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Chapter 1 - Grapevine arthropod pests in 
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1. Most important pests 

In north-eastern Italy, vineyards are threatened by a wide array of arthropod pests. The main 

carpophagous are Lobesia botrana (Denis and Schiffermüller) and Eupoecilia ambiguella (Hübner) 

(Lepidoptera: Tortricidae). Grapevines are also interested by sap feeders such as Empoasca vitis 

(Göethe), Zygina rhamni Ferrari and Schapoideus titanus Ball (Hemiptera: Cicadellidae). Other sap 

feeders belong to the Coccoidea superfamily such as Planococcus ficus (Signoret), 

Parthenolecanium corni (Bouché), Parthenolecanium persicae (Fabricius), Neopulvinaria 

innumerabilis (Rathvon), Pulvinaria vitis (L.) and Heliococcus bohemicus Sulc. Furthermore, 

grapevines are also damaged by mites, such as Panonychus ulmi (Koch) and Eotetranychus carpini 

(Oudemans) (Acari: Tetranychidae), and Calepitrimerus vitis Nalepa and Colomerus vitis 

(Pagenstecher) (Acari: Eriophyidae), and thrips, such as Drepanothrips reuteri (Uzel) 

(Thysanoptera: Thripidae). 

The following are abstracts about biology and damage of the insect pests that will be studied 

in the present PhD thesis. 

1.1. Lobesia botrana  

The European grapevine moth, Lobesia botrana (Den. and Schiff.) (Lepidoptera: 

Tortricidae) is the most important carpophagous pest in European vineyards and is recently 

spreading to the Nearctic region (Ioriatti et al., 2012). In relation to the different grape-growing 

areas and years, the moth can complete 2 to 4 generations per year (Martín-Vertedor et al., 2010; 

Pavan et al., 2013). The larvae from second to fourth generations are carpophagous and can cause 

yield losses and promote the spread of the botrytis bunch rot (Botrytis cinerea Pers. Fr.) (Fermaud 

and Giboulot, 1992; Pavan et al., 1998, 2014; Moschos, 2006) as well as, after veraison, the grape 

sour rot associated with Acetobacter spp. and some yeasts (Bisiach et al., 1986; Barata, 2011). 

1.2. Empoasca vitis and Zygina rhamni  

Empoasca vitis (Göthe) and Zygina rhamni Ferrari (Hemiptera: Cicadellidae) are the most 

common and widespread leafhoppers in European vineyards (Vidano and Arzone, 1983). Empoasca 

vitis is a polyphagous species that overwinters as adults on evergreen plants and can complete from 

one to four generations a year in different European grape-growing areas (Schvester et al., 1962; 

Vidano 1963; Baggiolini et al., 1968; Cerutti et al., 1988). This leafhopper is a phloem feeder of 

grapevine leaf veins, and the leaf margins can become reddish or yellowish and then desiccate 

(Vidano, 1963; Carle and Moutous, 1965). Leaf symptoms are associated with physiological 
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damage such as reductions in photosynthesis, mesophyll conductance and transpiration rate 

(Candolfi et al., 1993), which can lead to economic damage (i.e., yield losses and sugar content 

reduction of berries) when the infestation exceeds one-two nymphs per leaf (Moutous and Fos, 

1971; Baillod et al., 1993; Pavan et al., 2000; Lehmann et al., 2001). 

The leafhopper Z. rhamni is an oligophagous species that in northern Italy overwinters 

mostly on Rubus spp., on which it can complete a generation in early spring before migrating 

towards vineyards where it has three generations per year (Vidano, 1963; Pavan, 2001; Mazzoni et 

al., 2008). It is a mesophyll feeder leaving white dots on the upper surface of leaves where cell 

contents were extracted. Relatively to mesophyll-feeder grapevine leafhoppers, economic damage is 

reported for American species (Jubb et al., 1983; Martinson et al., 1997). For Z. rhamni strong 

symptoms are described (Vidano, 1963) and an economic threshold of two-three nymphs per leaf 

was suggested for northern Italy (Girolami et al., 1989).  

1.3. Scaphoideus titanus  

The leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae) is the vector of 

‘Candidatus Phytoplasma vitis’, the causal agent of flavescence dorée (FD), which is a Grapevine 

Yellows Disease (GYD) causing severe damage in European vineyards (Schvester et al., 1963; 

Carraro et al., 1994; Bianco et al., 2001; Mori et al., 2002). Scaphoideus titanus is a monophagous 

species on plants of Vitis sp. on which completes one generation a year after overwintering as an 

egg (Schvester et al., 1962; Vidano, 1964; Chuche and Thiéry, 2014). 

1.4. Planococcus ficus 

Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae) is the most important mealybug 

pest for Italian vineyards (Duso, 1989) and is of great importance in other relevant grape-growing 

regions such as South Africa and North America (Walton and Pringle, 2004; Prabhaker et al., 

2012). In Italian vineyards, P. ficus overwinters under grapevine bark and on roots, mostly as 

fertilized females, and completes three generations a year (Duso, 1989; Lentini et al., 2008). 

The mealybug can affect grape yield and quality due to infestation of grapevine woody parts 

and fouling of leaves and bunches by honeydew excretion on which sooty mould develops (Charles, 

1982; Cocco et al., 2014). Moreover, P. ficus is an important vector of grapevine leafroll-associated 

virus 3, the predominant type species causing the grapevine leafroll disease (GLD) (Tsai et al., 

2010). It reduces crop yield and must quality to such an extent that heavy infected vineyards have to 

be removed (Lo and Walker, 2011).  
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2. Integrated pest management 

Insects are traditionally controlled using synthetic insecticides. Their use provided benefits 

during human history such as increasing the yield of crops and making food available to a wider 

amount of people, but many risks are tied to their usage. The reported undesirable effects of 

pesticides on non-target species, including humans, such as acute and chronic health effects (Hayes 

and Vaughn, 1977), domestic-animal poisoning (Caldwell et al., 1977), effects on wild birds and 

mammals, fish, bees, beneficial organisms, and small organisms in the soil (Van Steenwyk et al., 

1975; Brown, 1978; Bairlein, 1990; Pimentel et al., 1993; Johnson et al., 2010) led to a greater 

focus on Integrated Pest Management (IPM) programs in order to control pests in a safer way. This 

approach to pest management consists in the definition of economic thresholds, and in the use of a 

multi-tool strategy to keep pest populations below the economic injury level minimizing synthetic-

insecticide applications with the aim to reduce risks for human health and the environment. 

In the context of IPM, the substitution of synthetic insecticides with natural products and the 

adoption of alternatives to chemical control (i.e., biological control, cultural control and 

semiochemical-based control) must be favoured. In the present PhD thesis, a particular interest was 

directed to natural products and to cultural and biological control. 

2.1. Natural products 

Natural insecticides are part of IPM approach since they have reduced toxicity to non-target 

animals making them not dangerous for users, consumers and the environment (Sarwar and Salman, 

2016). Natural insecticides can have different origin and can be categorized as botanical 

insecticides, microbial-origin insecticides and mineral insecticides.  

2.1.1. Botanical insecticides 

Botanical insecticides are obtained from plants, usually by macerating plants tissues with a 

high percentage of active constituent that is then distilled. The advantage of plant botanical 

insecticides is their low persistence in the environment. However, this low persistence is also a 

disadvantage since they may require multiple applications to achieve a good pest control (Isman, 

2006). The most important botanical insecticide is pyrethrum, a neurotoxic product extracted from 

the seeds of Chrysanthemum cinerariaefolium L., which is effective against a very wide array of 

pests. In vineyards, it is used against S. titanus and E. vitis, mostly in the context of organic 

viticulture (e.g., Jermini et al., 2014; Mori et al., 2014). 

Another important plant extract is azadirachtin, an insect repellent, antifeedant and growth 

regulator obtained from Azadirachta indica Juss, which is effective against caterpillars, flies, 
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whiteflies, scales and aphids (Schmutterer, 1990). Other essential oils from various plants also 

exhibit insecticides activity (Zoubiri and Baaliouamer, 2014), but their role in pest management 

needs to be further studied. 

Horticultural oils are usually obtained from petrol, but plant-based oils are also offered. 

They derive from oilseed crops (e.g., soybean) and are available as dormant and narrow-range (i.e., 

summer) oils. Dormant oils are effective in the control of overwintering eggs and soft bodied 

insects and are used in spring before plant budburst begins. Summer oils, instead, are used on 

foliage and can control scales, whiteflies, aphids and mites (Nielsen, 1990).  

Natural soaps can derive from plants or animal fat and are used to control soft-bodied 

insects like aphids, scales, whiteflies, mealybugs, thrips, and spider mites because they dissolve the 

protective layers of the cuticle causing the pest to desiccate. In vineyards, a formulation whose the 

active constituent is obtained from olive oil is registered against cicadellids. 

2.1.2. Microbial-origin insecticides 

Other products can be obtained from the fermentation of microorganisms such as 

avermectins obtained from Streptomyces avermitilis Kim and Goodfellow, which is used in baits for 

household insect pests (Dybas, 1989) and spinosad obtained from Saccharopolyspora spinosa 

Mertz and Yao used in the control of caterpillars, fruit flies, thrips and beetles (Salgado et al., 

1998). In vineyards, spinosad is used against thrips such as D. reuteri (e.g., Posenato et al., 2004) 

and it is a valid alternative to Bacillus thuringiensis Berliner in the control of L. botrana in organic 

viticulture (e.g., Vassiliou, 2011). 

2.1.3. Mineral insecticides 

Petroleum-derived horticultural oils (i.e., mineral oils) are the most frequently used oils 

against pests (see 2.1.1.). In vineyards, mineral oils are used at the highest rates against 

overwintering stages of some scales, such as P. corni (Pavan, personal communication), and at the 

lowest rates against nymphs of vineyard mealybugs (e.g., D’Arcangelo, 2012 for P. ficus control) 

and thrips such as D. reuteri. 

Other organic insecticides are obtained from mineral sources mined from earth. To this 

category belong: elemental sulphur, iron phosphate, diatomaceous earth and kaolin. Elemental 

sulfur is a powder that can be applied as dust or spray depending on the formulation and acts as a 

metabolic disruptor to insects such as aphids and thrips, and spider mites (Bloem et al., 2005). Iron 

phosphate is used in slug and snail management, usually in combination with baits. After eating the 

bait, the pest stops feeding and dies due to starvation (Edwards et al., 2009). Diatomaceous earth is 

a fine dust comprised of fossilized diatoms; the dust is abrasive and disrupts the cuticle of insects 
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causing death due to desiccation. It is effective in the control of slugs, soil-dwelling insects and 

stored-product pests (Doumbia et al., 2014). Kaolin is a fine-grained clay used as a crop-protectant, 

which reduces sunburn damage and affects insects in various ways such as deterring feeding and 

egg laying (Glenn et al., 1999). An exhaustive bibliography on kaolin can be found in various 

chapters of this thesis. 

2.2. Biological control 

Biological control consists of the management of pests by other living organisms released in 

crops or favoring and preserving populations of naturally occurring ones. In the first category there 

are two cases, a natural enemy can be released once in relatively low amounts and then permanently 

find a place in the vineyard ecosystem (permanent release) or a natural enemy can be released in big 

amounts for the management of an occurring pest infestation without being able to establish 

permanently in the crop (periodical release). The last category (conservation biological control) 

consists in adopting practices that improve the abundance and species richness of natural enemies 

already living in vineyards and in avoiding the ones that disrupt their populations. This action can 

have an important impact on pest management, since pest outbreaks are much less likely to occur in 

a balanced, biodiverse and species-rich ecosystem. At this purpose, diversification of vineyards 

ground cover flora, presence of shrubs, vegetation corridors, and other ecological structures can 

supply natural enemies with refuges, preys and alternative host and food. Not less important, 

avoiding the use of insecticides harmful to non-target arthropods is vital in the maintenance of a 

healthy and resilient ecosystem (Altieri et al., 2005). 

Among natural enemies, also pathogens have to be considered. To this category belongs B. 

thuringiensis Berliner, a naturally-occurring bacteria which toxins released in insect gut determine 

degradation of the mesentery lining causing death. It is mainly used in the control of caterpillars and 

mosquitoes (Jurat-Fuentes and Jackson, 2012). In viticulture, it is largely used against L. botrana 

(e.g., Ifoulis and Savopoulou-Soultani, 2004). Another pathogen is the fungus Beauveria bassiana 

(Bals.-Criv.) that develops a mycelium inside the body of the insect causing death. It can be used 

for the management of thrips, aphids, whitefly, caterpillars, beetles and subterranean insects like 

ants and termites (Vega et al., 2012). The main advantage of using insecticides based on 

microorganisms is given by the selectivity for non-target organisms while the main disadvantages 

come from low persistence and so the need of increasing the number of applications and the usually 

complex mode of use they require due to the living nature of their active constituent (Leacy et al., 

2001).  
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2.3. Cultural control 

In IPM, a very important role is given to the impact of cultural practices on pests. These 

practices can affect pest population indirectly, through the modification that they induce on plants, 

or directly by increasing pest mortality. In vineyards, some cultural practices (e.g., irrigation, 

fertilization, weed control, training system and pruning) can make grapevines less attractive or less 

favourable to the development of certain pests. For example, nitrogen fertilization affects L. botrana 

(Vartholomaiou et al., 2008), E. vitis (Decante and van Helden, 2001; Decante et al., 2009) 

infestation  and P. ficus (Cocco et al., 2015) and bunch-zone leaf removal is effective in reducing L. 

botrana and B. cinerea Pers. Fr. (Pavan et al., 2016).  

3. General aim of PhD thesis 

In the context of IPM strategies, the presented PhD thesis aims to investigate the possibility 

to control grapevine pests through environmental-friendly strategies, such as the use of natural 

products (i.e., kaolin, sulfur dust, essential oils) and cultural practices (i.e., bunch-zone leaf 

removal). The interaction between kaolin and bunch-zone leaf removal was also considered. In the 

context of conservation biological control, the side effects of kaolin and bunch-zone leaf removal 

on natural enemies were also studied. 
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Abstract  

During 2015, the influence of kaolin applications and bunch-zone leaf removal on the 

grapevine leafhoppers, Empoasca vitis (Göthe) and Zygina rhamni Ferrari, and their egg parasitoids 

(Anagrus spp.) were tested in four vineyards of northeastern Italy. The mode of action of kaolin on 

E. vitis nymphs was also investigated in the laboratory. In the treated plots kaolin was applied at a 

rate of 2% W/V on two occasions separated by 5-6 days. In two vineyards it was applied either on 

the whole canopy or the bunch zone at the beginning of the E. vitis second-generation (preventive 

criterion), and in the other two vineyards it was applied to the whole canopy at the peak of the E. 

vitis third-generation (curative criterion). Both the preventive and curative kaolin applications 

caused a significant decrease in the populations of E. vitis and Z. rhamni nymphs. The effect of the 

preventive applications was persistent and was associated with reduced E. vitis leaf symptoms. 

Kaolin did not influence the activity of Anagrus spp. Bunch-zone leaf removal did not affect 

leafhopper populations. Laboratory experiments showed that inhibition of feeding was the main 

mode of action through which kaolin affected nymph populations. Based on these outcomes, kaolin 

could be a valuable alternative to synthetic insecticides in controlling grapevine leafhoppers.  
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1. Introduction 

Empoasca vitis (Göthe) and Zygina rhamni Ferrari (Hemiptera: Cicadellidae) are the most 

common and widespread leafhoppers in European vineyards (Vidano and Arzone 1983). E. vitis is a 

polyphagous species that overwinters as adults on evergreen plants and can complete from one to 

four generations a year in different European grape-growing areas (Schvester et al. 1962, Vidano 

1963, Baggiolini et al. 1968, Cerutti et al. 1988). This leafhopper is a phloem feeder of grapevine 

leaf veins, and the leaf margins can become reddish or yellowish and then desiccate (Vidano 1963, 

Carle and Moutous 1965). Leaf symptoms are associated with physiological damage such as 

reductions in photosynthesis, mesophyll conductance and transpiration rate (Candolfi et al. 1993), 

which can lead to economic damage (i.e., yield losses and sugar content reduction of berries) when 

the infestation exceeds one or two nymphs per leaf (Moutous and Fos 1971, Baillod et al. 1993, 

Pavan et al. 2000, Lehmann et al. 2001). 

The leafhopper Z. rhamni is an oligophagous species that in northern Italy overwinters 

mostly on Rubus spp., on which it can complete a generation in early spring before migrating 

towards vineyards where it has three generations per year (Vidano 1963, Pavan 2001, Mazzoni et al. 

2008). It is a mesophyll feeder leaving white dots on the upper surface of leaves where cell contents 

were extracted. Relatively to mesophyll-feeder grapevine leafhoppers, economic damage is reported 

for American species (Jubb et al. 1983, Martinson et al. 1997). For Z. rhamni strong symptoms are 

described (Vidano 1963) and an economic threshold of two-three nymphs per leaf was suggested 

for northern Italy (Girolami et al. 1989).  

Synthetic insecticides are usually applied to control E. vitis (Lavezzaro et al. 2006, Posenato 

et al. 2006, Pozzebon et al. 2011). In the context of IPM, other control approaches have been 

proposed, such as conservation biological control to promote the activity of the egg parasitoid 

Anagrus atomus L. (Hymenoptera: Mymaridae) and other natural enemies (Cerutti et al. 1991, van 

Helden and Decante 2001, Ponti et al. 2005, Zanolli and Pavan 2011), planting of grapevine 

cultivars of low susceptibility (Pavan and Picotti 2009, Fornasiero et al. 2016), use of copper 

compounds (Pavan 1994), and nitrogen fertilization and irrigation management to reduce plant 

vigor (Decante and van Helden 2001, Decante et al. 2009) or induce a moderate water stress 

(Costello 2008, Fornasiero et al. 2012).  

As an alternative to synthetic insecticides, kaolin particle film technology was proposed for 

arthropod pest control (Glenn et al. 1999). Kaolin is a white-colored clay (aluminosilicate mineral) 

that is chemically inert, fine-grained, nonporous, low abrasive, non-expandable and easily 

dispersible into water (Harben 1995). As a water suspension it can be sprayed on plants, creating a 

particle film that changes the tactile and visual features of the leaf and fruit surfaces making the 
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plant repellent to arthropods. Insect activities like egg-laying, feeding on and grasping the host plant 

surfaces can be compromised by the clay particles that stick to their bodies (Glenn et al. 1999, 

Glenn and Puterka 2005). To date, kaolin has been found to be effective against sap feeders such as 

lace bugs (Marcotegui et al. 2015), thrips (Tyler-Julian et al. 2014), aphids (Markó et al. 2008, 

Sleezer et al. 2011, Nateghi et al. 2013, Pissinati and Ventura 2015), psyllids (Puterka et al. 2005, 

Butler et al. 2011) and scales (Pascual et al. 2010), and against chewing pests such as tephritid fruit 

flies (Caleca et al. 2010, Pascual et al. 2010), tortricid moths (Knight et al. 2001, Markó et al. 2008, 

Pease et al. 2016) and blossom weevils (Markó et al. 2008).  

About the influence of kaolin on E. vitis, Markό et al. (2008) reported that 12 kaolin 

applications on apple trees, from late March to early August, significantly reduced the captures of 

adults in late September. Kaolin has also been applied against other sap feeders belonging to the 

Hemiptera, Cicadomorpha and Fulgoromorpha. It was found to be effective in controlling the 

planthopper Ommatissus lybicus Bergevin (Hemiptera: Tropiduchidae) on date palm (Mahmoudi et 

al. 2014). On grapevines treated with kaolin a deterrent effect and a higher mortality rate were 

observed for the sharpshooter Homalodisca coagulata (Say) (Hemiptera: Cicadellidae), which is a 

vector of Xylella fastidiosa Wells, the causal agent of Pierce’s disease (Wood and McBride 2001, 

Puterka et al. 2003, Tubajika et al. 2007). Kaolin was reported as effective in controlling Empoasca 

fabae (Harris) (Hemiptera: Cicadellidae) on aubergine (Maletta et al. 2004) but not on potatoes 

(Maletta et al. 2006). The populations of Typhlocyba pomaria McAtee (Hemiptera: Cicadellidae) 

were significantly reduced on apple trees submitted to ten or more kaolin applications (Knight et al. 

2001, Bostanian and Racette 2008).  

Because in Markό et al. (2008) data on E. vitis nymph infestation during the kaolin 

applications were not reported and adult reduction was obtained with high number of applications, 

the information reported seems inadequate to understand whether kaolin could be effectively and 

profitably used to control E. vitis in vineyards. Based on these considerations, the aim of this study 

was to assess if only two applications of kaolin can be an alternative to synthetic insecticides in 

controlling E. vitis and Z. rhamni nymphs on grapevines. Kaolin could be of profitable if used 

mostly in organic vineyards, where the only options against leafhoppers are pyrethrum (Mori et al. 

2004), whose efficacy is prejudiced by its low persistence, or copper products, whose amount 

applied per hectare is limited by legal measures due to environmental issues (Mazzini 2010). 

Towards this end, the efficacy of kaolin applications was tested against grapevine leafhoppers with 

both preventive and curative approaches. Under laboratory conditions, the mode of action of kaolin 

against E. vitis nymphs was also studied. Moreover, because some negative effects of kaolin on 

natural enemies have been reported, e.g. on minute pirate bugs (Bengochea et al. 2010), green 
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lacewings (Porcell et al. 2011, Bengochea et al. 2014), ladybirds (Pascual et al. 2010), 

hymenopteran parasitoids (Bengochea et al. 2013) and spiders (Sackett et al. 2007, Markó et al. 

2010), its side effect on Anagrus spp., which are egg parasitoids of the grapevine leafhoppers, was 

tested. 

Since bunch-zone leaf removal in vineyards is known to reduce Lobesia botrana (Denis and 

Schiffermüller) (Lepidoptera: Tortricidae) and Botrytis cinerea Persoon ex Fries (Pavan et al. 

2016), and greater plant vigor and leaf density favor E. vitis infestation (Decante and van Helden 

2001, Decante et al. 2009, Pavan and Picotti 2009), the second aim of this paper was to evaluate the 

influence of two different leaf densities in the bunch zone on grapevine leafhoppers.  

2. Materials and methods 

2.1. Field trials 

In the 2015 growing season four trials were carried out in four vineyards of northeastern 

Italy. In two trials kaolin was applied with a preventive criterion and in the other two with a 

curative criterion. 

2.1.1. Preventive application trials 

In preventive applications, kaolin was sprayed when E. vitis nymph populations were very 

low. In this period, the development of the first generation was finishing and the first newly-hatched 

nymphs of the second generation, the most dangerous in the grape-growing area of northeastern 

Italy, were observed. The preventive criterion was adopted in two vineyards (A and B). Vineyard A 

(locality Cormons, Gorizia district, 45°57’51”N, 13°26’49”E, 56 m a.s.l., cultivar Pinot Gris) is a 

10-year-old conventional vineyard with grapevines growing using the Guyot training system with 

distances between and along rows of 2.5 m and 0.8 m, respectively. Vineyard B (locality Cormons, 

Gorizia district, 45°57’20”N, 13°26’50”E, 50 m a.s.l., cultivar Pinot Gris) is a 30-year-old organic 

vineyard with grapevines growing using the double arched Guyot training system with distances 

between and along rows of 2.8 m and 1 m, respectively. In both vineyards standard fungicide 

programs were followed and no insecticide was sprayed before and during sampling period. 

The treatments under comparison in both vineyards were: control, kaolin (Surround WP, 

Tessenderlo Kerley Inc., Phoenix, Arizona, USA, 2% W/V, Surround WP/water) sprayed on the 

whole canopy (hereafter called “kaolin WC”, at a rate of 1000 L/ha) or localized on the bunch-zone 

(hereafter called “kaolin BL”, at a rate of 500 L/ha). In both vineyards kaolin was applied on 18 and 

24 June using a backpack sprayer (Oleo-Mac, Sp-126, Emak S.p.A., Bagnolo in Piano RE, Italy). In 
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both trials, a randomized block design with four replicates was adopted. Each block (row) was 

divided into three plots of 20 (vineyard A) or 28 (vineyard B) grapevines. All the plots were divided 

into two subplots of 10 (vineyard A) and 14 (vineyard B) grapevines, respectively, that were 

subjected or not to bunch-zone leaf removal on 17 June. Bunch-zone leaf removal consisted of 

removing all leaves that covered the bunches.  

For both vineyards (A and B) weather data were obtained from a weather station distant 

about five kilometers (Regional Meteorological Observatory; http://www.osmer.fvg.it/OSMER). 

In all treatments of both trials, nymphs of E. vitis and Z. rhamni were sampled weekly on 

leaves from 11 June, a few days before the first kaolin application, to 20 July, about a month after 

the second kaolin application. Because there were four different combinations between kaolin 

application (whole canopy and bunch localized) and bunch-zone leaf removal (yes and no), two 

canopy zones were considered for leaf sampling: the bunch zone (lower part of the canopy) and the 

vegetative zone (upper part of the canopy). On each subplot 100 mature leaves were sampled (25 

per row side and canopy zone).  

In the control and kaolin WC treatments of both trials, adults of E. vitis and Z. rhamni, and 

Anagrus spp. of the ‘atomus’ group (sensu Chiappini et al., 1996) were sampled using yellow sticky 

traps replaced weekly from 4 June (2-wk before the first kaolin application) to 18 August (about 

two months after the second kaolin application). From 4 June to 18 June alone, the traps were left in 

the vineyards for more than a week as a consequence of seven consecutive rainy days that forced to 

postpone the planned kaolin-application of 11 June to 18 June. One trap (20 × 10 cm) per subplot 

(with or without leaf removal), smeared with glue (Temo-O-Cid®, Kollant Srl, Vigonovo VE, 

Italy), was hung on the horizontal wires of the grapevine trellis at about 1.5 m from the ground level 

so as to be inside the canopy, but not covered by leaves. In the laboratory the two leafhoppers and 

Anagrus spp. of ‘atomus’ group were identified (Vidano 1958, Viggiani 1988, Chiappini et al. 

1996, Chiappini and Mazzoni 2000) and counted. 

In both trials the influence of kaolin on leafhopper egg-laying and egg parasitization rate by 

Anagrus spp. was assessed in subplots without bunch-zone leaf removal of the control and kaolin 

WC. Fifty mature leaves per subplot were collected in the vegetative zone on 3 August, before the 

beginning of third generation egg hatching, and taken to the laboratory. On each leaf the emergence 

holes of leafhopper nymphs (hatched eggs) and those of Anagrus spp. adults (parasitized eggs) on 

leaf veins were counted under a dissection microscope (Picotti and Pavan 1993). Because the eggs 

of E. vitis and Z. rhamni are indistinguishable it was not possible to associate the emergence holes 

to either species. To obtain the total number of leafhopper eggs laid, the hatched and parasitized 

eggs were summed. The percentage of parasitized eggs was calculated from the ratio between the 
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parasitized eggs and the total number of leafhopper eggs laid. Since mature leaves collected in the 

vegetative zone were absent or still very small when overwintering females laid eggs, the 

emergence holes observed on these leaves were almost all associable with the second generation.  

In the vineyard B, where symptom expression by E. vitis feeding-activity was very evident 

at vintage time, the percentage of symptomatic leaf surface (change in color and/or drying out) was 

estimated in subplots without bunch-zone leaf removal of the control and kaolin WC treatments 

according to eight injury classes (0, 1, 5, 10, 25, 50, 75, and 100%) on the basis of reference 

patterns (Pavan et al. 2000). This procedure was applied to 200 leaves per subplot (800 leaves per 

treatment). To avoid subjective choices, on the 10 central grapevines of the subplots 10 basal leaves 

of both proximal and distal shoots of the canes were sampled.  

Data on nymph densities on leaves and adult captures on yellow sticky traps were analyzed 

using a repeated measures analysis of variance (ANOVA) with the MIXED procedure of SAS (v 

9.2, SAS Institute, Cary, NC). In these analyses nymph densities and adult captures were considered 

as a dependent variable with observation made at different time (sampling dates) in separated 

analyses. For data on nymphs, kaolin application (control, kaolin WC and kaolin BZ), bunch-zone 

leaf removal (yes vs. no), canopy zone (vegetative vs. bunch), time and their interactions were 

considered as sources of variation and their effects were tested with a F test (α = 0.05). For data on 

adults, kaolin application (control and kaolin WC), bunch-zone leaf removal (yes vs. no), time and 

their interactions were considered as sources of variation and their effects were tested with a F test 

(α = 0.05). Differences among treatments were evaluated using a t-test to the least-square means 

with Bonferroni adjustment of the p-values (α = 0.05). The Kenward-Roger method was used for 

degrees of freedom estimation (Littell et al. 2006). This method can produce not integer value for 

degree of freedom. In all analyses and according to Akaike’s Information Criterion, first-order 

autoregressive was chosen as best fitting covariance structure for correlating different sampling 

dates (Littell et al. 2006). Data were checked for analysis assumptions and were log (x+1) 

transformed prior to the analyses.  

Data on egg densities were square root transformed and analyzed using a two-way ANOVA 

with kaolin and leaf removal as independent variables. Data on percentages of parasitized eggs were 

analyzed by using Fisher’s exact test. After arcsine transformation, two-way ANOVA was used to 

compare the percentage of leaf surface with E. vitis symptoms in the two treatments (control and 

kaolin WC) and in the two cane positions (proximal and distal).  

2.1.2. Curative application trials 

In curative applications, kaolin was sprayed when the E. vitis nymphs of the third generation 

had already reached high population levels. This control strategy was adopted in two vineyards (C 
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and D). Vineyard C (locality Cormons, Gorizia district, 45°57’53”N, 13°30’19”E, 59 m a.s.l., 

cultivar Sauvignon Blanc) is a 25-year-old conventional vineyard with grapevines growing using 

the Guyot training system with distances between and along rows of 2.6 m and 0.75 m, respectively. 

Vineyard D (locality Buttrio, Udine district, 46°1’12”N, 13°21’19”E, 50 m a.s.l., cultivar Tocai 

Friulano) is a 15-year-old conventional vineyard with grapevines growing using the Guyot training 

system with distances between and along rows of 2.8 m and 1.2 m, respectively. In both vineyards, 

standard fungicide programs had been adopted and pyrethrum (Asset, Copyr S.p.A., Milano, Italy, 

0.7 L/ha) was applied once in late June against Scaphoideus titanus Ball (Hemiptera: Cicadellidae). 

Neither insecticides nor fungicides were applied during the trials. The treatments under comparison 

in vineyard C and D were control and kaolin WC (Surround WP, 2% W/V at rate of 1000 L/ha). In 

both vineyards a randomized block design with four replicates was used. Each block (row) was 

divided into two plots of six (vineyard C) and 12 (vineyard D) grapevines. In both trials kaolin was 

applied on 19 and 24 August.  

Weather data for vineyards C and D were obtained from the two nearest weather stations of 

the Regional Meteorological Observatory (data from http://www.osmer.fvg.it/OSMER). 

In both trials, on 18 and 24 August, respectively before the first and the second kaolin 

applications, and on 28 August, 4-d after the second kaolin application, nymphs of E. vitis and Z. 

rhamni were sampled on 100 mature leaves (50 per each row side) per replicate chosen on the 

middle-basal part of main shoots. 

Data on nymph densities in the two treatments were analyzed with a t-test after logarithmic 

transformation. 

2.2. Laboratory experiments 

Two laboratory experiments were carried out in late summer 2015 to investigate the mode of 

action of kaolin against E. vitis nymphs. In experiment 1 the survival of first and second instar 

nymphs was compared in two treatments: (i) nymphs placed on kaolin-untreated leaves (control), 

and (ii) nymphs placed on kaolin-treated leaves (kaolin-on-leaves). In experiment 2 the survival of 

third to fifth instar nymphs was compared in three treatments: (i) nymphs placed on kaolin-

untreated leaves (control), (ii) nymphs placed on kaolin-treated leaves (kaolin-on-leaves), (iii) and 

nymphs sprayed with kaolin and then placed on kaolin-untreated leaves (kaolin-on-nymphs). In 

both experiments, each treatment was replicated 40 times. 

For both experiments, 40 non-infested grapevine leaves per treatment were collected in a 

Carménère vineyard contiguous to vineyard D. The grapevines before leaf collection were 

submitted to a single insecticide application (pyrethrum, Asset, 0.7 L/ha) against S. titanus in late 



 29 

June. In the laboratory each leaf was visually checked for absence of leafhoppers and, after being 

sprayed with kaolin or not, individually inserted into a transparent self-sealing plastic bag (20 × 33 

cm). Kaolin (Surround WP) was used at 4% W/V, to obtain the same residue as in field trials, and 

applied with a hand sprayer to run-off. E. vitis nymphs used in the experiments came from infested 

leaves collected in same vineyard. In the laboratory first and second instar nymphs (experiment 1) 

or third to fifth instar nymphs (experiment 2) were randomly chosen on these leaves and induced to 

move to non-infested leaves so to have one nymph per bagged leaf. In the kaolin-on-nymphs 

treatment, nymphs were induced to move onto the kaolin-untreated leaves after they had been 

covered with kaolin by spraying infested leaves. In the following days the bags were checked to 

note whether nymphs were alive or dead. The day after the beginning of the experiments (1-d) the 

nymph position (on leaf or bag surfaces) was also recorded. Samplings were carried out after 1-d 

and 3-d in the first experiment, and daily, as long as nymphs alive were observed in all treatments, 

in the second experiment. 

Data on percentage of nymph mortality and percentage of nymphs recorded on the bag 

surface at 1-d were compared by using Fisher’s exact test (experiment 1) and Ryan’s multiple range 

test (Ryan 1960) (experiment 2).  

3. Results 

3.1. Preventive application trials  

3.1.1. Weather conditions 

During the sampling period two important rainfalls on 23 June (46.7 mm) and 8 July (21.9 

mm) were recorded for vineyards A and B. After the rainfall that occurred on 23 June (6-d from the 

first kaolin-application) kaolin coverage was restored and up to 8 July there was no more rainfall. In 

any case the kaolin leaf coverage was little affected by the weather conditions because kaolin was 

still visible on leaves at the end of the sampling period. 

3.1.2. Empoasca vitis nymphs on leaves 

Vineyard A. Kaolin application determined a reduction of E. vitis nymph densities (Table 1; 

Fig. 1A and B). A significant interaction “time*kaolin application” was found because the effect of 

kaolin emerged from the second sampling date onwards. Higher densities were observed in the 

vegetative zone than the bunch zone. The interactions “canopy zone*kaolin application” and 

“canopy zone*kaolin application*time” were significant indicating that the effect of kaolin was 

different between the two canopy zones. In the vegetative zone, E. vitis nymph densities were lower 
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in the kaolin WC than the other treatments (vs. control: t = 15.65; df = 71.8; P < 0.001; vs. kaolin 

BL: t = 14.25; df = 71.8; P < 0.001), whereas no differences were observed between control and 

kaolin BL (t = 7.4; df = 71.8; P = 1.000). In the bunch zone, nymph densities were lower in both the 

kaolin treatments than the control (vs. kaolin WC: t = 11.14; df = 71.8; P < 0.001; vs. kaolin BL: t = 

13.03; df = 71.8; P < 0.001), whereas no differences emerged between the two kaolin treatments (t 

= 1.89; df = 71.8; P = 1.000). No effect of bunch-zone leaf removal was observed on E. vitis nymph 

densities (Table 1; Fig. 2A and B). 

Vineyard B. Kaolin application determined a reduction of E. vitis nymph densities Table 1; 

Fig. 1C and D). A significant interaction “time*kaolin application” was found because the effect of 

kaolin emerged from the third sampling date onwards. Higher densities were observed in the 

vegetative zone than the bunch zone. The interactions “canopy zone*kaolin application” and 

“canopy zone*kaolin application*time” were significant indicating that the effect of kaolin 

applications were different between the two canopy zones. In the vegetative zone, E. vitis nymph 

densities were lower in the kaolin WC than the other treatments (vs. control: t = 13.11; df = 68.7; P 

< 0.001; vs. kaolin BL: t = 11.28; df = 68.7; P < 0.001), whereas no differences were observed 

between control and kaolin BL (t = 1.82; df = 68.7; P = 1.000). In the bunch zone, nymph densities 

were lower in both the kaolin treatments than the control (vs. kaolin WC: t = 10.61; df = 68.7; P < 

0.001; vs. kaolin BL: t = 8.47; df = 68.7; P < 0.001), whereas no differences emerged between the 

two kaolin treatments (t = 2.15; df = 68.7; P = 0.52). No effect of bunch-zone leaf removal was 

observed on E. vitis nymph densities (Table 1; Fig. 2C and D). 

3.1.3. Zygina rhamni nymphs on leaves 

Vineyard A. Kaolin application determined a reduction of Z. rhamni nymph densities (Table 

1; Fig. 3A and B). A significant interaction “time*kaolin application” was found because the effect 

of kaolin emerged from the second sampling date onwards. Higher densities were observed in the 

vegetative zone than the bunch zone. The interactions “canopy zone*kaolin application” and 

“canopy zone*kaolin application*time” were significant indicating that the effect of kaolin 

applications were different between the two canopy zones. In the vegetative zone, Z. rhamni nymph 

densities were lower in the kaolin WC than the other treatments (vs. control: t = 6.48; df = 88.5; P < 

0.001; vs. kaolin BL: t = 6.54; df = 88.5; P < 0.001), whereas no differences were observed between 

control and kaolin BL (t = 0.07; df = 88.5; P = 1.000). In the bunch zone, nymph densities were 

lower in both the kaolin treatments than the control (vs. kaolin WC: t = 6.49; df = 88.5; P < 0.001; 

vs kaolin BL: t = 5.99; df = 88.5; P < 0.001), whereas no differences emerged between the two 

kaolin treatments (t = 0.49; df = 88.5; P = 1.000). No effect of bunch-zone leaf removal was 

observed on Z. rhamni nymph densities (Table 1; Fig. 4A and B). 
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Vineyard B. Kaolin application determined a reduction of Z. rhamni nymph densities (Table 

1; Fig 3 C and D). A significant interaction “time*kaolin application” was found because the effect 

of kaolin emerged from the third sampling date onwards. Higher densities were observed in the 

bunch zone than the vegetative zone where densities were always lower than 2 individuals per 100 

leaves. The interaction “canopy zone*kaolin application” was significant indicating that the effect 

of kaolin applications were different between the two canopy zones. In the vegetative zone, Z. 

rhamni nymph densities were not different among the three treatments (always P > 0.05). In the 

bunch zone, nymph densities were lower in both the kaolin treatments than the control (vs. kaolin 

WC: t = 6.48; df = 78.9; P < 0.001; vs kaolin BL: t = 7.25; df = 78.9; P < 0.001), whereas no 

differences emerged between the two kaolin treatments (t = 0.77; df = 78.9; P = 1.000). No effect of 

bunch-zone leaf removal was observed on Z. rhamni nymph densities (Table 1; Fig. 4C and D).  

3.1.4. Empoasca vitis adults on traps 

In both vineyards E. vitis captures were greatest in the sampling before the first kaolin-

application and then rapidly decreased (Table 2; Fig. 5A and C). In both vineyards E. vitis captures 

were lower in the kaolin WC treatment than the control and emerged in mid-June after the first 

kaolin-application. In both vineyards, bunch-zone leaf removal did not substantially influence the 

amount of E. vitis captures (Table 2; Fig. 5B and D).  

3.1.5. Zygina rhamni adults on traps 

In vineyard A no effect of kaolin application was observed on Z. rhamni captures (Table 2; 

Fig. 6A), whereas a significant effect of bunch-zone leaf removal emerged with lower captures on 

plots with leaf removal as compared to those without leaf removal (Table 2; Fig. 6B). In vineyard B 

Z. rhamni captures were lower in the kaolin WC treatment than the control and these differences 

emerged from mid-July onwards (Table 2; Fig. 6C). No effect of bunch-zone leaf removal was 

observed (Table 2; Fig. 6D).  

3.1.6. Anagrus spp. adults on traps 

In both vineyards Anagrus spp. captures were lower in the kaolin WC treatment than the 

control, but no significant differences emerged (Table 2; Fig. 7A and C). In both vineyards, the 

captures were not significantly different between subplots with or without leaf removal (Table 2; 

Fig. 7B and D).  

3.1.7. Leafhopper eggs and parasitization by Anagrus spp. 

In both vineyards, kaolin application had no significant influence on the amount of 

leafhopper eggs laid, nor the amount of eggs hatched or the percentage of eggs parasitized by 
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Anagrus spp. (Table 3). In both vineyards bunch-zone leaf removal had no influence on the amount 

of leafhopper eggs laid, nor the amount of eggs hatched or the percentage of eggs parasitized by 

Anagrus spp. In both vineyards the interaction between the two factors (kaolin and bunch-zone leaf 

removal) was never significant for the three variables considered (vineyard A: F ≤ 1.12; df = 1, 12; 

P ≥ 0.31; vineyard B: F ≤ 0.09; df = 1, 12; P ≥ 0.77). 

3.1.8. Empoasca vitis symptoms on leaves 

In vineyard A, the percentage of leaf surface with symptoms was lower in the kaolin WC 

treatment than the control (0.83±0.74% vs. 13.31±3.00%) (F = 172.11; df = 1, 12; P < 0.0001). No 

differences in the incidence of symptoms was recorded between leaves of proximal and distal 

shoots of the canes (7.87±7.73% vs. 6.27±6.11%) (F = 2.83; df = 1, 12; P = 0.12).  

3.2. Curative application trials  

3.2.1. Weather conditions 

During the sampling period in vineyards C and D, four important rainfalls were recorded on 

19 (C 17.3 mm, D 33.3 mm), 20 (C 14.8 mm, D 24 mm), 24 (C 41 mm, D 52 mm) and 25 August 

(C 23.3 mm, D 5.4 mm). Kaolin was applied after the rainfalls that occurred on 19 August and the 

coverage was restored after the rainfalls on 24 August. In any case the kaolin leaf coverage was 

little affected by the weather conditions because also at the end of the sampling period kaolin was 

visible on leaves.  

3.2.2. Empoasca vitis nymphs on leaves 

In the sampling conducted 1-d before the first kaolin-application (18 August), no differences 

in E. vitis nymph densities between the two treatments were found for either vineyard (vineyard C: t 

= 0.46; df = 6; P = 0.67; vineyard D: t = 1.78; df = 6; P = 0.13) (Fig. 8A and C). 

In the sampling conducted 5-d after the first kaolin-application and 6-h before the second 

one (24 August), E. vitis nymph densities were about three times lower in the kaolin WC than the 

control in both vineyards (vineyard C: t = 2.68; df = 6; P = 0.04; vineyard D: t = 6.94; df = 6; P = 

0.0004).  

In the sampling conducted 4-d after the second kaolin application (28 August), the 

differences in nymph densities between kaolin WC and the control increased in both vineyards 

(vineyard C: t = 3.795; df = 6; P = 0.01; vineyard D: t = 7.79; df = 6; P = 0.0002).  
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3.2.3. Zygina rhamni nymphs on leaves 

In the sampling conducted 1-d before the first kaolin-application (18 August), no differences 

between the two treatments were found for Z. rhamni nymph density in either vineyard (vineyard C: 

t = 0.23; df = 6; P = 0.83; vineyard D: t = 1.28; df = 6; P = 0.25) (Fig. 8B and D). 

In the sampling conducted 5-d after the first kaolin-application and 6-h before the second 

one (24 August), Z. rhamni nymph populations were lower in the kaolin WC than the control in 

both vineyards (vineyard C: t = 2.47; df = 6; P = 0.05; vineyard D: t = 2.81; df = 6; P = 0.03).  

In the sampling conducted 4-d after the second kaolin-application (28 August), the 

differences in nymph density between the two treatments increased in both vineyards (vineyard C: t 

= 3.78; df = 6; P = 0.01; vineyard D: t = 4.48; df = 6; P = 0.004).  

3.3. Laboratory experiments  

3.3.1. Experiment 1. Effect of kaolin on E. vitis first and second instar nymphs 

At 1-d sampling a significantly higher mortality rate of E. vitis nymphs was observed in the 

kaolin-on-leaves treatment than the control (P < 0.0001) (Fig. 9A). At 3-d sampling this significant 

difference was confirmed with almost all nymphs dead in the kaolin-on-leaves treatment but only 

one third of them dead in the control (P < 0.0001). 

At 1-d sampling, the proportion on nymphs on the bag surface was very high in the kaolin-

on-leaves treatment (88%) and very low in the control (10%) (P < 0.0001).  

3.3.2. Experiment 2. Effect of kaolin on E. vitis third to fifth instar nymphs 

Mortality of E. vitis nymphs in the kaolin-on-leaves treatment increased more rapidly than 

both the control and kaolin-on-nymphs treatment, in which nymphs were sprayed with kaolin before 

being placed on untreated leaves (Fig. 9B). The differences were significant from 1-d to 7-d 

samplings (P ≤ 0.05) when almost all nymphs in the kaolin-on-leaves treatment were dead but about 

half of the nymphs in both the control and the kaolin-on-nymphs treatment were still alive.  

At 1-d sampling, the proportion of nymphs on the bag surface was significantly higher in the 

kaolin-on-leaves treatment (65%) than in the control (10%) and kaolin-on-nymphs (0%) (P = 0.01). 
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4. Discussion 

4.1. Effect of kaolin on leafhopper populations 

Kaolin caused a decrease in the field populations of E. vitis and Z. rhamni nymphs at very 

low levels when sprayed under both the preventive and curative criteria. The effect of kaolin in the 

preventive applications was persistent as differences from the control remained for up to four 

weeks. The reduction in E. vitis nymph densities was associated with a more than 10-fold reduction 

in leaf surface area showing symptoms from leafhopper feeding activity. The level of E. vitis 

control is comparable to that obtained with the most effective synthetic insecticides (Lavezzaro et 

al. 2006, Posenato et al. 2006, Pozzebon et al. 2011). 

4.2. Mode of action of kaolin against leafhoppers 

According to Glenn et al. (1999), kaolin could affect E. vitis and Z. rhamni populations by 

reducing egg laying, by exerting a direct toxicity towards motile forms or by inhibiting their feeding 

activity. From the theoretical point of view, kaolin could also reduce the leafhopper population by 

favoring the activity of natural enemies (e.g., Anagrus spp. egg-parasitoids and generalist 

predators).  

In the present study, the amount of leafhopper egg laying was not significantly lower in the 

kaolin treatment than control. This result is in accordance with other studies that reported a decrease 

in leafhopper/planthopper populations without a significant effect on oviposition (Knight et al. 

2001, Mahmoudi et al. 2014). The data on the amount of eggs seem at odds with the lower captures 

on the grapevines sprayed with kaolin. This may be due to a lower attractiveness of the traps that 

resulted from the light reflecting properties of kaolin particle film that could alter leafhoppers 

perception of the leaves (Glenn et al. 1999, Glenn and Puterka 2005) without affecting egg-laying 

activity. However, because on grapevine Puterka et al. (2003) reported that a decrease in captures of 

the sharpshooter H. coagulata on yellow sticky traps was associated with a significant oviposition-

deterrent effect, another hypothesis is that kaolin had a repellent effect on adults but that this did not 

result in a lower number of eggs because egg laying may have almost ended when the kaolin was 

applied. Two observations agree with this possibility. First, adult captures also decreased rapidly in 

the control after the first kaolin-application and this could be associated with a decrease in egg 

laying independent of kaolin. Second, the increase in the nymph population ended in late June 

(Vineyard A) and early July (Vineyard B) indicating that fewer eggs hatched after late June-early 

July. In fact, considering that at average June temperatures (20.7 °C) the eggs hatch in about 15-d 
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(Cerutti et al. 1990), the newly-hatched nymphs from eggs laid before the first kaolin application 

(18 June) would be recorded no later than early July. Based on this prediction, in vineyard A 

negligible egg laying or very high egg parasitization can be hypothesized because nymph densities 

did not substantially increase after 29 June, whereas in vineyard B, where nymph densities still 

increased significantly from 29 June to 6 July, a significant amount of egg-laying can be presumed 

after the first kaolin application. In agreement with these data, in this last vineyard the total number 

of eggs was lower by 20% in kaolin treatments than the control, although the difference was not 

statistically significant. However, if an egg-laying deterrent effect of kaolin cannot be excluded, its 

role in the leafhopper control did not appear crucial considering both the curative activity of kaolin 

in the field and the high nymph mortality in the laboratory. 

Nymph mortality due to contact of kaolin with the insect integument would seem feasible 

from the knock-down effect observed in the curative application trials. At this purpose, the effect of 

spraying kaolin directly on insects has not been investigated by other recent studies, but a contact 

toxicity was observed mainly due to absorption of epicuticular wax (Ebeling 1971) and the abrasion 

of the epicuticle (Alexander 1944a, 1944b; David and Gardiner 1950). The loss of epicuticle 

integrity could imply water loss and thus death by desiccation. However, our laboratory data 

excluded with certainty kaolin contact toxicity on E. vitis because the mortality of the nymphs 

sprayed with kaolin and placed on kaolin-untreated leaves was not different from that on the 

control.  

Inhibition of leafhopper feeding activity due to kaolin particle films has been suggested by 

previous studies (Knight et al. 2001, Glenn and Puterka 2005, Tubajika et al. 2007, Mahmoudi et al. 

2014). In our study this hypothesis is supported by the fact that in the laboratory the nymphs died 

only when they were confined to leaves covered with kaolin. Moreover, under laboratory 

conditions, the day after the beginning of the two experiments most of the nymphs in the kaolin-on-

leaves treatment were recorded on the bag surface rather than on the leaf surface. Our data would 

suggest that this anti-feeding effect is greater in younger nymphs (first and second instars) than 

older ones (third to fifth instars). In the laboratory a higher and more rapid mortality rate was 

observed in experiment 1 than experiment 2, in which nymphs of the older instars were placed on 

kaolin-treated leaves. In the field, a higher efficacy of kaolin was observed in the preventive 

application trials than the curative application trials when many nymphs of the older instars were 

present on the leaves. Without feeding, younger nymph instars could die earlier and in a higher 

proportion than the older ones because they have a less favorable ratio between body surface and 

volume, and then a lower desiccation tolerance.  
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The absence of a difference in leafhopper egg parasitization between kaolin and control 

treatments, and with even lower captures of Anagrus spp. adults in kaolin treatment, clearly 

indicates that kaolin did not favor the activity of Anagrus spp. adults. Also, a greater predation of 

leafhopper nymphs seems unlikely on the basis of the data reported in the literature as well as to our 

preliminary data because the amount of generalist predators (e.g., spiders, minute pirate bugs) not 

only did not increase in the kaolin covered plots, but in some cases significantly decreased (Sackett 

et al. 2007, Bengochea et al. 2010, Markó et al. 2010, Pascual et al. 2010). 

4.3. Effect of bunch-zone leaf removal on Empoasca vitis 

Bunch-zone leaf removal did not reduce E. vitis nymph and adult densities. This would seem 

in contradiction with data from the literature that has reported greater infestations in plots or 

cultivars with greater plant vigor (Decante and van Helden 2001, Decante et al. 2009, Pavan and 

Picotti 2009). However, it must be considered that removing a small quantity of leaves from the 

bunch zone does not affect plant vigor and the leaf density in the vegetative zone where the highest 

E. vitis populations were observed also in the plots without leaf removal. 

4.4. Empoasca vitis nymph spatial distribution 

In the two trials on kaolin preventive-applications, a variation in the spatial distribution of E. 

vitis nymphs was observed over the sampling period. In fact, in the first sampling the leaves of the 

bunch zone and in the subsequent samplings those of the vegetative zone were preferred by E. vitis, 

respectively. Since the leaves of the bunch and vegetative zones are, respectively, the basal and the 

median leaves of the shoots, a shift in egg-laying preference by females from older leaves (basal) to 

younger ones (median) can be supposed. In fact, in the first sampling, when nymphs were mostly 

observed in the bunch zone, many older-instar nymphs belonging to the first generation were still 

observed, whereas in the following samplings, when nymphs were mostly observed in the 

vegetative zone, many younger-instar nymphs belonging to the second generation were found (data 

not reported). This shift in the occurrence of nymphs from basal to median leaves, from the first to 

the second generation, has been observed previously by Fos et al. (1997). 

Data on the spatial distribution of E. vitis nymphs in the kaolin BL treatment suggest that 

nymphs were not able to move from kaolin-covered leaves in the bunch zone to the kaolin-free 

leaves of the vegetative zone. In fact, the infestation levels recorded in the vegetative zone of the 

kaolin BL treatment did not differ from the vegetative zones of the control over the whole season. 

Therefore, during the same generation it is not necessary to cover leaves that emerge after the 

kaolin application because the nymphs already present, and those that will hatch by eggs already 
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laid, are not able to move from kaolin-covered leaves to the kaolin-free leaves. For this reason we 

think that the number of treatments necessary to ensure high E. vitis control is lower than reported 

in other studies (Markό et al. 2008). The high level of effectiveness achieved in this study with just 

two applications of kaolin spaced 5-6 days apart is evidence of this fact. A strategy based on a 

reduced number of kaolin applications also seems possible because kaolin exhibited good resistance 

to water washout. A practical consequence of the preference of E. vitis second-generation for leaves 

of the vegetative zone is the necessity to apply kaolin over the entire canopy. 

4.5. Kaolin as an alternative to synthetic insecticides in viticulture 

Kaolin, which is commercialized as a natural crop protectant, demonstrated insecticidal 

activity against grapevine leafhoppers. The high efficacy achieved with only two applications, the 

negligible impact on Anagrus parasitoids and the resistance to water washout are features that 

support kaolin as a candidate for controlling E. vitis in vineyards, mostly in organic farms where 

very effective insecticides are not currently available. Moreover, the possibility of using kaolin with 

curative criterion allows applying the product only when economic threshold is exceeded in 

agreement with IPM principles. 

The use of kaolin would be a valuable option only if negative side effects on grapevine 

production did not occur. Kaolin applied to grapevines submitted to bunch-zone leaf removal 

reduced sunburn damage, did not influence yield, reduced bunch sugar content, increased must total 

acidity and enhanced wine sensory attributes (Coniberti et al. 2013). The authors suggested that, in 

kaolin covered berries, decreased sugar may be explained by lower water loss and increased acidity 

by lower berry temperatures. In fact, no differences in sugar content and must total acidity were 

detected compared to grapevines not submitted to bunch-zone leaf removal. In other conditions, 

kaolin was effective in reducing grapevines water stress without influencing sugar content and must 

total acidity (Glenn et al. 2010). 
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Table 1. Preventive application trials. Results of repeated measures ANOVA performed on 

Empoasca vitis and Zygina rhamni nymph densities observed on leaves. 

Source of variation Vineyard A Vineyard B 

 

F df P F df P 

Empoasca vitis 

      Kaolin application 179.78 2, 71.8 < 0.001 141.51 2, 68.7 < 0.001 

Leaf removal 0.13 1, 71.8 0.720 0.19 1, 68.7 0.668 

Kaolin app.*Leaf rem. 2.54 2, 71.8 0.086 1.79 2, 68.7 0.174 

Canopy zone 75.17 1, 71.8 < 0.001 35.19 1, 68.7 < 0.001 

Canopy zone*Kaolin app. 69.37 2, 71.8 < 0.001 22.30 2, 68.7 < 0.001 

Canopy zone*Leaf rem. 0.03 1, 71.8 0.868 0.75 1, 68.7 0.389 

Canopy zone*Kaolin app.*Leaf rem. 0.69 2, 71.8 0.504 0.25 2, 68.7 0.782 

Time 53.48 5, 173 < 0.001 33.60 5, 168 < 0.001 

Time*Kaolin app. 22.07 10, 181 < 0.001 15.14 10, 177 < 0.001 

Time*Leaf rem. 1.21 5, 173 0.309 1.65 5, 168 0.150 

Time*Kaolin app.*Leaf rem. 0.94 10, 181 0.502 1.24 10, 177 0.268 

Canopy zone*Time 29.58 5, 173 < 0.001 16.40 5, 168 < 0.001 

Canopy zone*Kaolin app.*Time 7.54 10, 181 < 0.001 4.98 10, 177 < 0.001 

Canopy zone*Leaf rem.*Time 1.02 5, 173 0.410 0.15 5, 168 0.981 

Canopy zone*Kaolin app.*Leaf 

rem.*Time 1.32 10, 181 0.220 0.62 10, 177 0.799 

       Zygina rhamni 

      Kaolin application 38.88 2, 88.5 < 0.001 18.75 2, 78.9 < 0.001 

Leaf removal 0.61 1, 88.5 0.438 1.94 1, 78.9 0.167 

Kaolin app.*Leaf rem. 0.49 2, 88.5 0.616 1.02 2, 78.9 0.364 

Canopy zone 5.50 1, 88.5 0.021 31.19 1, 78.9 < 0.001 

Canopy zone*Kaolin app. 15.45 2, 88.5 < 0.001 13.51 2, 78.9 < 0.001 

Canopy zone*Leaf rem. 0.12 1, 88.5 0.733 3.95 1, 78.9 0.051 

Canopy zone*Kaolin app.*Leaf rem. 0.22 2, 88.5 0.803 0.86 2, 78.9 0.428 

Time 27.81 5, 173 < 0.001 5.04 5, 165 < 0.001 

Time*Kaolin app. 4.62 10, 182 < 0.001 4.02 10, 176 < 0.001 

Time*Leaf rem. 1.63 5, 173 0.154 1.21 5, 165 0.309 

Time*Kaolin app.*Leaf rem. 0.54 10, 182 0.859 1.38 10, 176 0.192 

Canopy zone*Time 5.14 5, 173 < 0.001 1.47 5, 165 0.204 

Canopy zone*Kaolin app.*Time 3.62 10, 182 < 0.001 1.31 10, 176 0.227 

Canopy zone*Leaf rem.*Time 0.72 5, 173 0.606 0.56 5, 165 0.729 

Canopy zone*Kaolin app.*Leaf 

rem.*Time 1.10 10, 182 0.366 1.28 10, 176 0.245 
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Table 2. Preventive application trials. Results of repeated measures ANOVA performed on 

Empoasca vitis, Zygina rhamni, Anagrus spp. adult captures on yellow sticky traps.  

 

Vineyard A Vineyard B 

  F df P F df P 

Empoasca vitis 

      Kaolin application 24.57 1, 21.1 < 0.001 4.41 1, 23 0.047 

Leaf removal 0.81 1, 28.1 0.225 0.00 1, 23 0.979 

Kaolin app.*Leaf rem. 0.58 1, 28.1 0.577 1.15 1, 23 0.295 

Time 8.94 9, 98.9 < 0.001 125.24 9, 101 < 0.001 

Time*Kaolin app. 0.90 9, 98.9 < 0.001 4.96 9, 101 < 0.001 

Time*Leaf rem. 0.46 9, 98.9 0.761 1.22 9, 101 0.293 

Time*Kaolin app.*Leaf rem. 0.76 9, 98.9 0.702 0.95 9, 101 0.485 

       

Zygina rhamni 

      Kaolin application 2.93 1, 28 0.098 12.62 1, 22.8 0.002 

Leaf removal 6.68 1, 28 0.015 0.02 1, 22.8 0.903 

Kaolin app.*Leaf rem. 0.06 1, 28 0.816 0.00 1, 22.8 0.952 

Time 47.77 9, 99.6 < 0.001 23.96 9, 100 < 0.001 

Time*Kaolin app. 1.66 9, 99.6 0.108 2.34 9, 100 0.019 

Time*Leaf rem. 0.75 9, 99.6 0.660 0.55 9, 100 0.838 

Time*Kaolin app.*Leaf rem. 0.36 9, 99.6 0.953 0.56 9, 100 0.827 

       
Anagrus spp. 

      
Kaolin application 3.01 1, 28.1 0.094 2.45 1, 32.8 0.127 

Leaf removal 0.81 1, 28.1 0.375 0.23 1, 32.8 0.638 

Kaolin app.*Leaf rem. 0.58 1, 28.1 0.453 0.00 1, 32.8 0.979 

Time 8.94 9, 98.9 < 0.001 15.36 9, 95.2 < 0.001 

Time*Kaolin app. 0.90 9, 98.9 0.524 0.61 9, 95.2 0.784 

Time*Leaf rem. 0.46 9, 98.9 0.898 0.40 9, 95.2 0.934 

Time*Kaolin app.*Leaf rem. 0.76 9, 98.9 0.655 0.53 9, 95.2 0.846 
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Table 3. Preventive application trials. Results of two-way ANOVA performed on leafhopper eggs 

laid and hatched on 100 leaves (mean±standard deviation) and the percentage of parasitized eggs.  

 Kaolin  Leaf-removal 

 Control Kaolin WC ANOVA  With  Without  ANOVA 

Vineyard A        

Eggs laid  216.5±54.9 214.5±50.3 F = 0.006; 

df = 1, 12; 

P = 0.94 

 201.3±46.5 229.8±54.0 F = 1.2;  

df = 1, 12; 

P = 0.30 

Hatched eggs  102.5±43.6 116.5±35.6 F = 0.47; 

df = 1, 12; 

P = 0.51 

 103.3±43.6 115.8±35.6 F = 0.37; 

df = 1, 12; 

P = 0.55 

Percentage of 

parasitized eggs  

53.4±7.1 46.7±8.7 F = 2.44; 

df = 1, 12; 

P = 0.14 

 50.0±9.8 50.2±7.5 F = 0.001; 

df = 1, 12; 

P = 0.98 

        

Vineyard B        

Eggs laid  126.8±55.5 102.0±21.6 F = 1.2; 

df = 1, 12; 

P = 0.30 

 113.8±52.9 115.0±33.2 F = 0.003; 

df = 1, 12; 

P = 0.96 

Hatched eggs  76.8±37.4 68.0±20.1 F = 0.27; 

df = 1, 12; 

P = 0.61 

 74.3±37.4 70.5±24.4 F = 0.05; 

df = 1, 12; 

P = 0.83 

Percentage of 

parasitized eggs  

40.8±12.4 33.5±12.8 F = 1.18; 

df = 1, 12; 

P = 0.30 

 35.7±9.8 38.6±15.8 F = 0.22; 

df = 1, 12; 

P = 0.65 
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Fig. 1. (A–D) Preventive application trials. Empoasca vitis nymphs recorded during the sampling 

period in two vineyards, in two canopy-zones and under three treatments. Kaolin was applied on 18 

and 24 June. Different letters among treatments at the same date indicate significant differences 

according to t-test on the least square mean with Bonferroni correction (α = 0.05). 
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Fig. 2. (A–D) Preventive application trials. Empoasca vitis nymphs recorded during the sampling 

period in two vineyards, in the two leaf position and under two treatments. Bunch-zone leaf 

removal was performed on 17 June. Different letters among treatments at the same date indicate 

significant differences according to t-test on the least square mean with Bonferroni correction (α = 

0.05). 
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Fig. 3. (A–D) Preventive application trials. Zygina rhamni nymphs recorded during the sampling 

period in two vineyards, in two canopy-zones and under three treatments. Kaolin was applied on 18 

and 24 June. Different letters among treatments at the same date indicate significant differences 

according to t-test on the least square mean with Bonferroni correction (α = 0.05). 
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Fig. 4. (A–D) Preventive application trials. Zygina rhamni nymphs recorded during the sampling 

period in two vineyards, in the two leaf position and under two treatments. Bunch-zone leaf 

removal was performed on 17 June. Different letters among treatments at the same date indicate 

significant differences according to t-test on the least square mean with Bonferroni correction (α = 

0.05). 
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Fig. 5. (A–D) Preventive application trials. Captures of Empoasca vitis by yellow sticky traps 

recorded from June to the middle of August in two vineyards, in the control and kaolin whole-

canopy (WC) and in plots with or without bunch-zone leaf removal. Kaolin was applied on 18 and 

24 June and the leaf removal on 17 June. Asterisks * indicate dates with significant differences 

according to t-test on the least square mean with Bonferroni correction (α = 0.05). 
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Fig. 6. (A–D) Preventive application trials. Captures of Zygina rhamni by yellow sticky traps 

recorded from June to early August in two vineyards, in the control and kaolin whole-canopy (WC) 

and in plots with or without bunch-zone leaf removal. Kaolin was applied on 18 and 24 June and 

the leaf removal on 17 June. Asterisks * indicate dates with significant differences according to t-

test on the least square mean with Bonferroni correction (α = 0.05). 
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Fig. 7. (A–D) Preventive application trials. Captures of Anagrus spp. by yellow sticky traps 

recorded from June to early August in two vineyards, in the control and kaolin whole-canopy (WC) 

and in plots with or without bunch-zone leaf removal. Kaolin was applied on 18 and 24 June. 

Asterisks * indicate dates with significant differences according to t-test on the least square mean 

with Bonferroni correction (α = 0.05). 

  



 55 

 

Fig. 8. (A–D) Curative application trials. Empoasca vitis and Zygina rhamni nymphs recorded in 

two vineyards and in the control and kaolin. Kaolin was applied on 19 and 24 August. Different 

small letters among treatments at the same date indicate significant differences according to a t-test 

(α = 0.05). 
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Fig. 9. (A–B) Laboratory experiments. Survival of Empoasca vitis nymphs in different treatments 

and days (d). Different small letters among treatments in the same time period indicate significant 

differences according to Fisher’s exact test (A) or Ryan’s test (B) (α = 0.05), respectively. 
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Chapter 3 - Control of Scaphoideus titanus 
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Abstract 

The leafhopper Scaphoideus titanus is the vector of ‘Candidatus Phytoplasma vitis’, the 

causal agent of Flavescence dorée (FD) a key disease for European viticulture. In organic vineyards, 

the control of S. titanus relies mostly on the use of pyrethrins that have suboptimal efficacy. During 

2016, three field trials were conducted to evaluate the efficacy of kaolin, orange oil, insecticidal 

soap and spinosad against S. titanus nymphs, in comparison with pyrethrins. The activity of kaolin 

was evaluated also in the laboratory. In all field trials, kaolin had an efficacy against nymphs 

comparable to pyrethrins, while the other products were not effective. Laboratory results confirmed 

that kaolin increased nymph mortality. In organic vineyards, kaolin and pyrethrins are valuable 

tools in the management of FD. Nevertheless, their efficacy is lower compared to that of the 

synthetic insecticides used in conventional viticulture. Therefore, further research should be 

conducted in order to identify alternatives to synthetic insecticides for S. titanus control in the 

context of organic viticulture. 
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1. Introduction 

The leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae) is the vector of 

‘Candidatus Phytoplasma vitis’, the causal agent of Flavescence dorée (FD), which is a Grapevine 

Yellows Disease (GYD) that causes severe damage in European vineyards [1–4]. 

Flavescence-dorée phytoplasma is a quarantine disease in the European and Mediterranean 

Plant Protection Organization (EPPO) region [5] and control measures are mandatory in some 

European countries [6]. The FD control strategy in vineyards relies mostly on S. titanus control and 

on the roguing of symptomatic grapevines, from which the vector can acquire the phytoplasma [6–

9]. However, since insecticide applications are poorly effective against infected adults migrating 

into vineyards [10–12], the strategy adopted is effective only if external sources of infected 

individuals (i.e., infected vineyards, both abandoned or cultivated but untreated against S. titanus, 

and wild American grapevines growing in hedgerows and groves) are previously removed. 

In Italian conventional vineyards, one to two insecticide applications against S. titanus can 

keep the populations of this vector and the percentage of FD-symptomatic grapevines at acceptable 

levels [11,13,14]. Infected grapevines can also die or recover, but this latter capability varies across 

cultivars. In cultivars with a high incidence of recovery, the chemical control of S. titanus can bring 

the percentage of symptomatic grapevines back to acceptable levels without their roguing [15]. The 

high efficacy of insecticide applications in vineyards is due to the biology of S. titanus: (i) it is 

monophagous on Vitis sp. plants, therefore external sources can be easily removed, and (ii) it 

completes only one generation a year after being overwintered as eggs [6,16,17]. The control 

strategy aims to kill nymphs at the completion of the latency period, that is, before they have 

reached the fourth-fifth instars, which is the point that they become infective [13,18]. The need for 

more than one insecticide application derives from the prolonged egg-hatching period, which lasts 

for over 45 days [17]. The timing of insecticide applications is usually based on nymph samplings. 

In Italy, the first insecticide application is performed at the appearance of third instar nymphs and 

the second application occurs after two or three weeks to kill the nymphs hatched after the first 

application [13].  

In conventional vineyards, an effective control of S. titanus nymphs is ensured by the use of 

organophosphates, pyrethroids and neonicotinoids [19–23]. All these insecticides are characterized 

by a long residual activity.  

In organic vineyards, the control of S. titanus is difficult and often higher population levels 

are observed as compared to conventional vineyards, despite several insecticide applications [11]. 

The most effective insecticides in organic viticulture are pyrethrins, which are used alone or in 

combination with piperonyil butoxide, mineral oil or sesame oil [21,22,24–29]. However, the 
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effectiveness of pyrethrins is lower than synthetic insecticides [11,22], because the former exert a 

marked knock-down effect when nymphs are directly hit, but the effectiveness declines to low 

levels when nymphs are kept in contact with fresh residues [26]. The absence of residual activity in 

pyrethrins mandates many applications to cover the entire egg-hatching period adequately. Mineral 

oil, spinosad, azadirachtin and Beauveria bassiana are considered less effective than pyrethrins or 

totally ineffective [22,24–28]. The need for repeated pyrethrin applications to overcome the low 

persistence of this class of insecticides may result in detrimental effects on predatory mites of the 

Phytoseiidae family [26,28,30]. Considering both the low efficacy and the toxicity to non-target 

organisms of pyrethrins, the identification of other natural products is necessary. 

Recently, natural products such as kaolin, essential oils and insecticidal soap (i.e., potassium 

salts of fatty acids) have been found to be effective against leafhoppers or other Hemiptera [31–35]. 

In particular, a high efficacy of kaolin against the leafhoppers Empoasca vitis (Göthe) and Zygina 

rhamni Ferrari (Hemiptera: Cicadellidae) was observed both in vineyards and in the laboratory [32]. 

In the laboratory, plant essential oils have been found to exhibit a toxic activity against mealybugs 

(Hemiptera: Pseudococcidae) [33]. Insecticidal soap was effective in the control of some 

Pentatomidae under field conditions [34] and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) 

in the laboratory [35]. In the present study, the efficacy of kaolin, orange oil, insecticidal soap and 

spinosad against S. titanus nymphs was compared to pyrethrins in field trials. To evaluate if kaolin 

had any effects on egg laying by females, nymph population levels in the kaolin and control were 

assessed in the year following the kaolin applications. The activity of kaolin on nymphs was also 

evaluated in the laboratory. 

2. Materials and methods 

2.1. Field trials  

In 2016, three field trials were carried out in vineyards located in north-eastern Italy to 

evaluate the efficacy of five natural products (Table 1) against S. titanus in comparison to an 

untreated control. Vineyard I (Togliano, Udine district, 46°06”45”N, 13°24’40”E, 140 m a.s.l., 

cultivar Merlot) is a 15-yr-old conventional vineyard with grapevines growing under the Guyot 

training system with distances between and along the rows of 2.4 m and 0.7 m, respectively. 

Vineyard II (Nimis, Udine district, 46°11’34”N, 13°15’42”E, 200 m a.s.l., cultivar Verduzzo 

Friulano) is a 15-yr-old conventional vineyard with grapevines growing under the Guyot training 

system with distances between and along the rows of 2.9 m and 0.8 m, respectively. Vineyard III 
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(Lonigo, Vicenza district, 45°24’04”N, 11°23’26”E, 31 m a.s.l., cultivar Garganega) is a 20-yr-old 

organic vineyard with grapevines growing under the “Pergola” training system with distances 

between and along the rows of 4.0 m and 1.0 m, respectively. In all vineyards, a standard fungicide 

program was followed and no insecticides were applied during the growing season. 

In all trials, a randomized block design with four replicates was adopted. Each block (row) 

was divided into 6 plots of 20 (vineyard I) or 16 (vineyard II) or 15 (vineyard III) grapevines and 

product applications were planned as described in Table 1. The timing of the applications was based 

on the appearance of different S. titanus instar nymphs, in particular: (A) first-instar nymphs (26 

May in vineyard I, 25 May in vineyard II and 26 May in vineyard III); (B) second-instar nymphs (1 

June in vineyard I, 3 June in vineyard II and 1 June in vineyard III); (C) third-instar nymphs (8 June 

in vineyard I, 8 June in vineyard II and 10 June in vineyard III); and (D) fourth-instar nymphs (14 

June in vineyard I, 14 June in vineyard II and 15 June in vineyard III). All products were applied 

using a backpack sprayer (M1200, Cifarelli s.p.a., Voghera, PV, Italy) at a rate of 1000 L/ha 

spraying the canopy and the suckers growing along the vertical trunk.  

In all vineyards, S. titanus nymphs were sampled before application timing A (25 May in 

vineyard I, 3 June in vineyard II and 26 of May in vineyard III) and weekly up to one week after 

application timing D (i.e., 28 June in vineyard I, 6 July in vineyard II and 30 June in vineyard III). 

Sampling was conducted on the 10 central grapevines of each plot. Scaphoideus titanus nymphs 

were counted on sucker leaves. Suckers were chosen as sampling units because in spring they host 

the highest nymph density [13,36]. In vineyards I and II, five sucker leaves per grapevine were 

sampled for a total of 200 leaves per treatment. In vineyard III, all leaves of 10 suckers per plot 

were sampled for a total of 40 suckers per treatment being the population density too low to use leaf 

as sampling unit. 

In vineyards I and II, S. titanus nymphs were also sampled in early June of 2017 in the plots 

that in 2016 belonged to the control and the kaolin. In vineyard III, this sampling was not done 

because a late frost heavily damaged suckers.  

2.2. Laboratory bioassay 

A laboratory bioassay was carried out to evaluate the efficacy of kaolin against S. titanus 

nymphs. Mortality of first-instar and second-instar nymphs was compared in two treatments: (i) 

nymphs placed on kaolin-treated leaves (kaolin); and (ii) nymphs placed on water-treated leaves 

(control). The sample size was equal to 50 leaves per treatment. For this purpose, 100 insecticide-

free grapevine leaves were collected from vineyard I. In the laboratory, each leaf was visually 

checked to ensure the absence of S. titanus individuals. Fifty leaves were sprayed with kaolin and 
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50 with water, and each were inserted individually into transparent self-sealing plastic bags (20 × 

33 cm). The kaolin application was done at a 4% W:V (Surround WP:water) concentration with a 

hand sprayer to run-off. The S. titanus nymphs used in the bioassay were collected from insecticide-

free leaves picked in the same vineyard. First- and second-instar nymphs were randomly chosen on 

these leaves and a single individual was induced to move onto each bagged leaf with a brush. After 

1, 2, 3, 6 and 9 days from the beginning of the bioassay, the bags were checked to note whether 

nymphs were alive or dead.  

2.3. Statistical analyses 

Statistical analyses were performed with Microsoft Excel 2013 for Windows (Microsoft 

Corporation 2013, Redmond, WA, USA) and SAS (v 9.4, SAS Institute, Cary, NC, USA).  

Data collected in the field trials in 2016 were analyzed using mixed linear models performed 

with the PROC MIXED (SAS Institute 9.4). In modelling treatment, time and their interactions 

were considered as sources of variation and F tests were used to evaluate their effects (α = 0.05). 

Numbers of S. titanus nymphs were considered as response variable with repeated measures made 

at different times, i.e. sampling dates. Treatments were compared using a t-test to the least-square 

means with Bonferroni adjustment of the p-values (α = 0.05). Data collected in the spring of 2017 

were compared with a t-test. Data were log (x + 1) transformed prior to the analyses. 

Data collected in the laboratory bioassay were compared with a Fisher’s exact test and the 

mortality percentage of nymphs was calculated following Abbott [37].  

3. Results 

3.1. Field trials  

Vineyard I. During the sampling period, significant differences were recorded among 

treatments (F5,19.7 = 9.52, p < 0.0001) (Figure. 1). Considering the overall trial period, only kaolin 

and pyrethrins significantly reduced S. titanus nymph densities compared to the control. The time 

effect was significant (F5,74.2 = 167.51, p < 0.0001) because S. titanus numbers were low at the 

beginning of the trial, increased until the fourth sampling date and were very low on the last 

sampling date. A significant interaction time*treatment was found (F25,76.5 = 7.22, p < 0.0001) 

because the efficacy of the treatments varied over time. In the pyrethrin-treated plots, population 

densities dropped to low numbers after the first application (timing C), but on the subsequent 

sampling dates they rose to levels similar to the other treatments, despite a second application 
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(timing D). Kaolin-treated plots showed nymph densities lower than the control on the three 

sampling dates after the first application (timing A), but not on the last sampling date.  

In the spring of 2017, no significant difference in nymph populations was observed between 

the plots treated with kaolin in the previous year and the control (mean ± SD nymphs per leaf, 1.12 

± 0.41 vs. 1.48 ± 0.18) (t6 = 1.59, p = 0.16).  

Vineyard II. During the sampling period, significant differences were recorded among 

treatments (F5,36.4 = 6.13, p = 0.0003) (Figure. 2). Considering the overall trial period, only kaolin 

significantly reduced S. titanus nymph densities compared to the control. The time effect was 

significant (F5,83.1 = 37.9, p < 0.0001) because S. titanus numbers were low at the beginning of the 

trial, increased until the fourth sampling date and were very low on the last sampling date. The 

time*treatment interaction was not significant (F25,84.9 = 0.85, p = 0.67). 

In the spring of 2017, no significant difference in nymph populations was observed between 

the plots treated with kaolin in the previous year and the control (mean ± SD nymphs per leaf, 0.20 

± 0.04 vs. 0.18 ± 0.10) (t6 = 0.72, p = 0.50).  

Vineyard III. During the sampling period significant differences were recorded among 

treatments (F5,40.1 = 4.29, p = 0.0032) (Figure. 3). Considering the overall trial period, only kaolin 

and pyrethrins significantly reduced S. titanus nymph densities compared to the control. The time 

effect was significant (F5,86.1 = 34.34, p < 0.0001) because S. titanus numbers were low at the 

beginning of the trial, increased until the second sampling date and were very low on the last 

sampling date. The time*treatment interaction was not significant (F25,87.1 = 0.91, p = 0.59).  

3.2. Laboratory bioassay 

One day after the beginning of the bioassay, a significantly higher mortality rate of first-

instar and second-instar nymphs of S. titanus was observed in the kaolin-treated leaves compared to 

the control (Figure. 4). This difference persisted until the end of the bioassay. The Abbott efficacy 

calculated for kaolin at the end of this experiment was 46%. 

4. Discussion and conclusions 

Among the natural products tested in the current study, only kaolin showed an efficacy 

comparable to that of pyrethrins in the control of S. titanus nymphs in vineyards. Based on 

laboratory data, kaolin increased the mortality of S. titanus nymphs. A previous laboratory study 

showed that kaolin applications increase the mortality of the nymphs of the grapevine leafhopper E. 

vitis [32]. Because kaolin acted against E. vitis as a feeding inhibitor, a similar mode of action might 
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be involved with the S. titanus nymphs. However, the Abbott mortality of first-instar and second-

instar nymphs feeding on kaolin-treated leaves for three days was much lower for S. titanus (43.2% 

in this study) than for E. vitis (96.4% in [32]). The lower susceptibility of S. titanus can be 

explained with its larger body size because also for E. vitis a lower mortality (48.8% at the third 

day) occurred when older and then larger nymphs were tested [32]. Moreover, based on nymph 

samplings carried out in the year following the kaolin applications, the plants coated with this 

product did not appear to have had any oviposition-deterrent effect. 

In all field trials, three kaolin applications against S. titanus had an efficacy comparable to 

two pyrethrin applications (considered as standard procedure in organic Italian vineyards). In these 

trials, kaolin and pyrethrins reduced nymph numbers with a suboptimal efficacy. Neither of the 

natural products had significant efficacy in late June when egg hatching was almost complete, and 

when the aged nymphs disperse along the growing suckers and are able to colonize the upper parts 

of the grapevine canopy.  

In organic vineyards, a kaolin-based control strategy against S. titanus should be preferred to 

a pyrethrin-based one, particularly when the effects on other pests are considered. Indeed, unlike 

pyrethrins, kaolin showed a high efficacy against E. vitis and Z. rhamni [32] and a moderate effect 

against L. botrana both in the laboratory [38] and in the field (Tacoli et al., unpublished data) [39]. 

Kaolin also has some application advantages over pyrethrins, such as greater persistence and an 

absence of application-timing issues, due to its use as a preventive control measure from the 

beginning of S. titanus egg hatching. On the other hand, kaolin has been associated with 

agronomical benefits in vineyards such as reductions in berry-sunburn damage and higher 

efficiency in water use [40,41]. Nevertheless, side effects of kaolin and pyrethrins on natural 

enemies should be considered [42,43]. 

In conventional viticulture, some of the abovementioned benefits of kaolin seem to be less 

appealing. First of all, the efficacy of kaolin against S. titanus is probably much lower than that of 

synthetic insecticides, as suggested by some studies [23,44]. However, the negative effects of some 

synthetic insecticides towards natural enemies [45] could counterbalance this gap.  

The moderate effect of three kaolin applications on S. titanus suggests that kaolin alone is 

not enough to achieve the same level of FD control in organic viticulture as obtained with synthetic 

insecticides in conventional viticulture. Therefore, further research on S. titanus control strategies is 

needed, and in an Integrated Pest Management (IPM) context, alternatives to chemical control 

should also be considered, such as: (i) conservation and augmentative biological control [6]; (ii) 

mating disruption based on vibrational disturbance [46–49]; (iii) symbiotic control based on 

bacteria that damage the vector or its ability to transmit the phytoplasma causal agent [50,51]; and 
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(iv) push-and-pull strategies [6,52]. Moreover, because S. titanus eggs are laid under the bark of 

two- or more-year-old wood [36], the following cultural practices can be used to reduce S. titanus 

populations: (i) the removal of two-year-old wood from vineyards after winter pruning; and (ii) the 

removal of suckers growing along the vertical trunk, which are abundantly colonized by nymphs 

that hatch from the eggs laid into the bark of the trunk [53,54]. In organic vineyards, the integration 

of these control tools with kaolin applications could increase the efficacy of S. titanus management. 
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Table 1. Natural products tested in the vineyards against Scaphoideus titanus. 

Active 

Constituent 

Commercial Product Application 

Rate in Water 
Application Timing * 

Name Formulation 

Kaolin 

Surround WP (Tessenderlo 

Kerley Inc., Phoenix, Arizona, 

USA) 

WP (wettable 

powder), 95% kaolin 
2% w/v A, B, C 

Orange oil 
Prev-Am Plus (Nufarm Italia, 

Milano, Italy) 

SL (soluble liquid), 

5.88% orange oil 
0.5% v/v C, D 

Insecticidal 

soap 

Flipper (Dow Agrosciences 

Italia, Milano, Italy) 

SL (soluble liquid), 

47.8% potassium 

salts of fatty acids 

2% v/v C, D 

Spinosad 
Laser (Dow Agrosciences 

Italia, Milano, Italy) 

SC (suspension 

concentrate), 44.2% 

pure spinosad 

0.02% v/v C, D 

Pyrethrins 
Biopiren Plus (Copyr, Milano, 

Italy) 

EC (emulsifiable 

concentrate), 2% 

pure pyrethrins 

0.16% v/v C, D 

(*) A, B, C, D refer to the appearance of first-instar, second-instar, third-instar and fourth-instar 

nymphs of S. titanus, respectively. 
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Figure 1. Scaphoideus titanus nymphs recorded on grapevine suckers during the sampling period in 

vineyard I under six different treatments. Within the same date, different small letters above bars 

indicate significant differences according to t-tests on the least square means with Bonferroni 

correction (α = 0.05). The arrows indicate the application timings of the natural products.  
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Figure 2. Scaphoideus titanus nymphs recorded on grapevine suckers during the sampling period in 

vineyard II under six different treatments. Within the same date, different small letters above bars 

indicate significant differences according to t-tests on the least square means with Bonferroni 

correction (α = 0.05). The arrows indicate the application timings of the natural products.  
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Figure 3. Scaphoideus titanus nymphs recorded on grapevine suckers during the sampling period in 

vineyard III under six different treatments. Within the same date, different small letters above bars 

indicate significant differences according to t-tests on the least square means with Bonferroni 

correction (α = 0.05). The arrows indicate the application timings of application of the natural 

products.  
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Figure 4. Scaphoideus titanus nymph mortality recorded in the laboratory in the kaolin and control. 

’**’ and ‘***’ indicate significant differences for α = 0.01 and α = 0.001, respectively, according to 

Fisher’s exact test. 
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Chapter 4 - Activity and mode of action of 

kaolin against Lobesia botrana (Lepidoptera: 

Tortricidae) on grapevines 
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Abstract 

BACKGROUND: The control of Lobesia botrana in vineyards presents some critical issues when 

alternative strategies to synthetic insecticides are adopted as environmentally safe tools. During 

2015–2017, laboratory and field bioassays on the activity of kaolin against L. botrana were carried 

out and the efficacy of kaolin and Bacillus thuringiensis (BT) with or without bunch-zone leaf 

removal (LR) was assessed in four vineyards of north-eastern Italy. 

RESULTS: In laboratory bioassays, berries covered by kaolin were less preferred by L. botrana 

females for egg laying by 53%, and reduced their fecundity and survival by 82% and 22%, 

respectively. Kaolin coverage reduced egg hatching by 14%. Berries covered by kaolin were less 

preferred by larvae for settlement by 72%, but their survival and development were not affected. In 

field bioassays, kaolin reduced the female egg laying by 84%. In the field trials, kaolin, BT and LR 

reduced L. botrana infestation significantly. When the products were combined with LR, the 

efficacy of kaolin increased and was not significantly different from BT. 

CONCLUSION: In the context of IPM strategies in vineyards, kaolin can have an important role 

due to its efficacy against L. botrana and other grapevine pests and a positive synergy with LR. 
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1. Introduction 

The European grapevine moth Lobesia botrana (Den. & Schiff.) (Lepidoptera: Tortricidae) 

is the most important carpophagous pest in European vineyards and has recently spread to the 

Nearctic region.1 Dependent on the different grape-growing areas and years, the moth may 

complete two to four generations per year.2,3 The larvae from the second generation are 

carpophagous and can cause yield losses and favour the spread of the bunch rot Botrytis cinerea 

Pers. Fr. 4–7  

The control of L. botrana is typically achieved by synthetic insecticides, but concern about 

environmental and health problems and the occurrence of insect resistance to some active 

constituents8,9 are leading to different approaches in the control of this pest. 

In the context of IPM strategies, mating disruption10 and Bacillus thuringiensis Berliner11 

are the main alternatives to synthetic insecticides against L. botrana, particularly in organic 

vineyards. However, despite the positive eco-toxicological profile of these control tools, they are 

not always satisfactory for farmers. Mating disruption does not provide a good control of this moth 

in cases of high population densities or small and irregularly-shaped or windy vineyards. Moreover, 

farmers can incur additional costs in order to control other grapevine pests such as carpophagous 

tortricids (e.g. Eupoecilia ambiguella (Hb.)), leafhoppers or scales, otherwise usually controlled by 

the broad-spectrum insecticides used against L. botrana. 

On the other hand, B. thuringiensis does not usually meet the needs of farmers due to its 

lower both persistence, which requires two applications per generation, and efficacy in comparison 

with synthetic insecticides.12 In addition, cultivar choice13–17 and cultural practices18,19 can reduce 

infestations and damage by L. botrana. In particular, bunch-zone leaf removal affects larval 

population levels by increasing egg and newly-hatched larvae mortalities due to the high 

temperatures reached by sunlight-exposed bunches.19–21  

Kaolin particle film technology has been widely studied as arthropod pest control tool in 

orchards and field crops. Under laboratory and field conditions kaolin has been demonstrated to be 

effective in the control of several insects and mites.22–26 Plants coated with kaolin become 

unrecognizable as a host for arthropod pests due to alterations in visual and tactile features and 

insect activities can be impaired by the particles that stick to their bodies while they move on the 

clay film.27,28 For these reasons, oviposition and feeding deterrence can occur, with this last effect 

associated with a lower survival rate and a longer developmental time.27,29–32 Kaolin can also exert a 

direct toxicity toward motile forms.27 

Until today, the effect of kaolin on L. botrana was studied only under laboratory 

conditions.33 In particular, these authors reported that kaolin reduced egg laying, egg hatching and 
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larval survival. The activity of kaolin has also been evaluated against other lepidopteran tortricids. 

For Cydia pomonella it has been observed that kaolin reduced egg laying and larval settlement in 

the laboratory and infestation in apple orchards.26,34–36 Kaolin also reduced the population levels of 

Grapholita molesta (Busck) in peach orchards.37 Kaolin reduced field population levels of some 

leafroller tortricids, in agreement with laboratory data showing negative effects on egg laying and 

larval feeding.35,36,38–40 

The aim of the present study was to investigate the influence of kaolin on L. botrana 

performance both in laboratory and field bioassays as well as to test for the first time the efficacy of 

kaolin in reducing larval infestations in field trials.  

2. Materials and methods 

2.1. Lobesia botrana mass rearing 

Lobesia botrana individuals used in the laboratory and field bioassays were derived from 

mass rearing of the moth conducted in a climatic chamber at 24±1°C temperature, 70±5% RH and a 

16:8 (L:D) daily cycle. Larvae were fed on an artificial diet41 and females laid eggs on transparent 

polyethylene (PE) bags. The rearing originated from larvae collected in May 2013 from a Pinot Gris 

vineyard located in north-eastern Italy (Corona di Mariano del Friuli, Gorizia district, 45°55'30"N, 

13°29'44"E, 40 m a.s.l.) and was refreshed each year in order to prevent inbreeding effects. The 

grape-growing area of larval collection was the same as the field trials. 

2.2. Laboratory bioassays 

In the laboratory bioassays, grapevine berries of the cultivars Pinot Gris (BBCH 75, Lorenz 

et al. [42]) or Italia (BBCH 89) from organic vineyards were used. Before the bioassays the berries 

were washed in a 4% methanol-water solution. All bioassays were carried out at the same climatic 

conditions described for mass rearing. 

Surround WP (Tessenderlo Kerley Inc., Phoenix, Arizona, USA) kaolin formulation was 

used in all bioassays at the rate of a 2% (W/V) water suspension. The product was applied on 

berries with a hand-sprayer until run off. 

2.2.1 Influence of kaolin on female egg laying  

The oviposition response of L. botrana females to the presence of kaolin on the surface of 

berries (cv Italia) was evaluated in both two-choice and no-choice bioassays.  
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The two-choice bioassay was carried out to assess the influence of kaolin on the egg-laying 

preferences of L. botrana females. Before the start of the bioassays, one-day-old adults from the 

rearing were placed in PE bags (30 cm × 15 cm) for mating. Females were collected after 48 h and 

used for the bioassay. Berries sprayed with kaolin (kaolin-covered berries) and water (control) were 

offered to females as follows. Four rubber rings (1.5 cm external diameter × 1 cm internal diameter 

× 0.5 cm height) were fixed on the border of the lid of a glass Petri dish (8 cm diameter) at the same 

distance from each other. Lid and rings were covered by tulle. After spraying, two berries per 

treatments were arranged in alternate positions on the rubber rings. The lid with berries was placed 

in polystyrene boxes (16 cm × 9 cm × 8 cm) lined with black felt and closed at the top with tulle 

and a transparent polycarbonate cover.43 Felt and tulle were used to avoid oviposition on any 

surface other than the berries. Finally, two females were released into each box. The eggs laid on 

kaolin-covered and control berries were counted after five days. The bioassay was replicated 8 

times. 

The no-choice bioassay was carried out to evaluate the influence of kaolin on L. botrana 

female fecundity. Before the start of this bioassay, one-day-old adults from the rearing were placed 

in PE bags (30 cm × 15 cm) for mating. After 48 h females were collected and individually 

confined for a further 24 h inside in glass tubes (3 cm diameter × 10 cm height). Only females that 

had laid eggs inside the tube were used. The same polystyrene boxes and glass Petri lids with rubber 

rings as above described were used. Each box contained four berries sprayed with kaolin (kaolin-

covered berries) or with water (control). Finally, one female was released into each box. Females 

were randomly subdivided between the two treatments. At intervals of 24 h, the eggs laid by each 

female on kaolin-covered and control berries were counted and all berries replaced until female 

death. To establish the fecundity of each female, also the number of eggs previously laid inside the 

tubes was counted. The bioassay was replicated 14 times for both treatments. 

2.2.2. Influence of kaolin on egg hatching 

A bioassay was carried out to establish the influence of kaolin on L. botrana egg hatching 

through a comparison of three treatments, i.e. untreated eggs on kaolin-covered berries, kaolin-

covered eggs and control. For this bioassay, kaolin and control berries with eggs from the previous 

bioassays (see 2.2.1) were used and, to obtain kaolin-covered eggs, a number of control berries was 

treated with kaolin within a maximum of 24 h after eggs being laid. For the three treatments, there 

were 127, 366 and 377 eggs, respectively. Berries were placed into polystyrene boxes (5 cm 

diameter × 1.8 cm height) and were checked after 10 days for egg hatching.  
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2.2.3. Influence of kaolin on larval settlement  

A two-choice bioassay was conducted to assess whether any feeding-deterrent effect on L. 

botrana newly-hatched larvae occurred when berries were covered in kaolin. For this purpose, 

polystyrene boxes (9 cm × 6 cm × 1.8 cm) black-head stage eggs laid on PE bags were used. Two 

eggs were placed on the middle of the box floor with four berries, two sprayed with kaolin (kaolin) 

and two with water (control), at its corners. To guarantee air exchange and avoid excess relative 

humidity inside the boxes, the lid of each box was drilled to create a breathe hole (2.5 cm diameter) 

that was then closed with tulle fixed with hot glue. Each box was checked after 18 h to see which 

berries the newly hatched larvae had settled on. This bioassay was replicated 40 times. 

2.2.4. Influence of kaolin on larval survival and development  

A bioassay was conducted to assess whether any lethal or sub-lethal effect occurred when L. 

botrana larvae fed on kaolin-covered berries. Cylindrical polystyrene boxes (5 cm diameter × 1.8 

cm height) were provided with breath holes in the lid as described for the rectangular polystyrene 

boxes. One black-head-stage egg laid on PE bag was placed with two berries in each box. Half of 

the boxes contained kaolin-treated berries and the other half contained water-treated berries 

(control). The boxes were checked daily for larval development without opening them to avoid any 

external interference. The presence of excrement around the larval entrance hole into the berry was 

considered a valid signal of larval feeding activity. The boxes were opened only after pupation or 

when traces of larval activity were not observed anymore. To evaluate larval performance several 

parameters were considered. Larval mortality and development time were recorded. After pupation, 

the fifth instar head capsules of larvae were collected and mounted on slides in Berlese’s liquid to 

measure the length of the left mandible, as larval size parameter.3 The sex of the pupae was 

determined44 and pupal weight was measured with a precision balance (Sartorius CP2P: capacity 

2.1 g; readability 0.001 mg). This bioassay was replicated 40 times per treatment.   

2.3. Field bioassay on egg-laying preference 

A two-choice bioassay was carried out in late August 2016 (BBCH 89) in a 8-year-old IPM 

vineyard (Bicinicco, Udine district, 45°55'59"N, 13°13’60”E, 35 m a.s.l., cultivar Chardonnay) with 

grapevines growing using the Guyot training system and with distances between and along rows of 

2.5 m and 0.8 m, respectively. In the vineyard, a standard fungicide programme was followed but 

no insecticide against L. botrana was sprayed before or after the kaolin application. Buprofezin 

(Applaud Plus, Sipcam, Milano, Italy) was applied on 17 June for the control of Scaphoideus 

titanus Ball. Shoots holding two bunches of similar size and not in contact with each other were 

chosen. Bunches were also checked for the absence of L. botrana eggs. One bunch on each shoot 
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was sprayed with kaolin using a hand-sprayer to run off, while the other one (control), was 

protected from the spray by covering it in a plastic bag until the kaolin suspension had dried. Then 

the shoots were trimmed and inserted into cylindrical transparent tulle cages (15 cm diameter × 25 

cm length) and four one-day-old mated females were released into each cage. After five days, the 

cages were removed and bunches harvested. In the laboratory, all berries were checked under a 

dissecting microscope to count the eggs laid. The bioassay was replicated 20 times. 

2.4. Field trials 

During 2015–2017, four trials on the influence of kaolin and bunch-zone leaf removal (LR) 

on larval infestation of the L. botrana second generation were carried out in vineyards located in 

north-eastern Italy (a total of four trials). Vineyard A (Cormons, Gorizia district, 45°57’51”N, 

13°26’49”E, 56 m a.s.l., N70°E-S20°W oriented rows, cultivar Pinot Gris) is a 10-year-old 

conventional vineyard with grapevines growing using the Guyot training system with distances 

between and along rows of 2.5 m and 0.8 m, respectively. Vineyard B (Cormons, Gorizia district, 

45°57’20”N, 13°26’50”E, 50 m a.s.l., N20°W-S70°E oriented rows, cultivar Pinot Gris) is a 30-

year-old organic vineyard with grapevines growing using the double arched Guyot training system 

with distances between and along rows of 2.8 m and 1 m, respectively. Vineyard C (Cormons, 

Gorizia district, 45°58’02”N, 13°31’31”E, 53 m a.s.l., N25°W-S65°E oriented rows, cultivar Pinot 

Gris) is a 15-year-old organic vineyard with grapevines growing using the Guyot training system 

with distances between and along rows of 2.2 m and 0.7 m, respectively. Vineyard D (Cormons, 

Gorizia district, 45°56’32”N, 13°27’23”E, 44 m a.s.l., N25°W-S65°E oriented rows, cultivar Pinot 

Gris) is a 10-year-old organic vineyard with grapevines growing using the Guyot training system 

with distances between and along rows of 2.4 m and 0.7 m, respectively. In all vineyards, standard 

fungicide programmes were followed and no insecticide was sprayed before or after the trial 

applications. The trials were conducted in 2015 in vineyards A and B, in 2016 in vineyard C and in 

2017 in vineyard D. 

In all vineyards kaolin and B. thuringiensis (Dipel DF, Sumitomo Chemical Agro Europe 

S.A.S, Saint Didier au Mont d’Or, FR, 1% W/V, Dipel DF/water) were compared with an untreated 

control. Sprayings were applied at the occurrence of definite L. botrana phenological stages as 

expected on the basis of male flight, determined with pheromone traps, and the average air 

temperatures. Kaolin was applied two or three times per year, depending on washing off by rain, 

starting from the beginning of egg laying so as to ensure a satisfactory berry coverage up to the end 

of egg hatching (18, 24 June in 2015; 10, 20, 27 June in 2016; 19, 22 June, 3 July in 2017). B. 

thuringiensis was applied twice, at the beginning of egg hatching and then a week later (24 June, 1 
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July in 2015; 27 June, 4 July in 2016; 22 June, 3 July in 2017). The products were sprayed using a 

backpack sprayer (Oleo-Mac, Sp-126, Emak S.p.A., Bagnolo in Piano, RE, Italy) at a rate of 1000 

L/ha.  

In all trials, a randomized block design with four replicates was adopted. Each block (row) 

was divided into three plots of 28 (vineyard A) or 20 (vineyard B) or 24 (vineyard C and D) 

grapevines. In order to test the efficacy of kaolin and B. thuringiensis combined with bunch-zone 

leaf removal, plots of all trials were divided into two subplots of 14 or 10 or 12 grapevines, 

respectively, and were subjected or not to manual removal of all leaves covering the bunches (17 

June 2015, 10 June 2016, 19 June 2017). 

The infestation of L. botrana was estimated at about 40 days from the beginning of the 

second-generation flight. In each subplot, 100 bunches were sampled on 10 (vineyard A, C, and D) 

or 8 (vineyard B) grapevines, excluding edge plants. The sampling was based on an a priori 

scheme5, to avoid the subjective choice of the sampled bunches. On each bunch the number of 

larval nests was assessed.  

2.5. Statistical analyses 

A repeated G-test of goodness-of-fit was used for the two-choice bioassays and a two-

sample t-test was used for the no-choice bioassay. Fisher’s exact test and Ryan tests were used for 

proportions comparison. A paired-sample t-test was used for over-time comparison. A log rank test 

was used to compare L. botrana female survival.45 

To compare data in the field trials, a three-way ANOVA with Bonferroni confidence 

interval adjustment and Tukey’s post-hoc tests were used.  

Statistical analyses were performed with GraphPad InStat Version 3.1 for Macintosh 

(GraphPad Software 2001) and Microsoft Excel 2013 for Windows (Microsoft Corporation 2013). 

3. Results 

3.1. Laboratory bioassays 

3.1.1. Influence of kaolin on female egg-laying  

In the two-choice bioassay, L. botrana females laid significantly fewer eggs in the kaolin-

covered berries than control (Table 1). On average, kaolin reduced female preference for egg laying 

by 53%. 
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3.1.2. Influence of kaolin on female fecundity and survival  

The day before the beginning of the no-choice bioassay, the mean (±SD) number of eggs 

laid inside the glass tubes was not significantly different between the two groups of females used in 

the kaolin-covered berries (29.2±14.4 eggs/female) and control (26.0±13.0 eggs/female) (t = 0.62, 

df = 26, P = 0.54). During the no-choice bioassay, females laid significantly fewer eggs in kaolin-

covered berries than control (Table 1). On average kaolin reduced female fecundity by 82%.  

The over-time egg-laying pattern was also different between the kaolin-covered berries and 

control (Fig. 1). In kaolin-covered berries, at T1 there was already a significantly lower number of 

eggs laid per female than at T0 (t = 2.80, df = 13, P = 0.015), whereas in the control female 

fecundity was not significantly different from T0 up to T5 [(T1), t = 1.516, df = 13, P = 0.15; (T2-

4), t = 0.025, df = 13, P = 0.98; (T5), t = 2.15, df = 13, P = 0.051; (T6), t = 2.44, df = 13, P = 0.03; 

(T7), t = 4,716, df = 13, P = 0.0004; (T8) t = 6.15, df = 13, P < 0.0001]. In the kaolin-covered 

berries, no females laid eggs from T6, whereas in the control some females laid eggs up to T8. 

Because of the different egg-laying pattern between treatments, from T1 the number of eggs laid per 

female was significantly lower in the kaolin-covered berries than control [(T1), t = 3.13, df = 26, P 

= 0.0043; (T2-4); t = 4.58, df = 26, P = 0.0001; (T5), t = 3.81, df = 26, P = 0.0008].  

In the kaolin-covered berries, females lived significantly fewer days (7.9±0.9) than control 

(10.1±1.4) (χ2 = 15,370, df = 1, P < 0.001) with a 22% reduction in survival. 

3.1.3. Influence of kaolin on egg hatching 

The egg-hatching rate was significantly lower in the kaolin-covered eggs than in both the 

kaolin-covered berries and control (Table 1). On average, kaolin coverage reduced egg hatching by 

14%. 

3.1.4. Influence of kaolin on larval settlement  

The number of settled larvae was significantly lower in the kaolin-covered berries than 

control (Table 1). On average, kaolin reduced larval preference for settlement by 72%. 

3.1.5. Influence of kaolin on larval survival and development 

No differences in larval mortality were observed between treatments (Table 2).  

None of the considered development parameters showed statistically significant differences 

between larvae reared on the kaolin or control berries (Table 2). The results were no different if 

males were considered separately from females.   
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3.2. Field bioassay on egg laying  

L. botrana laid significantly fewer eggs on berries of the kaolin-covered bunches than 

control bunches (G = 344.12, df = 1, P < 0.0001) (Fig. 2). On average, kaolin reduced female 

preference for egg laying by 84%. 

3.3. Field trials 

In field trials, significant differences were observed for all the three effects, i.e., treatment, 

bunch-zone leaf removal and vineyard (Table 3; Fig. 3a and 3b). Among treatments, both kaolin 

and B. thuringiensis significantly reduced the number of L. botrana larval nests than control, but B. 

thuringiensis showed higher efficacy (around 60%) than kaolin (around 40%) (P = 0.004, Tukey’s 

post-hoc test) (Fig. 3a).  

The interaction treatment*leaf removal was significant indicating that bunch-zone leaf 

removal influenced the efficacy of treatments (Table 3). In particular, bunch-zone leaf removal 

significantly reduced the number of larval nests in the control and kaolin, but not in the B. 

thuringiensis (Fig. 3c). Also the interactions treatment*vineyard and leaf removal*vineyard were 

significant, indicating that the effects of treatments and bunch-zone leaf removal on population 

levels were influenced by the vineyard effect. 

4. Discussion and conclusion 

4.1. Effect of kaolin on female performance  

In the two-choice bioassays, kaolin was deterrent to egg laying by L. botrana females and 

this effect was more marked in the field than in the laboratory bioassays. This result is in 

accordance with other laboratory studies on L. botrana33 and C. pomonella.34  

In the no-choice bioassay, kaolin reduced female fecundity and survival, and decreased egg 

laying as early as the first day. For L. botrana a reduction in oviposition in no-choice bioassays has 

been reported previously, but female fecundity was not considered.33 Other studies on tortricid 

moths have also evidenced an adverse effect of kaolin on oviposition in no-choice bioassays.34,38,40  

Kaolin could impair L. botrana ovipositional behaviour by making the host 

unrecognizable.27,46 The change in colour of kaolin-coated berries could affect the moth visual cues 

and the kaolin physical barrier could also alter the insect tactile and chemical perception of the host. 

Regarding this, it is known that L. botrana females lay eggs on several types of substrates (i.e., 

fruits of different colour and species, glass marbles and plastic surfaces that have the common 
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feature of being smooth.17,20,43,47 Therefore, kaolin could hinder egg laying by changing the berry 

surface from smooth to dusty and irregular. Kaolin powder could also stick to the chemo- and 

mechanoreceptors of the tarsi and the ovipositor, disturbing the ability of females to recognize the 

substrate as suitable for egg laying. For example, on blueberry fruits covered with kaolin the 

braconid Diachasma alloeum (Muesebeck) no longer responds to synomones released by fruits 

infested by Rhagoletis mendax Curran eggs.48 

The effect of kaolin on female survival has been investigated for C. rosaceana, but only 

minimal differences between treatments were found.38 In our study, the lower L. botrana survival 

cannot be considered the only reason for the reduction in fecundity because the decrease in egg 

laying was already evident when all females were still alive. It could be argued that both egg laying 

and survival reductions are consequences of stress induced in the females by the presence of kaolin.   

4.2. Effect of kaolin on egg hatching, and larval behaviour and performance 

In our study, kaolin reduced the hatching rate of L. botrana eggs only when they were 

directly covered with the product. In contrast to our results, in another study on L. botrana a 

reduction in egg hatching has been observed also for eggs laid on kaolin-covered berries.33 

Assuming that there may have been a kaolin contact toxicity due to absorption of epicuticular 

lipids49, it can be suggested that the higher rate of kaolin suspension used in the other study33 

compared to ours (4% versus 2%) also increased mortality of eggs when they were laid on kaolin-

covered berries. No reduction in hatching for eggs laid on kaolin-treated leaves has been also 

reported for C. pomonella, C. rosaceana and C. fumiferana.34,38,40 However, unlike our study, for C. 

pomonella has not been reported any reduction in hatching also when eggs were directly sprayed 

with kaolin.34 

In the two-choice bioassay on the settlement of L. botrana newly-hatched larvae, kaolin-

covered berries were less preferred. This result is in accordance with a study on C. pomonella34 that 

highlighted reduced larval entry into the fruit, due to lower larval dispersal and host recognition, 

and a study on C. rosaceana where kaolin negatively affected the larval dispersal behaviour.39 

Effects of kaolin on L. botrana larvae are likely to be due to disruption in orientation, caused by the 

physical barrier covering the berries. Under field conditions, kaolin may also increase L. botrana 

newly-hatched-larvae wandering time on the berry surface, as suggested by a on average longer 

although not significant development time, and then the risk of mortality due to predation and 

exposure to adverse environmental conditions. Moreover, a feeding deterrent effect cannot be 

excluded, in analogy to what was observed for sap-feeding pests.31, 32, 50,51 
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When L. botrana larvae were reared on kaolin-covered berries, survival and development 

were not affected. In the previous study on L. botrana, a high mortality rate was recorded 72 h after 

kaolin was directly sprayed on of newly-hatched larvae.33 However, under field conditions this 

effect is negligible because of the very low probability of hitting larvae directly with the kaolin 

spray, considering the prolonged egg-hatching period and the short time spent by the newly-hatched 

larvae outside the berries before penetrating them. In contrast to our results, an increase in mortality 

was observed for larvae of C. pomonella and C. rosaceana reared on kaolin-treated leaves.38,39 

However, kaolin did not substantially influence mortality or development of C. rosaceana larvae 

when the clay was mixed with artificial diet, suggesting that its negative effect only occurs when 

kaolin constitutes a physical barrier to feeding.39 Therefore, we may suppose that the effect of 

kaolin on survival of C. rosaceana and L. botrana larvae varies in relation to their different feeding 

behaviours. The larvae of the first species, feeding on leaves, are continuously subjected to the 

kaolin barrier throughout their development, whereas the larvae of the second species, feeding on 

berries, are affected by the kaolin barrier only during the short time that they consume the small 

amount of berry skin necessary to penetrate the berries. 

4.3. Influence of kaolin and leaf removal on larval infestation in vineyards 

In the study vineyards, kaolin reduced the infestation of L. botrana with good efficacy, but 

this was significantly lower than that of B. thuringiensis. The efficacy level of kaolin for L. botrana 

in vineyards is in accordance with reports for C. pomonella in apple orchards.34–36  

Bunch-zone leaf removal was also able to reduce the infestation of L. botrana, as already 

reported.19  

Although kaolin was less effective than B. thuringiensis in the L. botrana control, the 

differences in efficacy between the two products were no longer significant when combined with 

bunch-zone leaf removal, suggesting a more positive interaction with this cultural practice by kaolin 

than by B. thuringiensis. Moreover, kaolin could be preferable to B. thuringiensis because of its 

ability to control also cicadellids.31,5254 Furthermore, kaolin may provide more consistent results 

than B. thuringiensis, it not being degraded by UV radiation and having a high resistance to 

washing off by rain.31,55 Additionally, when associated with bunch-zone leaf removal, kaolin 

confers some agronomical advantages including reducing sunburn damage of exposed berries and 

lowering grapevine water stress, without having negative effect on grape yield and grape qualitative 

parameters.56–58  

Based on our visual observations, much better kaolin coverage was achieved on leaves than 

on berries. This is probably due to the presence of waxy compounds on the berry surfaces that 
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interfere with kaolin adhesion. A better coverage of bunches could be obtained using trailed 

sprayers because of the higher pressure and smaller drop diameter they provide compared to the 

hand or backpack sprayers used in this study. An increase in kaolin bunch coverage could ensure 

the same efficacy against L. botrana with a single application as currently achieved with two. 

4.4. Concluding remarks  

Kaolin could be of profitable for use in vineyards because of its ability to control L. botrana 

and other grapevine pests and because of its positive interaction with bunch-zone leaf removal.  

Further studies should be carried out on the possible positive interaction between kaolin, 

which inhibits egg laying, and B. thuringiensis, which exerts larvicidal activity, also taking into 

account that kaolin could increase the persistence of B. thuringiensis by mitigating the effect of UV 

radiation, as suggested by the literature.59 
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Table 1. Influence of kaolin on L. botrana in the laboratory bioassays. For egg hatching, different letters indicate significant differences (α = 0.05). 

 Control Kaolin-covered berries 
Kaolin-covered 

eggs 
Statistical analyses 

Mean±SD of eggs per female (two-choice) 67.3±32.6 31.5±10.5 – G = 105.9, df = 1, P < 0.0001 

Mean±SD of eggs per female (no-choice) 146.7±77.5 26.1±20.5 – t = 5.63, df = 26, P < 0.0001 

% egg hatching 99.5 b 98.4 b 85.8 a Ryan test, P < 0.05 

% larval settlement (two-choice) 77.8 22.2 – G = 23.53, df = 1, P < 0.0001 
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Table 2. Influence of kaolin-covered berries on L. botrana larval survival and development 

parameters. 

Parameter 

Kaolin Control 

Statistical results N. of 

individuals 

% or 

mean±SD 

N. of 

individuals 

% or 

mean±SD 

Total larvae 40  40   

Dead larvae  11 27.5% 12 30.0% 
Fisher’s Exact test, P = 

0.99 

Male pupae  51.7%  60.7% 
Fisher’s Exact test, P = 

0.82 

Development time 

(days) 
     

Total 29 28.2±4.0 28 26.6 ±4.3 t = 1.38, df = 55, P = 0.17 

Females 14 28.1±3.0 11 27.5±3.3 t = 0.49, df = 23, P = 0.63 

Males 15 28.3±4.8 17 26.1±5.0 t = 1.24, df = 30, P = 0.22 

Mandible length 

(mm) (*) 
     

Total 27 23.3±3.3 25 24.1±1.1 t = 1.19, df = 50, P = 0.24 

Females 14 23.3±4.5 10 24.9±0.9 t = 1.11, df = 22, P = 0.28 

Males 13 23.4±1.3 15 23.7±1.0 t = 0.65, df = 26, P = 0.52 

Pupal weight (mg)      

Total 29 8.1±1.8 28 8.4±2.0 t = 0.66, df = 55, P = 0.51 

Females 14 9.5±1.6 11 10.0±1.9 t = 0.76, df = 23, P = 0.45 

Males 15 6.8±0.8 17 7.4±1.4 t = 1.45, df = 30, P = 0.16 

(*) The length was not measured on 5 individuals because the mandibles were found to be broken. 
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Table 3. Field trials. Results of three-way ANOVA performed on larval nests of L. botrana. 

Source of variation 
Larval nests 

F df P 

Corrected Model 7.706 23,72 < 0.0001 

Treatment 37.460 2,72 < 0.0001 

Leaf removal 30.688 1,72 < 0.0001 

Vineyard 5.690 3,72 0.001 

Treatment*Leaf removal 3.269 2,72 0.044 

Treatment*Vineyard 4.343 6,72 0.001 

Vineyard*Leaf removal 4.866 3,72 0.004 

Vineyard*Treatment*Leaf removal 1.227 6,72 0.303 
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Figure 1. Eggs laid over time by L. botrana females placed on kaolin or not from T1. T0 eggs 

previously laid on glass tubes by the same females. Different capital letters between treatments on 

the same day indicate significant differences according to a t-test (α = 0.01). 
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Figure 2. Mean ± standard deviation of L. botrana eggs laid on berries of bunches treated or not 

with kaolin. *** indicates significant differences according to a G-test (α = 0.001). 
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Figure 3. Field trials on the effect of different treatments (a), bunch-zone leaf removal (LR) (b) and 

their interaction (c) on L. botrana infestations (mean ± SE of larval nests). Different capital letters 

among treatments or LR indicate significant differences according to Tukey’s test (α = 0.01) and 

*** indicates significant differences according to ANOVA (α = 0.0001).  

  



 100 

 

Chapter 5 - Side effects of sulfur dust on 
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Abstract  

The activity of sulfur dust on the European grapevine moth Lobesia botrana (Den. & 

Schiff.) was investigated in the laboratory. In 2017, two trials  were carried out in as many 

vineyards of northeastern Italy to compare the efficacy of sulfur dust with  that of kaolin and of 

Bacillus thuringiensis Berliner on L. botrana against both the second and third generations. In the 

first case, each treatment was in combination or not with bunch-zone leaf removal. In the two trials, 

sulfur dust was applied once at a rate of 30 kg/ha at the start of the second and third flights of L. 

botrana males, respectively. In the laboratory bioassays, sulfur dust reduced both egg laying and 

larval settlement and egg hatching of eggs covered by sulfur dust. In both field trials, sulfur dust 

caused a significant decrease in the number of L. botrana larval nests and of damaged berries with 

an efficacy not different from both B. thuringiensis and kaolin. Bunch-zone leaf removal did not 

significantly reduce L. botrana infestation. Based on these results, the side effect of sulfur dust 

against L. botrana could be considered in the context of IPM strategy in vineyards. 
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1. Introduction 

The European grapevine moth, Lobesia botrana (Den. & Schiff.) (Lepidoptera: Tortricidae) 

is the most important carpophagous pest in European vineyards and is recently spreading to some 

Nearctic grape-growing areas (Ioriatti et al., 2012). In north-eastern Italy, the moth completes two-

three generations a year, of which the first is antophagous and the other two are carpophagous 

(Pavan et al., 2013). Damage is mostly associated with second and third generations which cause 

yield and qualitative losses also favoring the spread of Botrytis cinerea Pers. Fr. bunch rot 

(Fermaud & Giboulot, 1992; Moschos, 2006; Pavan et al., 2014a). 

The control of L. botrana is typically achieved using synthetic insecticides, but concern 

about environmental and sanitary problems and the occurrence of insecticide resistance to some 

active ingredients (Civolani et al., 2014; Pavan et al., 2014b) are leading to different approaches in 

the control of this pest.  

In the context of IPM, mating disruption (Ioriatti et al., 2011) and Bacillus thuringiensis 

Berliner (Ifoulis and Savopoulou-Soultani, 2004) are the main alternatives and are becoming of 

common use in many grape-growing areas and, mostly, in organic farms. However, although their 

eco-toxicological profile is positive, the adoption of these control tools is not always satisfactory for 

farmers. Mating disruption does not provide a good control in presence of high population densities, 

in small and irregularly-shaped vineyards, and in windy regions. Moreover, mating-disruption cost 

is higher compared to synthetic insecticides and can further increase because of its high specificity 

that can make necessary control measures against other grapevine pests, such as the carpophagous 

Eupoecilia ambiguella (Hb.) (Lepidoptera: Tortricidae), leafhoppers and scales. B. thuringiensis, on 

the other hand, does not usually meet the requirements of farmers due to its low persistence, that 

requires two applications per generation and often determines lower efficacy than synthetic 

insecticides (Boselli et al., 2000). Also cultivars choice (Fermaud, 1998; Moreau et al., 2006; Pavan 

et al., 2009; Sharon et al., 2009) and cultural practices, such as controlled nitrogen fertilization 

(Vartholomaiou et al., 2008), bunch-zone leaf removal (Pavan et al., 2016; Kiaeian Moosavi et al., 

2017a, 2017b) and kaolin applications (Tacoli et al., this PhD thesis), can be considered to reduce 

infestations and damage by L. botrana.  

Wettable and dustable sulfur powders are largely used in viticulture due to their fungicidal 

activity against powdery mildew (Bencivelli, 1975) and their effectiveness in the control of 

grapevines phytophagous mites is well known (Touzeau, 1987; Goebel et al., 2001). Some 

preliminary data suggest an efficacy of sulfur dust against L. botrana and the leafhopper Empoasca 

vitis (Göthe) (Touzeau, 1987). However, wettable sulfur was not effective against L. botrana and 
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the leafhopper Erythroneura elegantula Osborn (Jepsen et al., 2007). A study on the lepidopteran 

pest Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) reported reduction of oviposition on 

tomato covered with sulfur dust (Zappalà et al., 2012). 

In north-eastern Italy, sulfur dust is traditionally used in vineyards for the control of 

powdery mildew after BBCH 71 (i.e., “Fruit set” according to Lorenz et al., 1995) and just before 

BBCH 79 (i.e., “Majority of berries touching”) growth stages to allow for long term coverage inside 

the bunches before it is not anymore possible. For the earliest cultivars, the start of L. botrana 

second seasonal flight occurs before BBCH 79 growth stage and therefore it can be supposed that a 

sulfur dust application in this time could have side effects on L. botrana.  

The aim of this study was to investigate the activity of sulfur dust on L. botrana in the 

laboratory and to test its efficacy in field trials.   

2. Materials and methods 

Laboratory bioassays and field trials on the side effects of sulfur dust on L. botrana were 

carried out during 2015–2017.  

2.1. Laboratory bioassays 

2.1.1. Lobesia botrana mass rearing 

L. botrana individuals used in the laboratory bioassays derived from a mass rearing of the 

moth conducted in a climatic chamber at 24±1°C temperature, 70±5% RH and photoperiod of 16:8 

(L:D). Larvae were fed on artificial diet (Rapagnani et al., 1990) and females laid eggs on 

polyethylene (PE) bags. The rearing originated from larvae collected in May 2013 from a Pinot Gris 

vineyard located in northeaster Italy (locality Corona di Mariano del Friuli, Gorizia district, 

45°55'30"N, 13°29'44"E, 40 m a.s.l.) and was refreshed each year in order to prevent inbreeding 

effects. The grape growing area of larval collection was the same of the field trials. 

2.1.2. Application of sulfur dust on berry surface 

For the laboratory bioassays, unripen grapevine berries of cultivar Pinot Gris (BBCH 75) 

were used. The berries, removed from the bunch with about half a centimeter of petiole, were first 

dipped in water for one second and then dusted with sulfur dust (Zolfo ventilato Stella, Pasquale 

Mormino & Figlio S.R.L, Termini Imerese (PA), Italy, 98.5% pure sulfur). In this way berries were 

covered with a thin layer of sulfur dust. 
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2.1.3. Influence of sulfur dust on female egg laying 

A no-choice bioassay was conducted at the same climatic conditions described for the mass 

rearing to evaluate whether any effect on egg laying by L. botrana females occurred when sulfur 

dust covered berries. Before the start of the bioassay, one-day-old adults from the rearing were 

placed in PE bags (30 cm × 15 cm) for mating. Females were collected after 48 h and individually 

confined for further 24 h into glass tubes (3 cm diameter × 10 cm height). Only females that had 

laid eggs inside the tubes were used for the bioassay. For each female, the number of eggs laid 

inside the tube was counted.  

For the bioassay, four berries were hold on the lid of a glass Petri dish (8 cm diameter) 

through four rubber rings (1.5 cm external diameter × 1 cm internal diameter × 0.5 cm height) 

placed near the lid border at the same distance from each other. Each lid including rubber rings was 

covered with tulle. Then, the lid with berries was placed in a polystyrene box (16 cm × 9 cm × 8 

cm) lined with black felt and closed at the top with tulle and a transparent polycarbonate cover 

(Maher & Thiéry 2004). Felt and tulle were used to avoid oviposition on any other surface than 

berries. An equal number of the boxes had berries covered with sulfur dust or sprayed with water 

(control). One fertile female was released into each box. Females were subdivided between the two 

treatments so to have in each treatment females that on average had laid a similar amount of eggs 

per female inside the tubes. The berries were changed daily for five days. The eggs laid by each 

female on the surface of sulfur-dust-covered berries and of control ones were counted. The assay 

was replicated 18 times for both the treatments. 

2.1.4. Influence of sulfur dust on egg hatching 

A bioassay was carried out at the same climatic conditions described for the mass rearing to 

establish the influence of sulfur dust on L. botrana egg-hatching by comparison of three treatments, 

i.e. untreated eggs on sulphur-dust-covered berries, sulphur-dust-covered eggs and control eggs. For 

this bioassay, berries with eggs already laid on their surface coming from the previous bioassay on 

female egg laying were used. In particular, part of the eggs coming from the control was treated 

with sulfur dust within a maximum of 24 h from egg laying. For the three treatments there were 

155, 188 and 377 eggs, respectively. Berries with eggs were placed into cylindrical polystyrene 

boxes (5 cm diameter × 1.8 cm height) and were checked after 10 days for egg hatching. 

2.1.5. Influence of sulfur dust on larval settlement 

A two-choice bioassay was conducted at the same climatic conditions described for the mass 

rearing to assess whether any feeding-deterrent effect on L. botrana larvae occurred when sulfur 

dust covered berries. At this purpose, polystyrene rectangular boxes (9 cm length × 6 cm width × 
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1.8 cm height) and black-head-stage eggs laid on PE bag were used. To guarantee air exchange and 

avoid excess of relative humidity inside the boxes, the lid of the boxes was drilled to create a hole 

(2.5 cm diameter) that was then closed with tulle fixed with hot glue. To assess larval preference, 

two eggs were placed on the middle of the box floor with four berries, two treated with sulfur dust 

and two with water (control), at the corners. Each box was checked after 18 h to see on which 

berries newly-hatched larvae had settled. This bioassay was replicated 40 times. 

2.2. Field trials 

In 2017, two field trials on the influence of sulfur dust on larval infestation of L. botrana 

were carried out in as many vineyards of north-eastern Italy. Vineyard A (Cormons, Gorizia district, 

45°58’32’’N, 13°27’23’’E, 44 m a.s.l., cultivar Pinot Gris) is a 10-year-old organic vineyard with 

grapevines growing using the Guyot training system with distances between and along rows of 2.4 

m and 0.7 m, respectively. Vineyard B (Cormons, Gorizia district, 45°56’32’’N, 13°27’26’’E, 44 m 

a.s.l., cultivar Tocai Friulano) is a 20-year-old organic vineyard with grapevines growing using the 

Guyot training system with distances between and along rows of 3.0 m and 1.0 m, respectively. In 

both vineyards, standard organic fungicide programs were followed and no insecticide was sprayed 

before and after the trial applications.  

In the first trial (Vineyard A) the efficacy of sulfur dust in the control of L. botrana was 

evaluated against the second generation, whereas in the second trial (Vineyard B) against the third 

generation. In the first trial, treatments in comparison were control, sulfur dust (see laboratory 

bioassays) applied at the rate of 30 kg/ha, and B. thuringiensis (Dipel DF, Sumitomo Chemical 

Agro Europe S.A.S, Saint Didier au Mont d’Or, FR, 1% W/V, Dipel DF/water). In the second trial, 

also kaolin (Surround WP, Tessenderlo Kerley Inc., Phoenix, Arizona, USA, 2% W/V, Surround 

WP/water) was tested. All products were applied using a backpack sprayer (M1200, Cifarelli s.p.a., 

Voghera (PV), Italy). B. thuringiensis and kaolin were sprayed at the rate of 1000 L/ha while for 

sulfur dust applications the backpack sprayer was equipped with a kit for the distribution of 

powders (OG.346.00, Cifarelli s.p.a., Voghera (PV), Italy). Applications were done at the 

occurrence of certain L. botrana phenological stages as expected on the basis of male flights 

monitored with pheromone traps and on average air temperatures. Kaolin was applied on two 

occasions at the beginning of male flight (31 July and 2 August in Vineyard B), sulfur dust was 

applied once at the beginning of egg laying (20 June in Vineyard A, 1 August in Vineyard B) and B. 

thuringiensis was applied at the beginning of egg-hatching and after a week (22 June and 03 July in 

Vineyard A, 4 and 11 August in Vineyard B). When sulfur dust was distributed, the grapevines 

were at BBCH 77 growth stage (i.e., “Berries beginning to touch”) in the first trial and at BBCH 85 
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growth stage (i.e., “Softening of berries”) in the second trial. In both trials, a randomized block 

design with four replicates (rows) was adopted. Each row was divided into three plots of 28 

(vineyard A) or into four plots of 30 (vineyard B) grapevines. In the first trial, in order to test the 

efficacy of treatments combined with bunch-zone leaf removal, plots were divided into two 

subplots of 14 grapevines that were subjected or not to manual removal of all leaves that covered 

bunches on 19 June (hereafter named with or without bunch-zone leaf removal).  

The infestation of L. botrana was estimated at about 40 days from the beginning of the 

second or third seasonal males’ flight. In each subplot of vineyard A and plot of vineyard B, 100 

bunches were sampled from 12 (vineyard A) or 28 (vineyard B) grapevines, excluding edge plants. 

The number of grapevines sampled was different due to the different amount of bunches per 

grapevine in the two vineyards. The sampling was based on an a priori design (Pavan et al., 1998) 

to avoid the subjective choice of the sampled bunches. On each bunch, the number of larval nests 

and damaged berries was counted. 

2.3. Statistical analyses 

Statistical analyses were performed with Microsoft Excel 2013 for Windows (Microsoft 

Corporation 2013) and IBM SPSS Statistics 20 (IBM Corporation 2011). Two-sample t-test for the 

no-choice bioassay, repeated G-test of goodness-of-fit for the two-choice bioassay and Ryan’s test 

for proportions comparison were used. One-way or two-way ANOVA were used to compare data in 

field trials. Differences among treatments were evaluated using a Tukey’s post-hoc test with 

Bonferroni adjustment of the p-values (α = 0.05). Data were checked for analysis assumptions and were 

log (x+1) transformed prior to the analyses. 

3. Results 

3.1. Laboratory assays 

3.1.1. Influence of sulfur dust on female egg laying 

The day before the beginning of the no-choice bioassay, the number (mean±SD) of eggs laid 

inside the tubes was not significantly different between the two groups of females used in sulfur 

dust (26.9±13.4 eggs/female) and  control (22.6±18.3 eggs/female) (t = 0.81, df = 34, P = 0.42). 

During the no-choice experiments females laid significantly fewer eggs in sulfur dust (11.6±11.48 

eggs/female) than control (52.72±36.84 eggs/female) (t = 4.52, df = 34, P < 0.001). On average 

sulfur dust reduced female fecundity by 78%. 
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3.1.2. Influence of sulfur dust on egg hatching 

The hatching rate of eggs covered by sulfur dust (89.4%) was significantly lower than that 

of both control eggs (99.5%) and untreated eggs laid on sulfur-dust-covered berries (93.5%) (Ryan 

test, P < 0.05). On average, coverage of eggs with sulfur dust reduced their hatching by 10%. 

3.1.3. Influence of sulfur dust on larval preference 

A significantly lower number of larvae settled on sulfur-dust-treated berries (30.8%) than 

control ones (69.2%) (G = 9.87; df = 1, P < 0.001). On average, sulfur reduced larval preference for 

settlement by 55%. 

3.2. Field trials 

3.2.1. L. botrana male flights 

The second flight of L. botrana males was very short and occurred from mid to late June 

with a peak on 19 June (Fig. 1). 

The third flight of L. botrana males lasted one month from 28 July to 28 August and showed 

a peak in coincidence with the beginning of the flight (Fig. 1). 

3.2.2. Efficacy of sulfur dust against L. botrana second generation 

In the field trial against the second generation, treatment source of variation was significant, 

whereas the effect of bunch-zone leaf removal did not reach the significant level (Table 1; Fig. 2). 

Sulfur dust and B. thuringiensis showed significantly less larval nests (P = 0.011 and P = 0.017, 

respectively) and damaged berries (P = 0.0001 and P = 0.001, respectively) than control with no 

difference between each other (P = 0.381 for larval nests, P = 0.623 for damaged berries). 

3.2.3. Efficacy of sulfur dust against L. botrana third generation 

In the field trial against the third generation, treatment source of variation was significant 

(Table 1; Fig. 3). Sulfur dust, kaolin and B. thuringiensis showed significantly less larval nests (P = 

0.020, P = 0.012 and P = 0.008, respectively) and damaged berries (P = 0.018, P = 0.017 and P = 

0.005, respectively) than control with no difference among each other (P ≥ 0.941 for larval nests, P 

≥ 0.885 for damaged berries). 
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4. Discussion 

In the laboratory, sulfur dust reduced the egg lying of L. botrana in accordance with the 

results reported by Zappalà et al. (2012) for T. absoluta. The coverage of L. botrana eggs with 

sulfur dust only lightly reduced their hatching and then the impact of this effect in the field should 

be negligible also considering the prolonged period of egg laying. On the contrary, the high 

feeding-deterrent effect on larvae found in the laboratory could influence in an important way larval 

settlement under field conditions. 

In the field trials, the efficacy of sulfur dust against L. botrana was not significantly 

different from those of B. thuringiensis and kaolin. The reduction of larval infestation was greater 

than that reported for T. absoluta (Zappalà et al., 2012), against which sulfur dust was less effective 

than B. thuringiensis. This difference in effectiveness could be explained by the feeding behavior of 

these two lepidopteran pests and by plant morphology. In fact, while T. absoluta feeds on all plant, 

L. botrana feeds only on bunches which coverage can be achieved more easily than that of a whole 

tomato plant. Moreover, the sheltered position of bunches inside the canopy offers also protection 

from rain wash-off influencing sulfur-application persistence.  

Preliminary field data had suggested an efficacy of sulfur dust against L. botrana (Touzeau, 

1987), although applications occurred in advance with respect to the correct timing of insecticide 

applications. Based on our laboratory data, we can suppose that sulfur dust reduced moth infestation 

because of its inhibition of egg laying. 

In the first field trial, leaf removal did not significantly reduce L. botrana infestation, as 

showed in other studies (Pavan et al., 2016; Tacoli et al., this PhD thesis), although a positive 

tendency was observed. This can be explained by the low vigor of the experimental vineyard. In 

fact, even after leaf removal the exposition of bunches was not visually much different between 

plots submitted or not to leaf removal. 

Based on this study, the application of sulfur dust against powdery mildew in vineyards, just 

before the occurrence of BBCH 79 growth stage (i.e., Majority of berries touching each other), can 

be considered an added value for its positive side effects against L. botrana second generation and 

perhaps also E. vitis. An important factor for the success of this strategy is the timing of the sulfur 

powder application since it has to be done following not only plant phenology, but also monitoring 

the start of L. botrana flights with pheromone traps. In fact, according to our results, the effect of 

sulfur dust is mostly due to the reduction of oviposition, since little effect can be obtained on egg 

development and effects on larval settlement have to be confirmed in field conditions. The trial 
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conducted against the third generation of L. botrana indicates that sulfur dust has the same efficacy 

even when it is applied after the occurrence of BBCH 79.  

Sulfur dust performed not differently from B. thuringiensis with the benefit of requiring one 

application instead of two per L. botrana generation. However, B. thuringiensis, on the other hand, 

has probably a more favorable ecotoxicological impact on non-target arthropods due to its 

selectivity. The detrimental effects of sulfur dust on non-target arthropods, particularly phitoseiid 

mites, are well known (Hessan et al., 1994; Gadino et al., 2011) and therefore we suggest to limit 

the number of applications to avoid disruption of biological control. 
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Table 1. Field trials. Results of two-way and one-way ANOVA performed on larval nests of L. 

botrana and damaged berries. 

Source of variation 
Larval nests Damaged berries 

F df P F df P 

Trial 1 – 2nd generation       

Corrected Model 5.652 5,18 0.003 4.888 5,18 0.005 

Treatment 12.637 2,18 0.0001 10.480 2,18 0.001 

Leaf removal 2.192 1,18 0.156 2.571 1,18 0.126 

Treatment*Leaf removal 0.398 2,18 0.677 0.455 2,18 0.642 

Trial 2 – 3rd generation       

Treatment 7.186 3,12 0.005 7.468 3,12 0.004 
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Fig. 1. Second and third flights of L. botrana males recorded with pheromone traps. The arrows 

indicate the time of application of the different products in the two trials. 
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Fig. 2. Field trial on the effect of different treatments and bunch-zone leaf removal on L. botrana 

second-generation infestations (mean ± standard deviation of larval nests and damaged berries). 

Different letters among treatments indicate significant differences according to Tukey’s post-hoc 

test (α = 0.05) and NS no significant differences according to ANOVA. 
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Fig. 3. Field trial on the effect of different treatments on L. botrana third-generation infestations 

(mean ± standard deviation of larval nests and damaged berries). Different letters among treatments 

indicate significant differences according to Tukey’s post-hoc test (α = 0.05). 
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Abstract 

Mealybugs are worldwide pests in vineyards due to both direct damage and spread of 

grapevine leafroll disease. The objective of this study was to find natural products valuable as an 

alternative to synthetic insecticides for their control. Laboratory experiments and field trials were 

conducted in New Zealand in 2015-16 on Pseudococcus calceolariae (Maskell) and Pseudococcus 

longispinus (Targioni Tozzetti), and in Italy in 2016-17 on Planococcus ficus (Signoret) to assess 

the insecticidal activity of kaolin and citrus essential oil. Kaolin was ineffective at controlling 

mealybugs in the vineyard, and in one case, leaf infestations increased while bunch infestations 

declined. In contrast, citrus essential oil increased mealybug mortality in the laboratory and reduced 

leaf (but not bunch) infestation in the vineyards.  

  

  



 119 

1. Introduction 

Vineyard mealybugs (Hemiptera: Pseudococcidae) are among the most important pests in 

many grape-growing regions of the world and economic losses due to infestations have increased 

substantially over the past decade (Daane et al., 2012).  

In New Zealand vineyards, Pseudococcus longispinus (Targioni Tozzetti), Ps. calceolariae 

(Maskell) and Ps. viburni (Signoret) are the most widespread mealybugs (Charles et al., 1993), with 

the first two being the key pests on grapevines (Charles et al., 2006, 2010). Pseudococcus 

calceolariae overwinters largely in the juvenile stages under the grapevine bark and on the roots of 

both grapevines and ground cover plants, and completes two and possibly a partial third generation 

per year (V. Bell, unpublished data). Pseudococcus longispinus overwinters under the bark of 

grapevines as adult females and crawlers (first instar nymph), and in the north of New Zealand 

completes three generations per year (Charles, 1981). 

In European vineyards, four species of mealybugs are present: Planococcus ficus (Signoret), 

Pl. citri (Risso), Heliococcus bohemicus Sulc and Phenacoccus aceris (Signoret) (Sforza et al., 

2003; Bertin et al., 2010; Cid et al., 2010; Mansur et al., 2017). Planococcus ficus is the most 

important mealybug pest for Italian vineyards (Duso, 1989) and is also a significant pest in South 

African and North American vineyards (Walton and Pringle, 2004; Prabhaker et al., 2012). In 

Italian vineyards, Pl. ficus overwinters under grapevine bark and on roots, mostly as fertilized 

females, and completes three generations per year (Duso, 1989; Lentini et al., 2008).  

Mealybugs can adversely influence grape yield and fruit quality due to infestation of 

grapevine woody parts, and by fouling leaves and bunches through the excretion of honeydew upon 

which sooty mould subsequently develops (Charles, 1982; Cocco et al., 2014; Beltrà et al., 2017). 

However, in many grape-growing areas the most serious issue of mealybug is their status as vectors 

of Grapevine leafroll-associated virus 3 (GLRaV-3), the predominant type species causing the 

grapevine leafroll disease (GLD) (Bell et al., 2009; Tsai et al., 2010). It reduces crop yield and must 

quality to such an extent that heavy infected vineyards have to be removed (Pietersen et al., 2013). 

To prevent GLRaV-3 spreading, it is necessary to identify and quickly remove virus-infected vines, 

and to control the insect vectors (Pietersen et al., 2013). 

The control of mealybug infestations commonly relies on multiple applications of synthetic 

insecticides such as organophosphates, neonicotinoids and chitin-biosynthesis inhibitors (Daane et 

al., 2008a; Cocco et al., 2014; Wallingford et al., 2015). However, insecticide applications can be of 

limited effectiveness because of both the cryptic nature of mealybugs, which live in sheltered parts 

of the grapevines (i.e., under bark, on roots, in cracks and crevices on old wood, inside bunches, 
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underside of leaves) (Lo and Walker, 2011), and resistance issues (Prabhaker et al., 2012). 

Therefore, effective control strategies should rely on integrated pest management (i.e., multi-tactic) 

programs based on environmentally sustainable tools that, wherever possible, limit the use of 

synthetic insecticides. This approach is important for sustainable wine production and vital for 

organic vineyards where relatively few substances are available for use against mealybugs (e.g., 

mineral oil or insecticidal soap) (Regulation 2008/889/EC). Biological control by release of 

predatory coccinellids (Coleoptera) or parasitoid wasps (Hymenoptera) (Daane et al., 2008b; 

Marras et al., 2016; Pozzebon et al., in press) and mating disruption (Walton et al., 2006; Cocco et 

al., 2014; Sharon et al., 2016) can be valid alternatives to chemical control, although the high cost 

of these options justifies use only in certain circumstances. Cultural practices aimed to reduce plant 

vigour or change canopy-microclimate conditions can also reduce mealybug infestations (Duso et 

al., 1985; Cocco et al., 2015; Muscas et al., 2017). 

As a substitute for chemical inputs, it is our view that there should be some effort made to 

identify natural substances able to exert some influence in controlling numbers of mealybugs on 

grapevines. In this respect, plant essential oils have been found to exhibit some biological activity 

acting against mealybugs (Karamaouna et al., 2013). In particular, citrus essential oil, with 

limonene as the main component, was shown to be lethal against Pl. ficus and Ps. longispinus under 

laboratory conditions (Hollingsworth, 2005; Karamaouna et al., 2013). Similarly, kaolin, an inert 

white clay, is known to be harmful to insects (Gleen et al., 1999), including some grapevine pests 

(Puterka et al., 2003; Tacoli et al., 2017a; 2017b). Laboratory studies also suggest its effectiveness 

against Lobesia botrana (Denis and Schiffermüller) (Lepidoptera: Tortricidae), the key insect pest 

in European vineyards (Pease et al., 2016). Against mealybugs, it has only been tested in mango 

orchards where it was ineffective (Joubert et al., 2004).  

The aim of this study is to evaluate in laboratory experiments and in field trials, the effects 

of plant essential oils, terpenes, kaolin and insecticidal soap against mealybugs infesting grapevines 

in New Zealand and Italian vineyards. For essential oils, it was expected that contact toxicity 

(Isman, 2000), which had already been observed in the laboratory against mealybugs 

(Hollingsworth, 2005; Karamaouna et al., 2013), would be also be detectable against this pest group 

under field conditions. For kaolin, we predicted evidence of some feeding deterrence among 

mealybugs, analogous to that which was observed among other sap feeders (Tacoli et al., 2017), 

together with an inhibition of mealybug crawler migration from bark to leaves or from leaves to 

bunches (Gleen et al., 1999). For insecticidal soap, we predicted that could be toxic to Pl. ficus 

crawlers, analogous to that which was observed for psyllids and aphids (Tremblay et al., 2009; Hall 

and Richardson, 2012). 
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2. Materials and methods 

During 2015–2017 natural insecticides were tested in the laboratory and in the field against 

vineyard mealybugs in New Zealand and in Italy. 

2.1. Natural products tested 

The natural products tested in the laboratory and in vineyards in New Zealand and Italy are 

listed in table 1. 

The New Zealand orange oil emulsion was added with 4% citric acid and 1% sodium laureth 

sulphate to improve the efficacy of the product (Hollingsworth and Hamnett, 2010). 

2.2. Laboratory experiments in New Zealand 

Two laboratory experiments were carried out in the Southern Hemisphere early-summer in 

2015. In the first experiment, the mortality of Ps. calceolariae first-instar nymphs was compared in 

two treatments: (i) nymphs on untreated leaves (control) and (ii) nymphs on kaolin treated leaves 

(kaolin). In the second experiment, mortality was compared over three treatments: (i) nymphs on 

untreated leaves (control), (ii) nymphs on citrus-essential-oil sprayed leaves (CEO-only-on-leaves) 

and (iii) nymphs and leaves sprayed with CEO (CEO-on-leaves-and-nymphs). 

For the laboratory experiments, grapevine leaves were collected from a block planted in 

mature Viognier vines grown in an organic vineyard where synthetic pesticides were not used 

(Hastings, 39°37'15"S, 176°45'36"E, 20 m a.s.l.). Mealybugs of first and second instar nymphs 

were taken from a Ps. calceolariae mass rearing on seed potatoes and were allowed to naturally 

disperse onto the grapevine leaves so as to not damage the delicate feeding apparatus. Fifty 

grapevine leaves per treatment were individually placed together with one first instar Ps. 

calceolariae into transparent self-sealing plastic bags (20 × 35 cm). The products were applied with 

a Potter spray tower (Burkard Scientific Ltd, Uxbridge, UK) spraying 2 mL of solution per leaf at 

the pressure of 15 psi (103 kPa). After 8, 20 and 44 h for the first experiment and after 8, 20, 44, 68 

and 92 h for the second experiment, bags were checked to record nymph mortality and position (on 

leaf or on bag surfaces). 
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2.3. Field trials in New Zealand 

2.3.1. Years and vineyards  

During the 2015-2016 Southern Hemisphere growing season, three field trials were carried 

out in two vineyards. Vineyard A (Hastings Metropolitan Area, 39°36'40"S, 176°45'18"E, 28 m 

a.s.l., cultivar Cabernet Sauvignon) was a 9-year-old conventionally managed vineyard growing 

using double Guyot training system. Distances between and along rows were 2.7 m and 1.6 m, 

respectively. Vineyard B (Hastings Metropolitan Area, 39°37'16"S, 176°46'00"E, 21 m a.s.l., 

cultivar Gewurztraminer) was a 16-year-old organic vineyard with vines grown on double cordon 

training system with distances between and along rows of 2.1 m and 2.0 m, respectively. In 

Vineyard A, Buprofezin (Ovation 50 WDG, Etec crop solutions, Auckland, New Zealand, 0.25% 

solution) was applied in late October (pre-flowering application) before the trial commenced. The 

application of the insecticide could not be avoided due to the risks associated with vector-mediated 

GLRaV-3 transmission to healthy vines (Charles et al., 2006). 

2.3.2. Treatments in comparison  

In Vineyard A, two trials were carried out comparing the control (i.e., only the farm 

application of Buprofezin) with kaolin (Trial 1) and CEO (Trial 2) treatments, respectively. It was 

decided to run two separate trials to simplify the distribution of products. Kaolin was sprayed three 

times (3 and 24 December 2015 and 2 February 2016), with the first application timed before the 

emergence of the second generations of Ps. calceolariae and Ps. longispinus. CEO was applied 

once on 3 December 2015, on the basis of farmer needs, even if the second generations had not yet 

started. In Vineyard B, one trial was carried out comparing the control (i.e., no farm application of 

insecticides) with kaolin applied to the vine foliage three times (4 and 23 December 2015 and 9 

February 2016). All the products were sprayed using a two rows recycling sprayer (FMR, 2300R, 

FMR GROUP LTD, Blenheim, New Zealand) at a rate of 1000 L/ha. In both trials, an alternate 

block design with 20 replicates was adopted. Each replicate consisted of 30 (Vineyard A) or 32 

(Vineyard B) grapevines equally distributed on two rows, as a result of the use of the two-row 

recycling sprayer. 

2.3.3. Pheromone trapping 

In both Vineyards A and B, adult male Ps. calceolariae and Ps. longispinus were monitored 

during the season using species-specific pheromone-baited traps. Two traps per mealybug species 

were deployed in each vineyard. In both vineyards, monitoring started on 2 November 2015 (leaf 

development BBCH 11-19, Lorenz et al., 1995) and ended on 22 March 2016 (ripening of berries 

BBCH 85-89). The sticky bases were changed fortnightly and the number of mealybug males of 
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each species was counted with the aid of a dissecting microscope. Pheromone lures for both species 

were replaced every six weeks. Data were expressed as number of males captured per trap per day. 

2.3.4. Leaf samplings 

In both Vineyards A and B, mealybug nymphs and adult females were sampled on leaves 

four times between flowering (BBCH 61-69) and ripening of berries (BBCH 85-89) (i.e., in 

Vineyard A on 30 November 2015, and 18 January, 17 February and 15 March 2016; in Vineyard B 

on 2 December 2015, and 13 January, 15 February and 11 March 2016). Samples consisted of 20 

basal leaves per replicate, considering two leaves from each grapevine of the 10 central grapevines 

of both rows, for a total of 400 leaves per treatment per sampling date. On the first date, counting of 

mealybugs was done directly in the vineyards, while on the other three dates, the leaves were 

collected and mealybugs were identified based on morphological characteristic and counted in the 

laboratory under a dissecting microscope.   

2.4. Laboratory experiments in Italy 

Two laboratory experiments were carried out in Northern Hemisphere autumn 2016. In the 

first experiment, the mortality of Pl. ficus first-instar nymphs was compared in four treatments: (i) 

nymphs on untreated agar (control), (ii) nymphs on kaolin-sprayed agar (kaolin), (iii) nymphs on 

citrus-essential-oil-sprayed agar (CEO-only-on-agar) and (iv) nymphs and agar sprayed with CEO 

(CEO-on-agar-and-nymphs). In the second experiment, control and different concentrations of CEO 

(0.1%, 0.2%, 0.3%, 0.4%, 0.5%, and 0.6%) were tested, as described for CEO-on-agar-and-nymphs, 

to determinate the lethal concentrations LC50 and LC95 and the 95% confidence intervals (CI). Glass 

Petri-dishes (5 cm diameter) were half filled with agar gel substrate (1.5%, 10 mL) and laboratory-

reared first and second instar Pl. ficus were transferred from seed potatoes using a small soft 

painting brush. Fifty mealybugs per treatment were placed in 10 Petri dishes in groups of five 

individuals. The two products were applied with a Potter spray tower (Burkard Scientific Ltd, 

Uxbridge, UK) spraying 1.2 mL of solution per Petri dish at the pressure of 15 psi (103 kPa). The 

amount of solution deposited was 1.9-2.0 mg cm-2, as recommended by the IOBC guideline 

(Hassan, 1985). To record nymph mortality, the Petri dishes were checked after 4 h and again at 24 

h for the first experiment, and after 24 h for the second experiment. 
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2.5. Field trials in Italy 

2.5.1. Years and vineyards 

In 2016 and 2017 Northern Hemisphere growing seasons, two field trials looking at the 

control of Pl. ficus were carried out in Vineyards C and D, respectively. Vineyard C ( Manzano, 

Udine district, 46°01'19"N, 13°23'17"E, 83 m a.s.l., cultivar Merlot) was a 15-year-old conventional 

vineyard growing using double arched Guyot training system with distances between and along 

rows of 2.4 m and 0.6 m, respectively. Vineyard D (Udine, 46°02'04"N, 13°13'33"E, 90 m a.s.l., 

cultivar Chardonnay) was a 15 year-old conventional vineyard growing using a Guyot training 

system with distances between and along rows of 2.4 m and 1.0 m, respectively. No insecticides 

were sprayed on the blocks before and during the trials. 

2.5.2. Treatments in comparison 

In Vineyard C, the treatments in comparison with the control were kaolin, CEO and terpenes 

applied to the vine canopy to control the Pl. ficus second generation, whereas, in Vineyard D, the 

treatments were kaolin, CEO and insecticidal soap applied to the vine canopy to control the Pl. ficus 

second and the third generations (Table 1). In Vineyard C, kaolin was applied post-flowering on 3 

and 17 June and 8 July 2016, while CEO and terpenes were applied on 8 and 15 July 2016. In 

Vineyard D, kaolin applications were timed for 31 May, 15 June and 5 July 2017; CEO and 

insecticidal soap were applied, respectively, on 5 July and, 5 and 13 July 2017 (against the second 

generation), and on 9 August, and 9 and 16 August 2017 (against the third generation). Kaolin 

applications occurred early in the season to provide coverage before the start of the migration of the 

second generation of Pl. ficus nymphs from woody parts of the vine to leaves and bunches, while 

CEO, terpenes and insecticidal soap were applied during the migration of second- and third-

generation crawlers. All products were applied using a back-pack sprayer (Oleo-Mac, Sp-126, 

Emak S.p.A., Bagnolo in Piano, RE, Italy in 2016 and M1200, Cifarelli s.p.a., Voghera, PV, Italy in 

2017) at a rate of 1000 L/ha. In both Vineyards C and D, a randomized block design with 10 

replicates was adopted. Each replicate consisted of 10 grapevines. 

2.5.3. Pheromone trapping  

In both Vineyards C and D, adult male Pl. ficus were monitored using a single pheromone-

baited trap per vineyard. In Vineyard C, only the flight of the first generation was monitored from 

24 May to 28 June (from BBCH 57 to 75). In Vineyard D, the flights of all three generations were 

monitored from 25 May to 29 September (from BBCH 57 to 99). The sticky bases were changed 

weekly and the number of males was counted using a dissecting microscope in the laboratory. 
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Pheromone lures were replaced every six weeks. Data were expressed as number of males captured 

per trap per day. 

2.5.4. Leaf samplings 

In Vineyard C, mealybugs on leaves were sampled seven times, on 3 and 15 June, 8, 15, 22 

and 29 July and 5 August 2016 (from BBCH 60 to 81). In Vineyard D, samplings occurred 10 

times, on 30 May, 13 June, 5, 12, 18 and 26 July, 2, 9, 16 and 22 August 2017 (from BBCH 60 to 

99). In both years on the first two visits, samples consisted of five basal leaves per replicate, chosen 

on five grapevines for a total of 50 leaves per treatment. These were checked in the vineyard using a 

5× magnification lens to count mealybugs. On 1 July 2016 and 28 June 2017, before the beginning 

of the migration of the second-generation nymphs, five of the most infested plants per replicate 

were marked. A grapevine was considered strongly infested when colonies of mealybugs were 

present under the bark and many ants walked on the trunk. This procedure was adopted to avoid 

systematic error in the choice of sampled plants and reduce infestation variability among replicates 

considering the very high aggregated distribution of this pest (Duso, 1989). To ensure reliable count 

of the second-generation crawlers, from the third sampling date, 10 basal leaves per replicate were 

collected, i.e. two leaves from each marked-grapevine, for a total of 100 leaves per treatment and 

sampling date. The leaves were taken to the laboratory and mealybugs were identified to species 

level (Tranfaglia, 1976) and counted with the aid of a dissecting microscope.   

2.5.5. Bunch sampling  

Only in Vineyard D did we sample bunches in order to estimate the Pl. ficus infestation 

level at the end of the second generation. On 31 July 2017, we collected a bunch from each of two 

marked grapevines per replicate, for a total of 20 bunches per treatment. In the laboratory, bunches 

were dissected in order to count Pl. ficus mature females using a dissection microscope. 

2.6. Statistical analyses 

Log-rank test (Mantel, 1966) was used together with Fisher’s exact and Ryan test to 

compare data in all laboratory experiments. Mortality data from the dose-response experiments 

were analyzed using the probit transformation; the natural mortality rate was considered using the 

iterative approach, according to Finney (1949). The concentrations which kill a given proportion z 

of mealybugs (LCz) and their confidence intervals were computed according to Finney (1971). 

 Mixed ANOVA with Tukey’s post-hoc test was used after logarithmic transformation to 

compare data in all the field trials, and efficacy of treatments was calculated according to 
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Henderson and Tilton (1955). One-way ANOVA was used to compare bunch infestation in 

Vineyard D on 2017.  

Statistical analyses were performed with Microsoft Excel 2013 for Windows (Microsoft 

Corporation 2013) and IBM SPSS Statistics 20 (IBM Corporation 2011). 

3. Results 

3.1. Laboratory experiments in New Zealand 

3.1.1. First Experiment – Effect of kaolin on Ps. calceolariae 

Kaolin significantly increased mortality over time of Ps. calceolariae in comparison with 

the control (Log-rank test: χ2 = 15.108, df = 1, P < 0.0001) (Fig. 1). The differences were significant 

from 20 h to the end of the experiment. 

The proportion of nymphs on the bag surface vs. leaves over time was not significantly 

different between the kaolin than the control (Log-rank test: χ2 = 0.969, df = 1, P = 0.325) (Fig. 1), 

although from 20 to 68 h differences were significant. 

3.1.2. Second Experiment – Effect of CEO on Ps. calceolariae 

The mortality over time of Ps. calceolariae was significantly increased by CEO treatments 

(Log-rank test: χ2 = 36.115, df = 2, P < 0.0001) (Fig. 1). At 8 h, the CEO-on-leaves-and-nymphs 

differed significantly from the control. Similarly, at 20 h the CEO-only-on-leaves showed a 

significantly higher mortality rate than the control and did not differ anymore from the CEO-on-

leaves-and-nymphs.  

The proportion of nymphs on the bag surface over-time was significantly higher in the 

CEO-only-on-leaves than in both the control and CEO-on-leaves-and-nymphs (Log-rank test: χ2 = 

8.695, df = 2, P = 0.01) (Fig. 1). The differences were significant at 20 h from the beginning of the 

experiment. 

3.2. Field trials in New Zealand 

3.2.1. Pheromone-trap counts of male mealybug 

The captures of male Ps. calceolariae and Ps. longispinus were prevalent in Vineyard A and 

Vineyard B, respectively. Both mealybug species were captured from November 2015 to March 

2016 and showed two distinct periods of captures (i.e., in November-December 2015 and from late 

January 2016), coinciding with the emergence of males of the first and second generations (Fig. 2).  
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3.2.2. Mealybug leaf infestation  

In Vineyard A, the mealybug encountered most commonly was Ps. calceolariae. On 30 

November 2015, pre-trial sampling resulted in us finding a single mealybug on a leaf sample. 

Across the whole sampling period no differences were detected between the kaolin (Trial 1) and 

CEO (Trial 2), and the respective controls (in Trial 1, F = 1.237, df = 1,38, P = 0.273; in Trial 2, F 

= 0.001, df = 1,38, P = 0.974) (Fig. 3).  

In Vineyard B, the mealybug encountered most commonly was Ps. longispinus. On 2 

December 2015, pre-trial sampling resulted in us finding three mealybugs on leaves. Across the 

whole sampling period no differences were detected between the kaolin and the control (F = 0.517, 

df = 1,38, P = 0.477) (Fig. 3). 

3.3. Laboratory experiments in Italy 

3.3.1. First Experiment – Effect of kaolin and CEO on Pl. ficus 

The two CEO treatments significantly increased Pl. ficus mortality over time when 

compared with either the kaolin or the control (Log-rank test: χ2 = 92.226, df = 3, P < 0.0001) (Fig. 

4). After 4 h, only the number of Pl. ficus nymphs on the CEO-on-agar-and-nymphs differed 

significantly from the control. After 24 h, also the CEO-only-on-agar showed significantly higher 

mortality of Pl. ficus compared with either kaolin or the control, but still significantly lower than 

that of the CEO-on-agar-and-nymphs. 

3.3.2. Second Experiment – LC50 and LC95 for citrus essential oil formulation against Pl. ficus 

The CEO formulation LC50 was 344 mL/L (95% CI: 297 - 380 mL/L) and LC95 was 654 

mL/L (95% CI: 572 – 827 mL/L). Goodness-of-fit test was not statistically significant (χ2 = 2.07, df 

= 4, P = 0.72) and therefore no heterogeneity factor was used in the calculation of confidence 

intervals (CI). The regression equation was y = 0.002x – 0.2323 (R2 = 0.99). 

3.4. Field trials in Italy 

3.4.1. Pheromone-trap counts of mealybug males 

In Vineyard C, the captures of Pl. ficus first generation occurred in June and showed a peak 

on 15 June 2016 (Fig. 5).  

In Vineyard D, Pl. ficus males were captured from June to September 2017 and had three 

distinct periods of captures (early- to mid-June, mid-July to early-August, and late-August to late-

September), coinciding with male emergence of the three generations (Fig. 5). 
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3.4.2. Pl. ficus leaf infestation 

In Vineyard C, over the pre-trial period (3 June to 8 July 2016), no significant treatment 

effect was detected (F = 0.625, df = 3,36, P = 0.603) (Fig. 6). Over the remaining sampling period 

significant differences were detected among treatments (F = 4.438, df = 3,36, P = 0.009), with CEO 

being the only treatment significantly less infested than the control (P = 0.021). Terpene-treated 

vines neither differed from control vines nor those treated with CEO (P = 0.076). The two CEO 

applications showed a cumulative Henderson-Tilton efficacy of 76% (60.6% after first application, 

39.2% after second application). 

In Vineyard D during the pre-trial period (30 May to 5 July 2017), no significant differences 

were detected among treatments (F = 1.423, df = 3,36, P = 0.252) (Fig. 7). Over the remaining 

sampling period, significant differences were detected among treatments (F = 13.119, df = 3,36, P = 

0.0001), with kaolin-treated vines more infested than all the other treatments and the control (P < 

0.01), while CEO-treated vines were less infested than those in the control (P = 0.04). No 

significant difference was observed between CEO and insecticidal soap (P = 0.262). CEO showed a 

Henderson-Tilton efficacy of 74.7% in the application against the Pl. ficus of the second generation, 

but of only 10.3% against the third generation. 

3.4.3. Pl. ficus bunch infestation 

Although the Pl. ficus second-generation bunch infestation was apparently lower in the 

kaolin, CEO and insecticidal soap than in the control (Abbott reduction by 57%, 47% and 37%, 

respectively), no significant differences emerged (F = 1.572, df = 3, P = 0.213) (Fig. 8). 

4. Discussion 

4.1. Laboratory data 

Citrus essential oil increased the mortality of both Ps. calceolariae and Pl. ficus when tested 

under laboratory conditions. On the contrary, kaolin increased the mortality only of Ps. 

calceolariae.  

The efficacy of CEO has already been highlighted against both Pl. ficus and Ps. longispinus 

(Hollingsworth, 2005; Hollingsworth and Hamnett, 2010; Karamaouna et al., 2013), but the 

formulations we tested are not currently commercially available. To evaluate the toxicity of CEO 

against Ps. calceolariae, a formulation prescribed by Hollingsworth and Hamnett (2010) was used, 

with the results observed being similar to those found by these authors for Ps. longispinus. In Italy, 

the toxicity of CEO against Pl. ficus was tested using a commercial product with no label claim for 
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mealybugs. In our experiments, direct applications of CEO on mealybug nymphs resulted in high 

rates of mortality, whereas when nymphs were placed in contact with substrates previously covered 

with CEO, the increase in mealybug mortality was both slower and lower. Since these latter 

applications increased also Ps. calceolariae movement from the leaf to the bag surface, indicating a 

repellent activity of CEO on Ps. calceolariae, we can suppose that nymphs move to avoid volatile 

organic compounds (VOCs) that act on insect integument and produce effects similar to the ones of 

the direct contact with the product (Lee et al., 2003). These CEO properties are likely to be more 

evident in the laboratory than under field conditions since nymphs are confined in a close 

environment.   

4.2. Field data 

In the field trials, kaolin was not able to control mealybug infestations of either Ps. 

calceolarie, or Ps. longispinus and Pl. ficus. In the sampling occurred in January after two kaolin 

applications in the New Zealand vineyards, lower numbers of mealybugs were found on the kaolin-

treated plots compared with those in the untreated control, although the differences were not 

significant. In Vineyard C in the Italian field trials, kaolin-treated plots were similarly infested to 

those of the untreated control. In Vineyard D, mealybug infestations in the vines were substantially 

higher in the kaolin-treated plots compared with the untreated control. This latter result concurred 

with the findings of Joubert et al. (2004), where numbers of Ps. longispinus increased on mango 

plants treated with kaolin. In Vineyard D, kaolin-treated plots had the lowest bunch infestation 

despite the highest population levels on leaves. This could be explained by a reduced migration of 

mealybugs from leaves to bunches without an increase in their mortality. Indeed, insect movement 

impairment from kaolin is already reported in other studies (Gleen et al. 1999; Puterka et al. 2003; 

Sackett et al. 2005). These results indicate that kaolin is not a solution to mealybug infestations, but 

when applied for other purposes its potential ability of reducing the migration of Pl. ficus towards 

bunches could increase the efficacy of insecticides. Because in north-eastern Italy most of damage 

is caused by Pl. ficus bunch infestation (Duso, 1989), the timing of applications against the second 

generation is often problematic, particularly when low-persistent insecticides are used. Indeed, the 

migration of second-generation crawlers from leaves to bunches lasts for several days and when 

mealybugs are inside bunches targeting them with insecticides is very difficult, mostly in compact-

bunch cultivars. Due to this reason, a reduction of their migration towards the bunches can favour 

their control.  

In New Zealand field trials, CEO did not show any activity against Ps. calceolariae. This 

result may have been influenced by the foliar application being too early relative to the emergence 
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and movement of the mealybug second generation. The choice of timing for this input was 

unavoidable due to a request from the vineyard owner. With the very short withholding period, 

characteristic of CEO (Hollingsworth, 2005), we contend this product was unable to exert any long-

term influence over mealybug populations on the vines, unlike the influence demonstrated in the 

laboratory experiment.  

The control of the second generation of Pl. ficus on leaves was higher in the 2017 trial after 

a single CEO application than in the 2016 one after two applications, because the type of backpack 

sprayer used in the second year produced smaller droplets providing better leaf coverage. This was 

the reason because in the 2017 trial the second CEO application was postponed against the third 

generation. However, this last application showed a scarce efficacy against the third generation on 

leaves, probably for the combination of two effects: the observed low efficacy of the application 

against the second-generation inside bunch and a supposed subsequent migration of the third-

generation crawlers toward leaves. To increase the efficacy against second generation on bunches, 

CEO should be applied in advance before the second-generation crawlers are hidden inside already-

compact bunches. Relatively to leaf infestation, kaolin appeared more effective on bunches than 

CEO. We can hypothesize that the preventive kaolin application, when bunches were still loose, 

deterred the bunch colonization by second-generation crawlers. 

Terpenes and insecticidal soap were not effective in controlling mealybugs but were 

statistically not different from CEO, a result suggesting that the effectiveness of both compounds 

requires further evaluation. 

4.3. Conclusions 

Even if the hoped-for results were not achieved in the field trials, CEO was effective against 

mealybugs, particularly Pl. ficus both under laboratory and field conditions. Since CEO is a contact 

insecticide characterized by low persistence, a first application against the second generation at the 

beginning of the crawlers migration, followed by a second application after a week, should allow an 

optimal Pl. ficus control, preventing most of the bunch colonization. Based on the hypothesis that 

kaolin may prevent mealybug population migration from leaves to bunches, the combined use of 

kaolin and CEO could improve the efficacy of this latter. Moreover, kaolin can be profitable in 

vineyards since it is effective in the control of other European grapevine pests without being 

harmful to non-target arthropods (Tacoli et al., 2017). 
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Table 1 Natural products tested in laboratory and vineyards in New Zealand and Italy. 

Active 

ingredient 

Commercial product Application 

rate in water 

Country 

(Year) 

Target species in 

the laboratory 

Target species in 

the field Name Formulation 

Kaolin 

Surround WP 

(Tessenderlo Kerley 

Inc., Phoenix, Arizona, 

USA) 

WP, 95% kaolin  3% w/v 

New Zealand 

(2015) 
Ps. calceolariae 

Ps. calceolariae 

and Ps. longispinus 

Italy (2016, 

2017) 
Pl. ficus Pl. ficus 

Citrus 

essential oil 

CEO 

Orange oil emulsion 

(Hawkins Watts, 

Auckland, New 

Zealand) 

SL, 10% orange oil Brazilian 

IN105118 (Lionel Hitchen 

Ltd, Winchester, UK) 

10% v/v 
New Zealand 

(2015) 
Ps. calceolariae 

Ps. calceolariae 

and Ps. longispinus 

Prev-Am Plus (Nufarm 

Italia, Milano, Italy) 
SL, 5.88% orange oil 0.5% v/v 

Italy (2016, 

2017) 
Pl. ficus Pl. ficus 

Terpenes 
3logy (SIPCAM, 

Milano, Italy) 

CS, 3.2% eugenol, 6.4% 

geraniol, 6.4% thymol 
0.4% v/v Italy (2016)  Pl. ficus 

Insecticidal 

soap 

Flipper (Dow 

Agrosciences Italia, 

Milano, Italy) 

SL, 47.8% potassium fatty 

acids 
2% v/v Italy (2017)  Pl. ficus 
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Fig. 1. Pseudococcus calceolariae nymph mortality and % of nymphs on bag vs. leaf surface, 

recorded over time in the treatments in comparison in NZ first and second laboratory experiments. 

Different small and capital letters among treatments on the same sampling indicate significant 

differences according to Ryan’s test for α = 0.05 and α = 0.01, respectively. 
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Fig. 2. Pheromone-trap captures of Ps. calceolariae and Ps. longispinus males recorded over the 

sampling period in vineyards A and B. 
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Fig. 3. Leaf infestation by mealybugs recorded over the sampling period in the treatments in 

comparison in the three trials conducted in the two NZ vineyards. NS = no significant differences 

according to Mixed ANOVA (α = 0.05). 

  



140 

 

 

Fig. 4. Planococcus ficus nymphs mortality recorded in the four treatments in comparison at 4 h and 

24 h from the beginning of the laboratory experiments. Different letters among treatments indicate 

significant differences according to Ryan’s test for α = 0.01. 
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Fig. 5. Pheromone-trap captures of Pl. ficus males recorded over the sampling period in vineyards C 

and D.   
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Fig. 6. Leaf infestation by Pl. ficus second generation recorded over the sampling period in the 

treatments in comparison in Vineyard C. Different letters among treatments on the same date 

indicate significant differences according to Tukey’s post-hoc test (α = 0.05).  
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Fig. 7. Leaf infestation by Pl. ficus second and third generations recorded over the sampling period 

in the treatments in comparison in Vineyard D. Different letters among treatments on the same date 

indicate significant differences according to Tukey’s post-hoc test (α = 0.05). 
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Fig. 8. Bunch infestation by Pl. ficus second generation recorded in the treatments in comparison in 

Vineyard D. Different letters among treatments indicate significant differences according to 

Tukey’s post-hoc test (α = 0.05). 
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Abstract 

The effects of kaolin and bunch-zone leaf removal (LR) were assessed on populations of 

predatory mites Kampimodromus aberrans (Oudemans) and Typhlodromus pyri Scheuten in the 

context of four trials carried out against Lobesia botrana (Denis and Schiffermüller) (2015-2016) in 

vineyards located in north-eastern Italy. A laboratory experiment aimed at evaluating the effects of 

kaolin on the survival and fecundity of predatory mites, originated from the same grape-growing 

area, was conducted.  

In field trials, kaolin was moderately harmful to populations of both predatory mite species, 

whereas the negative effect of LR was slight and significant only in one of the four trials. The 

decrease in population densities caused by kaolin was gradual and a population recovery was 

observed in the next spring. 

In laboratory experiments, kaolin did not cause mortality to predatory mite females, whereas 

their fecundity was reduced by around 60%. A moderate use of kaolin and the adoption of LR did 

not irreversibly affect phytoseiid populations in vineyards and thus can be considered compatible 

with IPM strategies. 
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1. Introduction 

Kaolin is at the basis of the particle film technology (Glenn et al. 1999), which consists in 

covering plants with a thin layer of this product. It acts as a physical barrier for arthropods hiding 

the host plant visually or chemically so deterring egg laying and feeding, with negative effects on 

reproduction, survival and development duration (Unruh et al. 2000, Vincent et al. 2003, Barker et 

al. 2006, Lapointe et al. 2006, Tacoli et al. 2017). This strategy was effective in reducing the 

infestation of several insect and mite pests (e.g., Knight et al. 2001, Glenn and Puterka 2005, 

Jaastad et al. 2005, Markó et al. 2008, Pascual et al. 2010, D’Aquino et al. 2011, Tyler-Julian et al. 

2014, Marcotegui et al. 2015).  

In vineyards, kaolin applications were effective in the control of hemipteran pests such as 

the sharpshooter Homalodisca coagulata (Say), vector of Xylella fastidiosa Wells, the causal agent 

of Pierce’s disease (Wood and McBride 2001, Puterka et al. 2003, Barker et al. 2006, Tubajika et al. 

2007), the leafhoppers Empoasca vitis (Göthe), Zygina rhamni Ferrari (Tacoli et al. 2017a) and 

Scaphoideus titanus Ball (Tacoli et al. 2017b), the grape phylloxera Daktulosphaira vitifoliae 

(Fitch) (Sleezer et al. 2011) and the vine cicada Psalmocharias alhageos (Valizadeh et al. 2013). 

Regarding the tortricid moth Lobesia botrana (Denis and Schiffermüller), female oviposition rate, 

egg hatching, and larval survival were reduced by kaolin in the laboratory (Pease et al. 2016). In 

agreement with these results, kaolin significantly affected larval infestation in vineyards (F. T. et al. 

unpublished data).  

Kaolin could be proposed as a viable alternative to synthetic insecticides in vineyards; 

however, the preservation of biological control agents is essential in the framework of Integrated 

Pest Management (IPM) and knowledge about kaolin side effects on beneficials of grapevine pests 

is limited. Kaolin did not negatively affect the parasitization of eggs of the grapevine leafhoppers E. 

vitis and Z. rhamni by Anagrus spp (Hymenoptera: Mymaridae) in vineyards, and L. botrana by 

Thricogramma cacoeciae Marchal (Hymenoptera: Thricogrammatidae) in the laboratory (Pease et 

al. 2016, Tacoli et al. 2017). Predatory mites belonging to the Phytoseiidae family (Acari) can 

control mite and insect pests of various crops (McMurtry and Croft 1997, McMurtry et al. 2013). In 

European vineyards, they are effective biocontrol agents of tetranychid and eriophyid mites (e.g., 

Pérez-Moreno and Moraza-Zorrilla 1998, Duso et al. 2012, Tixier et al. 2013).  

The abundance of predatory mites in vineyards can be affected by fungicides and broad-

spectrum insecticides. Several studies investigated the side effects of various pesticides on 

predatory mites occurring in vineyards (e.g., Duso and Pavan 1986, Duso 1994, Pozzebon et al. 

2002, 2015, Baldessari et al. 2008, Göven and Güven 2008, Barić et al. 2010, Tirello et al. 2013, 

https://www.cabdirect.org/cabdirect/search/?q=au%3a%22G%C3%B6ven%2C%20M.%20A.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22G%C3%BCven%2C%20B.%22
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Auger et al. 2014). Moreover, regulatory organizations require experimental data on the selectivity 

of pesticides to predatory mites (and other beneficials) for the approval of new products (Candolfi 

et al. 1999). Negative side effects of kaolin on phytoseiid mites were observed in American and 

European orchards (Benedict 2005, Jaastad et al. 2006, Villanueva and Walgenbach 2010), although 

Bostanian and Racette (2008) did not observe such effects under laboratory conditions. 

In the current study, the side effects of kaolin were evaluated on Kampimodromus aberrans 

(Oudemans) and Typhlodromus pyri Scheuten vineyard populations under field and laboratory 

conditions. These species are key biocontrol agents of phytophagous mites in vineyards and 

orchards and target species in the evaluation of pesticide side effects (Candolfi et al. 1999, Duso et 

al. 2009, Pozzebon et al. 2010, 2015, Tirello et al. 2013, Wearing 2014, Ahmad et al. 2015). Since 

kaolin has a positive synergy with bunch-zone leaf removal in the control of L. botrana (F. T. et al. 

unpublished data), the impact of this cultural practice on the considered predatory mite species was 

also evaluated. Bunch-zone leaf removal is a common cultural practice in vineyards, which consists 

in removing all the leaves that cover bunches, this leads to a reduction of both bunch rots and L. 

botrana infestations (Pavan et al. 2016). This practice acts by altering the grapevines canopy 

structure and microclimate (Kiaeian Moosavi et al. 2017), therefore could affect non-target 

arthropods, too. 

2. Materials and methods 

2.1. Field trials 

The influence of kaolin and bunch-zone leaf removal on predatory mites was studied during 

2015-2016 in the context of four field trials against L. botrana carried out in three vineyards of 

north-eastern Italy, so-called vineyard A (2015 and 2016), vineyard B (2015) and vineyard C 

(2016). Vineyard A (Cormons, Gorizia district, 45°57'51"N, 13°26'49"E, 56 m a.s.l., cultivar Pinot 

Gris) is a 10-year-old conventional vineyard with grapevines growing using the Guyot training 

system with distances between and along rows of 2.5 m and 0.8 m, respectively. Vineyard B 

(Cormons, Gorizia district, 45°57'20"N, 13°26'50"E, 50 m a.s.l., cultivar Pinot Gris) is a 30-year-

old organic vineyard with grapevines growing using the double arched Guyot training system with 

distances between and along rows of 2.8 m and 1 m, respectively. Vineyard C (Cormons, Gorizia 

district, 45°58'02"N, 13°31'31"E, 53 m a.s.l., cultivar Pinot Gris) is a 15-year-old organic vineyard 

with grapevines growing using the Guyot training system with distances between and along rows of 
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2.2 m and 0.7 m, respectively. In all vineyards, standard fungicide programmes were followed and 

insecticides were not sprayed before and after kaolin applications.  

In the four trials, kaolin (Surround WP, Tessenderlo Kerley Inc., Phoenix, Arizona, USA, 

2% w/v, Surround WP/water) was sprayed at the rate of 1000 L/ha, an untreated control was 

included for a comparison. Kaolin was applied twice in 2015 (18 and 24 June) and three times in 

2016 (10, 20, 27 June). All applications were done using a backpack sprayer (Oleo-Mac, Sp-126, 

Emak S.p.A., Bagnolo in Piano, RE, Italy).  

In all trials, a randomized block design with four replicates was adopted. Each block (row) 

was divided into two plots of 28 (vineyard A) or 20 (vineyard B) or 24 (vineyard C) vines. In all 

trials, plots were divided into two subplots of 14 or 10 or 12 vines, respectively, that were subjected 

or not to bunch-zone leaf removal (17 June 2015, 10 June 2016). In vineyard A, the plots submitted 

to kaolin applications and bunch-zone leaf removal were the same in both years.  

Kaolin applications and bunch-zone leaf removal were timed on the basis of L. botrana 

second male flight Preliminary observations revealed that K. aberrans was the dominant species in 

Vineyards A and B, whereas T. pyri was dominant in Vineyard C.   

To assess phytoseiid mite densities, five samplings were carried out in each year and 

vineyard (2015: 11, 22, 29 June, 06 July and 20 August; 2016: 7 and 21 June, 1 and 8 July, and 24 

August). On each sampling date, 10 leaves were collected from the mid part of vine shoots in each 

subplot (40 leaves per subplot); they were closed in plastic bags and cool stored until being 

transferred to the laboratory. The leaves were checked under a dissecting microscope to assess mite 

numbers. At least 100 specimens per trial were slide mounted in Berlese medium and identified 

under 400× magnification, using current keys (Tixier et al. 2013; Cargnus and Zandigiacomo 2014). 

In vineyard A, after two consecutive years (2015 and 2016) of Surround-WP applications on 

the same vines, overwintering phytoseiid populations were sampled (5 December 2016). Pruned 

two-year-old cane parts consisting in three nodes and internodes were collected from 10 grapevines 

per replicate (subplot without bunch-zone leaf removal) for a total of 40 cane parts per treatment. 

The number of predatory mites overwintering under the bark and inside the buds was counted under 

a dissecting microscope. At least 100 females were identified as above described (Tixier et al. 2013; 

Cargnus et al. 2012). 

2.2. Laboratory experiments 

Experiments were performed in the laboratory to evaluate the effects of kaolin on K. 

aberrans and T. pyri populations originating from two vineyards in which they were dominant. K. 

aberrans was collected in 2016 from vineyard A, whereas T. pyri was collected in 2017 from an 
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organic vineyard located in the same area of field trials (Togliano, Udine district, 46°6'45"N, 

13°24'40"E, 140 m a.s.l., cultivar Merlot). Predatory mites of each species were reared in laboratory 

for several generations according to Tirello et al. (2013). For both species, toxicological tests were 

performed using insecticide-free grapevine leaf discs (4.5 cm in diameter). Kaolin (Surround WP, 

4% w/v, Surround WP/water) was applied to leaf discs with a Potter spray tower (Burkard Scientific 

Ltd, Uxbridge, UK) spraying 1.4 mL of suspension per leaf disc at 103 kPa (15 psi) to obtain an 

amount of fluid of 1.9-2.0 mg cm-2, as recommended by the IOBC guidelines (Hassan, 1985). The 

untreated leaf discs (control) were sprayed with water following the same procedure. Leaf discs 

were subsequently placed on wet cotton pads and wet cotton barriers were created along their 

perimeter to avoid predatory mites escape. Two mated females (about 12-d old) were placed on 

each leaf disc. Fresh pollen was provided every 2 days as food. The experiments were conducted 

under controlled conditions (25 °C, 70% RH and 16L:8D photoperiod). Toxicological tests were 

run following Tirello et al. (2013). Female mortality was checked at 72 h from the sprayings and 

fecundity was assessed daily for four additional days. After 7 d, the remaining females and juvenile 

stages were removed and eggs were monitored until they had completely hatched in the control. A 

total of 50 and 38 females per treatment were assessed for K. aberrans and T. pyri, respectively. 

2.3. Statistical analyses 

To compare field data, One-way and Mixed ANOVA with Bonferroni adjustment, and 

Tukey’s post-hoc test were performed after logarithmic transformation. Mortality was estimated 

according to Henderson and Tilton (1955). 

Student’s unpaired t-test was used to compare laboratory data. The overall effect of kaolin 

was expressed as E = 100% - (100% - M) × R, where E is the coefficient for toxicity; M is the 

mortality percentage of females calculated following Abbott (1925); R is the ratio between the 

average number of hatched eggs produced by females in kaolin treatment and the average number 

of hatched eggs produced by females in the control treatment. According to the toxicity categories 

proposed by International Organization for Biological Control (IOBC) for laboratory tests the 

following classes were considered: Class 1, harmless (E < 30% reduction); Class 2, slightly harmful 

(E = 30–79% reduction); Class 3, moderately harmful (E = 80–99% reduction); and Class 4, 

harmful (E > 99% reduction) (Hassan et al. 1994, Boller et al. 2005). Statistical analyses were 

performed with Microsoft Excel 2013 for Windows (Microsoft Corporation 2013) and IBM SPSS 

Statistics 20 (IBM Corporation 2011). 
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3. Results 

3.1. Field trials 

3.1.1. Vineyard A 

In this vineyard, K. aberrans was the unique species recorded and its density in the control 

was similar in 2015 and 2016 (Fig. 1). Phytophagous mite densities were negligible. 

In both years, K. aberrans densities were not significantly different in the two treatments in 

the sampling made before the first kaolin application. As a consequence of kaolin applications, 

phytoseiid densities were significantly lower in the kaolin than control (2015: F = 9.013; df = 1,12; 

P = 0.011; 2016: F = 80.802; df = 1,12; P = 0.0001) (Fig. 1). The negative effect of kaolin at about 

10 days from the last application was higher in 2016 than in 2015 (Henderson-Tilton: 69% and 

49%, respectively). K. aberrans densities in the kaolin were significantly lower than in the control 

after the second kaolin application (i.e., 18 and 11 days after first application, respectively in 2015 

and 2016). After two consecutive years of kaolin applications (2015 and 2016) in the same plots, 

the overwintering populations were not significantly different between the kaolin and the control (F 

= 0.735; df = 1; P = 0.424) (Fig. 2). 

In both years, bunch-zone leaf removal did not influence phytoseiid densities (2015: F = 

1.029; df = 1,12; P = 0.33; 2016: F = 4.573; df = 1,12; P = 0.054) (Fig. 3). The interaction between 

treatment and bunch-zone leaf removal effects was not significant (2015: F = 1.120; df = 1,12; P = 

0.311; 2016: F = 0.35; df = 1,12; P = 0.855). 

3.1.2. Vineyard B 

Phytoseiid identification showed the dominance of K. aberrans (89%) over Amblyseius 

andersoni (Chant) (11%). Phytophagous mite densities were negligible.  

In the sampling before the first kaolin application, phytoseiid densities were not 

significantly different between the kaolin and the control. After the two kaolin applications, 

phytoseiid densities were significantly lower in the kaolin than control (F = 16.575; df = 1,12; P = 

0.002) (Fig. 1). The negative effect of kaolin at about 10 days from the last application was 

remarkable (Henderson-Tilton: 91%).  

Bunch-zone leaf removal significantly reduced phytoseiid densities (F = 11.926; df = 1,12; 

P = 0.005) (Fig. 3). In particular, the negative effect of bunch-zone leaf removal was significant in 

the samplings of July and August. The interaction between treatment and bunch-zone leaf removal 

effects was not significant (F = 0.499; df = 1,12; P = 0.493). 
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3.1.3. Vineyard C 

Phytoseiid specimens showed the dominance of T. pyri (97%) over A. andersoni (3%). 

Phytophagous mite densities were negligible.  

In the sampling before the first kaolin application, T. pyri densities were not significantly 

different between the kaolin and the control. After kaolin applications, phytoseiid densities were 

significantly lower in the kaolin than control (F = 8.218; df = 1,12; P = 0.014) (Fig. 1). The 

negative effect of kaolin at about 10 days from the last kaolin application was remarkable 

(Henderson-Tilton: 88%).  

Bunch-zone leaf removal did not significantly reduce phytoseiid densities (F = 1.577; df= 

1,12; P = 0.233) (Fig. 3) and the interaction between treatment and bunch-zone leaf removal effects 

was not significant (F = 0.044; df = 1,12; P = 0.837). 

3.2. Laboratory experiments 

In the control, the fecundity rates (mean±SD) of both K. aberrans and T. pyri (0.78±0.23 

and 0.88±0.14 eggs/female/day, respectively) were comparable with those reported by Lorenzon et 

al. (2012). 

K. aberrans female survival was 100% in both treatments. Kaolin significantly reduced 

female fecundity (t = 9.27; df = 48; P < 0.0001) (Fig. 4). In terms of toxicity (IOBC classes), E 

value was 62.8% resulting in kaolin being moderately harmful. 

T. pyri female survival was 100% in both treatments. Kaolin significantly reduced female 

fecundity (t = 11.21; df = 36; P < 0.0001) (Fig. 4). In terms of toxicity (IOBC classes), E value was 

62.5% resulting in kaolin being moderately harmful. 

4. Discussion 

In field trials, kaolin affected negatively K. aberrans and T. pyri populations. For both 

species, significant differences occurred at least 10 days from the first kaolin application. The 

differences between treatments increased over time reaching their maximum after at least 20 days 

from the first kaolin application. These data suggest that kaolin did not exhibit knock down effects 

on predatory mites.  

Nevertheless, the negative effect of kaolin on K. aberrans in vineyard A did not persist over 

the two seasons. The decrease in K. aberrans densities observed in summer 2015 after two kaolin 

applications was not anymore observed in the pre-trial sampling 2016. Moreover, the lower 
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population level of K. aberrans observed in kaolin plots in the summer of 2016 was not confirmed 

in December 2016. Despite two consecutive years of kaolin applications (five applications in total), 

K. aberrans population densities in treated and the control plots were similar. We can suppose that, 

in late summer, phytoseiid populations redistributed through the vineyard or increased more in the 

kaolin than in the control plots. The first hypothesis is supported by the dispersal ability of 

immatures and pre-ovipositional adult females among plants, mostly through wind (Sabelis 1985, 

Tixier et al. 1998, Duso et al. 2010, Otto et al. 2013). The second hypothesis is supported by both 

the possibility of lower intraspecific competition and intraguild predation occurred in kaolin-treated 

plots (Duso 1989, Bengochea et al. 2013, Ahmad et al. 2015, Pozzebon et al. 2015).  

The negative effects of kaolin on phytoseiid mites observed in the present study are in 

agreement with some contributions. Trials carried out in two subsequent years in plum and apple 

orchards in Norway, showed that kaolin sprayed against phytophagous mites and tortricid moths 

negatively affected phytoseiid mites in three out of four cases (Jaastad et al. 2006), even whether 

part of the effect could be associated with lower prey populations. In an apple orchard in New 

England (US), Benedict (2005) found significantly both higher levels of tetranychid mites and 

lower levels of phytoseiid population on trees treated with kaolin than on those not sprayed.  

Laboratory data showed for both K. aberrans and T. pyri that kaolin reduced female 

fecundity. The negative effect of kaolin on egg laying is in agreement with the slow and progressive 

decline in phytoseiid mite densities observed in the field for both species.  

Since the decrease in fecundity caused by kaolin was not associated with a decrease of 

female survival, the negative effect on egg laying can be attributed to the fact that kaolin-covered 

leaves could be an uncomfortable oviposition substrate. 

In contrast with our data on K. aberrans and T. pyri, no negative effects of kaolin on the 

number of eggs laid by Neoseiulus fallacis (Garman) females has been reported (Bostanian and 

Racette 2008). Differently from our results, a greater mortality for T. pyri and N. fallacis on kaolin 

treated leaves (25% and 12%, respectively) has been reported as a consequence of a lower T. 

urticae consumption (Benedict 2005). However, an absence of kaolin effects on survival has been 

showed in the study of Bostanian and Racette (2008) where N. fallacis females fed on T. urticae, 

too.  

In vineyard A, a greater detrimental effect of kaolin on K. aberrans was observed in 2016 

than in 2015. The reason for this difference can be attributed to the additional kaolin application 

done in 2016.  
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In vineyard B, almost tenfold lower K. aberrans population was observed than in vineyard 

A. However, in vineyard B with respect of vineyard A, a higher density of generalist predators, both 

spiders and insects, was recorded (E. C. et al. unpublished data).  

In vineyard C, T. pyri population densities were lower than K. aberrans ones recorded in 

both vineyard A and B. This is in agreement with studies that report a lower density of T. pyri than 

K. aberrans in similar vineyard conditions (Duso 1989, 1992). In vineyard C, the populations of T. 

pyri were particularly low in summer due to the high susceptibility of this phytoseiid species to high 

temperatures in combination with low relative humidity and to lower availability of pollen in 

summer than in spring (Duso and Pasqualetto 1993, Pozzebon et al. 2005). Moreover, the absence 

of leaf pubescence in Pinot Gris, the cultivar of vineyard C is a further factor that can explain the 

very low population of T. pyri in this vineyard (Duso and Vettorazzo 1999, Roda et al. 2003). 

A negative effect of bunch-zone leaf removal on phytoseiid populations was also observed. 

A less dense canopy due to bunch-zone leaf removal could determine a microclimate characterized 

by higher temperature and lower relative humidity known to be less favourable to phytoseiid mites 

(Duso and Pasqualetto 1993). 

In viticulture, the use of kaolin in two or three applications per year is moderately harmful to 

phytoseiid populations. Moreover, in a vineyard with stable K. aberrans populations, these were not 

reduced after two consecutive years of kaolin applications. A higher selectivity could be reached 

when kaolin spraying is localized on the bunch zone for the control of L. botrana and to reduce 

berry sunburn. Based on these outcomes, a moderate use of kaolin and the adoption of leaf removal 

did not irreversibly affect phytoseiid populations in vineyards and thus can be considered 

compatible with IPM strategies. 
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Fig. 1. Number of phytoseiid mites recorded in the kaolin and the control before the first (early 

June) and after two (2015) or three (2016) kaolin applications (arrows). NS, *, **, *** indicate non-

significant and significant differences for α = 0.05, α = 0.01¸ α = 0.0001, respectively, between 

treatments according to Tukey’s post-hoc test. 
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Fig. 2. Number of overwintering phytoseiid mites (mean ± standard deviation) recorded in the 

kaolin and the control. NS indicates non-significant differences between treatments according to 

one-way ANOVA. 
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Fig. 3. Number of phytoseiid mites recorded in the sub-plots without and with leaf removal, that 

occurred the day after the first sampling date. NS and ** indicate, respectively, non-significant and 

significant differences for α = 0.01 between treatments according to Tukey’s post-hoc test. 
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Fig. 4. Daily number of eggs (mean ± standard deviation) laid on grapevine leaf discs by a female 

of the two phytoseiid species in the kaolin and the control. *** indicates significant differences for 

α = 0.001 between treatments according to Student’s unpaired t-test. 
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Abstract 

Kaolin and bunch-zone leaf removal (LR) resulted effective in vineyards of north-eastern 

Italy against leafhoppers and Lobesia botrana, but their side effects on non-target arthropods, 

including natural enemies, are still poorly studied. The impact of kaolin applications and LR was 

assessed in terms of species richness, functional diversity and abundance of spiders and generalist 

predatory insects in four trials (2015-2016) carried out in vineyards of north-eastern Italy. Kaolin 

and LR did not affect ecological indices for spider communities. Kaolin reduced the abundance of 

the hunting spiders Oxypidae and Salticidae and of the web-builders Araneidae. Among predatory 

insects, kaolin reduced the numbers of the anthocorid Orius sp. and increased those of coccinellid 

Scymninae. LR increased the number of the thrips Aeolothrips sp. These effects were not consistent 

in all trials. A moderate use of kaolin and the application of LR had minor impact on generalist 

predatory communities in vineyards and then they can be considered compatible with IPM 

strategies. 
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1. Introduction 

Kaolin is a white, fine grained, not abrasive, nonexpendable, nonporous, water dispersible 

and inert aluminum silicate (Harben, 1995). Arthropod pest infestations and plant pathogens 

infections to some crops can be reduced by coating plants with kaolin. Such treated plants become 

visually, tactually and chemically unrecognizable to arthropod pests and their activities can be 

impaired due to the presence of a physical barrier and of particles that stick to their bodies (Glenn et 

al., 1999). Kaolin can affect pest populations mostly by reducing egg laying, exerting a direct 

toxicity towards motile forms or inhibiting their feeding activity (Vincent et al., 2003). Applications 

of this particle film have been found to be effective in the control of several arthropod pests in 

orchards and field crops (Unruh et al., 2000; Knight et al., 2001; Glenn and Puterka 2005; Braham 

et al., 2007; Markó et al., 2008; Pascual et al., 2010; Leskey et al., 2010; D’Aquino et al., 2011;Lo 

Verde et al., 2011; Marcotegui et al., 2015). 

In vineyards, kaolin was effective in the control of sap-feeding pests such as the 

sharpshooter Homalodisca coagulata (Say), vector of Xylella fastidiosa Wells, the causal agent of 

Pierce’s disease (Wood and McBride 2001; Puterka et al., 2003; Barker et al., 2006; Tubajika et al., 

2007), the leafhoppers Empoasca vitis (Göthe), Zygina rhamni Ferrari (Tacoli et al., 2017) and 

Scaphoideus titanus Ball (Tacoli et al., this PhD thesis, Chapter 3), the grape phylloxera 

Daktulosphaira vitifoliae (Fitch) (Sleezer et al., 2011) and the vine cicada Psalmocharias alhageos 

(Valizadeh et al., 2013). Regarding carpophagous pests, kaolin was effective in the control of the 

tortricid moth Lobesia botrana (Denis and Schiffermüller) (Pease et al., 2016, Tacoli et al., this 

PhD thesis, Chapter 4) and the spotted wing drosophila Drosophila suzukii Matsumura (Linder et 

al., 2017). Kaolin provided an effective management of two polyphagous scarab beetles 

Macrodactylus subspinosus (Fabricius) and Popillia japonica Newman, feeding on grapevine 

leaves and bunches (Isaac et al., 2004; Maier and Williamson, 2016). 

Bunch-zone leaf removal is a common cultural practice in vineyards, which consists in 

removing all the leaves that cover bunches contributing to control bunch rots and L. botrana (Pavan 

et al., 2016).  

The combination of kaolin with bunch-zone leaf removal ensures a synergic control of L. 

botrana and the reduction of berry sunburn damage (Tacoli et al., this PhD thesis, Chapter 4). 

However, kaolin and bunch-zone leaf removal can be considered viable alternatives to synthetic 

insecticides only if their side effects on non-target arthropods, including natural enemies, are not too 

deleterious. Indeed, in the context of Integrated Pest Management (IPM) strategies, the preservation 
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of biocontrol agents is essential because of their capability in reducing pest outbreaks, damage, and 

so the use of pesticides. 

Generalist predators can have a significant impact on pest populations (Symondson et al., 

2002), being sometimes more effective than a specialist at controlling pests particularly in species-

rich areas (DeBach, 1946; Ehler, 1977). Hawkins et al. (1999) considered that most frequently a 

specialist can successful control an exotic pest on exotic plant, whereas control of native pests on 

native plants is more often influenced by communities of native generalist predators. Generalists 

have several features that make them important as control agents. The ability to feed on alternative 

preys allows generalists to be present inside a crop also when pest densities are still low and in this 

way they may delay or prevent pest outbreaks (Stam and Elmosa, 1990; Settle et al., 1996), also 

bringing pest populations to extinction without a reduction in their numbers (Den Boer, 1982).  

Spiders and other generalist predatory insects have the ability to reduce the populations of 

various pests in several agro-ecosystems (Riechert and Lockley, 1984; Marc et al., 1999; Nyffeler 

and Sunderland, 2003). Spiders can constitute an abundant and diversified community also in 

vineyards. In particular, the occurrence of surrounding groves and ground cover in the inter-rows 

can play a very important role in the spider establishment and assemblage in vineyards, where 

spiders can represent up to 98% of the arthropod predators (Costello and Daane, 1997, 1998; Nobre 

and Meierosse, 2000; Daane and Costello, 2005; Bolduc et al., 2006; Isaia et al., 2006, 2007; 

D’Alberto et al., 2012; Caprio et al., 2015; Franin et al., 2016). This community can undergo rapid 

changes in response to shifts in the vegetation structure (Asselin and Baudry, 1989), cultural 

practices and chemical treatments (Marc et al., 1999).  

In field trials on the effects of kaolin against arthropod pests, it was found that this natural 

product can affect differently natural enemies. In some studies reduction in the abundance of 

predators [spiders (Araneae), phytoseiid mites (Acari), Heteroptera, Coleoptera Coccinellidae] and 

Hymenoptera parasitoids was reported for apple (Markó et al., 2008, 2010; Villanueva and 

Walgenbach, 2010), olive (González-Núñez et al., 2008; Pascual et al., 2010; Scalercio et al., 2010) 

and almond (Sánchez-Ramos et al., 2017). On contrary, in other studies no negative effects of 

kaolin were reported on the same groups of beneficials for apple (Sackett et al., 2007), citrus 

(Smaili et al., 2014), olive (Adán et al., 2007; Porcel et al., 2011; Gharbi and Ben Abdallah, 

2016a), peach (Karagounis et al., 2006), pecan (Lombardini et al., 2005), blueberry (Stelinski et al., 

2006) and cotton (Santos et al., 2013; Araujo et al., 2015). 

In laboratory experiments, negative effects of kaolin were reported for the spider Araniella 

cucurbitina (Clerck) (Araneidae) (Benhadi-Martin et al., 2016) and for the hymenopteran parasitoid 

Aprostocetus vaquitarum (Eulophidae) (Ulmer et al., 2006). On contrary, this product showed only 
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low negative effects on certain predators, Anthocoris nemoralis (Fabricius) (Anthocoridae), 

Chrysoperla carnea (Stephens) (Chrysopidae) and Chilocorus nigritus (F.) (Coccinellidae), and 

some parasitoids, Chelonus inanitus (L.) (Braconidae) and Scutellista cyanea Motschulsky 

(Pteromalidae) (Porcel et al., 2011; Bengochea et al., 2010, 2013, 2014). 

Considering natural enemies inhabiting vineyards, the effects of kaolin on non-target 

arthropods are still poorly understood. Two consecutive kaolin applications did not affect the 

parasitization of E. vitis and Z. rhamni eggs by Anagrus sp. (Tacoli et al., 2017). More recently, 

kaolin was recognised as moderately harmful to the phytoseiid mites Typhlodromus pyri Scheuten 

and Kampimodromus aberrans (Oudemans) in vineyards and the result was confirmed later in 

laboratory experiments (Tacoli et al., this PhD thesis, Chapter 7).  

In the current study, we investigated the effects of kaolin and of bunch-zone leaf removal on 

spiders and a number of generalist predatory insects in vineyards. Bunch-zone leaf removal could 

negatively affect natural enemies since it changes the structure and microclimate of grapevine 

canopy. 

2. Materials and methods 

2.1. Field experiments 

The influence of kaolin and bunch-zone leaf removal on spiders and generalist predatory 

insects populations was studied during 2015-2016 in four field trials carried out in three vineyards 

of north-eastern Italy, named A (2015 and 2016), B (2015) and C (2016), respectively. Vineyard A 

(Cormons, Gorizia district, 45°57'51"N, 13°26'49"E, 56 m a.s.l., cultivar Pinot Gris) is a 10-year-

old conventional vineyard with grapevines growing using the Guyot training system with distances 

between and along rows of 2.5 m and 0.8 m, respectively. Vineyard B (Cormons, Gorizia district, 

45°57'20"N, 13°26'50"E, 50 m a.s.l., cultivar Pinot Gris) is a 30-year-old organic vineyard with 

grapevines growing using the double arched Guyot training system with distances between and 

along rows of 2.8 m and 1 m, respectively. Vineyard C (Cormons, Gorizia district, 45°58'02"N, 

13°31'31"E, 53 m a.s.l., cultivar Pinot Gris) is a 15-year-old organic vineyard with grapevines 

growing using the Guyot training system with distances between and along rows of 2.2 m and 0.7 

m, respectively. In all vineyards, standard fungicide programs were followed and no insecticide was 

sprayed before and after the kaolin applications.  

In the four trials, kaolin (Surround WP, Tessenderlo Kerley Inc., Phoenix, Arizona, USA, 

2% suspension), sprayed at the rate of 1000 L/ha, was compared with the control. Kaolin was 
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applied twice in 2015 (18 and 24 June) and three times in 2016 (10, 20, 27 June). All applications 

were done using a backpack sprayer (Oleo-Mac, Sp-126, Emak S.p.A., Bagnolo in Piano, RE, 

Italy).  

In all trials, a randomized block design with four replicates was adopted. Each block (row) 

was divided into two plots of 28 (vineyard A) or 20 (vineyard B) or 24 (vineyard C) grapevines. In 

all trials, plots were divided into two subplots of 14 or 10 or 12 grapevines, respectively, that were 

submitted or not to bunch-zone leaf removal (17 June 2015, 10 June 2016). In vineyard A, the plots 

sprayed with kaolin were the same in the two years. 

Timing of kaolin applications and bunch-zone leaf removal was determined by the 

occurrence of the second seasonal flight of L. botrana that was the target pest of the trials (Tacoli et 

al., 2017, this PhD thesis, Chapter 4).  

In all vineyards and both years, spider populations on the grapevine canopy were sampled 

by a modified beating-tray method (hereafter named “beating tray”) over the trial period (11, 22, 29 

June, 06 July in 2015 and 7, 21 June, 1, 8 July in 2016). On each sampling date, the trunk of 10 

grapevines per subplot was shaken five times with movements parallel to the ground while a funnel 

(65 × 45 cm) was placed under the canopy to collect spiders. All the specimens were then 

conserved in plastic tubes with 70° ethanol. Only in 2015 in the vineyards A and B, spiders and 

predatory insects were sampled using yellow sticky traps deployed from 4 June (2-wk before the 

first kaolin application) to 18 August (about two months after the second kaolin application) and 

replaced weekly. Only in the sampling before the first kaolin application the traps remained in the 

vineyards for two weeks (i.e., from 4 June to 18 June). One trap (20 × 10 cm) per subplot (with or 

without leaf removal), smeared with glue (Temo-O-Cid®, Kollant Srl, Vigonovo, VE, Italy), was 

hung on the horizontal wires of the grapevine trellis at about 1.5 m from the ground level so as to be 

inside the canopy, but not covered by leaves.  

 The specimens were identified in the laboratory. Spiders and five groups of predatory 

insects both reliable bioindicators and well represented in the grape-growing area of this study [i.e., 

C. carnea (Neuroptera: Chrysopidae), Coleoptera Coccinellidae Scymninae, Coccinellidae excluded 

Scymninae, Aeolothrips sp. (Thysanoptera: Aeolothripidae) and Orius sp. (Heteroptera: 

Anthocoridae)] were counted and identified to different taxonomic levels under a dissection 

microscope using the current keys (Mound et al., 1976; Tamanini, 1988; Roberts, 1995; Bellman, 

2011; Nentwig et al., 2017). Spider families were grouped on the basis of their capture strategy in 

web-builders and hunters. All spiders collected by beating tray were grouped at family level, and 

only the adults were identified to genus or species. Spiders captured by yellow sticky traps were 

grouped in web-builders and hunters, and this latter also at family level.  
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2.2. Statistical analyses 

The effects of kaolin and bunch-zone leaf removal on the spiders collected by beating tray in 

the four vineyards were examined in terms of species richness, using the Shannon’s diversity index 

(H’), and functional diversity (FD). 

Two indices were calculated using functional trait information: functional richness (i.e., 

width of a niche space filled with species) and functional dispersion (i.e., mean of individual species 

to the centroid of all species in the community) (Villéger et al., 2008; Laliberté and Legendre, 

2010). It was not possible to calculate functional evenness (i.e., the evenness of the distribution of 

abundance in niche space) due to the low number of species or absence of quantitative traits. 

Functional diversity indices were calculated using the FD package (Laliberté and Legendre, 2010; 

Laliberté et al., 2014) that implements a distance-based approach that allows handling both 

continuous and categorical variables. The values calculated for each index, the number of spiders 

collected by beating tray and the number of spiders and insects captured with yellow sticky traps, 

were compared using a Mixed ANOVA with Bonferroni correction and Tukey’s post-hoc test used 

after data logarithmic transformation. All statistical analyses were performed with IBM SPSS 

Statistics 20 (IBM Corporation 2011) and R software (R Core Team 2017). 

3. Results 

3.1. Vineyard A 2015  

Spiders collected by beating tray belonged to seven families, with hunters more represented 

than web-builders (76% vs 24%) (Table 1). On total spiders, the hunters Thomisidae (44%) and 

Oxyopidae (19%), and the web-builders Araneidae (17%) were the most abundant families. At 

genus and species levels, Xysticus sp. and Oxyopes spp. were the most numerous spiders. Two 

kaolin applications and bunch-zone leaf removal did not significantly affect spider communities in 

terms of species richness, functional richness and functional dispersion (Table 2). Kaolin and 

bunch-zone leaf removal did not significantly affect spiders either considering their total number or 

that of each capture strategy group. At family level, only the populations of Oxyopidae (Oxyopes 

spp.) were significantly lower in kaolin than in control plots. 

Among predators captured by yellow sticky traps, Aeolothrips sp. was the most abundant 

accounting for 71% (N. 1045), other insect predators represented only 13% (N. 186) and spiders 

accounted for 16% (N. 226). Within the spider community, hunters (59%) were more numerous 

than web-builders (41%). Thomisidae was the main family of hunters (51%). Among insects, two 
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kaolin applications significantly affect only Coccinellidae Scymninae that showed higher 

populations in the kaolin than in the control plots. On contrary, Orius sp. showed lower captures in 

the kaolin than in the control plots, but not at significant level. Aeolothrips sp. showed significantly 

higher captures in plots submitted to bunch-zone leaf removal than in control. Spiders were not 

significantly affected by either two kaolin applications or bunch-zone leaf removal. With reference 

to spider families, Thomisidae showed higher captures in plots submitted to bunch-zone leaf 

removal than in control plots, but not at significant level (Table 4).  

3.2. Vineyard B 

In 2015, spiders collected by beating tray belonged to eight families, showing a similar 

amount of hunters and web-builders (52% vs 49%) (Table 1). On total spiders, the hunters 

Thomisidae (36%) and Oxyopidae (12%), and the web-builders Araneidae (20%) and Linyphiidae 

(13%) were the most abundant families. At genus and species levels, Xysticus sp., Oxyopes spp., 

Mangora acalypha and Neriene sp. were the most numerous spiders. Two kaolin applications and 

bunch-zone leaf removal did not significantly affect spider communities in terms of species 

richness, functional richness and functional dispersion (Table 2). Kaolin and bunch-zone leaf 

removal did not significantly affect spiders either considering their total number or that of each 

capture strategy group and family.  

Among predators captured by yellow sticky traps, Aeolothrips sp. was the most abundant, 

accounting for 59% (N. 1185), other insect predators represented 25% (N. 496) and spiders 

accounted for 16% (N. 321). Within the spider community, hunters (60%) were more numerous 

than web-builders (40%). Thomisidae was the main family of hunters (52%). Among insects, two 

kaolin applications affected Orius sp. that showed lower captures in the kaolin than in the control 

plots. Insects were not influenced by bunch-zone leaf removal. Spiders were not significantly 

affected by either two kaolin applications or bunch-zone leaf removal (Table 4). 

3.3. Vineyard A 2016 

Spiders collected by beating tray belonged to nine families, with hunters more numerous 

than web-builders (72% vs 28%) (Table 1). On total spiders, the hunters Thomisidae (45%) and 

Salticidae (18%), and the web-builders Araneidae (17%) were the most abundant families. At genus 

and species levels, Runcinia grammica and Xysticus sp., were the most numerous spiders. Three 

kaolin applications and bunch-zone leaf removal did not significantly affect spider communities in 

terms of species richness, functional richness and functional dispersion (Table 3). Kaolin and 
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bunch-zone leaf removal did not significantly affect spiders either considering their total number or 

that of each capture strategy group. At family level, the populations of Oxyopidae (Oxyopes spp.) 

and Araneidae were significantly lower in the kaolin than in the control plots. 

3.4. Vineyard C 

In 2016, spiders collected by beating tray belonged to seven families, with hunters more 

numerous than web-builders (58% vs 42%) (Table 1). On total spiders, the hunters Salticidae (25%) 

and Oxyopidae (22%), and the web-builders Araneidae (28%) were the most abundant families. At 

genus and species levels, Oxyopes spp. and Nuctenea sp. were the most numerous spiders. Three 

kaolin applications and bunch-zone leaf removal did not significantly affect spider communities in 

terms of species richness, functional richness and functional dispersion (Table 3). Kaolin and 

bunch-zone leaf removal did not significantly affect spiders considering either their total number or 

that of each capture strategy group and family.  

4. Discussion 

4.1. Spiders community in vineyards and influence of kaolin 

Spiders collected by beating tray belonged to nine families and 29 different taxa. Twofold 

abundant populations of spiders were recorded in vineyard B than in the other vineyards. However, 

the highest diversity in number of families was observed in 2016 in vineyard A (9 out 9), even if 

seven families were well represented also in the other three vineyards. No negative effects were 

found on species richness and functional diversity. 

Comparing the two sampling methods adopted in 2015, more spiders were captured by 

yellow sticky traps than beating tray. More hunters than web-builders were counted in all vineyards 

with both sampling methods. These findings are in accordance with other studies on spider 

assemblages in vineyards (Isaia et al., 2006, 2007; Trivellone et al., 2013; Caprio et al., 2015).  

Among hunters, the more abundant families were in decreasing order Thomisidae, 

Oxyopidae and Salticidae. Thomisidae were reported in vineyards (Nobre and Meierrose, 2000; 

Costello and Daane, 2003) and their role in L. botrana adult predation was considered (Addante et 

al., 2003). Oxyopidae and in particular Oxyopes spp. were found in all our vineyards. The species 

O. lineatus, that has been reported feeding on Cicadellidae (Huseynov, 2007), was observed feeding 

on E. vitis adults during our samplings. Salticidae together with Miturgidae (Clubionidae) are 

known to be predators of L. botrana larvae, pupae (Marchesini and Dalla Montà, 1994) and adults 
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(Addante et al., 2007, 2008). In our visits, both Salticidae (e.g., Salticus sp.) and Miturgidae (e.g., 

Cheiracanthium sp.) were found. Salticus sp. spiders have been also reported feeding on E. vitis 

nymphs in vineyards, but their contribution to leafhopper control has not been considered important 

(Sentenac, 2004). In accordance with these outcomes, spiders are considered as the primary 

generalist predators of leafhoppers of Erythroneura species in American vineyards (Costello and 

Daane 1995, 1999), even if the plant vigour or other factors, that favour Anagrus sp. egg 

parasitoids, seem to be more important than spider abundance (Costello and Daane 2003, Hanna et 

al., 2003, Wilson et al., 2015).  

Among web-builders, Araneidae were the most abundant family and were frequently 

observed in vineyards in other studies (Isaia et al., 2006, 2007; Addante et al., 2008). Inside this 

praying-strategy group, Theridiidae are known to be predators of L. botrana larvae, pupae 

(Marchesini and Dalla Montà, 1994) and adults (Addante et al., 2007, 2008). 

In the four trials, two (2015) and three (2016) kaolin applications did not alter the spider 

predatory communities in terms of abundance with three exceptions. Abundance reduction was 

observed for the hunter spiders Oxyopidae and Salticidae, and for the web-builders Araneidae. 

Kaolin interfered more negatively on hunter than web-builder spiders. According to our results, 

hunter spiders (Thomisidae, Philodromidae and Salticidae) were found to be more vulnerable to 

kaolin than web-builder spiders (Dictynidae) in apple orchards (Sackett et al., 2007; Markó et al., 

2010). It is probable that kaolin can interfere more negatively on hunters because they are more 

mobile than web-builders and more exposed to the kaolin residue during their hunting activity. In 

particular, spiders can be exposed to kaolin directly during its application because it can form a film 

of particles on the spider body or later by ingesting the kaolin when feeding on sprayed prey or 

plant surfaces. Recently, the effect of kaolin was investigated on a web-builder species under 

laboratory condition (Benhadi-Marín et al., 2016). In this last study, a higher mortality of A.  

cucurbitina in the kaolin treatment was explained as the consequence of the ingestion of great 

amounts of silk covered with kaolin, since it is reported that Araneidae often repair or rebuild their 

webs by ingesting them (Marc et al., 1999). This feeding behaviour can explain why in our study 

Araneidae appeared to be more sensible to kaolin than the other web-builder spiders collected. 

However, spiders of this family were found to be negatively affected only in one out of four study 

vineyards after three kaolin applications as well as in one apple orchard after four kaolin 

applications (Sackett et al., 2007).  

In our study, the relatively low negative effects of kaolin on spiders can be explained by the 

small number of applications. In literature, contradictory results about the effect of a high number 

of kaolin applications on spiders are reported. In apple orchards, after 12 kaolin applications the 
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spider densities were significantly reduced (Markó et al., 2010), and at more than four weeks from 

the last application the abundance of spiders was still significantly lower in the kaolin-treated plots 

(Markó et al., 2008). Whereas, in a cotton field, spider densities were not reduced after several 

weekly kaolin applications (Santos et al., 2013). Indeed, Sackett et al. (2007) stated that, being 

spiders less mobile than other predatory arthropods, a possible negative effect of kaolin would only 

be observed in the long term. In agreement with this statement, in a pecan orchard, after seven and 

six kaolin applications on the first and second year, respectively, spiders became fewer on kaolin 

treated pecan in the second year (Lombardini et al., 2005). In our study, in vineyard A, in which 

kaolin was applied for two consecutive years on the same plots, only in the second year we 

observed a reduction in the abundance of Araneidae in kaolin treated plots, even though the species 

diversity of spiders increased in comparison to the first year.  

4.2. Insect generalist predators in vineyards and kaolin effect 

Among the five generalist predatory insect groups considered in the samplings with yellow 

sticky traps Aeolothrips sp. was the most abundant followed in decreasing order by Scymninae, 

other Coccinellidae, Orius sp. and C. carnea. Aeolothrips sp. are predator of other phytophagous 

thrips in vineyards (Trdan et al., 2005). The presence of Scymininae in vineyards is often associated 

with mealybug infestation (Daane et al., 2012). C. carnea is reported as predator of L. botrana 

larvae (Marchesini and Dalla Montà, 1994). The generalist pirate bugs Orius sp. are effective 

control agents of tetranychid and eriphyid mites in vineyards (Duso and Girolami, 1982).  

In the two trials of 2015, kaolin applications did not alter the considered predatory insect 

abundance with two exceptions: Orius sp. decreased and Scymininae increased. With the same 

number of kaolin applications, a negative effect on Orius sp. was reported also in olive orchards 

(Pascual et al., 2010). For another minute pirate bug, Anthocoris nemoralis (F.), negative effects of 

kaolin were found under laboratory and field conditions (Pascual et al., 2010; Bengochea et al., 

2013), but in other studies no harmful effects of kaolin were seen in laboratory (Gharbi and Ben 

Abdallah, 2016b). The higher densities of Scymninae observed in the kaolin than in the control 

plots of vineyard A could be explained by a higher abundance of mealybugs, since Scymninae are 

associated with mealybugs and kaolin can increase their leaf infestation (Joubert et al., 2004; Tacoli 

et al., this phD thesis, Chapter 6). 

In our study, kaolin did not affect other Coccinellidae in agreement with other studies 

(Lombardini, 2005; Karagounis et al., 2006; Santos et al., 2013), even if negative effects have been 

also reported (Sackett et al., 2007; Pascual et al. 2010). In our study, also C. carnea was not 
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negatively influenced by kaolin, but the data reported in literature not always confirmed the absence 

of negative effects (Porcel et al., 2011; Bengochea et al., 2014; Gharbi and Ben Abdallah, 2016b).  

Kaolin did not negatively affect Aeolothrips sp., probably also for the presence of plant 

diversity in the inter-rows where they spend most of their lives in flowers feeding on small 

arthropods and pollen. 

4.3. Effect of bunch-zone leaf removal on generalist predators 

Bunch-zone leaf removal did not affect the spider and predatory insect communities in terms 

of species richness, functional diversity and abundance, with the exception of Aeolothrips sp. which 

were higher in subplots submitted to bunch-zone leaf removal. This can be explained because 

Thysanoptera are more captured on yellow sticky traps exposed to sunlight (Strapazzon et al., 

1990), as occurred on vines submitted to leaf removal.  

4.4. Conclusion remarks 

In vineyards, a moderate use of kaolin and the application of LR had minor impact on spider 

and generalist predatory insect communities and then their use appears compatible with IPM 

strategies. The negative effects are negligible also after two years of consecutive application in the 

same plots. In any case, considering the positive effects on the control of grapevine key pests, the 

overall outcome of both kaolin and bunch-zone leaf removal is positive since in the context of IPM 

their adoption allows for the reduction of insecticide applications. 
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Table 1. Spiders collected by beating tray in four vineyards along 2015-2016 in plots submitted or not to kaolin and bunch-zone leaf removal. 

Taxon and prey capture 

method 

Vineyard A 2015 Vineyard B 2015 Vineyard A 2016 Vineyard C 2016 N.  

 Kaolin Leaf 

removal 

Kaolin Leaf 

removal 

Kaolin Leaf 

removal 

Kaolin Leaf removal Tot 

 Control K No Yes Control K No Yes Control K No Yes Control K No Yes  

                  

N. total spiders 40 30 35 35 79 81 83 77 35 30 26 39 35 25 31 29 355 

                  

Web-builders                   

Araneidae (Web-orb)                  

Araneus sp. A juvenile  1 2 2 1 3 - 3 - - - - - - - - - 6 

Araneus sp. B - - - - 1 1 2 - 2 1 1 2 - 3 1 2 8 

Mangora acalypha 

(Walckenaer) 

- 1 - 1 10 3 5 8 3 - 1 2 3 - 1 2 20 

Nuctenea sp. 6 2 5 3 - 6 2 4 4 1 2 3 7 4 6 5 30 

Zilla diodia (Walckenaer) - - - - 1 - 1 - - - - - - - - - 1 

Araneidae sp. C - - - - - 1 1 - - - - - - - - - 1 

Araneidae sp. D - - - - 1 - 1 - - - - - - - - - 1 

Araneidae juvenile  - - - - 4 1 3 2 - - - - - - - - 5 

Linyphiidae (Web-sheet)                  

Erigoninae, sp. A - - - - - - - - 1 2 2 1 4 4 4 4 11 

Erigoninae, sp. B - - - - 2 - 2 - - 1 1 - - - - - 3 

Neriene sp. 1 - 1 - 5 13 8 10 1 1 - 2 - - - - 21 

Pityohyphantes phrygianus 

(C.L. Koch) 

- 1 1 - - - - - - - - - - - - - 1 

Theridiidae (Web-tangled)                  

Theridion sp. 1 2 1 2 3 6 5 4 - 1 - 1 - - - - 13 
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Hunters                   

Thomisidae                  

Runcinia grammica (C.L. 

Koch) 

- - - - 1 4 2 3 5 8 4 9 - 1 - 1 19 

Runcinia sp. 1 - - 1 2 1 2 1 - - - - - - - - 4 

Synema globosum (Fabricius) 2 1 1 2 - - - - - 1 - 1 1 - 1 - 5 

Thomisus sp. 3 - 2 1 1 3 3 1 - 1 1 - - - - - 8 

Xysticus sp. 7 13 12 8 15 20 17 18 4 8 4 8 2 1 - 3 70 

Thomisidae sp. A 1 3 - 4 4 2 1 5 - - - - - - - - 10 

Sparassidae                  

Micrommata virescens 

(Clerck) 

- - - - 4 - 4 - 1 1 1 1 - - - - 6 

Salticidae                  

Pseudeuophrys erratica 

(Walckenaer) 

- - - - 1 - 1 - - - - - - - - - 1 

Pseudicius encarpatus 

(Walckenaer) 

- - - -     6 2 5 3 4 2 3 3 14 

Salticus scenicus (Clerck) - - - - 1 - 1 - - - - - 3 2 4 1 6 

Salticidae juvenile 3 2 4 1 5 4 4 5 4 - 2 2 1 2 3 - 21 

Oxyopidae                  

Oxyopes lineatus Latreille 1 - 1 - 2 4 5 1 - - - - - - - - 7 

Oxyopes sp. (cfr. 

heterophthalmus) 

11 1 3 9 9 4 3 10 2 - 1 1 8 5 7 6 40 

Gnaphosidae                  

Dressodes sp. - - - - 4 8 7 5 1 2 1 2 - 1 1 - 16 

Gnaphosidae sp. A 2 2 2 2 - - - - - - - - - - - - 4 

Miturgidae                  

Cheiracanthium sp. - - - - - - - - 1 - - 1 1 - - 1 2 
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Table 2. Spiders collected by beating tray in vineyard A and vineyard B in 2015 (mean±standard 

deviation). The results of Mixed ANOVA for kaolin and bunch-zone leaf removal factors are 

reported. When the number of spiders collected over the whole sampling period was less than 10, 

no statistical analyses was performed. Results on Shannon’s diversity index (species richness) and 

of functional diversity (functional richness and dispersion) are reported. 
 Kaolin Leaf-removal 

 Control Kaolin ANOVA Without With ANOVA 

Vineyard A 

2015 

      

Species 

Richness 

0.93 ± 0.55  0.73 ± 0.63 F = 0.871; df = 1,12; 

P = 0.371 
0.79 ± 0.64 0.88 ± 0.54 F = 0.181; df = 1,12; 

P = 0.678 

Functional 

Richness 
2.75 ± 1.60 2.13 ± 1.33 F = 2.099; df = 1,12; 

P = 0.175 
2.50 ± 1.38 2.37 ± 1.56 F = 0.070; df = 1,12; 

P = 0.794 

Functional 

Dispersion 
0.20 ± 0.15 0.19 ± 0.17 F = 0.034; df = 1,12; 

P = 0.856 
0.20 ± 0.15 0.19 ± 0.16 F = 0.006; df = 1,12; 

P = 0.936 

Araneae 5.0 ± 2.7 3.8 ± 1.8 F = 2.308; df = 1,12; 

P = 0.155 

4.4 ± 2.7 4.4 ± 2.0 F = 0.000; df = 1,12; 

P = 1.000 

Web-builders 1.1 ± 1.2 1.0 ± 0.8 F = 0.034; df = 1,12; 

P = 0.857 

1.3 ± 1.0 0.9 ± 1.0 F = 0.303; df = 1,12; 

P = 0.592 

Araneidae 0.8 ± 1.2  0.4 ± 0.7 F = 0.509; df = 1,12; 

P = 0.489 

0.6 ± 1.2 0.5 ± 0.8 F = 0.057; df = 1,12; 

P = 0.816 

Theridiidae 0.3 ± 0.5 0.5 ± 0.5 - 0.4 ± 0.5 0.4 ± 0.5 - 

Linyphiidae 0.1 ± 0.4 0.1 ± 0.4 - 0.3 ± 0.5 0.0 ± 0.0 - 

Hunters 3.9 ± 2.0 2.8 ± 1.7 F = 3.522; df = 1,12; 

P = 0.085 

3.1 ± 1.9 3.5 ± 2.0 F = 0.391; df = 1,12; 

P = 0.543 

Thomisidae 1.8 ± 1.7 2.1 ± 1.7 F = 0.370; df = 1,12; 

P = 0.554 

1.9 ± 1.8 2.0 ± 1.6 F = 0.041; df = 1,12; 

P = 0.843 

Oxyopidae 1.5 ± 1.2 0.1 ± 0.4 F = 6.153; df = 1,12; 

P = 0.029 

0.5 ± 0.8 1.1 ± 1.4 F = 1.271; df = 1,12; 

P = 0.282 

Salticidae 0.4 ± 0.5 0.3 ± 0.7 - 0.5 ± 0.8 0.1 ± 0.4 - 

Gnaphosidae 0.3 ± 0.5 0.3 ± 0.5 - 0.3 ± 0.5 0.3 ± 0.5 - 

Vineyard B 

2015 

      

Species 

Richness 
1.60 ± 0.34 1.38 ± 0.37 F = 1.765; df = 1,12; 

P = 0.210 
1.57 ± 0.33 1.41 ± 0.40 F = 0.893; df = 1,12; 

P = 0.364 

Functional 

Richness 
4.00 ± 1.60 4.25 ± 1.28 F = 0.169; df = 1,12; 

P = 0.688 
4.37 ± 1.40 3.87 ± 1.45 F = 0.709; df = 1,12; 

P = 0.417 

Functional 

Dispersion 
0.28 ± 0.05 0.30 ± 0.06 F = 0.428; df = 1,12; 

P = 0.526 
0.31 ± 0.04 0.27 ± 0.06 F = 1.82; df = 1,12; P 

= 0.203 

Araneae 9.9 ± 4.2 10.1 ± 5.0 F = 0.029; df = 1,12; 

P = 0.868 

10.4 ± 3.8 9.6 ± 5.2 F = 0.261; df = 1,12; 

P = 0.619 

Web-builders 3.8 ± 2.8 3.9 ± 3.0 F = 0.014; df = 1,12; 

P = 0.907 

4.1 ± 2.9 3.5 ± 2.8 F = 0.352; df = 1,12; 

P = 0.564 

Araneidae 2.1 ± 1.6 1.5 ± 1.3 F = 0.591; df = 1,12; 

P = 0.457 

1.9 ± 1.4 1.8 ± 1.6 F = 0.024; df = 1,12; 

P = 0.880 

Linyphiidae 0.9 ± 0.8 1.6 ± 2.7 F = 0.591; df = 1,12; 

P = 0.457 

1.3 ± 2.1 1.3 ± 2.1 F = 0.000; df = 1,12; 

P = 1.000 

Theridiidae 0.8 ± 1.0 0.8 ± 1.2 F = 0.000; df = 1,12; 

P = 1.000 

1.0 ± 1.3 0.5 ± 0.8 F = 0.667; df = 1,12; 

P = 0.430 

Hunters 6.1 ± 3.5 6.3 ± 4.0 F = 0.009; df = 1,12; 

P = 0.926 

6.3 ± 3.2 6.1 ± 4.2 F = 0.009; df = 1,12; 

P = 0.926 

Thomisidae 2.9 ± 1.2 3.8 ± 3.0 F = 0.452; df = 1,12; 

P = 0.514 

3.1 ± 2.0 3.5 ± 2.7 F = 0.083; df = 1,12; 

P = 0.778 

Oxyopidae 1.4 ± 1.6 1.0 ± 0.8 F = 0.252; df = 1,12; 

P = 0.625 

1.0 ± 0.9 1.4 ± 1.5 F = 0.252; df = 1,12; 

P = 0.625 

Gnaphosidae 0.5 ± 0.9 1.0 ± 0.9 F = 0.558; df = 1,12; 

P = 0.469 

0.9 ± 0.8 0.6 ± 1.1 F = 0.140; df = 1,12; 

P = 0.715 

Salticidae 0.9 ± 1.1 0.5 ± 0.5 F = 0.325; df = 1,12; 

P = 0.579 

0.8 ± 1.0 0.6 ± 0.7 F = 0.036; df = 1,12; 

P = 0.852 

Sparassidae 0.5 ± 1.1 0.0 ± 0.0 - 0.5 ± 1.1 0.0 ± 0.0 - 
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Table 3. Spiders collected by beating tray in vineyard A and vineyard C in 2016 (mean±standard 

deviation). The results of Mixed ANOVA for kaolin and bunch-zone leaf removal factors are 

reported. When the number of spiders collected over the whole sampling period was less than 10, 

no statistical analyses was performed. Results on Shannon’s diversity index (species richness) and 

of functional diversity (functional richness and dispersion) are reported. 
 Kaolin Leaf-removal 

 Control Kaolin ANOVA Without With ANOVA 

Vineyard A 

2016 

      

Species 

Richness 
1.11 ± 0.55 0.81 ± 0.42 F = 1.494; df = 1,12; 

P = 0.247 
0.76 ± 0.54 1.15 ± 0.39 F = 2.720; df = 1,12; 

P = 0.127 

Functional 

Richness 
2.75 ± 1.03 2.00 ± 0.92 F = 2.333; df = 1,12; 

P = 0.155 
2.13 ± 1.13 2.63 ± 0.92 F = 0.949; df = 1,12; 

P = 0.351 

Functional 

Dispersion 
0.23 ± 0.10 0.21 ± 0.13 F = 0.145; df = 1,12; 

P = 0.709 
0.20 ± 0.13 0.23 ± 0.10 F = 0.321; df = 1,12; 

P = 0.582 

Araneae 4.4 ± 2.0 3.8 ± 3.0 F = 0.311; df = 1,12; 

P = 0.587 

3.3 ± 2.2 4.9 ± 2.6 F = 2.104; df = 1,12; 

P = 0.173 

Web-builders 1.4 ± 1.2 0.9 ± 1.0 F = 0.889; df = 1,12; 

P = 0.364 

0.9 ± 1.1 1.4 ± 1.1 F = 0.889; df = 1,12; 

P = 0.364 

Araneidae 1.1 ± 0.8 0.3 ± 0.5 F = 7.000; df = 1,12; 

P = 0.021 

0.5 ± 0.8 0.9 ± 0.8 F = 1.286; df = 1,12; 

P = 0.279 

Linyphiidae 0.3 ± 0.5 0.5 ± 0.8 - 0.4 ± 0.5 0.4 ± 0.7 - 

Theridiidae 0.0 ± 0.0 0.1 ± 0.4 - 0.0 ± 0.0 0.1 ± 0.4 - 

Hunters 3.0 ± 2.1 2.9 ± 3.4 F = 0.014; df = 1,12; 

P = 0.908 

2.4 ± 2.1 3.5 ± 3.3 F = 1.120; df = 1,12; 

P = 0.311 

Thomisidae 1.1 ± 1.6 2.3 ± 3.0 F = 2.505; df = 1,12; 

P = 0.139 

1.1 ± 1.2 2.3 ± 3.1 F = 2.505; df = 1,12; 

P = 0.139 

Salticidae 1.3 ± 0.9 0.3 ± 0.5 F = 5.647; df = 1,12; 

P = 0.035 

0.9 ± 1.1 0.6 ± 0.5 F = 0.063; df = 1,12; 

P = 0.563 

Oxyopidae 0.3 ± 0.5 0.0 ± 0.0 - 0.1 ± 0.4 0.1 ± 0.4 - 

Gnaphosidae 0.1 ± 0.4 0.3 ± 0.5 - 0.1 ± 0.4 0.3 ± 0.5 - 

Sparassidae 0.1 ± 0.4 0.1 ± 0.4 - 0.1 ± 0.4 0.1 ± 0.4 - 

Miturgidae 0.1 ± 0.4 0.0 ± 0.0 - 0.0 ± 0.0 0.1 ± 0.4 - 

Vineyard C 

2016 

      

Species 

Richness 
0.96 ± 0.50 0.85 ± 0.57 F = 0.189; df = 1,12; 

P = 0.672 
1.12 ± 0.23 0.69 ± 0.65 F = 3.416; df = 1,12; 

P = 0.09 

Functional 

Richness 
2.50 ± 0.93 2.50 ± 1.51 F = 0.000; df = 1,12; 

P = 1.000 
2.88 ± 0.83 2.13 ± 1.46 F = 1.800; df = 1,12; 

P = 0.207 

Functional 

Dispersion 
0.21 ± 0.10 0.22 ± 0.14 F = 0.006; df = 1,12; 

P = 0.939 
0.26 ± 0.05 0.17 ± 0.15 F = 2.568; df = 1,12; 

P = 0.137 

Araneae 4.3 ± 2.0 3.1 ± 1.9 F = 2.793; df =1,12; P 

= 0.121 

3.9 ± 0.8 3.5 ± 2.7 F = 0.310; df = 1,12; 

P = 0.588 

Web-builders 1.8 ± 2.0 1.4 ± 1.1 F = 0.474; df = 1,12; 

P = 0.504 

1.5 ± 1.2 1.6 ± 1.9 F = 0.053; df = 1,12; 

P = 0.822 

Araneidae 1.3 ± 1.0 0.9 ± 0.8 F = 0.692; df = 1,12; 

P = 0.422 

1.0 ± 0.8 1.1 ± 1.1 F = 0.077; df = 1,12; 

P = 0.786 

Linyphiidae 0.5 ± 1.1 0.5 ± 0.5 - 0.5 ± 0.5 0.5 ± 1.1 - 

Hunters 2.5 ± 1.4 1.8 ± 1.4 F = 1,862; df = 1,12; 

P = 0.197 

2.4 ± 1.2 1.9 ± 1.6 F = 0.828; df = 1,12; 

P = 0.381 

Salticidae 1.0 ± 1.3 0.8 ± 1.0 F = 0.176; df = 1,12; 

P = 0.682 

1.3 ± 1.2 0.5 ± 1.1 F = 1,588; df = 1,12; 

P = 0.232 

Oxyopidae 1.0 ± 0.9 0.6 ± 0.7 F = 1.080; df = 1,12; 

P = 0.319 

0.9 ± 0.8 0.8 ± 0.9 F = 0.120; df = 1,12; 

P = 0.735 

Thomisidae 0.4 ± 0.7 0.3 ± 0.5 - 0.1 ± 0.4 0.5 ± 0.8 - 

Gnaphosidae 0.0 ± 0.0 0.1 ± 0.4 - 0.1 ± 0.4 0.0 ± 0.0 - 

Miturgidae 0.1 ± 0.4 0.0 ± 0.0 - 0.0 ± 0.0 0.1 ± 0.4 - 
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Table 4. Number of individuals belonging to the different taxa found on yellow sticky traps over 

the sampling period 2015 in vineyard A and vineyard B (mean±standard deviation). The results of 

Mixed ANOVA for kaolin and bunch-zone leaf removal factors are reported. 

 Kaolin Leaf-removal 

 Control Kaolin  ANOVA Without With ANOVA 

Vineyard A 

 2015 

      

Araneae 6.3 ± 3.0 5.0 ± 2.1 F = 1.257; df = 

1,12; P = 0.284 

5.0 ± 2.1 6.4 ± 3.0 F = 1,457; df = 

1,12; P = 0.251 

Web-builders 2.7 ± 1.6 2.0 ± 1.4 F = 1.317; df = 

1,12; P = 0.274 

1.9 ±1.3 2.8 ± 1.7 F = 2.252; df = 

1,12; P = 0.159 

Hunters 3.7 ± 2.8 3.0 ± 1.7 F = 0.719; df = 

1,12; P = 0.413 

3.1 ± 2.1 3.6 ± 2.4 F = 0.515; df = 

1,12; P = 0.487 

Thomisidae 2.0 ± 2.1 1.5 ± 1.7 F = 1.181; df = 

1,12; P = 0.298 

1.3 ± 1.5 2.2 ± 2.1 F = 3.827; df = 

1,12; P = 0.074 

Salticidae 1.4 ± 1.4 0.8 ± 1.0 F = 1.435; df = 

1,12; P = 0.254 

1.4 ± 1.5 0.8 ± 1.0 F = 1.435; df = 

1,12; P = 0.254 

Gnaphosidae 0.2 ± 0.5 0.1 ± 0.3 F = 0.176; df = 

1,12; P = 0.682 

0.1 ± 0.2 0.2 ± 0.5 F = 1.588; df = 

1,12; P = 0.232 

Oxyopidae 0.2 ± 0.4 0.4 ± 0.6 F = 0.574; df = 

1,12; P = 0.463 

0.2 ±0.4 0.4 ± 0.6 F = 0.574; df = 

1,12; P = 0.463 

Insecta       

Aeolothrips sp. 23.9 ± 12.3 28.4 ± 27.9 F = 0.444; df = 

1,12; P = 0.518 

15.2 ± 9.3 37.1 ± 24.5 F = 10.230; df = 

1,12; P = 0.008 

Scymninae 1.3 ± 1.7 2.6 ± 2.5 F = 8.380; df = 

1,12; P = 0.013 

1.6 ± 1.4 2.3 ± 2.8 F = 2.430; df = 

1,12; P = 0.145 

Coccinellidae 

(excl. 

Scymninae) 

1.6 ± 1.5 1.1 ± 1.3 F = 1.827; df = 

1,12; P = 0.201 

1.1 ± 1.2 1.6 ± 1.5 F = 2.729; df = 

1,12; P = 0.124 

Orius sp. 1.1 ± 1.2 0.4 ± 0.6 F = 3.596; df = 

1,12; P = 0.082 

1.1 ± 1.1 0.5 ± 0.9 F = 1.723; df = 

1,12; P = 0.214 

C. carnea 0.9 ± 0.9 0.4 ± 0.8 F = 3.000; df = 

1,12; P = 0.109 

0.7 ± 0.9 0.6 ± 0.8 F = 0.120; df = 

1,12; P = 0.735 

Vineyard B 

2015 

      

Araneae 7.8 ± 5.8 8.3 ± 4.5 F = 0.104; df = 

1,12; P = 0.753 

7.7 ± 5.1 8.4 ± 5.3 F = 0.193; df = 

1,12; P = 0.668 

Web-builders 2.9 ± 2.5 3.5 ± 2.0 F = 0.497; df = 

1,12; P = 0.494 

3.1 ± 2.2 3.3 ± 2.4 F = 0.073; df = 

1,12; P = 0.791 

Hunters 4.9 ± 3.8 4.8 ± 3.8 F = 0.008; df = 

1,12; P = 0.931 

4.6 ± 3.8 5.1 ± 3.8 F = 0.194; df = 

1,12; P = 0.668 

Thomisidae 2.5 ± 2.6 2.6 ± 2.9 F = 0.011; df = 

1,12; P = 0.918 

2.4 ± 2.4 2.7 ± 3.1 F = 0.099; df = 

1,12; P = 0.758 

Oxyopidae 0.8 ± 1.3 1.0 ± 1.3 F = 0.289; df = 

1,12; P = 0.601 

1.0 ± 1.3 0.9 ± 1.4 F = 0.072; df = 

1,12; P = 0.793 

Salticidae 1.2 ± 1.2 1.0 ± 1.3 F = 0.211; df = 

1,12; P = 0.655 

0.9 ± 1.3 1.3 ± 1.3 F = 0.842; df = 

1,12; P = 0.377 

Gnaphosidae 0.4 ± 0.6 0.2 ± 0.4 F = 1.714; df = 

1,12; P = 0.215 

0.3 ± 0.5 0.3 ± 0.6 F = 0.000; df = 

1,12; P = 1.000 

Insecta       

Aeolothrips sp. 22.3 ± 11.6 37.0 ± 20.9 F = 2.020; df = 

1,12; P = 0.181 

25.8 ± 16.5 33.5 ± 19.6 F = 0.543; df = 

1,12; P = 0.475 

Scymninae 5.9 ± 6.9 9.5 ± 8.7 F = 2.422; df = 

1,12; P = 0.146 

6.5 ± 7.6 8.9 ± 8.3 F = 1.061; df = 

1,12; P = 0.323 

Coccinellidae 

(excl. 

Scymninae) 

2.7 ± 2.7 3.4 ± 2.6 F = 0.610; df = 

1,12; P = 0.450 

2.9 ± 2.9 3.2 ± 2.4 F = 0.090; df = 

1,12; P = 0.769 

C. carnea 1.1 ± 1.6 0.8 ± 1.2 F = 0.316; df = 

1,12; P = 0.584 

0.8 ± 1.2 1.1 ± 1.6 F = 0.620; df = 

1,12; P = 0.446 

Orius sp. 1.2 ± 1.7 0.4 ± 0.6 F = 5.070; df = 

1,12; P = 0.044 

0.9 ± 1.7 0.7 ± 0.9 F = 0.158; df = 

1,3; P = 0.698 
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Chapter 9 - General conclusions 
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Based on the studies of the present PhD thesis (2015-2017), natural products and cultural 

practices can be a valid alternative to synthetic insecticides for a sustainable management of 

grapevine pests.  

In organic vineyards, the applications of kaolin against E. vitis and Z. rhamni (Chapter 2) 

and that of citrus essential oil against P. ficus (Chapter 6) allow an effective control of these pests 

that otherwise could not be obtained. Because kaolin was as effective as pyrethrins in the 

management of S. titanus, it can be used by organic growers as an alternative or in addition to 

pyrethrins (Chapter 3).  

In the control of L. botrana, kaolin (Chapter 4), sulphur dust (Chapter 5) and bunch-zone 

leaf removal (Chapters 4 and 5) are tools that combined can have the same efficacy of B. 

thuringiensis and can be integrated with other strategies such as mating disruption to obtain optimal 

control of this pest.  

 For kaolin and bunch-zone leaf removal, a minor impact on predatory phytoseiid mites 

(Chapter 7) and generalist predatory insects and spiders was observed (Chapter 8), even after their 

adoption for two consecutive years.  

Since two-three applications of kaolin were able to control both grapevine leafhoppers and 

L. botrana, application timings that allow multi-target activities would be desirable. In the field 

trials of this PhD thesis, kaolin was applied two-three times from start of the second flight of L. 

botrana for the management of E. vitis, Z. rhamni and L. botrana, or three times, i.e. at the 

appearance of the first, second and third instar nymphs, for S. titanus control. In 2016, these 

application timings corresponded to the second and third decades of June for the E. vitis and L. 

botrana control and to last decade of May–first decade of June for the S. titanus control. Therefore, 

the applications against S. titanus were timed much earlier than those against the other two pests. 

Since, unpublished data collected in 2017 showed a lower efficacy of kaolin against S. titanus when 

applied at the appearance of the third instar nymphs, it is not possible to postpone the kaolin 

applications against this leafhopper. In the studies of this PhD thesis, the effects of kaolin against E. 

vitis, Z. rhamni and L. borana, when timed well before the start of L. botrana second flight, was not 

evaluated. However, based on E. vitis phenology and the high residual activity of kaolin against this 

leafhopper, we can suppose that the kaolin applications, timed against S. titanus, effectively control 

E. vitis first generation and prevent high population levels during the subsequent generation. On the 

contrary, for L. botrana, an effective control of the second generation by kaolin sprayings timed 

against S. titanus is unlikely because the kaolin coating of berries on which females will lay eggs is 

not possible, being berries still absent or too small at application timings. For this reason, it is hard 

to implement a strategy based on kaolin that considers only two-three applications for the 
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simultaneous management of both S. titanus and L. botrana. On the other hand, an increased 

number of kaolin applications is not suggestable due to possible negative side effects on natural 

enemies. Therefore, growers should time kaolin applications on the basis of the relative population 

levels of the considered pests. A strategy that should be evaluated consists in performing two early 

kaolin applications for the control of S. titanus, at the appearance of first and second instar nymphs 

respectively, and to reserve a third application localized on the bunch zone at the beginning of the 

second flight of L. botrana. 

The use of kaolin and bunch-zone leaf removal should be encouraged even due to their 

multiple positive effects compared to synthetic insecticides. Kaolin is able to reduce infestations of 

grapevine leafhoppers and L. botrana as well as to reduce sunburn damage of exposed berries and 

grapevines water stress with minor effects on grapes quality, while bunch-zone leaf removal is able 

to reduce L. botrana infestation, bunch rots and to improve the quality of grapes. 

 


