minimum
image convertion that prevents a particle self-interaction, making non-physical
models.

To circumvent the computational effort associated with the forces calculation, a
number of approaches are introduced. The so-called Verlet list (Verlet, 1967) is
often used to truncate the potential and to consider only interactions that fall
within the truncated sphere with radius rcut, see Eq. 2.3. However, this applies
only for short-range interactions such as van der Walls. The cut-off scheme is
simply not enough in treating the long-range interactions like coulombic ones.
Thus, MD often employs the Ewald summation technique. It was recently im-
plemented by the Particle-mesh Ewald algorithm (Darden, York, and Pedersen,
1993) which scales as Nlog(N) and results sufficiently faster than conventional
Ewald approaches.

U trunc(r) =

{
U(r)− U(rcut) r < rcut

0 r ≥ rcut
(2.3)

Step-by-step numerical integration

A solution to Eq. 2.1 is extremely difficult to be provided by a poorly intuitive
computer solving routines. Conversely, computers readily solve simple equa-
tions such as algebraic ones. The second-order differential term in Eq. 2.1 must
therefore be expressed as an algebraic expression, using the following Taylor se-
ries expansion, Eq. 2.4 :

x(t+ δt) = x(t) + δt
dx(t)

dt
+

1

2!
δt2

d2x(t)

dt2
+

1

3!
δt3

d3x(t)

dt3
+ . . . (2.4)

In Eq. 2.4, if x does not significantly evolve with time, the higher order differential
terms can be neglected for a suitable small value of the time-step δt. However,
still, another expression of Taylor series expansion is required to approximate the
second-order differential term in Eq. 2.1 :

x(t− δt) = x(t)− δtdx(t)

dt
+

1

2!
δt2

d2x(t)

dt2
− 1

3!
δt3

d3x(t)

dt3
+ . . . (2.5)

By summing up side-by-side Eqs. 2.4 & 2.5, the second-order differential term
can be given by :

d2x(t)

dt2
=
x(t+ δt)− 2x(t) + x(t− δt)

δt2
+ ϑ(δt4) (2.6)
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ϑ(δt4) on the right-hand side in Eq. 2.6 defines the accuracy of the approximation,
and in this case, all the terms higher than or equal to δt4 are neglected. Eq. 2.6
could then be simply written as :

d2x(t)

dt2
=
x(t+ δt)− 2x(t) + x(t− δt)

δt2
(2.7)

Eq. 2.7 is known as the central difference approximation. Accordingly, the equation
of the x-component of Newton’s law of movement turns in the following :

xi(t+ δt) = 2xi(t)− xi(t− δt) +
δt2

mi

Fxi(t) (2.8)

where ri = ri(xi, yi, zi) are the molecular positions and Fi = (Fxi, Fyi, Fzi) are the
forces acting on particle i.

Similarly, equations for (yi, zi) components are easily derived. Given that Eq. 2.8
is a simple algebraic equation, the molecular positions at the next time-step can
be estimated using the present and previous positions and the present forces. Eq.
2.8 does not require the velocity components for computing the atomic positions
at the next time-step. It is termed the Verlet Method (Verlet, 1967). Nevertheless,
from the trajectory, one could derive the velocity as follows :

ri(t+ δt) = ri(t) + ṙi(t)δt+
r̈i(t)

2!
δt2 + · · · = ri(t) + vi(t)δt+

1

2
ai(t)δt

2 + . . . (2.9)

ri(t− δt) = ri(t)− ṙi(t)δt+
r̈i(t)

2!
δt2− · · · = ri(t)−vi(t)δt+

1

2
ai(t)δt

2− . . . (2.10)

By substracting hand-by-hand Eqs. 2.9 & 2.10, we obtained vi(t) as in Eq. 2.11 :

ri(t+ δt)− ri(t− δt) = 2vi(t)δt⇒ vi(t) =
ri(t+ δt)− ri(t− δt)

2δt
(2.11)

It has previously been seen that the velocities are not required for estimating the
positions at the next time step. Nonetheless, an approach using both atomic po-
sitions and velocities may be more adequate in keeping the system temperature
constant. Such schemes include the Velocity Verlet Method that employs formu-
lae displayed in Eq. 2.12 & Eq. 2.13 for determining the motion of molecules and
provides significant stability and accuracy in the simulation and the Leap Frog
algorithm.

ri(t+ δt) = ri(t) + δtvi(t) +
δt2

2mi

Fi(t) (2.12)

vi(t+ δt) = vi(t) +
δt

2mi

[Fi(t) + Fi(t+ δt)] (2.13)
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The Leap Frog algorithm evaluates the velocities at half-integer time steps and
uses these velocities to compute the new positions using Eqs. 2.14 & 2.15 :

ri(t+ δt) = ri(t) + δtvi(t+
δt

2
) (2.14)

vi(t+
δt

2
) = vi(t−

δt

2
) +

δt

mi

Fi(r(t)) (2.15)

This scheme is an alternative to the Verlet’s one, and so, it leads to similar trajec-
tories with the difference that the velocities are not defined at the same time as
the positions. As a consequence, kinetic and potential energy are also not defined
at the same time, and hence we cannot directly compute the total energy in the
Leap Frog scheme.

2.1.2 Molecular Mechanics Force Field

MD simulations of biomolecular systems use force fields resulting from the fit-
ting of experimental data or quantum mechanical and solvation free energies
calculations to fit into simple functional forms. Accurate simulations therefore
rely on the avalaibility and precision of the force field used to characterize the
interactions. The force field, the mathematical model used to approximate the
atomic-level forces acting on the simulated molecular system (Lindorff-Larsen et
al., 2012) is a function of the potential terms that can be summed up as follows :

U =
∑
bonds

1

2
kr(r − r0)2 +

∑
angles

1

2
kΘ(Θ−Θ0)

2 +
∑

dihedrals

∑
n

1

2
kψ[1 + cos(ηψ + Υ)]

+
∑

impropers

1

2
kω(ω − ω0)

2 +
∑
i<j

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∑
i<j

qiqj
rij

(2.16)

In Eq. 2.16, the first four components are bonded potentials that describe bonds,
angles, proper dihedrals and improper torsions of the covalent structure, respec-
tively. The last two terms run over all pairwise atoms i and j separated from each
other by a distance rij = |rj − ri| and showcase the non bonded interactions. The
bond stretching and bond bending (1st and 2nd terms) model the energetic change
accompanying the deformations of the bond lengths r and bond angles Θ from
their respective equilibrium values r0 and Θ0. These two interactions are mainly
computed using an harmonic-like potential with force constants kr and kΘ. In
the simulation, only a very small distortion is monitored in bond and angle fluc-
tuations as they mostly oscillate around their equilibrium values. In clear, a high
potential energy is associated to the deformation of bond stretching and bond
bending.
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The third and fourth terms account for energetics linked with bond rotations.
Thus, kψ is the height of the rotational barrier associated to the proper dihedral
angle ψ characterized by the torsional angle phase Υ for each Fourier component
η (periodicity). Improper torsions ensure planarity in aromatic rings and allow
distinguishing molecules from their mirror images in which kω is the force con-
stant for the improper dihedral ω going up and down its equilibrium position
ω0. The last two components of Eq. 2.16 describe the van der Waals repulsive (at
short distance, r-12 term) and attractive (at long distance, r-6 term) pairwise atomic
forces between i and j shown as Lennard-Jones 12-6 potential and the electrostatic
interactions. The variables qi and qj are the partial charges on pairwise atoms i
and j separated by the distance rij , σij is the distance at which the Lennard-Jones
potential is zero and εij is the well depth.

There are various levels of system force field representation, namely all-atoms in
which individual atom interactions are accounted and mesoscopic models such
as coarse-grained representations, in which a subset of atoms is clustered to-
gether into a bead centre. All the simulations in this work have employed an
all-atoms type and thus, further description of coarse-grained paradigms will
be overlooked here. The commonly used macromolecular empirical all-atoms
potential functions include one the updated version of the following, AMBER
(Pearlman et al., 1995), CHARMM (Brooks et al., 1983) and GROMOS (Gunsteren
and Berendsen, 1987). The simulations described in Chapter 4 have employed the
Charm27 version with CMAP correction (Bjelkmar et al., 2010) while in Chapter 5
& Chapter 6 the Amberff99SB (Lindorff-Larsen et al., 2010) have been used, both
with an all-atom scheme. The latter force field representation could further be
coupled either with an explicit solvent model (in Chapter 4 & Chapter 6) or with
a continuum (implicit solvent) model (Chapter 5).

Explicit solvent

The explicit incorporation of water molecules in biomolecular simulations (and
which usually accounts for > 90% of the total number of atoms) provides a more
realistic-like environment, though it significantly increases the degrees of free-
dom and thereby the computational demand. Several water models have been
developed in MD computations in spite of its small number of atom and size.
Commonly used are SPC and SPC/E (Berendsen, Grigera, and Straatsma, 1987),
TIP3P and TIP4P (Jorgensen et al., 1983) and TIP5P (Mahoney and Jorgensen,
2000). They mainly differ from one to another either by the number of interacting
sites, the polarizability and/or the flexibility of covalent bonds. No extra-site is
added in rigid 3-site models such as TIP3P and SPC. Besides, oxygen and hydro-
gen partial charges are indeed located on their respective ions. Meanwhile, in
the rigid 4-site (TIP4P) and 5-site(TIP5P) water models, 1 and 2 virtual sites are
added, respectively. In the former case, a dummy atom is placed in the bisec-
tor plane of the bond-bending angle H-O-H and in the latter case, partial oxygen
charge is splitted in 2 virtual interacting sites for each lone electron pair to form
a tetrahedral-like shape. In all the above models, the water molecule holds an
effective dipole moment of nearly 2.3 D compared to 1.85 D for the experimental
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gas-phase water model (Adcock and McCammon, 2006). Schemes accounting for
the polarization effects (Sprik and Klein, 1988) and flexible bond stretching and
bond bending terms (Ferguson, 1995) induce further computational costs, as a
result, the most used ones are mainly limited to 3-site water models.

Implicit solvent

Outstanding lenght of simulation time is now been achieved (up to millisecond
or so) in biomolecular simulations. This performance is mainly due to the steady
increase in computer power and achitecture (CPU, GPU), massive parallelisation
(MPI, openMP, ect.), enhanced sampling algorithms, and so on. However, one
way to reduce the number of degrees of freedom (thereby accelerating the sam-
pling) is the use of implicit solvent models (Roux and Simonson, 1999; Cramer
and Truhlar, 1999; Fogolari, Brigo, and Molinari, 2002; Feig and Brooks, 2004;
Onufriev, 2008; Kleinjung and Fraternali, 2014; Decherchi et al., 2015). Aqueous
milieu is a more realistic biological environment, striking to the importance of
solvent interactions in protein conformational changes, notably in accurate treat-
ment of electrostatic effects. Thus, a core issue in implicit solvent is to find rig-
orous potential functions that better account for solvation effects and effective
change in solute conformational free energy. This is achieved mainly in MD em-
ploying generalized Born (GB) formalisms (Still et al., 1990; Qiu et al., 1997; Bash-
ford and Case, 2000).

MD simulations mainly strive to reproduce the potential of mean force of a sol-
vated system that could easily fit in the following expression :

Etot = Evac +∆Gsolv (2.17)

where Evac is the potential energy of the molecule in vacuum (easily computes by
derivation of atomic coordinates) and ∆Gsolv is the free energy change requires
to transferring the molecule from vacuum into solvent, i.e. solvation free energy.
The core action in Eq. 2.17 is then the modeling of solvation effects included in its
second term. Most implicit models account for this by splitting the free energy of
solvation into apolar and electrostatic solvation terms, see Eq. 2.18. The former
is the solvation free energy of uncharged molecules i.e. in the context where all
partial charges are canceled down and the latter is the work spent to charge the
system reversibly to its final equilibrium state in the ionic atmosphere.

∆Gsolv = ∆Gapolar +∆Gel (2.18)

∆Gapolar is mostly assumed to be proportional to the solvent accessible surface
area and is often neglected. Meanwhile, most of the effort is devoted to the
computation of the time-consuming electrostatic contribution ∆Gel. A number
of approaches accounted for electrostatic solvation effects (Roux and Simonson,
1999; Simonson, 2001) including the GB model which derived from the Poisson-
Boltzmann (PB) theory (Simonson, 2003; Baker, 2005). For a homogeneous system
with a local dielectric constant ε and charge density ρ, the electrostatic potential φ
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is accurately computed by the Poisson equation, the latter referring to the Laplace
equation, as follows :

∇ · [ε(r)∇φ(r)] = ρ(r) (2.19)

The challenge in the above equation resides in the appropriate description of ionic
charges and screening salt effects, at variance of solute charges suitably embed-
ded in the molecular model used. Nonetheless, by making reasonable assump-
tions such as an approximate mean-field approach, the Poisson-Boltzmann over-
comes the latter issue, leading to a non-linear partial differential equation. How-
ever, the linearized form is the mostly used one in biomolecular context as its
solution approximates the PB solution even for non small values of the potential
(Fogolari et al., 1999; Fogolari, Brigo, and Molinari, 2002; Onufriev, 2008), see Eq.
2.20 :

∇ · [ε(r)∇φ(r)] = −ρ(r) +
∑
i

Cb
i z

2
i

q2φ(r)

kBT
(2.20)

In Eq. 2.20 φ is the electric potential, ρ is the charge density, zi and Cb
i are the

valence and bulk concentration of ion i, kB is the Boltzmann’s constant, T is the
temperature, q is the unit charge, ε is the local dielectric constant and ε0 the vac-
uum permittivity. Eq. 2.20 is a differential equation, and as such, is mainly solved
numerically. One solution is therefore given by the GB model (Simonson, 2003),
one of the widely used formalism for the estimation of the electrostatic contri-
bution to the free energy of solvation ∆Gel. GB models approximate the electro-
static component of∆Gsolv as a pairwise summation of interacting terms between
atomic charges i and j as in Eq. 2.21 (Kleinjung and Fraternali, 2014) :

∆Gel ≈ −
1

2

( 1

εin
− 1

εout

) qiqj√
r2ij + αiαje

−r2
ij/4αiαj

(2.21)

where rij is the distance between atoms i and j, qi and qj their partial charges, ε is
the relative dielectric constant, with subscripts out and in refering to solvent and
solute, respectively. αi and αj are effective Born radii of the interacting sites i and
j. These latter variables play a pivotal role in the implementation of GB theory
and are often computed by approximating the electrostatic energy density due
to the atom of interest by employing empirical partial differential formulae and
subsequent integrations over an adequate volume (Hawkins, Cramer, and Truh-
lar, 1995; Hawkins, Cramer, and Truhlar, 1996; Onufriev, Bashford, and Case,
2000; Onufriev, Bashford, and Case, 2004) or less often, surface (Ghosh, Rapp,
and Friesner, 1998; Fogolari, Corazza, and Esposito, 2013). An attempt to refit the
Born radii and the Onufriev, Bashford and Case (OBC) parameters of amber99sb-
ildn (Lindorff-Larsen et al., 2010) potential function to best reproduce the average
solvation forces with respect to the explicit solvent model was initiated in this
work, see Fitting parameters for GBSA.
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2.1.3 Temperature and pressure control in MD computations

Most experiments are conveniently undertaken at constant pressure and temper-
ature. Contrariwise, propagating the system through the phase space using clas-
sical mechanics (Newton’s law of motion) as it is the case in MD theory directly
leads to constant energy average observables, i.e. in the microcanonical ensemble
(NVE). This raises the practical difficulty to link NVE averages of MD computa-
tions to easily accessible mascroscopic constant T and P experiments. Therefore,
mimicking experimental conditions, many MD simulations, including those of
this thesis, are rather performed under constant T and/or P, employing either
a canonical ensemble (NVT) or a grand canonical (µV T ) or canonical pressure
(NPT) ensemble (further insights on these ensembles could be obtained in rele-
vant textbooks as (McQuarrie, 1976; Frenkel and Smit, 2002)). Several algorithms
namely thermostats and barostats have thus been developed to constraint ther-
modynamics variables along the simulations.

Thermostats

The simple way to preserve the system’s temperature from large thermal vari-
ations is to couple it to an external bath. Even though MD computes time de-
pedent average microcanonical quantities (constant energy), the system energy
fluctuates4 throughout the simulation path with discrete values, leading to tem-
perature fluctuations. Thus, the probability of locating the system at a given
energy microstate follows a Maxwell-Boltzmann distribution function. In par-
ticular, from the classical mechanics point of view, it is well described by the
Maxwell-Boltzmann velocity distribution, i.e. the chance of a particle to have a
momemtum p, see Eq. 2.22 :

P(p) =
( β

2πm

)3/2
exp
(
− βp2

2m

)
(2.22)

A set of had doc procedures are often used for temperature control. The most basic
of which include velocity rescaling (Woodcock, 1971). It is naïvely achieved by
multiplying/modifying the atomic velocities vi in the current instantaneous tem-

perature T(t) (Eq. 2.23) by a rescaling factor τ =
√

Tref
T

, where Tref is the reference
temperature. Albeit the temperature is efficiently regulated in such an approach,
the overall velocities distribution is not a Maxwell-Boltzmann like type.

T (t) =

N∑
i=1

miv
2
i (t)

3kBN
≈ Tref (2.23)

with N being the total number of atoms in the system.

4This is due the spontaneous interconversion of kinetic and potential terms of the total energy
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Following previous considerations, Berendsen proposed another way to rescale
the velocities (Berendsen et al., 1984), which in turn is a weak temperature cou-
pling algorithm. Atomic velocities are rescaled by the factor τ defined in Eq. 2.24.
The Berendsen thermostat cancels out the kinetic energy fluctuations, in clear it
does not sample a proper canonical ensemble. The simulations in this thesis have
mostly employed the velocity rescaling of Bussi et al. (Bussi, Donadio, and Par-
rinello, 2007), a modification of Berendsen thermostat.

τ =

√
1 +

∆t

τT

(Tref
T
− 1
)

(2.24)

In Eq. 2.24 T and Tref are instantaneous and target temperatures respectively, ∆t
is the simulation time-step and τT is a coupling constant.

Away from more intuitive velocities rescaling based paradigms, stochastic like
thermostats provide more intricate and perhaps more general approaches. In
the Andersen thermostat formalism (Andersen, 1980), the system’s temperature
is kept unchanged by coupling it to a heat bath. More in details, particles are
randomly selected at regular time-step to undergo collision and only for those
selected, their velocities are resampled from a Maxwell-Boltzmann distribution,
corresponding to the reference temperature. Moving a step ahead from stochas-
tic to deterministic paradigms, Nosé-Hoover proposed a very efficient tempera-
ture coupling (Nosé, 1984; Hoover, 1985) based on an extended Lagrangian the-
ory of classical mechanics in which two artificial degrees of freedom (a thermal
reservoir and a friction term) are added to the atomic coordinate and velocity.
Weak-coupling schemes adequately relax the system’s temperature to the refer-
ence value of the thermostat but poorly sample the true canonical ensemble once
at equilibrium. This artifact is corrected in the current Nosé-Hoover definition.
This is also the case with the Langevin thermostat (Zwanzig, 1973) in which the
canonical sampling is enabled by incorporating a friction term γ along with the
previous highlighted stochastic (noise) term to the equation of movement.

Barostats

Simulations usually performed in explicit solvent imply the definition of bound-
aries conditions and the requirement for mechanical equilibrium, owing to vol-
ume fluctuations and thereby change in pressure. Therefore, as for thermal equi-
librium originated from particles momenta, there is a need also to regulate the
pressure. One of the most intuitive and week-coupling pressure schemes is the
one of Berendsen (Berendsen et al., 1984) in which the reference pressure of the
barostat Pref is obtained by multiplying the atomic coordinates and box vectors
every time-step ∆t by the pressure scaling factor ζ as in Eq. 2.25 :

ζ =
{

1− ∆t

τP
βc[Pref − P ]

} 1
3

(2.25)
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P is the actual instantaneous pressure, βc the isothermal compressibility of the
system and τP is the relaxation pressure coupling, the larger it is the weaker the
coupling is. Similarly to its thermostat settings, the Andersen barostat (Ander-
sen, 1980) couples the system to an external fluid volume V with mass M whose
expansion and compression affect the system in the same way a piston would do
on a physical system. V is the system’s volume and it is a dynamical variable
defining the piston’s coordinates while M refers to the strenght of the coupling.
It is worth noting that whereas the Berendsen barostat successfully samples the
expected average pressure, still it does not yield the exact NPT ensemble as it is
seen for the Andersen’s one.

Almost all the simulations (those in explicit solvent) in this work have employed
a Parrinello-Rahman pressure coupling scheme (Parrinello and Rahman, 1981;
Nosé and Klein, 1983), which from theoretical considerations should properly
sample the canonical pressure NPT ensemble in a way rationalizing the definition
of Nosé-Hoover for thermostat (Nosé, 1984; Hoover, 1985). In the Parrinello-
Rahman barostat, the box vectors as depicted by the matrix b follow the matrix
equation of motion as in Eq. 2.26 :

d2b

dt2
= VW−1b′−1(P − Pref ) (2.26)

where V is the volume of the box, W a matrix parameter defining the strength
of the coupling (mass parameter), P and Pref the matrices of the instantataneous
and target pressures, respectively.

Particle motions in this scheme are subsequently modified to fit into the following
matrix differential equation :

d2ri
dt2

=
Fi
mi

−Mdvi
dt
, with M = b−1

[
b
db′

dt
+
db

dt
b′

]
b′−1 (2.27)

In Eq. 2.26 the mass parameter matrix W regulates the pressure coupling by coor-
dinating the contraints applied on box vectors. Thus, by choosing the isothermal
compressibilities terms βijc and the pressure time constant τP in Gromacs, the
coupling strength, dictated by the reciprocal of W is evaluated by the following
equation (Eq. 2.28) in which L is the largest box matrix element.

(W−1)ij =
4π2βijc
3τ 2PL

(2.28)

2.2 Enhanced sampling approaches

Biological molecules, with extensive degrees of freedom sample rugged free en-
ergy landscapes that are often extremely tricky to explore even with the high
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temporal resolution of most atomistic MD simulations. In many situations, con-
formational phase spaces are populated by local minima separated by low prob-
ability regions (free energy barriers), making the inter-connection almost a rare
thermodynamic event in conventional timescales. These shortcomings could be
circumvented either by modifying the potential energy function by adding ex-
ternal bias to drop the residual time the system get trapped in a local energy
minimum well, and thereby speeding up the transition from one local minimum
to another, or by increasing the kinetic energy via tempering techniques. In one
way or in the other, this requires advanced sampling paradigms for capturing
large-scale and long-time configurational changes (Lei and Duan, 2007; Adcock
and McCammon, 2006; Schlick, 2009; Abrams and Bussi, 2014).

Umbrella sampling

Umbrella sampling can referred as a class of non-Boltzmann or non-equilibrium
sampling methods (Kästner, 2011), in reference to collective variable (CV) bias-
ing techniques such as Adaptive-Biasing Force (ABF), Temperature-Accelerated
Molecular Dynamics (TAMD), etc. In the theory pioneered by Torrie and Valleau
(Torrie and Valleau, 1974; Torrie and Valleau, 1977), one applies a biased potential
on selected reaction coordinates to ride out the sampling of unfavorable regions
then driving the system from one thermodynamic state to another. Along the
reaction coordinates path, intermediate steps are covered by a series of indepen-
dent simulations (windows) such as to ensure sufficient overlap among them. A
biased potential acts thus as an umbrella that connects energetically separated re-
gions in the phase space. In a more empirical formulae expression, one modifies
the unbiased potential U(rN) adding a weigthing termW(ξ) depending only on
the reaction coordinates ξ such that :

U ′(rN) = U(rN) +W(ξ) (2.29)

In Eq. 2.29 for the sake of simplicityW(ξ) is often expressed by a simple quadratic
form as in Eq. 2.30, where Kξ is the harmonic bias strength constant and ξ0 the
reference reaction coordinate state.

W(ξ) =
1

2
Kξ

(
ξ − ξ0

)2
(2.30)

Once a reaction coordinate is selected5 one should in principle be able to estimate
the probability density function P(ξ)dξ of an unbiased canonical system along
the reaction coordinate ξ by integrating over the system’s degrees of freedom,
with P(ξ) defines as in Eq. 2.31 :

P(ξ) =

∫
δ
[
ξ(rN)− ξ

]
exp

[
−βU(rN)

]
drN∫

exp [−βU(rN)] drN
(2.31)

5Including any order-paramater such as accessible solvent areas, but preferentially geometric
factors like bending angles or bond stretchings are used
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Note that Eq. 2.31 is free from momenta contributions (kinetic energy) since both
potential energy U(rN) and momenta K(pN) terms of the total system’s hamilto-
nianH(pN , rN) = K(pN)+U(rN) could be integrated separatelty and integration

over the momenta space leads to a constant
(

2πm
β

)3N/2
, thus not of interest.

Bearing in mind that the free-energy of a state underlies its equilibrium popu-
lation, i.e. the normalized probability distribution of that state over a specific
variable, one could deduce the free energy as in Eq. 2.32 :

F (ξ) = −kBT lnP(ξ) (2.32)

where F (ξ) is the Helmholtz energy and represents the potential of mean force
(PMF) (Roux, 1995).

However, by applying the modified potential to the simulated system, the result-
ing biased distribution P ′(ξ) is not obeying to a Boltzmann’s unbiased one. As-
suming an ergodic system, the corresponding Boltzmann average distributions
can be recovered from the non-equilibrium one following Eq. 2.33 :

P(ξ) = P ′(ξ)exp[βW(ξ)]〈exp[−βW(ξ)]〉 (2.33)

From Eq. 2.33 the free energy is easily derived as :

F (ξ) = F ′(ξ)−W(ξ) + C, with C = −kBT ln〈exp[−βW(ξ)]〉 (2.34)

In the above equation (Eq. 2.34) F ′(ξ) is the biased PMF computed from the sim-
ulation,W(ξ) is given analytically and the last term C is a constant independent
of ξ. However, in general, there are methods employed to combine the results of
different windows in umbrella sampling, given that sufficient overlap is achieved
between each of them. Moreover, these methods provide a way to estimate the
constant C (Ferrenberg and Swendsen, 1989) and the most relevant one is the
Weighted Histogram Analysis Method (WHAM) (Kumar et al., 1992; Souaille
and Roux, 2001).

Temperature Replica Exchange

In Replica Exchange Molecular Dynamics (REMD) (Sugita and Okamoto, 1999)
(see scheme in Fig. 2.1), one submits a series of simultaneous and non-interacting
(independent) simulations of the same system called replicas, started at different
temperatures. At regular intervals, configurations may be swapped when ex-
change in replicas is attempted. The acceptance probability, Pij , that essentially
ensures a canonical sampling, obeys a Monte Carlo-like Metropolis criterion, Eq.
2.35, allowing the final equilibrium distribution for each temperature to follow a
Maxwell-Boltzmann distribution.

Pij = min
[
1, exp(βj − βi)(Ej − Ei)

]
(2.35)
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where Ei and Ej are the replica’s i and j internal energies before and after the
exchange with temperature Ti and Tj respectively. βi = 1/kBTi and βj = 1/kBTj
with kB being the Boltzmann’s constant.
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FIGURE 2.1: Basic schematic illustration of Replica Exchange Molec-
ular Dynamics simulation technique. Horizontal lines depict indi-

vidual replicas.

REMD is likely a tandem MD-random walk in temperature space. In clear, the ki-
netic trapping at lower temperatures (unbiased sampling) is gradually enhanced
by exchanging conformations with higher temperature replicas able to cross the
kinetic barriers faster.

Metadynamics

Like Umbrella sampling, metadynamics (Laio and Parrinello, 2002; Laio and Ger-
vasio, 2008; Barducci, Bonomi, and Parrinello, 2011) is also an advanced MD
technique modifying the potential and sampling a non-Boltzmann distribution.
It provides a way to accelerate the dynamics and recover the free energy sur-
face (FES) based on selected degrees of freedom or collective variables (CVs),
thereby disfavoring the re-exploration of previously visited states in the defined
CVs space. The simulation is then driven by an external time-based history-
dependent bias potential VG(S(r), t) constructed by summing up the Gaussians
deposited every timestep τG along the trajectory. At a given time t, VG(S(r), t) is
expressed as follows :

VG(S(r), t) = ωG
∑
t′<t

t′=τG,2τG,...

exp

(
−

d∑
i=1

(Si(r)− si(t′))2

2δs2i

)
(2.36)
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In Eq. 2.36, si(t) = Si(r(t)) is the instanteneous value for the ith CV considered. τG
is the stride of the Gaussians deposition with respective height or energy rate wG
and width δsi. These latter are indeed of importance in determining the accuracy
and efficiency of the free energy reconstruction.

It has been shown both empirically (Laio et al., 2005) and analytically (Bussi, Laio,
and Parrinello, 2006) that in the limit of infinite time, and considering a system
appropriately described by a Langevin mechanics, the bias potential VG(S(r, t))
converges to the minus of the free energy F(S).

lim
t→∞

VG(S(r, t) = −F (S(r)) + C (2.37)

Most often, the great challenge in metadynamics simulations resides in the ap-
propriate selection of CVs in order to minimize the errors in the free energy re-
construction and adequately sampling slow motions in the system. Nothwith-
standing the power and strength of the approach, significant equilibration time
is often required to properly reconstruct the FES of a high dimensional many-
body system (like biomolecules or so), taking into account that the perfomance
of the algorithm decreases when increasing the number of CVs. This issue is
likely circumvented by "hybrid" techniques that combine either metadynamics
with parallel tempering (Bussi et al., 2006) or with replica exchange such as bias
exchange metadynamics (Piana and Laio, 2007).

2.3 Free energy from end-point MD simulation

The outcome of (bio)chemical processes and in general the thermodynamics of
biological systems is dependent upon the sign of the change in Gibbs free energy.
Its empirical formulation entails both enthalpic and entropic contributions, the
latter being linearly scaled by the system temperature. For a well equilibrated
system, the enthalpic counterpart can rationally be estimated as an ensemble av-
erage over a set of conformations from the MD trajectory. The bottleneck in the
weighting of Gibbs free energy is the proper modeling of the entropic part, and
in particular, of the solvation entropic effects. This state of facts underlines the
interest in methods development to adequately account for solvent entropy and
to a large extent for conformational entropy (Chapter 3). Here only a very short
overview in relation to Gibbs free energy in the context of implicit solvent MD
simulation is discussed, readers could however found further details in litera-
ture such as as (Gilson et al., 1997; Roux and Simonson, 1999; Wereszczynski and
McCammon, 2012; Fogolari, Corazza, and Esposito, 2018).

The free energy of a state underlies its equilibrium population and can in turn be
referred to its ensemble average as :

∆G = kBT log〈exp(βU)〉+ C (2.38)
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where U is the potential energy of the system, C represents other constant terms
that cancel upon comparison of different states, and the thermodynamic average,
as denoted by 〈〉, is done over the ensemble. However, Eq. 2.38 is only readily
applied when considering all the available configurational phase space. This con-
stitutes therefore a severe limitation to most MD simulations since usually only
states separated by few kcal from the equilibrated structure are visited. Going far
beyond the equilibrium state would require either using denaturating conditions
or biased sampling or even running very long simulation time.

For a solvated system, the standard molar free energy change of a solute can be
written as a function of configurational integrals as follows (Gilson et al., 1997;
Roux and Simonson, 1999; Wereszczynski and McCammon, 2012; Fogolari et al.,
2015; Fogolari, Corazza, and Esposito, 2018) :

∆G0
A = −kBT log

((
1

ΛA

)3N ∫
exp[−β(U(rA) +∆W(rA, T ))]drA

)
+
P 0∆V̄A
N

(2.39)

In Eq. 2.39 P 0 is the standard pressure, N is the Avogadro’s number, N is the
solute total number of atoms, V̄A and rA are the partial molar volume and coordi-
nates for the solute, respectively. ΛA = h√

2πmAkBT
represents the thermal Debroglie

wavelength in which mA is the solute mass and h is the Planck’s constant. P 0∆V̄A
in the second term of Eq. 2.39 changes very little for biomolecular sytems and
therefore is negligible upon conformational changes. The solute solvation po-
tential of mean forceW(rA, T ) which accurately approximates the solvation free
energy in implicit solvent models can be obtained by integrating out the strongly
correlated solvent degrees of freedom as follows :

exp[−β∆W(rA, T )] =

∫
exp[−βUAS(rA, rS) + US(rS)]drS∫

exp[−βUS(rS)]drS
(2.40)

in which rS stands for the solvent coordinates, UAS is the correlated solute-solvent
energy and US is the solvent potential. By substiting Eq. 2.40 in Eq. 2.39, the
standard molar free energy change of a solute is given by :

∆G0
A = −kBT log

(∫
exp[−β(U(rA) +∆W(rA, T ))]drA

)
(2.41)

Eq. 2.41 explicitly highlights the temperature dependence of the potential of
mean forceW(rA, T ). Furthermore, it should be noted that all the implicit mod-
els discussed so far (see Implicit solvent) implement the routines to compute
W(rA, T ).

The analysis of enthalpic and entropic contributions shows that the entropic con-
tributions of the solvent are included in the ensemble average of ∆W , and that
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the free energy can thus be expressed as:

∆G0
A = 〈U(rA) +∆W〉 − T∆Sconf (2.42)

where ∆Sconf is the configurational entropy of the solute.
The above formula constitutes the basis of free-energy estimation from end-point
simulations.

2.4 Fitting parameters for GBSA

This section briefly stresses on parameters tuning in GBSA continuum solvation
model to better reproduce the average solvation forces as computed by the ex-
plicit solvent model counterpart. To do so, a set of simulations were runned on a
dataset of 55 proteins (Tjong and Zhou, 2007a; Tjong and Zhou, 2007b) selected
before to represent the variety of charges and shapes of proteins. Three models
of Generalized Born (GB) are implemented in the package used (Gromacs) (Hess
et al., 2008) namely Still (Still et al., 1990; Qiu et al., 1997), Hawkins, Cramer
and Truhlar (HCT) (Hawkins, Cramer, and Truhlar, 1995; Hawkins, Cramer, and
Truhlar, 1996) and Onufriev, Bashford, Case (OBC) (Onufriev, Bashford, and Case,
2004). In all models the calculation of GB radii is done by summation of pairwise
contributions, which depend on atomic radii and the distance between atoms
(Qiu et al., 1997). In this work we used the GB model to refit the Born radii and
OBC parameters of amber99sb-ildn (Lindorff-Larsen et al., 2010) force fields to
best reproduce the average solvation forces in comparison to the explicit solvent
model.

In all the simulations, the protein was frozen by removing all the translational
and rotational degrees of freedom, enabling only water to equilibrate (in the case
of explicit solvent). The Generalized Born-Suface Area (GB/SA) continuum sol-
vation model of Onufriev-Bashford-Case (OBC) (Onufriev, Bashford, and Case,
2004) and TIP3P water model (Jorgensen et al., 1983) respectively for implicit and
explicit solvent simulations were applied. Simulations were carried out using
Gromacs molecular package (Hess et al., 2008) with amber99sb-ildn (Lindorff-
Larsen et al., 2010) force fields and each lasted 1 ns with coordinates and forces
saved every 1 ps. The time-step used in the MD steps is 2 fs and velocity rescal-
ing (modified Berendsen thermostat) (Bussi, Donadio, and Parrinello, 2007) with
the coupling constant of 0.1 ps was used to maintain the temperature to the refer-
ence value of 300 K. The electrostatics interactions were treated with the smooth
particle mesh Ewald summation (Essmann et al., 1995; Darden, York, and Ped-
ersen, 1993) (in the case of explicit solvent). Short-range electrostatics and van
der Waals interactions were truncated with a real space cut-off of 10 Å. The sim-
ulation started in explicit solvent with the protein kept fixed, the water is later
replaced by the implicit solvation model of OBC, which is further replaced by
the vacuum. This allows an estimation of the change in average solvation forces
upon moving from explicit to implicit and from implicit to vacuum.
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The van der Waals radii sets for Gromacs are available in the corresponding force
field directory within the file gbsa.itp, see Table 2.1 and include all the atom
types needed (C, N, O, S, H). Thus no extra atom type was added. We refit the
parameters α, β and γ of OBC model and GB radii, which are defined as input, to
obtain a better agreement between the average solvation forces computed using
explicit and implicit solvent. The latter components are easily combined into this
empirical formula for GB radius Eq. 2.43 (Fogolari, Corazza, and Esposito, 2015):

(rGBi )−1 = ρ̃−1i − ρ−1i tanh(αΨ− βΨ2 + γΨ3) (2.43)

where ρi is the atom’s van der Walls radius, ρ̃−1i = (ρi − 0.09Å)−1 and Ψ is the
pairwise summation function over the atoms contributing to the GB radius. α,
β and γ are the OBC components fitted to best reproduce the average solvation
forces. We randomly alter the GB radii and OBC components obtained by least-
square solution of this linear equation Eq. 2.44 :

αΨ− βΨ2 + γΨ3 = tanh−1
(
ρ̃−1i − (rGBi )−1

ρ−1i

)
(2.44)

where rGBi are perfect radii approximated using the GBR6 surface integral for-
malism (Grycuk, 2003).

The average solvation force was obtained as the difference between the total force
of both implicit and explicit solvent simulations with the total force obtained in
vacuum, see Eq. 2.45 and Eq. 2.46. Table 2.1 summarizes the fitted parame-
ters obtained compared to the default ones. The correlation coefficients between
average implicit and explicit solvation forces and fitted linear equation were com-
puted and outcomes are plotted in Fig. 2.2.

F solv
x,y,zexpl = F tot

x,y,zexpl − F tot
x,y,zvac (2.45)

F solv
x,y,zimpl = F tot

x,y,zimpl − F tot
x,y,zvac (2.46)

where F solv
x,y,zexpl, F solv

x,y,zimpl, F tot
x,y,zexpl, F tot

x,y,zimpl and F tot
x,y,zvac stand for average

solvation forces in explicit and implicit solvent model, average total forces in ex-
plicit and implicit solvent model and average total forces in vacuum.

TABLE 2.1: Original and fitted OBC parameters and GB radii.

Element amber99sb-ildn GB radii α, β, γ
default fitted

H 0.105; 0.115; 0.125 0.113; 0.123; 0.133 α(1) :1 ; β(1) : 0.8
C 0.1875; 0.190 0.1865; 0.189 γ(1) : 4.85
N 0.1625; 0.17063 0.1605; 0.16863 α(2) : 0.52; β(2) : 0.28
O 0.148; 0.1535 0.152; 0.1575 γ(2) : 0.44
S 0.1775 0.1775

(1) : default (2) : optimized
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FIGURE 2.2: Total and Average solvation forces in implicit solvent
compared to the ones obtained in explicit solvent. [Left pannel] :
Total forces (a & c); [Right pannel] : Average solvation forces (b &
d) ; [Top pannel] : Default parameters ; [Bottom pannel] : Fitted

parameters.

Even though the above optimized parameters could not yet been readily applied
to a real case folding simulation because they have not been thoroughly tested
and calibrated, they result to an improvement of > 10 % in reproducing the aver-
age solvation forces in comparison to the default ones. It should be noted how-
ever that, at the first instance, using CHARMM force field to tune the same pa-
rameters to reproduce the PBSA average forces (Fogolari, Corazza, and Esposito,
2015), it was noticed an unfolding of the protein in the tens of nanoseconds and
an apparent tendency to form helices. This underlines that CHARMM force field
is not sufficiently accurate for such a job, at least as far as implicit solvent model
is concerned.
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2.5 Summary

MD simulation is increasingly given importance in the field of molecular biology
and is nowadays able to sample timescales relevant for many biological functions
including enzyme catalysis, conformational changes, protein folding, and so on.
The high spatio-temporal resolution of most atomistic MD techniques has pro-
vided clues in the characterization and identification of crucial mechanisms un-
derlying vital biological protein functions, not possible and/or limited otherwise
by experimental methods. Therefore, by acting as a bridge between microscopic
and macroscopic scales, MD could legitimately be considered as a microscope for
biology, of course when applied to biological systems, since its range of appli-
cation is extremely diverse. This chapter has recalled the essential concepts, no-
tions and theories behind computational methods in general and MD simulation
in particular. Moreover, it has covered the main simulation strategies employed
in classical all-atoms MD with implicit or explicit solvent representations. Sim-
ulation routines developed to reduce the computational effort in sampling both
long-time and large-scale conformational changes, as well as rugged free energy
landscapes were discussed. In one way or in the other, all the approaches pre-
sented in this chapter were employed in the current thesis. Readers are now in-
troduced with the technical concepts most often to be used thereafer. The chapter
concluded by showing the GBSA parameters optimization initiated in this work.
Even though we could not apply them any further in this work, the results show
promising features that could probably be improved.
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Chapter 3

Conformational entropy in
biomolecular protein
association1 2

Extracting free energies from MD simulations is still a very challenging
task, either because of the limited sampling or more importantly the
highly correlated and numerous contributing terms. Conformational
entropy is a component of the total entropy of a molecule and is ac-

counted as one of these energy terms and represents an important component
of the free energy change upon binding of a ligand to its target protein, and
more in general upon complex formation of biomolecules. The conformational
entropy of the solute remains a difficult problem to be tackled with correlations
among degrees of freedom to be taken into account. Albeit advanced MD tech-
niques could bias the potential thereby accelerating the sampling and recovering
the free energy profile along some CVs, still it requires a considerable amount
of computing time since equilibrium must be reached at each intermediate value
of the CVs. This chapter introduces a computational methodology for the es-
timation of the rotational-translational entropy loss upon complex formation of
biomolecules from end-point (free energy from MD trajectory). The approach
is derived from the nearest-neighbor distance and overcomes the lack of corre-
lation observed when taking rotation and translation entropy separately. Also,
our theory enables an accurate approximation of full rototional-translational en-
tropy, considering correctly the high dimensionality (6) of the problem which
poses severe limitations to existing methods, like the histogram method (Edholm
and Berendsen, 1984). The theory is now implemented in a C program freely
distributed (Fogolari et al., 2017).

Keywords : MD, free energy, rotro-translational entropy.

1F. Fogolari; C. J. Dongmo Foumthuim; S. Fortuna; A. Soler; A. Corazza and G. Esposito. Ac-
curate estimation of the entropy of rotation-translation probability distributions, J. Chem. Theory
Comput., 2016, 12 (1),1-8.

2F. Fogolari; O. Maloku; C. J. Dongmo Foumthuim; A. Corazza and G. Esposito.
PDB2ENTROPY: entropy calculation from conformational ensembles, Submitted, 2018, xx, x-x

http://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00731
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00731


Chapter 3. Conformational entropy in biomolecular protein association 40

3.1 Introduction

The change in Gibbs free energy ∆G is often employed as a sensor in predicting
the outcome of many biochemical processes. In its formulation, the enthalpic
term ∆H is counterweighted by the entropic term ∆S, the latter being scaled
by the system temperature. A proper estimation of ∆G would therefore imply
an estimation of both terms. However, in most instances, the entropic term is
neglected or simply assigned to the hydrophobic and solvation effects, thereby
computing the enthalpic component as energy average, often by discarding the
PV term. Notwithstanding the thermodynamics approximations imposed, legit-
imated by the lack of appropriate treatment methods, it is worth minding that,
in the context of biomolecular proteins association, entropic contributions upon
binding include also changes in conformational entropies of both molecules. In
this context, an obvious contribution arises from the restriction in rotational and
translational degrees of freedom. Estimates of both terms have been given based
on heuristic considerations (Finkelstein and Janin, 1989) and in recent years based
on the results of MD simulations (Gilson et al., 1997; Huggins, 2014; Huggins,
2015; Fogolari et al., 2015) defining the distributions of reference atoms in the
ligand with respect to the target molecule.

Estimating the entropy of solute conformations with respect to a reference state
constitutes a very intricate scenario (Gilson et al., 1997; Zhou and Gilson, 2009;
Polyansky, Zubac, and Zagrovic, 2012) due to the large number of interacting
bodies often strongly correlated. Moreover it would be desirable to understand
what are the sources of entropy. In a heuristic approach applied for instance
in docking studies the loss of roto-translational entropy upon binding is often
neglected altogether because it is assumed to be similar for all docking poses.
For sidechain entropy, the loss upon binding is often assumed to be propor-
tional to the buried solvent accessible area which gives an idea of the restraints
on sidechain motions. Recently an entirely different approach was proposed by
Demchuk, Gilson and coworkers (Singh et al., 2003; Hnizdo et al., 2007; Hnizdo
et al., 2008) who showed that entropy can be unbiasedly estimated based on near-
est neighbours distances among different conformers. Although its significance,
explicit computation of the rotational-translational entropy has been elusive and
mostly weighted as a fixed contribution to the binding energy which is neglected
when comparing the free energy of binding of different molecules to the same
target (Ajay and Murcko, 1995).

The theory presented hereafter is derived from the nearest-neighbor approach
and does not address the correlation of rotational and translational degrees of
freedom with other degrees of freedom. Methods for dealing with such corrre-
lations could be found in literature (Killian, Kravitz, and Gilson, 2007; King and
Tidor, 2009; King, Silver, and Tidor, 2012; Fenley et al., 2014). This chapter intro-
duces the theoretical backgrounds of our theory and shows how it can be readily
applied to MD samples of a homodimer of transthyretin and more in general to
biomolecular complex formation.
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The nearest neighbor approach

In the nearest-neighbor method an estimate of the local probability density P(x)
is obtained by considering the distance to the kth nearest neighbor from each sam-
ple, say x, within an s-dimensional sphere of radiusR. If V is the volume of that

sphere (i.e. the volume within the hypersphere
s∑
i

x2
i ≤ R2), P(x) is expressed

from the number of neighbors k over total number of samples n as in Eq. 3.1 :

P̂(x)V =
k

n
(3.1)

In Eq. 3.1 V depends on the metric used to define the space. For each sample, say
xi, in an s-dimensional space, a sphere of radius Ri,k is equal to the distance of
that sample to its kth nearest neighbor. For euclidean distances the volume of the
hypersphere with radiusRi,k is :

Vi,k =
π
s
2Rs

i,k

Γ( s
2

+ 1)
(3.2)

where Γ is the Gamma function. If the metric is not euclidean the volume Vi,k
enclosing all points closer to sample i than Ri,k will be a different monotonic
function ofRi,k.

Since the probability density is known (from Eqs. 3.1 & 3.2), an estimate of the
entropy of the distribution for a discrete number of states n (here the total number
of sample or snapshots) is calculated according to Eq. 3.3:

Ŝ
(n)
k = −kB

n∑
i=1

P(xi)logP(xi) ≈ −
kB

n

n∑
i=1

logP̂(xi) =
kB

n

n∑
i=1

log

(
nπ

s
2Rs

i,k

kΓ( s
2

+ 1)

)
(3.3)

Demchuk et al. (Singh et al., 2003) have introduced a correction term to the above
heuristic treatment in order to eliminate the asymptotic bias, Eq. 3.4 :

Ŝ
(n)
k

kB
=

n∑
i=1

log(nVi,k)− Lk−1 + ς (3.4)

where ς is the Euler-Mascheroni constant (0.5772...) and Lk−1 is defined as : L0 =

0, Ln =
n∑
i=1

1
i

to provide an unbiased estimator of the entropy of the probability

distribution. Eqs. 3.3 & 3.4 are rather similar unless that log(k) is replaced by
Lk−1 − ς . Moreover, Vi,k has a unit of measure and therefore the numerical value
of Ŝ(n)

k depends on the latter unit. This rationalizes the fact that for the entropy
−kB

∑
PlogP , the probability density P has the units of the measure.

In the context of translational and rotational entropy, a formalism to compute
both distances separately have been provided (Huynh, 2009; Huggins, 2015).
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However, in practice, a know-how to adequately merge both of them including
the correlation remains elusive and hard to tackle. In principle, after a metric has
been chosen in rotation-translations’ space, the rotational and translational dis-
tances for each sample to its kth nearest neighbor,Ri,k, can be computed followed
by the computation of the volume of the hypersphere of radiusRi,k.

Like previously stated, our theory follows exactly the approach of the nearest
neighbor apart of globalising the metric compared to the heuristically introduced
six-dimensional euclidean metric employed by Huggins to combine the rota-
tional and translational distances (Huggins, 2015). We provide evidence that the
method of Huggins is a perfect approximation to the correct treatment under the
condition that the compound distances considered imply a rotation angle less
than ca. 1 radian.

3.2 Theory formulation

3.2.1 The nearest neighbor method applied to rotation-translations

In the following, we will consider the volume of the sphere Vi,k as dependent of
di,k, i.e. V (di,k) with di,k being the distance of the ith sample to its kth nearest
neighbor within the hypersurface of radius di,k. Eq. 3.4 which gives the exact
entropy formulation is then rewritten as in Eq. 3.5 to make evident the distance
requirement :

Ŝ
(n)
k

kB
=

n∑
i=1

log(nV (di,k))− Lk−1 + ς (3.5)

In order to efficiently apply Eq. 3.5, one needs to define a metric to describe the
samples and to compute the volume of the hypersphere. However, this is not a
routine task in rotations and rotation-translations spaces as it seems to be the case
for euclidean spaces. Therefore, we will elaborate on the following fundamental
points :

1. the description of rotation-translations;

2. the definition of a metric in rotation-translation space;

3. the computation of the volume of the hypersphere of radius d in that space,
i.e. the function V(d).

3.2.2 Description of rotation-translations

In the rotational-translational space, we will define our system by a translation
vector (t) of the origin with respect to a reference position and by a rotation ma-
trix (R) underlining the rotation of the two vectors (and their vectors product)
with respect to a reference coordinates system. Therefore, one needs to select a
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fixed reference state of the system. The latter should in principle entail the most
rigid part of the molecule. More precisely, we choose the reference coordinates in
the system by selecting three atoms of the less flexible part of the molecule with
origin centered at x0 and two additional orthogonal vectors x1 and x2 belonging
to the same part of the molecule (Gilson et al., 1997). It is worth noting that once
the most rigid part of the system is identified, any set of three atoms could be
used to define the reference state. However, one should select reasonable decou-
pled positions from other degrees of freedom in order to compute the entropy
resulting from individual contributions.

3.2.3 Distance in rotation-translation space

The translation distance between two distinct states (ta, Ra) and (tb, Rb) without
considering rotations is given dt = ‖tb − ta‖, while in the absence of translation

the rotation distance may be expressed as dR = arccosTr(R
−1
b Ra)−1
2

, where Tr is
the trace operator (Huynh, 2009; Huggins, 2015). The rotational distance defines
the rotation angle of the matrix R−1b Ra and is equivalent (up to a scaling factor)
to 3 (Huynh, 2009; Huggins, 2015) and 6 (Huynh, 2009). When considering both
translation and rotation, one has to merge dt and dR components, taking into
account the random scaling lenght l that multiplies the rotational distance, Eq.
3.6.

d2 = d2t + l2d2R = ‖tb − ta‖2 + l2‖arccos
Tr(R−1b Ra)− 1

2
‖2 (3.6)

In the rotation-translation space, relevant literature regarding the definition of
metrics could be found in (Park and Ravani, 1997; Kuffner, 2004; Huynh, 2009).
Furthermore, Huynh et al. (Huynh, 2009) have reviewed the computational facets
of the most relevant metrics and Huggins (Huggins, 2015) has assessed their sig-
nificance in nearest neighbors entropy estimation.

In the compound distance of Eq. 3.6, Huggins considers the scaling length l=1 Å.
In theory this choice is arbitrary, however, in practice, it might lead to some mean-
ingless issues, since the contributions of translational and rotational distances to
the global one could be greatly unbalanced. For instance if t spans a volume of
1 Å3 and l is chosen very small (say 0.01 Å, to consider an extreme case) the con-
tribution of the rotational distance to global one will be effective only when the
compound distance is comparable to 0.01 Å, implying a very fine sampling of
the conformational space, which is unpractical. Therefore, the choice of l should
reflect the relative weights of both components in Eq. 3.6.

3.2.4 Volume of the hypersphere in rotation-translations’ space

Let’s start by focusing on rotational distances without translations. In the case of
random rotations, we consider the system’s description in which the polar and
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azimuthal angles φ and ψ of the rotation axis and the rotation angle θ are defined.
In such a space, the probability function for a uniform sampling of states corre-
sponds to the axis of rotation equally splitted over the solid angle of 4π (proba-
bility density P(φ, ψ) = sin(φ)

4π
) and the rotation angle θ spanning the range [0, π],

with probability density expressed as in Eq. 3.7 (Miles, 1965) :

P(θ) =
2

π
sin2

(θ
2

)
=

1

π
(1− cos(θ)) (3.7)

Intiutive probability densities as for rotation angle uniformly covering the inter-
val [0, π], i.e. P(θ) = 1

π
do not lead to uniform distribution of rotations, be-

cause the reference system is rotating. Therefore, in the rotational space defined
by (φ, ψ, θ), up to a scaling term, the only measure invariant under rotations is∫ ∫ ∫

sin(φ)(1 − cos(θ))dφdψdθ (Miles, 1965). In our case, we used a metric that
sets the distance d between two rotations described by 3×3 matrices Ra and Rb

as in Eq. 3.8:

d = arccos
Tr(R−1b Ra)− 1

2
= θ (3.8)

In Eq. 3.8 θ is the rotation angle about the rotation axis for the composite rotation
R−1b Ra. After the metric is setted, one should now compute the volume of the
hypersphere of radius θ in rotation space. In the latter space, such volume is
expressed by the triple integral over dθ, dφ and dψ which gives the measure in
rotation-translation space over the solid angle for variables φ, ψ and from 0 to θ
for variable θ, see Eq. 3.9 :

V (d(θ)) =

∫ π

0

dφ

∫ 2π

0

dψ

∫ θ

0

sin(φ)(1− cos(θ))dθ = 4π(θ − sinθ) (3.9)

It should be emphasized that in Eq. 3.9 only rotations scaling up to π values were
integrated instead of 2π, to cancel down symmetry. Indeed, a rotation operation
by an angle θ about the vector θ is nothing but the rotation by an angle -θ about
the vector -θ. Eq. 3.9 describes the volume in the rotation space without consid-
ering the translation. We will now estimate the volume including both terms.

The volume V (d) of the hypersphere of radius d including rotations and trans-
lations, less than or equal to d from the chosen reference (t = 0, θ = 0.0), is
computed exactly as before (i.e. by direct integration). But, now, one should
use the coumpound distance (Eq. 3.6). However, since the coumpound distance
comprises both translation and rotation, the correlation makes it difficult to dis-
entangle the integration limits, at variance of euclidean spaces.

The volume V (d) is obtained by first computing the integral over the dφ and dψ
variables (i.e. over the solid angle). This leads to a factor 4π. Subsequently,
the translation integral over cartesian coordinates is converted in polar coordi-
nates and the angular component is readily solved since it is not involved in the
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coumpound distance, leading again to a factor 4π. This allows the global volume
to be expressed as in Eq. 3.10 :

V (d) = (4π)2
∫ ∫

t2+l2θ2<d2

t2(1−cos(θ))dtdθ = (4π)2
∫ d

0

t2dt

∫ max(π,

√
d2−t2
l

)

0

(1−cos(θ))dθ

(3.10)

A solution to Eq. 3.10 is provided numerically employing the trapezoidal rule.
We splitted the integration interval in equal bins and checked the convergence by
halving the bins.

The analytical solution to Eq. 3.10 is obtained by making the assumption that, if
the upper integration limit of (1 - cos(θ′)) is restricted to a range where, say θ < 1

rad, therefore
θ∫
0

(1 − cos(θ′))dθ = θ − sin(θ) ≈ θ3

3! . By making this approximation

one induces a relative error of at most 5% for θ = 1 rad and even much less for
lower values of θ. This enables us to solve the volume integral V(d) of Eq. 3.10 by
the expression shown in Eq. 3.11 :

V (d) ≈
∫ d

0

(4π)2t2
(d2 − t2) 3

2

3!l3
dt =

π3

12

d6

l3
(3.11)

For arbritary values of θ and for d
l
≤ π, one could include additional terms of the

series expansion in Eq. 3.10 to obtain a very accurate estimate of the volume V(d),
see Eq. 3.12 :

V (d) =

∫ d

0

(4π)2t2

(
(d2 − t2) 3

2

3!l3
− (d2 − t2) 5

2

5!l5
+

(d2 − t2) 7
2

7!l7
− (d2 − t2) 9

2

9!l9
+

(d2 − t2) 11
2

11!l11
+ ...

)
dt

= π3

(
d6

12l3
− d8

384l5
+

d10

23040l7
− d12

2211840l9
+

d14

309657600l11
+ ...

)
(3.12)

The expression θ − sin(θ) can still be expanded in series for d
l
> π, however,

to keep the integration easier, the rotational variable dθ should not span regions
over than π rad. Note however that :

1. Eq. 3.11 exactly matches the volume of a hypersphere in a six-dimensional
Euclidian space (see Eq. 3.2) and is the same as the formula used by Hug-
gins (Huggins, 2014) (only a factor of 2 difference, attributed to the choice
of reference state);

2. our equation provides a very accurate estimation for V(d) when θ < 1 rad.
and should be corrected, either by numerical integration or analytically by
the truncated summation (Eq. 3.12) for larger distances;
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3. evidently, the expression for the volume relies on the choice of the scaling
factor l;

4. the correction added to the naive formulation of entropy (Eq. 3.3) by the
nearest-neighbor theory implies however some approximations in order to
properly address the Poisson binomial distribution when the total number
of samples is too large (n → ∞). The approximations made scale as 1

n
,

which is merely similar to the ratio of the volume of the hypersphere of
radius equal the distance to the kth nearest-neighbor over the reference vol-
ume (as showed in Theorem 8 by Demchuk et al. (Singh et al., 2003)).
Consequently, one should expect a linear fitting between deviations of esti-
mates/true entropy and the average distance of the kth nearest-neighbors.

3.3 Application to MD simulations

In its present context, the theory as discussed above remains somehow tasteless
until it is practically being applied to the post-processing of a MD simulation
trajectory. Even though MD provides the thermodynamic samples for the com-
plexes, a series of steps will however be required to readily apply the above
formulae to extract the rotational- translational entropy loss upon complex for-
mation of biomolecules. The procedural workflows, as discussed hereafter, are
summarized in Fig. 3.1.

Among other order parameters, the atomic root mean square fluctuations (RMSF)
provides a sensitive measure of the flexibility of the molecule. Furthermore, com-
pared to global molecular properties like the center of mass motion, the RMSF
has the advantage of decoupling the reference coordinates from other degrees of
freedom, allowing in a more easy way the computation of individual contributing
terms to the rotational and translational entropy loss upon binding.

The subset of reference atoms belonging to the 1st molecule are used to align all
MD snapshots in the reference frame of the first snapshot (or more in general to
the most representative conformation). The rationale behind this step is to drop
the random rotational- translational diffusion of the complex, the latter entering
in the definition of a 1 M random reference state.

Once all the snapshots have been superimposed to the reference frame of the 1st

molecule, one ideally selects the most rigid part of the 2nd molecule to obtain
an optimal rotation-translation to align the first reference system with. Just af-
ter that, the rotational and translational coordinates (R1, t1,R2, t2, ...,Rn, tn) be-
tween any pair of snapshots are extracted and used to compute the coumpound
distance di,j (see Eq. 3.6, with subscripts (i, j) ≡ (a, b)).

As already emphazised, the choice of l in the computation of the compound dis-
tance is arbitrary, but should be done with utmost care. Therefore, one chooses
l in such a way that the translational and rotational terms are proportionally
weighted in the resulting distance. Since the kth nearest-neighbor distance is used
in the formulation of entropy (Eq. 3.5), we take the ratio of the mean kth nearest
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Figure 1: Application to molecular dynamics simulations. Molecular dynamics simulations
are analysed and atoms with the lower root mean square fluctuations (RMSF) are chosen
for superposition. Atoms of molecule A are used to superpose all snapshots on the starting
complex. For all superposed complexes molecule B is further rotated and translated to
optimally superpose lower RMSF atoms on molecule B in the starting complex. Translations
and rotations are listed for each snapshots and used to compute the distance between any
two rotational-translational states of molecule B with respect to molecule A.
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FIGURE 3.1: Application of our approach to a post-processing of a
biomolecular MD simulation. Lower atoms’ root mean square fluc-
tuations (RMSF) are selected as reference state and used for super-
position. Atoms of the 1st molecule are used to superimpose all
frames on the starting complex. For all superimposed complexes
the 2nd molecule is further rotated and translated to optimally align
its lower RMSF atoms to the starting complex. Translations and ro-
tations are listed for each frame and used to compute the distance
between any pair of rotational-translational (ti,Ri) states of the 2nd

molecule with respect to the 1st one.

neighbor translational distance to the mean kth nearest-neighbor rotational dis-
tance, see Eq. 3.13.

l =
〈dti,k〉
〈dRi,k〉

(3.13)

Practically, for each sample i the list of distances di,j (i 6= j) is sorted and the
kth shortest nearest-neighbor distance is noted as di,k. The volume V (di,k) is then
computed according to Eq. 3.10 or its approximation following Eq. 3.12. Finally
entropy is estimated from the total number of samples n, based on Eq. 3.5.

It is good recording that, in the explicit distance formulation of entropy (Eq. 3.5),
the lengths are expressed in Angstroms and the implicit reference state corre-
sponds to the concentration of 1 molecule in 1 Å3 in random rotational state. A
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conversion factor of -7.41 kB is needed to obtain the entropy with the concentra-
tion of 1 M in random rotation space.

3.4 MD simulations of a homodimer of TTR

The X-ray crystallographic structure used as starting configuration is the wild-
type TTR taken from the RCSB Protein Data Bank (PDB) (Berman et al., 2000)
PDB id : 1F41 (Hörnberg et al., 2000), solved at the resolution of 1.3 Å. The struc-
ture has been found to crystallize as a tetramer made by two symmetric dimers
with residues 1-9 and 126-127 not present. We removed all the crystallographic
water molecules before running the simulation and isolated the dimer from the
tetramer.

The MD simulation lasted 250 ns using Gromacs-4.6.2 (Hess et al., 2008). The
molecular interactions were described using amber99sb-ildn force field (Lindorff-
Larsen et al., 2010). To preserve the neutrality of the system, 10 Na+ counter ions
were added. The whole system was then solvated using the 3-site rigid water
model TIP3P (Jorgensen et al., 1983; Jorgensen and Madura, 1985; Mahoney and
Jorgensen, 2000). Protein atoms were placed at the center of a cubic box at a min-
imum distance of 10 Å from the edges. We used Periodic Boundary Conditions
and the solvated system consisting of protein, 10 counter ions and about 15520
TIP3P water molecules.

The system was first minimized for a maximum of 2500 minimization steps using
the steepest descent minimization algorithm. A minimization step size of 0.1
nm and a maximum convergence force of 1000.0 kJ mol-1nm-1 were employed.
The equilibration phase was done in 2 steps; 100 ps in NVT ensemble followed
by 100 ps in NPT ensemble. During the first equilibration stage the leap-frog
integrator with integration timestep of 2 fs was used to update the changes in
the system. Particle Mesh Ewald summation (Darden, York, and Pedersen, 1993;
Essmann et al., 1995) accounted for long-range electrostatics interactions. The
temperature was equilibrated to a reference value of 300 K using the velocity
rescaling (modified Berendsen thermostat) (Bussi, Donadio, and Parrinello, 2007)
with the coupling constant of 0.1 ps. Short-range electrostatics and van der Waals
interactions were truncated with a 10 Å cut-off. All bonds were constrained with
the LINCS alogorithm (Hess et al., 1997). In the NPT equilibration phase the
same parameters were used and the pressure was stabilized to 1.0 bar using the
Parrinello-Rahman pressure coupling (Parrinello and Rahman, 1981; Nosé and
Klein, 1983), with the coupling constant of 2.0 ps. Finally, MD simulation lasted
250 ns in NPT ensemble. Snapshots were collected every 10 ps along the trajectory
giving a total of 25000 snapshots, the last 24000 of which have been used in the
analysis.
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3.5 Results and discussion

We readily apply the equations discussed in Theory formulation to selected test
and practical situations, representing well the features amended in the nearest-
neighbour theory by our approach :

Ê the random rotation-translations entropy ;

Ë the correlated rotation-translations entropy ;

Ì the rotational-translational entropy of a homodimer of TTR.

For each of the points underlined above, only where explicitely indicated, the en-
tropy was estimated with the implicit reference state for free rotations and trans-
lations randomly distributed over a cube of 1 Å3. In this section, however, only
the last point above (item Ì) will be discussed, the detailed consideration of
the other two aspects can be found in the published materials (Fogolari et al.,
2016). Among other reasons, the simple one is because the last point straightfor-
wardly affords the step-by-step workflows presented above, Application to MD
simulations. Nonetheless, it is consistent to highlight that, for the two points
Ê & Ë above, the entropy was already known theoretically or through numer-
ical integration, and using Eq. 3.4 with the volume computed by the integral
of Eq. 3.10 we accurately reproduce the expected entropy values, therefore le-
gitimating our approach. The same equations are then applied to estimate the
rotational-translational entropy lost upon dimerization of a homodimer of TTR.

The motivations behind the choice of TTR in this thesis have been framed yet, see
TTR Motivations. Moreover, its study is part of an ongoing project on the effect of
mutations on the tetramerization of TTR, the focus of the forthcoming Chapter 4.
It is well established that tetramer dissociation (associated with partial unfolding)
is one, if not the first step into the amyloidogenesis pathways of several TTR vari-
ants (Quintas et al., 2001). In this context, besides other contributions, it is perti-
nent to perceive the effect of the relative mobility of monomers in the complex of
wild-type and mutant TTRs, if any. Finally, biomolecular protein complexes offer
more challenging situations compared to systems in which a ligand tightly binds
to a receptor, thereby greatly reducing its rotational-translational space, making
convergence of entropy calculation more obvious.

Entropy of TTR dimerization

MD snapshots taken at 1 ns intervals were superimposed on the starting struc-
ture (using backbone atoms) to identify the most rigid parts of both monomers
(schematic views of TTR structures are displayed in Fig. 1.4). The list of residues
with average RMSF < 1.2 Å was compiled and used to align all the trajectory
snapshots (frames skipped every 10 ps). In particular, monomer I backbone
atoms were first superimposed to the starting structure and then further rotation
and translation were applied to superpose monomer II on the reference struc-
ture. The latter rotation-translation was taken as the rotational-translational state
of monomer II in reference to the frame of monomer I, as done before by Fogolari
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et al. (Fogolari et al., 2015). For consistency, the same steps were looped inverting
the roles of monomers I and II.

The results obtained following the above steps are reported in Fig. 3.2, where
the rototional-translational entropy lost upon binding of TTR dimer is plotted
against the average kth nearest-neighor distance, with different values of the scal-
ing length l. It is seen in Fig. 3.2 that the best converging moieties are relative
to the scaling length of 5 and 10 Å (last 2 continuous curves), consistent with the
value of l computed according to Eq. 3.13 which is 9.7 Å. This result stresses on
the importance in the choice of the scaling length (which is theoretically random)
to cancel the domination effect of one of the two contributing terms entering in
the definition of the coumpound distance.

The computed translational-rotational entropy lost upon binding with respect to
the reference state is then estimated (by linear extrapolation) to -9.6 kB (i.e -17.0 kB

with respect to 1 M concentration in random orientation state). Upon inverting
the roles of monomers I & II, nearly similar values of entropy lost are obtained.
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Figure 4: Estimated entropy from 24000 samples of transthyretin dimer molecular dynamics
simulations. Entropy calculated from the kth nearest neighbor is plotted versus the average
distance of the kth nearest neighbor. Distances are increasing with k. The curves (continuous
line) are relative to different choices of length l: (from top) 0.01 Å, 0.05 Å, 0.1 Å, 0.5 Å, 1.0
Å, 5.0 Å, 10.0 Å. The value of l according to eq 15 is 9.7 Å (dotted line). For comparison
the curve computed according to Huggins’ formula is reported (dashed line).
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FIGURE 3.2: End-point rotational-translational entropy estimates of
n=24000 samples of TTR homodimer from MD simulations. Entropy
computed from the kth nearest-neighbor is plotted against the aver-
age kth nearest neighbor distance. Like it should be, distances are
increasing with the number of neighbors k. The curves (continuous
line) are relative to the different choices of scaling length l : (from
top) 0.01 Å, 0.05 Å, 0.1 Å, 0.5 Å, 1.0 Å, 5.0 Å, 10.0 Å. The estimated
value of l according to Eq. 3.13 is 9.7 Å (dotted line). The dashed line
represents the entropy extimated following the Huggins’ equation,

its is reported for the sake of comparison.
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Since the translational and rotational degrees of freedom are correlated, one can
easily remark the effect of the scaling length l on the asymptotic behavior of the
estimated entropy. However, this is less sensitive for random rotation-translations
(point Ê above, not shown). The entropy computed assuming rotations and
translations to be uncorrelated is -9.6 kB for rotations and 1.5 kB for translations
(overall -8.1 kB). This implies an underestimation of the entropy loss by 1.5 kB.

3.6 Summary

Conformational entropy in general and translational-rotational entropy in partic-
ular are often neglected upon binding of a ligand to its target, likely attributed to
the inappropriate methods for dealing with large correlation involved and to the
high dimensionality of the degrees of freedom. Thanks to the nearest-neighbor
method recently implemented, whose rationale is estimating the local probability
density around each sample by counting its number of neighbors within a hyper-
sphere of radius equal the distance from that sample to its kth nearest neighbors,
part of this bottleneck can be handled over, albeit one still have to tackle the corre-
lation effects when both translation and rotation are present. In order to properly
address the entropy, important factors to be taken into account are the definition
of a metric in rotational-translational space and the valuation of the volume of
the hypherspere for the choosen radius. Using these parameters, it is possible to
compute the distances of each sample to its kth nearest neighbor. Huggins framed
the issue and proposed a simplistic treatment for the computation of distances in-
volving both translation and rotation in roto-translational space. Here, following
its theory, we provide a more general coumpound distance to merge translations
and rotations (Eq. 3.6). This latter formulation defines a general scaling factor
l necessary for ensuring the equal weigthing of translation and rotation to the
global distance. In a nutshell, this chapter has setted the theoretical backgrounds
of our theory and showed how it can be applied to a realistic scenario of a post-
processing of a MD trajectory. Our approach indeed, relieves an important part
of the dimensionality problem facing binning methods like histogram and pro-
vides an accurate estimation of full rotational-translational entropy from samples
of rotational-translational states.
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Chapter 4

Molecular dynamics
simulation of an in silico
engineered mutation of
transthyretin1

The evidence on the rigidity and stability of TTR structure that has been
provided so far, has shown that the dissociation from native tetramer to
unfolded monomer is strongly disfavored, preventing the amyloid fibril
formation pathway. We present in this chapter MD simulations of an in

silico engineered point mutation, Ser117Glu introduced by Berni and coworkers
on a previously proposed double point mutant variant Phe87Met/Leu110Met.
This mutation considerably shifts the tetramer-folded monomer equilibrium to-
wards the monomer, making this triple mutant a useful tool for structural and
dynamical studies. Here the structural basis of tetramer dissociation and the dy-
namics resulting from dissociation is assessed by MD simulations, performed on
the wild-type (WT-TTR), double mutant (MT-TTR) and triple mutant (3M-TTR)
TTR tetramer. Dissociation of the tetramer into dimers is observed for 3M-TTR
and the transition is characterized in terms of dynamic and thermodynamic fea-
tures.

Keywords: TTR, MD, point mutation, markov state models.

4.1 Introduction

TTR is a well folded homotetrameric assembly of about 55 kDa with each sub-
unit entailing 127 aa. residues. Several variants of TTR have been found to be
involved in misfolding diseases, thus providing reliable models for the study of
amyloidosis formation pathways. Indeed, this justifies the numerous structural
studies involving TTR, either truncated or in full length. Extensive description of

1C. J. Dongmo Foumthuim; S. Fortuna; A. Corazza, G. Esposito; F. Fogolari (2018). Molecular
dynamics simulation of an in silico engineered mutation of transthyretin, In preparation.
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structure, function and motivations behind the choice of TTR in this thesis have
been discussed earlier in Chapter 1. In the present chapter, we used all-atom un-
biased MD simulations in realistic-like experimental conditions, i.e. room tem-
perature and pressure, neutral pH ionization state, physiological ion concentra-
tion and explicit water solvent, to probe the stability of an in silico engineered mu-
tation in relation to WT-TTR PDB 1F41 (Hörnberg et al., 2000) and double point
mutant, MT-TTR PDB 1GKO (Jiang et al., 2001). It is worth noting that no crys-
tal structure was available when doing this work but very recently R. Berni and
collaborators have released one (Zanotti et al., 2017). The mutation engineered
on MT-TTR consists of mutating Ser117 residue located in edge strand H by Glu
residue, i.e. Ser117Glu point mutation. Indeed, the resulting structure is a triple
point mutant (Phe87Met/Leu110Met/Ser117Glu) variant of TTR (3M-TTR). Both
Met110 located in strand G and Glu117 residues have their side chains pointing
towards the central binding channel. Meanwhile, Met87 side chain located in be-
tween α-helix-F loop is pointing through the middle of F and H strands of the
next monomer of the same crystallographic asymetric unit.

Using bioinformatic (Berrera, Molinari, and Fogolari, 2003; Schymkowitz et al.,
2005) and statistical (Beauchamp et al., 2011) based-analysis tools, we have clearly
showed that the triple point mutant variant (3M-TTR) is strongly monomeric
prone even at standard and unbiased simulation conditions. While the process
of fibril formation does comprise two broad steps, tetramer-to-folded monomer
equilibrium, i.e. dissociation followed by monomer misfolding and self-assembly,
this work has only covered the first step and future perspectives are directed to-
wards complete description of the second one.

4.2 Simulation details

4.2.1 Molecular models

The X-ray structures used as starting configuration are the wild-type transthyretin
(WT-TTR) taken from the RCSB Protein Data Bank (PDB) (Berman et al., 2000),
PDB id : 1F41 (Hörnberg et al., 2000), solved at the resolution of 1.3 Å; the dou-
ble point mutant (MT-TTR) F87M/L110M (PDB id: 1GKO (Jiang et al., 2001))
resolved at 2.10 Å and the in silico engineered triple mutant F87M/L110M/S117E
(3M-TTR). The structure of triple mutant was obtained from that of MT-TTR mu-
tating the Ser117 by Glu (S117E) using the protein modelling software Swiss-
PdbViewer (Johansson et al., 2012). The N-terminal residues 1-9 and C-terminal
126-127 are not present in the structure and were not modeled. Tetramers were
built from deposited asymmetric units (dimers) by applying crystal symmetry
operations. All the crystallization water molecules were removed prior to run
the simulations.
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4.2.2 Molecular dynamics simulations

The molecular mechanics CHARMM27 all atoms force field with CMAP correc-
tion (Bjelkmar et al., 2010) accounted for characterization of molecular interac-
tions. The protein atoms were placed at the center of a cubic box at a minimum
distance of 10 Å from each edge. The whole system was then solvated using the 3-
site rigid water model TIP3P (Jorgensen et al., 1983; Jorgensen and Madura, 1985;
Mahoney and Jorgensen, 2000). To account for the neutrality of our systems, 20
(for WT-TTR and MT-TTR) and 24 (for 3M-TTR) Na+ counterions were added to
replace the equivalent number of water molecules and thus, equilibrate the nega-
tive charges. The initial set-up is therefore made by a solvated system consisting
of about 7048 protein atoms, 24 counterions and 22573 TIP3P water molecules.

The systems were first minimized using the steepest descent minimization al-
gorithm, with a minimization step size of 0.1 nm and a maximum convergence
force of 1000.0 kJmol−1nm−1. The equilibration phase was done in 2 steps; 100 ps
in NVT ensemble followed by 100 ps in NPT ensemble. During the first equilibra-
tion stage, the leap-frog integrator with integration timestep of 0.002 ps was used
to update the changes in the system. Particle Mesh Ewald summation (Darden,
York, and Pedersen, 1993; Essmann et al., 1995) accounted for long-range electro-
statics interactions. The temperature was equilibrated to a reference value of 300
K using the velocity rescaling (modified Berendsen thermostat)(Bussi, Donadio,
and Parrinello, 2007), with a coupling constant of 0.1 ps. Short-range electrostat-
ics and van der Waals interactions were truncated with a 10 Å cutoff. All bonds
were constrained with the LINCS alogorithm (Hess et al., 1997). In NPT equili-
bration stage, the previous parameters were still used and the pressure was sta-
bilized to 1.0 bar using the Parrinello-Rahman pressure coupling (Parrinello and
Rahman, 1981; Nosé and Klein, 1983), with a coupling constant of 2.0 ps. Finally,
MD simulations lasted 100 ns in NPT ensemble. Snapshots were collected every
2 ps along the trajectory, giving a total of 50000 snapshots.

4.2.3 Molecular dynamics simulation analysis

MD trajectories were analyzed with available structural-based tools in Gromacs-
5.0.4 (Hess et al., 2008; Abraham et al., 2014) and the thermodynamic stabil-
ity of the systems was further processed using the Academic License version
of the bioinformatics tool Foldx (Schymkowitz et al., 2005) ; In which the fol-
lowing commands were used Stability and AnalyseComplex respectively
to gain information on protein stability and interacting interface free energies.
In all the cases, the values were averaged over the whole simulation trajectory.
AnalyseComplex command outputs the Gibbs interacting free energy of bind-
ing for a complex formation (folding), say AB (A + B → AB), computed as
∆∆GAB = ∆GAB − (∆GA +∆GB) where ∆G is the free energy of folding.

For studying the dissociation mechanism of the triple mutant, we sampled and
clustered its trajectory to construct a macrostate model using Markov State Mod-
els (MSMs) with MSMBuilder package, version 2.7 (Bowman, Huang, and Pande,
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2009; Beauchamp et al., 2011; Bowman, 2014). We analysed the dissociation
pathways using the build-in Transition Paths Theory module of MSMBuilder
(CalculateTPT), assigning as initial states those macrostates resembling more
the crystal structure (native-like states), i.e. those with smallest RMSD and as final
state the one with largest RMSD. In the clustering phase, the RMSD metric using
a hybrid k-centers/k-medoids clustering algorithm (Beauchamp et al., 2011) with
a treshold intercluster distance of 1.6 Å and 250 iterations were used. The 50000
snapshots from MD simulation were initially clustered into 220 microstate cen-
ters which were further lumped into 76 coarse-grain model (macrostates) using
the Bayesian Agglomerative Clustering Engine (BACE) (Bowman, 2012). Both
models (micro and macro) were validated, i.e. whether or not they are Marko-
vians, computing and analyzing the Implied Time Scale (ITS) plots (see Fig. A.1
in Appendix A). States were further visualized thanks to MSM Explorer package
(Cronkite-Ratcliff and Pande, 2013).

Pictures presented in this chapter in particular and in the thesis as a whole were
either collected with PyMOL (Delano, 2002) or VMD (Humphrey, Dalke, and
Schulten, 1996), secondary structures were assigned using DSSP program (Kab-
sch and Sander, 1983) and hbonds occupancy was computed using the read-
HBmap.py tool reporting only hbonds with occupancy greater than 10 %.

4.3 Results and discussion

4.3.1 Tetramer dissociation

The TTR tetramer already reported in Fig. 1.4-(b) is placed here for an easily
understanding of the discussion related to monomer nomenclatures :
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http://www.gromacs.org/@api/deki/files/232/=readHBmap.tar.gz
http://www.gromacs.org/@api/deki/files/232/=readHBmap.tar.gz
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In order to illustrate the structural differences and namely dissociation between
the simulated tetramers and the starting one, we computed the centre of mass
(COM) distances between the different monomers along the simulation timescale,
Fig. 4.1. It is worth mentioning that Fig. 4.1-(d), (e) and (f) parallel well the pro-
files of root mean square deviation of backbone atoms (upon tetramer superpo-
sition) and protein radius of gyration and therefore the latters are not presented.
Moreover, the structure of 3M-TTR is not at equilibrium. Thus the average data
displayed below should be taken with due care and are considered as mostly
qualitative.

FIGURE 4.1: Centre of mass distances between the different
monomers along the simulation time.

In Fig. 4.1 it is seen that the smallest separation distance between monomers
is monitored in asymmetric units of both dimers I/II (a) and III/IV (b) for all
simulated systems. The distance profiles between symmetric units II/IV (d) and
asymmetric units I/IV (e) and II/III (f) of different dimers are quite similar. As
a consequence of dissociation of 3M-TTR a large increase in center of mass dis-
tances, in relation to WT-TTR and MT-TTR, is observed at the interface of II/IV
(d) on one hand and I/IV (e) and II/III (f) on the other hand, respectively. This
analysis shows that 3M-TTR tetramer is largely undergoing structural block de-
structuration compared the others. Dissociation is initiated at the interface of
mononers II/IV, that corresponds to the dimer-dimer contact, followed by de-
tachment of monomer III, matching the experimental results by Foss et al., (Foss,
Wiseman, and Kelly, 2005).

WT-TTR and MT-TTR monomer’s distances are the same (within fluctuations),
showing that both structures are well preserved and overall superimposable (as
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confirmed by RMSD analysis, not shown). This certainly is apparently inconsis-
tent with the analytical ultracentrifugation experiments stating that no tetramer
of MT-TTR is detected in solution over a concentration range of 7.2 µ to 0.1 mM
(Jiang et al., 2001). The COM distance confirms the ease of dissociation of 3M-
TTR structure compared to the other two. In addition, having shown that the
dissociation is likely initiated at the dimer-dimer interface, namely in our simu-
lation at II/IV, we further investigated the changes at the inner sheet-inner sheet
(HGAD-HGAD) interface of symmetric units of different dimers (I-III and II-IV).
This was done by computing the distance between symmetric residues along the
simulation and compare to the reference wild type’s X-ray structure, Fig. 4.2.
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FIGURE 4.2: Average inner sheet - inner sheet distance between
symmetric residues at dimer-dimer interface compared to initial
(optimized) WT-TTR X-ray structure. Roman letters I to IV stand
for monomeric units. Equations written on both graphs are the cor-
responding fitted linear equations. Each point represents the aver-
age distance between two symmetric inner sheet residues, with the

corresponding standard deviation.

In Fig. 4.2 the inner sheet-inner sheet distances of correspondent residues of the
two symmetric monomeric units (I-III and II-IV) at the dimer-dimer interface are
in very good agreement for WT-TTR and MT-TTR compared to the wild-type
crystal structure. Contrariwise, symmetric residues at the inner sheet-inner sheet
interface of 3M-TTR undergo a significant distance increase, especially at the limit
of monomers II and IV. The correlation coefficients computed between average
simulation distances and WT-TTR Xray’s one (R2 = 0.983, 0.992, 0.595 at I-III and
0.988, 0.977, 0.779 at II-IV, respectively for WT-TTR, MT-TTR and 3M-TTR), reveal
that the intrinsic separation gap, i.e. within the same tetrameric assembly, is ∼ 40
% (at I-III) and ∼ 20 % (at II-IV) bigger in 3M-TTR structure than in the other
two ones. Furthermore, on a more global scale, i.e. variant-to-variant structure-
based comparison, 3M-TTR displays a remarquable distance shift at the frontier
of monomers II-IV, with a separation gap d ≈ 1.59 nm (see Fig. 4.2) compared
to the two others. These observations indicates a structural block dissociation in
3M-TTR.
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4.3.2 Structural fluctuations

The detailed picture of residues mobility within TTR tetramer protein structures
was visualised by computing the root mean square fluctuation (RMSF), Fig. 4.3.
Analysis of RMSF plots clearly points out the higher structural flexibility of the
loop regions in comparison with the rest of the protein structure. Large residue
fluctuations are observed in loops B-C, F-G, α-helix-F loop and D-E loop.

WT-TTR and MT-TTR show nearly the same range of fluctuations with a mean
value of 0.07±0.03 nm. The highest peaks in WT-TTR (Fig. 4.3-a) are found in
monomer II (D38, 0.251 nm; E62, 0.162 nm), monomer IV (D99, 0.159 nm; S52,
0.112 nm) and monomer III (A81, 0.135 nm). In MT-TTR (Fig. 4.3-b), residues
with highest fluctuations are closely the same as in WT-TTR and are located in
monomer I (A37, 0.179 nm) and monomer II (D38, 0.177 nm; A81, 0.150 nm; S100,
0.139 nm). For 3M-TTR dissociation prevents this kind of analysis.

Monomers of 3M-TTR are not affected much by dissociation, indeed the plots in
Fig. 4.3 (a’), (b’) and (c’) describing fluctuations within individual monomeric
units, i.e. upon superposition of the single monomer, show very similar fluctua-
tions in WT-TTR, MT-TTR and 3M-TTR.
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FIGURE 4.3: Residue average root mean square fluctuations of back-
bone atoms. From top to bottom WT-TTR (a, a’), MT-TTR (b, b’) and
3M-TTR (c’). While (a), (b) are averaged with respect to the center
of mass of tetramers, (a’), (b’) and (c’) are averaged on individual
monomers. Letters A-H represent the β-sheets and α is the short

intermediate helical region (75-82) between stands E and F.
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4.3.3 Localised structural transitions

Local conformational transitions were assessed by computing the dihedral phi
(φ) and psi (ψ) angles of individual residues involved in the mutation and repre-
sented as Ramachandran plots, Fig. 4.4.

The X-ray (φ◦, ψ◦) dihedral angles for residue 87 are (-84,-55), (-84,-40) and (-85,-
41) in WT-TTR, MT-TTR and 3M-TTR respectively. The same values reported
from simulation are as follow : (-75±12, -46±9), (-80±16, -44±13) and (-91±15, -
38±15), Fig. 4.4-(a). These latter lie in the allowed regions for α-helical secondary
secondary structure, −89 < φ < −39 and −66 < ψ < −16 (Hovmöller, Zhou, and
Ohlson, 2002), confirming that no secondary structural transition occured at this
position.

The φ/ψ dihedral angles of L110 and M110 residues Fig. 4.4-(b) look even more
similar than the previously observed ones. No major deviation was observed
in individual monomers and the dihedral angles for residue 110 in each variant
keep closed to the equilibrium value. The average reported simulation values
are (-122±11, 122±8), (-116±12, 122±10) and (-117±11, 119±10) respectively in
WT-TTR, MT-TTR and 3M-TTR. Indeed, these fall into the region corresponding
to β-sheet secondary structure, −180 < φ < −45 and 45 < ψ < 225 (Hovmöller,
Zhou, and Ohlson, 2002) and imply that no structural transition is seen in the
process of point mutation Leu110Met.

In Fig. 4.4-(c), while both TTR variants are displaying nearly the same φ/ψ aver-
ages, (-137±10, 140±9), (-136±16, 134±12) and (-131±17, 135±11), it is seen that
a distinct region is being accessed by mutant variants. The region is defined by
−40 < φ < 70 and 30 < ψ < 140 corresponding to left handed helix conforma-
tion. The transition is observed only once for both MT-TTR and 3M-TTR within
the first 10 ns of the simulation possibly as a transient adaptation to in silico mu-
tation of residue 110.

4.3.4 Secondary structural changes

The illustration of dynamical processes in our systems during the simulations
was done by computing the secondary structure, Fig. 4.5. The latter analysis
was performed thanks to the DSSP program which determines the existence of
hydrogen bonds as a criteria for the presence of secondary structure (Kabsch and
Sander, 1983). While dihedral (φ, ψ) angles (Fig. 4.4) were useful for assessement
of local structural changes, secondary structure is able to highlight the global
structural changes.

In Fig. 4.5 we can see that the helical region exhibits large structural fluctua-
tions and even get disrupted from time to time, like in monomer II for all the
TTR variants. F-strand undergoes some structural fluctuations at its begining,
particularly in monomer I, III and IV. In G-H loop, some part of the structure
is being converted from bend to β-turn and conversely. D-strand displays quite
high structural fluctuations in monomers II and IV of WT-TTR ; in monomers II
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FIGURE 4.4: Ramachandran plots of individual residues at individ-
ual point mutations.

and III of MT-TTR and in all monomers for 3M-TTR. A- and C-strands make the
most stable parts of the molecules. E-strand in the vicinity of α-helix is showing
some fluctuations in monomers I, III & IV of all the variants. In spite of structural
fluctuations exhibited by major parts of the tetrameric molecular assemblies, Fig.
4.5 clearly points out that monomers are nevertheless remaining folded, i.e. they
preserve essentially their secondary structures. This observation is supported by
the fact that no evident disruption and secondary structure conversion are seen
in the core region (made by the β-barrels) of the different systems studied.

4.3.5 Intra and Interchains hydrogen bonds occupancy

In order to understand the mechanism of 3M-TTR dissociation we computed the
H-bonds occupancy along the MD trajectory considering both main chain-main
chain, main chain-side chain and side chain-side chain, at monomer-monomer
and dimer-dimer interfaces. Fig. 4.6 summarizes the occupancies of the interac-
tions that were identified to significantly perturb the tetrameric assemble of TTR
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FIGURE 4.5: Time-based secondary structure analyses. From top
to bottom the secondary structures of WT-TTR (a), MT-TTR (b) and
3M-TTR (c) are respectively displayed. Colours were used to distin-
guish between secondary structure types and letters A to H stand
for β-strands and α is the helical portion between E and F strands.

upon mutations. It should be noted that for 3M-TTR the occupancy reflects an
average of both (starting) associated and dissociated configuration.

In Fig. 4.6, seven major hbonds (with occupancy > 80 %) can be seen almost
symmetrically distributed in both dimers, three at I-II interface and four at III-IV
interface. These are being lost in 3M-TTR with their average occupancy dropping
below 40 %. These include the interactions Y114(CO)-A120(HN) and A120(HN)-
Y114(O) (main chain-main chain) ; T119(Hγ1)-S115(Oγ) and S115(Hγ1)-T119(Oγ1)
(side chain-side chain). Most of them are located in the H-strand and some in the
G-H loop.

At the interface of symmetric units (I-III and II-IV) there is a significant loss in
hbond occupancy in 3M-TTR, in particular at II-IV interface, confirming what we
have seen in Fig. 4.2. The occupancies of 22GLY(O)-122VAL(HN) and 122VAL(HN)-
22GLY(O) (main chain - main chain) located in H-strand and A-B loop lie under
the 10 % (Fig. 4.6). Interestingly, it is worth mentioning that, in 3M-TTR, sev-
eral side chain-side chain interactions are being formed following dissociation
and subsequent temporary association. These involve many inner sheets residues
like K15, R104 and E117, most of which show significant deviation from starting
WT-TTR X-ray structure.

Analysis of hydrogen bonds connectivity confirms the pivotal role of such net-
works in preserving the protein integrity, typically in some dedicated portions,
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FIGURE 4.6: Summary of hbonds with their occupancies identified
to destabilize the tetrameric structure of TTR. M and D stand respec-
tively for monomer and dimer while I to IV are different monomers.

in this case H-strand, G-H and A-B loops. These susceptible portions of TTR
that build up the momomer-monomer and dimer-dimer interfaces are definitely
playing a key role in destabilization of tetrameric subunits of TTR, especially in
the case of 3M-TTR. Indeed, the disappearance of hbonds in the previously men-
tioned domains along the timescale of the simulations brings a possible explana-
tion on the integrity loss of tetrameric block in 3M-TTR.

4.3.6 Free energy along the dissociation route

The structural and thermodynamic stability of the mutant structures in relation
to wild-type were further probed thanks to two independent bioinformatic tools,
i.e. Foldx (Schymkowitz et al., 2005) (Fig. 4.7-A) and the statistical effective
energy function BMF (Berrera, Molinari, and Fogolari, 2003) ((Fig. 4.7-B)). We
computed the folding free energy differences between mutants and wild-type
(∆∆G=∆Gmutant-∆Gwild-type) throughout the tetramer-unfolded monomers equi-
librium, Figs. 4.7. Some words of caution are due presenting the following data
:

1. the energy functions used take into account implicitly the entropy loss from
internal degrees of freedom, but not that arising from external degrees of
freedom as implied by the tetramer to dimers and the dimers to monomers
transitions.

2. the simulation of the 3M-TTR mutant is not at equilibrium, because of dis-
sociation. For this reason the data should be regarded as qualitative.

Finally, notwithstanding the fluctuations and differences in underlying principles
and datasets, the two approaches used here are consistent with each other as
detailed below.
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FIGURE 4.7: Folding free energy difference between mutants and
native wild-type along the simulation trajectory and througout the
tetramer-unfolded monomer equilibrium. In the case of tetramer
(a), ∆∆GT is the global stability free energy change of tetramers, i.e.
the free energy required to fold the tetramers from their unfolded
monomers. Subscripts mut and wt are respectively mutant (MT-TTR
or 3M-TTR, with their simplified notations mt and 3m) and wild-
type (WT-TTR). ∆∆GD (b) is the free energy necessary to form the
dimers from tetramers (T→D).∆∆GM (c) is the free energy involved
in the dissociation of dimers into folded monomers (D→M) and
∆∆Gunf

M (d) is the free energy of unfolding of individual monomers
(M→Munf).
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The panels (a) in Figs. 4.7-(A & B) points out that both mutants have positive
difference in free energy with respect to WT-TTR, thus are less stable. Their aver-
age free energy ∆∆GT computed using BMF (Foldx) are +0.3 and +7.8 kcal/mol
(+2.5 and +15.6 kcal/mol) respectively for MT-TTR and 3M-TTR, confirming the
decreased tetramer thermodynamic stability upon mutations, significant in the
case of 3M-TTR.

In order to track down all contributions, ∆∆G’s values were computed and re-
ported in subsets (b, c & d) of Fig. 4.7-(A & B) for all the steps in the equilibrium
pathway from tetramers to unfolded monomers (required before monomers self-
assemble into amyloid fibrils) through dimers and monomers. We called ∆∆GD,
∆∆GM and ∆∆Gunf

M the free energy for the dissociation of tetramers into dimers
(T→D), for the formation of folded monomers from dimers (D→M) and for the
unfolding of individual monomers (M→Munf) respectively. Based on simulations
we guessed that tetramers first break down into dimers I/II and III/IV, i.e. along
the C2 crystallographic axis, instead of I/III and II/IV (See Fig. A.2 Appendix
A). Thus, ∆∆GD = ∆GD − ∆GT (dissociation free energy at I/II-III/IV dimer-
dimer contact), ∆∆GM = ∆GM −∆GD (dissociation free energy at I-II and III-IV
monomer-monomer contacts) and ∆∆Gunf

M = ∆Gunf
M −∆GM.

∆∆GD using BMF (Foldx) average is -1.1 and -8.7 kcal/mol (-2.5 and -26.3 kcal/mol
for MT-TTR and 3M-TTR respectively, with respect to WT-TTR. This means both
equilibriums are shifted towards the right (subsets b in Figs. 4.7 A & B), i.e. the
formation of dimers. The quite high value (absolute) displayed by 3M-TTR in-
dicates the propensity of tetrameric assembly of the latter structure to dissociate
into dimers I/II and III/IV with respect to wild-type. Considering the dimer-
monomer equilibrium (subsets c in Figs. 4.7 A & B), ∆∆GM’s average using BMF
(Foldx) is -1.2 and -2.5 kcal/mol (-3.3 and -5.2 kcal/mol) over the trajectory for
MT-TTR and 3M-TTR respectively, relative to WT-TTR. The values are however
rather limited compared to the overall stability computed using BMF for the pro-
cess of four WT-TTR monomers associating into 2 dimers (-14.2 kcal/mol).

Finally the change with respect to WT-TTR in folding free energy of monomers
has been computed. Both BMF and Foldx predict a shift towards the forma-
tion of more stable monomers for both mutants ∆∆Gunf

M > 0, i.e. the equilibrium
M�Munf is shifted towards the folded form (panels d in Figs. 4.7 A & B). The un-
favourable formation of unfolded monomers in both mutants strongly correlate
with the secondary structure analysis displayed in Fig.4.5 showing that notwith-
standing the enhanced dissociation of tetramers into monomers through dimers,
monomers remain stable (folded). Besides, this result would strongly suggest
that both monomers of our mutant variants are non-amyloidogenic, and this was
known as far as MT-TTR is concerned (Jiang et al., 2001).

4.3.7 Mechanism of tetramer dissociation

The path of dissociation of dimers in 3M-TTR may be followed during the sim-
ulation (Fig. 4.8). The first step in conformational transition is the dissociation
at the interface I/IV involving residues 17-24 and 110-123, including position 117



Chapter 4. An in silico engineered mutation of transthyretin 65

mutated to Glutamic acid in 3M-TTR at variance with MT-TTR where the corre-
sponding residue is a Serine. The transition appears driven by the electrostatic
repulsion of the pairs of acidic residues Glu 117 close in each dimer. First the in-
terface is weakened (up to 15 ns) and disrupted (20 ns), then both I/II and III/IV
dimers remain rigid. Dimer III/IV rotates for most of the simulation about a
hinge centered on salt bridges Glu 51 (I) - Arg 104 (III), Arg 104 (I) - Glu 51 (III)
and hydrogen bonds Glu 51 (III) - Thr 123 (I) and at the end only about the lat-
ter two interactions. The final (possibly transient) conformation is stabilized by
salt bridges Glu 117 (I) - ARG21 (III) and Lys 15 - Glu 54 at interface I/III. Other
interactions at interface II/III are mostly hydrophobic. No sign of dissociation or
conformational rearrangement at dimers is observed during the simulation. For
both dimers the proximity of Glu 117 acidic groups should result in repulsion
which is however reduced by ionic interactions.

FIGURE 4.8: Snapshots from 3M-TTR 100 ns molecular dynamics
simulations. Chains I and III are shown in red, chains II and IV are
shown in yellow. Chains I and II, in the lower part of the tetramer
are used for superposing all snapshots on the starting conformation.
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4.4 Summary

Molecular Dynamics simulations were used in this work to probe the structural
stability of an in silico engineered point mutation Ser117Glu on the double point
mutant of transthyretin (TTR) MT-TTR (PDB 1GKO), in relation to wild-type
(PDB 1F41) and MT-TTR itself. Molecular properties analysis such as secondary
structure, solvent accessible surface area (SASA), hydrogen bonds, root mean
square deviation (RMSD) clearly confirm the highly dissociative nature of that
mutation. Furthermore, clustering and discretization of simulation trajectories
using Markov State Models (MSMs) show that our microstate model poorly cap-
tures the native-like state in the case of our engineered structure (RMSD∼ 8.2 Å )
(see Fig. A.3-a). As far as MT-TTR is concerned, a very good structural agreement
between the native-like microstate and X-ray structure was seen (RMSD∼ 1.3 Å )
(see Fig. A.3-b), revealing therefore that its structure was essentially preserved.
It has been noticed that the thermodynamic equilibrium along the pathway from
native tetramer to unfolded monomers is strongly shifted towards the formation
of monomers. Assuming the thermodynamic underlines the kinetic, this would
indeed imply the speeding up of the rate-limiting step just before monomers self-
assemble into amyloid fibrils. Nonetheless, the free energy computed according
to two independent approaches (BMF and Foldx) implies stable monomers (rela-
tive to the stability of WT-TTR) after tetramer dissociation, shifting therefore the
last step of fibril formation towards the non-amyloidogenic mutant structures.
The simulation data discussed throughout this chapter were completed well be-
fore a X-ray structure of the triple mutant been released. However, they nicely
match the recently published experimental X-ray data on the triple mutant struc-
ture (Zanotti et al., 2017). Being the first in silico studies on this triple mutant vari-
ant of TTR, our simulations provide strong evidence of its high dissociation trend
and essentially focused on the dissociation step from native tetramer to folded
monomers. Future prospects are to provide complete description of molecular
aggregation and self-assembly of monomeric units of this mutant variant.
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Chapter 5

β2-microglobulin interactions
with hydrophobic surfaces : A
molecular dynamics study1

In this chapter we present an extensive investigation on the interactions of β2-
microglobulin, a paradigmatic protein model for amyloidogenic patholo-
gies, with a model cubic hydrophobic box. A system made up with 27
copies of the protein is surrounded by the united atoms representation of

methane hydrocarbons and simulated using the OBC-GBSA implicit solvent molec-
ular dynamics. The results show that most proteins adsorb on the walls of the
box without major distortions of local geometry, whereas free molecules main-
tain proper structure and fluctuations as observed in explicit solvent MD sim-
ulations. Thermodynamic analysis suggests that van der Waals interactions are
much larger than all other contributions to the free energy of binding. Loss of
secondary structure and local unfolding could have important physiological con-
sequences suggesting that hydrophobic surfaces could thus act in vivo as pro-
moters of partial unfolding and local clustering that are essential for seeding the
formation of amyloid fibrils. Owing to the emerging role of biological interfaces
occurring in vivo in general and in protein aggregation and fibril formation in
particular, we believe our findings afford a general outlook complementary to
the biochemical studies on this protein. Overall, albeit on shorter timescale, our
simulation details a picture of the magnitude of the driving forces for β2m in-
teraction with a model hydrophobic surface. These results could be significantly
helpful in the design of medical devices that can be utilised for the removal of
β2m from the blood of hemodialysis patients.

Keywords: Molecular dynamics, Implicit solvent, Protein-surface interaction,
Adsorption.

1C. J. Dongmo Foumthuim; A. Corazza ; G. Esposito and F. Fogolari. Molecular dynamics
simulations of β2-microglobulin interaction with hydrophobic surfaces, Mol. BioSyst., 2017, 13,
2625-2637.

http://dx.doi.org/10.1039/C7MB00464H
http://dx.doi.org/10.1039/C7MB00464H
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5.1 Introduction

Proteins in their natural cellular environments are considered as a component of
a complex solution that may undergo, for either natural or traumatic events, a
transition. One such event leading to a metastable condition may be a sudden
change of solvation with formation of an aqueous/non aqueous interface, for in-
stance at the boundaries of tissue compartments where interface with lipid mem-
branes occurs. We used MD simulations to explore this type of events with β2m,
a paradigmatic protein model for amyloidogenic pathologies. In particular, we
address the interaction of β2m with a generic hydrophobic surface using implicit
solvent MD simulations. It should be noted that, although much less frequent
than anionic lipid surfaces, hydrophobic surfaces and interfaces are important
and occur to some extent also in vivo, e.g. by perturbation of the cell membrane
lipid bilayer structure or at interfaces in tissues. MD simulations studies have ad-
dressed the early steps of the process of β2m aggregation (Fogolari et al., 2007),
the effect on stability and dynamics of denaturants and/or mutations (Ma and
Nussinov, 2003; Park and Saven, 2006; Deng et al., 2006; Fogolari et al., 2011;
Mendoza et al., 2011; Gümral et al., 2013; Chong et al., 2015; Chandrasekaran and
Rajasekaran, 2016; Camilloni et al., 2016). But the effect of surfaces and interfaces
on protein denaturation and amyloid formation has been much less explored.

To detail this picture we simulate a system where 27 copies of β2m are set in a
cubic lattice within a box. The boundary of the box is constituted by a cube with
each face made by hydrophobic united atoms arranged in a cubic lattice with each
particle in van der Waals contact with nearest neighboring ones to provide a hy-
drophobic boundary and desolvation effects. We expected our simulation could
detect adsorption on the wall and possibly 2D diffusion and encounters on the
wall surface with induced unfolding and/or aggregation. Our aim is to detail the
encounter with the surface, the effects induced on the protein, the driving forces
and the strength of adsorption. The accuracy of the implicit solvent model used is
checked by following the behavior of proteins non-interacting (isolated) with
surfaces along with two independent control simulations of the protein alone in
explixit water performed using NAMD and AMBER codes with slightly different
protocols. For an extensive overview on β2m-surface interactions and protein-
hydrophobic surface interaction in general, readers could consult the published
materials (Dongmo Foumthuim et al., 2017).

5.2 Simulation details

5.2.1 System set-up

The starting structure was obtained by excising the X-ray coordinates of β2m
(chain B) that composes the major human histocompatibility antigen HLA-A2
complex solved at 2.6 Å resolution (PDB id: 3HLA) (Saper, Bjorkman, and Wiley,
1991). All the external crystallographic water solvent were removed and missing
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hydrogens were added using the pdb2gmx utility of the software package Gro-
macs (Abraham et al., 2014). 27 replicas of the starting structure were randomly
oriented and placed at the nodes of a cubic grid (spacing 50 Å).

A cubic box comprising 41508 atoms was built assembling six square faces of apo-
lar atoms which are assigned the methane united atom molecular mass 16 gmol-1.
Each square face is composed by three layers of atoms. The spacing between near-
est atoms is 4.0 Å. The walls of the bounding box are meant to represent a generic
hydrophobic surface. The density is lower than that of carbon atoms in liquid
alkanes by a factor 1.5 to 2.1, which implies a lower number of wall atoms in the
simulation.

The highly ordered structure of the bounding walls was restrained during the
whole simulation. The final system included 27 identical protein chains (43848
atoms) and the apolar bounding box totaling 85356 atoms (Fig. 5.1).

The box was set large enough (200 Å/side) to enable individual proteins to fully
rotate and no bias was used in the simulation. The choice of such high concen-
tration (8 mM) system and the use of implicit solvent model enforces increasing
probability of sampling the effects of the surface and of concentration thereby im-
proving statistics. Compared to the advanced sampling techniques this system
has the advantage that no CVs must be defined and no biasing potential must
be applied. The set up allows in principle the observation of protein-wall and
protein-protein contacts and their interplay and/or competition. The same ap-
proach has been previously used for protein-protein and protein-small molecule
interactions (Fogolari et al., 2007; Fogolari et al., 2011; Moroni, Scarabelli, and
Colombo, 2009; Abriata and Dal Peraro, 2015) and its features have been re-
viewed by Fogolari et al. (Fogolari et al., 2012).

It must be noted that in this settings hydrophobic surface and crowding effects
(Politou and Temussi, 2015) are present at the same time and could be coupled.
Crowding leads in general to stabilizing effects but also, depending on the inter-
actions of the crowder (in this case the solute itself) with the solute, to destabiliz-
ing effects. As detailed in the Results and discussion, adsorption on a hydropho-
bic surface is a very fast and efficient process, and it takes place during the sim-
ulation time independently of possible protein-protein contacts and crowding.
The description of β2m structure we will refer to in the discussion was done in
β2m-structure sub-section.

5.2.2 Forcefield and implicit solvent model

The Generalised Born Surface Area (GBSA) continuum solvation model of Onufriev,
Bashford and Case (OBC) (Onufriev, Bashford, and Case, 2004) with amber99sb-
ildn force field (MacKerell et al., 1998; Lindorff-Larsen et al., 2010) was used to
characterize the molecular interactions. Lennard-Jones parameters for the apo-
lar wall atoms have been set to σ = 0.41 nm, slightly larger than typical single
aliphatic carbons and ε = 0.625 kJ/mol, i.e. 1.4 times larger than the correspond-
ing parameter for a methylene united atom in the force field OPLS (Jorgensen and
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FIGURE 5.1: Initial system with 27 identical chains of β2m (blue) in
apolar atoms box (magenta). The proteins are arranged in a cubic
lattice. The view of the middle and back layers is partly covered by

the front one.

Tirado-Rives, 1988), to partly compensate for the lower density of apolar interac-
tion centers.

5.2.3 Implicit solvent MD simulation

All simulations were performed with gromacs-5.0.4 simulation code (Abraham
et al., 2014) in implicit solvent model. The system was initialy minimized for a
maximum of 1000 steps using the conjugated gradient minimization algorithm,
a minimization step size of 0.05 nm and a maximum convergence force (toler-
ance) of 10 kJmol-1nm-1 with a steepest descent step performed every 50 steps. In
the production phase, Brownian dynamics integrator with integration timestep
of 1 fs and time constant of 0.2 ps was used to update the changes in the system.
The velocity for Maxwell distribution temperature was set to 300 K. Short-range
electrostatics and van der Waals interactions were truncated with a 16 Å cutoff
and neighbor list was updated every 10 steps. All bonds were constrained with
LINCS alogorithm (Hess et al., 1997) with order of matrix coupling expansion of
6 using up to 4 iterations and relative tolerance of 0.001 for SHAKE algorithm. All
simulations were performed using the generalized Born surface area (GBSA) im-
plicit solvent model. Generalized Born radii were computed using the Onufriev,
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Bashford and Case GBSA algorithm (Onufriev, Bashford, and Case, 2004) using
the default scale factors α, β and γ and updated every 5 steps with a cut-off of
16 Å. The implicit solvent dielectric constant was 78.54 and the surface tension
2.259 kJmol-1nm-2 using the ACE-type approximation surface (Schaefer, Bartels,
and Karplus, 1998). Snapshots were collected every 10 ps along the trajectory.
The processes involving the rearrangement of proteins on hydrophobic surfaces
are known to take place in timescales ranging from minutes to hours (Sethura-
man and Belfort, 2005; Svaldo-Lanero et al., 2008). Nonetheless, albeit on short
lengthscale (100 ns), our system set-up allows the proteins to sample the same
phenomenon, thus reinforcing the confidence in our results. It is however rele-
vant to precise that convergence for the adsorption process cannot be achieved
and the discussion will take this fact into consideration.

5.2.4 Explicit solvent control MD simulation

For the sake of comparison and validation of the implicit solvent model used, a
single β2m molecule was also simulated in explicit solvent. Two independent
runs of 100 ns each were performed using the programs AMBER and NAMD. For
both simulations the same starting structure of the implicit solvent simulation
was used. For AMBER all crystallographic water solvent were removed and sub-
sequently missing hydrogens, topology and input coordinates were built thanks
to the xLEaP module of AmberTools v15. The solvateoct command of the
xLEaP module was used to place the protein in a truncated octahedron box
(198709.573 Å3) at a minimum distance of 8 Å from the periodic box edge and
fill the box with 5143 rigid 3-sites TIP3P water solvent (Jorgensen et al., 1983).
For NAMD the protein was solvated in a cubic box with the edges at least 12.0
Å from the protein. 2 Na+ counterions were added to neutralize the overall neg-
ative charge of the initial sytem for the AMBER simulation, whereas Na+ and Cl-

ions where added to have a neutral system at 0.150 ionic strength for the NAMD
simulation. The system was minimized, smoothly heated and equilibrated sim-
ilar to the implicit solvent simulation described above. The pressure was kept
around the reference value of 1.0 bar using the Berendsen barostat (Berendsen
et al., 1984) with relaxation time of 2.0 ps. The particle mesh ewald (PME) ac-
counted for long range electrostatics interactions in the AMBER simulation with
default parameters, whereas a simple cutoff at 14.0 Å was applied in the NAMD
simulation.

5.2.5 Free energy calculations

We consider a system with n solute degrees of freedom (x1, ...,xn) and m solvent
degrees of freedom (xn+1, ...,xn+m), described by the energy functionU(x1, ...,xn+m).

The OBC GBSA implicit solvent with the molecular mechanics forcefield is an
approximation to the potential of mean force (PMF) W (x1, ...,xn) of the system
where the degrees of freedom of water are integrated out in the configurational
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integral. The accuracy of this approximation can be judged by the results of the
simulation, but it seems appropriate in current context.

With due care, the thermodynamics of the system can be described in terms of so-
lute degrees of freedom represented by the PMF (after the solvent degrees of free-
dom are integrated out). The difference in free energy between two macrostates
A and B of the system, e.g. free and bound to the surface, is given in terms of the
PMF, by the sum of the enthalpy and entropy terms of the system described by
solute variables and the PMF, Eq. 5.1 :

∆GA→B(U,x1, ...,xn+m) = ∆GA→B(W,x1, ...,xn)

= ∆HA→B(W,x1, ...,xn)− T∆SA→B(W,x1, ...,xn)
(5.1)

Some words of caution are due because the enthalpy terms now contain also
implicitly solvent entropic contributions and contributions arising from the tem-
perature dependent implicit solvent parameters. With these caveats, in the im-
plicit solvent model used ∆H(W,x1, ...,xn) is obtained as the difference in ther-
modynamic average of W (x1, ...,xn), i.e.

∆HA→B(W,x1, ...,xn) = 〈W (x1, ...,xn)〉B − 〈W (x1, ...,xn)〉A (5.2)

The conformational entropy may be estimated from the conformational ensem-
bles obtained from simulations using the nearest neighbour method (Singh et
al., 2003; Hnizdo et al., 2007; Hnizdo et al., 2008; Fenley et al., 2014; Huggins,
2015; Fogolari et al., 2015; Fogolari et al., 2016; Fogolari et al., 2017) which is
able to provide an estimate of the probability density in conformational space
about each sampled conformation. In practice it is necessary to collect a thermo-
dynamic ensemble of conformational samples for each macrostate (e.g. free and
bound proteins). Each conformation is converted in a list of torsion angles, i.e.
changes in bond lengths and covalent angles are neglected. The distances among
conformations of each residue are computed and used to estimate the entropy of
each residue. Readers could have further insights in the cited literature.

A necessary approximation is to consider internal and rototranslational degrees
of freedom as independent, which amounts to consider the entropy of these de-
grees of freedom in an additive way. Rotational and translational degrees of free-
dom may be treated together (Huggins, 2015; Fogolari et al., 2016) but correlation
with internal degrees of freedom is neglected in this approximation. In case of
limited sampling also rotation and translation must be treated independently,
due to the high-dimensionality of the problem.

Neglected correlations among internal degrees of freedom of different residues
may lead to < 20 % correction of the computed values (Fogolari et al., 2015).
Notwithstanding all limitations, the method provides a quantitative estimate of
the entropy difference between different macrostates (free and bound states).
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Like pointed out already in Chapter 3, one needs to define a reference state. In the
present case, backbone atoms of the disulfide-bridged residues Cys 25 and Cys 80
were identified as most rigid part of the molecule and used to define the rotational
and translational reference state. We consider only restrictions in rotation and
translation with respect to the axis perpendicular to the contacting wall. The
reference state is 1M random orientation for the free molecule and we consider
for the bound molecules parallel movement in the area of a face of a cube where
a single molecule would be 1 M (i.e. 140.2 Å2).

5.2.6 Contact analysis

In the analysis of contacts only heavy atoms are considered and two atoms are
considered to be in contact when their distance is less or equal the sum of their
van der Waals radii plus 1.0 Å. The latter cut-off was found to be the most effec-
tive for the definition of statistical contact potentials among a.a. (Berrera, Moli-
nari, and Fogolari, 2003) and roughly corresponds on average to the uniform
distance of 4.5 Å often used to define contacts between atoms.

5.3 Results and discussion

5.3.1 Implicit solvent validation

To avoid any artifact due to the use of implicit solvent model simulation, we
started by performing a set of simulation runs. Firstly, the CHARMM forcefield
(MacKerell et al., 1998) with CMAP correction (MacKerell, Feig, and Brooks, 2004)
was used in combination with the OBC-GBSA model (Onufriev, Bashford, and
Case, 2004) as implemented in NAMD (Kalé et al., 1999). The proteins show great
trend to unfold and form helices in tens of nanoseconds. Similar bias were no-
ticed also upon tuning the parameters of the model to accurately reproduce PBSA
results (Fogolari, Corazza, and Esposito, 2015).

We tested and then used the AMBER forcefield with the OBC-GBSA model as
implemented in Gromacs and we checked that the trajectory for isolated pro-
teins (i.e. proteins which did not undergo extensive contacts with other proteins
and/or with the walls of the bounding box) was stable but that also displayed
fluctuations similar to those observed in explicit solvent simulations.

For comparison, two 100 ns simulations were perfomed in explicit solvent us-
ing the NAMD and AMBER MD simulation codes, with almost overlapping results.
The RMSD from the starting conformation versus time of the only four proteins
which remained isolated in the first 60 ns, upon superposition of secondary
structures elements of the starting structure, and the corresponding RMSD from
100 ns explicit solvent NAMD simulation, is displayed in Fig. 5.2. The temporary
increase of RMSD shown by one of the four trajectories is due to fluctuations at
strand C’ whose hydrogen bonds between Glu 44 and Lys 41 are lost and partly
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regained. The overall overview of all the implicit and explicit solvent trajectories
in terms of RMSD can be seen in Fig. B.1 Appendix B.

The isolated molecules fluctuations at each residue obtained upon superposi-
tion of secondary structure elements on the starting structure over all the trajec-
tory show that conformational flexibility at the terminal and loop regions were
larger (Fig. 5.3) and in a range consistent with explicit solvent MD simulations.
Overall the AMBER forcefield and the OBC-GBSA implicit solvent model used
were sufficiently accurate to exclude major artifacts in the simulation, at least on
the timescale considered here.

FIGURE 5.2: RMSD from the crystallographic structure versus sim-
ulation time for the four isolated proteins. RMSD is computed
after optimal superposition on the starting structure of backbone
atoms of secondary structure elements. The thick line is the cor-
responding RMSD from the NAMD explicit solvent simulation taken

at 1 ns intervals.

5.3.2 Protein adsorption on hydrophobic walls

During the simulation 18 out of 27 molecules encounter and bind the walls of the
bounding box within the first 35 ns whereas additional four molecules contact
the walls after 80 ns. We refer to these 18 molecules as to the adsorbed molecules.
The process, as discussed below, leads to large contact surface areas resulting
from partial loss of structure.

We selected the snapshots (every 100 ps) where each of the proteins first en-
counter the wall. We then counted for each residue how many times it occurs in
such first encounter snapshots (with no care of how many contacts each residue
establishes with the walls). This analysis aims at understanding whether there is
a prefered orientation as observed for the adsorption on gold nanoparticle (Bran-
colini et al., 2015). Note that since snapshots are taken at 100 ps intervals more
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FIGURE 5.3: RMSF versus residue for the four isolated molecules
in the considered ensemble. RMSF is computed at all residues after
optimal superposition of backbone atoms of secondary structure el-
ements on the starting structure. The thick line is the corresponding

RMSF from 100 ns explicit solvent simulations.

than a residue may occur in each first encounter snapshot. The analysis of the
first encounter snapshots for the 22 proteins contacting the wall shows that the
N-terminal end (most frequently contacting residues: Ile 1, Trp 60) is a very lo-
calised site of encounter for half of the binding proteins, whereas a larger area of
encounter is found at the C-terminal (most frequently contacting residues: Lys
75 and Met 99) (Fig. 5.4). The N-terminal region which is bound to the α-chain
in the class I HLA complex was already pointed out to be involved in protein-
protein aggregation (Fogolari et al., 2007) and protein gold nanoparticle binding
(Brancolini et al., 2015). A role of C-terminal in aggregation was also found but
less frequently (Fogolari et al., 2007).

By visual inspection of the simulation trajectories, the adsorption to the walls,
that occurs very fast, is independent of protein-protein contacts, diverging from
the scenario observed for gold nanoparticles (Cantarutti et al., 2017). This is most
likely attributed to the high strength of association, as discussed in Thermody-
namic analysis.

5.3.3 Irreversible adsorption on the simulated timescale

As soon as first contacts are formed the protein adapts to the surface and most fre-
quently the number of protein-wall contacts steadily increases sometimes reach-
ing a constant level. The dynamics on the surface then becomes slower. This
is observed for most contacting molecules, albeit the rate of growth of contacts
is not uniform (Fig. 5.5). Possibly as an effect of the Lennard-Jones parame-
ters chosen for the bounding atoms, the diffusion on the wall is almost frozen
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FIGURE 5.4: Most frequently contacting residues in first protein-
bounding wall encounter snapshots are highlighted on the solvent
accessible surface of β2m. Residues are coloured based on the num-
ber of first encounter snapshots in which they are found. Blue is
saturated at 4 contacts. The N-terminal region is at the top of the

figure.

as can be seen from the plot of the time course of the squared distance of the
mass center with respect to the initial position. The effect is independent from
protein-protein contacts, so it is attributable to the interaction with the surface.
A similar effect on diffusion was not observed in the test simulations performed
with the CHARMM forcefield with the walls made of position-restrained on all-
atom molecules of methane. This shows that the simulation is rather sensitive
to forcefield parameters and therefore to the nature of the hydrophobic surface.
Since the density of methane (explicit or united) atoms is the same in the two
simulations and lower than the density of real (e.g. graphite) hydrophobic sur-
faces, it appears that the AMBER forcefield using a slightly larger Lennard-Jones
parameter should be more representative of a real scenario.

The plots reported in Fig. 5.5 show that convergence is not achieved in the
simulation. Dynamics of adsorbed proteins becomes very slow and for many
chains the number of contacts is still increasing at the end of simulation. Also
free molecules are most likely to be adsorbed as soon as they contact the walls.
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Notwithstanding this observation, it is worth noting that the maximum num-
ber of contacts is similar in most plots where a plateau is reached, which sug-
gests that any further structural change should take place on a longer timescale.
Experiments showed that such rearrangements take place in minutes to hours
(Sethuraman and Belfort, 2005; Svaldo-Lanero et al., 2008) and that loss of struc-
ture, monitored through loss of function, at least for lysozyme, is also linked with
crowding on the surface (Sethuraman and Belfort, 2005).

FIGURE 5.5: Number of contacts with the bounding walls versus
time. Each of the 18 frames represents the contact number evolu-
tion of a single protein molecule of the considered pool. A steady
increase of contacts following initial encounter is evident for the ma-

jority of the curves.

5.3.4 Adsorption leads to partial unfolding

A sudden change in structure is observed following adsorption. It is important
to note that the change does not produce major changes in the expected peptide
local conformation. Indeed the Ramachandran plot of the adsorbed proteins re-
mains populated in the allowed regions, similar to the starting conformation. For
this reason artifacts due to possibly overestimated interactions can be ruled out.
The comparison of fluctuations for bound and unbound proteins shows that the
major changes occur at the terminal strands A and G, and in the strands C,C’,D,
as shown in Fig. 5.6.
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FIGURE 5.6: RMSF with respect to the crystallographic structure
versus residue number for isolated proteins (continuous line) and
wall-adsorbed proteins (broken lines). RMSF is computed on back-
bone atoms after optimal superposition on the starting conformation
of backbone atoms of secondary structure elements. For the four
isolated proteins four snapshots along the first 60 ns are consid-
ered, for the eighteen bound proteins only the last snapshot is con-

sidered.

Secondary structure analysis confirms and details this picture showing that the
core of the protein entailing strands B and F, including disulfide bridged residues
Cys 25 and Cys 80 and strands C and E remains fairly stable. The most labile
secondary structure element is strand D which is little preserved in bound pro-
teins, whereas the terminal strands A and G display tendency to detach from the
immunoglobulin fold (Fig. 5.7). Also loops AB and EF show remarkable devia-
tions from the starting structure. Conformational changes make proteins slowly
increase their contacts with the bounding walls to adapt to the flat surface, as can
be clearly seen in the last snapshot of the simulation (Fig. 5.11).

During adaptation to the flat surface native contacts are partially lost. We consid-
ered contact maps assigning to each contact a frequency according to the number
of structures where the contact is found. In practice if a residue-residue contact
is found in all molecules its frequency is 1, if it is found, e.g. in 5 out of 20 struc-
tures its frequency will be 0.25, independent of how many atoms are in contact.
A plot of the contact map frequency for the four isolated proteins (4 equally
spaced snapshots each during the trajectory) and the eighteen adsorbed proteins
taken from the last snapshot is reported in Fig. 5.8. The comparison shows that
in general the frequency of contacts in the adsorbed molecules is lesser. This is in
particular true for the contacts involving strands A, D and G as mentioned above.
This can be seen in the frequency difference plot (panel D of Fig. 5.8). The largest



Chapter 5. β2-microglobulin interactions with hydrophobic surfaces 79

#residue
ti

m
e 

(n
s)

FIGURE 5.7: Secondary structure versus time for the 18 chains ad-
sorbed on the bounding walls.

relative changes summed over individual strands, loops, terminals and turn (i.e.
difference in frequency divided by frequency in isolated proteins) are involv-
ing residues found in loops, but also in hydrogen-bonded strand-strand residue
pairs. An average loss in relative frequency of contacts of about 25 % is found
between strands D and E, and strands A and B.
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FIGURE 5.8: Residue-residue contact map frequencies for the four
snapshots of each of the four isolated (panel A) and for the 18 ad-
sorbed (panel B) proteins. The range of the z-axis is 0 to 1 to indicate
the frequency of the contact. In the lower row the absolute value
of the frequency difference between the two contact maps. Positive
differences, i.e. for contacts (mostly non-native) which are more fre-
quent in the adsorbed proteins compared to isolated ones, are dis-
played in panel C, whereas negative frequency differences, i.e. for
native contacts which are less frequent in the adsorbed proteins, are

displayed in panel D.

5.3.5 Adsorption surface characteristics

In order to better detail the interaction with the surface we computed the surface
electrostatic potential at the protein surface interacting with the hydrophobic wall
and at the opposite surface for the eighteen adsorbed proteins. The resulting pic-
ture (Figs. 5.9 & 5.10) confirms that there is an adaptation to the surface that in
few cases results in a close to null potential at the interacting surface, strikingly
contrasting the opposite polar surface. In most cases, however, the difference is
smaller and less apparent to visual inspection. Hydrophobic interactions which
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are formed upon protein adaptation to the surface are able to overcome electro-
static interactions, as detailed in the Thermodynamic analysis.

Electrostatic potential at the face contacting the wall

Page 4 of 19Molecular BioSystems

FIGURE 5.9: Electrostatic potential at the face contacting the wall.

Electrostatic potential at the opposite face
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FIGURE 5.10: Electrostatic potential at the opposite face.
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As a consequence of the polarity of the protein surface, before complete unfolding
takes place, most contacts are made by polar and even charged residues. How-
ever, when the ratio of the number of contacts over solvent accessible surface
area is considered the largest contributions are made by TRP and HIS residues,
although other residues (SER, PRO, THR, ALA, GLU, ARG and ASP) display
more contacts than expected based on their solvent accessible surface areas.

5.3.6 Thermodynamic analysis

The fast and irreversible adsorption of β2m on the bounding walls prompts for a
thermodynamic analysis in order to understand the driving forces of the process.

β2m binding to the hydrophobic surface of the wall is accompanied with changes
in

1. the bonded (bond, angle, dihedral) energy of the protein;

2. the nonbonded (Lennard-Jones and Coulombic) energy of both protein and
walls (inclusive of their interactions);

3. the solvation (electrostatic and apolar) energy of both protein and walls;

4. the restraining energy of the wall;

5. the configurational entropy.

All contributions to the free energy of binding are computed as described in Free
energy calculations.

Thermodynamic analysis poses the problem that the system has not reached equi-
librium at the end of simulation, as mentioned above. For this reason all the fol-
lowing considerations must be taken with due care. To reduce the effects due to
incomplete adsorption, we consider only the last 2.5 ns of the simulation, i.e. at
the end of the non-completed adsorption process.

We evaluate the average of all contributions to the energy of the system contain-
ing each protein and the box for the eighteen adsorbed proteins. For free proteins
we consider the only protein which is isolated at the end of the simulation.
For the free bounding walls we consider as the unbound state the walls during
the last 2.5 ns of the simulation before proteins are adsorbed. The subtraction of
bound minus free average free energy, normalized for a single protein, is consid-
ered. In order to provide an error estimate the calculations were repeated at 60
and 80 ns.

The change in internal energy of the walls upon binding is estimated with ref-
erence to the equilibrated isolated box. It must be clear that since there are
strong correlations among contributions the analysis must be taken with some
care. Moreover given the limited sampling the analysis is mostly qualitative. We
detail hereafter all contributions to the binding free energy in the order they are
mentioned above (the complete table of contributing energy terms can be found
in Table B.1, Appendix B).
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Covalent terms were analysed and, as could be expected, the strong surface bind-
ing results in some distortion of protein covalent geometry leading to an average
energy difference of 36±10 kcal/mol between bound and free molecules unfavor-
able to binding.

van der Waals interactions (computed as the Lennard-Jones interaction term) are
seen to be very large and contribute most to the energy of binding by 273±11
kcal/mol favorable to binding, largely due to protein-wall interactions. The in-
ternal wall van der Waals interaction contributions to binding are negligible,
whereas the internal protein van der Waals interactions are partly disrupted lead-
ing to 20±14 kcal/mol contribution unfavorable to binding.

Interaction with the wall disrupts also many electrostatic interactions in the pro-
tein resulting in 40±9 kcal/mol energy unfavorable to binding. This is accompa-
nied however with larger interaction with solvent.

Non-polar solvation, proportional to the solvent accessible surface should favor
binding, however as a result of partial unfolding further protein surface becomes
accessible to the solvent resulting in a balance between the two contributions
(0±3 kcal/mol). As an effect of partial unfolding the electrostatic solvation is
also favoring binding by 32±5 kcal/mol, but when the sum of Coulombic and
solvation terms is considered the average electrostatic contribution is unfavorable
as could be expected and equal to 8 kcal/mol.

As a consequence of binding the walls’ atoms are on average displaced from their
equilibrium positions with a resulting average increase in the restraining energy
of 53±43 kcal/mol.

The computation of protein conformational entropy was performed using the
nearest neighbour method as reported in Free energy calculations. We performed
two kind of analyses. First all non bound conformations were grouped together
and the same was done for all bound conformations. Then, using the nearest
neighbor method, the entropy for all residues and for the whole protein was
computed (Singh et al., 2003; Hnizdo et al., 2007; Hnizdo et al., 2008; Fenley
et al., 2014; Fogolari et al., 2015; Fogolari et al., 2016). Although flexibility seems
reduced in bound with respect to free conformers, the largest variability in the
way proteins are adsorbed on the box wall resulted in a larger conformational
entropy reduction for the free rather than the bound set and consequently an
entropic contribution of ca. 53 kcal/mol favorable to adsorption. To confirm
that the interpretation was indeed correct we computed the entropy for different
bound sets using single monomers separately. The results are only qualitative
because the sampling on single monomers is rather poor, as checked by the de-
pendence on the number of chosen neighbors for calculation. When single bound
monomers are considered separately, the average conformational entropy of free
and bound conformers is almost the same, and so it is not expected to contribute
significantly to binding.

In other words on the timescale of the simulation the extent of the conformational
space available to each free and each bound chain is similar with no loss or gain in
conformational entropy. Binding implies rotation-translation entropy loss (with
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respect to the 1 M random orientation reference state) which was also computed
using the nearest neighbour method (Huggins, 2015; Fogolari et al., 2015; Fogo-
lari et al., 2016). Due to limited sampling, we were forced to compute rotation
and translation entropy separately. Neglection of correlation results in underesti-
mation of the loss of entropy, although the expected systematic error should not
affect the following considerations. With the choice of reference state and bound
state described in Simulation details, the computed entropy change upon binding
is on average -3.0±0.4 kB for the translational contribution and -8.9±0.7 kB for the
rotational contribution.

If similar translational restrictions would take place in the two dimensions par-
allel to the adsorbing surface, e.g. arising from crowding, an additional loss of
about 6.0 kB could be estimated. Overall the rotation and translation entropic re-
strictions upon binding (resulting in 7 to 11 kcal/mol contribution unfavorable
to binding) seem therefore comparable to the corresponding ones computed in
protein-protein association (Fogolari et al., 2015; Fogolari et al., 2016).

In summary, the estimated energy favorable to binding for each adsorbed molecule
is about 156 kcal/mol, i.e., upon dividing by the average number of residues con-
tacting the walls, an average interaction energy of 4.0 kcal/mol for each interact-
ing residue. The latter value is smaller but similar to the value of 11.1 kcal/mol
estimated by Raffaini and Ganazzoli (Raffaini and Ganazzoli, 2010), using dif-
ferent forcefield and implicit solvent model. The entropic energy resulting from
restriction in rotation and translations appears to be rather limited.

In spite of all possible inaccuracies the analysis shows that the adsorption of pro-
teins on hydrophobic surfaces is a thermodynamic process with very large and
favorable free energy, mostly determined by large van der Waals forces. The ef-
fect could obviously be enhanced by the choice of Lennard-Jones parameters for
the hydrophobic surface, though the latters are in line with the parameters found
in united atoms forcefields.

5.4 Summary

This chapter has focused on the extensive description of the interactions of β2m,
a paradigmatic protein model for amyloidosis studies, with a model cubic hy-
drophobic box. In order to avoid any artifact due to adopted implicit solvent
model and further to validate the tandem forcefield (Amber99sb-star-ildn)-implicit
solvent used (OBC-GBSA), we carried out independently two sets of runs in ex-
plicit solvent and comparison was made to the selected chains called isolated
which remained free i.e. unbound to the surface patches in the first 60 ns. This
analysis showed that their structure was well preserved and they displayed fluc-
tuations in the same range as those observed in explicit solvent simulations. This
enabled us to confirm that the adopted implicit solvent model and forcefield is
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FIGURE 5.11: Snapshot of the system at 100 ns. The bounding box
is not shown for the sake of clarity but it is clearly suggested by the

proteins adsorbed at the interface.

adequate to describe the protein dynamics and thermodynamics. As seen exper-
imentally with other proteins, β2m readily adsorbs on the surface on the sim-
ulated timescale. The adsorption appears to be a fast and irreversible and fol-
lowing adsorption the protein partly unfolds to adapt to the surface and max-
imize interactions. Partial unfolding is observed at the terminal strands A and
G and large changes are observed also in strand D whose conformational vari-
ability has been shown both in simulations (Ma and Nussinov, 2003; Park and
Saven, 2006; Fogolari et al., 2007) and in NMR and crystallographic structures
(Verdone et al., 2002; Rosano, Zuccotti, and Bolognesi, 2005; Azinas et al., 2011).
Also loops AB and EF display large changes with respect to the starting structure.
These results imply that flexible or more labile structural domains are important
for general association properties because of their ability to adapt to molecular
interactions. The most encountered regions in proteins’ first contacts with the
walls entail residues close to the N- (ILE 1, TRP 60) and C-terminal (LYS 75 and
MET 99) regions. This indicates a preference orientation for the molecular en-
counter with the hydrophobic surface. Furthermore, the region spatially close to
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the N-terminal entails large hydrophobic residues such as TRP 60 and PHE 56.
This region is contacting the walls of the box in the majority (14 out of 18) of the
adsorbed proteins, substantiating its predominant role in association. No signifi-
cant role of protein association is found in binding to the wall, i.e. association of
proteins which is observed in the simulation because of the large concentration
of molecules does not prevent nor favor association with the wall. Conversely,
adsorbed proteins do not recruit other proteins for association during the simula-
tion. Consistently, protein-protein interactions on the surface have been observed
experimentally only on a longer timescale. The thermodynamic analysis shows
that the protein is able to bind the surface without a large desolvation penalty
because large rearrangements occur maintaining polar groups well solvated. The
interaction energy appears to be very large, in line with previous similar com-
putational and experimental studies, making the adsorption irreversible on the
timescale simulated here. Besides all approximations in the modelization of the
system and in the interactions, with a possible consequent overestimation of in-
teractions, the order of magnitude of protein-hydrophobic surfaces interaction is
realistic because it arises from a large number of interacting apolar groups. The
main contribution to adsorption comes from van der Waals interactions, whereas
other terms contribute much less in favorable or unfavorable ways to the binding.
The very large interaction free energy suggests that, once adsorbed and unfolded,
proteins could only favor fibril formation by acting as templates on the wall. A
different scenario can be envisaged for the water-air interface which is strongly
hydrophobic, but lacks van der Waals interactions. Indeed, in previous work by
Bellotti et al. (Mangione et al., 2013) in the presence of air-water interface and
agitation there was a dramatic increase in fibril formation of an amyloidogenic
mutant of β2m compared to the same conditions where the interface was teflon-
water, which has lower but similar surface tension. The work discussed trough-
out this chapter has provided a detailed picture of the magnitude of the driving
forces for β2m interaction with a model hydrophobic surface which is consistent
with previous experimental works.
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Chapter 6

Amide hydrogen exchange in
β2-microglobulin explored by
MD simulations1

This chapter deals with the hydrogen/deteurium exchange (HDX) and
aims to provide a detailed atomistic framework to the dynamics of amide
hydrogens in globular proteins in general and in β2m in particular. In-
deed, backbone HDX measurements are extensively used to describe

the protein structures and conformational dynamics. Ideally, both NMR spec-
troscopy and mass spectrometry can serve as detection methods, yielding to HDX
rate constant of individual amide NH site. However, such process reflects local
and global dynamics which are accessed experimentally only through popula-
tion averages. It is thus of fundamental importance to be able to correlate exper-
imental data to MD averaged quantities. Moreover, in the case of β2m notwith-
standing the recent advances in the topic (Rennella et al., 2012a; Rennella et al.,
2012b), the full descriptive atomistic mechanism of local fluctuations is still elu-
sive and poorly understood. A proper comparison between experimental and
simulation data would therefore require modeling of the process at atomic de-
tail resolution. Using free energy calculations we aim at reproducing also the
temperature dependence of the process. Being preliminary results, the data dis-
cussed throughout this chapter are mostly qualitative. Nonetheless, they show
promise since they consistently reproduce the general trend seen experimentally
for different subdomains of β2m structure. Further analysis are currently been
perfomed both with NMR (in relation to the fast-exchanging residues using a
CLEANEX-like procedure (Hwang et al., 1997; Hwang, Zijl, and Mori, 1998)) and
simulation, in order to rationally merge both macroscopic and microscopic facets
and fully provide an atomistic free energy landscape description of the dynam-
ics of amide hydrogens exchange in β2m as well as the temperature dependence
of the thermodynamic parameters (∆G,∆H,∆S,∆Cp) accompanying the global
and/or subglobal unfolding.

Keywords: Molecular dynamics, HDX, Free energy landscape, Umbrella sam-
pling, Metadynamics.

1C. J. Dongmo Foumthuim; A. Corazza, G. Esposito and F. Fogolari. (2018). Amide hydrogen
exchange in β2-microglobulin explored by molecular dynamics simulations, In preparation.
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6.1 Introduction

Proteins usually adopt well defined tertiary shape (folded structure) that switches
between several conformational states in solution, allowing the highly electropos-
itive hydrogen sites bound to polar nitrogen and oxygen atoms of the buried
residues to interact (exchange) with external solvent. Amongst these labile amide
hydrogens, those of the backbone main chain (–C(O)–NH–) residues are signi-
cantly of interest compared to the side chain ones, because they build the hydrogen-
bonded (H-bonded) network of the protein assembly2. Furthermore, their slower
exchange kinetics makes them more easily accessible by many experiments. This
makes the backbone amide hydrogen exchange (HDX) measurement one of the
most widely used technique for investigating protein structure, dynamics and
thermodynamics.

The behaviour of exchangeable NH groups (see Fig. 6.1) remains intricate and
strongly differs upon moving from unstructured polypeptides to globular pro-
teins. In unfolded polypeptides, the kinetics of NH-to-ND exchange i.e. the
deuteration kinetics is largely dictated by the next nearest side chain groups to
the amide considered. Furthermore, other factors at the primary chemical level
have been proven to affect the latter measured kinetics, the most significant being
the temperature, electrostatics (Fogolari et al., 1998), inductive and steric effects
and the pH (Molday, Englander, and Kallen, 1972; Bai et al., 1993; Connelly et al.,
1993). Bearing in mind that hydroxyde anions are less basic than amides, most
exchange reactions in near-neutral pH are base-catalyzed and proceed with OD–

catalyst via the imidate ion intermediate R1-C(O–)=N-R2 that afterwards interacts
with the excess D2O to form R1-CO-ND-R2 (see complete mechanism in Fig. 6.2).

The deuteuration rate therefore relies on the stability of the transient imidate in-
termediate, more it is stable more faster is the exchange. This is seen for positive
charge density in the vicinity of the amide groups (by lowering the pKa) while the
opposite is expected for negative charge groups (Molday, Englander, and Kallen,
1972; Fogolari et al., 1998; Abdolvahabi et al., 2014). This underlines the impor-
tance of inductive effects and to a lesser extent of steric factors (Bai et al., 1993)
in the exhange kinetics. Nonetheless, it should be recorded that a successful NH-
to-ND event arises upon diffusional collisions between the amide proton and the
catalyst about hundreds of times, on average (Englander and Kallenbach, 1983).

The above mentioned factors have been accurately fitted into empirical rules that
govern the observed or experimental exchange rate, kexp, for a structureless small
peptide in solution, based on the second-order rate constant they rely upon under
specific conditions, also termed intrinsic rate constants, kint, as :

kexp = kint × [cat] = kint × [OD−] (6.1)

where [cat] = [OD−] is the concentration of the catalyst, in this case the base.
This overall picture apparently simplistic for unstructured polypeptides is rather
different for globular proteins.

2Except of proline residue which doesn’t contain an NH group.
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FIGURE 6.1: Schematic view of different amide hydrogens in an un-
folded polypeptide chain with sequence Gly-Asn-Asp-Ser-Cys-Lys.
Exchangeable amide hydrogens comprise both backbone main chain
(in red) and side chain (in blue). Main chain hydrogens bound to
carbon atoms (in white) are apolar and basically are not exchange-

able. This picture is taken from (Jensen and Rand, 2016).
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Figure 1.4 Chemistry of base‐ and acid‐catalyzed hydrogen exchange of backbone amides (in excess D2O). (a) Base catalysis, 
(b) acid catalysis by N‐protonation, and (c) acid catalysis by O‐protonation

FIGURE 6.2: Possible reaction mechanims encountered in backbone
amide hydrogen experiments. The most recurrent base-catalyzed
process is shown in (a), while (b) and (c) reactions highlight the acid-
catalyzed processes through N- and O-protonation, respectively.

These schemes are taken from (Jensen and Rand, 2016).

Indeed, the dynamics of amide protons is significantly restrained in folded moi-
eties thereby lowering the exchange kinetics. Moreover, the factors inducing the
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protection of amide protons in folded regions are not well known. However, a
number of them have been pointed out including the H-bonded patterns, the sol-
vent accessibility, the crystallographically defined waters, and so forth, albeit a
full rationale is far to be understood.

In many experiments, accessibility of amide protons to external solvent has been
pinpointed as a key requirement to HDX exchange (Yan et al., 2007; Shan et al.,
2013). This idea is rather under-weighted in front of the view that H-bonded net-
works essentially dictate the protection of amide protons, and primarily through
main chain backbone NH· · ·OC contacts (Pan and Briggs, 1992; Skinner et al.,
2012b). More intriguing is the case of H-bonded amides exhibiting strong pat-
tern of protection even being at the protein surface (Skinner et al., 2012b). This
state of facts rationalizes with the plastic nature of the protein assembly, in which,
owing to conformational fluctuations (sometimes by breaking the H-bonds), the
core of the protein, entailing the most buried and H-bonded amides, might un-
dergo transient openings, exposing them to solvent, thereby allowing the HDX
exchange.

It comes therefore that, HDX exchange in globular proteins relies on the cleavage
of individual H-bonds and one assumes that the backbone amide protons (HN)
exist either as closed (buried) or opened (exposed) state conformations. Closed
states are likely those involved in intra-molecular H-bonds and significantly far
from the aqueous solvent to participate in exchange (out-exchange). However, in
a folded state conformation, each amide is involved in a dynamical equilibrium
between a closed and an opened state (exchangeable-like state), from which ex-
change takes place at the constant rate kint similarly as in structureless peptides,
according to the scheme in Eq. 6.2 of Linderstrøm-Lang (Hvidt and Linderstrøm-
Lang, 1954; Hvidt and Nielsen, 1966) :

(N-H)cl
kop

�
kcl

(N-H)op
kint→ (N-D)op (6.2)

where kcl, kop and kint are the rates of closing, opening and the intrinsic or chem-
ical exchange rate for individual amide site, respectively. Let’s remind at any
useful end that, not all structural distortions might expose the core of the pro-
tein to external solvent. This sometimes requires substantial dynamic structural
excursion. Most HDX exchange relevant distortions can range from local fluctu-
ations all the way to global unfolding through subglobal openings (Englander,
Mayne, and Krishna, 2007).

The previous considerations chiefly account for the classic HDX exchange for-
malism. However, in general, there are atypical cases that are scarcely justified
or even more, fall out of this model. This is seen for amide protons that are nei-
ther buried nor H-bonded, but have very slow exchange rates (Li and Wood-
ward, 1999; Anderson, Hernández, and LeMaster, 2008; Skinner et al., 2012b).
This troublesome issue has been rationalized by considering electrostatic effects
that induce additional protection to these amides by modifying their pKa (Bai
et al., 1993; Anderson, Hernández, and LeMaster, 2013). Albeit this pertinent
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view goes beyond the primary structure effects usually taken into account, it is
far from being comprehensive. Indeed, side hypothesis such as long-lived H-
bonding to solvation waters, identified with crystallographic water molecules
have been thought pertinent to justify the extent of protection of exposed amide
sites (Skinner et al., 2012a; Skinner et al., 2012b).

The previous highlighted factors rationally provide explanations for different
amide hydrogens encountered in globular proteins, without being exhaustive.
This shows how intricate is the analysis of amide hydrogen exchange data (McAl-
lister and Konermann, 2015). Furthermore, the traditional scheme of Linderstrøm-
Lang is unable to unambiguously define the open and close state conformations.
Also, it is worth noting that the study of HDX exchange has been merely achieved
considering the NMR or X-ray structures (Pan and Briggs, 1992; Skinner et al.,
2012a; Pirrone, Iacob, and Engen, 2015). This simply implies the static frames
of the conformational ensemble which do not adequately sample the more rare
thermally activated ensemble of the protein structure. The latter fact partly ac-
counts for all the troublesome issues linked to the explanation of HDX exhange
rates. Fortunately, these limitations can be circumvented by using computational
approaches incorporating the dynamic nature of the protein and its surrounding
components like MD computations (Sheinerman and Brooks, 1998; García and
Hummer, 1999; Vendruscolo et al., 2003; Gsponer et al., 2006; Kieseritzky, Morra,
and Knapp, 2006; Craig et al., 2011; Petruk et al., 2013; Hsu et al., 2013; Skinner
et al., 2014; Xu et al., 2015; Persson and Halle, 2015). However, exchange rates are
gathered experimentally on timescales much more longer than those achievable
in many atomistic conventional MD simulations. Nonetheless, even on shorter
lenghtscale, the resolution of most MD simulations should provide a general pic-
ture of the phenomenon of interest, with a much higher accuracy than static NMR
or X-ray snapshots.

It was said previously that structurally protected amides exchange primarily via
open-competent states. According to the scheme in Fig. 6.2, such a state is only
transiently formed, thus very short-lived in principle. Therefore, it appears that
the experimentally measured rate of exhange (kexp) for individual amide NH de-
pends on the rates of closing (kcl), opening (kop) and the intrinsic rate (kint) given
by Eq. 6.3 under steady-state conditions (kcl � kop and kcl � kint) satisfied by
most experiments as :

kexp =
kop × kint

kop + kcl + kint
(6.3)

Two assumptions are usually made to keep the conformational part of Eq. 6.3
separated from the intrinsic one, leading to the so-termed EX1 (monomolecular
exchange) and EX2 (bimolecular exchange) regimes in reference to the pH value
and conformational dynamics. Eq. 6.3 can be re-writen as follows :

kexp
kint

=
kop

kop + kcl + kint
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⇒ PF =
kint
kexp

= 1 +
kint + kcl
kop

(6.4)

In Eq. 6.4 PF is the protection factor that is an estimation of the decrease in
the exchange rate of a residue in the protein structure in relation to its chemi-
cal or intrinsic rate in an unfolded state. In destabilizing conditions (high pH
and high temperature), i.e. in the EX1 limits, with kint � kcl, Eq.6.4 becomes
PF = 1 + kint/kop. Meanwhile in stabilizing conditions (low temperature and
pH) i.e. in the EX2 regime with kcl � kint, Eq. 6.4 takes the form PF = 1+kcl/kop.
These equations for EX1 and EX2 can be further reduced respectively to kexp = kop
(provides kinetic information) and PF = kcl/kop = K−1op in the case the system is
sampling relatively stable conformations and kcl � kop. In the latter equation Kop

is the thermodynamic equilibrium constant for the [close]→[open] equilibrium,
i.e. the unfolding transition equilibrium constant required for exchange to pro-
ceed. The latter allows for the determination of the exchange free energy ∆Gexp

under EX2 limits as in Eq. 6.5 :

∆Gexp = −RTlogKop = −RTlog
(kop
kcl

)
= RTlogPF (6.5)

In the present work we would like to provide an atomistic framework to the dy-
namic of HDX in amyloidogenic proteins in general and β2m in particular for
which the detailed mechanism remains elusive and poorly described. Open states
were considered as snapshots having in the first coordination shell (rcut= 2.76 and
3 Å) at least 2 interacting water molecules (see Fig. 6.8). This cut-off criterion,
taken here as the distance between the amide proton and the water oxygen atom,
nearly corresponds to the first minimum in the H(NH)· · ·O(H2O) radial distribu-
tion function ρg(r) computed from the MD trajectory (Fig. 6.6) and closely come
toward the optimal H-bond formation distance. The results show that, out of 93
protein residues considered, almost one half fulfilled the opening condition and
were considered to exhange during the simulation. These so-considered open
states have an average number of water of 2.02 and show for all of them an in-
tense peak around 2 Å showing that water is well distributed around the first
hydration shell of these amide backbone residues.

6.2 Simulation details

6.2.1 Metadynamic calculations

The calculation was done with plumed-2.1.1 plugin (Bonomi et al., 2009; Tribello
et al., 2014) patched to gromacs-5.0.4 simulation code (Abraham et al., 2014). The
molecular mechanics amber99sb-ildn (Lindorff-Larsen et al., 2010) force field ac-
counted for the characterization of molecular interactions. The protein atoms
were spatially placed at the center of a cubic box, at least at 10 Å from the box
edges, and solvated by 10778 TIP3P water molecules (Jorgensen et al., 1983). One
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Na+ counterion was added to replace the equivalent number of water molecules
and thus balance the overall excess charge of the system. PBC were applied in the
calculations, mimicking a bulk system and thereby avoiding the finite size effect.

The system was initially minimized using the steepest descent minimization al-
gorithm, with a minimization step size of 0.1 nm and a maximum convergence
force of 1000.0 kJmol−1nm−1. The equilibration phase was done in 2 steps; 100 ps
in NVT ensemble followed by 100 ps in NPT ensemble. During the first equili-
bration stage, the leap-frog integrator with integration timestep of 2 fs was used
to update the changes in the system. Particle Mesh Ewald summation (Darden,
York, and Pedersen, 1993; Essmann et al., 1995) accounted for long-range electro-
statics interactions. The temperature was equilibrated to a reference value of 300
K using the velocity rescaling (modified Berendsen thermostat)(Bussi, Donadio,
and Parrinello, 2007), with a coupling constant of 0.1 ps. Short-range electro-
statics and van der Waals interactions were truncated with a 10 Å cutoff. All
bonds were constrained with the LINCS algorithm (Hess et al., 1997). In NPT
equilibration stage, using the previous parameters, the pressure was stabilized to
1.0 bar using the Parrinello-Rahman pressure coupling (Parrinello and Rahman,
1981; Nosé and Klein, 1983) with a coupling constant of 2.0 ps. Snapshots were
collected every 10 ps along the trajectory.

Metadynamic calculation was perfomed using the global RMSD as collective vari-
able (CV) with an optimal alignment type on the minimized reference X-ray struc-
ture. Gaussians with height of 1.2 kJ mol−1 and width of 0.30 nm were added
every 500 time steps. Restraints on lower and upper walls were applied to the
chosen CV to circumscribe the allowed sampled regions in the CV space. The
value of the CV along with the metadynamics bias potential were printed out
every 10 steps.

6.2.2 Umbrella sampling calculations

Starting from an equilibrated structure following the same protocol as described
above, two calculations were performed, constant force pulling followed by um-
brella sampling simulations. In the pulling calculations, the reaction coordinate
chosen was the geometrical distance (all over the 3-components x, y and z) be-
tween the α-carbons of hydrogen-bonded residues Cys25 and Tyr66, i.e. the most
stable hydrogen-bonded pair at the core of β-strands B and E, one the most buried
part of the system. The simulation starts by pulling over ca. 0.8 nm [0.5-1.3 nm]
along the reaction coordinate, using a reasonably low pulling rate, 1.2×10−3 nm
ps-1 and linear potential force constant of 1000 kJ mol-1 nm-2, in order to avoid a
brute distortion of the system. Indeed large deviation from the equilibrated struc-
ture may lead to a considerable refolding-back time to the (near)equilibrated con-
formation. Nine conformations along the pulling trajectory were extracted (see
Fig. C.1, Appendix C), nearly separated by 0.08 nm from each other and used as
the initial structures for each umbrella sampling window.

Each umbrella sampling window was subsequently equilibrated in the canoni-
cal pressure ensemble NPT for 2 ns with the pressure held steady around 1.0 bar
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using the Parrinello-Rahman pressure coupling (Parrinello and Rahman, 1981;
Nosé and Klein, 1983) and a coupling constant of 1.0 ps. The temperature was
already kept at 301 K using the Nose-Hoover thermostat (Nosé and Klein, 1983;
Hoover, 1985), with a coupling constant of 0.5 ps. Particle Mesh Ewald sum-
mation (Darden, York, and Pedersen, 1993; Essmann et al., 1995) accounted for
long-range electrostatics interactions, whereas short-range electrostatics and van
der Waals interactions were truncated with a 14 Å cutoff. All bonds involving
hydrogens were constrained with the LINCS alogorithm (Hess et al., 1997). The
harmonic biasing force constant of 1000 kJ mol-1 nm-2 was imposed to the um-
brella sampling calculations in each window. Afterwards, the proper dynamic
followed in each of the equilibrated sampling window, using a time step of 2 fs
and unconstraining previously restrained protein coordinates. The simulations
last 50 ns, given a cumulative simulated time of 450 ns. The same procedure and
parameters, as well as initial sampling windows were repeated at 305 K, 310 K
and 315 K.

6.2.3 Trajectory analysis

The analysis of MD trajectory was done using available structural tools in Gro-
macs. The H(NH)· · ·O(H2O) pair correlation function ρg(r) was obtained setting
r as the distance between the backbone amide proton and the water oxygen atom.
The number of water in the first solvation shell was integrated up to the cut-off
rcut of 2.7 and 3 Å from the corresponding ρg(r) plot, which closely matches its
first minimum. No geometrical angular constraint was applied. Each individ-
ual residue in each frame (5717 snapshots in all for metadynamic simulation and
5000 for each umbrella sampling window) was analysed and average values were
computed. The solvent accessible surface area for each individual residue was
computed using a probe radius of 1.4 Å and averaged over the whole simulation
trajectory.

The umbrella sampling simulations were analyzed using the whole trajectory of
each window. The potential of mean force (PMF) profiles (see Fig. 6.9) were con-
structed using the weighted histogram analysis method (WHAM) (Kumar et al.,
1992; Souaille and Roux, 2001) assuming sufficient overlap over the sampling
windows (see Fig. C.2, Appendix C). The bootstrapping procedure implemented
in the g_wham tool enables the error estimates (Hub, Groot, and Spoel, 2010). The
block averaging analysis was also employed to estimate the statistical errors di-
viding the data pools in blocks and computing the mean and standard deviations
of each block assuming they are sufficiently uncorrelated.

The protection factors shown in Fig. 6.8 and in tables C.1 & C.2 of Appendix C
were computed considering the amide’s open state conformations as those hav-
ing within 2.76 Å and 3 Å in the H(NH)· · ·O(H2O) radial distribution functions
(see Figs. 6.6 & C.5 in Appendix C) at least 2 coordinating water molecules in the
primary solvation shell. The protection factors were then estimated similarly as
in Eq. 6.5 as the ratio log

(
NFcl
NFop

)
, where NFcl and NFop are repectively the num-

ber of frames in the close (buried) and open (exposed) state conformations and



Chapter 6. MD simulations of HDX in β2-microglobulin 95

assuming a bimolecular exchange mechanism, i.e. EX2 process. The same equa-
tion was employed by (Persson and Halle, 2015). The experimental protection
factors were compiled from (Rennella et al., 2012a). All the proline together with
ILE1 residues were excluded from the pool of backbone amides considered for
analysis and discussion, leading thus to 93 amide residues.

6.3 Results and discussion

The stability of the global simulated system in the metadynamic calculation was
first checked by computing the all-backbone-atoms root mean square deviation
(RMSD) in comparison to the reference structure in the last 114 ns, see Fig. 6.3.
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FIGURE 6.3: Time-based backbone root mean square deviation com-
puted from the metadynamic trajectory in reference to the initial
structure (left pannel) and the corresponding distribution (right

pannel).

Even though the system is gradually forced to sample more region in the confor-
mational space by the metadynamic bias potential, with RMSD values roughly
distributed between 0.5 and 2.5 Å, the overall system results to remain however
quite stable (folded). This picture is consistent with the high stability of β2m
structure at near neutral pH conditions (Myers et al., 2006). Similar analysis (not
shown here) on a single classical MD trajectory (50 ns) showed that the system
was nearly fluctuating around 1.25 Å, thereby justifying why metadynamic simu-
lation was used here. Thus, on the timescale simulated here the global unfolding-
refolding structural transitions were not observed. Furthermore, residues mobil-
ity as depicted by atomic root mean square fluctuations indicates that, and as ex-
pected, large mobility arises from unstructured loop regions and terminal ends,
with about 40 % more structural fluctuations (compared to the rest of the protein
structure) at the C-terminal, entailing resdidues ARG97, ASP98 and MET99.
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Some structural properties were also analyzed in umbrella sampling simulations
in order to better perceive the different factors correlated to, or inducing the pro-
tection of backbone amide protons in β2m. At this stage of work progress, only
the results of one sampling window (the one of the native conformation) will
be discussed. As mentioned above, no global unfolding/refolding transition was
seen also here. However, local parts of the protein structure occasionally undergo
opening reactions, Fig. 6.4. Albeit the picture is not describing a deeply buried
or a β-stranded region of the structure (longer simulation timescale or enhanced-
induced fluctuations would be required) it exemplifies the idea as detailed in the
scheme of Eq. 6.2.

FIGURE 6.4: Overview of system transition between open (solvent
exposed) in green and close (buried) in cyan conformational states.
Stick representation distinguishes the amide protons of interest. At
the top, the backbone NH of Gly18 is not involved in intramolecular
hydrogen bonding but is instead coordinated to an external water
solvent at 9 ns. At the bottom, the main-chain hydrogen bond with
the carbonyl of Pro72 is re-established 4 ns later, prohibating the con-

tact with external solvent.
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Note however that, even being a priori from the less protected part of the struc-
ture, such opening/closing transitions are not recurrent throughout the trajectory.
For instance, the above mentioned transition happened once and lasted more
than 3 ns. A large set of opening events lead to very short life transiently formed
species in general, lasting less than 120 ps on average, at least for what concerns
this particular case and consistent with what was previously noticed by Persson
and Halle for BPTI (Persson and Halle, 2015) (see Figs. C.3 & C.4 in Appendix C).

Atomic scale resolution provides more reliable indicators for the understanding
of backbone amide hydrogens exchange. This is true as far as amide protons
within the same structure displayed variegated behaviours, and each case seems
to be particular (some already highlighted in Figs. C.3 & C.4). Furthermore, they
do not always undergo cooperative opening/unfolding reactions since a residue
can be highly protected whereas its nearest neighbours are not. This is seen for
many residues at the limit of structured domains like for end-stranded residues.
We therefore scrutinized various structural properties shown in Fig. 6.5, which
displays the averages along the simulation time of the distance between individ-
ual amide site and its nearest carbonyl acceptor in the main chain, the NH solvent
accessible surface area (SASA) and the NH· · ·OC hydrogen bonding occupancies.
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The subsets in Fig. 6.5 that display some averaged structural properties along the
simulation trajectory exhibit great traits of consistency. In fact, in Fig. 6.5-(a) the
distance between each backbone amide and its closest possible carbonyl acceptor
is plotted. Hydrogen bonds were considered to exist when the distance between
the backbone amide proton and its nearest possible acceptor dNH . . . OC ≤ 0.25
nm (Torshin, Weber, and Harrison, 2002) and the angle αH-N-O ≤ 30◦. All the
amides that fulfill this condition, in this case 43 amides, are mostly sampling the
closed state conformation (see Figs. 6.7 & C.5 in Appendix C). This is the case
for most β-stranded domains of β2m like β-strands B (ASN21, LEU23, ASN24,
CYS25, TYR26, VAL27, SER28), E (PHE62, TYR63, LEU64, TYR66, TYR67, THR68,
PHE70) and F (ALA79, CYS80, ARG81, VAL82, ASN83), the latters of which
mostly exhibit smallest solvent accessible surface areas, 0.16 Å2 on average for
the 43 amides in that pool (Fig. 6.5-(b)), and high H-bond occupancies (Fig.6.5-
(c)).

This confirms the great tendency that closed state conformations are mostly in-
volved in intramolecular hydrogen bonds and likely have small SASA. However,
the picture is not always simple as implied by the last case, since there are in-
stances in which surface amides, even free from hydrogen bonds exhibit strong
pattern of protection as discussed at the introduction. They are fortunately not
seen in the current trajectory. Nonetheless, some amides exhibit less common be-
haviour, even though one of the 2 structural indicators used here could rationally
explain their (de)protection. For instance, ILE35 (starting of β-strand E) which is
H-bonded in principle (dNH . . . OC 2.49 Å), displays high SASA (4.7 Å2) and appears
to be a fast exchanging residue (see Fig. 6.8). In addition, ASP76 and GLU77 (E-F
loop) are strongly protected, which in turn is justified by their small SASA (≤ 0.1
Å2), but is not fully explained if considering that their main chain distances with
the nearest carbonyl (dNH . . . OC 2.98 & 2.67 Å respectively) imply no intramolecular
H-bonds.

To further illustrate the miscellaneous behaviour of amide protons previously
underlined, in Fig. 6.5-(c), the amide proton of ARG3 is establishing a H-bond
with both carbonyl (most of the time, 97.7%) and amino groups (often, 18.1 %)
of HIS31. The backbone NH of LYS6 is bounded to the CO of SER28 most of
the time 99.5% and sometimes with the amino group of the same residue 33.6%,
a fraction of interaction is also observed with the amine of GLY29 0.2%. LYS58
is not bounded to a main-chain carbonyl instead is often linked to the amine of
TRP60 67.5%. TRP60 is both connected to CO of residues LYS57 (61.2%) and
LYS58 (5.8 %). The same is seen for THR73 both interacting with CO of THR71
(1.7%) and ASP76 (0.3%). All these facts are perfectly matching what is observed
upon probing the nearest solvation environment of the later backbone amides
(see Fig. 6.7 and C.5 for details).

The ambiguous definition of open and close states in HDX remains perhaps the
most troublesome issue and the core limitation of the Linderstrøm-Lang the-
ory. In order to estimate the individual backbone amide protection factor from
the umbrella sampling simulations, open states were considered as snapshots
having in the first coordination shell (rcut= 2.76 and 3 Å) at least 2 interacting
water molecules (see Fig. 6.8). The same open-state definition was employed
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by Persson and Halle (Persson and Halle, 2015) albeit different cut-off are used
here. The cut-off criterion taken here as the distance between the amide pro-
ton and the water oxygen atom nearly corresponds to the first minimum in the
H(NH)· · ·O(H2O) radial distribution function ρg(r) computed from the MD tra-
jectory (Fig. 6.6) and closely come toward the optimal H-bond formation dis-
tance.
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FIGURE 6.6: H(NH)· · ·O(H2O) radial pair distribution functions in
(a) and the average number of interacting water molecules in the
first coordination shell (cut-off distance 3 Å) in (b). Only metady-

namic trajectory is displayed.

Overall, the global trajectory samples mostly the close states, consistent with
what was already noted, namely that, no global unfolding/refolding event was
recorded along the trajectory in the simulated timescale here.

The direct interacting number of water (Fig. 6.7) was then integrated from the
corresponding ρg(r) plot up to the cut-off distance. It results that 45 residues
(see Figs. 6.7 & C.5) sample the open state, i.e. have at least in one frame two
coordinating water molecules in the primary solvation shell and within the cut-
off distance imposed here. On average, the number of water in the first solvation
sphere for the exchange-competent states is nH2O ≈ 2.02 (Fig. 6.6-(b)). Meanwhile,
the mean average of nH2O is about 0.45 (Fig. 6.6-(b)) for the 93 residues sampling
the close states (out-exchange) (Fig. 6.7 & C.5). Therefore, the number of open
state conformations identified here (45), is in line with and rationalize those de-
duced from the main chain amide backbone distance previously discussed (50),
using a different trajectory. This would indeed signify that, both criteria are ad-
equate to tackle with the imprecise and intricate definition of the open and close
state conformations.
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Using the above definion for open and close states, the extent of protection was
then estimated as explained in the simulation details for individual amide back-
bone NH hydrogens and comparison with experimental ones is attempted, see
Fig. 6.8 and tables C.1 & C.2. The analysis stills required further consideration
and thus, the values discussed here should be taken with some care, albeit the
resulting profile falls well in the expected experimental trend.

It is seen in Fig. 6.8 that the cut-off of 2.76 Å results to provide a better estimation
of protection factors compared to the experimental values although it captures
less open-competent states than 3 Å. This confirms how important and sensitive
is the proper choice of tresholds used in the definition of open/close states. Large
cut-off range, no matter the nature of the structural property involved, would
in general define a loose condition of exchange resulting in an unphysical EX1
monomolecular limits truly realized only when the amide is completely exposed
to solvent as in global unfolding reactions, thereby providing wrong estimates
of the protection factors, the latter being estimated assuming the EX2 kinetics.
Common features in Fig. 6.8 include the following :

1. most fast exchanging residues, logPF < 3 are largely populating the protein
unstructured regions like N- and C-tails, A-B and C-D loops. This would
indeed be consistent with the experimental fact that large mobility induces
more likely a fast exchange process ;

2. weakly protected residues 3 ≤ logPF ≤ 6 show intermediate behaviour
and are either in the loops or at the limit of β-stranded portions. SER11,
ASP34 and VAL49 are some of them;
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3. strongly protected residues logPF > 6 are for the majority located in the
stranded regions of β2m, thereby rationalizing the view that secondary stru-
ture provides additional protection to backbone amide protons (Kieseritzky,
Morra, and Knapp, 2006) ;

4. no experimental value is available for amides having protection lesser than
4, consistent with the fact that the determination of energy landscapes using
HDX experiments in protein systems with respect to NMR resolution and
timescale is only effective for ∆G > 5 kcal mol-1 (Rennella et al., 2009).
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FIGURE 6.8: Protection factors averaged over all the umbrella sam-
pling windows using the cut-off of 2.76 Å (in black) and 3 Å (in ma-
genta). Experimental protection factors compiled from (Rennella et
al., 2012a) are reported for comparison (in blue). Broken lines show
the average over individual sampling window. Stranded regions are

distinguished by the letters.

The data related to umbrella sampling simulation shown till now were averaged
only in the reference window. In addition, Fig. 6.8 also reported the average
protection factors considering the other sampling windows. It appears that, even
though the average over the 9 sampling windows (continuous line) is closer to
the experimental values than the average in individual window, the resulting
computed data are still greatly underestimating the experimental measured ones.
This could be ascribed in part to the short timescale and on the other hand to the
inappropriate selection of global relevant reaction coordinates. These preliminary
results remain qualitative and show however, a consistent picture compared to
the overall expected trend. At the moment further NMR experiments are being
performed. This will guide the simulation process and data analysis to efficiently
predict the open and close state conformations, one of the bottleneck, if not the
principal issue in the description of amide hydrogen exchange according to the
well established Linderstrøm-Lang scheme.
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The previous analysis have confirmed that the protein mainly samples the out-
exchange conformational states along the trajectory, implying that the number of
(sub)global opening-closing transitions are very limited. Umbrella sampling was
indeed used to tackle this issue and promote the sampling of more (near)exchange-
competent states. Fig. 6.9 displays the profiles of the potential of mean force ob-
tained from the weighted histogram analysis, used to ensure the proper sampling
of Boltzmann distribution and free energy at 4 relevant experimental tempera-
tures.
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FIGURE 6.9: Potential of mean force associated with the opening of
β2m structure as a function of the distance between the α-carbons
of CyS25 and Tyr66 residues. Errors are statistical uncertainties ob-
tained from 200 bootstraps. The inset shows the same graph with

the errors computed using block averaging analysis.

As expected in Fig. 6.9, the PMF profiles are increasing along the selected reaction
coordinates, consistent with the progressive local opening of β2m structure. In-
deed, it was already showed that (Fig. C.1) moving along the CYS25-TYR66 Cα’s
distance starting from the reference sampling window, the H-bonds were gradu-
ally losed. Furthermore, within fluctuations, the PMF profiles are decreasing with
temperature increase, confirming the picture that residue mobilities are enhanced
at high temperatures and that these half-denaturing conditions induce large-scale
dynamics, thereby decreasing the free energy gap required for (sub)global fluctu-
ations. Albeit the resulting energy is still higher than the expected experimental
values, perhaps attributed to short timescale and inadequate selection of reaction
coordinates, the shape, however, follows the overall trend that should be envi-
sioned from the global unfolding/opening reaction.
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The statistical errors were computed using the bootstrapping scheme and thus
the analysis should a priori be treated carefully as this procedure may signifi-
cantly underestimate the errors if the data are correlated (Hub, Groot, and Spoel,
2010). For the sake of comparison and for a proper handling of correlation issues,
error bars were also computed using the block average procedure, one of the
most simple analysis scheme (inset of Fig.6.9). The result indicates that both er-
ror bars fall within consistent ranges and thus possible artifacts due to the use of
a bootstrapping resampling scheme can be ruled out, albeit more sampling points
should be considered to ensure a smooth convergence of the statistical errors.

The main purpose of this step and the use of different temperatures are to provide
an atomistic free energy landscape description of the dynamic of backbone amide
hydrogens in β2m as well as the temperature dependence of the thermodynamic
parameters ∆G,∆H,∆Cp and precisely for ∆S accompanying the exchange pro-
cess, in order to complement the qualitative analysis thoroughly discussed yet.
This is still at the initial stage and will be pursued in the the next future.

6.4 Summary

The use of hydrogen/deuterium exchange (HDX) in the study and prediction
of protein conformational dynamics and thermodynamics is a well recognized
method that relies on the lability of high electropositive protons connected to po-
lar O, S and N atoms. NMR and mass spectrometry methods are ideally used
for the detection of such amides. The former exploits the difference in spins be-
tween H and D nuclei whereas the latter works on the difference in mass (D is
1 Da heavier than H) to measure the shift in m/z ratio. However, both meth-
ods, even though have significantly evolved in the recent years, remain limited
in probing the fast exchangeable amide residues and mainly as far as atomic scale
resolutions and timescales are concerned. Computational methods and namely
atomistic molecular dynamic simulations can efficiently overcome this shortcom-
ing notwithstanding the short timescales usually achievable in such methods.
This chapter has recorded the principles and challenges associated to the study
of amide hydrogen exchange in general and in β2m in particular. The ambiguous
definition of open and close states in HDX remains perhaps the most troublesome
issue and the core limitation of the Linderstrøm-Lang theory. Open states were
considered here as frames along the trajectory having in the first coordination
shell at least 2 interacting water molecules. This open state definition, albeit with
different cut-off range was previously used and was proven to efficiently capture
the relevant amide exchange dynamics and thermodynamics. The results dis-
cussed throughout this chapter even being more qualitative in general have pro-
vided essential and consistent description of the intricate and variegated nature
of indidivual backbone amide protons in β2m. The computed protection factors
result to greatly underestimate the experimental measured ones. This could be
ascribed in part to the short timescale which does not allow for a proper system
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equilibration and on the other hand to the inappropriate selection of global rele-
vant reaction coordinates and/or the right definition of open/close states. How-
ever, in general, the picture emerging from the simulations shows great trait of
consistency with experimental structural informations on β2m. Currently, further
NMR experiments are being performed in relation to the fast exhanging residues
using a CLEANEX-like protocol. This will guide the simulation process and data
analysis to efficiently predict the open and close state conformations, thereby pro-
viding more accurate estimates of the thermodynamic parameters accompaning
the (sub)global unfolding reaction as well as their temperature dependence.
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Concluding Remarks and
Outlook

Our understanding of protein conformational dynamics have greatly
benefited from years of experimental endeavours, primarily using X-
ray crystallography and/or NMR spectroscopy, methods that have
now been considerably evolved. However, the dissection of protein

misfolding and aggregation at a molecular level raises a spectrum of intricate
methodological issues mainly related to the size, heterogeneity and transient hall-
mark of the intermediates involved. In this regard, in silico techniques and mainly
atomistic molecular dynamics simulations, even on shorter timescale, proved to
be markedly of help, highlighting detailed mechanistic and structural insights to
complement and benchmark experiments.

The conformational dynamics has provided clues into the molecular machin-
ery of protein stability and function, thereby opening-up further design strate-
gies with targeted responses. Moreover, the structural diversity and intricate be-
haviour of amyloid fibril oligomers self-assembly under various conditions con-
fer to them a unique property potentially useful for engineering novel responsive
biopolymers and biomaterials. Understanding the factors leading to the forma-
tion of misfolded/(un)folded proteins species and later the mechanisms of pre-
carious protein stability has technological and medical implications and could
help rationalizing the development of novel therapeutic strategies with which to
prevent and/or treat amyloidosis. An outstanding example is provided by med-
ical devices which are currently used for removing β2-microglobulin from the
blood of hemodialysis patients in medical devices. Thus, our study may help en-
lighten our understanding of the complex machinery and the physico-chemical
factors behind amyloidogenesis, thereby potentially inspire new design strate-
gies.

In this thesis we have probed the atomistic scale conformational dynamics of two
paradigmatic protein models for amyloidogenesis studies, transthyretin and β2-
microglobulin using molecular dynamics simulations. The principal aim was the
understanding of the major factors driving the misfolding and/or (un)folding of
the latter specified proteins which play a precursor and prominent role in neu-
rodegrative deseases.

To achieve that, the dynamics and dissociation of wild-type and mutant homote-
tramer of transthyretin was simulated. In particular, the behaviour of a triple mu-
tant engineered in silico (no crystal structure was available at the time this study
was done) was studied. In addition, the interaction of β2-microglobulin with
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hydrophobic surfaces was investigated and the thermodynamics of the binding
process was addressed using end-point free energy calculations. Finally, the back-
bone amide hydrogen exchange (HDX) of the latter system was computed and
the comparison of the amide hydrogen protection observed in NMR experiments
with a number of microscopic properties of the protein structure averaged in the
simulations was done. On a more methodological perspective, a theoretical ap-
proach to estimate the entropy loss upon complex formation was introduced.

The main conclusions can be summarized as follows :

1. An in silico engineered mutation of transthyretin

(a) the mutation considerably shifts the tetramer-folded monomer equi-
librium towards the monomer, making this triple mutant a useful tool
for structural and dynamical studies ;

(b) the clustering and discretization of simulation trajectories using Markov
State Models (MSMs) after the equilibration phases show that the dis-
sociation process in our engineered structure starts as fast as the dy-
namics starts, as confirmed by the most-native conformation (RMSD
∼8.2 Å starting from the production run) captured by our microstate
model. Whereas as far as MT-TTR is concerned a very good structural
agreement between the native-like microstate and X-ray structure was
seen (RMSD ∼1.3 Å), revealing therefore that its structure was essen-
tially preserved ;

(c) the thermodynamic equilibrium along the pathway from native tetramer
to unfolded monomers is strongly shifted towards the formation of
monomers. Assuming that the thermodynamics underlines the kinet-
ics, this would indeed imply the speeding up of the rate-limiting step
just before monomers self-assemble into amyloid fibrils ;

(d) the free energy computed according to two independent approaches
(BMF and Foldx) implies stable monomers (relative to the stability of
WT-TTR) after tetramer dissociation, shifting therefore the last step of
fibrils formation towards the non-amyloidogenic mutant structures ;

(e) the first step in conformational transition is the dissociation at the inter-
face I/IV involving residues 17-24 and 110-123. The transition appears
driven by the electrostatic repulsion of the pairs of acidic residues Glu
117 close in each dimer. Dimer III/IV rotates for most of the simulation
about a hinge centered on salt bridges Glu 51 (I) - Arg 104 (III), Arg 104
(I) - Glu 51 (III) and hydrogen bonds Glu 51 (III) - Thr 123 (I) and at
the end only about the latter two interactions. The final (possibly tran-
sient) conformation is stabilized by salt bridges Glu 117 (I) - ARG21
(III) and Lys 15 - Glu 54 at interface I/III.

2. β2-microglobulin interactions with hydrophobic surfaces

(a) most proteins adsorb on the walls of the box (18 out of 27 within the
first 35 ns and 4 additional molecules after 80 ns leading to 22 in all)
without major distortions of local geometry, whereas free molecules
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maintain proper structure and fluctuations as observed in explicit sol-
vent MD simulations ;

(b) partial unfolding is observed at the terminal strands A and G and large
changes are observed also in strand D whose conformational variabil-
ity has been shown both in simulations and in NMR and crystallo-
graphic structures. Also loops AB and EF display large changes with
respect to the starting structure. These results imply that flexible or
more labile structural domains are important for general association
properties because of their ability to adapt to molecular interactions ;

(c) the most encountered regions in proteins’ first contacts with the walls
entail residues close to the N- (ILE 1, TRP 60) and C-terminal (LYS 75
and MET 99) regions. This indicates a preference in orientation for the
molecular encounter with the hydrophobic surface ;

(d) the thermodynamic analysis shows that the protein is able to bind the
surface without a large desolvation penalty because large rearrange-
ments occur maintaining polar groups well solvated. The interaction
energy appears to be very large, in line with previous similar compu-
tational and experimental studies, making the adsorption irreversible
on the timescale simulated here ;

(e) the very large interaction free energy suggests that, once adsorbed and
unfolded, proteins could only favor fibril formation by acting as tem-
plates on the wall. A different scenario can be envisaged for the water-
air interface which is strongly hydrophobic, but lacks van der Waals
interactions.

3. MD simulations of HDX in β2-microglobulin

(a) no global unfolding-refolding structural transitions were observed on
the timescale simulated here. Furthermore, residues mobility as de-
picted by atomic root mean square fluctuations indicates that, and as
expected, large mobility arises from unstructured loop regions and ter-
minal ends, with about 40% more structural fluctuations (compared to
the rest of the protein structure) at the C-terminal, entailing residues
ARG97, ASP98 and MET99. However, local parts of the protein struc-
ture occasionally undergo opening reactions, a large set of opening
events leading to very short life transiently formed species in general,
lasting less than 120 ps on average (for what concerns the particular
case analysed) and consistent with what was previously noticed by
Persson and Halle for BPTI ;

(b) 43 amides and mainly in β-stranded domains of β-2microglobulin like
β-strands B (ASN21, LEU23, ASN24, CYS25, TYR26, VAL27, SER28), E
(PHE62, TYR63, LEU64, TYR66, TYR67, THR68, PHE70) and F (ALA79,
CYS80, ARG81, VAL82, ASN83) are mostly sampling the closed state
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conformation, the latters of which mostly exhibit smallest solvent ac-
cessible surface areas, 0.16 Å2 on average confirming the great ten-
dency that closed state conformations are mostly involved in intramolec-
ular hydrogen bonds and likely have small SASA ;

(c) open states were considered as frames along the trajectory having in
the first coordination shell (rcut = 2.76 and 3 Å) at least 2 interacting
water molecules. 45 amides fall in that pool with the average number
of water nH2O ≈ 2.02, in line with those deduced from the main chain
hydrogen bonding (computed as the main chain amide backbone dis-
tance to the nearest carbonyl acceptor), using a different trajectory. This
would indeed signify that, both criteria are adequate to tackle with the
imprecise and intricate definition of the open and close state confor-
mations ;

(d) the computed protection factors result to greatly underestimate the
experimental measured ones. This could be ascribed in part to the
short timescale, which does not allow for a proper system equilibra-
tion, and on the other hand to the inappropriate selection of global rel-
evant reaction coordinates and/or the right definition of open/close
states. However, in general, even being more qualitative, the picture
emerging from the simulations shows great traits of consistency with
experimental structural informations on β2-microglobulin ;

(e) the PMF profiles are increasing along the selected reaction coordinates,
consistent with the free energy cost of progressive local opening of β2-
microglobulin structure. Furthermore, within fluctuations, the PMF
profiles are decreasing with temperature increase, confirming the pic-
ture that residue mobilities are enhanced at high temperatures and that
these half-denaturing conditions induce large-scale dynamics, thereby
decreasing the free energy gap required for (sub)global fluctuations.

4. Conformational entropy in biomolecular protein association

(a) conformational entropy in general and translational-rotational entropy
in particular are often neglected upon binding of a ligand to its target,
likely attributed to the inappropriate methods for dealing with large
correlation involved and to the high dimensionality of the degrees of
freedom ;

(b) with the nearest-neighbor method recently implemented, whose ratio-
nale is estimating the local probability density around each sample by
counting its number of neighbors within a hypersphere of radius equal
the distance from that sample to its kth nearest neighbors, part of this
bottleneck can be handled over, albeit one still have to tackle the corre-
lation effects when both translation and rotation are present ;

(c) Huggins framed the issue and proposed a simplistic treatment for the
computation of distances involving both translation and rotation in
roto-translational space ;
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(d) following its theory, we provide a more general coumpound distance
to merge translations and rotations. Our formulation defines a general
scaling factor necessary for ensuring the equal weigthing of translation
and rotation to the global distance. Our approach indeed, relieves an
important part of the dimensionality problem facing binning methods
like histogram and provides an accurate estimation of full rotational-
translational entropy from samples of rotational-translational states.

As perspective, we would like to provide an atomistic free energy landscape
description of the dynamic of backbone amide hydrogens in β2-microglobulin
which is still not fully described as well as the temperature dependence of the
thermodynamic parameters ∆G,∆H,∆Cp and precisely for ∆S accompanying
the exchange process in order to complement the qualitative analysis thoroughly
discussed in Chapter 6. This is still at the initial stage and will be pursued in
the the next future. Moreover further NMR experiments are being performed
in relation to the fast exhanging residues using a CLEANEX-like protocol. This
will guide the simulation process and data analysis to efficiently define the open
and close state conformations, thereby providing more accurate estimates of the
thermodynamic parameters accompaning the (sub)global unfolding reaction.

Moreover, detailing at atomic level what open and close states are will enable
exact understanding of what HDX measured thermodynamic and kinetic quanti-
ties mean.
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Appendix A

MD simulation of an in silico
engineered mutation of TTR
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FIGURE A.1: Plots showing respectively from left to right the 25
slowest micro- and macro-Implied TimeScales validation of Markov
State Models construction. Both plots display great level of similari-
ties and the 3 slowest ITS level-off at ca. 3 steps proving on one hand
that the models are Markovians and have reached convergence and
on the other hand that the macrostate model is well representative
of the microstate one since at least the 3 slowest ITS are preserved

and both stay in the same range.

A.0.1 Insigth into the mesoscopic view of 3M-TTR

The overlay of the most-native like microstate in 3M-TTR, i.e. state with lowest
RMSD compared to the crystal structure shows fairly good agreement, Fig. A.3-
(a). The average RMSD of that microstate is 8.2 Å and this would mean that
our microstate model does not efficiently capture the native one. On the other
hand, the same analysis performed on MT-TTR (MSMs data not shown) leads
to a very good structural agreement, Fig. A.3-(b) (average RMSD 1.3 Å ). This
would justify that, the 3M-TTR structure is largely undergoing structural changes
(dissociation), making it difficult for the model to capture the native one.
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FIGURE A.2: The average interfaces interaction free energy within
the different subunits of the tetrameric strucutres of TTR predicted
by Foldx. a, b, d & e are monomer-monomer interfaces whereas c

and f are dimer-dimer interfaces.

FIGURE A.3: Overlay of five randomly selected structures from
the most native-like microstate with the crystal structure (shown in
blue). We can see the fairly good structural agreement (RMSD av-
erage 8.2 Å ) in 3M-TTR (a) and the very good structural alignment

(average RMSD 1.3 Å ) in MT-TTR (b).
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Appendix B

β2-microglobulin interactions
with hydrophobic surfaces

0 20 40 60

time (ns)

0

1

2

3

4

R
M

S
D

 (
0
.1

 n
m

)

FIGURE B.1: RMSD of all implicit and explicit solvent simulations.
Black lines highlight the four isolated implicit solvent trajectories
within the first 60 ns and magenta the 23 remaining ones. Red
trace shows the explicit solvent trajectory from NAMD simulation

(frames collected at 1 ns intervals).
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Appendix C

MD simulations of HDX
exchange in β2-microglobulin

FIGURE C.1: In (A) the Cα (Cys25) - Cα (Tyr66) distance along the
constant force pulling simulation is displayed in which triangles
highlight the extracted conformations used as starting structures in
the umbrella sampling simulations. In (B) the extracted frames are
explicitely shown and aligned to the initial one in red. Cys25 and
Tyr66 residues are shown in stick representation. The pulling pro-
gressively disrupts the H-bonds (that can be seen as well in (B)),

inititially two to null.
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FIGURE C.2: Histograms distribution of the nine umbrella sampling
windows considered in the simulation.
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FIGURE C.3: Typical change in the number of main-chain in-
tramolecular H-bonds of backbone amide protons with the nearest
carbonyl acceptor. (a) NH (C80)· · ·OC (V93) case ; Cys80 is always
involved in intramolecular hydrogen bond. (b) NH (K94)· · ·OC
(I92) case ; no intra-molecular hydrogen bond with its closest ac-
ceptor. (c) NH (G18)· · ·OC (P72) shows intermediate behaviour and

oftenly alternate between close and open conformational states.
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FIGURE C.4: variegated H-bond behaviours identified in the simu-
lation. Each pannel represents the average separation distance be-
tween the backbone amide donor NH and its closest possible ac-
ceptor CO in the main-chain. Intercepted lines in magenta show
the treshlod below which hydrogen bonds should exist and per-
centages account for occupancy of the latters along the simulation
timescale. (a) NH (C80)· · ·OC (V93) case ; located at the core of the
protein Cys80 is almost always bound to the CO of Val93 (96.9%)
and less often to the amino group (12.7%) of the same residue. (b)
NH (K94)· · ·OC (I92) case ; with no intra-molecular hydrogen bond
with its closest acceptor (0%), this shows the typical case of highly
solvent exposed residue. (c) NH (G18)· · ·OC (P72) case ; in spite of
being most of the time (90.3%) connected to the carbonyl of Pro72, it
is rarely interacting with the amino group of both Pro72 (0.7%) and
Thr73 ( 1.8%). Transition open-close conformational states is seen in

this case, mainly in between 9.57 - 16.63 ns.
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FIGURE C.5: Individual amide backbone residue H(NH)-O(H2O)
pair correlation functions. Black shows the average over all the
frames, red represents the opened states with at least 2 water
molecules within 3 Å and blue identifies all the closed states (< 2
waters within 3 Å). The average is done from the metadynamic tra-

jectory.

TABLE C.1: Comparitive view of per residue protection factors com-
puted taking as open states the backbone amides having within 2.76
Å at least 2 water molecules. The trajectory is from umbrella sam-
pling simulations at 301 K. Indices 0, 260, 339, 363, 376, 381, 395,
405, 428 ; avg. and exp. are respectively the individual sampling
windows, the average over the sampling windows and the experi-
mental protection factors. PF values are computed using the relation

logPF = log
(
NFcl
NFop

)
.

Residue lnPF0 lnPF260 lnPF339 lnPF363 lnPF376 lnPF381 lnPF395 lnPF405 lnPF428 lnPF_avg lnPF_exp
GLN2 2.343 2.295 2.376 2.465 2.657 2.305 2.521 2.371 2.440 2.455 —
ARG3 — — 6.030 — — — — — — 8.230 —
THR4 2.118 2.233 2.233 2.554 2.346 2.501 2.141 2.410 2.416 2.320 —
LYS6 — — — — — — — — 5.254 7.456 4.483
ILE7 2.338 2.429 2.389 2.557 2.791 2.501 2.495 2.341 2.343 2.457 —

GLN8 — — — — — — — — — — —
VAL9 2.867 2.686 2.644 2.590 2.596 2.510 2.563 2.887 2.907 2.686 —
TYR10 — — — — — — — — — — 11.417
SER11 4.119 3.028 3.435 6.436 3.122 3.378 3.403 2.928 3.210 3.395 —
ARG12 — — — — — — — — — — —
HIS13 — — — — — — — — — — —
ALA15 1.792 2.264 2.087 1.095 1.914 2.020 2.432 2.202 1.765 1.90 —
GLU16 4.300 3.608 5.144 4.927 3.944 3.832 4.679 4.481 4.226 4.24 —
ASN17 2.670 2.628 2.515 2.424 2.852 2.602 2.440 2.476 2.848 2.596 —
GLY18 4.846 5.144 5.293 6.907 6.907 6.570 5.377 5.623 3.955 5.208 —
LYS19 — — — — — — — — — — —
SER20 2.019 1.924 2.021 2.047 2.053 1.955 1.991 2.039 1.919 1.996 —
ASN21 5.254 5.806 5.623 5.334 5.742 5.742 6.117 5.216 — 5.681 —
PHE22 — — — — — — — — — — 8.95
LEU23 — — — — — — 7.824 — 0.870 3.382 —
ASN24 — — — — — — — — — — 13.983
CYS25 — — — — — — — — 4.680 6.885 14.267
TYR26 — — — — — — — — — — 13.3
VAL27 — — — — — — 7.824 — 4.796 6.952 —
SER28 — — — — — — — — — — 12.333
GLY29 4.145 3.988 4.171 3.988 3.852 3.988 4.158 3.647 3.631 3.934 —
PHE30 — — — — — — — — — — —
HIS31 — — 5.334 — — — — — — 7.536 —
SER33 2.387 2.287 2.027 2.311 2.319 2.117 2.311 2.173 2.533 2.266 —
ASP34 5.254 4.820 5.334 5.254 4.314 3.767 4.330 3.988 3.882 4.389 —
ILE35 2.773 2.833 2.693 2.656 2.962 2.548 2.656 2.817 3.183 2.778 —

GLU36 — — — — — — — — — — —
VAL37 2.983 2.266 2.387 2.359 2.615 2.010 2.379 1.896 2.748 2.363 —
ASP38 — — — — — — — — — — —
LEU39 6.570 5.569 5.623 4.679 5.293 5.469 4.702 5.254 4.158 5.059 6.533
LEU40 — — — — — — — — — — 12.5
LYS41 — — — — — — — — — — —
ASN42 — — — — — — — — — — —
GLY43 2.979 2.867 2.970 2.871 3.152 3.083 2.936 2.940 2.533 2.913 —
GLU44 — — — — — — — — — — 10.967
ARG45 3.456 2.883 3.199 2.911 2.907 2.863 2.745 2.920 3.137 2.984 —
ILE46 — 7.130 — — — — — — — 9.328 11.15

GLU47 3.189 3.194 3.113 3.271 3.347 3.299 3.276 3.183 3.533 3.261 —
LYS48 1.498 1.494 1.562 1.042 1.234 1.224 1.482 1.238 1.493 1.372 —
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VAL49 3.423 3.955 3.706 3.913 4.034 4.011 3.862 3.883 3.469 3.788 —
GLU50 — 7.130 — 8.517 — — 7.824 7.418 — 8.412 —
HIS51 3.862 3.623 3.749 3.852 3.562 3.723 3.372 3.525 3.079 3.566 —
SER52 — — — — 6.570 — — — 8.517 8.635 —
ASP53 2.784 2.851 2.762 2.996 2.825 2.612 2.759 3.032 3.122 2.850 —
LEU54 2.206 2.501 2.252 2.227 2.364 2.456 2.907 2.437 2.369 2.397 —
SER55 — — — — — — — — 6.570 8.768 —
PHE56 2.895 2.612 2.932 2.602 3.098 2.879 2.924 2.676 2.825 2.816 —
SER57 — — — 8.517 — — — — 6.117 8.229 —
LYS58 2.017 2.359 2.067 2.164 1.994 2.099 2.097 2.257 2.389 2.153 —
ASP59 7.418 8.517 8.517 8.517 — 8.517 8.517 7.824 6.907 8.006 —
TRP60 8.517 8.517 8.517 8.517 — — — 7.130 — 8.635 —
SER61 — — — — — — — — — — —
PHE62 — 7.824 8.517 — — — — — — 9.616 —
TYR63 — — — — — — — — 8.517 10.715 —
LEU64 — — — — — — — — — — —
LEU65 — 7.824 8.517 8.517 7.824 7.823 5.569 7.130 7.418 7.187 —
TYR66 — — — — — — 6.436 — 5.377 7.280 13.433
TYR67 — — — — — — — — — — 11.267
THR68 — — — — — — — — 6.318 8.517 10.917
GLU69 3.158 3.299 3.103 3.305 3.152 3.299 2.777 3.041 2.266 2.993 —
PHE70 — — — — — — — — — — —
THR71 2.928 3.221 3.108 3.132 3.265 3.577 3.365 3.469 2.875 3.193 —
THR73 5.469 4.330 4.556 4.070 4.394 4.198 4.132 4.445 5.422 4.457 —
GLU74 2.557 2.518 1.917 2.287 2.462 2.599 2.443 3.872 1.542 2.339 —
LYS75 5.681 6.571 5.681 6.117 6.213 6.213 7.824 7.418 5.681 6.169 —
ASP76 — — — 8.517 — — — — — 10.715 —
GLU77 — — — 7.824 — — — — — 10.021 —
TYR78 4.314 3.944 4.158 3.656 3.813 3.616 3.832 3.497 4.046 3.845 —
ALA79 — — — — — — — — 7.418 9.615 —
CYS80 — — — — — — — — — — 13.683
ARG81 — — — — — — — — — — 13.717
VAL82 — — — — — — — — — — 11.817
ASN83 — — — — — — — — — — 12.8
HIS84 1.824 1.710 1.566 2.416 1.729 1.186 1.536 1.521 1.651 1.651 —
VAL85 4.481 4.158 3.944 5.334 4.212 6.318 4.000 4.518 3.483 4.260 —
THR86 — — — 8.517 — 5.254 5.950 6.724 8.517 6.863 —
LEU87 — — 8.517 — 8.517 4.463 4.702 5.569 — 5.900 7.567
SER88 1.383 1.500 1.436 2.492 1.678 1.320 1.449 1.382 1.687 1.557 —
GLN89 6.117 5.875 6.570 7.130 6.570 6.030 6.032 6.215 6.320 6.343 —
LYS91 8.517 — — — — — — 7.418 — 9.328 —
ILE92 2.875 2.683 2.690 3.083 2.966 3.098 3.173 3.359 2.683 2.933 —
VAL93 — — — — — — — — — — 10.633
LYS94 2.791 2.825 2.814 2.644 2.738 2.424 2.618 2.470 2.563 2.645 —
TRP95 — — — — — — — — — — 10.933
ASP96 3.060 3.999 4.240 3.205 4.185 4.679 4.171 3.795 5.293 3.878 —
ARG97 4.796 2.829 2.492 3.862 3.163 3.390 2.911 3.215 4.702 3.258 —
ASP98 5.110 5.569 5.180 8.517 4.070 3.294 3.410 3.892 7.130 4.296 —
MET99 3.429 3.497 3.504 5.875 2.52 3.518 2.957 2.432 4.058 3.228 —

TABLE C.2: Comparitive view of per residue protection factors com-
puted taking as open states the backbone amides having within 3
Å at least 2 water molecules. The trajectory is from umbrella sam-
pling simulations at 301 K. Indices 0, 260, 339, 363, 376, 381, 395,
405, 428 ; avg. and exp. are respectively the individual sampling
windows, the average over the sampling windows and the experi-
mental protection factors. PF values are computed using the relation

logPF = log
(
NFcl
NFop

)
.

Residue lnPF0 lnPF260 lnPF339 lnPF363 lnPF376 lnPF381 lnPF395 lnPF405 lnPF428 lnPF_avg lnPF_exp
GLN2 1.322 1.252 1.322 1.390 1.453 1.1584 1.341 1.262 1.298 1.930
ARG3 — — 5.334 — — — — — — 8.229 —
THR4 1.178 1.330 1.272 1.506 1.328 1.476 1.227 1.316 1.353 1.994
LYS6 7.824 — 7.418 — 8.517 — — — 4.517 7.187 4.483
ILE7 1.380 1.404 1.353 1.555 1.687 1.468 1.439 1.383 1.345 2.068

GLN8 — — — — — — — — — — —
VAL9 1.966 1.844 1.877 1.735 1.696 1.692 1.654 1.924 1.972 2.491
TYR10 — — — — — — — — — — 11.417
SER11 3.259 2.171 2.569 5.422 2.141 2.627 2.309 1.993 2.472 3.111
ARG12 — — — — — — — — — — —
HIS13 — — — — — — — — — — —
ALA15 0.794 1.269 1.172 0.108 0.992 1.031 1.573 1.231 0.784 1.766
GLU16 3.183 2.572 3.749 3.271 2.875 2.666 3.372 3.122 3.276 3.466
ASN17 1.614 1.638 1.556 1.399 1.784 1.590 1.471 1.455 1.799 2.188
GLY18 4.314 4.499 4.463 5.569 5.469 5.623 4.198 4.284 3.183 4.902
LYS19 7.824 8.517 — — — — 8.517 8.517 7.824 8.768
SER20 0.963 0.870 0.948 1.044 0.970 0.920 0.952 0.941 0.892 1.655
ASN21 3.872 4.361 3.999 3.999 4.284 4.171 4.314 4.185 8.517 4.534
PHE22 — 7.824 — — — — 8.517 — 8.517 9.328 8.95
LEU23 — — — — — — 6.117 — -0.305 3.431
ASN24 — — — — – — — — — — 13.983
CYS25 — — — — — — — — 3.731 6.450 14.267
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TYR26 — — — — — — — — — — 13.3
VAL27 — — — — — — 6.724 — 3.923 6.619
SER28 — — — — — — — — — — 12.333
GLY29 2.752 2.759 2.817 2.647 2.581 2.713 2.810 2.560 2.584 3.066
PHE30 — — 7.824 – — — — — — 10.021
HIS31 — — 4.481 — — — — — — 7.248
SER33 1.496 1.365 1.182 1.423 1.350 1.234 1.408 1.240 1.407 2.059
ASP34 3.892 3.562 3.600 3.832 3.210 2.384 3.098 2.686 2.693 3.444
ILE35 1.556 1.498 1.519 1.517 1.596 1.394 1.427 1.584 1.817 2.013

GLU36 — — — — — — — — — — —
VAL37 1.906 1.289 1.468 1.459 1.609 1.191 1.408 1.069 1.739 2.139
ASP38 — — — — — — — — — — —
LEU39 5.422 4.846 5.014 4.119 4.636 4.724 3.988 4.330 3.518 5.066 6.533
LEU40 — — — — — — — — — — 12.5
LYS41 — — — — — — — — — — —
ASN42 7.824 7.824 — 8.517 7.130 7.824 8.517 7.824 8.517 8.006
GLY43 1.768 1.692 1.716 1.647 1.762 1.844 1.710 1.757 1.409 2.158
GLU44 — — — — — — — — — — 10.967
ARG45 2.459 1.852 2.124 1.930 1.914 1.901 1.741 2.021 2.152 2.564
ILE46 — 6.318 — 7.824 — — — — — 8.768 11.15

GLU47 2.006 1.957 1.939 2.112 2.180 1.966 2.051 1.970 2.302 2.480
LYS48 0.509 0.368 0.697 0.101 0.229 0.334 0.498 0.262 0.662 1.397
VAL49 2.319 2.637 2.473 2.581 2.434 2.660 2.530 2.501 2.164 2.825
GLU50 6.724 6.436 7.130 8.517 7.824 6.724 6.318 6.213 7.130 7.025
HIS51 2.533 2.563 2.440 2.650 2.392 2.376 2.222 2.369 2.010 2.803
SER52 — — 8.517 — 5.950 8.517 8.517 7.824 6.436 7.824
ASP53 1.572 1.576 1.541 1.704 1.601 1.503 1.526 1.609 1.801 2.059
LEU54 1.085 1.380 1.171 1.149 1.305 1.330 1.875 1.386 1.232 1.909
SER55 — — — — 8.517 — 8.517 — 5.334 7.770
PHE56 1.870 1.636 1.877 1.527 1.959 1.875 1.752 1.632 1.810 2.316
SER57 — — — 8.517 — — 8.517 — 5.377 8.149
LYS58 0.955 1.388 1.029 1.141 0.964 1.091 1.066 1.247 1.308 1.809
ASP59 5.950 6.724 6.117 5.806 5.950 6.213 6.030 6.570 5.518 6.191
TRP60 7.130 7.130 6.436 6.907 7.418 8.517 6.436 6.318 7.418 7.103
SER61 — — — — — — — — — — —
PHE62 — — 6.117 8.517 — — — — — 8.517
TYR63 — — — — — — — — 7.824 10.715
LEU64 — — — — — — — — — — —
LEU65 7.824 7.130 6.724 6.570 6.213 7.418 4.517 6.030 5.950 6.369
TYR66 — — — — — — 5.216 — 3.882 6.138 13.433
TYR67 — — — — — — — — — — 11.267
THR68 — — — — — — — — 4.658 7.076 10.917
GLU69 1.804 1.924 1.836 1.968 1.877 1.952 1.540 1.744 1.072 2.153
PHE70 8.517 — 8.517 — — 8.517 — — — 9.616
THR71 1.708 1.961 1.837 1.868 2.017 2.304 2.063 2.218 1.681 2.370
THR73 4.575 3.194 3.562 3.055 3.254 3.045 2.970 3.127 4.171 3.746
GLU74 1.799 1.779 1.175 1.544 1.641 1.789 1.663 2.940 0.811 2.427
LYS75 4.463 5.180 4.536 4.595 4.955 5.144 5.875 6.907 4.082 5.148
ASP76 7.824 — 8.517 — 7.824 8.517 7.418 — 7.130 8.229
GLU77 — 7.823 — 6.724 — — 8.517 — 7.130 8.316
TYR78 3.168 2.911 3.083 2.710 2.773 2.578 2.821 2.402 3.046 3.288
ALA79 — — — — — — 5.681 — 3.680 5.792
CYS80 — — — — — — — — — — 13.683
ARG81 — — — — — — — — — — 13.717
VAL82 — — — — — — — 8.517 — 10.715 11.817
ASN83 — — — — — — — — — — 12.8
HIS84 0.958 1.004 0.635 1.763 0.850 0.435 0.723 0.806 0.788 1.844
VAL85 3.436 3.189 2.647 4.034 3.199 4.984 2.875 3.449 2.498 3.618
THR86 — 7.130 — 7.418 8.517 4.462 4.984 4.984 7.418 6.224
LEU87 7.130 7.418 6.724 7.418 6.436 3.390 3.934 4.411 6.117 5.267 7.567
SER88 0.508 0.582 0.525 1.733 0.7412 0.448 0.520 0.510 0.764 1.635
GLN89 4.378 4.145 4.747 5.623 4.445 4.362 4.658 4.411 5.144 4.769
LYS91 7.418 — 7.130 8.517 8.517 7.824 7.130 6.117 7.824 7.536
ILE92 1.905 1.773 1.732 1.957 1.932 2.101 2.175 2.224 1.721 2.503
VAL93 — — — — — — — — — — 10.633
LYS94 1.721 1.746 1.791 1.589 1.698 1.502 1.663 1.463 1.575 2.232
TRP95 7.824 — — — — 8.517 — 7.823 8.517 8.923 10.933
ASP96 2.250 2.615 2.741 2.326 2.780 3.237 2.584 2.395 3.913 3.067
ARG97 3.188 1.839 1.511 2.856 2.182 2.184 1.950 2.180 3.127 2.733
ASP98 3.842 4.556 4.269 7.130 2.840 2.553 2.437 2.755 5.950 3.809
MET99 2.218 2.354 2.273 4.984 1.358 2.238 1.807 1.340 2.806 2.556
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