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Abstract. It is well-known that the existence of more than two ends in
the sense of J.R. Stallings for a finitely generated discrete group G can be
detected on the cohomology group H1(G,R[G]), where R is either a finite
field, the ring of integers or the field of rational numbers. It will be shown
(cf. Theorem A*) that for a compactly generated totally disconnected
locally compact group G the same information about the number of ends
of G in the sense of H. Abels can be provided by dH1(G,Bi(G)), where
Bi(G) is the rational discrete standard bimodule of G, and dH•(G, )
denotes rational discrete cohomology as introduced in [6].

As a consequence one has that the class of fundamental groups of a
finite graph of profinite groups coincides with the class of compactly pre-
sented totally disconnected locally compact groups of rational discrete
cohomological dimension at most 1 (cf. Theorem B).

1. Introduction

For a totally disconnected locally compact (= t.d.l.c.) group G several
cohomology theories can be introduced, e.g., the Bredon cohomology with
respect to the family of all compact open subgroups of G and the continuous
cohomology via cochain complexes. In this paper we investigate the rational
discrete first degree cohomology of a t.d.l.c. group G as introduced in [6].
In Remarks 3.12 and 3.11 we provide a brief comparison of this cohomology
theory with Bredon and continuous cohomology, respectively.

A left Q[G]-module M is said to be discrete if the map · : G×M →M
is continuous, where M carries the discrete topology. The category Q[G]dis of
discrete left Q[G]-modules is an abelian category with both enough injectives
and projectives. The right derived functors of HomQ[G]( , ) have been
denoted by dExt•G( , ), and, for any k ≥ 0, the group

dHk(G, ) = dExtk(Q, )

is defined to be the kth rational discrete cohomology group of G with coeffi-
cients in Q[G]dis (a brief introduction to this cohomology theory and some
properties we use further on are given in §3.1).

This work was supported by GNSAGA-INdAM, by Programma SIR 2014 - MIUR
(Project GADYGR) Number RBSI14V2LI cup G22I15000160008 and by EPSRC Grant
N007328/1 Soluble Groups and Cohomology.
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2 ILARIA CASTELLANO

In this paper we provide several results on the low-dimensional rational
discrete cohomology of G by analogy with the discrete case. In section 3, we
show that the functor dH1(G, ) can be described by means of continuous
derivations (cf. Propositions 3.9), and consequently by the almost invariant
functions when we consider coefficients in a discrete permutation module
(cf. Proposition 3.15).

In section 4, we prove the first main theorem of this paper (cf. Theo-
rem A*), which provides a cohomological interpretation of Stallings’ decom-
position theorem for compactly generated t.d.l.c. groups (cf. Theorem A).
A compactly generated t.d.l.c. group G is said to split non-trivially over a
compact open subgroup K if one of the following holds:

(S1) G is a free product with amalgamation H ∗K J , where H and J are
compactly generated open subgroups satisfying K 6= H and K 6= J ;

(S2) G is a HNN-extension H∗tK with stable letter t, where H is a com-
pactly generated open subgroup of G.

The space of rough ends of a compactly generated t.d.l.c. group G is defined
to be the end space of a rough Cayley graph of G (cf. [17, §3] and §2.2).
Thus the analogue of Stallings’ decomposition theorem for t.d.l.c. groups
can be restated as follows.

Theorem A ([17, Theorem 13]). Let G be a compactly generated t.d.l.c.
group, and let e(G) denote the number of rough ends of G. Then the follow-
ing are equivalent:

(a) e(G) > 1, i.e., G has more than one rough end;
(b) G splits non-trivially over a compact open subgroup.

This splitting theorem is essentially due to Abels [1, Struktursatz 5.7,
Korollar 5.8] and [17, §3.6] explains the relation with Abels’ work in de-
tail. In particular, it has been shown that the ideal points of the Specker
compactification of a compactly generated t.d.l.c. group G can be identified
with the rough ends of G, which definition here is recalled in §2.2.

The main purpose of this paper is to give the following cohomological
reformulation of Theorem A.

Theorem A*. Let G be a compactly generated t.d.l.c. group. Then (a) and
(b) of Theorem A are equivalent to

(c) dH1(G,Bi(G)) 6= 0.

Here Bi(G) denote the rational discrete standard bimodule introduced in
[6] to be a suitable substitute of the group algebra Q[G] in the context of
rational discrete cohomology. The rational discrete standard bimodule is
defined by

Bi(G) = lim−→
O∈CO(G)

(Q[G/O], ηU,V ), (1.1)

where CO(G) = {O ⊂ G | O compact open subgroup }, and the direct limit
is taken along the injective mappings

ηU,V : Q[G/U ]→ Q[G/V ], ηU,V (gU) =
1

|U : V |
∑
r∈R

grV, g ∈ G (1.2)
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where V ⊂ U are compact open subgroups of G and R is a set of coset
representatives of U/V .

Now the new condition (c) guarantees a non-trivial splitting of a com-
pactly generated t.d.l.c. group by knowing a single cohomology group as [8,
Theorem IV 6.10] guarantees for finitely generated discrete groups.

The presence of the cohomological condition (c) leads us to prove The-
orem A* by means of the chain of implications (a) ⇒ (b) ⇒ (c) ⇒ (a).
Clearly, (a)⇒ (b) has been already proven in Theorem A. Nevertheless, we
prefer to provide a similar but substantially different proof (cf. Remark 4.3).
Moreover, we obtain a new proof for (b)⇒ (a) going through (c) that clar-
ify how the three different aspects of a compactly generated t.d.l.c. group
encoded in the conditions (a),(b) and (c) are related.

Stallings’ theory of ends for discrete groups had certainly a major im-
pact on geometric group theory. For example, his decomposition theorem -
together with Bass-Serre’s theory of groups acting on trees - was an essen-
tial tool for proving important results on groups of (virtual) cohomological
dimension 1 like the Stallings-Swan theorem (cf. [22, 23]) or the Karrass-
Pietrowski-Solitar theorem (cf. [15]). In particular, Stallings’ decomposi-
tion theorem led naturally to the accessibility problem for finitely generated
groups. Within the framework of Bass-Serre theory, a finitely generated
group is said to be accessible if it is isomorphic to a fundamental group of a
finite graph of groups such that every edge group is finite and every vertex
group is a finitely generated group with at most one end. Equivalently, a
compactly generated t.d.l.c. group can be defined to be accessible if it has
an action on a tree such that

(A1) the number of the G-orbits on the edges is finite;
(A2) the edge-stabilizers are compact open subgroups of G;
(A3) every vertex-stabilizer is a compactly generated open subgroup of G

with at most one rough end.

In 1991 M.J. Dunwoody [11] constructed an inaccessible finitely generated
(discrete) group with infinitely many ends. In [17] the authors related the
accessibility of a compactly generated t.d.l.c. group G to the accessibility
of some (and hence all) rough Cayley graph of G, which is the analogue of
[24, Theorem 1.1]. In 1985 M.J. Dunwoody [10] proved that every finitely
presented (discrete) group has to be accessible. The analogue of this result
in the context of t.d.l.c. groups is due to Y. Cornulier [7]. By using this
accessibility result, we prove the second main theorem of this paper (cf.
Theorem B).

Theorem B. For every t.d.l.c. group G, the following are equivalent:

(i) the group G is a compactly presented t.d.l.c. group with rational
discrete cohomological dimension less or equal to one,

(ii) the group G is isomorphic to the fundamental group π1(G,Λ) of a
finite graph of profinite groups (G,Λ).

This result is the (compactly presented) analogue of [9, Theorem. 1.1]
that characterizes the (discrete) groups of cohomological dimension at most
1 over a commutative ring R to be fundamendal groups of graphs of finite
groups with no R-torsion.
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Question 1. Is every compactly generated t.d.l.c. group of rational discrete
cohomological dimension at most 1 isomorphic to a fundamental group of a
graph of profinite groups?

2. Preliminaries on ends

2.1. Graphs. In this paper we use the notion of graph as introduced by
J-P. Serre in [21], i.e., a graph Γ consists of a set V(Γ), a set E(Γ) and two
maps

E(Γ)→ V(Γ)×V(Γ) e 7→ (o(e), t(e)),
E(Γ)→ E(Γ) e 7→ ē,

satisfying the following condition: for each e ∈ E(Γ) we have ¯̄e = e, ē 6= e
and o(e) = t(ē). An element v ∈ V(Γ) is called a vertex of Γ; an element
e ∈ E(Γ) is called an (oriented) edge and ē is its inverse edge. The 2-set
{ e, ē } is called a geometric edge of Γ. The vertex o(e) is called the origin
of e and the vertex t(e) is called the terminus of e. A path from a vertex v
to a vertex w in Γ is defined to be a sequence of edeges p = (ei)1≤i≤r such
that o(e1) = v, t(er) = w and t(ei) = o(ei+1) for i = 1, . . . , r − 1. A path
p = (ei)1≤i≤r is said to be reduced if ei 6= ēi+1 for every i = 1, . . . , r − 1. A
reduced path p = (ei)1≤i≤r satisfying t(er) = o(e1) is called circuit of length
r, and a loop is a circuit of length 1. A graph Γ is said to be connected, if
there exists a path from any vertex v to any other vertex w. Every connected
subgraph of Γ which is maximal with respect to this property is called a
connected component of Γ. Thus every graph Γ is the disjoint union of its
connected components and in this way one defines an equivalence relation ∼
on V (Γ), which is called the connectedness relation. A connected non-empty
graph without circuits is said to be a tree.

For a graph Γ we denote by V(Γ) the free Q-vector space Q[V(Γ)] over
the set of vertices. If Q[E(Γ)] denotes the Q-vector space over the set E(Γ)
we put

E(Γ) = Q[E(Γ)]/ spanQ{ e + ē | e ∈ E(Γ) } (2.1)

the Q-vector space freely generated by the geometric edges of Γ. Then one
has the canonical Q-linear map δ : E(Γ)→ V(Γ) given by

δ([e]) = t(e)− o(e), e ∈ E(Γ), (2.2)

where [e] denotes the canonical image of e ∈ E(Γ) in E(Γ). Let H•(|Γ|;Q)
denote the singular homology groups with rational coefficients of the topo-
logical realization |Γ| of Γ. One has the following well known result.

Fact 2.1 ([21, Corollary 1]). Let Γ be a graph and let δ : E(Γ) → V(Γ) be
the map given by (2.2). Then

(a) ker(δ) ∼= H1(|Γ|;Q).

(b) coker(δ) ∼= Q[V(Γ)/ ∼], where ∼ is the connectedness relation.

In particular, Γ is a tree if, and only if, ker(δ) = 0 and coker(δ) ∼= Q.
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Thus, given a connected graph Γ, one has an associated exact sequence

0 // H1(|Γ|;Q) // E(Γ)
δ // V(Γ) // Q // 0 (2.3)

of Q-vector spaces.

Example 2.2. Let G be a t.d.l.c. group, and let Q[G]dis denote the abelian
category whose objects are the discrete left Q[G]-modules (i.e., left Q[G]-
modules where the stabilizers of any element are open in G).
(a) Suppose there exist open subgroups H,K and J such that G = H ∗K J ,
i.e., G splits as free product with amalgamation in K. The group G is then
acting discretely - i.e. with open vertex stabilizers - without edge inversions
on a tree with a segment as fundamental domain (cf. [21, Theorem 6]). By
applying the orbit-stabilizer theorem, the exact sequence (2.3) yields

0 // Q[G/K]
δ // Q[G/H]⊕Q[G/J ] // Q // 0 ,

which is a short exact sequence in Q[G]dis.

(b) Suppose G = H∗tK is an HNN-extension with stable letter t, where H,K
are open subgroups of G. Thus G is acting discretely and without edge
inversions on a tree with a loop as fundamental domain (cf. [21, Remark 1,
pg. 34]). Thus one has the following short exact sequence in Q[G]dis

0 // Q[G/K]
δ // Q[G/H] // Q // 0.

2.2. The number of rough ends. A graph Γ is said to be locally finite if
the set

starΓ(v) = {e ∈ E(Γ)|o(e) = v}
is finite for every v ∈ V(Γ). From now on Γ will be a connected locally finite
graph. For a finite subset S ⊆ V(Γ) let ES(Γ) = { e ∈ E(Γ) | o(e) ∈ S },
i.e., the union of all starΓ(v), v ∈ S. We denote by Γ− S the subgraph of Γ

with vertex set V(Γ)− S and edge set E(Γ)− (ES(Γ) ∪ ES(Γ)), i.e., Γ− S
is the subgraph obtained from Γ by removing S and all the edges attached
to S. Let cS be the number of infinite connected components of Γ− S. For
a connected locally finite graph Γ

e(Γ) = sup{ cS | S ⊂ V(Γ) finite } (2.4)

will be called the number of ends of Γ. In particular, the graph Γ is finite
if, and only if, Γ is 0-ended.

Fact 2.3. The number e(Γ) is greater than one if, and only if, there exists
an infinite connected subgraph C ⊂ Γ such that the set

δC = { e ∈ E(Γ) | either o(e) ∈ V (C) or t(e) ∈ V (C) but not both } (2.5)

is finite and the subgraph C∗ = Γ − V (C) contains an infinite connected
component.

The set of vertices C = V (C) is called a cut of Γ.

Recall that two connected graphs (Γ, dΓ) and (Γ′, dΓ′) (with the geodesic
metric) are said to be quasi-isometric if there exist a map ϕ : V(Γ)→ V (Γ′)
and constants a ≥ 1 and b > 0 such that for all vertices v, w ∈ V(Γ)

a−1dΓ(v, w)− a−1b ≤ dΓ′(ϕ(v), ϕ(w)) ≤ a dΓ(v, w), (2.6)
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and for all vertices v′ ∈ V (Γ′) one has

dΓ(v′, ϕ(V(Γ))) ≤ b. (2.7)

A map ϕ satisfying the above conditions is called a quasi-isometry of graphs.
Moreover, the relation of being quasi-isometric is an equivalence relation
among graphs and the number of ends is a quasi-isometric invariant (cf.
[18, Proposition 1]).

A t.d.l.c. group G is said to be compactly generated if there exist a
compact open subgroup K and a finite symmetric set S ⊂ G \K such that
G is algebraically generated by S ∪ K. Every such a pair (K,S) will be
called a generating pair of G. The rough Cayley graph Γ associated to G
with respect to the generating pair (K,S) consists of the following data:

V(Γ) = G/K, E(Γ) = { (gK, gsK), (gsK, gK) | g ∈ G, s ∈ S }, (2.8)

where the origin and terminus maps are given by projection onto the first and
second coordinate, respectively, while the edge inversion mapping permutes
the first and second coordinate.

Remark 2.4. In the literature these graphs are also known as Cayley-Abels
graphs. The definition we have chosen here follows the approach used in [17,
§2], with the difference that the edges of a graph are directed in our setup.

A rough Cayley graph Γ is naturally endowed with a discrete G-action,
i.e., G is acting with open stabilizers. Moreover, the following fact holds.

Fact 2.5. Let G be a compactly generated t.d.l.c. group. Then

(a) every rough Cayley graph Γ of G is a vertex-transitive, connected
and locally finite graph;

(b) G has a continuous, proper and cocompact G-action on Γ;
(c) all rough Cayley graphs of G are quasi-isometric;
(d) all rough Cayley graphs of G have the same number of ends.

Thus the number of rough ends e(G) of a compactly generated t.d.l.c.
group G can be defined to be the number of ends of a rough Cayley graph
Γ associated to G with respect to some generating pair (K,S).

Example 2.6. (a) If G is a finitely generated discrete group, then the notion
of rough Cayley graph gives back the well-known notion of Cayley graph and
its number of ends. E.g. Z and D∞ are 2-ended groups.

(b) The group SL2(Qp) is a free product with amalgamation of two copies
of SL2(Zp). Hence SL2(Qp) has infinitely many rough ends.

3. First degree cohomology

3.1. Rational discrete cohomology. Here we collect some of the proper-
ties concerning the rational discrete cohomology for t.d.l.c. groups we shall
use further on. For the details the reader is referred to [6].

For a t.d.l.c. group G, let Q[G]dis denote the abelian full subcategory of

Q[G]mod whose objects are the discrete left Q[G]-modules, i.e., left Q[G]-
modules with open stabilizers. The category Q[G]dis has enough injectives,
thus one may define

dExtkG(M, ) = RkHomQ[G]dis(M, ) (3.1)
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the right derived functors of HomQ[G](M, ) in Q[G]dis, and the kth discrete
cohomology group of G with coefficients in Q[G]dis by

dHk(G, ) = dExtkG(Q, ), k ≥ 0, (3.2)

where Q denotes the trivial discrete left Q[G]-module.
By using Maschke’s theorem, one may prove that the trivial Q[G]-module

Q is projective whenever G is profinite. Consequently, for every t.d.l.c. group
G, the discrete left Q[G]-module Q[G/K] is projective in Q[G]dis whenever
K is a compact open subgroup of G. Moreover, one may stress further this
property as follows.

Let Ω be a left G-set whose pointwise stabilizers are open. Clearly, Q[Ω] -
the free Q-vector space over the set Ω - is a discrete left Q[G]-module, which
is also called a discrete left Q[G]-permutation module.

Proposition 3.1 ([6, Prop. 3.2]). Let G be a t.d.l.c. group, and let Ω be a
left G-set with compact open stabilizers. Then Q[Ω] is projective in Q[G]dis.
In particular, the abelian category Q[G]dis has enough projectives.

The existence of projective resolutions in Q[G]dis naturally leads to several
finiteness conditions on G as usual. Firstly, the rational discrete cohomo-
logical dimension of G, denoted by cdQ(G), is defined to be the smallest
non-negative integer n such that there exists a projective resolution (Pi, ∂i)
of Q in Q[G]dis of length ≤ n. Analogously to the discrete case, one has the
following properties.

Proposition 3.2 ([6, Prop. 3.7]). Let G be a t.d.l.c. group.

(a) G is compact if, and only if, cdQ(G) = 0.
(b) If H is a closed subgroup of G, then

cdQ(H) ≤ cdQ(G).

Moreover, a discrete left Q[G]-module M is said to be finitely generated,
if there exist a finite number of compact open subgroups K1, . . . ,Kn of G
and an epimorphism π :

∐
1≤j≤nQ[G/Kj ] → M . Consequently, a discrete

left Q[G]-module M is said to be of type FPn, n ≥ 0, if M satisfies one of
the following equivalent properties:

(F1) there is a partial projective resolution

Pn
∂n // Pn−1

∂n−1 // . . .
∂2 // P1

∂1 // P0
ε // M // 0

of M in Q[G]dis such that Pj is finitely generated for all 0 ≤ j ≤ n;
(F2) M is finitely generated and for every partial projective resolution

Qk
ðk // Qk−1

ðk−1 // . . . // Q1
// Q0

// M // 0

in Q[G]dis with k < n such that Qj is finitely generated for all j =
0, . . . , k, one has that ker(ðk) is finitely generated.

E.g., M is of type FP0 if, and only if, M is finitely generated. If M is of
type FPn for all n ≥ 0, then M is called to be of type FP∞. Accordingly,
the group G is said to be of type FPn, n ∈ N∪{∞}, if the trivial module Q
is of type FPn in Q[G]dis.
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Proposition 3.3. Let G be a t.d.l.c. group and A a discrete left Q[G]-
module of type FPn, n ≥ 0. Then for every direct limit lim−→M• in Q[G]dis
the natural homomorphism

lim−→ dExtkG(A,M•)→ dExtkG(A, lim−→M•),

is an isomorphism for k ≤ n− 1 and a monomorphism for k = n.

Proof. Let (P•, ∂•, ε) be a projective resolution of Q in Q[G]dis such that Pj
is finitely generated for 0 ≤ j ≤ n. By the Hom−⊗ identity provided in [6,
§4.3], HomG(Pj , ) commutes with direct limits whenever 0 ≤ j ≤ n. Thus
the proof of [4, Prop. 1.2] can be transferred here. �

Remark 3.4. If all of the canonical maps M• → lim−→M• are injective, then

an easy diagram chasing shows that lim−→ dExtnG(A,M•)→ dExtn(A, lim−→M•)
is an isomorpshism as well.

Corollary 3.5. For a t.d.l.c. group G of type FP∞ the functors dH•(G, )
commute with direct limits in Q[G]dis.

It is well known that a discrete group is finitely generated if, and only if,
it is of type FP1 (cf. [5, §VIII.4]). The analogue result for t.d.l.c. groups
holds as well.

Proposition 3.6 ([6, Prop. 5.3]). Let G be a t.d.l.c. group. Then G is
compactly generated if, and only if, G is of type FP1.

By combining the latter finiteness conditions, one defines a t.d.l.c. group
G to be of type FP, if G is of type FP∞ with cdQ(G) = d < ∞. In other
words, the trivial left Q[G]-module Q has a projective resolution which is
finitely generated and concentrated in degrees 0 to d.

Since the group algebra Q[G] is not a discrete Q[G]-module unless the
group G itself is discrete, in [6] a possible substitute has been introduced
and studied. Namely, the rational discrete standard bimodule Bi(G) (cf.
(1.1)). The following are in analogy with the discrete case.

Fact 3.7 ([6, Prop. 4.3]). Let G be a t.d.l.c. group. One has

HomG(Q,Bi(G)) '

{
Q if G is compact,

0 if G is not compact.

Proposition 3.8 ([6, Prop. 4.7]). Let G be a t.d.l.c. group of type FP.
Then

cdQ(G) = max{ k ≥ 0 | dHk(G,Bi(G)) 6= 0 }. (3.3)

3.2. Derivations. Let Der(G,M) denote the group of all (algebraic) deriva-
tions d from a group G to a left G-module M , i.e., d is a mapping of sets
d : G→M satisfying d(gh) = gd(h) + d(g) for all g, h ∈ G.

For a t.d.l.c. group G and a discrete Q[G]-module M , we define

DerK(G,M) = { d ∈ Der(G,M) | d(k) = 0, ∀k ∈ K } , (3.4)

PDerK(G,M) = { d ∈ DerK(G,M) | ∃m ∈MK s.t. d(g) = gm−m ∀g ∈ G } ,
where K is a compact open subgroup of G. Clearly every element d of
DerK(G,M) is a continuous map, where M carries the discrete topology.
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By analogy to the discrete case, one may prove the following result and
we include the standard proof for reader’s convenience.

Proposition 3.9. For a compact open subgroup K of a t.d.l.c. group G
there is a natural isomorphism

dH1(G,M) ∼= DerK(G,M)/PDerK(G,M),

where M ∈ ob(Q[G]dis).

Proof. Let

0 // N // Q[G/K]
ε // Q // 0 (3.5)

be the short exact sequence in Q[G]dis provided by the augmentation map
ε. Thus the set {gK −K | g ∈ G \K} is a generating set of N as Q-vector
space. Firstly, notice that

HomG(N,M) ∼= DerK(G,M),

for every M ∈ ob(Q[G]dis). Indeed for every Q[G]-map ϕ : N →M let

Dϕ : G→M, Dϕ(g) = ϕ(gK −K) ∀g ∈ G. (3.6)

Clearly, Dϕ ∈ DerK(G,M). Thus the formula (3.6) defines a natural homo-
morphism from HomG(N,M) to DerK(N,M). This homomorphism admits
the inverse D 7→ ϕD given by ϕD(gK − K) = D(g), which is well-defined
since D ∈ DerK(G,M) is constant on the cosets of K in G.

By applying the long exact cohomology functor to (3.5) with coefficients
in M , one has

0 // MG // MK // DerK(G,M) // dH1(G,M) // 0 , (3.7)

since Q[G/K] is projective in Q[G]dis and HomG(Q[G/K],M) ∼= HomK(Q,M)

(cf. Proposition 3.1 and [6, §2.9]). Finally, as PDerK(G,M) ∼= MK/MG by
definition, (3.7) yields the claim. �

Corollary 3.10. For a t.d.l.c. group G and M ∈ ob(Q[G]dis), let Dertop(G,M)
be the group of all continuous derivations from G to M and PDertop(G,M)
the subgroup of the principal one. Thus

dH1(G,M) ∼= Dertop(G,M)/PDertop(G,M),

naturally.

Proof. Let d be a continuous derivation from G to M . Then ρ : G×M →M
given by ρ(g,m) = gm + d(g) defines a continuous affine transformation of
M . For every compact open subgroup K of G, the K-orbit is finite, by
continuity. So the average of this orbit is a K-fixed point, say x. Let
d′ ∈ PDerK(G,M) be the principal derivation associated to x. Since d −
d′ ∈ DerK(G,M), every continuous 1-cocycle is cohomologous to a 1-cocycle
vanishing on K. �

Remark 3.11. One can chose to develop a cohomology theory for a t.d.l.c.
group G directly via cochain complexes. For M ∈ ob(Q[G]dis) let Cn(G,M)
be the set of all continuous functions from Gn to M , where M carries the
discrete topology. By equipping this with the usual coboundary operators, one
has a cochain complex whose cohomology can be defined to be the continuous
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cohomology of G, e.g. [13, 19]. By Corollary 3.10, the rational discrete
cohomology of G turns out to be equivalent to the continuous one in degree
0 and 1, but at this stage we do not know if this is true for n ≥ 2.

Remark 3.12. Let C be the family of all compact open subgroups of a t.d.l.c.
group G. By van Dantzig’s Theorem, C is non-empty. Furthermore C is
closed under conjugation and taking finite intersections. Let OC(G) be the
orbit category of G w.r.t. C. Namely, the objects are the G-sets G/K, for
K ∈ C, and the morphisms are the G-maps between them. Thus one may
define the category of Bredon modules over OC(G) as usual. The Bredon
cohomology of G is not equivalent to the rational discrete cohomology of G.
Indeed a necessary condition for a t.d.l.c. group G to be of type FP0 in the
Bredon cohomology is the following: there are finitely many compact open
subgroups K1, . . . ,Kn of G such that any compact open subgroup of G is
subconjugated to one of the Kis (cf. [16, Lemma 2.3]). On the other hand,
being of type FP0 for a t.d.l.c. group in the rational discrete cohomology is
an empty condition.

Remark 3.13. We are aware of a possible connection between rational dis-
crete cohomology and the cohomology of the Hecke algebra (cf. [20, §2]) but
it will be not discussed in this paper.

3.3. The almost invariant functions. In order to connect the rational
discrete cohomology of G to the number of rough ends as clearly as possible,
we provide another representation of dH1(G,M) whenever M is a transitive
discrete permutation module.

Let G be a compactly generated t.d.l.c. group and let (K,S) be a gen-
erating pair of G. Clearly, the set HomQ(Q[G/K],Q) of all functions from
G/K to Q is a G-set with action given by

(g · α)(x) = α(g−1x) ∀α ∈ HomQ(Q[G/K],Q), ∀g ∈ G, ∀x ∈ G/K. (3.8)

Following [9], we say that two maps α, β ∈ HomQ(Q[G/K],Q) are almost
equal, and denote this by α =a β, if α(x) = β(x) for all but finitely many
elements x ∈ G/K.

Example 3.14. Every element m ∈ Q[G/K] can be expressed as formal
sum

m =
∑

x∈G/K

qxx

with qx ∈ Q being 0 for almost all x ∈ G/K. Then m can be identified with
the projection pm : G/K → Q given by pm(x) = qx, showing that pm =a 0.
Thus Q[G/K] is the set of all almost zero functions in HomQ(Q[G/K],Q).

An element α ∈ HomQ(Q[G/K],Q) is called an almost (G,K)-invariant
function if g · α =a α for all g ∈ G and k · α = α for all k ∈ K. Denote by
AInvK(G,Q) the space of all almost (G,K)-invariant functions.

Proposition 3.15. For every compact open subgroup K of a t.d.l.c. group
G one has

dH1(G,Q[G/K]) ∼=
AInvK(G,Q)

C(G/K) + Q[G/K]K
,
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where

C(G/K) = {α ∈ HomQ(Q[G/K],Q)|α constant},
and Q[G/K]K denotes the largest K-invariant submodule of Q[G/K].

Proof. The second part of the proof of Lemma 1.1 in [3] can be easily adapted
to our context. Thus for every compact open subgroup K of G there exists
the following short exact sequence

0 −→ C(G/K) −→ AInvK(G,Q)
∂−→ DerK(G,Q[G/K]) −→ 0, (3.9)

where for each α the map ∂α : G→ Q[G/K] is given by

∂α(g) =
∑

x∈G/K

(g · α(x)− α(x))x. (3.10)

As PDerK(G,Q[G/K]) ∼= Q[G/K]K , applying Proposition 3.9 concludes the
proof. �

4. The decomposition theorem

The aim of this section is to prove Theorem A*. Clearly, the proof of The-
orem A* can be shortened considering that the equivalence between a) and
b) is well-known, but here we prove the result via the chain of implications
(a)⇒ (b)⇒ (c)⇒ (a).

Recall that a t.d.l.c. group G acts discretely on a graph if the stabilizers
are open subgroups of G.

Proposition 4.1. Let G be a compactly generated t.d.l.c. group. Suppose
that G acts discretely on a tree T such that

(i) the group G is acting without edge inversions;
(ii) the quotient graph G\T is finite;

(iii) the edge stabilizers Ge are compact open subgroups of G.

Then the vertex stabilizers Gv are compactly generated.

Proof. Recall that a t.d.l.c. group is compactly generated if, and only if, it
is of type FP1 (cf. Prop. 3.6). Thus it is sufficient to prove that the trivial
module Q is of type FP1 in Q[Gv ]dis, for all v ∈ V (T ). By property (i) and
(2.3), one has that the following sequence

0 //
∐

e∈RE(T ) Q[G/Ge] //
∐
v∈RV (T ) Q[G/Gv] // Q // 0

(4.1)
is exact in Q[G]mod, where RV (T ) is a set of representatives of the G-orbits
on V (T ), and RE(T ) is a set of representatives of the C2 × G-orbits on
E(T ). In particular, RV (T ) and RE(T ) are finite by (ii). Moreover, G
is acting discretely on T , i.e. with open stabilizers, thus (4.1) is a short
exact sequence in Q[G]dis. Thus one may consider the induction functors

indGG∗ : Q[G∗]dis →Q[G] dis, where ∗ ∈ {v, e | v ∈ RV (T ), e ∈ RE(T )} (cf.
[6, §2.4]). In particular (4.1) can be reformulated as follows

0 //
∐

e∈RE(T ) indGGe
(Q) //

∐
v∈RV (T ) indGGv

(Q) // Q // 0.

(4.2)
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For G is a compactly generated t.d.l.c. group, the trivial module Q is of type
FP1 in Q[G]dis. The permutation module

∐
e∈RE(T ) indGGe

(Q) with compact

open stabilizers is a finitely generated projective discrete Q[G]-module, and
so of type FP1 as well (cf. Proposition 3.1). By applying the horseshoe
lemma to (4.2), one has that

∐
v∈RV (T ) indGGv

(Q) is of type FP1 in Q[G]dis.

Hence indGGv
(Q) is of type FP1 for every v ∈ RV (T ) (cf. [4, Prop. 1.4

(a)]). As the induction functor is exact and it is mapping projectives to
projectives (cf. [6, Proposition 3.4]), one deduces that the trivial module Q
is of type FP1 in Q[Gv ]dis, since indGGv

(Q) is of type FP1 in Q[G]dis for every
v ∈ RV (T ).

By conjugation, the statement holds. �

Remark 4.2. It is possible to extend the previous result to actions with
edge inversions. In such a case, one has to consider the stabilizers G{e}
of the geometric edges {e, ē} (cf. [6, Prop. 5.4]). On the other hand, it is
well-known that the condition about the action without edge-inversions is not
properly a restriction, since it is always possible to consider the barycentric
subdivision of the tree.

Proof of (a)⇒ (b). Starting from a rough Cayley graph associated to G, one
may use different techniques to construct a tree satisfying the hypothesis in
the previous result whenever G has more than one rough end (cf. [12], [8]).
Thus the result follows by Proposition 4.1 and Bass-Serre theory. �

Remark 4.3. In [17], to prove that a compactly generated t.d.l.c. group
G with more than one rough end splits non-trivially over a compact open
subgroup (namely, (a) ⇒ (b)) the authors applied the following technique.
Firstly, by using the theory of structure trees developed in [8], they construct
a directed tree acted on by G with finitely many orbits such that the edge
stabilizers are compact and open and the vertex stabilizers are (open) sub-
groups of G. Secondly, they applied Bass-Serre theory of groups acting on
trees to conclude that G has to split. Finally, they had to prove that every
vertex stabilizer Gα is compactly generated, which is the main part of the
proof. They achieve this final step by constructing a connected locally finite
graph acted on transitively by Gα with compact open stabilizers (cf. [17,
Theorem 1]). This graph is obtained by means of a construction developed
in [24, Section 7]. By Proposition 4.1 instead, one directly deduces that the
vertex stabilizers are compactly generated.

Proof of (b)⇒ (c). LetG split non-trivially over the compact open subgroup
K, i.e., either (S1) or (S2) holds. The proof is split up as follows.
Case 1. According as the splitting type (i.e., either (S1) or (S2)), suppose
H and J are both compact. By Bass-Serre’s theory, G is acting on the
universal covering tree Γ̃, thus (2.3) yields a short exact sequence

0 // E(Γ̃)
δ // V(Γ̃) // Q // 0 , (4.3)

(cf. Example 2.2). Since the vertex stabilizers are conjugated to H (and

J respectively), G is acting on Γ̃ with compact open stabilizers. Hence
(4.3) is a projective resolution of Q of length 1 in Q[G]dis, since it has
discrete permutation Q[G]-modules with compact stabilizers in degree 0 and
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1 (cf. Proposition 3.1). Therefore cdQ(G) = 1, as G is non-compact (cf.
Proposition 3.2(a)). By Proposition 3.6, since G is compactly generated, G
is a t.d.l.c. group of type FP1 with cdQ(G) = 1, so G is of type FP. Thus
Proposition 3.8 yields the claim.
Case 2. Assume G = H∗tK and H is non-compact. As shown in Exam-
ple 2.2(b), one has the following short exact sequence in Q[G]dis

0 // Q[G/K]
δ // Q[G/H] // Q // 0. (4.4)

Recall that for every open subgroup O of G one has

Q[G/O] ∼= Q[G]⊗Q[O] Q = indGO(Q),

where indGO( ) : Q[O]dis → Q[G]dis is the induction functor (cf. [6, §2.4]).
By the Eckmann-Shapiro type lemma [6, §2.9], applying the long exact co-
homology functor with coefficients in Bi(G) yields the long exact sequence

0 // Bi(G)G // Bi(G)H
δ∗ // Bi(G)K

��
dH1(G,Bi(G))

��
...

(4.5)

AsH is not compact, Bi(G)H = 0 (cf. Fact 3.7). Thus (4.5) gives an injective
map from Bi(G)K to dH1(G,Bi(G)). For K is compact, Bi(G)K 6= 0 and
then dH1(G,Bi(G)) 6= 0.
Case 3. Let G = H ∗K J and H non-compact. The sequence

0 // Q[G/K]
δ // Q[G/H]⊕Q[G/J ] // Q // 0, (4.6)

is exact in Q[G]dis (cf. Example 2.2(a)).
Now for H is not compact, applying the long exact cohomology functor

with coefficients in Q[G/K] yields the long exact sequence

0 // Q[G/K]G // HomG(Q[G/J ],Q[G/K])
δ∗ // EndG(Q[G/K])

��
dH1(G,Q[G/K])

��
...

(4.7)
It follows that dH1(G,Q[G/K]) 6= 0. Indeed suppose firstly J to be non-
compact. Thus [6, Fact 3.5] implies that

EndG(Q[G/K])→ dH1(G,Q[G/K])

in (4.7) is injective.
On the other hand, if J is compact, we claim that δ∗ cannot be surjective,

and so dH1(G,Q[G/K]) 6= 0 as well.
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Let us prove the claim. Recall that the map δ in (4.7) is given by

δ : Q[G/K]→ Q[G/H]⊕Q[G/J ], δ(gK) = gH − gJ, ∀g ∈ G.
Let ϕ ∈ HomG(Q[G/J ],Q[G/K]), thus one has

δ∗(ϕ)(g1K) = δ∗(ϕ)(g2K), (4.8)

for all g1, g2 ∈ G such that g1g
−1
2 ∈ J . If δ∗ is surjective, then there exists

ϕ such that idQ[G/K] = δ∗(ϕ). But g1K 6= g2K for all g1, g2 ∈ G such that

g1g
−1
2 ∈ J \K 6= ∅, and the claim follows.

Finally, by Proposition 3.6 and Remark 3.4, one has

dH1(G,Bi(G)) = lim−→CO(G)
dH1(G,Q[G/U ]), (4.9)

where U is ranging over all compact open subgroups of G. Let COK(G) be
the set of all compact open subgroups of G contained in K. One has

dH1(G,Bi(G)) = lim−→COK(G)
dH1(G,Q[G/U ]) 6= 0, (4.10)

since the map

dH1(ηU,V ) : dH1(G,Q[G/U ])→ dH1(G,Q[G/V ])

is injective for all compact open subgroups V ⊆ U ⊆ K of G (cf. Proof of
[6, Proposition 4.7]) and dH1(G,Q[G/K]) 6= 0. �

In order to conclude the proof of Theorem A* let us provide two Lemmas
that concur to clarify the expected connection between number of ends and
degree–1 cohomology.

LetK be a compact open subgroup ofG. Following [9], a subset B ⊂ G/K
is called an almost (G,K)-invariant set if the characteristic function χB of
B is an almost (G,K)-invariant function (cf. §3.3). In other words, B is
an almost (G,K)-invariant set if gB =a B (i.e. the symmetric difference is
finite) for all g ∈ G and kB = B for all k ∈ K. Thus we reformulate a result
of C. Bamford and M.J. Dunwoody (cf. [3, Lemma 1.1]) as follows.

Lemma 4.4. Let G be a compactly generated t.d.l.c. group and let (K,S)
be a generating pair. Then the Q-vector space AInvK(G,Q) of all almost
(G,K)-invariant functions is generated by

{χB|B almost (G,K)-invariant set}.

Note that if B is an almost (G,K)-invariant set, then its complement
B∗ is also an almost (G,K)-invariant set. An almost (G,K)-invariant set
B ⊂ G/K is said to be proper if B,B∗ are both infinite.

Lemma 4.5. Let G be a compactly generated t.d.l.c. group and let (K,S)
be a generating pair of G. If there exists a proper almost (G,K)-invariant
set, then e(G) > 1.

Proof. Let Γ = Γ(G,K, S) be the rough Cayley graph of G with respect
to the generating pair (K,S). If B ⊂ G/K is an infinite almost (G,K)-
invariant set, in particular one has kB = B for all k ∈ K. Thus one defines

CB = { gK ∈ G/K | g−1K ∈ B } ⊂ V(Γ).

Clearly, CB is infinite. Moreover, the set CB has finite boundary. Indeed,

δ̄CB = { gsK /∈ CB | gK ∈ CB, s ∈ S } = { s−1g−1K /∈ B | g−1K ∈ B, s ∈ S }.
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Rearranging, we have

δ̄CB = { gK ∈ G/K | ∃s ∈ S s.t. χB(gK) 6= s · χB(gK) },
which is a finite set by the almost invariance of χB and |S| <∞. Clearly, if
B is proper then CB contains at least a cut of Γ. Thus Fact 2.3 completes
the proof. �

Proof of c)⇒ a). Since

dH1(G,Bi(G)) = lim−→CO(G)
dH1(G,Q[G/U ]) 6= 0, (4.11)

(cf. Proposition 3.6 and Remark 3.4), it suffices to prove that e(G) > 1 if
there exists a compact open subgroupK ofG such that dH1(G,Q[G/K]) 6= 0.

Let K be such a subgroup. By Proposition 3.15, there is a non-trivial
map d ∈ AInvK(G,Q) which is neither constant on G/K nor almost zero.
Since AInvK(G,Q) is Q-generated by the characteristic functions of the
almost (G,K)-invariant sets of G (cf. Lemma 4.4), there exists an infinite
almost (G,K)-invariant set B ( G/K. We claim that B is proper. Then
the statement follows by Lemma 4.5.

Let us prove the claim. Set B∗ = G \ B and d∗ = ∂χB∗ (cf. (3.10)).
Clearly, d∗ ∈ dH1(G,Q[G/K]) and B∗ is an infinite almost (G,K)-invariant
set, i.e. B is proper. �

5. Compactly presented t.d.l.c. groups of rational discrete
cohomological dimension one

Following [6], a graph of profinite groups (G,Λ) based on the graph Λ
consists of the following data:

(G1) a profinite group Gv for every vertex v ∈ V (Λ);
(G2) a profinite group Ge for every edge e ∈ E(Λ) satisfying Ge = Gē;
(G3) an open embedding ιe : Ge → Gt(e) for every edge e ∈ E(Λ).

The fundamental group of a graph of profinite groups carries naturally the
structure of t.d.l.c. group. Indeed a neighbourhood basis of the identity is
given by

B := {O ≤co gGvg−1 | v ∈ V(Λ), g ∈ π1(G,Λ) } ,
where O is a compact open subgroup of the vertex stabilizer gGvg−1. We re-
call that a generalized presentation of a t.d.l.c. group G is a graph of profinite
groups (G,Λ) together with a continuous open surjective homomorphism

φ : π1(G,Λ) −→ G, (5.1)

such that φ|Gv is injective for all v ∈ V (Λ). In particular, every t.d.l.c.
group G admits at least one generalized presentation (G,Λ0) based on a
graph with a single vertex (cf. [6, Proposition 5.10]). A t.d.l.c. group G
is said to be compactly presented, if there exists a generalized presentation
((G,Λ), φ), such that

(i) Λ is a finite connected graph, and
(ii) K = ker(φ) is a finitely generated as normal subgroup of the funda-

mental group Π = π1(G,Λ).

Clearly, the fundamental group of a finite graph of profinite groups is a
compactly presented t.d.l.c. group.
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Remark 5.1. The notion of being compactly presented we use here is equiv-
alent to the usual one defined for compactly generated locally compact groups
(cf. [2, Prop. 1.1.3]).

Recall that a compactly generated t.d.l.c. group G is accessible if, and
only if, it has an action on a tree T such that:

(A1) the number of orbits of G on the edges of T is finite;
(A2) the stabilizers of edges in T are compact open subgroups of G;
(A3) every stabilizer of a vertex in T is a compactly generated open sub-

group of G and has at most one rough end.

Theorem B. Let G be a t.d.l.c. group. Thus the following are equivalent:

(i) G is a compactly presented t.d.l.c. group with cdQ(G) ≤ 1,
(ii) G is isomorphic to the fundamental group π1(G,Λ) of a finite graph

of profinite groups (G,Λ).

Proof. Clearly, the fundamental group Π of a finite graph of profinite groups
is a compactly presented t.d.l.c. group. Moreover Π acts on its universal
covering tree without inversion of edges and with compact open vertex sta-
bilizers. Then cdQ(Π) ≤ 1 (cf. (2.3) and Proposition 3.1).

Conversely, let G be a compactly presented t.d.l.c. group. By (a) of
Proposition 3.2, if cdQ(G) = 0, then G is profinite and there is nothing to
prove. Let cdQ(G) = 1. As G is compactly presented, by [7, Theorem 4.H.1]
G is accessible. Thus G is acting on a tree T with finitely many orbits on
the set of edges and compact open edge stabilizers. Moreover every vertex
stabilizer Gv is a compactly generated open subgroup of G with at most one
end. By Theorem A*, for all v ∈ V (T ) one has dH1(Gv,Bi(Gv)) = 0. By
Propositions 3.6 and 3.2(b), Gv is of type FP1 with cdQ(Gv) ≤ 1, i.e., Gv is
of type FP for any vertex v. Hence Proposition 3.8 together with the fact
that Gv has at most one end implies cdQ(Gv) = 0, i.e., Gv is compact for all
v ∈ V (T ) (cf. Proposition 3.2(a)). Finally, Bass-Serre’s theory yields the
claim. �

Remark 5.2. Clearly Theorem B can be regarded as the analogue for t.d.l.c.
groups of the Karrass-Pietrowski-Solitar theorem for virtually free groups,
and in particular of Dunwoody’s result [9, Thm. 1.1] on accessibility of dis-
crete groups of cohomological dimension one.
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[14] H. HOPF. Enden offener räume und unendliche diskontinuierliche gruppen. Com-

mentarii Mathematici Helvetici, 16.1 (1943), 81–100.
[15] A. KARRASS, A. PIETROWSKI, and D. SOLITAR. Finite and infinite cyclic ex-

tensions of free groups. Journal of the Australian Mathematical Society, 16.4 (1973),
458–466.

[16] D.H. KOCHLOUKOVA, C. MARTINEZ–PEREZ, and B.E.A. NUCINKIS. Cohomo-
logical finiteness conditions in Bredon cohomology. Bulletin of the London Mathemat-
ical Society (2010).
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