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Abstract

In this thesis, the interactions between a deformable interface and turbu-
lence have been investigated using Direct Numerical Simulations (DNS).
The interface and the surfactant concentration are tracked using a Phase
Field Method (PFM). The turbulence-interface interactions have been anal-
ysed in two different flow configurations, a dispersed and a stratified flow.
First, a dispersed flow is considered, a swarm of large deformable drops is re-
leased in a turbulent channel flow. The coalescence and breakup rates have
been characterised for different values of the surface tension and viscosity
ratios. Results show that the drop size, determined by the equilibrium be-
tween coalescence and breakup, is influenced either by the surface tension,
either by the internal viscosity. In particular, for small values of the surface
tension values, the internal viscosity enhances the stability of the interface
and prevent drop breakup.
Second, a viscosity stratified configuration is considered. This setup mimics
a core annular flow; a low viscosity fluid is interposed between the core and
the walls to decrease the pressure drop. Results show that the interface is
able to damp the near-wall turbulence, an increase of the core flow rate is
observed. For the range of viscosity ratios analysed, the turbulence-interface
interactions play a key role for obtaining Drag Reduction (DR). The DR
performance is slighty affected by the viscosity ratio.
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Introduction

Turbulent multiphase flows are often encountered in enviroemntal and in-
dustrial applications. The different phases composing the mixture mutually
interact through a deformable interface. With the aid of direct numeri-
cal simulations, the interplay between interface and turbulence has been
analysed in different flow configurations.

Motivation

The understanding of turbulent behaviour in flowing fluids is one of the
most important problem in all of classical physics. Turbulent flows involve
non linear multi-scale phenomena which mutually interact.
When two or more phases, separated by an interface interact, the behaviour
of the system can drastically change. The interface, and the linked boundary
conditions that the flow must satisfied on it, modify the turbulent structures
and vice versa. The induced modifications are directly linked to the thermo-
physical proprieties of the phases (density, viscosity and interfacial tension).
The system behaviour becomes even more complex when the presence of
surfactants is considered (amphiphilic compound adsorbed at liquid/gas or
liquid/liquid interfaces). Surfactants are often present in real multiphase
systems, as for example in the sea-surface micro layer [88] or in industrial
applications [117]. Surfactants, decreasing the surface tension, alter the in-
terface dynamics. In addition, an inhomogeneous surfactant distribution
produces surface tension gradients and gives rise to tangential stresses at
the interface.
Overall, the turbulence-interface-surfactant interactions play a crucial role
in all the physical phenomena in which the exchange of momentum, heat,
and/or chemical species through an interface is important [78, 150, 98].

Numerical simulations

Numerical simulations are a powerful tool to investigate turbulent multi-
phase flows. The last decade has seen the development of powerful compu-
tation capabilities which have marked a turning point in the field. When
dealing with multiphase flows, major challenges arise in the development of
numerical methods able to: (i) accurately model the momentum transfer
between the two fluids, (ii) describe the shape and the position of the in-
terface, (iii) track the surfactant concentration.
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The description of the momentum transfer between the two fluids must con-
sider steep variation of thermophysical properties across the interface and
the relative boundary conditions applied on it. To this purpose, a continuous
[20, 90, 136] or a sharp approach [55, 17, 101] can be adopted. In the con-
tinuous approach, forces and variations of material properties are smeared
over a finite volume region across the interface using smoothed delta func-
tions; in the sharp approach, the discontinuous nature of the changes are
treated as moving boundaries. The approaches used to describe the shape
and the position of the interface can be roughly divided in interface tracking
and interface capturing methods. In the framework of the interface tracking
methods, the interface is represented by a set of connected points advected
by the flow [174, 173]. When interface capturing methods are considered, a
colour function is used to mark the different phases, well-known approaches
are Volume-Of-Fluid (VOF) [70, 63], Level-Set (LS) [129, 127], and Phase
Field Method (PFM) [5, 10, 103]. To describe the surfactant concentration,
different approaches have been proposed depending on the method used to
represent the interface. Different techniques have been proposed for FT
[187, 125], for LS [186, 189, 188] and for the PFM [104, 171].
In this work, the multiphase system is described performing Direct Numer-
ical Simulations (DNS) of the Navier-Stokes equation coupled with a Phase
Field Method (PFM) to track the interface and the surfactant concentra-
tion. The DNS technique is able to solve all the length and time scales
involved in the turbulent flow, giving a complete and predictive description
of the complex turbulent motions [123, 77, 92]. The PFM is a compre-
hensive theoretical framework able to efficently describe the behaviour of
deformable interfaces. In particular the PFM is one of the most accurate
method for the numerical analysis of breakup [139, 135] and coalescence
[194, 46, 152, 142] phenomena. In addition, the PFM can be extended in
a straightforward manner to consider a surfactant [168, 171]. Overall, the
PFM is a powerful mathematical framework able to accurately describe the
turbulence-interface-surfactant interactions.
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Methodology

Reproduced in part from:

G. Soligo, A. Roccon, and A. Soldati, Phase Field Method to predict coalescence of clean and

surfactant-laden droplets, J. Comput. Phys., in preparation.

In the first part of this chapter, the numerical methods used to compute
the flow field and to track the interface and the surfactant concentration
are presented, Sec. 1.1 - 1.4. In the second part, the numerical schemes are
derived and the implementation is validated, Sec. 1.5 - 1.6.

1.1 Interface tracking

The principal methods available to track the interface shape are briefly
presented. They can be classified in two classes: (i) Interface tracking
methods, the interface is described following the movement of a set of marker
points (Front Tracking) (ii) Interface capturing methods, the two phases are
identified by the value of a specific function which is advected by the flow
(Volume Of Fluid, Level Set, Phase Field Method).

1.1.1 Front tracking

In the Front Tracking (FT) method, a set of marker points located at the
interface is used to describe its shape. The points are advected by the
flow and the position of the i-th marker point can be obtained solving the
following equation:

∂xi

∂t
= ui (1.1)

Where xi is the position vector of the i-th marker position and ui is the
velocity vector at the marker position. Once the new position is calculated,
the shape of the front can be reconstructed. The interface is represented
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by elements connecting the marker points. From the connections, the cur-
vature of the interface can be computed. Once is known, surface tension
force can be computed and applied into the Navier-Stokes equation. This
force is defined only on the marker points and has to be smeared out on
the eulerian grid where the flow is solved (”smoothing” operation). This
operation requires communications between the two grids (Lagrangian grid
of the marker points and Eulerian grid of the fluid). This method has been
proposed by [174, 173, 22] where bubbly flows were investigated. One of
the main drawbacks is the low accuracy in the computation of the interface
curvature. In addition, the method requires specific closure models when
coalescence and/or breakage phenomena are present [138].

1.1.2 Volume of fluid

The main idea of the Volume Of Fluid (VOF) method is to capture the
interface on the same grid used for the flow. The whole domain can be
marked with a function f defined as:

f =

{

f = 0 Fluid 1

f = 1 Fluid 2
(1.2)

Since a discrete domain is considered, the value fi is the average value of f
in the cell volume:

fi =
1

Vi

∫

V

f(x, y, z)dV (1.3)

Where Vi is the volume of the i-th cell. The function f is then advected by
the flow:

∂f

∂t
+ u · ∇f = 0 (1.4)

The initial shape of f is an Heaviside function. The transport of f through
Eq. 1.4 leads to numerical diffusion problems [138]. To overcome these
difficulties, specific advection algorithms are needed. These algorithms,
analysing the value of fi in the neighbour nodes, are able to reconstruct
the shape of the front and correctly perform the advection. Specific details
on the advection schemes can be found in [63, 70, 147, 138]. Coalescence and
breakage of the interface are implicitly accounted in this method, however,
since the exact positions of the interface is unknown, they can be unphysical.
One of the main advantages of the method is the exact conservation of the
mass of the two phases.

1.1.3 Level set

The Level Set (LS) method was introduced by [128, 129] and in the recent
years has emerged as one of the main alternatives at the VOF. The main idea
is to define the interface as the 0-level of a smooth function φ. In particular,
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extended to the study of incompressible multiphase flow [5, 79]. The Cahn-
Hilliard equation has been modified introducing an advection term and cou-
pled with the Navier-Stokes equation.
Cahn-Hilliard equation describes the evolution of the order parameter φ.
The function φ is uniform in the bulk of the two phases and it undergoes
a smooth transition across the interface. The time evolution of the order
parameter φ, neglecting convective phenomena, can be obtained solving the
following equation:

∂φ

∂t
= −∇ · jφ (1.7)

The diffusive flux jφ is proportional to the chemical potential gradient:

jφ = −Mφ(φ)∇µφ (1.8)

Where Mφ is the mobility parameter and µφ is the chemical potential, de-
fined as the variational derivative of a Ginzburg-Landau free-energy func-
tional F [φ,∇φ] [79, 11]:

µφ =
δF [φ,∇φ]

δφ
(1.9)

When a system of two incompressible fluids is considered, the functional F
is composed by the sum of two different contributions f0 and fi:

F [φ,∇φ] =
∫

Ω

fφ(φ,∇φ)dΩ =

∫

Ω

(f0(φ) + fi(∇φ))dΩ (1.10)

where Ω is the domain considered and f0 and fi are defined as follows:

f0(φ) =
α

4

(

φ−
√

β

α

)2(

φ+

√

β

α

)2

(1.11)

fi(∇φ) =
κ

2
|∇φ|2 (1.12)

The two contributions represent respectively: (i) the bulk free energy f0,
which is the tendency of the system to separate into two pure stable phases,
(ii) the mixing free energy fi which is the energy stored in the interfacial
layer, for a liquid-liquid or liquid-gas system this energy is the surface ten-
sion. A plot of the term f0 is reported in Fig. 1.4. The parameters α and
β are two positive constants that define the bulk properties, whereas κ is a
positive parameter used to describe the magnitude of the surface tension.
Taking the variational derivative of the functional F [φ,∇φ] the following
expression for the chemical potential is obtained:

µφ =
δF [φ,∇φ]

δφ
= αφ3 − βφ− κ∇2φ. (1.13)
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The equilibrium profile for a planar interface (located at x = 0) can be
obtained imposing ∇µφ = 0 and thus:

µφ = αφ3 − βφ− κ∇2φ = 0 (1.14)

This equation has an analytical solution:

φ = φ+ tanh

(
x√
2ξ

)

(1.15)

Where ξ =
√

k/β is a ratio which defines the interface thickness and φ+ =

±
√

α/β is the value of φ in the bulk of the two phases. When convective
phenomena are considered, Eq. 1.7 can be modified introducing an advection
term. The modified equation is [5, 79]:

∂φ

∂t
+ u · ∇φ = Mφ∇2µφ (1.16)

where u is the velocity field, Mφ is the mobility parameter driving the in-
terface relaxation, here assumed constant, and µφ is the chemical potential.
Solving Eq. 1.16 the temporal and spatial behaviour of the interface can
be completely determined. Compared with the other methods, the main
advantages of the Phase Field Method are: (i) automatically handling and
description of coalescence and/or breakage phenomena (ii) accurate descrip-
tion of the interface shape and curvature (iii) specific advection schemes are
not necessary. The main drawback of the method is the non conservation
of the mass of each phase, small mass leakages can be present.

-0.2

-0.1

0

0.1

-1 0 1

f0

φ/φ+

f0 -1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

φ/φ+

x

φ/φ+

(a) (b)

Figure 1.2 – In panel (a) the term f0 of the free Ginzburg-Landau free energy func-
tional is shown, the two minima are located at φ = ±φ+. In panel (b) the equilibrium
profile for a planer interface is plotted, interface is located at x = 0, in the bulk of the
two phases φ = ±φ+.

1.2 Flow field solution

In this section the principal methods used to obtain the solution of the flow
field will be presented. The flow field inside each phase can be obtained, as
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for a single phase flow, solving the Navier-Stokes equation.
The flow fields of the two phases are coupled at the interface where specific
boundary conditions must be satisfied [13, 182]. For the velocity::

u1 · n− u2 · n = 0 (1.17)

Where u1 and u2 are the velocity vectors at the two sides of the interface
and n is the normal versor to the interface. Eq. 1.17 express the continuity
of the velocity across the interface. A similar equation must be satisfied for
the stresses:

T1 · n−T2 · n = Kσn−∇sσ (1.18)

Where T1 and T2 are the stress tensors in the two phases at the interface,
σ is the surface tension, K is the mean curvature and ∇s is the surface
gradient operator. This equation imposes a jump condition in the stress
tensor at the interface. The term Kσn is a normal component whereas the
term −∇sσ is a tangential component of the stress jump. The last term
vanishes when surface tension is uniform.
In order to fulfil the boundary conditions imposed by the Eqs. 1.17 - 1.18,
the commonly used approaches are: (i) sharp approach, one Navier-Stokes
equation is solved for each phase and the jump conditions are implicitly
treated (ii) continuous approach, a unique Navier-Stokes equation is solved
in the whole domain and the jump conditions at the interface are enforced
consdiering a source-term in the r.h.s of the NS equation.
In the following two sections, Sec. 1.2.1 and Sec. 1.2.2, the two different
approaches are presented.

1.2.1 Sharp approach

When a sharp approach is considered, a Navier-Stokes equation is solved
for each of the phases. Appropriate jump and boundary conditions are set
at the interface. The mainly used sharp approach is the so-called Ghost
Fluid Method (GFM). It was initially developed for inviscid fluid by [59]
and later extended to viscus fluid by [85, 113]. The main idea is to use
an interface tracking method to compute the interface position (Level-Set
method is the common choice). Once the interface position is known, on
the basis of φ a set of real and ghost nodes are defined. If the phase A is
identified by φ > 0, all the nodes where φ > 0 will be real nodes of the phase
A, by opposite the nodes where φ < 0 will be ghost nodes of fluid A. When a
variable is continuous across the interface, the values of ghost and real nodes
match. By opposite, when dealing with a discontinuous variable, ghost and
real nodes will have different values and the relative jump condition can
be imposed. Using this method, since both the phases are defined in the
whole domain a standard single phase solver can be used. Despite all these
promising aspects, there is still a lack of knowledge on the treatment of the
viscous terms and on the general accuracy provided by the method. Further
details can be found in [170, 122, 166, 47, 17, 150, 101]
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1.2.2 Continuous approach

When a continuous approach is considered, a unique Navier-Stokes equation
is solved in the whole domain, interface is treated as a part of the fluid
domain. In order fo fulfil the jump conditions imposed by Eqs. 1.17 - 1.18,
surface tension forces are introduced on the r.h.s. of the NS equation. These
forces, which are theoretically applied on a single line/surface, for numerical
reasons must be smoothed on a thin layer using a Continuous Surface Force
(CSF) method [20, 90, 136]. A similar procedure must be adopted when
the proprieties (density and/or viscosity) of the two fluids are different. The
proprieties can be assumed to be proportional at the value of the marker
function [138]. The ”smoothing” of forces and of proprieties constitutes the
major drawback of this approach. Despite this, the continuous approach is
the most used, indeed the same solvers of a single-phase flow, opportunely
modified, can be adopted.

Treatment of surface tension forces

The presence of the surface tension introduce a jump condition for the stress
along the normal and tangential direction of the interface. The normal stress
jump, first term on the r.h.s. of Eq. 1.18, is proportional at the curvature
K and at the value of the surface tension σ. The tangential jump, second
term of the r.h.s., is present only when gradients of the surface tension are
present. Surface tension gradients can be induced by temperature variations
or by a surfactant which locally change the value of the surface tension.
Therefore, in the most general case, the surface tension forces are composed
by a normal fn and by a tangential ft component. Following [20, 81, 136],
these forces can be introduced using a δ function:

f = −Kσ(xs)δ(xs)n
︸ ︷︷ ︸

fn

+∇sσ(xs)δ(xs)
︸ ︷︷ ︸

ft

(1.19)

Where xs is the interface position, depending on the method used to de-
scribe it, the δ function can be discretised in different ways [136]. Using
a PFM, the following relations based on the proprieties of φ are obtained
[143, 162]:

n =
∇φ
|∇φ| δ =

3|∇φ|2ξ√
8φ2+

K = ∇ · n (1.20)

The coefficients used guarantee that the integral of δ across the interface is
unitary. The expression used for the mean curvature can be recasted using
the proprieties of the divergence operator.

K = ∇ · ∇φ
|∇φ| =

∇2φ

|∇φ| −
1

|∇φ|2∇φ · ∇(|∇φ|) (1.21)

The integral of the second term, across the interface is zero and is thus
neglected. The final expression of the surface tension forces can be obtained
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assuming an expression for the Equation Of State (EOS) [108, 2]. Details
on the EOS can be found in the next section, here a general expression has
been assumed:

σ(ψ) = σ0fσ(ψ) (1.22)

In Eq. 1.22, σ0 is the surface tension of a clean interface and ψ is the
surfactant concentration. Combining Eq. 1.22 and Eq. 1.19, the following
expression for the normal component fn can be obtained:

fn = −3σ0f(ψ)ξ√
8φ2+

∇2φ∇φ (1.23)

The same result can be obtained following the procedure proposed by [95].
A stress tensor τc, that accounts for the jump condition of the normal stress
is introduced in the Navier-Stokes equation.

fn =
3σ0f(ψ)ξ√

8φ2+
∇ · τc (1.24)

τc = (|∇φ|2I−∇φ⊗∇φ) (1.25)

The two formulations, Eq. 1.24 and Eq. 1.23, are equivalent. Using a stress
formulation the gradient term present has zero contribution and the only
contribution is produced by the dyadic product. In a similar way, an ex-
pression for the tangential component of the surface tension forces can be
derived. This contribution, also referred as Marangoni term, is proportional
to the surface tension gradients. From Eq. 1.19 and using the expressions
of Eq. 1.20 the following expression can be obtained:

ft =
3ξσ0√
8φ2+

(|∇φ|2I−∇φ⊗∇φ)∇f(ψ) (1.26)

The sum of the two components is:

f = fn + ft =
3ξσ0√
8φ2+

fσ(ψ)∇ · (|∇φ|2I−∇φ⊗∇φ)

+
3ξσ0√
8φ2+

(|∇φ|2I−∇φ⊗∇φ)∇fσ(ψ) (1.27)

The two parts can be rearranged [168]:

f =
3ξσ0√
8φ2+

∇ · (fσ(ψ)(|∇φ|2I−∇φ⊗∇φ)) (1.28)

When surface tension is uniform, σ(ψ) = σ0, the tangential component of
the surface tension forces vanishes.

f = fn =
3σ0ξ√
8φ2+

∇ · (|∇φ|2I−∇φ⊗∇φ) (1.29)
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Equation of state for the surface tension

The surface tension can be influenced by the presence of temperature vari-
ations or surface active agents (surfactants). The effects on the surface
tension can be described using an Equation Of State (EOS). In the follow-
ing, we restrict to the case of the surfactant. A surfactant concentration
ψ can be defined, ψ will span between ψ = 0 (absence of surfactant) and
ψ = 1 (saturation of surfactant). Thanks to their amphiphilic character
(hydrophilic head attached to an hydrophilic tail, Fig. 1.3), the molecules
preferentially occupy the interfacial area. These molecules decrease the net
force that a single molecule of fluid close to the interface undergoes. As
consequence surface tension decreases. The effect of the surfactant can be
described using a Langmuir EOS [108]:

σ(ψ) = σ0(1 + βs ln(1− ψ) (1.30)

Where βs is the elasticity number, a dimensionless parameter that quan-
tifies the effect of the surfactant on the surface tension. When surfactant
concentration is low, Eq. 1.30 can be linearised [124, 137]:

σ(ψ) = σ0(1− βsψ)) (1.31)

Eq. 1.30 accurately model the effect of the surfactant on the surface tension
until σ/σ0 ' 0.5. Larger surfactant concentrations do not change the surface
tension which reaches a plateau [28, 16].

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

σ/σ0

ψ

Logarithmic
Linear

(a) (b)

Fc Fs

Clean Surfactant

Figure 1.3 – Panel (a), physical mechanism behind the surface tension and the effect
of the surfactant on it are graphically explained. When a molecule is close to the
interface (left), the absence of the hydrogen bounds with the two dashed molecules
produces a net force Fc which attracts the molecule towards the bulk. The force Fc
is responsible for the surface tension. When surfactant molecules are present (right),
the magnitude of the net force Fs decreases and as well the surface tension. Panel
(b), Langmuir EOS (continuous line) and relative linear approximation (dashed).

Treatment of variable viscosity

Using a continuous approach, viscosity and density variations has to be
incorporated in the Navier-Stokes equation. Using a PFM, the variation
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can be assumed to be proportional to the order parameter φ [91].
Under this hypothesis, η = η(φ). Defining ηc as the viscosity of the phase
identified by φ = −φ+, ηd as the viscosity of the phase identified by φ = φ+
and using a linear interpolation the viscosity can be rewritten as:

η(φ) = ηc
φ− φ+

2
+ ηd

φ+ φ+
2

(1.32)

Using Eq. 1.32 in the Navier-Stokes equation, the viscous term cannot be
simplified. However, the viscous term can be splitted in a linear and a non
linear part:

η(φ) = ηc + η(φ) (1.33)

The choice of ηc as reference is arbitrary. For numerical reasons, related to
the time and space discretisation scheme used, greater numerical stability
is achieved when the reference viscosity is set as the one of the more viscous
fluid. Using Eq. 1.33, the viscous stress tensor become:

∇ ·
(
η(φ)

(
∇u+∇uT

))
= ηc∇2u+∇ ·

(
η(φ)

(
∇u+∇uT

))
(1.34)

The first term is a linear diffusive term, the second term is a non-linear
which depends on the order parameter φ.
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Figure 1.4 – In the panel (a) the equilibrium profile of φ for a planar interface is
shown. In the panel (b) two viscosity profiles are shown. The first profile (dashed)
shows a case in which the viscosity of the phase identified by φ = φ+, ηd, is greater
than the viscosity of the phase identified by φ = −φ+, ηc. The second profile (dotted)
shows the opposite situation.

Navier-Stokes with variable viscosity and surface tension force

The final form of the Navier-Stokes can be now obtained. The equation is
obtained using a continuous approach, assuming two phases with matched
density but different viscosity and non uniform surface tension.
The viscous term has been replaced by the one introduced in Eq. 1.34. The
expression of the surface tension forces, Eq. 1.27, has been introduced on
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the r.h.s. The equation reads:

ρ
∂u

∂t
+ u · ∇u = ηc∇2u+∇ · (η(φ)

(
∇u+∇uT

)
)−∇p

+
3ξσ0√
8φ2+

∇ · (fσ(ψ)(|∇φ|2I−∇φ⊗∇φ)) (1.35)

Where ρ is the density of the two phases, ηc is the viscosity of the phase
defined by φ = −φ+, the function η(φ) accounts for the viscosity contrast
between the two phases, p is the pressure and u is the velocity field. Solving
Eq. 1.35, the flow field in the whole system can be obtained. Eq. 1.35 is
solved assuming an incompressible flow:

∇ · u = 0 (1.36)

1.3 Surfactant

The study of a multiphase system with a surfactant represents an open
challenge from a numerical point of view. The problem requires an ac-
curate description of the interface; a partial differential equation for the
surfactant has to be solved on it[160]. In addition, the mathematical do-
main continuously changes its shape and can undergo topological transition
as coalescence and/or breakup.
In the past years, different numerical techniques have been proposed, each
technique has its own peculiarity and has been developed in conjunction
with a specific interface tracking/capturing method. The choice of the nu-
merical technique adopted is also influenced by the physical propriety of the
surfactant (soluble or insoluble). When a insoluble surfactant is considered,
the transport equation for the surfactant proposed by [160] is solved only
at the interface. On the other side, if a soluble surfactant is considered, two
coupled equations are solved in the bulk and along the interface [125].
The tracking of insoluble surfactant in conjunction with a LS method has
been proposed by [186, 187, 189, 188] whereas a similar approach has been
developed by [117] for FT. A possible overcome to these challenges is repre-
sented by the extension of the phase field method to the surfactant. A con-
tinuous variable ψ is defined in the whole domain. This approach has been
initially proposed by [104] and then further developed by [94, 176, 112, 171].
In these works, convective phenomena have been neglected. Only recently,
the dynamics of the phases and of the surfactant has been coupled with the
flow [52, 197, 62]. In the following, the extension of the phase field method
to the surfactant will be presented.

1.3.1 Phase field method for the surfactant

The Phase Field Method (PFM) can be extended to consider a surfactant
introducing a new order parameter, in this case the surfactant concentration
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ψ. The time evolution of the phase field φ and of the surfactant concen-
tration ψ can be derived from a two-order parameter Ginzburg-Landau free
energy functional. Following [94, 176], the extended free-energy functional
can be written as the sum of two terms: (i) the classic free energy functional
previously used for a clean system (ii) an additional part which accounts
for the surfactant. Thus, the new two order parameters Ginzburg-Landau
free energy functional F [φ,∇φ, ψ,∇ψ] reads:

F [φ,∇φ, ψ,∇ψ] =
∫

Ω

fφ(φ,∇φ) + fψ(φ,∇φ, ψ,∇ψ)dΩ (1.37)

The term fφ keeps the same expression previously used in Eq. 1.10. The
new term introduced, fψ, accounts for the surfactant, in particular controls
the amphiphilicity and the solubility of the surfactant molecules. The math-
ematical expressions of the terms composing fψ is slightly different among
the authors (see [112] for a brief review). The model here used is the one
identified as Model-3 by [52] combined with some further modifications de-
veloped by [197].
Following [52, 197], fψ can be decomposed in three contributions:

fψ(φ,∇φ, ψ,∇ψ) = λψ(ψ lnψ + (1− ψ) ln(1− ψ))
︸ ︷︷ ︸

fe

− κ

2
ψ

(

1−
(
φ

φ+

)2
)2

︸ ︷︷ ︸

f1

+
sψ
2
ψ

(
φ

φ+

)2

︸ ︷︷ ︸

fs

(1.38)

The term fe express the tendency of the surfactant to be uniformly dis-
tributed. The functional has a minimum for ψ = 0.5. Furthermore, this
term restrict the possible value of ψ between the fully saturated state ψ = 1
and the absence of surfactant ψ = 0. The magnitude of this term can be
tuned via the parameter λψ. The term f1, in the first derivation proposed
by [104], is assumed to be proportional at |∇φ|2. This term has been then
replaced by [52] with the expression present in Eq. 1.38. This term ac-
counts for the amphiphilic character of the surfactant molecules. The last
term fs controls the solubility of the surfactant in the bulk. In the limit of
sψ → +∞ the surfactant is insoluble in the bulk of the two phases. A plot
of the different contributions is reported in Fig. 1.5. The expression of the
Ginzburg-Landau free energy functional will be:

F [φ,∇φ, ψ,∇ψ] =

∫

Ω

(f0(φ) + fi(∇φ))
︸ ︷︷ ︸

fφ

dΩ

+

∫

Ω

(fe(ψ) + f1(φ, ψ) + fs(φ, ψ))
︸ ︷︷ ︸

fψ

dΩ (1.39)
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The time evolution of the two order parameter φ and ψ can be obtained
solving the following system of equations:

∂φ

∂t
= −∇ · jφ jφ = −Mφ(φ)∇µφ (1.40)

∂ψ

∂t
= −∇ · jψ jψ = −Mψ(ψ)∇µψ (1.41)

Where the expressions of µφ and µψ can be obtained computing the varia-
tional derivative of the Ginzburg-Landau free energy functional with respect
to φ and ψ:

µφ =
δF
δφ

= αφ3 − βφ− κ∇2φ+ I(ψ, φ) (1.42)

µψ =
δF
δψ

= λψ ln

(
ψ

1− ψ

)

− κ

2

(

1−
(
φ

φ+

)2
)2

+
sψ
2

(
φ

φ+

)2

(1.43)

The term I is an interface sharpening term [197, 171]. This term shrinks
the interface thickness depending on the surfactant concentration ψ. From
a numerical point of view is preferred to maintain an uniform interface
thickness, for this reason, as proposed by [197] this term is neglected.
Neglecting I, the profile of the order parameter φ is independent from the
surfactant ψ and is the same obtained before, Eq. 1.15. The equilibrium
profile for ψ can be obtained imposing ∇µψ = 0:

µψ = λψ ln

(
ψ

1− ψ

)

−κ
2

(

1−
(
φ

φ+

)2
)2

+
sψ
2

(
φ

φ+

)2

︸ ︷︷ ︸

Cψφ

= const (1.44)

The term Cψφ identifies the effect of φ on µψ. At the equilibrium µψ is
uniform in all the domain and in the bulk of the two phases φ/φ+ = ±1
and ψ = ψb:

µψb = λψ ln

(
ψb

1− ψb

)

+
sψ
2

(1.45)

The same equation can be written for a generic position x:

µψ(x) = λψ ln

(
ψ

1− ψ

)

+ Cψφ(x) (1.46)

Subtracting Eq. 1.45 from Eq. 1.46 and defining ψc(x) as:

ψc(x) =
ψb

(1− ψb)

(1− ψ)

ψ
(1.47)
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The following equation for ψc(x) is obtained:

λψ ln(ψc(x)) = Cψφ(x)−
sψ
2

(1.48)

This intermediate profile depends only on the profile of φ, once that ψb is
fixed, the total equilibrium profile ψ(x) is:

ψ(x) =
ψb

ψb + ψc(x)(1− ψb)
(1.49)

The equilibrium profile for ψ(x) is reported in Fig. 1.5(b). The surfactant
concentration ψ(x) reach the maximum value at the interface φ = 0.
The time evolution of the order parameter ψ can be obtained from Eq. 1.41
and choosing an expression for the mobility Mψ(ψ). To accurately describe
the adsorption dynamics [52] a variable mobility has been considered:

Mψ(ψ) = Mψψ(1− ψ) (1.50)

Using this expression, a 2nd order diffusive term is obtained:

∂ψ

∂t
= λψMψ∇2ψ +Mψ∇ · ((ψ(1− ψ))Cψφ) (1.51)

The presence of the flow field is accounted introducing an advection term:

∂ψ

∂t
+ u · ∇ψ = λψMψ∇2ψ +Mψ∇ · ((ψ(1− ψ))Cψφ) (1.52)

Solving Eq. 1.52 the temporal and spatial behaviour of the surfactant con-
centration can be completely described.

1.4 Dimensional analysis

In this work, the governing equations 1.16 - 1.35 - 1.36 - 1.52 have been
solved on a flat channel geometry where two infinite parallel walls are de-
ployed at a distance Lz = 2h. A sketch of the geometry used is reported
in Fig. 1.6. All the equations are solved in a dimensionless form. In the
following the dimensionless procedure is applied at all the equations. The
Cahn-Hilliard equation 1.16 can be made dimensionless using the following
quantities:

x̃ =
x

h
t̃ =

tuτ
h

ũ =
u

uτ
φ̃ =

φ

φ+
(1.53)

Where uτ is the friction velocity, defined as uτ =
√

τw/ρ, with τw the
shear stress at the wall and ρ density of the two phases. φ+ is the value



1.4. Dimensional analysis 19

-1

-0.5

0

0.5

1

-1 0 1

fex/ψ

x

φ/φ+
fex/ψ -1

-0.5

0

0.5

1

-1 0 1

ψ

x

φ/φ+
ψ

-0.3

-0.2

-0.1

0

0 0.5 1

fe

ψ

fe -1

-0.5

0

0.5

1

-1 0 1

f1/ψ

x

φ/φ+
f1/ψ

(a) (b)

(c) (d)

Figure 1.5 – In the panel (a) the shape of the term fe is shown, increasing λψ the
value of the minimum located ψ = 0.5 decrease and the surfactant diffuse easily. In
the panel (b) the term f1 is shown, this term promote the accumulation of surfactant
at the interface, its contribution is related at the shape of φ. In the panel (c) the
term fs is reported, this term accounts for the solubility of surfactant in the bulk. In
the panel (d) the equilibrium profile of φ and ψ are reported. Both the profiles are
obtained solving µφ = 0 and µψ = 0.

assumed by φ in the bulk of the two phases and defined as in Eq. 1.15. The
Cahn-Hilliard equation rewritten in a dimensionless form is:

∂φ̃

∂t̃
+ ũ · ∇φ̃ =

1

Peφ
∇2(φ̃3 − φ̃− Ch2∇2φ̃) (1.54)

After the dimensionless treatment, the order parameter assume the values
φ = ±1 in the bulk of the two phases. In a similar way, the equilibrium
profile will be:

φ̃ = tanh

(
x̃√
2Ch

)

(1.55)

The two dimensionless groups introduced in Eq. 1.54 and Eq. 1.55 are
defined as follows:

Peφ =
uτh

Mφβ
Ch =

ξ

h
(1.56)

The Peclet number, Peφ, is the ratio between the convective time-scale uτh
and the diffusive time-scale Mφβ. This parameter controls the interface
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relaxation time. The Cahn number, Ch, is the ratio between the interface
characteristic length scale ξ and the domain length scale h. This parameter
sets the thickness of the interface. When a system of immiscible fluids is
analysed, the real interface thickness, order of O(10−8m), for computational
reasons cannot be used. The common solution is to artificially enlarge the
interface thickness and to use a scaling between Peφ and Ch, this guarantees
the achievement of the sharp interface limit. Different scaling have been
proposed in literature [116, 86, 196, 120, 106],the one proposed by [120],
Peφ ∝ Ch−1, has been here used. Once the grid is fixed, Ch is set to the
minimum value possible according to the numerical method adopted and
Peφ is set following the scaling. In this thesis, where a pseudo-spectral
method has been adopted, only three mesh points across the interface are
needed.
Navier-Stokes equation has been made dimensionless using the quantities
introduced in Eq. 1.53 and the following ones:

p̃ =
ph

ρu2τ
η̃(φ) =

η(φ)

ηc
ψ̃ = ψ (1.57)

Where ηc is the viscosity of the phase identified by φ̃ = −1. Navier-Stokes
equation is solved under the hypotheses of an incompressible flow and of two
phases with matched density. Thus the dimensionless mass conservation
equation reads:

∇ · ũ = 0 (1.58)

The Equation Of State (EOS) is made dimensionless using σ0, the surface
tension of a clean interface as reference. In the equation of state ψ is al-
ready dimensionless. The dimensionless EOS will match fσ(ψ̃) as defined
in Eq. 1.22.

σ

σ0
= fσ(ψ̃) = 1 + βs ln(1− ψ̃)

σ

σ0
= fσ(ψ̃) = 1− βsψ̃ (1.59)

Navier-Stokes equation written in a dimensionless form is:

∂ũ

∂t̃
+ ũ · ∇ũ =

1

Reτ
∇2ũ+

1

Reτ
∇ · (η̃(φ̃)(∇ũ+∇ũT ))−∇p̃

+
3√
8

Ch

We
∇ · (fσ(ψ̃)(|∇φ̃|2I−∇φ̃⊗∇φ̃)) (1.60)

The dimensionless parameters that appears in Eq. 1.60 are defined as fol-
lows:

Reτ =
ρuτh

ηc
We =

ρu2τh

σ0
λ =

ηd
ηc

(1.61)

The shear Reynolds number, Reτ , is the ratio between inertial forces ρuτh
and viscous forces ηc. In defining Reτ , ηc, the viscosity of the phase iden-
tified by φ̃ = −1 is used as reference. The viscosity of the other phase can
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be specified through the viscosity ratio λ.
The dimensionless viscosity contrast as defined in Eq. 1.57 will have the
following values in the bulk of the two phases:

η̃ =

{

η̃ = 0 φ̃ = −1

η̃ = λ− 1 φ̃ = +1
(1.62)

The Weber number, We, is the ratio between inertial ρu2τh and surface
tension forces, σ0. In the definition of We, the surface tension of a clean
interface has been used as reference. Large values of We identifies a low
value of the surface tension and an interface which can be easily deformed.
In the limit of We → ∞ the surface tension force vanishes and the flow
behave as a single phase flow (in the hypothesis of matched viscosity). The
parameter βs describes the effect of the surfactant on the surface tension.
Large values of βs yields to strong variations of the surface tension and
larger Marangoni stresses.
Surfactant transport equation 1.52 has been made dimensionless using the
quantities introduced in Eqs. 1.53 - 1.57 and will be:

∂ψ̃

∂t̃
+ ũ · ∇ψ̃ =

Pi

Peψ
∇2ψ̃ +

1

Peψ
∇ · (ψ̃(1− ψ̃)∇C̃ψφ) (1.63)

Where the term C̃ψφ is defined as:

C̃ψφ = −1

2
(1− φ̃2)2 +

φ2

2Ex
(1.64)

The dimensionless equilibrium profile for ψ̃ can be obtained using the in-
termediate variable ψ̃c, Eq. 1.47, and reads to:

Pi ln(ψ̃c(x̃)) = C̃ψφ −
1

2Ex
(1.65)

The final expression is:

ψ̃(x̃) =
ψ̃b

ψ̃b + ψ̃c(x̃)(1− ψ̃b)
(1.66)

The dimensionless parameters in Eqs. 1.63 - 1.64 are defined as follows:

Peψ =
αuτh

β2Mψ
Pi =

λψ
β2

Ex =
β

sψ
(1.67)

The surfactant Peclet number, Peψ, is the ratio between the convective
and the diffusive phenomena. Peψ controls the diffusion of surfactant, high
values of Peψ yields to a surfactant distribution which will be dominated
by the convective phenomena. By opposite, when low values are used the
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non-linear terms have been collected into the term S:

S = − u · ∇u+Π+
1

Reτ
∇ · (η(φ)(∇u+∇uT ))

+
3√
8

Ch

We
∇ · (f(ψ)(|∇φ|2I−∇φ⊗∇φ)) (1.69)

To solve the system composed by the Eq. 1.58 and Eq. 1.60, the fluctuating
pressure term ∇p′ is removed by taking the curl of Eq. 1.68, as result the
transport equation for the vorticity ω is obtained:

∂ω

∂t
= ∇× S+

1

Reτ
∇2

ω (1.70)

where the identity ∇ × ∇p′ = 0 has been used. Taking twice the curl of
Eq. 1.68, substituting Eq. 1.58 and the identity ∇×∇×c = ∇(∇·c)−∇2c,
the following 4th-order equation for the velocity u is obtained:

∂∇2u

∂t
= ∇2S−∇(∇ · S) + 1

Reτ
∇4u (1.71)

Eqs. 1.70 - 1.71 are solved for the wall-normal components of the vorticity
ωz and velocity w, adopting the “velocity - vorticity” algorithm developed
by [92]; rewritting Eqs. 1.70 - 1.71 for ωz and w, respectively, the following
equations are obtained:

∂ωz
∂t

=
∂Sy
∂x

− ∂Sx
∂y

+
1

Reτ
∇2ωz (1.72)

∂(∇2w)

∂t
= ∇2Sz −

∂

∂z

(
∂Sx
∂x

+
∂Sy
∂y

+
∂Sz
∂z

)

+
1

Reτ
∇4w (1.73)

With a suitable set of boundary conditions, ωz and w are computed and
then the streamwise the spanwise velocity components v are obtained from
the continuity equation and the vorticity definition:

∂w

∂z
= −∂u

∂x
− ∂v

∂y
(1.74)

ωz =
∂v

∂x
− ∂u

∂y
(1.75)

Once the velocity field is obtained, the fluctuating pressure p′ can be ob-
tained by solving a Poisson-type equation:

∇2p′ = ∇ · S (1.76)
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Cahn-Hilliard equation splitting

The solution of the Cahn-Hilliard equation requires robust numerical schemes
due to the high order operators that it involves; expanding Eq. 1.54, a 4th-
order operator is highlighted:

∂φ

∂t
= −u · ∇φ+

1

Peφ

(
∇2φ3 −∇2φ− Ch2∇4φ

)
(1.77)

To reduce the stability requirements and adopt the same pseudo-spectral
scheme involved for the momentum equation, Eq. 1.77 is rewritten in the
following way:

∂φ

∂t
= Sφ +

sCh2

Peφ
∇2φ− Ch2

Peφ
∇4φ (1.78)

The operator splitting ∇2φ = ∇2φ(sCh2 + 1) − sCh2∇2φ is similar to the
one adopted by [193] and is obtained through a positive coefficient s that
is chosen considering the temporal discretisation; similar procedures can be
found in [11, 102]. The convective term, the non-linear term and the terms
rising from the operator splitting are collected in the term Sφ:

Sφ = −u · ∇φ+
1

Peφ
∇2φ3 − (sCh2 + 1)

Peφ
∇2φ (1.79)

Surfactant equation

The solution of the surfactant transport equation, Eq. 1.63, do not require
particular schemes and can be directly solved. The equation to solve is the
following:

∂ψ

∂t
= −u · ∇ψ +

Pi

Peψ
∇2ψ +

1

Peψ
∇ · (ψ(1− ψ)∇Cψφ) (1.80)

In this equation a second order diffusive term is present. The non-linear
terms can be collected in the term Sψ:

Sψ = −u · ∇ψ +
1

Peψ
∇ · (ψ(1− ψ)∇Cψφ) (1.81)

The final shape of the surfactant transport equation is:

∂ψ

∂t
= Sψ +

Pi

Peψ
∇2ψ (1.82)

1.5.2 Spectral approximation

The equations 1.72 - 1.73 - 1.77 and 1.82 are solved adopting a pseudo-
spectral spatial discretisation: solutions are approximated by Fourier trans-
forms along the two periodic directions of the channel geometry x and y,
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respectively; Chebyshev polynomials are adopted to approximate the solu-
tion along the wall-normal direction. In order to avoid convolutions in the
Fourier-Chebishev space, the multiplication of spectral variables (i.e. con-
vective terms) is obtained transforming back the variables to the physical
space, taking the multiplications and the re-transforming to the Fourier-
Chebyshev space. For this reason these class of algorithms is also known as
“pseudo-spectral algorithms”. A signal g, projected in to the Fourier space
along the periodic directions x and y, can be represented by the following
sum of harmonics:

g(x, y, z) =

1

2
Nx
∑

nx=−
Nx
2

+1

1

2
Ny
∑

ny=−
Ny

2
+1

ĝ(kx, ky, z)e
j(kxx+kyy) (1.83)

where j =
√
−1 is the imaginary unit of the complex representation, ĝ is

the Fourier coefficient of the signal in the modal coordinates (kx, ky); at
this point dependence on the physical coordinate z is still present. The
two periodic directions are treated with a Fast Fourier Transform (FFT)
algorithm imposing periodicity lengths of Lx and Ly and projecting the
velocity vector on to Nx and Ny Fourier modes in the x and y directions of
the geometry of Fig. 1.6. Through the Fourier transform, the variables are
mapped an a uniform grid in the physical space and the nodes spacing is:

∆x =
Lx

Nx − 1
∆y =

Ly
Ny − 1

(1.84)

The signal is decomposed in a sum of periodical functions characterised by
wavenumber and amplitude; the former represents the frequency of the cor-
responding harmonic, whereas the latter is the magnitude of the harmonic.
Each mode nx or ny is characterised by the following wave-numbers:

kx =
2πnx
Lx

, ky =
2πny
Ly

(1.85)

Since the Fourier basis is orthogonal, the Fourier transform ĝ can be ob-
tained as follows:

ĝ(kx, ky, z) =
1

NxNy

Nx
2∑

nx=−
Nx
2

+1

Ny

2∑

ny=−
Ny

2
+1

g(x, y, z)e−j(kxx+kyy) (1.86)

Along the wall normal direction z, the transformed signal ĝ(kx, ky, z) is
approximated through the sum of Chebyshev polynomials Tn(z):

ĝ(kx, ky, z) =

N ′

z∑

nz=0

h(kx, ky, nz)Tn(z) (1.87)
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where the prime indicate the first term halving. The Chebyshev polynomial
of order nz in z is defined as follows:

Tnz(z) = cos [nz arccos(z)] (1.88)

where nz is one of the Nz Chebyshev modes and −1 ≤ z ≤ 1. The orthog-
onality property holds also for the Chebyshev polynomials and the inverse
transform is:

ĥ(kx, ky, nz) =
2

Nz

N ′

z∑

nz=0

ĝ(kx, ky, z)Tn(z) (1.89)

The variables described in the Chebishev space are mapped in the physical
space according to the following mapping:

z = cos

(
nzπ

Nz

)

(1.90)

With adoption of Chebyshev polynomials for the approximation of the so-
lution along the wall-normal direction, the spatial discretisation is charac-
terised by a large resolution near the walls (z = ±1), where large velocity
gradients need to be resolved. A complete review of the method can be find
in [19] Concluding, adopting the transformations of Eqs. 1.83 - 1.87, the
spectral representation of a three-dimensional signal is the following:

g(x, y, z, t) =

1

2
Nx
∑

nx=−
Nx
2

+1

1

2
Ny
∑

ny=−
Ny

2
+1

N ′

z∑

nz=0

ĥ(kx, ky, nz, t)Tn,z(z)e
j(kxx+kyy)

(1.91)
Due to the presence of products taken in to the physical space, the com-
putational algorithm needs the introduction of de-aliasing procedures also
in the Chebyshev transforms; following [19] a the “2/3 rule” is applied,
keeping only the first two thirds of the modes after the application of the
pseudo-spectral multiplications.

1.5.3 Discretisation and solution of the equations

Velocity equation

Using the spectral representation of Sec. 1.5.2, Eq. 1.73 reads:

∂

∂t

(
∂2

∂z2
− k2xy

)

ŵ =

(
∂2

∂z2
− k2xy

)

Ŝz

− ∂

∂z

(

ikxŜx + ikyŜy +
∂

∂z
Ŝz

)

+
1

Reτ

(
∂2

∂z2
− k2xy

)(
∂2

∂z2
− k2xy

)

ŵ (1.92)
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where k2xy = k2x + k2y. The equation above stresses that the z derivatives
are taken in a different way, due to the adoption of Chebyshev polynomials.
Eq. 1.92 is discretised in time adopting an hybrid IMplicit EXplicit (IMEX)
scheme: (i) a second-order Adams-Bashfort explicit scheme is adopted for
the non-linear convective terms; (ii) the implicit Crank-Nicholson implicit
scheme is applied to the diffusive operators. The time-discretised form of
Eq. 1.92 reads:

1

∆t

[(
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∂z2
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]
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2
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2
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1

2

∂
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1

Reτ

(
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)(
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)
ŵn+1 − ŵn

2
(1.93)

where superscripts n− 1, n, n+1 indicate the three consecutive time levels
t − ∆t, t and t + ∆t, respectively and ∆t is the time-step. Eq. 1.93 is
rearranged and, introducing the coefficient γ = ∆t/2Re, the following is
obtained:

[

1− γ

(
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n
x + ikyŜ
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ŵn (1.94)

The discretized form ot the continuity equation is:

ikxû+ iky v̂ +
∂w

∂z
= 0 (1.95)
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substituting Eq. 1.95 into Eq. 1.94 and introducing the coefficient λ2 =
(1 + γk2xy)/γ, the following is obtained:
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introducing Eq. 1.97, Eq. 1.96 reads:
(
∂2

∂z2
− λ2

)(
∂2

∂z2
− k2xy

)

ŵn+1 =
1

γ

[

k2xyĤ
n
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∂
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ikxĤ
n
x + ikyĤ

n
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)]

(1.98)
Collecting Ĥn = k2xyĤ

n
z + ∂

∂z (ikxĤ
n
x + ikyĤ

n
y ) the final form of the discre-

tised Eq. 1.73 is obtained:
(
∂2

∂z2
− λ2

)(
∂2

∂z2
− k2xy

)

ŵn+1 =
Ĥn

γ
(1.99)

We can introduce the auxiliary variable θ̂ =
(
∂2

∂z2 − k2xy

)

ŵn+1 and the

4th-order equation can be split in two 2nd-order equations:

(
∂2

∂z2
− λ2

)

θ̂ =
Ĥn

γ
(1.100)

(
∂2

∂z2
− k2xy

)

ŵn+1 = θ̂ (1.101)

Eq. 1.100 and Eq. 1.101 can be solved imposing different boundary condi-
tions, for a closed channel (no-slip at both the walls) the following BC are
applied.

ŵn+1(±1) = 0
∂ŵn+1

∂z
(±1) = 0 (1.102)
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While for an open channel the following boundary conditions are applied.

ŵn+1(−1) = 0,
∂ŵn+1

∂z
(−1) = 0 (1.103)

ŵn+1(+1) = 0,
∂2ŵn+1

∂z2
(+1) = 0 (1.104)

Both the boundary conditions are obtained from the non-slip or free-slip
condition at the wall coupled with the continuity equation. The solution of
Eq. 1.99 requires a set of boundary conditions on θ̂ that lack in the physical
model definition, only for the free-slip we can have a boundary condition on
θ̂, to circumvent this problem, θ̂ is rewritten as follows:

θ̂ = θ̂1 + Âθ2 + B̂θ3 (1.105)

where Â and B̂ are complex constants to be determined. The three com-
ponents, θ̂1, θ2 and θ3 are the particular solution and two homogeneous
solution of Eq. 1.100, respectively. Their solution is obtained as follows:

(
∂2

∂z2
− λ2

)

θ̂1 =
Ĥn

γ
θ̂1(−1) = 0 θ̂1(+1) = 0 (1.106)

(
∂2

∂z2
− λ2

)

θ2 = 0 θ2(−1) = 1 θ2(+1) = 0 (1.107)

(
∂2

∂z2
− λ2

)

θ3 = 0 θ3(−1) = 0 θ3(+1) = 1 (1.108)

In a similar way, also ŵn+1 is rewritten as a sum of a particular solution ŵ1

and two homogeneous solutions w2, w3:

ŵn+1 = ŵ1 + Âw2 + B̂w3 (1.109)

Similarly to the solution of θ̂, the solutions for ŵ1, w2 and w3 can be ob-
tained applying the no-slip BC:

(
∂2

∂z2
− k2xy

)

ŵ1 = θ̂ ŵ1(−1) = 0 ŵ1(+1) = 0 (1.110)

(
∂2

∂z2
− k2xy

)

w2 = θ1 w2(−1) = 0 w2(+1) = 0 (1.111)

(
∂2

∂z2
− k2xy

)

w3 = θ2 w3(−1) = 0 w3(+1) = 0 (1.112)
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The unknown constants Â and B̂ are determined, for a closed channel,
applying the ∂ŵn+1/∂z = 0 boundary condition:

∂ŵ1

∂z
(−1) + Â

∂w2

∂z
(−1) + B̂

∂w3

∂z
(−1) = 0 (1.113)

∂ŵ1

∂z
(+1) + Â

∂w2

∂z
(+1) + B̂

∂w3

∂z
(+1) = 0 (1.114)

Or for an open channel:

∂ŵ1

∂z
(−1) + Â

∂w2

∂z
(−1) + B̂

∂w3

∂z
(−1) = 0, (1.115)

∂2ŵ1

∂z2
(+1) + Â

∂2w2

∂z2
(+1) + B̂

∂2w3

∂z2
(+1) = 0 (1.116)

Alternatively the boundary conditions at the free-slip wall (1.116) can be di-

rectly forced on the solution of θ̂. From Eqs. 1.113 - 1.116, ŵn+1 is obtained,
the solutions of Eqs. 1.100 - 1.100 are obtained adopting the Chebysev-Tau
solution algorithm proposed in [92] and the resulting tridiagonal equations
system is solved adopting the Gauss elimination procedure.

Vorticity equation

Using the spectral representation of Sec. 1.5.2, Eq. 1.72 reads:

∂ω̂z
∂t

= ikxŜy − ikyŜx +
1

Reτ

(
∂2

∂z2
− k2xy

)

ω̂z (1.117)

Where as before k2xy = k2x + k2y. Vorticity equation as the velocity equation
is discretised in time adopting an hybrid IMplicit EXplicit (IMEX) scheme.
i) a second-order Adams-Bashfort scheme is used for the non-linear terms;
ii) an implicit Crank-Nicholson is used for the diffusive term. Using this
time discretisation scheme, the equation became:
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n+1 − ω̂z

n

∆t
=

3

2

(
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n+1 − ω̂z

n) (1.118)

Where superscripts n−1, n, n+1 indicate the three consecutive time levels
t−∆t, t and t+∆t, respectively. Using the definition of ω̂z = ikxû2− ikyû1
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the equation can be rewritten as:

ω̂z
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Defining γ as before, using the previously defined historical terms Ĥn
y and

Ĥn
x and collecting ˆωn+1 on the left size we obtain:

(
∂2

∂z2
− β2

)

ω̂n+1
z = − 1

γ

[

ikxĤ
n
y − ikyĤ

n
x

]

(1.120)

Where β has been defined as:

β2 =
1 + γk2xy

γ
(1.121)

The solution of Eq. 1.120 is obtained adopting the Chebyshev-Tau algorithm
with the following BC for a closed channel:

ω̂n+1
z (±1) = 0 (1.122)

Or for an open channel:

ω̂n+1
z (−1) = 0

∂ω̂n+1
z

∂z
(+1) = 0 (1.123)

The resulting tridiagonal equations system is then solved adopting a Gauss
elimination technique. Once the wall-normal vorticity component ω̂z is
known, the other two velocity components ûn+1 and v̂n+1 can be derived
from the spectral representation of the vorticity definition and the spectral
representation of the continuity equation:

−ikyûn+1 + ikxv̂
n+1 = ω̂n+1

z (1.124)

−ikxûn+1 + iky v̂
n+1 =

∂ŵn+1

∂z
(1.125)

Cahn-Hilliard equation

Eq. 1.79 is discretised in space adopting the spectral representation shown
in Sec. 1.5.2 and applied in Sec. 1.5.3:

∂φ̂
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= Ŝφ + s

Ch2

Pe

(
∂2

∂z2
− k2xy

)

φ̂

− Ch2

Pe

(
∂2
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− k2xy

)(
∂2

∂z2
− k2xy

)

φ̂ (1.126)
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The solution of the Cahn-Hilliard is characterised by high frequency har-
monics that need to be damped in order to keep the solution bounded. The
adoption of weakly damping schemes, such as the Crank-Nicholson adopted
for the velocity field equations leads to aliased solutions [8]. For this reason,
following [193], a 1st-order Backward Difference Formula (BDF) is adopted.
In particular the non linear convective Sφ term is discretised adopting a 2nd

order Adams-Bashfort:

φ̂n+1 − φ̂n

∆t
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3

2
Ŝnφ − 1

2
Ŝn−1
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Pe

(
∂2
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− Ch2

Pe

(
∂2

∂z2
− k2xy

)(
∂2

∂z2
− k2xy

)

φ̂n+1 (1.127)

Introducing the coefficient γφ = (∆tCh2)/Pe, Eq. 1.127 yields:

[

1

γφ
− s

(
∂2

∂z2
− k2xy

)

+

(
∂2

∂z2
− k2xy

)2
]

φ̂n+1 =
Ĥφ

γφ
(1.128)

where the historical term Ĥφ has been introduced:

Ĥφ

γφ
=

1

γφ

(

φ̂n +
3∆t

2
Ŝnφ − ∆t

2
Ŝn−1
φ

)

(1.129)

We can decompose Eq. 1.128, a 4th order equation, in two equivalent second
order equations.

[
1

γφ
− s

(
∂2

∂z2
− k2xy

)

+

(
∂2

∂z2
− k2xy

)2]

=

[(
∂2

∂z2
− k2xy − λ1

)(
∂2

∂z2
− k2xy − λ2

)]

(1.130)

The values of λ1 and λ2 can be obtained from the equation:

γφλ
2 − sγφλ+ 1 = 0 (1.131)

Obtaining:

λ1/2 = −s
2
±

√

s2γ2φ − 4γφ

2γφ
(1.132)

The root square poses some constraints on the choice of the value of s, in
particular for having two real solutions must be:

s ≥
√

4

γ
=

√

4Pe

∆tCh2
(1.133)
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The choice of two coincident solutions λ1 = λ2 = −s/2 =
√

Pe/∆tCh2

guarantees the achievement of the maximum stability, under this assump-
tion the equation for φ is:

(
∂2

∂z2
− k2xy +

s

2

)2

φ̂n+1 =
Ĥφ

γφ
(1.134)

Defining the auxiliary variable θφ = sφ/2 +∇2φ, the 4th order Eq. 1.128 is
now splitted in two 2nd order equations:

(
∂2

∂z2
− δ2

)

θ̂φ =
Ĥφ

γφ
(1.135)

(
∂2

∂z2
− δ2

)

φ̂n+1 = θ̂φ (1.136)

Where δ2 = k2xy− s/2. Eqs. 1.135 and 1.136 are solved imposing the follow-
ing boundary conditions that emerge imposing a normal contact angle for
the interface at the walls and a no-flux of chemical potential through the
walls.

∂φ̂n+1

∂z
(±1) = 0

∂3φ̂n+1

∂z3
(±1) = 0 (1.137)

The boundary conditons on θ̂φ are on the first and third derivative, so there
is no need to apply the influence matrix method, since:

∂

∂z

(
∂2

∂z2
− δ2

)

φ̂n+1 =
∂3φ̂n+1

∂z3
=
∂θ̂n+1
φ

∂z
(1.138)

As consequence, Eq. 1.135 is solved using the following boundary conditions:

∂θ̂n+1
φ

∂z
(±1) = 0 (1.139)

and Eq. 1.136 is solved using the following boundary conditions:

∂φ̂

∂z
(±1) = 0 (1.140)

The solutions of Eqs. 1.135 - 1.136 are obtained adopting the Chebyshev-Tau
solution algorithm proposed in [92] and the resulting tridiagonal equations
system is solved through a Gauss elimination procedure.

Surfactant equation

The transport equation of the surfactant is discretised in space adopting
the spectral representation shown in Sec. 1.5.2 and applied in Sec.1.5.3:

∂ψ̂

∂t
= Ŝψ +

Pi

Peψ

(
∂2

∂z2
− k2xy

)

ψ̂ (1.141)
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The equation for the surfactant is a second order equation which is coupled
via the non linear term to the Navier-Stokes and Cahn-Hiliard equation,
furthermore the use of a non linear mobility can lead to high frequency
harmonics, that need to be damped in order to keep the solution bounded.
For this reason, following the same procedure used for the Cahn-Hilliard
equation a 1st-order Backward Difference Formula (BDF) is adopted. In
particular the non linear convective Sψ term is discretised adopting a 2nd

order Adams-Bashfort:

ψ̂n+1 − ψ̂n

∆t
=

3

2
Ŝnψ − 1

2
Ŝn−1
ψ +

Pi

Pe

(
∂2

∂z2
− k2xy

)

ψ̂n+1 (1.142)

Defining the coefficient γψ = (∆tP i)/Peψ the equation can be recasted as::

[
1

γψ
−
(
∂2

∂z2
− k2xy

)]

ψ̂n+1 =
Ĥψ

γψ
(1.143)

Where the historical term Ĥψ has been defined:

Ĥψ =

(

ψ̂n +
3∆t

2
Ŝnψ − ∆t

2
Ŝn−1
ψ

)

(1.144)

We can define ι2 = (γψk
2
xy + 1)/γψ and we finally obtain an equation that

can be solved using an Helmotz-solver with suitable boundary conditions:

(
∂2

∂z2
− ι2

)

ψ̂n+1 = −Ĥψ

γψ
(1.145)

Eq. 1.145 has been solved using a no-flux boundary conditions either for ψ
that for µψ as previously done in other works [153, 112].

∂ψ̂

∂z
(±1) = 0 (1.146)

Boundary conditions of Eq. 1.146 leads to a no-flux boundary conditions
for µψ.

∂µψ

∂z
(±1) = 0 (1.147)

Boundary conditions proposed by Eqs. 1.146 - 1.147 leads at the time con-
servation of the total mass of surfactant over time.

Code Implementation

The numerical algorithm presented in Sec. 2.3 for the solution of equations
presented in Sec. 1.4 has been implemented in a in-house code using Fortran
as programming language. The code is parallelised using a MPI paradigm.
The parallelisation is based on a 2D domain decomposition. Considering a
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ûn+1

φ̂n+1

ψ̂n+1

ûn

φ̂n

ψ̂n

Fields ûn,φ̂n,ψ̂n

Computation of Ŝ

Solution of Navier Stokes

Computation of Ŝφ

Solution of Cahn-Hilliard

Computation of Ŝψ

Solution of Surfactant

Figure 1.7 – Scheme of the numerical solver used. From the initial fields û
n, ψ̂n,ψ̂n

at the step n, for each equation the non linear terms are computed in physical space
and then back-transformed in the spectral space. Once this operation is completed,
the unkown of the equation at the time step n+1 can be obtained using the Helmholtz
solver.

generic variable θ, in the physical space, each process will have a pencil of the
domain with dimension Nx×Nyp×Nzp. Where Nyp and Nzp are a fraction
of the total number of nodes used along y and z directions respectively.
Since a global method is used to describe the unknown, to perform a 3D
transform (Fourier-Fourier-Chebyshev) the pencil must be reoriented along
the three directions. The pencils are reoriented using MPI-communications;
this operation is required during the computation of the non linear terms
S, Sφ and Sψ. A schematic representation of the steps required to compute
a 3D transform is shown in Fig. 1.8.

1.6 Validation

In this section, the governing equations are solved using the numerical
method proposed in Sec. 1.5. The code implementation is validated consid-
ering the problem of a droplet in shear flow.
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MPI MPI

MPI MPI

Physical Space: θ Spectral Space: θ̂

Figure 1.8 – From the right, the unknown is in the physical space, θ, the FFT
along the x direction is computed. Then, through MPI-communications, the pencil is
reoriented and the FFT along the y direction is performed. Last, the pencil is again
reoriented and the Chebyshev transform along the z direction is computed. After
these steps, the unknown is described in the spectral space, θ̂. The inverse transform
can be computed following the same steps but in the opposite direction.

1.6.1 Droplet in shear flow

The method proposed is used to analyse the behaviour of a single droplet
posed in a laminar shear flow. A spherical droplet is released in the centre
of a channel bounded by two walls, z = ±h which move at constant velocity
but in opposite directions, Fig.1.9. The shear flow modifies the droplet’s
shape and after an initial transient, the droplet reaches a new steady-state
shape. The new shape is determined by the competition between surface
tension forces, which try to restore the spherical shape, and the viscous
forces that elongate the droplet. The relative importance of these forces is
expressed by two parameters, the capillary number, Ca, and the viscosity
ratio, λ, defined as follows:

Ca =
We

Reτ

d

2h
=
uτηcd

σ2h
λ =

ηd
ηc

(1.148)

The capillary number, Ca, describes the relative importance of the viscous
forces compared to the surface tension ones. The viscosity ratio λ is the
ratio between the droplet’s viscosity, ηd, and the external fluid viscosity, ηc.
An analytical solution of the problem was obtained by [167, 39] and was
subsequently corrected by [151] to consider the wall effects. Taylor, using a
sharp interface approach, solved the unbounded creeping flow equations in
the limit of vanishing droplet’s deformation. Under these hypothesis, the
steady-state shape of the droplet is an ellipsoid, with major axes contained
in the shear gradient plane. The droplet is tilted according to the veloc-
ity profile. To estimate the magnitude of the deformation, a deformation
parameter, D, is defined as:

D =
L−B

L+B
(1.149)



1.6. Validation 37

Where L and B are the dimensions of the two principal axis of the de-
formed droplet, Fig. 1.9. Once the droplet’s shape is known, the following
expression for the parameter D is obtained [167, 39, 151]

D =
16 + 19λ

16(1 + λ)
Ca

[

1 + CSH
3.5

2

(
d

4

)3
]

(1.150)

where CSH is a numerical coefficient equal to 5.6996 [151]. As can been
seen from Eq. 1.150, the droplet deformation parameter D is a function of
the Ca and of the viscosity ratio λ. The equation is valid in the limit of
vanishing deformations, D < 0.3. From Eq. 1.150 can be observed that the
deformation parameter D is a linear function of Ca. For small Ca (high
surface tension) the droplet will keep a quasi-spherical shape. By oppo-
site, considering large Ca (low surface tension), higher deformations are
obtained. If the capillary exceeds a threshold, Ca > Cacr, the droplet can
undergoes a breakage [64]. The viscosity ratio λ enters into the picture
modifying the coefficient. For λ < 1, deformation is reduced since less shear
stress is transmitted through the interface, vice-versa for λ > 1 is increased.
When surfactant is taken into account, the droplet’s shape is influenced
by three new additional effects: (i) surfactant decreases the average sur-
face tension and deformation will increase, (ii) surfactant accumulates on
the droplet tips (stagnation points) and further increases the deformation,
(iii) inhomogeneous surfactant distribution gives rise to tangential stresses
at the interface which hinder the deformation [161, 159, 177]. When a
surfactant-laden droplet is considered, as in previous works [161, 159], an
effective capillary Cae = (σ0/σav)Ca is used to compute the theoretical
value of the deformation. The effective capillary number, Cae, accounts for
the average reduction of the surface tension produced by the surfactant.

1.6.2 Problem definition

A spherical droplet, diameter d = 0.8h, is released in the centre of the
channel, Fig. 1.9. A linear velocity profile u(z) is imposed. The two walls
move in opposite directions with a velocity |u(±h)| = 1 along the x direction,
the other two velocity components are zero, v(±h) = w(±h) = 0. The value
of the Reynolds number has been chosen to ensure complete creeping flow
conditions: Reτ = 0.1. The computational domain used is two-dimensional
channel with dimensions 2πh × 2h along the x and z direction. A number
of collocation points, Nx ×Ny equal to 512 × 513 has been used. In order
to describe the interface with at least three mesh points, Cahn number
has been set to Ch = 0.02, following [120], Peclet number has been set
to Peφ = 3/Ch−1 = 150. When a surfactant-laden droplet is considered,
a Peclet number, Peψ = 100 has been used. This value of Peψ leads to
a surfactant distribution dominated by the convective phenomena. This
behaviour is common for the surfactants [159]. Following [52], Pi = 1.35
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Figure 1.9 – Single droplet of diameter d = 0.8h in shear flow. The initial shape of
the droplet is reported with a full red circle. The final steady-state shape (dashed
line) and the relative principal axis of the deformed droplet, L and B, are reported.
The flow field is a linear velocity profile, v(z).

and Ex = 0.117 have been set. The amount of surfactant present in the
system is tuned acting on the bulk surfactant concentration ψb, two different
values of ψb have been considered, ψb = 0.01 and ψb = 0.02. The elasticity
number has been set to βs = 0.50. The parameters Reτ , Ch and Peφ are
kept constant in all the cases considered. Both the order parameters φ and
ψ are initialised with their equilibrium profiles.

1.6.3 Results

The results obtained are here presented and discussed. We first consider a
clean droplet, Sec. 1.6.3. The effect of Ca and λ on the droplet’s deformation
are analysed and compared against the analytical relation [167, 39, 151].
Then, surfactant-laden droplets with different bulk surfactant concentra-
tions ψb have been considered, Sec. 1.6.4

Clean droplet

The surface tension and viscosity contrast representations are here vali-
dated. Different values of Ca and λ have been used. After an initial tran-
sient, the droplet reaches a new steady-state shape and the deformation
parameter D is computed. The values obtained are compared against the
analytical relation of [167, 39, 151]. Following [167, 39, 151], for both the
λ, the analytic relation between D and Ca is linear but with a different co-
efficient. For the two values of λ considered the relations are the following:

D =

{

λ = 1.0 1.1813Ca

λ = 0.1 1.0982Ca
(1.151)

A summary of the parameters used is reported in Tab. 1.1, for each Ca,
two different values of λ have been tested, λ = 1.0 and λ = 0.1. The results
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Ca
0.0625 0.125 0.1875 0.250 0.375 0.500

λ = 1.0 X1 X2 X3 X4 X5 X6
λ = 0.1 Y1 Y2 Y3 Y4 Y5 Y6

Table 1.1 – Parameters used for the simulations of a single droplet in shear flow. For
each value of the Ca, two different viscosity ratio λ have been considered.

obtained are reported in Fig. 1.1. In Fig. 1.1(a) the results for λ = 1.0 are
shown, for these cases in the whole range of Ca, an excellent agreement is
found. Despite the small deformation theory limits the validity to D < 0.3,
good results are found up to D < 0.4, at Ca = 0.50 the analytical relation
slightly overestimate the deformation. A similar behaviour is obtained for
λ = 0.1, Fig. 1.1(b). For these cases, Y-series, the numerical results are
slight larger than the ones predicted by the theory but a good agreement
can be still observed. The slight increase of the error, especially for λ = 0.1,
can be addressed to possible wall effects [53] and to the minor accuracy
offered by the theoretical relation. The results obtained match the ones
obtained numerically with different interface tracking methods, as VOF
[111], LS [186] or PFM [163] and experimentally [44, 64, 155, 29].
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Figure 1.10 – In panel (a) and panel (b) the deformation parameter D is plot against
Ca. Panel (a) refers to λ = 1.0, matched viscosity. Panel (b) refers to λ = 0.1, the
droplet’s fluid is less viscous than the external one. Numerical results are reported
with spherical markers (red for λ = 1 and blue for λ = 0.1). The analytical relation
is reported with a continuous black line.

1.6.4 Surfactant-laden droplet in shear flow

The extension of PFM to the surfactant tracking is here tested. In order
to fulfil the hypothesis of small deformations only the four lowest Ca have
been considered, from Ca = 0.0625 to Ca = 0.250, cases X1-X4 of Tab. 1.1.
For each Ca, two bulk surfactant concentrations have been considered,
ψb = 0.01 and ψb = 0.02. Since the parameters Pi and Ex are kept fixed,
the bulk surfactant concentration ψb sets the amount of surfactant present
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Ca
0.0625 0.125 0.1875 0.250

Clean X1 X2 X3 X4
Surfactant-laden (ψb = 0.01) A1 A2 A3 A4
Surfactant-laden (ψb = 0.02) B1 B2 B3 B4

Table 1.2 – Parameters used for the simulations of a single droplet in shear flow. For
each Ca, a clean and two surfactant-laden cases have been considered. The surfactant-
laden cases differ for the amount of surfactant present, tuned acting on the bulk
surfactant concentration ψb.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3

ψb

D

Ca

Theory, Clean
X-series Clean

Theory, ψb = 0.01
A-series ψb = 0.01
Theory, ψb = 0.02
B-series ψb = 0.02

Figure 1.11 – Comparison of numerical and analytical results for the deformation
parameterD; analytical results for a clean droplet are reported with black line, whereas
numerical ones are identified by red circles. For ψb = 0.01, a double dashed line
identifies the analytical results and the numerical ones are identified by upward red
triangles. Similarly for ψb = 0.02, a dashed line identifies the theoretical results and
the numerical ones are reported whit downward red triangles.

in the system. An overview of the parameters is reported in Tab. 1.2. The
results obtained for the deformation parameter D are reported in Fig. 1.11.
The ones obtained from the clean droplets (red spherical markers), X-series,
have been already discussed and are reported as reference. The results ob-
tained from the cases A1-A4 and B1-B4, surfactant-laden droplets, have
been compared with the ones predicted by the analytic relation using Cae,
Eq. 1.150. For both the surfactant-laden cases the analytical relation well
predicts the results obtained from the simulations. Even for these cases,
at the highest Ca (A4-B4), the analytic relation slightly over-predicts the
numerical result. Interestingly, the three surfactant-induced effects offset
each other. Using the effective capillary, Cae, in Eq. (1.150), a good predic-
tion of the deformation parameter D can be obtained. The results match
those obtained using different numerical approaches [18, 54, 168, 87, 58] and
experiments [172, 75, 74].
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of large drops in bounded turbulence, Phys. Rev. Fluids, (2017).

2.1 Problem definition

Prediction of breakup and coalescence rates of a swarm of liquid drops
immersed in a turbulent liquid flow (liquid/liquid emulsion) is crucially de-
pendent on a number of hard-to-tackle factors. Among many others these
include turbulence, turbulence/interface interactions, surface tension effects
and viscosity gradients. Each single of these effects has a specific action on
breakup and coalescence, and we can envision drops dynamics as the ulti-
mate result of a complex competition between destabilising and stabilising
effects. Destabilising effects are primarily due to the combined effects of
fluctuating inertial and shear terms acting at the drops interface. Stabil-
ising effects are due to surface tension, which is a restoring force acting
to preserve drops sphericity. The outcome of this competition determines
drops deformation, breakup and coalescence. In this picture, viscosity gra-
dients across the interface of the drops can act as modulators of the localised
shear stresses and can amplify or damp the initial turbulence perturbations
to the point of changing profoundly the final result. Drops coalescence and
breakup is of paramount importance in many environmental and indus-
trial applications, from transport of pollutant drops in water bodies [184]
to hydrocarbon separation or oil-water emulsions in chemical plants and
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petroleum industry [82, 32, 3]. Here, the focus is on the liquid-liquid emul-
sions, in which drops of one phase are dispersed within the other phase. In
this instance, the knowledge of the drops number density and/or the drops
interface extension is a key parameter to optimise the design of efficient oil
separators, in which drops coalescence should be promoted and drops frag-
mentation reduced. For drops breakup in turbulence, literature dates back
to the seminal work of [69], who modelled the mechanism of liquid drops
splitting in a turbulent gas environment. Since the fundamental physics
of drops splitting in gas-liquid or liquid-liquid configurations is controlled
by the same parameters, results obtained for the gas-liquid case have been
historically (and successfully) applied to the liquid-liquid case as well. In
accordance with [69], drop breakup occurs when the Weber number We
exceeds a critical value, Wecr. Assuming a drop size in the inertial range
of turbulence (so that Kolmogorov’s law can be used to define turbulence
fluctuations at the drop scale), [69] was able to predict the maximum size
of a drop that will not be broken by turbulence in a given flow. Based
on available experimental data [35, 36], [69] finally proposed Wecr = 1.18,
even though a general agreement on the value of Wecr is still to be found
(the value of Wecr ranges between 1 and 12, largely depending on the em-
ployed fluids and on the flow configuration). Many subsequent theoretical
and experimental studies (see [31, 26, 179, 180, 158, 38], among others)
have been performed on drops size distribution in engineering-relevant sit-
uations (liquid-liquid emulsions in pipelines and stirred tanks), with most
of these studies conducted in dilute conditions, so to neglect drops coales-
cence. However, in any practical situation, drops breakup and coalescence
occur simultaneously and cannot be neglected when a complete character-
isation of the drop swarm dynamics is required [154]. Unlike the case of
drops breakup, drops coalescence has been the subject of relatively fewer
studies, most of which focused on the binary collision of two separate drops
in still fluid [140, 9, 133]. Although these studies have definitely provided
useful insights to understand the fundamental physics of drops collisions
and merging, their extension to more complex situations like drops moving
inside turbulent pipes or reactors is not straightforward and still requires
a leap forward [71, 178]. From the previous literature survey it is appar-
ent that a large proportion of the work on drops breakup and coalescence is
based on experimental or theoretical approaches. This is due to the complex
nature of drops interactions that has hindered the development of accurate
numerical simulations of the phenomenon. Only recently, numerics has be-
come available to analyse complex multiphase flows situations. Accurate
numerical simulations can help providing the time evolution of the drops
deformation together with the description of the entire flow field inside and
outside of the drop. This is extremely important for unsteady turbulent
flow conditions, where it is essential to record the coupled drops/turbulence
interactions in time and space. In the literature only few available Direct
Numerical Simulations [139, 135, 145, 93, 157, 49, 56] of the collective drop
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dynamics in turbulence are available. The aim of the work here presented
is to extend the available literature results on collective drops dynamics in
wall-bounded turbulence considering the case of fluids with the same density
but different viscosity. In particular, a wide range of drops-to-fluid viscosity
ratio λ = ηd/ηc (with ηd the viscosity of drops and ηc the viscosity of the
carrier fluid), from λ = 0.01 to λ = 100 has been considered.

2.2 Simulation setup

The simulations have been performed considering a system which is com-
posed by a large number of deformable drops, with density ρd and dynamic
viscosity ηd dispersed in a turbulent channel flow (with the carrier fluid
being characterised by density ρc and dynamic viscosity ηc). For these sim-
ulations two phases which have the same density ρ = ρd = ρc but different
viscosity ηd 6= ηc have been considered. The fluids are assumed to be new-
tonian and surfactant is absent and thus σ = σ0. The time behaviour of the
system can be obtained solving Cahn-Hilliard, Navier-Stokes and continuity
equations. Under these assumptions the equations proposed in Sec. 1.5 can
be simplified as follows:

∇ · u = 0 (2.1)

∂u

∂t
+ u · ∇u =

1

Reτ
∇2u+

1

Reτ
∇ · (η(φ)(∇u+∇uT ))−∇p

+
3√
8

Ch

We
∇ · (|∇φ|2I−∇φ⊗∇φ)) (2.2)

∂φ

∂t
+ u · ∇φ =

1

Peφ
∇2(φ3 − φ− Ch2∇2φ) (2.3)

The main parameters of the system are:

Reτ =
ρuτh

ηc
We =

ρu2τh

σ0
λ =

ηd
ηc

Ch =
ξ

h
Peφ =

uτh

Mφβ
(2.4)

Eqs. 2.3 - 2.2 and 2.1 have been solved in a closed channel geometry, Fig. 1.6,
with dimensions Lx×Ly×Lz equal to 4πh×2πh×2h. The x, y and z axes
point respectively in the streamwise, spanwise and wall normal direction.
The flow is driven along the streamwise direction by a constant mean pres-
sure gradient. The initial velocity field is obtained from a Direct Numerical
Simulation (DNS) of a single phase turbulent channel flow at Reτ = 150
and is the same for all the simulations. The initial conditions used for the
order parameter φ, is made of two arrays of drops. Each array contains 128
drops with a diameter d = 0.6h. The phase field is equal φ = ±1 inside the
drops and in the carrier flow respectively.
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Considering the time and length-scale of the flow, and the interface be-
haviour a grid with a number of nodes Nx×Ny×Nz equal to 512×256×257
has been adopted. The choice of Ch is linked to the grid. From previous
simulations (not reported here), it has been observed that using the scaling
proposed by [120] the results are independent from Ch. However, to limit
the mass leakage [195], Ch must be set to the lowest value possible. Thanks
to the accuracy of the spectral method, the accurate resolution of the thin
interfacial layer requires 3 nodes across it, consequently Ch = 0.0185 and
Peφ = 162.2 [120] have been set. The effect of We (deformability) and of
the drop-to-fluid viscosity ratio λ are analysed through a series of simula-
tions. In particular three values of We and five different λ are considered.
An overview of the simulations parameters is given in Tab. 2.1.

We \λ 0.01 0.10 1.00 10.0 100.
0.75 S1 S2 S3 S4 S5
1.50 S6 S7 S8 S9 S10
3.00 S11 S12 S13 S14 S15

Table 2.1 – Summary of the parameters of the simulations. For eachWe, five different
values of the viscosity ratio are used, from λ = 0.01 to λ = 100.

In the next section, results obtained from the simulations S1-S15 will be
analysed. Results are reported using the wall unit scaling system. Starting
from the dimensional analysis presented in Sec. 1.4, the results for a closed
channel using the wall units can be obtained as follows:

x+ = Reτx u+ = u t+ = Reτ t
− (2.5)

These changes will affect only the channel dimensions, u and φ will keep
the same values. In wall units the channel dimensions L+

x × L+
y × L+

x are
1885× 942× 300 w.u. and the initial drop diameter is d+ = 90 w.u.

2.3 Results and discussion

2.3.1 Mean velocity of the multiphase mixture

In a multiphase mixture, the transport of large drops with a given surface
tension and with an internal viscosity different from that of the carrier flow
may influence the macroscopic behaviour of the system. In the experiments,
for all cases reported in Tab. 2.1, a modest drag reduction corresponding
to an overall flow rate increase in the range 2 − 4% has been observed.
In Fig. 2.1, the wall-normal behaviour of the mean velocity profile of the
multiphase mixture (drops and carrier flow) is shown at four different time
instants (t+ = 0, t+ = 500, t+ = 1000 and t+ = 1500). Panels (a), (b) and
(c) refer to We = 0.75, We = 1.50 and We = 3.00 respectively. For each
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Figure 2.1 – Wall-normal behaviour of the mean streamwise velocity of the mixture
(drops and carrier flow) at four different time instants. Panel (a) refers to We = 0.75,
panel (b) to We = 1.5 and panel (c) to We = 3. For each value of We results are
only shown for λ = 1. The initial velocity profile (solid line, t+ = 0) is obtained from
a preliminar simulation of a single phase flow at the same Reτ . The behaviour of the
analytical profile describing the law of the wall is also shown for comparison.
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value of We, only results at λ = 1 has been shown (results at different λ
bear only minor quantitative changes that do not add to the discussion).
The mean velocity is obtained by averaging the entire flow field (velocities in
both phases) along the streamwise and the spanwise directions. All the sim-
ulations are initialised with the same velocity field taken from a preliminary
simulation of a single phase channel flow at the same Reτ . As a consequence,
at t+ = 0 (solid line), the mean velocity profile for all the simulations col-
lapses onto the classical law of the wall (u+ = z+ and u+ = 2.5 log z++5.5).
As soon as drops are injected inside the channel, they interact with the car-
rier flow increasing the mean velocity in the central part of the channel
(overshooting of the mean velocity for z+ > 30). Note that, since the driv-
ing pressure gradient is kept constant in all our simulations, an increase in
the mean velocity indicates a decrease of the friction factor at the wall (drag
reduction). By contrast, only negligible flow modifications close to the wall
have been observed (only for We = 3 a slight increase of 〈u+〉 is observed,
which however does not represent a significant variation). According with
previous observations [119] and to this present work, deformable drops tend
to stay away from the walls, suggesting that the applied pressure drop is
balanced just by the fluid shear stresses at the two walls. In this way, our
previous plots on the average velocity of the mixture can have a general
significance from the drag reduction viewpoint.

2.3.2 Drops dynamics in turbulence

The dynamics of liquid drops immersed in a turbulent flow field is the
result of a complex interaction between destabilising actions due to shear
and normal stresses at the drops interface and the stabilising ones due to
surface tension (which tends to preserve drop sphericity). Depending on the
relative magnitude of destabilising and stabilising actions, drops deform,
break and coalesce. When a viscosity difference between the liquid drops
and the external fluid (λ 6= 1) exists, the picture becomes more complex and
the internal viscosity of the drops (ηd) plays an active role in controlling
the overall drops dynamics [6, 37]. A qualitative representation of such a
complex mutual interaction between drops and turbulence is given in Fig.
2.2. It is apparent that drops (coloured in blue) are deformed and advected
by the carrier flow (here represented by the flow streamtraces coloured by
the local value of the Turbulent Kinetic Energy of the flow, TKE). At the
same time, they try to maintain their minimal energy, spherical shape, and
they actively modify the flow field. In the following, specifically focus will
be put on the role of surface tension (We) and viscosity ratio (λ) on the
drops dynamics in a turbulent wall-bounded flow.
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transient, and a statistically steady state is finally achieved in which the
number of drops fluctuates around an average value. The effect of viscos-
ity becomes larger in this case: for drops of small viscosity we observe a
final number of drops which is about an order of magnitude bigger com-
pared to the case in which the carrier fluid is less viscous than the drops.
In Fig. 2.3(c) we can appreciate the role of drop viscosity at the highest
We (We = 3). Drops coalescence dominates (i.e. the number of drops
N(t)/N0 decreases in time), until a critical drops size is attained, after
which the number of drops achieves a plateau that does depend on λ. It
is clear that when the drops viscosity is smaller than that of the carrier
fluid (λ < 1), breakup is favoured. By contrast, when the drops viscosity is
larger (λ > 1), coalescence is favoured. Of course, viscosity is not surface
tension, and even if the effect of increasing drop viscosity (increasing λ) act
as an increase of the surface tension (decrease of We), we must look for
the physical mechanism which is ultimately related to turbulence modula-
tion by viscosity [199]. Lower values of the drops viscosity induce larger
deformations that eventually cause drops fragmentation (i.e., small drops
viscosity is a destabilising factor). By contrast, large values of drops vis-
cosity represent an extra stability factor for drops dynamics, which indeed
induces smaller drops deformation and favours the occurrence of coalescence
events. Only for λ = 100 the dynamics appears somehow different, with the
initial transient decay extending up to t+ ' 800 and an asymptotic con-
dition characterised by a definitely smaller number of drops. However this
represents an extreme case for which the stabilising effect due to the large
drops viscosity completely balances the small value of the surface tension,
resulting in drops having an overall small deformability.
A qualitative representation of the physical mechanism described above is
given in Fig. 2.4-2.5 for the two limiting values of We: Fig. 2.4 refers to
the case We = 0.75, whereas Fig. 2.5 refers to the case We = 3. For both
We = 0.75 and We = 3, we show the drops dispersion and deformation in
time (at three different time instants t+ = 300, t+ = 600 and t+ = 900) for
the two extreme cases λ = 0.01, Figs. 2.4-2.5(a)-(c), and λ = 100, Figs. 2.4-
2.5(d)-(f). Together with the drops deformation, we also show the contour
map of the Turbulent Kinetic Energy TKE, a quantity that may be related
to drops deformation and dynamics. Note that TKE = u′

2
+ u′

′2
+ u′

2
is

shown on the channel centre plane. In these figures, we observe that the
number of drops reduces in time (time increases from (a) to (c)), regard-
less of the value of We and λ. For We = 0.75, the drops shape is rather
smooth and slightly dependent on λ. However, for We = 3 (Fig. 2.5)
the situation is remarkably different. The most striking feature observed
in this case is the increased drop deformation and the formation of small
drops fragments (particularly for λ = 0.01), as a result of recurring and
intensive breakup phenomena [51, 6]. From the underlying contour maps
of TKE (shown in grayscale), we clearly identify the strong coupling be-
tween drops deformation and turbulence. Drops, which are first deformed
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preferentially stay [145, 146]). The theoretical behaviour of 〈D〉 described
by Eq. (2.8) is shown in Fig. 2.8 as a function of We for all the simulated
cases. We immediately notice that our results support the validity of Hinze’s
models, but only for large We and small drops viscosity (when breakups
essentially control the dynamics). This is reasonable since the model is
developed assuming negligible coalescence effects (large We) and negligible
viscous dissipation (small λ). By contrast, a more complex dependency of
the results on We and λ is observed for small We and large λ. Further
experimental and numerical campaigns are therefore required to obtain a
reliable value of this prefactor for different flow configurations (at present,
indicative values of the prefactor can be found for liquid-liquid emulsions in
stirred tank reactors [7, 41]).

2.4 Conclusions

Drops dynamics in turbulence is a complex phenomenon characterised by
the competition between the destabilising action of turbulence (which de-
forms and eventually brings the drops to breakup) and the stabilising action
of surface tension (which tends to preserve the drops integrity). When drops
viscosity is different from that of the carrier fluid, the picture becomes even
more complex since drops viscous dissipation can become important. Here,
the focus has been put on the complex interplay between surface tension
(We) and drop-to-fluid viscosity ratio (λ), which determines breakage and
coalescence of large deformable drops in turbulence. Specifically, the drops
dynamics has been studied using Direct Numerical Simulations (DNS) of
turbulence coupled with a Phase Field Model (PFM). We considered three
different We (We = 0.75, We = 1.5 and We = 3), and five different values
of λ (λ = 0.01, λ = 0.10, λ = 1.00, λ = 10.0 and λ = 100). In all the
cases analysed in the present study, a small increase of the flow-rate of the
mixture, in the range 2−4% has been observed. The effect of drops, on the
average velocity of the mixture (drops and carrier flow) has been analysed,
regardless of the value of the physical parameters (λ and We), the average
velocity of the mixture increase in time. This is an indication that turbu-
lent kinetic energy is absorbed by drops (i.e. kinetic energy is converted
into drops deformation) and induces an overall drag reduction of the flow.
Then, the focus has been put on drops dynamics. For the base case λ = 1,
we observed that drops dynamics is dominated by coalescence for small We
(We < 1), with breakup events entering the picture only for increasing We
(We > 1). Interestingly, we found that this situation is selectively modi-
fied for λ 6= 1. For small We (We < 1), drops deformability remains small
and the viscosity ratio λ does not influence the coalescence/breakup rate.
For larger We (We > 1), drops deformability is increased and the viscos-
ity ratio λ can significantly alter the coalescence and breakup dynamics.
In particular, increasing drops viscosity reduces strongly the breakup rate
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(and increase the coalescence rate), very much like a reduction of We does.
We linked this result to the increased value of the drops viscous dissipation
which ultimately increases drops stability. Viscosity gradients across the
interface of the drops act as modulators of the local shear stresses and can
amplify or damp the inertial turbulence perturbations. Finally, the results
have been compared against the theory developed by Hinze [69] to predict
the size of a swarm of droplets in turbulence. Our data confirm the predic-
tions [69] at small λ, (drop viscosity smaller than fluid viscosity) which is
the case analysed by Hinze. Further analyses are required to examine the
phenomena at larger values of drops to fluid viscosity ratios.
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3.1 Problem definition

The coalescence of droplets plays a central role in various disciplines of na-
ture and industrial interest, such as the formation of raindrops [66], spray
combustion [78, 84] and emulsification processes [48].
The coalescence’s efficiency depends on a large number of parameters as
the density and viscosity ratios between the two phases, the surface ten-
sion, the presence of surface active agents (surfactants) and the geometri-
cal configuration. The coalescence process can be divided in three main
stages: (i) approach, the droplets get close and starts to interact and de-
form, (ii) Draining, the thin liquid film present in the gap between the
two droplets starts to drain, (iii) breakage of the liquid film, when the
film’s thickness reaches a critical values, attractive intermolecular forces
can break it and the two droplets merge [121]. The surfactants, compounds
made of molecules with an hydrophilic head and a hydrophobic tail [126],
are often used to prevent the coalescence [161, 75]. These molecules, de-
creasing the surface tension, introduce in the system non-uniform capillary
and tangential stresses which can hinder the draining process [42, 34, 152].
As a consequence, the surfactants can drastically change the behaviour of
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the multiphase flow [165, 164, 109].
The efficient and accurate computational modelling of interfacial flows with
surfactant is a challenging task. From a numerical point of view, a coupled
system of equations must be solved on a moving and deforming interface
which may undergo topological changes such as breakup and coalescence.
The nmerical methods used to simulate interfacial flows with surfactant can
be roughly divided in two categories: interface tracking and interface cap-
turing methods. Interface tracking methods use a separate grid or mesh to
track the interface. The most popular are the Front-Tracking (FT) method
[198, 45, 118, 125, 14], the Boundary Integral Method (BIM) [161, 40, 114]
and the Immersed Boundary Method (IBM) [99, 100]. Initially developed
for insoluble surfactants, extensions to soluble surfactants have been pro-
posed by [198, 124]. In general, these methods offer a good accuracy but
the description of topological changes requires complex algoritms, espe-
cially in three dimensions. Interface-capturing methods use an indicator
function to implicitly represent the interface using an Eulerian grid. This
greatly simplifies the discretisation and the handling of topological changes.
The commonly used interface capturing methods are the Volume-Of-Fluid
(VOF) [70, 148] and the Level-Set method (LS) [128, 149]. For the VOF
method, possible approaches for insoluble surfactants have been proposed
by [50, 141, 80, 16] and then further extended to soluble surfactants and 3D
flows by [4]. Considering the LS method, a possible approach has been pro-
posed by [190] and then further developed to consider flow and contact line
dynamics [186, 189, 188, 57, 144]. Recently, alternative approaches, which
combine interface capturing and interface tracking methods or which are
based on different frameworks, have been developed. In the work of [27] LS
and FT are used together whereas [191, 175, 192] proposed techniques based
on the so-called Arbitrary Lagrangian-Eulerian (ALE) method. Consid-
ering other frameworks, a Smooth-Particle Hydrodynamics (SPH) method
has been proposed by [1] whereas for the colour-gradient Lattice Boltzmann
(LB) method [67] an approach for insoluble surfactants has been proposed
by [54].
Here, a Phase Field Method (PFM) [5, 79] for the simulation of interfa-
cial flows with soluble surfactants is considered. The method, based on
an interface capturing technique, implicitly represents the interface and the
surfactant concentration using two order parameters, the phase field φ and
the surfactant concentration ψ. The transport equations for the two order
parameters are derived from a single Ginzburg-Landau free energy func-
tional [104, 94, 171]. The two order parameters and their relative transport
equations are defined in all the domain and thus simpler numerical methods
can be used. Moreover, absorption/desorption of surfactants and topolog-
ical changes are implicitly handled. The effect of surfactant on surface
tension is included using an Equations Of State (EOS). Here, the phase
field method is coupled with Direct Numerical Simulation (DNS) of the
Navier-Stokes equations.
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Figure 3.1 – sketch of the configuration used to analyse the effects of the surfactant on
the droplet-droplet interaction. The droplets, with diameter d = 0.7h, are separated
by a distance ∆x = h and ∆z = 0.5h. The walls, z = ±h, move at constant velocity
in opposite directions. A linear velocity profile u(z) is imposed.

3.2 Simulation setup

The capabilities of the proposed method has been tested considering the in-
teraction between two droplets posed in shear flow, Fig. 3.1. This problem
has been previously investigated with experiments by [65, 181] and using
numerical simulations by [115, 15, 43, 152]. When surfactant is not con-
sidered, the outcome of the collision is determined by the capillary number
Ca, defined as:

Ca =
uτηc
σ0

d

2h
(3.1)

which is the ratio between viscous and surface tension forces. Considering
large Ca, the droplets’ interfaces during the interaction flatten hindering the
draining of the thin liquid film. The decreased draining speed inhibit the
coalescence and the two droplets slide away. By opposite, as the capillary
number is reduced, the lower deformability leads to a complete draining of
the fluid film. Thus, the interfaces come close enough that intermolecular
forces dominate and the droplets merge.
The surfactant, introducing tangential stresses and increasing the interface
deformability, can drastically changing the outcome of the interaction [40,
130]. We start considering the interaction between two clean droplets, Ca =
0.10. Then a wide range of bulk surfactant concentrations ψb and elasticity
number βs have been considered. The first parameter, ψb defines the amount
of surfactant present in the system while the elasticity number βs determines
the influence of the surfactant on the surface tension.

The system is composed by a continuous external phase and a dispersed
phase (droplets). The density and the viscosity of the two phases are as-
sumed to be matched, ρ = ρc = ρd and η = ηc = ηd. The spatial and
temporal evolution of the system can be obtained solving continuity, Navier-
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Stokes, Cahn-Hilliard and surfactant equations:

∇ · u = 0 (3.2)

∂u

∂t
+u ·∇u =

1

Reτ
∇2u−∇p+ 3√

8

Ch

We
∇·(f(ψ)(|∇φ|2I−∇φ⊗∇φ)) (3.3)

∂φ

∂t
+ u · ∇φ =

1

Peφ
∇2(φ3 − φ− Ch2∇2φ) (3.4)

∂ψ

∂t
+ u · ∇ψ =

Pi

Peψ
∇2ψ +

1

Peψ
∇ · (ψ(1− ψ)∇Cψφ) (3.5)

Since a surfactant is considered, in the Navier-Stokes equation, the gen-
eral formulation of the surface tension term has been used. The formula-
tion used implicitly accounts for the non-uniform capillary and tangential
stresses present at the interface. All the equations are already written in the
dimensionless form as shown in Sec. 1.4. The clean system can be analysed
considering ψ = 0 throughout all the domain. A linear approximation of
the Langmuir EOS [108] has been used:

f(ψ) = 1− βsψ (3.6)

This approximation is valid in the limit of low surfactant concentrations.
The dimensionless parameters that appear in the Navier-Stokes and Cahn-
Hilliard equations are defined as follows:

Reτ =
ρuτh

η
We =

ρu2τh

σ0
Ch =

ξ

h
Peφ =

uτh

Mβ
(3.7)

For the surfactant, the parameters are:

Peψ =
αuτh

β2Mψ
Pi =

λψ
β2

Ex =
β

sψ
(3.8)

In addition the bulk surfactant concentration ψb and the elasticity number
βs must be also set. Equations 3.2 - 3.3 - 3.4 and 3.5 are solved in a two
dimensional channel geometry, Fig. 1.9, with dimensions Lx × Lz equal to
2πh × 2h. The two walls move along the x direction at constant velocity
but in opposite directions ux(±h) = ±1. A no-slip boundary condition is
used for the velocity at the walls, w(±h) = 0. For the order parameters,
no-flux boundary conditions have been enforced on φ and ψ and on the 2nd

derivative of φ:

∂φ

∂z
(±h) = 0

∂3φ

∂z3
(±h) = 0

∂ψ

∂z
(±h) = 0 (3.9)
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These boundary conditions lead to a no-flux boundary condition even for
the two chemical potentials µφ and µψ; as a consequence the integral of the
two order parameters is conserved over time:

∂

∂t

∫

Ω

φdΩ = 0
∂

∂t

∫

Ω

ψdΩ = 0 (3.10)

where Ω is the domain considered. Along the x direction periodic bound-
ary conditions for all the variables have been used. The initial flow field is
a linear velocity profile for the streamwise velocity, u(z) = z/h, the wall-
normal velocity w has been set to zero. A laminar shear flow is considered,
the shear Reynolds number is Reτ = 0.5. The initial condition used for the
order parameter φ consists of of two spherical droplets of diameter d = 0.7h.
The order parameter φ is set to φ = +1 inside the droplets and to φ = −1
in the continuous phase. The centres of the two droplets are separated by a
distance ∆x = h and ∆z = h/2 and are located at xc = Lx/2±∆x/2 and
zc = ∓∆z/2. Weber number has been set to We = 0.15, which leads to a
capillary number Ca = 0.10. Considering the time and length-scale of flow,
interface and surfactant, the domain has been discretised using a number
of collocation points Nx ×Nz equal to 512× 513. Once the grid is set, Ch
and Pe can be obtained. For the accurate solution of the interface and the
surfactant dynamics, at least 4 nodes across the interface are needed. Thus
a Cahn number Ch = 0.02 has been chosen. Following the scaling proposed
by [120], Peφ = 150 has been set.
For the surfactant, Peψ = 100 has been used: with this value convective
phenomena will dominate over the diffusion phenomena. This case is quite
common in real applications where the surfactant diffusion along the inter-
face is slow if compared to the flow convection. The parameter Pi has been
set to Pi = 1.35, the parameter Ex, which controls the bulk solubility, has
been set to Ex = 0.117, same values used by [52]. For these simulations, Pi
and Ex have been kept fixed and the amount of surfactant and its effect on
the surface tension have been tuned changing the bulk surfactant concen-
tration ψb and the elasticity number βs.
A total of 20 simulations has been performed. Five bulk surfactant concen-
trations: ψb = 0.1×10−2−0.25×10−2−0.5×10−2−0.75×10−2−1.×10−2

and four elasticity number βs = 0.25− 0.5− 0.75− 1 have been considered.
An additional case, ψb = 0 and βs = 0, has been considered; this case iden-
tify the clean configuration. For the order parameter ψ, the equilibrium
profile has been used as initial condition, in the bulk ψ = ψb and ψ = ψ(φ)
across the interface. An overview of the parameters used for the simulations
is reported in Tab. 3.1.
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Bulk surfactant concentration ψb × 102

0.10 0.25 0.50 0.75 1.00

βs

0.25 A1 B1 C1 D1 E1
0.50 A2 B2 C2 D2 E2
0.75 A3 B3 C3 D3 E3
1.00 A4 B4 C4 D4 E4

Table 3.1 – Parameters used for the simulations of the droplet-droplet interaction
in shear flow. For each value of the bulk surfactant concentration, ψb, four different
values of the elasticity number βs have been considered.

3.3 Results and discussion

The results obtained from the interaction between two surfactant-laden
droplets will be here presented and discusses. First, we consider the outcome
of the interaction for different values of the surfactant bulk concentrations
and elasticity numbers. Then, the role played by the increased deformabil-
ity and by tangential stresses at the interface on the droplet-droplet will be
considered.

3.3.1 Outcome of the droplet-droplet interaction

We start considering the outcome of the droplet-droplet interaction. After
the release, the shear flow deforms and drives the droplets towards collision.
The droplet A has a positive velocity (and moves from left to right), while
droplet B has a negative mean velocity (and moves from right to left). Af-
ter the initial approaching stage, the droplets can interact, as the droplets
get closer the thin liquid film between them starts to drain. If the liquid
film reaches a critical thickness, the attractive intermolecular forces can
break it and the two droplets coalesce. The presence of a surfactant can
drastically affects the interaction, indeed the increased deformability and
the tangential stresses at the interface can hamper the draining of the thin
liquid film and alter the final interaction’s outcome [40]. The results for
different combinations of the parameters ψb and βs are reported in Fig. 3.2.
For each combination of the parameters, a filled dot identifies a coalescence
event while an empty dot identifies a non-coalescence event. Considering
the clean case, ψb = 0 and βs = 0 (blue-dot), the two droplets coalesce; the
absence of tangential stresses at the interface and the low deformability al-
low the draining of the thin liquid film and the subsequent merging. When
surfactant is added, for the lowest concentration, A-series (ψb = 0.1×10−2),
and for each βs, surfactant effects are small and the two droplets coalesce.
Increasing the bulk surfactant concentration, B-series (ψb = 0.25 × 10−2),
the surfactant influences the behaviour, and for βs = 0.75 and βs = 1.00 the
droplets do not coalesce. Further increasing the bulk surfactant concentra-
tion, C-D-E series, surfactant changes the outcome of the interaction, and
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Figure 3.2 – Outcome of the interaction. A filled dot identifies a coalescence event
while an empty dot identifies a non-coalescence event. The blue dot, located in the
point βs and ψb = 0 identifies the outcome of the interaction of two clean droplets. It
can be observed that either an increase of the surfactant bulk concentration ψb, either
an increase of the elasticity number, βs, inhibit coalescence.

regardless of the case C1, droplets slide away without coalescing. Overall,
an increase of the bulk surfactant concentration ψb, together with an in-
crease of the elasticity number βs prevent the coalescence.
To give a better insight of the droplet-droplet interaction, the time evolu-
tions of the system for two cases (B2 and C4) are reported in Figs. 3.3-3.4.
In both the figures, the column on the left, panels (a)-(c)-(e)-(g), refers to
simulation B2, βs = 0.5 and ψb = 0.25×10−2, while the column on the right,
panels (b)-(d)-(f)-(h), refers to simulation C4, βs = 1.0 and ψb = 0.5×10−2.
Time increases from the top to the bottom. In these two figures only a cen-
tral section of the channel is reported, between Lx = π/2 and Lx = 3π/2,
while the whole z axis is shown.
Starting from t = 1.0, the droplets move and get closer, Fig. 3.3(a)-(b).
The droplets deform and the surfactant migrate towards the droplets’ tips,
Fig. 3.4(a)-(b). Later, at t = 2.0, the droplets are separated by a thin
liquid film. The draining process produce two regions with high vortic-
ity ωx = ∂w/∂y − ∂v/∂z, Fig. 3.3(c)-(d). In this stage, the droplets are
more deformed, Fig. 3.3(c)-(d), and more surfactant gathers at the tips,
Fig. 3.4(c)-(d). Then, Fig. 3.3(e)-(f), the difference between the two cases
in more evident. For the case B2, the draining is faster, the fluctuations of
the vorticity ωx in the gap are lager and the gap between the two droplets is
smaller. At t = 4.0, for the case B2, the draining process is over and the two
droplets merge, Fig. 3.3(g). The surface tension forces reshape the droplet
and the surfactant is redistributed, Fig. 3.4(g). By opposite, for the case
C4, the surfactant, increasing the deformability and producing tangential
stresses at the interface, Fig. 3.4(h), slows down the draining of the thin
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liquid film and the two droplets do not coalesce.

3.3.2 Deformation during the droplet-droplet interac-

tion

To analyse the effect of the surfactant on the deformability, we compute
the deformation parameter D of the two droplets during the interaction.
The time evolution of D during the interaction for different bulk surfactant
concentrations ψb and elasticity numbers βs are reported in Fig. 3.5. Since
the two droplets evolve in time in the same way, only the deformation pa-
rameter of the droplet A has been plotted.
The five mini-panels (A-B-C-D-E) are used to show the generic configura-
tion of the system at the different times. We start by considering the results
reported In Fig. 3.5(a): we compare D(t) for different simulations, start-
ing from the clean case (blue line) up to the case with the highest amount
of surfactant, E4, (dash-dotted red line). The droplets, initially spherical
(D = 0), start to deform and move according to the shear flow. After
t = 1.5, the droplets are close enough and strongly interact, the deforma-
tion parameter reaches a maximum (mini panel A). Then, the presence of
the other droplet leads to a reduction of the deformation parameter D that
reaches a minimum for, t ' 3 (mini panel C). The minimum value of D is
smaller for the clean case (blue line) and it is larger when ψb and/or βs are
increased (from the case B2 to the case E4). This stage of the interaction is
crucial for determining the outcome, indeed higher deformations slow down
the draining of the thin liquid film. After point C, for the clean and the B2
cases, the droplets coalesce (blue/red dots) andD is not anymore computed.
Considering the cases C2-C4-E4, after t ' 3, the two droplets separate; the
deformation parameter D increases and reaches a new maximum at t ' 4.
After t ' 4, D decreases and reaches an asymptotic value, t > 5 (not re-
ported here).
In Fig. 3.5(b), The results of the case E4 are compared with the ones ob-
tained from a simulation which consider two droplets with an equivalent
deformability but without surfactant. The equivalent Ca has been com-
puted considering the problem of a single droplet in shear flow, obtaining
Ca = 0.12. The clean case with Ca = 0.10 is also reported as reference. We
can see that for Ca = 0.12, despite the clean interface, the two droplets do
not coalesce. For the cases Ca = 0.12 and E4, the time behaviour of D is
similar and the only difference is a slight delay of the case E4, probably due
at the tangential stresses at the interface. Comparing the cases Ca = 0.12
and E4 with the case Ca = 0.10, it can be observed how the minimum value
of D is smaller for the case Ca = 0.10.
Overall, from Fig. 3.5(a)-(b), it is clear how the deformability plays a cru-
cial role in determining the outcome of the interaction. The surfactant, de-
creasing the surface tension, increases the deformation of the droplets and
hampers the draining of the thin liquid film. The coalescence is favoured
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Figure 3.3 – Time evolution of the two droplets during the interaction. The left
column, panels (a)-(c)-(e)-(g), refers to simulation B2, βs = 0.5 and ψb = 0.25×10−2,
while the right column, panels (b)-(d)-(f)-(h), refers to simulation C4, βs = 1.0 and
ψb = 0.5 × 10−2. The black solid line shows the instantaneous droplet interface, iso-
contour φ = 0. Droplets coalescence occurs for simulation B2; by opposite surfactant
prevents the coalescence for the case C4. On the background, the vorticity field
ωx = ∂w/∂y − ∂v/∂z is plotted; iso-levels of ωx are reported in white.
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Figure 3.4 – Time evolution of the surfactant concentration at the droplet interface,
iso-contour φ = 0, during the droplet-droplet interaction. The left column, panels
(a)-(c)-(e)-(g), refers to simulation B2, βs = 0.5 and ψb = 0.25×10−2, while the right
column, panels (b)-(d)-(f)-(h), refers to simulation C4, βs = 1.0 and ψb = 0.5× 10−2.
For the case B2, surfactant concentration is lower, by opposite for the case C4, higher
ψb, surfactant concentration is higher. For both the cases, surfactant accumulates
at the droplets’ tips. For the case B2, after the coalescence, surface tension forces
reshape the droplet and surfactant redistributes.
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Figure 3.5 – Deformation parameter D of the droplets during the interaction. Panel
(a) compare the results obtained at Ca = 0.10 and different ψb and βs. As βs and
ψb increase, the deformation during the interaction increases as well. At t = 2.9,
the two clean droplets coalesce (blue dot), similarly for the case B2 (red dot). For
cases C2-C4-E4, droplets do not coalesce and the generic positions of the droplets are
reported in the mini-panels A-B-C-D-E. In Panel (b), the case E4 (highest amount of
surfactant) is compared against a clean case with an equivalent deformability.
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Figure 3.6 – Instantaneous position of the interface (iso-contour φ = 0) at t = 2.5 in
panel (a), and t = 3.0 in panel (b) for the simulation C2. The panels shows a close-
up view of the area highlighted by the red rectangle. In black the interface location
when the tangential stresses are computed, in red when the stresses are neglected.
Neglecting the stresses, the distance between the two droplets is smaller.

when the droplets are less deformed (clean at Ca = 0.10 and case B2) and
is prevented when the droplets are more deformed (clean at Ca = 0.12 and
cases C2-C4-E4). The time behaviours of the deformation parameter D ob-
tained are in good agreement with experiments [65] and numerical studies
[156, 187, 14]. A slight difference is present in the initial stage because in
the cases analysed here, droplets are released at a much shorter distance
than the one used in the experiments.

3.3.3 Effect of the tangential stresses at the interface

The effect of the tangential stresses at the interface on the droplet-droplet
interaction has been studied considering the case C2, βs = 0.5 and ψb =
0.5 × 10−2. For this case the droplets do not coalesce, but when the bulk
surfactant concentration ψb and/or of the elasticity number βs are reduced
a coalescence is obtained. For this border-line case, the simulation has
been recomputed considering only the non-uniform capillary stresses and
neglecting the tangential ones. Interestingly, in this new setup the two
droplets coalesce. To understand the role played by the tangential stresses,
the instantaneous positions of the interface (φ = 0) when the stresses are
considered (black) and neglected (red) have compared in Fig. 3.6(a)-(b).
At t = 2.5, Fig. 3.6(a), the difference between the position of the interfaces
is small, when the stress are neglected the two droplets are slight closer.
Later, at t = 3.0, Fig. 3.6(b), the difference between the two interfaces is
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Figure 3.7 – Contour map of the vorticity ωx for the simulation C2. In panel (a)
the simulation is performed considering the tangential stresses while in panel (b) the
stresses are neglected. The interface, iso-contour φ = 0, is coloured by the surfactant
concentration (white-low and black-high). The tangential stresses hamper the draining
of the thin liquid film and suppress the formation of high-vorticity regions. When
neglected, panel (b), the draining process is faster and regions with large fluctuations
of ωx are present (red and light-blue areas).

larger. When the tangential stresses are neglected, the two droplets are
closer, whereas when considered the draining of the thin liquid film is ham-
pered and its thickness is bigger. The different draining speed leads to a
coalescence (stresses neglected) or prevent it (stresses considered).
The effect of the tangential stresses on the droplet-droplet interaction can be
further elucidated considering the flow field in the gap between two droplets.
In Fig. 3.7(a)-(b) the instantaneous streamwise vorticity field ωx is shown
for t = 3.0. In panel (a) the tangential stress are considered while in panel
(b) are neglected. The interface, iso-contour φ = 0, is coloured by the sur-
factant concentration. The tangential stresses affect the flow in the thin
gap; considering Fig. 3.7(a), the stresses drive fluid from the point A (high
surfactant concentration-low surface tension) towards point B (low surfac-
tant concentration-high surface tension) and as well for the other droplet.
The stresses hampering the draining avoid the formation of high-vorticity
zones, indeed in the gap between the two droplets, ωx has a value similar at
the one obtained considering the mean shear flow, ωx = −1. By opposite,
when neglected, Fig. 3.7(b), draining is faster and larger fluctuations of ωx
are present (red and light-blue regions).
Overall, from the results obtained the effects of the surfactant on the interac-
tion between two droplets in shear flow have been analysed. The surfactant,
decreasing the average value the surface tension, increases the deformability
of the droplets. The increased deformability produces a flatter gap and this
reduces the draining speed of the thin liquid film. Similarly, the tangen-
tial stresses, induced by the inhomogeneous surfactant distribution, further
hinder the draining. These two effects, the increased deformability and the
tangential stresses, work in the same direction hampering the draining of
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the liquid film and preventing the coalescence. The results obtained are
in agreement with those obtained experimentally [105, 40, 181, 130] and
numerically [187] for head-on and offset collision of droplets.

3.4 Conclusions

The off-centre collision of clean and surfactant-laden droplets in shear flow
has been analysed. The time evolution of the system has been obtained
using a Phase Field Method to track the phase field and the surfactant dis-
tribution coupled with DNS of the Navier-Stokes equation.
For a fixed value of the reference capillary number, Ca = 0.10, based on the
surface tension of a clean interface, a wide range of bulk surfactant concen-
trations ψb and elasticity numbers βs have been considered. From the results
obtained a map of the outcome of the droplet-droplet interaction has been
drawn. When surfactant is absent or low bulk surfactant concentrations ψb
are considered the two droplets coalesce. By opposite, increasing the bulk
surfactant concentration ψb and the elasticity number βs, the surfactant is
able to prevent the coalescence. Indeed, the increased deformability (lower
surface tension) and the tangential stresses at the interface (inhomogeneous
surfactant distribution) hamper the draining of the thin liquid film present
between the two droplets. Both the effects, induced by the surfactant, have
a positive effect in preventing the coalescence.
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4.1 Problem definition

Turbulent flows of two immiscible and stratified fluids are often observed in
the process and petroleum industry. Important examples include oil-water
separators and hydrocarbon transportation pipelines. In these situations,
two-immiscible phases, are driven inside pipelines/channels, the interac-
tion between the two phases, and in particular the exchange of momentum
through the interface can change the behaviour of the system. The pre-
diction of the flow configuration is crucial to optimise the design of these
systems and depends on different parameters, as the relative speed of the
two phases, viscosity and density contrast and the magnitude of the inter-
facial forces. From a practical point of view, stratified condition has several
advantages: i) the power required to transfer the oil/water flow is lower
(due to the lower viscosity of water wetting a wall compared to that of the
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oil) ii) oil can be easily separated from water.
Following this idea, in the last decades, several studies have focused on this
topic and have tried to understand the stability and the performance of
such a configuration [60, 68, 73, 30]. Most of them has been performed
experimentally using very low viscosity ratios [33, 12, 33, 83, 96]. Only
recently this problem has been studied numerically [110, 185]. The use of
a numerical approach imposes a series of challenges to overcome, from the
interface description to the treatment of the different thermophysical pro-
prieties. The viscosity stratified flow has been analysed performing Direct
Numerical Simulation (DNS) of the Navier-Stokes equation coupled with a
Phase Field Method (PFM) to track the interface. Starting from the case
where only the role of the interface is considered, i.e. matched density and
viscosity, different levels of viscosity stratification have been considered.

4.2 Simulation setup

The system considered is made of a thin layer, thickness t1 = 0.15h, which
flows on the top of a thicker layer, thickness t2 = 1.85h, Fig. 4.1. The two
layers have the same density, ρ = ρ1 = ρ2, but different viscosity, η1 ≤ η2.
The setup adopted try to mimic a core annular flow where a low viscosity
fluid, as for example water, is used to help the transport of crude oil. The
use of the real water-oil viscosity ratio, λ = η1/η2 ' 10−3, would require
computational resources nowadays not available. For this reason, the values
of λ used span from λ = 1 to λ = 0.25. The two phases are separated by
an interface with surface tension σ = σ0, here assumed constant. The time
behaviour of the system can be described solving continuity, Navier-Stokes
and Cahn-Hilliard equations:

∇ · u = 0 (4.1)

∂u

∂t
+ u · ∇u =

1

Reτ
∇2u+

1

Reτ
∇ · (η(φ)(∇u+∇uT ))−∇p

+
3√
8

Ch

We
∇ · (|∇φ|2I−∇φ⊗∇φ)) (4.2)

∂φ

∂t
+ u · ∇φ =

1

Peφ
∇2(φ3 − φ− Ch2∇2φ) (4.3)

The following dimensionless groups appear:

Reτ =
ρuτh

η2
We =

ρu2τh

σ0
λ =

η1
η2

Ch =
ξ

h
Peφ =

uτh

Mφβ
(4.4)

Equations 4.3 - 4.2 and 4.1 are solved in a closed channel geometry with
dimensions Lx × Ly × Lz = 4πh × 2πh × 2h. The flow is driven along the



4.2. Simulation setup 73

streamwise direction by a constant mean pressure gradient. All the simu-
lations start from a flow field obtained from a Direct Numerical Simulation
(DNS) of a single phase fully developed turbulent channel flow at Reτ = 300.
The reference shear Reynolds number, based on the viscosity of the fluid
2, η2, has been fixed to Reτ = 300 and three values of the viscosity ratio
λ have been considered, λ = 1.00 − 0.50 − 0.25. Considering the time and
length-scale of the flow, different grid resolutions have been used. Indeed,
when viscosity ratios, λ < 1, are considered, at the top wall the local shear
Reynolds number increases and thus the grid requirements. To ensure the
resolution of all the relevant scales of the flow, different grid resolutions have
been used, from Nx ×Ny ×Nz = 512× 256× 257 for the single phase case
up to Nx × Ny × Nz = 1024 × 512 × 513 for λ = 0.25. For the worst sce-
nario, λ = 0.25, the grid spacing (based on the semi-local Reynolds number
Re∗, as defined by [132, 131, 134] for variable proprieties turbulent channel
flow) is equal to ∆x∗ = ∆y∗ = 11.41 along the homogenous directions and
∆z∗w = 0.018 along the wall-normal direction (wall). Considering the value
of the surface tension of an oil-water mixture [169, 89], the Weber number
has been set to We = 0.5. The initial condition used for φ, is a flat inter-
face located at a distance ∆z = 0.15h from the top wall. The Cahn number
has been chosen considering the coarsest grid and the requirement to have
at least 3 nodes across the interface. In order fo fulfil these requirements
Ch = 0.0185 has been adopted. Along the wall normal direction, where
the grid is finer, at least 5 nodes are always present across the interface.
Following [120], the Peclet number is set to Peφ = 162.2 In the follow-

Sim. We λ Nx Ny Nz
SP - - 512 256 257
S1 0.5 1.00 512 256 257
S2 0.5 0.50 512 256 513
S3 0.5 0.25 1024 512 513

Table 4.1 – Summary of the parameters used for the simulations. SP identifies a
single phase simulation. The cases S1-S2-S3 refer to viscosity stratified flows.

ing, the results obtained are presented using the wall units scaling system.
Starting from the dimensional analysis presented in Sec. 1.4; the new results
expressed in the wall units can be obtained as follows:

x+ = Reτx u+ = u t+ = Reτ t φ+ = φ (4.5)

These changes will affect only the channel dimensions, u and φ keep the
same values. In wall units the dimensions of the channel are L+

x ×L+
y ×L+

x =
3770×1885×600 w.u. The thickness of the two liquids layers are respectively
t+1 = 45 w.u. (top layer) and t+2 = 555 w.u. (bottom layer).
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Sim. λ (Q−QSP )/QSP 〈τ1w〉/|〈τSPw 〉| 〈τ2w〉/|〈τSPw 〉|
SP - 0.000 -1.000 1.000
S1 1.00 0.196 -0.595 1.405
S2 0.50 0.151 -0.635 1.365
S3 0.25 0.153 -0.606 1.394

Table 4.2 – Normalised flow rate (Q−QSP )/QSP for the different simulations. Q is
the flow rate of the crude oil (fluid 2). Compared to the single phase case, an increase
of the flow rate is observed. Decreasing λ, the flow rate slightly decreases. In the
4th and 5th columns the mean wall shear stress at the two walls are reported. 〈τ1w〉
refers to the top wall (fluid 1) and 〈τ2w〉 refers to the bottom wall (fluid 2). At the top
wall, the mean wall shear stress are decreased. By opposite, at the bottom wall are
increased.

crease of the mean volume flow rate is directly related to modifications in
the mean wall shear stress. The explicit computation of the wall shear stress
(normalised with the wall shear stress of a single phase flow, |〈τSPw 〉|) for
the different simulations (at the bottom and the top wall), are summarised
in Tab. 4.2. It’s important to note, that since the viscosity η2 has been
chosen as reference, the mean wall shear stress at the two walls is computed
as follows:

τ1w = λ
∂u+

∂z+
τ2w =

∂u+

∂z+
(4.6)

The superscripts used refer to top (fluid 1) and bottom wall (fluid 2). From
Tab. 4.2, it can be observed that for all the multiphase simulations the
mean wall shear stresses at the bottom wall are increased. By opposite,
since the flow is driven by a constant mean pressure gradient and thus:
|〈τ1w〉| + |〈τ2w〉| = const, at the top wall the mean wall shear stresses are
reduced.

4.3.2 Fluid velocity statistics

Linked to the observed changes of the volume flow rate and of the mean
wall shear stress, large modifications of the mean streamwise velocity are
expected. In Fig. 4.2, the wall-normal behaviour of the mean streamwise
velocity 〈u+〉 has been explicitly shown for the different λ considered. The
wall-normal coordinate is expressed in wall units, the reference position of
the interface is explicitly shown by a dashed line. Compared to the refer-
ence case of a single phase flow (thin black line) the presence of two differ-
ent fluid layers separated by a deformable interface alters the symmetry of
the profile. Larger values of the velocity characterise the thick fluid layer
(0 < z+ < 555). For the thin layer, only for λ = 1, smaller values of the
velocity characterise the first part of the thin fluid layer (570 < z+ < 600).
Considering the cases λ = 0.50 and λ = 0.25, the low viscosity leads to
larger values of the mean velocity.
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Figure 4.2 – Mean streamwise velocity profile. The continuous thin line refers to
the single phase flow. The thick lines refer to the multiphase simulations: λ = 1.00
(blue), λ = 0.50 (light blue) and λ = 0.25 (green). For all the viscosity ratios consid-
ered, larger values of the mean velocity are observed. The initial interface location is
highlighted by a dashed line.

To give a better insight of the modifications produced by the interface and
by the viscosity ratio, in Fig. 4.3, for the cases SP,S1,S3, colormaps of the
instantaneous streamwise velocity u+ on a y+ − z+ section of the channel
are reported. Compared to the single phase case, Fig. 4.3(a), the behaviour
of the multiphase flow is very different. Considering the case S1 (λ = 1.00
and Fig. 4.3(b)), the deformable interface decreases the turbulence activity
at the top wall. By opposite, since the flow is driven a mean pressure gra-
dient, at the bottom wall the activity is increased. Decreasing the viscosity
of the thin layer, case S3 (λ = 1.00 and Fig. 4.3(c)), at the top wall the
turbulence is partially restored, but the lower viscosity (higher local Re)
decreases the characteristic size of the turbulent structures. Even for this
case (S3), at the bottom wall the turbulent activity increases.
To quantify the previous observations, the Root Mean Square (RMS) of the
velocity vector fluctuations 〈RMS(u

′+)〉, 〈RMS(v
′+)〉 and 〈RMS(w

′+)〉
have been considered. The computation of these statistics in the upper
part requires the definition of non-standard decomposition and has been
omitted. Indeed, in the upper part, the averaging procedure is affected by
the contemporary presence of both the phases and by the flow perturbations
induced by the interface.
In Fig. 4.4(a) the RMS of the three velocity components are reported. The
results are computed using the wall-units scaling system, based on the ref-
erence Reynolds number Reτ . For all the three components, streamwise
(continuous line), spanwise (dashed line) and wall normal (dotted line), an
increase of the turbulence activity can be observed. Indeed the steeper
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Figure 4.3 – Colormap of the instantaneous streamwise velocity u+ in a y− z section
of the channel. Panel (a) refers to the single phase case (SP), panel (b) to the case
S1, λ = 1.00, and panel (c) to the case S3, λ = 0.25. The interface, iso-contour φ = 0,
is reported with a white line. Compared to the single phase, the flow is asymmetric,
a decrease of the turbulent activity can be observed for λ = 1.00. Decreasing the
viscosity ratio, λ = 0.25, turbulence is partially restored and the structures are smaller.

gradient of the mean velocity 〈u+〉 enhances the production of turbulent
kinetic energy. In addition, the peak of 〈RMS(u

′+)〉 is shifted towards the
bottom wall (from z+ ' 12 to z+ ' 10). The results obtained, following
[132, 131, 134], can be rescaled using the semi-local Reynolds number, Re∗,
defined as follows:

Re1∗ = (Reτ/λ)
√

|〈τ1w〉|/|〈τSPw 〉| Top wall (4.7)

Re2∗ = Reτ

√

|〈τ2w〉|/|〈τSPw 〉| Bottom wall (4.8)
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Sim. λ Re1∗ Re2∗
SP - 300 300
S1 1.00 363 236
S2 0.50 351 480
S3 0.25 352 930

Table 4.3 – Values of the semi-local Reynolds number at the two walls. The super-
script 1 identifies the bottom wall and the superscript 2 the top wall. At the bottom
wall, the increased mean wall shear stress marginally increase Re∗. By opposite, at
the top wall, mean wall shear stress are reduced but the low viscosity leads to an
increase of Re∗ (λ = 0.50 and λ = 0.25).

The semi-local Reynolds accounts for the change in the friction velocity and
in the viscosity at the two walls. The values of Re∗ for the different cases
have computed and are reported in Tab. 4.3 Using the semi-local scaling
system, the different quantities are rescaled as follows (for the bottom wall):

x∗ =
Reτ
Re∗

x+ u∗ =
Reτ
Re∗

u+ (4.9)

In Fig. 4.4(b) the rescaled RMS are reported. It can be observed that after
the rescaling the results are in good agreement with the ones obtained from
a single phase flow (black line). The slight difference between the profiles is
due to a Reynolds number effect, since the single phase statistics refers to a
lower shear Reynolds number, Reτ = 300. Overall, at the bottom wall, the
turbulence is not affected by the interface and the lower behaves as a single
phase but with a slight larger Reynolds.
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Figure 4.4 – Root Mean Square (RMS) of the velocity fluctuations in the lower part
of the channel. In the panel (a) the results are obtained using the wall units scaling
system, based on the reference Reynolds number Reτ . In the panel (b) the results are
shown using the semi-local scaling system, based on the semi-local Reynolds number
Re1

∗
. Streamwise component (continuous line), spanwise component (dashed line) and

wall-normal (dotted line). The increase of the mean wall shear stress at the bottom
wall increases Re1

∗
. Rescaling the results, panel (b), a good agreement with the single

phase statistics is found.
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4.3.3 Wall shear stress distribution
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Figure 4.5 – Probability Density Function (PDF) of the normalised wall shear stress
τ ′w. Panel (a) refers to λ = 1.00, panel (b) refers to λ = 0.25. A thin black line
identify the results obtained from a single phase case at the same reference Reτ . At
the bottom wall, for both the cases, the behaviour is similar at the single phase case.
At the top wall, for λ = 1.00, the interface modifies the shape of the PDF, the most
probable events occurs at. For λ = 0.25, the turbulence at the top wall is recovered
and the PDF shown a behaviour similar at the single phase profile.

To characterise the influence of the liquid-liquid interface on the near wall
turbulence, the Probability Density Function (PDF) of the wall shear stress
at the top and bottom wall have been computed, Fig. 4.5. In particular, we
consider the normalised deviations of the wall shear stress with respect to
the mean value at the corresponding wall, i.e. τ ′w = (τw − 〈τw〉)/〈τw〉. In
Fig. 4.5(a)-(b), the PDFs at the top and at the bottom wall for λ = 1.00
(blue) and λ = 0.25 (green) are reported. A thin continuous line identifies
the PDF obtained from a single phase flow. For all the cases reported, the
PDF is asymmetric, with the most probable value occurring for τ ′w ' −0.1
(top wall, λ = 1.00) or τ ′w ' −0.3 (other cases). In addition, positive nor-
malised wall shear stresses being larger and more probable than the negative
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ones [97, 183, 76, 61].
Larger modifications are observed at the top wall for λ = 1.00; the occur-
rence of larger wall shear stress fluctuations of τ ′w is reduced. This indicates
that the wall shear stress fluctuations are largely reduced by the liquid-liquid
interface, which acts as a barrier to the turbulent generation cycle (hence
reducing the wall shear stress fluctuations). These interface-induced modifi-
cations are weaker when λ = 0.25 is considered. The low viscosity promotes
a recover of the near-wall turbulence and the occurrence of larger wall shear
stress fluctuations is increased. Considering the bottom wall, for both the
cases, only few differences are observed between the multiphase and single
phase case, a slight increase of the probability of large fluctuations can be
observed. The increased occurrence of large shear stress fluctuations can be
linked to the different values of the semi-local shear Reynolds number. This
behaviour reported is in good agreement with the findings of [76, 107, 21].

Lastly, the presence of back-flow regions (areas in which τw and 〈τ1/2w 〉 have
different sign and thus τ ′w < −1) can be observed. The occurrence of these
events increase with Re∗ [107]. A qualitative picture of a back-flow region
close to the bottom wall is shown in Fig. 4.6. The figure reports the instan-
taneous streamlines on a x+-y+ slice located at z+ = 0.3 w.u. The shape
of this area is circular [107] and has an extension of 20 w.u.
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Figure 4.6 – Back-flow region located near the bottom wall. The section refers to a
x+-y+ slice located at 0.6 w.u. from the wall. The instantaneous streamlines based
on the spanwise and streamwise velocity components are used to visualise the flow.
On the background the streamwise velocity u+ is shown.

4.3.4 Interface-near wall turbulence interactions

The mechanism, by which the interface interacts with the near-wall tur-
bulence, can be elucidated further examining the instantaneous interface
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Figure 4.7 – Joint Probability Density Function (joint PDF) between the normalised
wall shear stress τ ′w at the top wall and the interface elevation f+. Panel (a) refers
to λ = 1 and panel (b) to λ = 0.25. Decreasing λ, the peak move towards τ ′w ' 0.35,
f+ ' 20 and the shape become rounded. Furthermore the slopes at the bottom and
at the right sides are increased.

elevation and the wall shear stress at the top wall. A qualitative picture
showing the behaviour of τ ′w and f+ is given in Fig. 4.7.
In panels (a)-(c), the dark-blue colour identifies a negative interface eleva-
tion, f+, (interface far from the wall) vice versa for the yellow (interface
close to the wall). In panels (b)-(d), the dark-blue colour identifies negative
wall shear stress fluctuations, τ ′w < 0, and vice versa for the yellow. Consid-
ering the panels (a)-(b), λ = 1.00, a correlation between positive interface
elevations and negative wall shear stress fluctuations can be observed. When
the case λ = 0.25 is considered, panels (c)-(d), the correlation is less clear.
To give these observations a more quantitative slant, the joint Probability
Density Function of the normalised wall shear stress τ ′w at the top wall and
the interface elevation f+ has been computed for the cases λ = 1, Fig. 4.8(a)
and λ = 0.25, Fig. 4.8(b). Considering λ = 1, the results seem to confirm the
qualitative behaviour previously observed. An asymmetry can be noted, in
particular in the 4th quadrant (f+ > 0 and τ ′w < 0). The interface, moving
towards the wall, induces negative wall shear stress fluctuations. Decreasing
the viscosity of the thin liquid layer, λ = 0.25, these interactions are weaker
and indeed the joint PDF is less asymmetric. For this case, as seen before
in Fig. 4.5, the low viscosity increases the wall shear stress fluctuations, the
turbulence is partially restored and the interface-wall turbulence interaction
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Figure 4.8 – Joint Probability Density Function (joint PDF) between the normalised
wall shear stress τ ′w at the top wall and the interface elevation f+. Panel (a) refers to
λ = 1.00 and panel (b) to λ = 0.25. Decreasing λ, the peak move towards τ ′w ' 0.35,
f+ ' 20 and the shape become rounded. Furthermore the slopes at the bottom and
at the right sides are increased.

is weaker.

4.4 Conclusions

Using direct numerical simulation of Navier-Stokes and Cahn-Hilliard equa-
tions, a viscosity stratified flow has been analysed. A thin low viscosity layer
is used to reduce the friction loss and increase the flow rate. For the range of
viscosity ratios λ considered, the drag reduction (DR) performance is only
slightly affected by the viscosity ratio λ.
The interaction between the interface and the near-wall turbulence struc-
tures plays a crucial role. For the case λ = 1.00, the interface is able to
largely annihilate the near-wall turbulence at the top wall. Consequently,
the mean wall shear stress on this wall are reduced and since the flow is
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driven by a constant mean pressure gradient the flow rate increases. De-
creasing the viscosity of the thin layer (decreasing λ) the interface-near wall
turbulence interaction is weaker, near-wall turbulence is partially recov-
ered. Despite this, the low viscosity balances out the turbulence recovery
and the mean wall shear stress are similar at the ones obtained for the case
λ = 1.00.
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Conclusions and further

developments

Direct Numerical Simulation of multiphase system have been performed to
characterise the interactions between deformable interface and turbulence.
In Chap. 2, the time behaviour of a swarm of large deformable drops re-
leased in a turbulent channel flow has been analysed. Different values of
the surface tension and of the viscosity ratios between the two phases have
been considered. The drops, interacting with the flow and with the neigh-
bour drops, coalesce and breakup, after an initial transient an equilibrium
between the two phenomena is observed. The steady-state number of drops
and their average dimension do not depend only on the surface tension,
but also the internal viscosity play a crucial role. The role played by the
internal viscosity is particularly enhanced when low surface tension values
are considered. The mean drop diameter, has been compared against the
results obtained by [69, 26, 179, 180]. For λ < 1, case considered in the
experiments, a good agreement has been found.
In Chap. 3, the effects of the surfactant in the interaction between two col-
liding droplets in a shear flow has been considered. The interface shape and
the surfactant concentration have been tracked using a phase field method
approach. Starting from a two-order parameters Ginzburg-Landau free en-
ergy functional [171, 52], the time behaviour of φ (phase distribution) and
ψ (surfactant concentration) can be efficiently described. The framework
proposed, coupled with the Navier-Stokes equation is able to accurately de-
scribe the flow-interface-surfactant interactions. Considering the problem of
two colliding droplets in shear flow, the surfactant, increasing the droplet’s
deformability, and giving rise to tangential stress along the interface can in-
hibit the coalescence. The mechanism is effective only when the surfactant
concentration and the elasticity number are large enough.
In Chap. 4, the turbulent flows of two immiscible and viscosity stratified
fluids has been considered. The setup adopted mimics a core annular flow
where a low viscosity fluid, as for example water, is used to help the trans-
port of crude oil [33, 12]. The interactions between the interface and near-
wall turbulence structures play a crucial role and even when the viscosity of
the two phases is matched, an increase of the flow rate is observed (up to '
16%). In particular, the interface is able to modulate the turbulence and a
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decrease of the mean wall shear stress is observed. Decreasing the viscosity
ratio, the turbulence-interface interactions are weakened but at the same
time the low viscosity promote a further increase of the flow rate. The sum
of these two effects leads to an increase of the flow rate for all the range
of viscosity ratio analysed. The increase is only slightly influenced by the
viscosity ratio.
Overall, in this thesis, the turbulence-interface interactions have been anal-
ysed in different flow configurations. The work has been performed with
the aid of Direct Numerical Simulation (DNS) coupled with a Phase Field
Method (PFM) to track the interface and the surfactant concentration. The
mathematical framework proposed is extremely powerful and can accurately
describe the behaviour of turbulent multiphase flow.
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a large deformable bubble, Acta Mechanica, in preparation.

J3 Soligo, G., Roccon, A. and Soldati, A. Phase Field Method to pre-
dict coalescence of clean and surfactant-laden droplets, Journal of
Computational Physics, in preparation.

J4 Ahmadi, S., Roccon, A., Zonta, F. and Soldati, A. (2017). Turbulent
drag reduction by a near wall surface
tension active interface, Flow, Turbulence & Combustion, submitted.

J5 Ahmadi, S., Roccon, A., Zonta, F. and Soldati, A. (2017). Tur-
bulent drag reduction in channel flow with viscosity stratified fluids,
Computers & Fluids, in press.

J6 Roccon, A., De Paoli, M., Zonta, F. and Soldati, A. (2017). Viscosity-
modulated breakup and coalescence of large drops in bounded turbu-
lence, Physical Review Fluids, Volume 2(8).

A.2 Referred conferences

C1 Roccon, A.†, M. De Paoli, Zonta, F. and Soldati A., (2017) Viscosity-
modulated breakup and coalescence of large drops in bounded tur-
bulence APS-DFD Annual Meeting, Denver (CO, USA), November
19-21, 2017.
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C2 Ahmadi, S., Roccon, A., Zonta, F. and Soldati A.†, (2017) Turbu-
lent annihilation in surface tension stratified flow APS-DFD Annual
Meeting, Denver (CO, USA), November 19-21, 2017.

C3 Soligo, G.†, A. Roccon and Soldati A., (2017) Turbulence inter-
actions with large bubbles APS-DFD Annual Meeting, Denver (CO,
USA), November 19-21, 2017.

C4 M. De Paoli†, A. Roccon and Soldati A., (2017) A phase-field method
to analyze the dynamics of immiscible fluids in porous media APS-
DFD Annual Meeting, Denver (CO, USA), November 19-21, 2017.

C5 Roccon, A., Zonta, F.† and Soldati A., (2016) Viscosity-modulated
breakup and coalescence of large drops in bounded turbulence TSFP10,
Chicago (IL,USA), July 6-9, 2017.

C6 Roccon, A., Zonta, F. and Soldati A.†, (2016) Viscosity-modulated
breakup and coalescence of large drops in bounded turbulence ICNMMF-
III, Tokyo (Japan), May 26-29, 2017.

C7 Roccon, A.†, Zonta, F. and Soldati A., (2016) Viscosity-modulated
breakup and coalescence of large drops in bounded turbulence PRACE
Days 17, Barcelona (Spain), May 15-18, 2017.

C8 Roccon, A., Zonta †, F. and Soldati A., (2016) Viscosity-modulated
breakup and coalescence of large drops in bounded turbulence ETPFGM53,
Gdansk (Poland), April 22-24, 2017.

C9 Roccon, A.†, Zonta, F. and Soldati A., (2016) Energy Transfers in
channel flow with viscosity stratified fluids EDRFCM, Monte Porzio
Catone (Italy), April 3-6, 2017.

C10 Roccon, A., Zonta †, F. and Soldati A., (2016) Viscosity-modulated
breakup and coalescence of large drops in bounded turbulence Aus-
trian HPC Metting, Grundlsee (Austria), March 1-3, 2017.

C11 Roccon, A.†, Zonta, F. and Soldati A., (2016) Viscosity-modulated
breakup and coalescence of large drops in bounded turbulence APS-
DFD Annual Meeting, Portland (OR, USA), November 20-22, 2016.

C12 Ahmadi, S., Roccon, A., Zonta, F. and Soldati A.†, (2016) Turbulent
drag reduction in channel flow with viscosity stratified fluids, APS-
DFD Annual Meeting, Portland (OR, USA), November 20-22, 2016.

C13 Roccon, A.†, Zonta, F. and Soldati A., Turbulent drag reduction
in channel flow with viscosity stratified fluids, Ercoftac Meeting, Linz
(Austria), November 13, 2016.
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C14 Roccon, A.†, Zonta, F. and Soldati A., (2016) Coalescence and
break-up of large, deformable droplets with different viscosities in tur-
bulent channel flow. International Conference on Multiphase Flow,
Florence (Italy), May 22-27, 2016.

C15 Roccon, A.‡, Zonta, F. and Soldati A., (2016) Coalescence and
break-up of droplets, Poster Session, International Conference on Mul-
tiphase Flow, Florence (Italy), May 22-27, 2016.

C16 Roccon, A.‡, Zonta, F. and Soldati A., (2016) Coalescence and
break-up of droplets, Poster Session, PRACE Days 2016, Prague
(Czech Republic), May 10-12, 2016.

C17 Roccon, A.†, Zonta, F. and Soldati A., (2015) Coalescence and
break-up of large, deformable droplets with different viscosities in tur-
bulent channel flow, Ercoftac Meeting, Ljubljana (Slovenia), Novem-
ber 13, 2016.

† Presentation speaker. ‡ Poster speaker.

A.3 HPC projects

P1 Viscosity-modulated breakup and coalescence of large drops

in bounded turbulence, Project ID: DD VIMODETU, Vesta, Ar-
gonne National Laboratory, Chicago (USA), 2017.

P2 Viscosity stratified fluids in turbulent channel flow, Project
ID: 71026, VSC3 (Tier 0), Vienna (Austria), 2017.

P3 VIscosity STRAtified Fluids in TUrbulent channel flow - VI-

STRATU, Project ID: ISCRA B HP10BCFP82, CINECA Super-
computing Centre, Marconi (Tier 0), Bologna (Italy), 2017.

P4 INfluence of VIscosity on the dinamics of DEformable droplets

in TUrbulence - INVIDETU, Project ID: ISCRA B HP10B9TXF1,
CINECA Supercomputing Centre, Marconi (Tier 0), Bologna (Italy),
2016.

P5 SPInodal DEcomposition in multiphase flows with large vis-

cosity Ratio - SPIDER, Project ID: ISCRA C HP10CFQYYH,
CINECA Supercomputing Centre, Fermi (Tier 0), Bologna (Italy),
2015.

A.4 Advanced courses

A1 Argonne Training Program On Extreme-Scale Computing,
Q-Center, Chicago (IL,USA), August, 2017.
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A2 Introduction to OpenMP, TU Wien (Austria), June, 2017.

A3 Introduction to MPI, TU Wien (Austria), May, 2017.

A4 Wall-Bounded Turbulence, International Centre for Mechanical
Sciences (CISM), Udine (Italy), July, 2016. Coordinated by: Prof. S.
Pirozzoli.

A5 Small Scale Modeling and Simulation of Turbulent Multi-

phase Flows, International Centre for Mechanical Sciences (CISM),
Udine (Italy), July, 2015. Coordinated by: Prof. S. Vincent and Prof.
J. L. Estivalezes.

A6 Mixing and Dispersion in Flows Dominated by Rotation and

Buoyancy, International Centre for Mechanical Sciences (CISM),
Udine (Italy), July, 2015. Coordinated by: Prof. H. Clercx and Prof.
G. J. van Heijst.

A7 Dynamic of Bubbly flows, International Centre for Mechanical
Sciences (CISM), Udine (Italy), June, 2015. Coordinated by: Prof.
F. Risso and Prof. C. Sun.

A8 Advanced CFD techniques for turbulent flows: theory and

applications, Universiyt of Udine, Udine (Italy), May, 2015. Coor-
dinated by: Prof. U. Piomelli (Queen’s University, Canada).
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