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Abstract 

 

The purpose of this PhD thesis is the study of catalytic methane oxidation over Pd-based 

catalysts supported on different CeO2-based oxides for their application on natural gas fuelled 

vehicles (NGVs). This research work has been carried out with the financial support from Ford 

Motor Company (Dearborn, MI, USA) under the University Research Project award "Three-

Way Catalyst Materials for Compressed Natural Gas Vehicles".  

Pd supported on CeO2-based oxides are recognized as the most promising catalytic materials 

for methane oxidation. The objective of the thesis work was to address the study of new 

catalytic materials supported on different CeO2-based oxides and prepared by single-step 

solution combustion synthesis (SCS). Particular attention was dedicated to the study of water 

poisoning, a key issue in designing catalytic materials for NGVs, as water is known to strongly 

deactivate Pd-based catalysts. 

The first part of the work was dedicated to the investigation of the catalytic behavior of 

Pd/CexZr1-xO2 catalysts for CH4 oxidation in lean atmosphere: the performance of each sample 

was evaluated both in temperature programmed and steady-state conditions in the presence 

and in the absence of steam and compared with analogues compositions prepared by 

traditional incipient wetness technique (IW). In order to explain the difference in terms of 

catalytic activity between SCS and IW samples, a relevant part of the work was focused on the 

study of their redox properties, and in particular to the characterization of PdO-Pd-PdO phase 

transformation. The results indicate that solution combustion synthesized Pd/CexZr1-xO2  

catalysts are not only more active than their IW counterparts, but also display an improved 

resistance to hydrothermal ageing. The results also highlighted the beneficial use of 

Ce0.75Zr0.25O2 mixed oxide to reduce the deactivation observed in presence of water vapor. Once 

the effectiveness of solution combustion synthesis to prepare active and stable Pd-based 

catalysts was assessed, other supports were investigated. Pd supported on CeO2-SiO2 and 

CeO2-Al2O3 mixed oxides were prepared to study the effect of SiO2 and Al2O3 addition on the 

redox properties and catalytic activity of Pd/CeO2. Finally, the most promising materials were 

tested also in stoichiometric conditions, varying oxygen/methane ratio in the feed, with the 

aim to evaluate the effect of gas feed composition on their catalytic performance and obtain 

preliminary results on their catalytic behavior as three-way-catalysts. 

Keywords: CH4 oxidation, Pd/CeO2-ZrO2, water poisoning, Pd-PdO transformation, solution 

combustion synthesis 
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Chapter 1 

 
 

Natural gas fuelled vehicles (NGVs) and related 

after-treatment technology 
 

1.1. After-treatment technology of NGVs 

It is well established that natural gas, with CH4 being its main compound, is one of the best 

clean alternatives to traditional fuels. The use of methane in spark ignition engines allows to 

reduce polycyclic aromatic hydrocarbons (PAH), PM10 and CO2 emissions up to 25% by having 

the highest H/C ratio. Even though NGVs are considered a good choice in terms of 

environmental impact, they still present a critical point: unburned methane resulting from the 

incomplete combustion reaction is in fact a powerful greenhouse gas, with a Global Warming 

Potential (GWP) of about 20 times that of CO2 [1]. In order to reduce methane emissions in 

atmosphere, an exhaust gas after treatment technology must be applied. Catalytic abatement 

of noxious compounds in exhaust stream represents a powerful tool to reduce pollutant 

emissions and it is already employed successfully in gasoline and diesel powered engines. The 

composition of exhaust gases is closely related to the air/fuel ratio (A/F), varying between 

lean-burn and stoichiometric engines. In lean-burn engines, an excess of air is employed 

during the combustion process with an A/F value close to 23.5 [2]. The high O2 available in the 

combustion chamber guarantees a low emission of CO and HC but high NOx emissions. In 

lean burn engines, a properly optimized oxidation catalysts (OC) is able to significantly reduce 

engine-out emissions of HC, while deNOx system as Selective Catalytic Reduction (SCR) by 

ammonia/urea or NOx trap are added for the NOx abatement [3]. The stringent NOx emission 

standards from Euro V to VI have determined the prevalence of stoichiometric technology [4]. 

Stoichiometric engines operating with A/F ratio close to 17.2 allow to reduce NOx emissions 

but with an increase of CO due to less O2 available. Stoichiometric powered vehicles equipped 

with water cooled exhaust gas recirculation (EGR) and three-way catalytic converter (TWC) 

are able to meet stringent emission regulations [5, 6, 7]. The three-way catalytic system is able 

to realize simultaneously the reduction of Non Methane Hydrocarbons (NMHC) and NOx 

emissions up to 95% [6, 8].  

Although the after treatment of exhaust gases is well established for diesel and gasoline 
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engines, this technology has to be optimized for natural gas mobile applications.  The exhaust 

gas stream from NGVs contains low amount of CH4 (500-1000 ppm), large amount of steam 

and CO2 (10-15%) and traces of SOx and NOx compounds with output temperature less than 

550°C [9].  

Among other hydrocarbons, the oxidation of methane requires more energy (450 kJ/mol) due 

to the high stability of CH4 molecule [10, 11]. Figure 1.1 illustrates the light-off curve of NMHC 

and CH4 where the conversion is plotted against temperature. Within the operating window of 

NGVs the conversion of NMHC has already reached 100 %, whereas the abatement of CH4 

requires higher temperatures.  

 
Figure 1.1: light off curves for methane and NMHC in comparison with NGV exhaust gas 
temperatures [11] 

In order to abate the residual methane at the tailpipe, an oxidation catalyst with high activity 

at low temperatures is required, also due to the large amount of methane produced during 

cold-start [12]. 

Two families of catalysts for complete methane oxidation have been studied: noble metals (Pd, 

Pt, Rh) and transition metal oxides such as Cu and Co. Transition metal oxides, although 

cheaper than noble metals, are less active at low temperatures and require much higher metal 

loading (15-30 wt.%). 

1.2. Palladium based catalysts 

Palladium-based catalysts are renowned to be the most active for CH4 combustion with low 

light-off temperature [13]. The performance of Pd catalysts is strongly related to the oxidation 

state of noble metal during the reaction: several experimental [14, 15, 16] and theoretical 

studies [17, 18, 19, 20] have been dedicated to the investigation of the active sites and reaction 

mechanism during CH4 oxidation, even though this topic is still much debated. It is generally 

accepted that methane oxidation over Pd-based catalysts follows a Mars and van Krevelen 



 

13 
 

redox mechanism where the dehydrogenation of CH4 is considered the rate-limiting step. The 

difficulty in defining the reaction mechanism is related to the different PdO species that can 

be generated at varying synthesis method, oxygen partial pressure, temperature and thermal 

treatment [15, 21, 22, 23, 24]. In the earliest papers, most of the authors indicated palladium 

oxide (PdO) as the active phase for methane oxidation at low temperature, while Pd was 

considered less active or the inactive form [24, 25]. Demoulin et al. suggested that the lattice 

oxygen of PdO crystallites is consumed by CH4; this process creates oxygen vacancies in PdO 

crystallite that could be re-oxidized from O2 of the gas phase or from the bulk, regenerating 

palladium oxide. They also emphasized the importance of temperature and oxygen partial 

pressure in the reaction pathway [25].  

Some authors proposed that PdOx (an intermediate phase between metal and stoichiometric 

oxide) or sites consisting of oxygen atoms (surface PdO) and oxygen vacancies (surface Pd) 

play a key role in methane activation. Iglesia's research group proposed a complex reaction 

mechanism where oxygen from the gas phase adsorbed on oxygen vacancy, dissociating in O 

atoms; the dissociative adsorption of CH4 occurs over coordinatively unsaturated Pd site (cus-

Pd) on PdO crystallites, then H-atom is removed from CH4 by the neighbor Pd-O site with the 

formation of Pd-OH. The oxygen vacancies on PdO surface are regenerated at the end of 

reaction through a recombination of hydroxyl groups [26, 27]. Hellmann's research group by 

DFT calculations coupled with in situ surface X-ray diffraction (SXRD) measurements 

calculated lower activation energies for methane dissociation when CH4 adsorbed over cus-Pd 

sites, where Pd is coordinated to only three oxygen atoms, or on metallic Pd, concluding the 

importance of these two sites to activate efficiently  methane molecule [17]. Kinnunen et al. by 

experimental [15] and DFT studies [20] concluded that the simultaneous presence of Pd and 

PdOx are able to lowered light-off of methane. Again, by operando Raman spectroscopy and in 

situ CO-DRIFT experiments, Xu et al. argued that both Pd and PdOx phases are needed to gain 

high catalytic activity in lean-burn conditions: at temperature below 673 K CH4 oxidation 

mainly proceeds over metallic Pd sites; as the temperature increases the reaction takes place 

over PdOx, generated from the progressive oxidation of Pd [28]. The reaction mechanism 

during CH4 oxidation is not straightforward to establish because of a continuous change in the 

oxidation state of Pd throughout the reaction, where different variables affect the oxidation 

state of Pd. This aspect is still matter of debate, but there are some points that seem to be clear 

in the literature.  

Figure 1.2 (left) shows a typical light-off curve on Pd supported catalyst, where CH4 conversion 

is plotted against temperature.  
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Figure 1.2: light-off curve (left) and oxygen release/uptake profile (2 vol.% O2) (right) for Pd-based 
catalysts; solid line: heating; dotted line: cooling. 

During the heating ramp a sharp increase of the conversion is observed in the low-medium 

temperatures when the reaction starts and it is in kinetically controlled regime. After a further 

increase in temperature, a stable conversion is observed where the catalytic reaction is 

controlled by mass transfer.  At 1050 K (Figure 1.2 (left)) a drop in catalytic activity is detected 

due to the phase transition of PdO to metallic Pd, less active in methane oxidation [9]; in the 

cooling part of the cycle (Figure 1.2 dotted line) a sharp reduction in activity is observed due to 

the presence of metallic Pd, reaching a minimum in CH4 conversion at 956 K. Only below this 

temperature a progressive increase of catalytic activity is observed due to Pd re-oxidation, 

reaching a maximum value, to decrease again upon cooling [29]. PdO-Pd phase transition is a 

reversible process but occurs with a large hysteresis gap (  100 K) causing a severe 

deactivation of catalytic performance in this temperature window. The dynamic of PdO ↔ Pd 

transformation is commonly investigated by Temperature Programmed Oxidation (TPO) 

experiments where the catalyst is subjected to a flow of O2/N2 gas mixture. Figure 1.2 (right) 

shows a typical TPO profile of 1% Pd-supported catalyst in 2 vol.% O2/N2 where oxygen 

concentration is continuously monitored during the heating/cooling ramp. In the heating 

branch, a large O2 release peak (positive peak) is observed due to PdO decomposition to 

metallic Pd; while an O2 uptake peak (negative peak) due to the regeneration of PdO is 

observed during the cooling step reaching a minimum at 926 K. From TPO experiments it is 

evident that PdO-Pd transition occurs with a thermal hysteresis of about 100 K. In this 

temperature window PdO is not re-formed, remaining in metallic state.  

Many papers have investigated PdO decomposition and its re-formation through Thermal 

Gravimetric Analysis (TGA) [30, 31, 32] and Temperature Programmed experiments [33, 34, 35], 
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depicting a complex redox behavior of Pd catalysts. McCarty et al. observed during the heating 

ramp a two-step oxygen release peak consistent with two different kinds of PdO species: the 

peak at lower temperature was attributed to the decomposition of bulk PdO, whereas the 

second one to complexes near the surface [35]. The multistage PdO decomposition was also 

observed by Groppi and co-workers on Pd catalysts supported on La2O3 stabilized alumina: 

they found three separate steps associated to different thermal stability of PdO whose 

distribution was dependent on oxygen partial pressure [34]. They ascribed the peak at higher 

temperature to PdO species in strong interaction with the support. Some authors observed 

that the qualitative profile of PdO reduction was strongly related to the thermal history of the 

catalyst [33, 35]. Colussi et al., in fact, observed that the O2 release/uptake profile during TPO 

changed with the conditions of previous PdO re-oxidation, with the formation of intermediate 

PdOx [35], already detected by Farrauto et al. [30]. In a recent publication, Chen and co-

workers from the results collected by TG and structural investigation have proposed a core-

shell mechanism [32]. They suggest that the reduction of PdO is initiated at the surface, 

according to the previous results reported by Datye et. al. [29]. The thin shell formed by 

metallic Pd might stabilize the PdO core, shifting the decomposition of residual PdO to higher 

temperature [32].  

The re-oxidation of Pd to PdO is a quite complex process and several mechanisms have been 

proposed to explain the hysteresis behavior. Mc.Carty et al. [35] suggested that metallic Pd is 

not fully oxidized during the cooling step likely due to the formation of chemisorbed oxygen 

layer. This passive layer pushes PdO re-formation to lower temperatures and hinders the 

nucleation and growth of stoichiometric PdO crystallites [35]. 

Datye et al. proposed the random formation of polycrystalline PdO species in contact with 

metallic Pd particles as the most predominant mechanism during PdO re-formation [29]. 

Groppi et al. from in-situ XRD experiments got to similar results with a possible involvement 

of a shrinking core mechanism. A deep study on the dynamic of PdO-Pd transformation has 

been carried out by Colussi et al.: they found the presence of intermediate PdOx throughout 

TPO experiments as a precursor for PdO formation, and suggested that Pd re-oxidation is a 

kinetically limited process [35].  

The dynamic PdO-Pd transition is strongly affected by the nature of the support: the addition 

of rare earth oxides (REO) into common alumina-supported catalysts is able to enhance PdO 

stability in the high temperature region compared to bare alumina-supported materials [37] 

[35, 38]. Among REO group, cerium oxide certainly plays a key role in the automotive 

pollutants abatement. CeO2 behaves in fact like an oxygen buffer, releasing O2 in rich reaction 

conditions and storing O2 in lean atmosphere through the dynamic transition Ce4+ ↔ Ce3+. In 
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addition, it is able to promote metal dispersion and increase the thermal stability of the 

alumina support [39]. The effect of CeO2 as support on the thermal decomposition of PdO was 

described at first by Farrauto et al. [31]. They found that the use of CeO2 promoted PdO re-

formation at higher temperatures, therefore reducing the hysteresis gap. Groppi et al. got to 

the same conclusions observing that the threshold of Pd re-oxidation was strongly dependent 

on the support with a shift of Pd re-formation to high temperature for CeO2-doped material 

[40]. A faster Pd re-oxidation on Ce-doped catalyst was observed by Colussi et al.: during TPO 

experiments on Pd/ceria-alumina Pd re-oxidation occurred in two separate steps with the 

larger peak at higher temperature associated to the re-oxidation of Pd particles in contact with 

CeO2 and the second at lower temperature associated to Pd particles in contact with alumina 

[35]. Ceria, in fact, is able to provide lattice  oxygen for PdO regeneration through the redox 

couple Ce4+/Ce3+ [35, 41, 37], with a positive effect on the activity loss during the light off [40, 

42]. For these reasons its use has been proven to be beneficial for Pd-based methane 

combustion catalysts. 

1.2.1. Water poisoning of Pd catalysts 

Despite their high performance, Pd catalyst are known for their high susceptibility to water 

vapor and sulfur-containing compounds: the presence of steam and SOx dramatically 

deactivates the catalytic material with a severe reduction of its performances [9, 13, 43, 44]. In 

natural gas fuelled vehicles sulphur poisoning can be considered negligible compared to that 

caused by steam due to the low concentration of SOx (< 1 ppm), while water vapor is present 

up to 15 vol %. 

The water effect on Pd based catalysts depends on several factors such as temperature, catalyst 

composition and metal-support interaction. Water has an inhibition/deactivation effect on Pd 

catalysts and the level of inhibition/deactivation is temperature-dependent. A strong 

inhibition effect is detected in the low-T region (< 500°C): some authors attributed the catalyst 

deactivation to the formation of inactive Pd(OH)2 due to the reaction of PdO with water 

molecules [45]. Other researchers proposed an alternative explanation: the shift of methane 

activation to higher temperatures in presence of water is attributed to the competitive 

adsorption between CH4 and H2O [46, 47, 48]. These authors suggested that at low-medium 

temperatures the desorption of H2O produced during reaction is the rate limiting step; the 

presence of H2O into the gas feed would make this step even slower with a decrease of 

catalytic performance [46]. Above 500°C the sintering of metal particles and/or collapse of the 

support with encapsulation of Pd might occur resulting in a reduction of Pd dispersion, and 

this seems to be the main reason for the deactivation at high temperature, with or without the 

presence of water [10, 49, 50].  
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Several papers have investigated the behavior of standard Pd/Al2O3. which exhibits a strong 

deactivation in wet atmosphere due to the high coverage of hydroxyls groups on Al2O3 and 

growth of particle size during reaction [51, 52, 53, 54].  

One method to increase the resistance to H2O-poisoning is the use of bimetallic Pd-Pt 

catalysts. The introduction of Pt improves the stability of the monometallic Pd/Al2O3, strongly 

dependent on the molar ratio Pd:Pt, but at the expenses of a lower catalytic activity [55]. 

Another approach to reduce the deactivation consists in the use of reducible and/or with high 

oxygen mobility supports. Schwartz and co-workers in fact ascribed the inhibition effect to a 

reduction of oxygen exchange between metal and support due to the build-up of hydroxyls 

groups on the catalytic surface [48, 56]. Some authors report that ceria-zirconia mixed oxides 

or zirconia can prevent the strong deactivation observed on alumina-supported catalysts [56, 

57].  

Ceria-zirconia solid solutions (CexZr1-xO2) are widely exploited in TWC due to the 

enhancement of oxygen storage capacity (OSC) compared to pure ceria. The incorporation of 

Zr4+ into CeO2 improves the redox properties of CeO2 through the promotion of Ce4+ ↔ Ce3+ 

transition. Furthermore, the presence of zirconia increases the thermal stability of CeO2 in the 

high temperature region [39, 58].  

An interesting suggestion on possible strategies for the improvement of stability comes from 

studies on the inclusion of noble-metal into a reducible carrier, where metal and support are 

in intimate contact. Metal-support interaction is a very important issue for the catalytic 

behavior of Pd catalysts. It has been observed that M-O-Ce sites improve the catalytic activity 

for NO reduction and HC oxidation [49, 59, 60]. In particular, in the field of methane 

oxidation, it has been found that the formation of M-O-Ce active sites increases the catalytic 

performance [61] by stabilizing highly dispersed Pd-O centers, preventing the sintering of 

noble metal particles after exposure to severe thermal treatment [49, 62, 63]. Moreover, the 

presence in this structure of highly undercoordinated oxygen species improves the overall 

reactivity towards methane activation. Other works have shown that an enhanced Pd-ceria 

interaction boosts the catalytic activity for methane combustion [64, 65]. All the aspects 

discussed above enlighten the complexity of the catalytic behaviour of Pd-based materials.  

The goal of this PhD thesis was to address the issues still open for the improvement of both 

activity and stability of Pd-based catalysts by preparing new materials on different metal 

oxides as supports (CeO2, Ce0.75Zr0.25O2, ZrO2, Ce-Si and Ce-Al) prepared via solution 

combustion synthesis. Their performances have been investigated for CH4 oxidation with 

particular attention to the effect of water on the catalytic performance under steady-state and 

non-steady state conditions. Moreover, a deep structural and redox characterization has been 
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carried out in order to try to find a correlation between the observed behaviour and the 

physic-chemical characteristics of the materials. 
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Chapter 2 

 

 

Materials and experimental methods 

 

 

 
Palladium-based catalysts supported over different oxides (CexZr1-xO2 with x = 0, 0.75 and 1, 

CeO2-SiO2 with different amount of silica and CeO2-Al2O3 mixed oxide) were prepared by 

incipient wetness impregnation and solution combustion synthesis. 

All catalysts were characterized in terms of structural and morphological properties by means 

of BET surface area and X-ray powder diffraction.  

On the most promising materials also HR-TEM analysis and DRIFT analysis were carried out. 

The performance of samples in methane combustion was evaluated by catalytic tests in lean 

(CH4:O2= 1:4) and stoichiometric reaction conditions (CH4:O2= 1:2). To check the resistance to 

water poisoning catalytic measurements were carried out also in the presence of  water added 

to the feed.   

In order to simulate the long-time exposure to the exhaust gas, time-on-stream tests were 

performed to investigate the catalysts deactivation with and without water vapor in the feed.  

Consistent part of the work was dedicated also to the study of redox behavior in PdO ↔ Pd 

transformation both in oxidizing and reducing atmosphere by means of Temperature 

Programmed Oxidation (TPO) and Temperature Programmed Reduction (TPR) experiments, 

respectively. 
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2.1 Catalysts preparation 

2.1.1  Incipient wetness impregnation 

The catalysts prepared by incipient wetness technique (IW) have been used as reference 

samples. CexZr1-xO2 supports with different Ce:Zr molar ratios (x = 0, 0.75 and 1) were 

synthesized by precipitation/co-precipitation, following the procedure proposed by Trovarelli 

and co-workers [1]. For the preparation of the mixed oxide cerium nitrate exahydrate 

(Ce(NO3)36H2O) (Treibacher Ind.) was dissolved in proper amount of distilled water to obtain 

a 0.2 M solution; this solution was then mixed with the proper amount of zirconyl nitrate 

solution (ZrO(NO3)2,) (Treibacher Ind.). Hydrogen peroxide (H2O2, Aldrich, 35%) was poured 

into the solution to obtain a molar H2O2/(Ce+Zr) ratio of 3. Precipitation was obtained by 

adding ammonia solution (NH4OH, Sigma Aldrich, 30 %) until the pH reached 10.5. The slurry 

was maintained under stirring for 4 hours and then it was filtered, washed with distilled water 

and dried overnight at 373 K. The pure ceria and zirconia oxides were prepared following the 

same procedure. CeO2, ZrO2 and Ce0.75Zr0.25O2 so obtained were calcined at 1173 K for 3 h.  

The supports were then impregnated with Pd(NO3)2 solution (Sigma Aldrich) in order to 

obtain 1 wt.% of Pd. Once the supports were impregnated, they were dried overnight at 373 K 

and calcined in air for 3 hours at 1173 K. 

 

Figure 2.1: impregnation of Ce0.75Zr0.25O2 mixed oxide 
 

2.1.2 Solution combustion synthesis 

Solution combustion synthesis (SCS) has been widely employed to prepare materials for energy 

storage, semi-conductors, thin-films, nano-ceramics and heterogeneous catalysts for 

hydrocarbon reforming/oxidation and automotive exhaust emissions treatments [2]. SCS 

technique represents in fact a valid route to prepare nanopowder catalysts [3, 4, 5, 6]. SCS 

involves a self-sustaining redox reaction between salts precursors (nitrates,  carbonates or 

chlorides) as oxidizing agents and a fuel (urea, glycine, oxalyl dihydrazide and others) as the 

reducing agent [7, 8, 9]. The steps of SCS are illustrated in Figure 2.2. 
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Figure 2.2: schematic representation of SCS procedure 

A homogenous solution and the high reaction temperature reached in the combustion 

chamber allow to obtain the binary/ternary compound in one step with short reaction time. 

The starting precursors, the ratio between fuel and air, and the water amount in solution 

influence the reaction enthalpy and the adiabatic flame temperature, which are closely related 

to the final morphological properties of the powder, such as crystal structure and surface area. 

The main advantages of SCS route are the low cost and the short time to prepare the final 

catalyst: no further thermal treatments are required due to the high temperatures (> 1273 K) 

reached during the reaction with the possibility to prepare the catalytic material in one-step. 

o Pd supported on ceria-zirconia mixed oxides 

Catalysts with 1 wt.% of Pd supported on CeO2, Ce 0.75 Zr0.25O2 and ZrO2 were prepared by 

solution combustion synthesis (SCS), following and adapting the procedure adopted by Colussi 

et al. [10, 11].  

Pd(NO3)2 powder (Johnson Matthey) was dissolved in a little amount of deionized water to 

which a suitable amount of cerium and/or zirconium was added in the form of ceric 

ammonium nitrate (NH4)2Ce(NO3)6 (CAN, Treibacher Ind.) and zirconyl nitrate ZrO(NO3)2 

(Treibacher Ind.). The liquid mixture was stirred for a few minutes until a clear solution was 

obtained. A stoichiometric amount of oxalyl dihydrazide (C2H6N4O2) was used as organic fuel 

and added into the aqueous solution. The obtained liquid mixture was then transferred in a 

furnace heated up to 623 K where the combustion took place with complete evaporation of 

water, leaving the final powder catalyst. After cooling, the sample was taken out from the 

furnace and no further treatment was carried out. The amount of fuel used during the 

synthesis was calculated based on the total oxidizing valence of precursors, not considering the 

contribution of nitrogen [8]. The overall redox reactions between salts precursors and fuel for 

CeO2-ZrO2 catalytic materials are reported in Table 2.1. 

Table 2.1: overall theoretical redox reaction during SCS synthesis for Pd-supported on ceria, ceria-
zirconia mixed oxide and zirconia 
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Catalyst Redox reaction 

1% Pd/CeO2 SCS 

 
0.016Pd(NO3)2 + 0.984 CAN + 2.38 ODH →
0.016 PdO + 0.98 CeO2 + 11.076 H2O + 8.712 N2 +
4.76 CO2  

 

1% Pd/Ce0.75 Zr0.25O2 SCS 

0.015Pd(NO3)2 + 0.74 CAN + 2.171 ODH +
0.245 Zr(NO3)2 → 0.015 PdO + 0.74 CeO2 +
0.245 ZrO2 +  9.473H2O +  7.562N2 + 4.342 CO2  

1 % Pd/ZrO2 SCS 

0.011Pd(NO3)2 + 0.998 ODH + 0.987 Zr(NO3)2 →
0.011 PdO + 0.987ZrO2 + 2.994H2O +  2.994N2 +
1.996 CO2  

 

o Pd supported on Si- and Al-doped CeO2 mixed oxides 

Pd/ceria-silica catalysts were also prepared by solution combustion synthesis with different 

amount of SiO2 (2%, 5 wt%, 13 wt% and 20 wt%) and 1 wt% Pd. Pd(NO3)2 salt (Johnson 

Matthey) was dissolved in a little amount of distilled water to which a suitable amount of 

cerium and silicon has been added in the form of ceric ammonium nitrate (CAN, 

(NH4)2Ce(NO3)6) (Treibacher Industrie) and silicon tetraacetate Si(OCOCH3)4 (Sigma Aldrich). 

The aqueous solution was then introduced in the furnace heated up to 623 K, temperature at 

which the ignition process starts. Pd supported on alumina-doped ceria with 13 wt.% of Al2O3 

was synthesized starting from Pd(NO3)2 powder (Johnson Matthey), (CAN, (NH4)2Ce(NO3)6) 

(Treibacher Industrie) and Al(NO3)3∙9H2O (Sigma Aldrich), following the same procedure used 

for Pd/ceria-silica materials. The overall redox reactions between salts and fuel for Si and Al-

doped ceria materials are reported in Table 2.2. 
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Table 2.2: overall theoretical redox reactions during SCS synthesis for Pd-supported on Si-and Al-
CeO2 mixed oxides 

Catalyst Redox reaction 

 

1 % Pd/CeO2-2% SiO2 

 
0.014 Pd(NO3)2 + 0.817CAN + 1.974 ODH +
0.0477 Si(OCOCH3)4 → 0.014 PdO + 0.817 CeO2 +
0.0477 SiO2 +  6.26H2O + 7.23 N2 + 4.329 CO2  

1 % Pd/CeO2-5% SiO2 
0.014 Pd(NO3)2 + 0.857CAN + 2.07 ODH +
0.129 Si(OCOCH3)4 → 0.014 PdO + 0.857 CeO2 +
0.129 SiO2 + 10.412 H2O +  7.582N2 + 5.086 CO2  

1 % Pd/CeO2-13 % SiO2 
0.013Pd(NO3)2 + 0.8695 CAN + 1.681 ODH +
0.292 Si(OCOCH3)4 → 0.013 PdO + 0.695 CeO2 +
0.292 SiO2 + 9.575 H2O +  6.155N2 + 5.698 CO2  

1 % Pd/CeO2-20% SiO2 

 
0.012 Pd(NO3)2 + 0.576 CAN + 1.394 ODH +
0.413 Si(OCOCH3)4 → 0.012 PdO + 0.576 CeO2 +
0.413SiO2 +  8.964 H2O +  5.104 N2 + 6.092 CO2  

 

1 % Pd/CeO2-13% Al2O3 

 
0.015 Pd(NO3)2 + 0.787 CAN + 2.199 ODH +
0.1975 Al(NO3)3 ∙ 9H2O →  0.015 PdO +
0.787 CeO2 + 0.1975Al2O3 +  11.52 H2O +
 7.857 N2 + 4.398 CO2  

 

2.2 Catalysts characterization 

 

2.2.1 BET surface area and X-ray powder Diffraction (XRD) 

 

The surface area measurements were carried out following Brunauer-Emmet-Teller theory in a 

Micromeritics Tristar porosimeter. Prior to adsorption measurements, the catalysts were 

degassed in vacuum for 2 hours at 423 K. 

X-ray diffraction is a standard analysis method to identify and characterize the crystalline 

structure of solid powders. XRD technique is based on the scattering phenomena that occurs 

between atoms into crystal lattice and X-ray waves, leading to the diffusion of light beam in all 

directions. XRD spectra have been collected in a Philips X’Pert diffractometer equipped with 

an X’Celerator detector, using Ni-filtered Cu Kα radiation (λ = 1.542 Å) and operating at 40 kV 

and 40 mA, with a step size of 0.02° and 40 counts per step.  Average crystal sizes of the 

samples were calculated by Scherrer’s equation: 
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B
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with 
22

instobs BBB  being the line broadening at half the maximum intensity  (FWHM) in 

radians, λ the wavelength and θ the Bragg angle in radians. 

 

2.2.2 TEM analysis 

 

High Resolution Transmission Electron Microscopy images were collected on a JEOL 2010F 

instrument equipped with a field emission gun and at an accelerator voltage of 200 kV. The 

HR-TEM measurements were carried out by prof. Jordi Llorca at the Universitat Politecnica de 

Catalunya following the procedure reported in the literature [12].  

Microstructural characterization of a few samples was carried out by a Zeiss LIBRA 200FE 

transmission electron microscopy (TEM), equipped with a 200 kV FEG source, in column 

second-generation omega filter for Energy Selective Spectroscopy (EELS) and Imaging (ESI), 

High Angular Annular Dark Field Scanning Electron Microscopy (HAADF-STEM) facility and 

Energy-dispersive X-ray (EDX) probe for chemical analysis. Prior to introduction in the 

instrument, the samples were ultrasonically dispersed in isopropyl alcohol and a drop of the 

suspension was deposited onto a lacey carbon copper grid (300 mesh).  

2.2.3 FTIR analysis 

FTIR analysis using mid-infrared Fourier transform spectrometers has become a common 

technique to obtain information on the adsorbed species on catalysts surface. The DRIFT 

measurements were collected by a Nicolet™ iS™ 50 FT-IR Spectrometer equipped with Pike 

Technologies Diffuse IRTM cell (Figure 2.3) using a DTGS detector. A FTIR spectrum recorded 

over a mirror was used as background, and prior to measurement the cell was purged in 

nitrogen to eliminate the contribution of CO2 and H2O of the atmosphere. The catalyst powder 

was placed into the sample holder inside the reaction cell; the IR spectra were collected at 

room temperature (ex-situ measurements) in the range 400-4000 cm-1 recording 32 scans with 

a resolution of 4 cm-1 at an optical velocity of 0.1581 cm-1. Each IR spectrum was analyzed using 

OMNIC software. 
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Figure 2.3: FT-IR spectrometer and IR cell 

 

2.2.4 Temperature Programmed Oxidation  

Temperature Programmed Oxidation (TPO) experiments are the state-of-the-art tests for the 

investigation of PdO-Pd-PdO decomposition/re-oxidation cycles. TPO analysis was performed 

in the apparatus illustrated in Figure 2.4, using a 2 vol.% O2 in N2 mixture with a total flow rate 

of 60 mlmin-1. The catalyst powder (150 mg) was loaded on a quartz wool bed in a quartz 

micro-reactor. The sample was heated up to 1273 K at a heating rate of 10 Kmin-1, then cooled 

down to 573 K at 10 Kmin-1 before a new cycle started. To evaluate the effect of the presence of 

water on PdO-Pd-PdO transition, TPO experiments were performed also in wet conditions (10 

vol.% H2O (v)), carrying out two cycles (heating/cooling) up to 1273 K at 10 K/min and 

performing other a subsequent one without water. Oxygen release and consumption were 

monitored continuously with an ABB paramagnetic Magnos 106 oxygen analyzer. 

 

Figure 2.4: scheme of the system used for TPO experiment (red line) and catalytic tests (black 
line) 
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2.2.5 H2-TPR 

Along with TPO, Temperature Programmed Reduction (TPR) experiments are the state-of-the-

art tests for the investigation of palladium redox behavior. TPR experiments were carried out 

in a Micromeritics Autochem analyzer: approximately 50 mg of catalyst were placed in a U-

shaped quartz reactor and pre-treated in flowing air at 623 K for 1 h to eliminate moisture and 

adsorbed species. After pre-treatment, the sample was cooled down to 193 K using liquid 

nitrogen and then it was reduced in a flow of 4.5 vol% H2/N2 (35 mlmin-1), while increasing the 

temperature from 193 K up to 1263 K at 10 Kmin-1. The amount of H2 consumption during H2-

TPR was measured by a thermal conductivity detector (TCD). 

2.2.6 Catalytic tests in lean conditions 

Different catalytic tests have been carried out in order to investigate the activity of the samples 

for the oxidation of methane. Temperature programmed combustion (TPC) experiments were 

carried out in a quartz micro-reactor (i.d = 6mm and l = 420 mm). The scheme of the system is 

shown in Figure 2.4.  

In lean experiments, a reaction mixture consisting of 0.5 vol% CH4, 2 vol% O2 in He was fed to 

the reactor with a total flow rate of 180 mlmin-1 and with a Gas Hourly Space Velocity (GHSV) 

of ~180000 h-1. Prior to the test, the samples were pelletized and crushed to obtain particles 

with a diameter comprised between 100 µm and 200 µm in order to avoid pressure drops. The 

catalyst (120 mg) was then loaded in the reactor on a quartz-wool bed. For each sample two 

combustion cycles have been performed heating up to 1173 K at 10 K/min and then cooling 

down with the same temperature ramp.  

To investigate the deactivation induced by the presence of water on the activity of Pd-based 

catalysts, catalytic tests were carried out in wet atmosphere by adding 10 vol.% H2O(v) and 

keeping the same reaction conditions (i.e. flowrate, O2/CH4 ratio and temperature cycles) used 

for the experiments without water. Water was fed into the reactor through a syringe (Kd 

scientific). In each experiment the sample was heated up to 1173 K with a heating ramp of 10 

K/min, then cooled down to room temperature at 10 K/min. After the two heating/cooling 

cycles in wet conditions, a subsequent heating/cooling ramp was performed without water in 

order to check the recovery of catalytic activity after exposure to wet atmosphere. In all 

catalytic tests, combustion products concentration was monitored by ABB AO2020 IR gas 

analyzer, placed after a gas cooler to condense water and avoid moisture in the IR cell. 

To compare quantitatively the catalytic performance of the samples, reaction rate 

measurements were carried out. Kinetic measurements were performed by recirculating a 

certain amount of effluent gas through a TTS D10K Micropump in order to operate in 
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differential conditions as shown in Figure 2.5. The chosen recycle ratio (R/F) was 25 and the 

flow rate on the recycle branch (R) was measured with a Bronkhorst EL-Flow flow meter. The 

use of the recycle ensures the operation in differential conditions, which allow in turn a correct 

kinetic analysis. In this way, in fact, the concentration of reactants and products is nearly 

uniform throughout the catalytic bed, thanks to the very high space velocity per pass, and 

therefore also the reaction rate can be considered constant within the catalytic bed.  

 

Figure 2.5: scheme of apparatus for kinetic measures. 
 

The reaction rate (rCH4), is defined as the numbers of moles of methane reacting per unit time 

and per unit mass of catalyst (mol/s*gcat), and it is calculated as reported in the equation 

below: 
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where FO
CH4 (mol/s) is the initial molar flow of methane, XCH4

is the methane conversion and 

Wcat (g) is the weight of catalyst. When a precious metal is used as the active phase, it is 

convenient to express the reaction rate as a function of the weight of the noble metal. In this 

work the reaction rate will then be expressed as mol/s*gPd. 

Kinetic measurements were carried out after a first heating/cooling cycle up to 1173 K in the 

reaction gas mixture (0.5 % CH4, 2 % O2 in He). The sample (50 mg) was loaded in a quartz 

micro-reactor on a quartz wool bed and it was exposed to the reaction mixture with a total 

flow rate of 60 mlmin-1. The concentration of methane and reaction products was monitored 

by a Micro Gas Chromatograph (MGC) Varian Agilent CP 4900.  
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In order to simulate a long-term exposure of catalysts to exhaust gases and investigate the 

deactivation behavior, time-on-stream tests (TOS) were performed. TOS experiments were 

carried out at 723 K both in dry and wet atmosphere, according to the literature, which 

indicates that the water poisoning is more severe at temperatures lower than 773 K [13]. Prior 

to the stability test, each catalyst was exposed to a methane oxidation cycle up to 1173 K at 10 

Kmin-1 as a pre-treatment in lean conditions, then the temperature was raised up and held at 

723 K for 24 hours while monitoring continuously the effluent gases.  Methane combustion 

products concentration was monitored by a Micro Gas Chromatograph (MGC) Varian Agilent 

CP 4900. In the experiments with steam, water was fed through a Waters 515 HPLC pump. 

The ability of the catalysts to regenerate their activity was measured by activity recovery tests. 

The tests were carried out at 723 K changing periodically from wet-lean (0.5 % CH4, 2 % O2, 10 

vol.% H2O (v) in He) to dry-lean mixture (0.5 % CH4, 2 % O2 in He), continuously monitoring 

the change in methane concentration. As performed for time-on stream tests, each catalyst 

was exposed to a methane oxidation cycle up to 1173 K at 10 Kmin-1 as a pre-treatment in wet 

atmosphere, then the temperature was raised up and held constant at 723 K, while reactants 

and products concentration was monitored by ABB AO2020 IR analyzer. The steps of activity 

recovery tests are listed below and illustrated in Figure 2.6. 

 
Figure 2.6: steps of activity recovery test 

(1) Increasing temperature up to 723 K in 1o vol.% of H2O (v) at 10 Kmin-1; 

(2) Isotherm at 723 K for 4 hours in 10 vol% of H2O (v); 

(3) Isotherm at 723 K overnight  without water vapour; 

(4) Isotherm at 723 K for 4 hours in 10 vol% of H2O (v); 

(5) Isotherm at 723 K for 4 hours without water vapor; 

(6) Cooling to room temperature into dry-lean mixture. 

2.2.7 Catalytic tests in stoichiometric conditions 

For the best samples, the catalytic performance was evaluated also in stoichiometric conditions 

(CH4:O2= 1:2). Stoichiometric mixture  (0.5 vol% CH4, 1.0  vol% O2, He as balance gas) was fed 

at total flow rate of 90 mlmin-1 with an average GHSV of 180000 h-1. 60 mg of powder catalyst 

was loaded in a quartz microreactor on a quartz-wool bed and put in a tubular furnace. Two 
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subsequent methane oxidation cycles  were performed on each sample up to 1173 K at a heating 

ramp of 10 Kmin-1 and then cooled down to room temperature.   

To assess the resistance to water poisoning, catalytic tests were carried out in the presence of 

water vapour (10 vol.% H2O (v)), setting the same reaction conditions used for the experiments 

without water and following the same experimental procedure used in wet-lean reaction 

conditions. 
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Chapter 3 

 

 

Structural  characterization and redox behavior of 

Pd/CexZr1-xO2 catalysts 

 

 

This chapter is focused on the characterization of the physico-chemical properties of Pd-based 

catalysts supported on CeO2, Ce0.75Zr0.25O2 and ZrO2 prepared by solution combustion 

synthesis. BET surface area measurements, X-ray Powder Diffraction, High Resolution 

Transmission Electron Microscopy (HR-TEM) analysis were employed to characterize the 

series of Pd-supported catalysts on different metal oxides by a structural and morphological 

point of view. Temperature Programmed techniques (i.e Temperature-Programmed Oxidation 

(TPO) and Temperature Programmed Reduction (H2-TPR)) were performed to investigate the 

redox behavior of the samples under oxidizing and reducing atmosphere. The structural and 

redox properties of combustion synthesized samples will be compared to those of 

corresponding catalysts prepared by traditional IW technique. 
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3.1. Structural and textural properties 

3.1.1 Surface area and X-ray diffraction analysis  

Table 3.1 summarizes the noble metal loading of catalysts as measured by ICP and BET surface 

area of all samples. The measured Pd amount on each catalyst is quite close to 1 wt.% while the 

Pd content for 1PdZr SCS is slightly higher with respect to the nominal loading. All catalysts 

have a low surface area due to the high temperatures reached during the synthesis: during 

combustion in fact the temperature in the furnace can quickly exceed 1273 K due to the 

exothermic nature of the reaction [1]. Despite a higher temperature is locally reached during 

the combustion synthesis [1], SCS samples show a larger surface area with respect to their 

corresponding IW ones. 

Table 3.1: noble metal loading and surface area of 1%Pd/CexZr1-xO2 catalysts. 

Catalyst 
preparation 

method 
Sample name 

Pd 
[wt. %]a 

SBET (m2g-1) 

1%Pd/CeO2 IW 
impregnation 

method 
1PdCe IW 0.97 3.8 

1%Pd/Ce0.75Zr0.25O2 IW 
impregnation 

method 
1PdCZ75 IW 0.99 13.5 

1%Pd/ZrO2 IW 
impregnation 

method 
1PdZr IW 0.98 11.4 

1%Pd/CeO2 SCS 

solution 

combustion 

synthesis 

1PdCe SCS 1.09 6.6 

1%Pd/Ce0.75Zr0.25O2  SCS 

solution 

combustion 

synthesis 

1PdCZ75 SCS 0.97 18.4 

1%Pd/ZrO2 SCS 

solution 

combustion 

synthesis 

1PdZr SCS 1.29 15.9 

[a]
 
measured by ICP elemental analysis 

 

Irrespective of the preparation method, the introduction of 25 mol% of ZrO2 into the ceria 

lattice stabilizes the surface area, as expected from previous literature studies [3]. The XRD 

patterns of IW and SCS catalysts are shown in Figure 3.1 and 3.2, respectively. The exposure to 

high temperatures during the preparation is reflected in the XRD profiles, where all samples 

present quite sharp and intense diffraction peaks. Looking at XRD patterns of 1PdCe IW and 
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1PdCe SCS, the characteristic peaks relative to cerium oxide in cubic fluorite-like structure are 

clearly observed.  

 
Figure 3.1: XRD patterns of IW catalysts: (a) 1PdCe IW, (b) 1PdCZ75 IW, (c) 1PdZr IW 

The reflections of 1PdCZ75 IW catalysts are shifted towards higher diffraction angles according 

to the formation of a solid solution with Ce:Zr = 0.75:0.25 molar composition [2, 4]. The 

formation of a homogenous ceria-zirconia mixed oxide is confirmed by the symmetric 

diffraction peaks observable on 1PdCZ75 IW [2]. On the contrary, structural heterogeneity is 

observed on 1PdCZ75 SCS where the diffraction peaks are asymmetric indicating a non-

homogeneous phase enriched in CeO2 due to the segregation of zirconia [2]. On  ceria-

containing samples, independently of the preparation method, no peaks belonging to PdO or 

Pd are detected. This can be due to the low noble metal loading and/or to the fine dispersion 

of Pd/PdO particles. 
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Figure 3.2: XRD patterns of SCS catalysts: (a) 1PdCe SCS, (b) 1PdCZ75 SCS, (c) 1PdZr SCS 

Regarding zirconia-supported samples, the support exhibits the characteristic peaks of 

monoclinic (ZrO2-m) and tetragonal phase (ZrO2-t), according to the phase transition from 

monoclinic to tetragonal induced by severe thermal treatment [5]. The monoclinic form is 

prevalent on 1PdZr IW. On 1PdZr SCS a weak diffraction peak of metallic Pd(111) is detected at 

2θ= 40.2° (clearly visible in the inset of Figure 3.2). The presence of metallic Pd on combustion 

synthesized samples is in line with the redox reaction that can take place during the 

preparation [6]. 

The mean particle size of catalysts has been calculated by Scherrer's equation on the basis of 

XRD patterns. For ceria-doped catalysts the particle size has been calculated on the basis of 

main diffraction peak of CeO2 at 2θ=28.2° and for zirconia-based samples with respect to the 

main diffraction peak of ZrO2 located at 30.2° (for 1PdZr SCS) and 28.2° (for 1PdZr IW). The 

particle size of SCS samples increases in the order 1PdZr  SCS < 1PdCZ75 SCS < 1PdCe SCS, 

being equal to 20 nm, 24 nm and 46 nm, respectively. The fine particle size of SCS catalysis is 

associated to the production of large amount of gases during combustion synthesis [7]. The 

mean particle size of the catalysts prepared by impregnation method has been estimated with 

the same procedure and equal to 21 nm, 15 nm and 68 nm for 1PdZr IW, 1PdCZ75 IW and 1PdCe 

IW, respectively.  
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3.1.2 HR-TEM analysis 

High-resolution transmission electron microscopy images collected for 1PdCe SCS and 1PdCe 

IW catalysts as-prepared are illustrated in Figure 3.4 and 3.5, respectively. 

 
Figure 3.3:  HR-TEM images of fresh 1PdCe SCS catalyst 

 
Figure 3.4: HR-TEM images of fresh 1PdCe IW catalyst 

On SCS catalyst, ceria particles have a broad size distribution, ranging from about 30 nm up to 

200 nm, which is likely a direct consequence of the SCS route. No well-defined Pd 

nanoparticles are observed; a surface roughness is evident in some of the profile view of images 

reported in Figure 3.3:  lattice fringes at 3.12 and 1.56 Å correspond to the (111) and (222) 

crystallographic planes of ceria, respectively. This surface roughness is likely attributed to the 

Pd-O-Ce superstructure, as already observed in previous works from our and other groups [6] 

[7, 8, 9]. The formation of M-O-Ce bond is promoted by the interaction of CeO2 with noble 

metal at high temperatures and oxygen containing atmosphere [5]. In some cases this solid 

solution can appear as an ordered structure in which a Pd ion substitutes one out of four 

cerium atoms, giving rise to a reconstruction of CeO2 surface with the formation of an 

equivalent number of oxygen vacancies [9]. 

On 1PdCeIW sample (Figure 3.4), palladium is present in the form of very small nanoparticles 

of about 1-2 nm, well-dispersed over the ceria support. The analysis of the FT image (Figure 3. 4 
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(right)) corresponding to one of the Pd nanoparticles shows spots at 2.25 and 1.95 Å, which are 

ascribed to the (111) and (200) crystallographic planes of Pd, respectively. In Figure 3.5 an HR-

TEM image of 1PdCZ75 SCS is shown. 

 

Figure 3.5: HR-TEM images of fresh 1PdCZ75 SCS catalyst 

Some of the Pd particles are indicated by arrows. The FT images of the particles labeled “a” and 

“b” show spots at 2.2 and 1.9 Å corresponding to the (111) and (200) crystallographic planes of 

Pd, respectively. Spots at 3.1 Å correspond to the (111) crystallographic planes of the CeO2-ZrO2 

support. Several Pd nanoparticles with ~2 nm diameter are well distributed over the CZ 

support. It appears that the incorporation of zirconium oxide into the ceria lattice prevents the 

formation of an ordered surface Pd-O-Ce structure and very small Pd particles segregate on the 

surface of the Ce0.75Zr0.25O2 support.  

3.2. Redox properties under oxidizing and reducing atmosphere 

3.2.1 TPO experiments  

Temperature programmed oxidation experiments were carried out to study the PdO-Pd 

transformation during heating/cooling cycles. The study of redox properties is a key point to 

evaluate the modifications of the active phase occurring on Pd catalysts. The main objective of 

these TPO experiments was to study the influence of preparation method on the dynamic of 

PdO–Pd-PdO phase transformation. For each sample three heating/cooling cycles were 

performed up to 1273 K. The qualitative oxygen profile collected during the three TPO cycles 

for 1PdCe SCS and 1PdCe IW are reported in Figure 3.6 and 3.7, respectively.  
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Figure 3.6: O2 profile of 1PdCe SCS catalysts; solid line: heating, dotted line: cooling 

Looking at TPO profile of 1PdCe SCS (Figure 3.6) two O2 release peaks are observed during the 

first cycle and are related to PdO decomposition (𝐏𝐝𝐎 → 𝐏𝐝 + 
𝟏

𝟐
 𝐎𝟐): the first one, smaller, 

takes place at about 1014 K and a second larger peak at about 1080 K. Before PdO 

decomposition, a slight O2 uptake is present in the range 620-760 K likely due to the oxidation 

of some metallic Pd particles. Focusing on the cooling part of the cycle, a single O2 peak at    

929 K is observed due to Pd re-oxidation. This re-oxidation takes place with a thermal 

hysteresis of about 100 K with respect to the decomposition process, as already widely reported 

in the literature [10, 11, 12 13]. If we observe the O2 profile collected for 1PdCe IW (Figure 3.7) 

during the first cycle, a different picture appears: PdO decomposition starts at higher 

temperature (about 1075 K) with a broader O2 release peak, and the low temperature feature is 

more pronounced with respect to the SCS counterpart, whereas the high temperature peak is 

much smaller.  
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Figure 3.7: O2 profile of 1PdCe IW catalysts; solid line: heating, dotted line: cooling 

By observing the O2 profile collected during cycles 2 and 3, the heating part appears quite 

different with respect to the first one, in particular for SCS sample: this behavior can be 

attributed to the different thermal treatment of Pd particles in air during the synthesis and in 

lower O2 partial pressure during TPO measurements [14]. In the second and third runs on 

1PdCe SCS, PdO → Pd transformation takes place in three well distinct steps with maxima at 

1022 K, 1072 K and 1138 K, respectively. On impregnated sample, the qualitative oxygen profile 

during the heating ramp exhibits a slight variation during the second and third cycle. Looking 

at the cooling part during the 2nd and 3rd TPO run a single oxygen uptake peak is observable 

belonging to Pd re-oxidation (𝐏𝐝 +  
𝟏

𝟐
 𝐎𝟐  → 𝐏𝐝𝐎) which takes place at 929 K for both samples. 

Since from the second redox cycle onward the qualitative oxygen profile of catalysts does not 

show significant variations, the third cycle has been chosen as the reference one to compare 

TPO profile of SCS samples with their corresponding impregnated ones. Figure 3.8, 3.9 and 3.10 

show the comparison of the third TPO cycle for CeO2, CZ75 and ZrO2-supported catalysts, 

respectively, and Table 3.2 summarizes the temperatures of oxygen release/uptake maxima for 

each sample. 
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Figure 3.8: comparison of the third TPO cycle of 1PdCe SCS and 1PdCe IW (2 vol.% O2/N2). 

 
Figure 3.9: comparison of the third TPO cycle of 1PdCZ75 SCS and 1PdCZ75 IW (2 vol.% O2/N2) 
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Figure 3.10: comparison of the third TPO cycle of 1PdZr SCS and 1PdZr IW (2 vol.% O2/N2) 

Table 3.2: characteristic temperatures of PdO-Pd-PdO transformation during the 3rd TPO cycle 

Catalyst 
Tmax of first oxygen 

release peak  (K) 
Tmax of re-

oxidation peak (K) 
∆TD-R (K)a 

1PdCe IW 1075 929 146 

1PdCZ75 IW 1074 911 163 

1PdZr IW 1075 846 229 

1PdCe SCS 1022 929 93 

1PdCZ75 SCS 1018 917 101 

1PdZr SCS 1013 833 180 
a 

calculated as the temperature difference between Tmax of first oxygen release peak and Tmin of re-

oxidation peak  

Looking at Figure 3.8 and focusing on the heating part of the cycle, PdO decomposition starts 

53 K lower on 1PdCe SCS (Table 3.2), compared to 1PdCe IW and it is completed at about 1150 K 

for both samples. 

On 1PdCZ75 SCS (Figure 3.9) PdO decomposition occurs with a sharp O2 release peak at 1018 K, 

while the second and the third ones are located at 1070 K and 1141 K, respectively with PdO 

decomposition completed at 1163 K. On its correspondent IW, instead, PdO-Pd transition takes 

place in a single step at 1074 K and it is concluded at ~ 1140 K. By comparing the qualitative 

profile during the heating ramp of ZrO2-supported catalysts (Figure 3.10), a similar picture can 

be observed where the reduction of PdO to metallic Pd is anticipated on 1PdZr SCS of 62 K 
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compared to 1PdZr IW. Irrespective of the oxide carrier, PdO decomposition over SCS samples 

involves a well-defined multi-step redox process.  

This behavior was already detected in the previous studies where two or three oxygen release 

peaks were identified. During the second heating/cooling cycle in TGA experiment Farrauto et 

al. detected two decomposition stages: the first weight loss was attributed to the reduction of 

surface PdOx formed upon Pd re-dispersion during cooling, while the second weight loss to 

bulk PdO [10]. McCarty also observed two decomposition steps on 5 wt.% Pd/-Al2O3 during 

TPD experiments where the step located at higher temperature was assigned to interfacial PdO 

near the support oxide [15]. The peak located at higher temperature was ascribed to the 

reduction of PdO species in strong interaction with the support by Colussi et al. [13]. Recently 

Chen et al. [16] proposed a core-shell redox  mechanism to explain the nature of the two-step 

PdO decomposition: they suggested that PdO decomposition initiates at the surface of PdO 

particles, as already described previously by Datye et al. [17] with the formation of metallic Pd 

shell around PdO core [16]. Along with the results reported in the literature, therefore, it is 

reasonable to attribute the complex oxygen evolution of SCS samples to the presence of 

different PdO species: the first O2 peak can be associated with the reduction of surface PdOx 

species, the second peak to bulk PdO and the peak located at high temperatures to PdO in 

strong interaction with the support [13] or to the core of PdO particles [16]. On impregnated 

samples, instead, the PdO decomposition features are not well defined and the oxygen release 

takes place with a broader peak in which the contribution of the low temperature feature is 

absent for 1PdCe IW and 1PdZr IW, and only slightly observable on 1PdCZ75 IW. The 

temperature at which PdO starts to reduce on IW samples seems well in agreement with the 

temperature at which bulk PdO decomposes [16]. 

Focusing on the cooling part of the cycle, on all catalysts Pd re-oxidation takes place with a 

large thermal hysteresis with respect to the decomposition process with a single oxygen uptake 

peak relative to PdO re-formation. Pd→PdO transformation was suggested to be ruled by the 

kinetics of PdO formation at elevated temperatures due the presence of chemisorbed oxygen 

on the metallic Pd particles. The chemisorbed oxygen acts as a passive layer for the growth of 

PdO particles, slowing the complete oxidation of Pd0 and causing the well-known thermal 

hysteresis [15, 18].  

On CeO2- and CZ75-supported catalysts, PdO re-oxidation occurs at 929 K and at around 910 

K, respectively. For samples supported on pure zirconia a larger thermal gap is observed on 

which the re-oxidation of Pd to PdO takes place at around 840 K (Table 3.2). The presence of 

cerium oxide into the support significantly reduces the hysteresis during PdO-Pd-PdO 

transformation, likely due to the contribution of lattice oxygen coming from the redox couple 

Ce4+-Ce3+ that facilitates Pd re-oxidation [12, 19]. Irrespective of the type of support, a narrower 
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hysteresis gap is observed for combustion synthesized catalysts (Table 3.2) likely due to a 

stronger metal-support interaction and/or to the presence of smaller Pd clusters. Figure 3.11 

illustrates the comparison of the third TPO cycle of all SCS samples. 

 
Figure 3.11: TPO profile during the third cycle of 1PdCe SCS, 1PdCZ75 SCS and 1PdZr SCS catalysts 

 
Figure 3.12: TPO profile during the third cycle of 1PdCe IW, 1PdCZ75 IW and 1PdZr IW catalysts 
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It can be observed that there are no significant differences in the decomposition threshold 

during the heating ramp, but only in the distribution of different PdO species. The 

contribution of each decomposition step was estimated by Lorentzian fitting. The best fitting 

for SCS samples was obtained with four peaks: the contribution of the first peak increases in 

the order 1PdCe SCS < 1PdCZ75 SCS < 1PdZr SCS, in line with previous observations where for 

ceria-free sample the first decomposition peak was predominant with respect to ceria-doped 

catalyst [13]. 

If we compare the fitting obtained for SCS and IW catalysts, we can observe that the major 

contribution on SCS catalysts arises from the two high-temperature stages, whereas on IW 

samples the contribution of bulk PdO species is the predominant one. On solution combustion 

synthesized catalysts, when CeO2 is present into the support, the amount of PdO decomposed 

at a higher temperature represents approximately 50% of the entire PdO, according to the 

stabilizing effect of  ceria on palladium oxide. 

Regardless of the synthesis procedure, the nature of the support affects strongly the Pd re-

oxidation threshold: the presence of ceria yields a faster PdO re-formation, reducing the 

thermal gap during decomposition/re-oxidation. On the contrary, the amplitude of the 

hysteresis becomes larger when ZrO2 is used as support: the oxygen uptake starts at 940 K and 

is completed only at 780 K with a temperature gap of 180 K and 225 K for 1PdZr SCS and 1PdZr 

IW, respectively. 

3.2.2 H2-TPR 

Temperature-Programmed Reduction experiments were performed in order to gain further 

insights into the redox properties of different Pd-based catalysts.  

The qualitative reduction profile for combustion synthesized catalysts is compared to that of 

the corresponding impregnated ones and the results are illustrated in Figure 3.13. 
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Figure 3.13: H2-TPR profiles of CeO2-supported catalysts (4.5% H2/N2) 

The hydrogen uptake in the low-temperature region (LT) between 200 K and 450 K is observed 

on all samples and it involves the reduction of PdO to metallic Pd. Some differences can be 

highlighted between SCS and IW samples in the LT region. Considering CeO2- and CZ75-

supported catalysts, two peaks in the LT region can be distinguished, whereas on impregnated 

samples generally a single hydrogen consumption peak is observed. The assignment of each 

hydrogen peak is not straightforward. Luo et al. after redox treatment on Pd/Ce0.5Zr0.5O2 

catalyst observed two hydrogen uptake peaks in the LT region ascribed to the heterogeneous 

size distribution of PdO and/or to the diffusion of PdO into Ce0.5Zr0.5O2 lattice [20]. The high 

temperatures locally reached during combustion synthesis combined with short reaction time 

could promote a heterogeneous distribution of PdO particles and/or the presence of PdOx with 

different stoichiometry [6]. According to these considerations, the presence of PdOx species or 

a non-uniform size distribution of PdO particles can explain the complex reduction profile of 

SCS samples.  

On 1PdCe SCS the reduction of PdO takes place about 30 K lower than on 1PdCe IW. For ceria-

zirconia based samples, instead, the reduction of palladium oxide to metallic Pd occurs at the 
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same temperature (284 K). The hydrogen consumption was estimated by the integration of the 

peak area from 200 K to 500 K (Table 3.3).  

Table 3.3: quantitative analysis of TPR experiments 

Sample 
H2 uptake (ml) 

200-500 K 
μmolH2/gcat 

200-500 K 

1PdCe IW 0.127 103 

1PdCZ75 IW 0.364 294 

1PdZr IW 0.14 111 

1PdCe SCS 0.137 111 

1PdCZ75 SCS 0.503 393 

1PdZr SCS 0.067 53 

 
The amount of hydrogen consumed exceeds the stoichiometric value required for PdO 

reduction (~ 87 μmol H2/gcat) in the case of ceria-containing samples, due to hydrogen 

spillover on the support. The phenomenon has been widely described in the literature: the 

presence of noble metals promotes ceria reducibility at lower temperatures [21, 22]. The large 

hydrogen consumption at approximately 1110 K is attributed to the reduction of bulk ceria 

crystallites [21]. A strong modification of the TPR profile is observed for Ce0.75Zr0.25O2-

supported samples: irrespective of the preparation procedure the H2 consumption in the LT 

region significantly exceeds the stoichiometric amount for PdO reduction being even higher 

than that observed for ceria-based samples. The introduction of Zr4+ into the ceria lattice 

strongly promotes the reduction of surface ceria: this behavior was attributed to the enhanced 

oxygen mobility of Ce-Zr mixed oxides with respect to pure ceria [22]. Regarding pure zirconia-

supported catalysts, both samples show two H2 consumption peaks in the LT region, where the 

first one is barely present and it is located 30 K lower for 1PdZr SCS with respect to 1PdZr IW. 

At temperature above 600 K 1PdZr SCS presents two H2 uptake peaks. Fujimoto et al. 

hypothesized a strong interaction between PdOx and ZrO2 where the treatment in H2 

atmosphere reduced the crystallites of stable PdOx-ZrO2 only at temperature above 773 K [23]. 

In line with this result, Franchini and co-workers obtained a similar TPR profile over 

Pd/Zr/Al2O3 where the second peak was attributed to the reduction of PdO particles 

interacting with ZrO2 [24]. 

The negative peak at 320-340 K, present on all samples, is attributed to the release of hydrogen 

from the decomposition of palladium hydride (PdH2), resulting from the absorption of H2 by 

metallic Pd [25, 26]. This peak becomes very sharp for 1PdZr SCS likely due to the presence of 

large Pd particles [27].  
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The results obtained from TPO and TPR measurements reveal a complex redox behavior of 

SCS catalysts compared to IW samples, regardless of the nature of the support. This behavior 

can be linked to the presence of different PdOx species and/or non-uniform particle size 

distribution, which in turn can be ascribed to the short reaction time and high temperatures 

locally reached during SCS. 
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Chapter 4 

 

 

Catalytic activity of Pd/CexZr1-xO2 catalysts for lean and 

stoichiometric methane oxidation 

 

 

This chapter presents the study of the catalytic activity of the series  1% Pd/CexZr1-xO2 prepared 

by SCS and compared with those of the corresponding IW ones. The catalytic properties of the 

various samples have been tested during cyclic temperature programmed combustion 

experiments under lean conditions and in a wide range of temperatures (400-1173 K). The 

durability of Pd-based catalysts under long-time exposure to reaction mixture was simulated 

by time-on-stream tests carried out at 723 K for 24 hours. In the second part of the chapter, the 

preliminary results on the performance of the best SCS samples in stoichiometric reaction 

conditions are discussed. 
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4.1. Catalytic performance in lean conditions 

4.1.1. Light-off experiments 

The catalytic performance of each sample in methane oxidation was investigated by 

temperature programmed combustion under lean reaction conditions (O2/CH4 = 4) during two 

heating/cooling cycles. 

The results are reported in terms of the light-off profile, where methane conversion is plotted 

against temperature. The conversion is calculated according to the following equation: 

100(%)
4
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In Figure 4.1 the light-off profile of 1PdCe SCS is reported. 

 
Figure 4.1: light-off behavior of 1PdCe SCS in lean-methane oxidation; solid line, filled symbols: 
heating; dotted line, open symbols: cooling.   

1PdCe SCS shows a good oxidation activity, with the ignition of CH4 taking place at about 540 

K during both cycles, and reaching 100% conversion at ~ 820 K. During the heating branch, 

above 980 K the activity gradually decreases reaching a minimum of 90% at 1080 K due to the 

decomposition of PdO to metallic Pd, recognized to be less active towards methane oxidation 

[1, 2, 3]. In the cooling step, a transient deactivation is clearly observed where methane 

conversion sharply drops, reaching a minimum of 42% at 940 K; below this temperature the 

catalytic performance is completely restored due to the progressive PdO re-formation [1, 2, 3]. 

The drop in activity during the cooling segment is more pronounced than during the heating 

ramp because the re-oxidation of Pd to PdO is a kinetically limited process [4, 5], as mentioned 

in section 3.2.1, and during cooling there is no contribution of the homogeneous combustion. 

When a second cycle is carried out, it exhibits the same behaviour with a slight reduction of 
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T50 (temperature at which 50% of CH4 conversion is achieved) from 657 K to 644 K. Figure 4.2 

illustrates the catalytic activity of 1PdCZ75 SCS during the two heating/cooling ramps. 

 
Figure 4.2: light-off behavior of 1PdCZ75 SCS in lean-methane oxidation; solid line, filled symbols: 
heating; dotted line, open symbols: cooling.   

In the first heating-up 10% and 50% of CH4 conversion are achieved at 598 K and 675 K, 

respectively, and complete conversion is reached around 820 K. In the following cycle, 10% of 

CH4 conversion is reached at a similar temperature, whereas T50 is slightly shifted to higher 

temperatures (684 K). By observing the cooling branch, the methane conversion reaches a 

minimum of 41 %. The temperature and the size of activity loss is similar during the two 

oxidation cycles.  

 
Figure 4.3: light-off behavior on 1PdZr SCS in lean-methane oxidation; solid line, filled symbols: 
heating; dotted line, filled symbols: cooling.   
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The light-off profiles over 1PdZr SCS are presented in Figure 4.3. During the first run, methane 

conversion reaches 10% and 50% at 628 K and 693 K, respectively. After the first cycle,  the 

catalytic performance is strongly enhanced in terms of light-off temperatures. Focusing on the 

cooling part of cycle 2 the catalytic activity drops to 42 % at 934 K, increasing again after Pd re-

oxidation. 

The results presented above confirm the existence of the well-known thermal hysteresis 

associated to the occurrence of the reversible PdO-Pd phase transformation. The hysteresis 

during cyclic methane oxidation was assigned to a stable chemisorbed oxygen on metallic Pd 

particles which hinders the complete oxidation of bulk PdO [6, 7]. A strong activity drop 

during the cooling step is observed in the temperature range where Pd is still at the metallic 

state, indicating that the presence of PdO is necessary to gain high CH4 conversions. It is worth 

to observe that for all samples the cooling branch is slightly more active than the heat-up 

below ~ 840 K. It is generally agreed that methane oxidation on Pd is "structure-sensitive" [5, 8,  

9]. It was suggested that PdO particles undergo a reconstruction when exposed to the reaction 

atmosphere [5, 8]. After exposure to high temperatures, Pd can re-disperse in O2-containing 

atmosphere during cooling and this process has been suggested to enhance the catalytic 

activity [6]. However, no clear and definitive explanation has been found yet due to the several 

parameters which influence the PdO-Pd-PdO transformation, such as space velocity, reaction 

atmosphere, particle size, type of support, metal-support interaction and cooling rate. 

The catalysts prepared by IW procedure were investigated through two successive oxidation 

cycles, whose characteristic temperatures are reported in Table 4.1. 

Table 4.1: T10 and T50 of 1 Pd/CexZr1-xO2  IW during the heating ramps  of two subsequent methane 
oxidation cycles 

 cycle 1 cycle 2 

Sample T10 (K) T50 (K) T10 (K) T50 (K) 

1PdCe IW 609 773 619 718 

1PdCZ75 IW 598 716 614 718 

1PdZr IW 591 708 601 676 

1PdCe SCS 581 657 581 644 

1PdCZ75 SCS 598 675 602 684 

1PdZr SCS 628 693 594 661 

Looking at Table 4.1, the T10 increases slightly between the first and the second heating ramp; 

the T50 values decrease on  1PdCe IW and 1PdZr IW of 55 K and 32 K, respectively, compared to 

the first cycle, whereas on 1PdCZ75 IW T50 remains almost unchanged. Since it is generally 

agreed that after a first light-off cycle the catalytic activity reaches a sort of steady state, in 

order to evaluate the influence of preparation method on the activity the second cycle was 
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chosen as the most representative one. Figure 4.4 shows the comparison of methane oxidation 

profiles over 1PdCe SCS and 1PdCe IW. 

 
Figure 4.4: comparison of the 2nd cycle of 1PdCe SCS and 1PdCe IW in lean-methane oxidation; 
solid line-filled symbols: heating, dotted line-open symbols: cooling 

Looking at Figure 4.4 and focusing on the heating branch, 1PdCe SCS shows a superior activity 

with respect to 1PdCe IW, reaching 50 % of methane conversion already at 644 K, 74 K lower 

than that of IW one. In the cooling step, between 880 and 1200 K a severe deactivation is 

observed for 1PdCe IW with a decrease in CH4 conversion down to 26 %. The re-oxidation of 

Pd to PdO, accompanied by a progressive recovery of catalytic activity, occurs at the same 

temperature (957 K) but the activity loss is definitely much severe with respect to 1PdCe SCS. 

 
Figure 4.5: comparison of the 2nd cycle of 1PdCZ75 SCS and 1PdCZ75 IW in lean-methane 
oxidation; solid line-filled symbols: heating, dotted line-open symbols: cooling 
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For ceria-zirconia mixed oxide (Figure 4.5) similar considerations can be drawn: 1PdCZ75 made 

by combustion synthesis shows a superior activity compared to 1PdCZ75 IW, with a T10 and T50 

set at 602 K and 684 K, respectively. On the contrary, 1PdCZ75 IW exhibits lower activity 

towards methane reaching 10% and 50% at 614 K and 718 K, respectively. During the cooling 

stage, no difference is observed in the temperature at which Pd is re-oxidized to PdO (Tox ≅ 

956 K) but the activity decay due to PdO-Pd transformation is slightly more pronounced for 

the impregnated sample.  

 
Figure 4.6: comparison of the 2nd cycle of 1PdZr SCS and 1PdZr IW in lean-methane oxidation; 
solid line-filled symbols: heating, dotted line-open symbols: cooling 

By comparing the results collected for ZrO2-supported catalysts (Figure 4.6), the light off 

curves for IW and SCS are very similar, showing a close T10 value. Above 640 K though, 1PdZr 

SCS shows clearly a superior activity with respect to 1PdZr IW. On the latter sample complete 

methane oxidation is reached only above 940 K, against 820 K over 1PdZr SCS. When the 

samples are cooled down a sharp drop in catalytic activity is detected over 1PdZr IW, where 

CH4 conversion falls to 28% and it is not fully recovered after Pd re-oxidation. 

Summarizing briefly the results obtained by comparing the two preparation methods, SCS 

allows to obtain more active catalysts throughout the whole methane oxidation cycle, 

especially on ceria-based supports. Additionally, the activity decay at high temperature is less 

severe for CeO2-containing catalysts made by SCS and this is line with data obtained during 

TPO measurements where PdO regeneration is facilitated on 1PdCe SCS and 1PdCZ75 SCS; this 

behavior is linked to the intimate contact of Pd with CeO2, resulting in a lower activity loss.  

Ceria-containing oxides are able to supply structural oxygen through Ce4+/Ce3+ transformation, 

acting as stabilizers of PdO phase [11, 12]. 
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Figure 4.7 illustrates the comparison of the oxidation profile of all SCS samples during the 

second cycle.  

  
Figure 4.7: catalytic activity during the second heating/cooling ramp in lean methane oxidation 
for 1%Pd/CexZr1-xO2 SCS samples. Solid line-filled symbols: heating; dotted line- open symbols: 
cooling 

Looking at the heating part of the run, the best performance in the kinetically controlled 

regime is recorded for 1PdCe SCS, followed by 1PdZr SCS and 1PdCZ75 SCS; only above 680 K 

1PdZr SCS exceeds the performance of 1PdCe SCS.  

In the cooling part of the cycle, the effect of the support is observable: Pd re-oxidation takes 

place at higher temperatures on ceria-containing samples following the order 1PdCe SCS (957 

K), 1PdCZ75 (957 K) < 1PdZr SCS (934 K). The trend of Pd re-oxidation is well in accordance 

with the onset of oxygen uptake for Pd re-oxidation detected during TPO experiments 

(Chapter 3, Figure 3.11). The shape as well as the extent of activity loss, instead, is almost 

similar for all SCS catalysts, reaching a minimum of about 40%. When ceria is present into the 

support it has a positive effect on the transient deactivation as reported by Colussi et al. and 

Groppi et al.: they observed a markedly lower deactivation in the cooling segment on Ce-doped 

catalyst with a shift of the position of the minimum to higher temperatures [7, 12]. This 

behavior is linked to the stabilization effect of ceria on PdO: as stated previously ceria is able 

to provide oxygen through Ce4+/Ce3+ transformation, improving the stability window of PdO 

[11, 12]. The comparison of the second oxidation cycle of impregnated catalysts is shown in 

Figure 4.8. 
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Figure 4.8: catalytic activity during the second heating/cooling ramp in lean methane oxidation 
on 1%Pd/CexZr1-xO2 IW samples. Solid line, filled symbols: heating; dotted line, open symbols: 
cooling 

In the case of IW samples, the best performance is recorded for 1PdZr IW, whereas 1PdCe IW 

and 1PdCZ75 IW exhibit a similar light-off behavior with close T10 and T50 values, as inferred 

from Table 4.1. The major difference arises during the cooling part of the cycle: the presence of 

ceria into the support yields Pd re-oxidation at higher temperatures ( 957 K), although a 

severe deactivation is observed with a decrease in CH4 conversion to 26-33 %. For 1PdZr IW, 

Pd-PdO transition is delayed and occurs at 929 K with an activity loss down to 25% of methane 

conversion. 

To compare quantitatively the catalytic behaviour of various catalysts and to better understand 

the differences between SCS and IW samples in CH4 oxidation, kinetic measurements were 

carried out at 623 K in a recycle-reactor described in section 2.2.6. During kinetic 

measurements, the recycle ratio was maintained at high value (R=25), with the purpose to 

ensure the occurrence of differential conditions and, thus, performing a correct kinetic 

analysis. The reaction rate is calculated in terms of CH4 moles reacted per gram of noble metal  

and the values obtained are reported in Table 4.2. 
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Table 4.2: reaction rates measured at 623 K on 1%Pd/CexZr1-xO2 made by SCS and IW for lean 
methane oxidation 

Catalysts rate (µmolCH4/gPd*s) 

1PdCe IW 32.9 

1PdCZ75 IW 58.9 

1PdZr IW 79.8 

1PdCe SCS 111.4 

1PdCZ75SCS 91.9 

1PdZr SCS 78.4 

The data obtained by kinetic measurements confirm the higher activity of 1PdCe SCS and 

1PdCZ75 SCS when compared to their correspondent IW samples; in particular 1PdCZ75 SCS 

and 1PdCe SCS exhibit a reaction rate twice and three times higher than that measured on IW 

counterparts, respectively. Regarding ZrO2-supported materials, similar reaction rates are 

measured. The results of kinetic measurements indicate also that decreasing the ceria content 

into the support the effect of preparation procedure in kinetically regime becomes less 

pronounced, as detected qualitatively during catalytic tests.  

The superior performance of Pd/CeO2 prepared by SCS has been assessed by other authors and 

has been attributed to the stabilization of Pd2+ into ceria lattice resulting in a strong Pd-CeO2 

interaction in the form of Ce1-xPdxO2-δ solid solution [13, 14, 15, 16]. On 1PdCe SCS a surface 

roughness caused by a reconstruction of CeO2 has been detected by HR-TEM and, although 

not well defined, has been assigned to the formation of Pd-O-Ce superstructure (Figure 3.3). 

The dissolution of Pd2+ into CeO2 structure leads to the formation of an equivalent number of 

oxygen vacancies, indicated as new oxygen exchange sites: the formation of ordered (or 

random) oxygen vacancies has been indicated to play a key role in the improvement of the 

overall reactivity towards methane activation [15, 17]. It is plausible to hypothesize a similar 

scenario for CZ75-based samples, although 1PdCZ75 SCS does not shown the evidence of the 

formation of a Pd-O-Ce superstructure due to the insertion of Zr4+ (Figure 3.5). Therefore, the 

lower light-off temperature measured on 1PdCZ75 SCS can be related to the stronger Pd/Ce-Zr 

interaction with the formation of random Pd-O-Ce sites, effective sites for catalytic reaction. 

The formation of Pd-O-Ce linkages through strong Pd-Ce interaction is promoted by high 

temperatures and redox conditions achieved during solution combustion synthesis. This kind 

of structure obtained by SCS is known to enhance the catalytic activity towards CO/CH4 

oxidation and NO reduction [16, 17, 18, 19, 20]. Therefore, the higher catalytic activity of CeO2-

based catalysts prepared by combustion procedure can be attributed to the presence of stable 
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PdO in the form of Pd-O-Ce linkages [15]. For ZrO2-supported samples, the preparation 

procedure does not affect significantly the catalytic activity towards methane oxidation.  

4.1.2. Time-on-stream tests 

In order to evaluate the durability of different samples during long time exposure to exhaust 

gas, time-on-stream activity tests were performed at 723 K up to 24 hours in lean conditions by 

monitoring CH4 conversion as a function of time. This temperature was chosen based on the 

results of the literature, where it is indicated that the deactivation is more severe up to 773 K, 

and consistently with the operating window of NGV (673-873 K). The comparison of the results 

obtained for each sample is reported in Figure 4.9 in terms of normalized CH4 conversion 

calculated as: 

)0(

)(

4

4

CH

CH
4

X

tX
conversion CH normalized   

where )0(4CHX  is the conversion at the beginning of the experiment (t = 0), i.e. when the 

reactor reaches 723 K. Figure 4.9 shows the comparison of the time-on-stream tests for all 

catalysts.   

 
Figure 4.9:  time-on-stream behavior of 1Pd/CexZr1-xO2 made by SCS and IW at 723 K during lean-
methane oxidation; filled symbols: SCS, open symbols: IW 

1PdCe SCS shows a good stability throughout the test with a loss in activity of only 4% with 

respect to the initial conversion, reaching a stable value after 7 hours. Conversely, 1PdCe IW 

presents a more severe deactivation with a final conversion about 16 % lower of its initial value. 
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Looking at the stability curves of the Ce-Zr-based samples, on 1PdCZ75 SCS the normalized 

conversion is progressively reduced from 1 to 0.92 in 8 hours; instead 1PdCZ75 IW presents a 

higher deactivation rate with a drop of normalized conversion from 1.0 to 0.85 in the same 

time-period with a final loss in conversion of  20% (against 13 % measured over SCS sample). A 

different situation appears for zirconia-based catalysts: 1PdZr IW reveals a very small decrease 

in CH4 conversion, similar to that measured on 1PdCe SCS, but after 16 hours the conversion 

further decreases. In contrast, 1PdZr SCS shows a less stable behavior during the first 8 hours, 

deactivating more severely; however, at the end of the test a similar activity loss ( 8%) is 

measured on both samples. All catalysts, during the first hours, undergo a faster deactivation, 

generally reaching after several hours a stable value. This behavior might be ascribed to the 

accumulation of small amount of water generated during oxidation which remain adsorbed on 

the catalytic surface hindering the accessibility of CH4 molecules to the active sites [21].  

Kinetic data in the literature report the reaction order with respect to CH4, H2O, CO2 over PdO 

being 1, -1 and 0, respectively. The first-reaction order with respect to CH4 indicate that C-H 

dissociation is the rate limiting step and the negative-order dependency of oxidation rate on 

H2O (where water is produced during the reaction or added into the gas feed) suggests its 

strong inhibiting role on the reaction. The inhibition effect of CO2 has been found negligible 

on methane oxidation [8, 22, 23]. Ciuparu et al. suggested that hydroxyl groups generated from 

methane dissociation remain adsorbed on the catalytic surface longer than CO2 due to their 

slower desorption rate and their effect is important up to 723 K [24]. The improved long-term 

stability of SCS catalysts prepared on CeO2 and CZ75 with respect to IW counterparts can be 

associated to the presence of stable Pd-O-Ce sites. Regarding the zirconia-supported catalysts 

the results obtained are well in agreement with those of the previous works, which indicated 

the good resistance to lean-ageing treatment when zirconia is employed as support or 

promoter [25, 26, 27]. The similar performances of 1PdZr IW and 1PdZr SCS might indicate that 

on this support the preparation method has little or no effect on the time-on-stream stability, 

somehow reinforcing the hypothesis of a beneficial effect of the stronger Pd-ceria interaction 

obtained by SCS on ceria-containing samples. 

4.2. Catalytic performance  in  stoichiometric conditions 

As reported in Chapter 1, natural gas vehicles can be equipped with both lean burn or 

stoichiometric engine. In the latter, continuous oscillations of the air-to-fuel ratio from lean to 

rich value can occur and for this reason the catalytic performance of the best SCS catalysts has 

been evaluated under stoichiometric reaction mixture (O2/CH4 = 2).  
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For each sample two successive heating/cooling ramps were performed up to 1173 K; the 

characteristic temperatures for methane conversion during the two oxidation cycles are 

summarized in Table 4.3. 

Table 4.3: T10 and T50 measured over 1PdCe SCS and 1PdCZ75 SCS during the heating ramps  of 

two oxidation cycles (O2/CH4 = 2)  

 cycle 1 cycle 2 

Sample T10 (K) T50 (K) T10 (K) T50 (K) 

1PdCe SCS 595 681 588 663 

1PdCZ75 SCS 605 691 578 650 

Looking at Table 4.3, for 1PdCe SCS T10 remains almost unchanged between two oxidation 

cycles, while T50 decreases of 22 K. For 1PdCZ75 SCS in the kinetically-controlled regime the 

performance is improved after one cycle and this improvement is further increased for T50 

which decreases of 46 K during cycle 2.  

The effect of varying oxygen concentration in the feed on the light-off performance is shown 

on the basis of the second oxidation cycle and the results are reported in Figures 4.10 and 4.11 

for 1PdCe SCS and 1 PdCZ75 SCS, respectively. 

 
Figure 4.10: comparison of the 2nd oxidation cycle on 1PdCe SCS in O2/CH4= 2 and O2/CH4= 4 
reaction mixture; Solid line, closed symbols: heating; dotted line, open symbols: cooling. 

When 1PdCe SCS is exposed to a stoichiometric feed (Figure 4.10), no appreciable differences 

are detected below 800 K with respect fuel lean atmosphere. In the high temperature window, 
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instead, PdO decomposition takes place at 159 K lower compared to lean mixture due to the 

lack of oxygen. During the cooling part of the cycle, in fuel lean feed Pd re-oxidation is 

promoted and takes place at higher temperatures (957 K) compared to stoichiometric mixture 

(926 K) with a more stable behavior. However, after Pd re-oxidation, the light-off curve in 

stoichiometric conditions again overlaps the cooling branch of the lean curve.  

Figure 4.11 shows the light-off curves as a function of temperature at varying of oxygen-

methane ratio for1PdCZ75 SCS. 

 
Figure 4.11: comparison of the 2nd oxidation cycle of 1PdCZ75 SCS in O2/CH4= 2 and O2/CH4= 4 
reaction mixture; Solid line, closed symbols: heating; dotted line, filled symbols: cooling. 

A significant decrease of T10 and T50 of 23 K and 35 K, respectively, is detected during 

stoichiometric operation. When oxygen has been almost totally consumed for CH4 oxidation, 

high-temperature deactivation due to PdO reduction is clearly observable, accompanied by a 

drop in methane conversion. Upon cooling, the catalytic performance drops to 36% and Pd re-

oxidation occurs at 56 K lower than in fuel-lean atmosphere, while the size of activity loss 

remains almost similar.  

For both catalysts, PdO decomposition process and its re-formation in oxygen-deficient 

mixture are shifted to lower temperature. The dynamics of PdO-Pd-PdO phase transformation 

is remarkably influenced by oxygen partial pressure and this topic have been extensively 

investigated by our and other research groups [2, 4, 28]. The oxygen partial pressure affects the 

onset of decomposition temperature: by increasing the oxygen content from 0.5% to 21% the 

stabilization window of PdO as well as the temperature at which Pd is re-oxidized to PdO 

move towards higher temperature [4]. Monai et al. got the same conclusions, observing that 

the activity loss as well as the minimum in CH4 conversion during the cooling part of the light-



 

66 
 

off were closely related to the oxygen partial pressure: at increasing oxygen concentration the 

re-formation of palladium oxide was shifted to higher temperature accompanied by a smaller 

transient deactivation due to PdO-Pd phase transformation [28].  

Noteworthy, for 1PdCe SCS above 1050 K (see inset in Figure 4.11) some traces of carbon 

monoxide were detected at high temperature, indicating the occurrence of other reaction 

beside the total methane oxidation. Interestingly, for 1PdCZ75 SCS no CO was observed 

throughout the cycle and this could be related to the higher oxygen mobility of CZ75 mixed 

oxide [29], which can contribute to complete the oxidation of CO to CO2 in lack of oxygen. 

Depending on the oxygen/methane ratio, secondary reactions have been reported in the 

literature to take place during CH4 oxidation, such as reforming of methane, partial oxidation 

and water-gas shift [30, 31, 32]. Demoulin et al. proposed different pathways for methane 

oxidation depending on O2 content and temperature: high temperatures and low O2 partial 

pressure can promote the formation of CO and H2 [33]. In the kinetic regime, Lyubovsky et al. 

detected only CO2 as carbon-containing reaction product; at further increasing temperature 

they observed the production of CO and H2 as soon as oxygen was almost totally consumed 

[30]. In line with these results, Geng et al. identified two regions: in the first one, below 873 K, 

the reaction was mainly CH4 oxidation with CO2 as main carbon-containing product, while in 

the second one at higher temperature H2 and CO were produced by reforming of methane [32]. 

However, it is important to underline that the works mentioned above investigate methane in 

fuel-rich mixtures: in this case the evidence of side reactions and the presence of partial 

oxidation products are easier to establish with respect to our stoichiometric conditions. In our 

case, since CO2 concentration slightly decreases and CH4 is further consumed, methane 

removal might occur via dry reforming )22( 224 HCOCOCH  . The reforming reactions 

are strongly endothermic and, thus, they are promoted at high temperature. It cannot be 

excluded the occurrence of partial oxidation of CH4 and reverse water gas shift (RWGS) since 

oxygen becomes the rate-limiting reactant at high temperature. These first results obtained in 

stoichiometric feed suggest that catalytic activity of Pd catalysts and the reaction mechanism 

strongly depend on the O2/CH4 ratio: methane oxidation in oxygen-deficient conditions 

involves a complex process with the occurrence of exothermic and endothermic reactions 

depending on temperature, reactant concentration and nature of the support. 
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Conclusions 

The series of Pd/CexZr1-xO2 prepared by one-step SCS procedure was investigated in lean-

methane oxidation and compared to the corresponding samples prepared by conventional IW 

method. When ceria is present in the support, SCS catalysts have a higher catalytic activity: 

1PdCZ75 SCS and 1PdCe SCS exhibit a reaction rate of 91.9 µmolCH4/gPds and 111.4 

µmolCH4/gPds, respectively, against 58.9 µmolCH4/gPds of 1PdCZ75 IW and 32.9 µmolCH4/gPds 

of 1PdCe IW. Considering their TPO and TPR profiles (Chapter 3, Figure 3.11, 3.12, 3.13), SCS 

samples exhibit a complex redox behavior with the occurrence of separate 

decomposition/reduction steps and ascribed to the presence of various kind of PdO species, 

whereas mainly bulk PdO is present on their IW counterparts. In the case of ZrO2-supported 

catalysts, similar reaction rates have been measured for IW and SCS sample, even though 

1PdZr SCS shows multi-step decomposition and reduction peaks under oxidizing and reducing 

conditions, respectively. This indicate that the presence of different PdO species does not 

elucidate completely the better activity of solution combustion synthesized samples.  

The higher catalytic activity of 1PdCe SCS and 1PdCZ75 SCS towards methane oxidation can be 

attributed to a strong Pd/ceria and Pd/ceria-zirconia interaction with the formation of ordered 

or random Pd-O-Ce linkages constituting active sites for methane dissociation [14, 15, 16]. This 

strong metal-support interaction is promoted by a synergistic interplay of reducible oxide, high 

temperature and strong redox conditions achieved during solution combustion synthesis. 

Among combustion synthesized catalysts, the use of intrinsically active oxides like ceria and 

ceria-zirconia and the presence of Pd-O-Ce bonds lead to the formation of active sites 

facilitating methane oxidation and improving the overall reaction rate [14, 15, 16]. The 

beneficial presence of CeO2 is also observed in the cooling part of the cycle: when ceria is 

present into the support, Pd re-oxidation takes place at higher temperature due to the ability 

to change its oxidation state, providing lattice oxygen available for PdO re-oxidation. The 

better catalytic behavior of 1PdCe SCS and 1PdCZ75 SCS with respect their corresponding IW is 

also clear during time-on-stream tests: ceria and ceria-zirconia-supported catalysts prepared 

by SCS present a more stable behavior during lean-aging experiments, maintaining a good 

performance throughout the test. Again, when pure zirconia is used as support the 

deactivation degree during time-on-stream is almost similar between SCS and IW samples.  

The single-step approach, thus, reveals to be an intriguing method to obtain efficient and 

stable ceria-based catalysts with better activity and stability in methane oxidation compared to 

the catalysts with the same composition prepared by standard IW procedure. 

Concerning the experiments carried out in stoichiometric mixture, Pd catalysts supported on 

ceria and ceria-zirconia made by SCS still present high activity towards methane oxidation; in 
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particular, at temperatures below 800 K 1PdCZ75 SCS exhibits a better performance in lower 

oxygen partial pressure, probably due to the higher oxygen mobility of ceria-zirconia mixed 

oxide. The performance of Pd catalysts towards CH4 oxidation changes markedly in the high 

temperature window: in lower oxygen partial pressure PdO decomposition is anticipated and 

its regeneration is shifted to lower temperature due to the lack of oxygen. The results suggest 

that the reaction pathway could be different from fuel lean conditions depending on 

temperature and support. In stoichiometric conditions in fact reforming, partial oxidation and 

RWGS at high temperatures can occur and compete or contribute to methane removal. 
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Chapter 5 

 

 

Effect of water on the stability and light-off performance 
of solution combustion synthesized Pd/CexZr1-xO2 

catalysts 

 

 

Water poisoning represents a key issue for Pd-based catalysts due to the large amount of water 

vapor (10-15 vol.%) present in the exhaust gas stream. The investigation of the effect of water 

poisoning on the activity and durability of the series of Pd/CexZr1-xO2 catalysts is the goal of 

this chapter. The regeneration of the water-poisoned catalysts is also addressed. The results are 

supported and discussed in light of FTIR and TEM analysis. 
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5.1.   Catalytic performance in wet-lean conditions 

5.1.1  Catalytic activity 

The deactivation of Pd catalysts in the presence of external water was evaluated performing 

two oxidation cycles (heating/cooling) in wet atmosphere (0.5 CH4, 2% O2, 10 % H2O(v) in He), 

named cycle 1 H2O and cycle 2 H2O. To check the reversibility of water poisoning, a third 

heating/cooling ramp (named after H2O) in the absence of water (0.5 CH4, 2% O2, in He) was 

carried out. The second combustion cycle in dry-lean conditions (cycle 2 dry) is reported as a 

reference. 

 
Figure 5.1: catalytic activity of 1PdCe SCS with and without water in lean conditions; closed 

symbols: heating; open symbols: cooling. 

Figure 5.1 shows the light-off behavior during CH4 oxidation in the presence and in the absence 

of water of 1PdCe SCS. When water is introduced in the gas stream, an increase of T10 from 581 

K to 655 K and of T50 from 644 K to 710 K is observed, compared to cycle 2 dry. The catalytic 

performance in wet atmosphere is stable from cycle 1 to cycle 2: the two cycles are very similar 

to each other. It is worth noting that the activity drop during cooling is not affected by the 

presence of water vapor. When water is switched off, the catalytic activity is completely 

restored, and the light-off curve overlaps the curve recorded during cycle 2 in dry atmosphere.  
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Figure 5.2: catalytic activity of 1PdCe IW with and without water; closed symbols: heating; open 

symbols: cooling. 

1PdCe IW (Figure 5.2) displays also similar oxidation profiles throughout two heating/cooling 

ramps in wet conditions. In the presence of water T10 and T50 are shifted to higher temperature 

of 66 K and 70 K, respectively, with respect to dry atmosphere. After water removal the initial 

catalytic activity seems to be not fully restored during heating, with an increase of T50 of 40 K; 

however when the sample is cooled down the activity follows the same pattern observed in dry 

conditions. Again, no appreciable variations on the activity drop during cooling are detected 

upon water introduction and removal. 
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Figure 5.3: catalytic activity of 1PdCZ75  SCS with and without water; closed symbols: heating; 
open symbols: cooling. 

The catalytic activity in wet atmosphere of 1PdCZ75 SCS is shown in Figure 5.3. The gap in 

terms of T10 between dry and wet curve is narrower with respect to the one measured for CeO2-

supported samples. At increasing temperature this gap is further reduced, with a shift of only 

20 K for T50. Looking at the cooling part of the cycle, the activity loss is slightly more 

pronounced than that in the absence of water, with a shift of the position of the minimum 

from 687 K to 677 K. When water is switched off, the activity is entirely recovered with a little 

improvement below 700 K compared to cycle 2 dry. 
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Figure 5.4: catalytic activity of 1PdCZ75 IW with and without water. Closed symbols: heating; 
open symbols: cooling. 

For CZ75-based sample prepared by IW method (Figure 5.4), during cycle 1 H2O the reaction 

starts at 680 K and 50% of CH4 conversion is reached only at  800 K. After the first run, the 

catalytic activity is considerably improved with an increase of T10 and T50 of only 70 K and 33 K, 

respectively, compared to dry conditions. In this case though, water not only affects the 

catalytic performance during the heating ramp but also in the cooling branch: methane 

conversion falls to 20% and Pd re-oxidation slightly moves to lower temperature (Tox ≅ 941 K 

against 956 K in dry conditions). When water is removed from the gas stream, the activity 

improves but does not recover completely compared to that in dry atmosphere, especially at 

high temperature where methane conversion hardly reaches 90% as maximum value. 
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Figure 5.5: catalytic activity of 1PdZr  SCS with and without water. Closed symbols: heating; open 
symbols: cooling. 

The addition of water vapor has a strong effect on the catalytic activity of 1PdZr SCS (Figure 

5.5): a severe water inhibition is observed during the first oxidation run where light-off of 

methane occurs at 695 K, showing a large hysteresis between heating and cooling ramp. When 

a second cycle is carried out, the catalytic behavior is improved with an increase of T10 of 71 K 

compared to dry conditions, with a smaller hysteresis. Focusing on the cooling part of the 

cycle, Pd re-oxidation takes place at 940 K with a critical drop of methane conversion to 20%. 

This could be caused by sintering mechanism after exposure to high temperature and 

promoted by the presence of water vapor [1]. When water is switched off, during the heating 

part of the cycle the activity remains lower compared to dry atmosphere, with T10 and T50 

increasing of 21 K and 29 K, respectively. The activity loss continues to be more severe 

compared to cycle 2 dry; the initial level of activity is restored only upon cooling below 700 K.  
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Figure 5.6: catalytic activity of 1PdZr  IW with and without water. Closed symbols: heating; open 
symbols: cooling. 

Looking at the results of 1PdZr IW (Figure 5.6), methane oxidation starts at 63 K higher than in 

the absence of water. Although a marked inhibition effect is observed during the heating 

segment, water has no significant influence on the high-temperature deactivation. Once water 

is removed, the activity is completely restored only during cooling with a slight improvement 

with respect to the cooling branch in dry atmosphere.  

Table 5.1 summarizes the characteristic temperatures at which 10% and 50% of methane 

conversion is achieved with and without water for all samples. 

Table 5.1: T10 and T50 performed during methane oxidation with and without water for 1% 
Pd/CexZr1-xO2 catalysts 

 T10 (K) T50 (K) 

Catalyst dry wet after H2O dry wet after H2O 

1PdCe SCS 581 655 583 644 710 645 

1PdCZ75 SCS 602 654 592 684 703 664 

1PdZr SCS 594 665 615 661 723 690 

1PdCe IW 619 685 604 718 788 758 

1PdCZ75 IW 614 683 602 718 751 724 

1PdZr IW 601 664 595 676 735 700 

By observing the values reported in Table 5.1, solution combustion synthesized samples 

demonstate a superior activity in wet conditions, especially when ceria is present in the 
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support: 1PdCe SCS and 1PdCZ75 SCS are significantly more active than their IW counterparts. 

As observed for the experiments carried out in dry atmosphere, for ZrO2 supported samples 

the catalytic behavior is very similar between SCS and IW also in presence of water, showing 

close T10 and T50 values. This is a further confirmation that in the case of zirconia the 

preparation method does not have a strong influence on the catalytic performance, likely 

because Pd and zirconia do not interact as strongly as Pd-ceria.  

The results obtained from catalytic tests in wet atmosphere indicate that water acts as a strong 

inhibitor of methane oxidation on Pd-based catalysts, especially at low temperature, and well 

in agreement with the published data [2, 3, 4, 5, 6, 7, 8]. The increase of the onset of methane 

oxidation has been attributed to the competitive adsorption between water and methane on 

active sites  [3, 4, 8, 9], or to the formation of inactive Pd(OH)2 by the reversible reaction of 

PdO with water molecules [10, 11], or to the suppression of oxygen exchange among Pd, gas 

phase-and support [12, 13]. When Ce0.75Zr0.25O2 is used as support, the deactivation degree is 

less severe, irrespective of the preparation procedure. Ciuparu et al. attributed the better 

resistance to water poisoning of PdO/ceria-zirconia to the higher oxygen mobility of Ce-Zr 

mixed oxide. A fast oxygen exchange between the active phase and the support has been 

proposed to avoid a high hydroxyl coverage of the catalytic surface, thus enhancing the 

resistance to the deactivation caused by water [11, 12]. When water is switched off, the catalytic 

activity is restored more or less slowly to the initial value due to the desorption of hydroxyls 

from the catalytic surface [2, 4] or to the recovery of oxygen exchange process [12]. The 

catalytic performance on CeO2-containing catalysts made by SCS, with higher oxygen 

exchange capability, is immediately recovered upon water removal, whereas for their 

corresponding IW ones the activity is recovered at low temperature but not over the entire 

cycle. 

By looking at the catalytic results presented above, the effect of water on PdO-Pd-PdO phase 

transformation is not straightforward to define. For this reason we carried out also TPO 

experiments in presence of water. If we focus on the second TPO cycle performed in wet 

atmosphere (2% O2/N2, 10% H2O) (Figure 5.7), it is possible to observe that water does not 

modify significantly the onset or the shape of PdO-Pd transformation, which occurs always in 

a single broad step on IW catalysts and in three well defined peaks on SCS samples. Also the 

cooling part of the cycle is not markedly affected by water addition; only for 1PdZr IW the 

oxygen amount consumed for PdO re-formation is reduced with respect to the dry pattern. 

However, the differences observed during transient tests indicate that the effect is more 

pronounced or it acts differently when methane oxidation takes place.  
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Figure 5.7: second TPO cycle with and without water for Pd/CexZr1-xO2; black line: dry (2% O2/N2); 
light-blue line: wet (2 % O2/N2, 10% H2O) 
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Figure 5.8 illustrates the comparison of second heating/cooling cycle in the presence of water 

of SCS catalysts. 

 
Figure 5.8: catalytic activity during the second heating/cooling ramp in wet conditions on SCS 
samples. Solid line, closed symbols: heating; dotted line, open symbols: cooling. 

All samples show a similar light-off behavior during the heating ramp, with a slightly better 

performance in the low temperature region achieved by 1PdCZ75 SCS, followed by 1PdCe SCS, 

and 1PdZr SCS (see the inset of Figure 5.8). Focusing on the cooling branch, the effect of the 

support is clearly observable: re-oxidation of Pd to PdO takes place at higher temperatures 

when CeO2 and CZ75 are used as carriers, and, thanks to this effect, the activity loss is 

considerably reduced compared to zirconia-supported sample. 
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5.1.2  Study of the durability and regeneration of H2O-poisoned catalysts  

The effect of water on the catalysts stability has been evaluated by time-on-stream 

measurements (TOS) at 723 K with a constant concentration of water vapor (10 vol.% (v)). The 

evolution of methane concentration has been continuously monitored with time-on-stream. 

The comparison between SCS and corresponding IW samples is made on the basis of 

normalized methane conversion, calculated as follows: 
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conversion CH  normalized   

where )0(4

wet

CHX is the CH4 conversion reached at the beginning of the test at 723 K. For sake of 

clarity, the stability curves collected without water ("dry mixture") and already shown in 

chapter 4, Figure 4.9 are added. Figure 5.9 shows the results of TOS experiments on 1PdCe IW 

and 1PdCe SCS in wet atmosphere. 

 
Figure 5.9: normalized CH4 conversion versus time-on-stream for CeO2 supported samples at 723 
K in wet and dry atmosphere 

As soon as water is introduced into the dry feed, 1PdCe IW is rapidly deactivated, according to 

the inhibition effect of water on methane oxidation. The activity is immediately deteriorated, 

and the conversion decreases to  85% of the initial value in 8 hours, continuing to decline in 

the following hours. At the end of the test, the conversion decreases of about 40% with respect 

to the initial value (against 16 % in dry atmosphere). In the case of 1PdCe SCS instead, water 

affects only slightly the stability of the catalyst, losing only about 10% of the initial conversion.  

By looking at the stability curves of Ce-Zr-based samples (Figure 5.10), the introduction of 

water accelerates the deactivation of 1PdCZ75 SCS much more with respect to 1PdCe SCS, 
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causing a decrease of normalized methane conversion from 100% to 70% after 24 hours. 

Concerning 1PdCZ75 IW, in isothermal conditions it experiences a severe deactivation with 

time-on-stream, losing 40% of its initial activity, similarly to what observed for 1PdCe IW. 

 
Figure 5.10: normalized CH4 conversion versus time-on-stream for CZ75 supported samples at 723 
K in wet and dry atmosphere  

 
Figure 5.11: normalized CH4 conversion versus time-on-stream for ZrO2supported samples at 723 
K in wet and dry atmosphere 

In Figure 5.11 the comparison of time-on-stream behavior of ZrO2-based catalysts is reported. 

At steady-state both samples show a good hydrothermal stability: the addition of water vapor 

into the gas feed seems to not affect the time-on-stream behavior of 1PdZr IW with an overall 

deactivation similar to that measured in dry feed (8 %). Also 1PdZr SCS is able to maintain a 

good stability during the hydro-treatment, losing 19% of initial conversion (vs 8% in dry feed). 
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It should be emphasized that the numbers are merely indicative, since the oscillations in water 

feed might affect the punctual conversion values; what is significant is the general trend which 

indicates a higher stability of 1PdCe SCS and Zr-supported catalysts among all samples 

considered in this study. 

When water is introduced into the reaction feed, the synthesis procedure does not affect 

significantly the deactivation over time of ceria-zirconia samples, in contrast to what observed 

in dry conditions. In the case of pure ceria the difference between IW and SCS becomes 

instead much more pronounced than in dry feed, with the latter showing a much higher 

stability. For zirconia-supported catalysts the trend of deactivation observed without water is 

maintained in wet atmosphere with similar stability of both samples under steady-state 

conditions. The low deactivation of zirconia-based catalysts during hydro-aging is in 

agreement with other literature results. Some authors tentatively ascribed the stability of 

zirconia-supported catalysts to the high surface oxygen mobility, that might avoid the 

accumulation of OH on the surface of the catalyst [1, 13, 14]. Alternatively, physic-chemical 

properties of ZrO2 (acid strength, hydrophobicity) were indicated to enhance the resistance to 

water poisoning [1, 15], but no conclusive explanation has been found yet.  

In order to determine the reversibility of water deactivation during time-on-stream test, 

activity recovery experiments were carried out to study the regeneration of the H2O-poisoned 

catalysts. These tests represent a key point to evaluate the stability of the catalysts upon cyclic 

wet/dry feed. The activity recovery experiments were performed at 723 K and each sample was 

subjected to cyclic feed stream from wet-lean to dry-lean feed, represented in the scheme 

reported in Chapter 2, Figure 2.6. The cooling branch of the second cycle carried out in dry 

condition (“cycle 2 dry cool”) and the time-on-stream curve recorded in dry conditions 

(“723_dry 24 h”) are also shown as references. 
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Figure 5.12: activity recovery test on CeO2 supported samples; square symbols: wet; circular 
symbols: dry.  

Figure 5.12 illustrates the behavior of ceria-based catalysts during the activity recovery test at 

723 K. 1PdCe SCS, as already observed during TOS, shows a good stability in the presence of 

water, while 1PdCe IW progressively loses its activity with time. After removing water, leaving 

the catalysts in dry conditions for about 14 hours, SCS sample recovers completely the initial 

catalytic activity, even slightly improving for a short time its performance compared to dry 

conditions (grey curve), whereas 1PdCe IW is not able to recover its dry activity pattern. After a 

further addition of water, the methane conversion drops very quickly to ~ 40% and 15% for SCS 

and IW sample, respectively, and it remains almost constant during 4 hours. Removing water 

again, a quick increase in activity can be observed for both samples. The conversion of 

methane remains constant for about 1 h, then a further slight increase is recorded.  
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Figure 5.13: activity recovery test on CZ75 supported samples; square symbols: wet; circular 
symbols: dry.  

Figure 5.13 illustrates the results for CZ75-supported samples. When water is switched off after 

4 hours, both samples improve their performances compared to the respective dry activity 

(grey line), in line with the results obtained during activity tests. This effect is much more 

evident than for 1PdCe SCS, and for 1PdCZ75 SCS it is maintained during the 14 hours in dry 

atmosphere (methane conversion being always 10% higher than the time-on-stream dry 

conversion). 1PdCZ75 IW loses progressively its activity, going back to the values recorded 

during dry time-on-stream experiment. After a further water on/off cycle, 1PdCZ75 SCS slightly 

increases again its methane conversion compared to the last observed value before water 

introduction. As it was observed for ceria-supported samples, also in this case the SCS catalyst 

follows its dry cooling light-off curve while the IW one is highly deactivated.  

The results of ZrO2-supporting samples during regeneration tests are presented in Figure 5.14. 
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Figure 5.14: activity recovery test on ZrO2 supported samples; square symbols: wet; circular 
symbols: dry.  

During the first 4 hours in wet atmosphere, both samples exhibit a good hydrothermal 

stability, as assessed during TOS. Upon removing water, SCS catalyst is able not only to restore 

its initial conversion but also to show a considerable improvement of its performance 

compared to the behavior recorded in dry conditions (grey line). On the contrary, for 1PdZr IW 

only a partial restore is detected and the overall conversion remains ~20% lower than the dry 

time-on-stream test. Once water is re-introduced, methane conversion immediately drops to 

60% and 35-40% for 1PdZr SCS and 1PdZr IW, respectively. Switching off water again, only 

1PdZr SCS recovers completely its initial pattern. When the samples are cooled down, 1PdZr 

SCS follows the cool-down branch of cycle 2 dry, whereas the IW sample shows a permanent 

deactivation.  

The recovery of activity is enhanced for ceria-zirconia-based catalysts: the addition of ZrO2 

into CeO2 structure enhances the oxygen storage capacity (OSC) of CeO2 and oxygen mobility 

[16], as measured by TPR (see Chapter 3): this has been indicated as a key factor to prevent or 

minimize the effects of deactivation by water [12, 13]. Indeed, a very good performance of ceria-

zirconia based samples can be observed despite the preparation method. This result seems well 

in agreement with the mechanism of deactivation via suppression of oxygen exchange with the 

support proposed by Ciuparu et al. and recently by Schwartz et al. When Pd is supported on 

ceria-zirconia mixed oxide the deactivation operated by water is less severe likely due to the 

higher oxygen exchange capability of the oxide carrier which provide a better stability during 
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the reaction in wet atmosphere [12, 13]. The stabilizing role of zirconia is known to be 

beneficial for the activity of Pd-based catalysts in presence of water [14]. Indeed a very good 

performance has been observed also for 1PdZr SCS during time-on-stream experiments. 

Furthermore, Stasinska et al. found a correlation between water deactivation and Pd particle 

size: catalysts with smaller PdO particles were found to be less affected by water poisoning [17]. 

This behavior has been attributed to a faster and easier oxygen exchange for small Pd 

crystallites, while for larger PdO particles a more severe deactivation was observed. A 

heterogeneous PdO size distribution and/or different PdO species on SCS samples, as inferred 

from TPO and TPR profiles, could explain their lower susceptibility to water deactivation, 

guaranteeing higher activity and stability. 

In order to obtain a deeper understanding of the behavior of different catalysts, catalysts fresh 

and after activity recovery tests (aged) were characterized by means of FTIR spectroscopy and 

TEM analysis. Figure 5.15, 5.16 and 5.17 illustrate the IR spectra after the activity recovery tests 

of Pd catalysts supported on ceria, ceria-zirconia and zirconia, respectively.  

 
Figure 5.15: FTIR spectra of fresh (dotted line) and aged (solid line) CeO2 supported samples in 
the range of 600-4000 cm-1 
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Figure 5.16: FTIR spectra of fresh (dotted line) and aged (solid line) CZ75 supported samples in 
the range of 600-4000 cm-1 

 
Figure 5.17: FTIR spectra of fresh (dotted line) and aged (solid line) ZrO2 supported samples in the 
range of 600-4000 cm-1 
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The IR patterns recorded before (fresh) and after activity recovery test (aged) show several 

adsorption bands in the range of 600-4000 cm-1. 

The fresh catalysts (dotted lines) show large bands in the range of 3700-3100 cm-1 belonging to 

the stretching of O-H species [18, 19, 20]. A small shoulder is present at  3698 cm-1 which 

could be assigned to the surface OH groups on the support [19].  The sharp IR peak located at 

approximately 2400-2300 cm-1 corresponds to gaseous CO2 [18]. Looking at the IR spectrum of 

the fresh 1PdZr SCS (Figure 5.17 dotted black line) a broader and not well defined IR band is 

observed in the range of 2160-1980 cm-1: this large band can be attributed to CO coordinated to 

Pd and/or Zr4+ [19, 20]. 

The peaks in the region 1700-1000 cm-1 are generally assigned to the presence of various 

carbonates, hydrogenocarbonates and formates adsorbed on the support [21, 22, 23, 24]. These 

species trapped on the fresh catalysts can be originated from the thermal decomposition of 

precursors and organic fuel used for sample preparation. The strong adsorption bands at lower 

wavenumber (600-900 cm-1) are characteristic of Ce-O and Zr-O stretching mode [25, 26, 27]. 

In particular the IR peak at ~ 750 cm-1 present on ZrO2-supported catalysts is assigned to 

monoclinic ZrO2. 

Looking at the IR patterns of the aged samples (solid line), it is possible to observe that the 

absorption features relative to the support oxide are slightly modified upon aging, indicating 

that the vibrational modes of Ce-O and Zr-O are in some way affected by cyclic wet/dry 

treatment. The appearance of IR peaks in the region 3100-2600 cm-1 is detected and ascribed to 

C-H intermediates remained adsorbed on the surface after reaction. The main feature observed 

after the aging treatment consists in the bands corresponding to carbonyl species adsorbed on 

Pd0 sites, that appear on all catalysts. The vibrational frequencies of C-O bond depend on the 

adsorption sites of carbon monoxide over Pd, whose identification is not straightforward due 

to the their close wavenumber. However, the band centred at ~ 1880-1870 cm-1 is generally 

characteristic of bridging CO over metallic Pd sites [19, 20, 22, 28], where CO molecule is 

coordinated to two-three Pd0 sites, while the bands at about 2000 cm-1 can be attributed to 

linear Pd0−CO complexes [21]. Irrespective of the support, on impregnated samples the bands 

relative to bridge Pd0-CO are more intense than on SCS ones: this  might evidence the 

presence of larger Pd particles or lower Pd dispersion after aging in IW catalysts. Also, on SCS 

samples a slight shift of the band at higher wavenumbers is observed, indicating the prevalence 

of linear bonded CO. It is worth noting that the IR pattern of aged 1PdCZ75 SCS does not 

reveal any band attributed to bridge Pd0-CO.  

In order to ascertain the hypothesis of higher dispersion on SCS samples after aging, and trying 

to further understand the deactivation mechanism, TEM characterization of aged CZ75-based 

samples has been carried out, measuring the average particle size of palladium particles before 
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and after aging. Figure 5.18 shows the TEM images of fresh and aged CZ75-based samples; 

black arrows indicate Pd particles. Pd particle size distribution before and after aging has also 

been calculated on the basis of TEM characterization and the results are reported in Figure 

5.19. 

 

Figure 5.18: TEM images of fresh A) 1PdCZ75 SCS, B) 1PdCZ75 IW, aged C) 1PdCZ75 SCS and D) 
1PdCZ75 IW 

TEM images of fresh 1PdCZ75 SCS show that Pd particles are finely dispersed on the ceria-

zirconia support and the mean size of Pd particles is of 0.80 nm, as inferred from Figure 5.19 

(A). On the fresh  1PdCZ75 IW sample (Figure 5.19 (B)), palladium particles are larger  with an 

average size of 1.22 nm. After aging, the mean particles size of Pd increases up to 0.90 nm and 

1.90 nm on 1PdCZ75 SCS and 1PdCZ75 IW, respectively. The particle size range remains within 

0-2 nm on 1PdCZ75 SCS before and after aging, whereas for its IW counterpart there is a 

significant increase from 0.5-2 nm to 1-3.5 nm, as it is shown in Figure 5.19. 
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Figure 5.19: Pd particle size distribution of CZ75-based samples; A) fresh 1PdCZ75 SCS, B) fresh 
1PdCZ75 IW, C) aged 1PdCZ75 SCS and D) aged 1PdCZ75 IW 

TEM results seem to be consistent with the ones obtained by IR characterization. The particle 

size of palladium and its dispersion on the catalytic surface can change after aging [29, 30, 31]. 

The growth of noble metal particles after aging treatment is more pronounced for impregnated 

samples: the formation of Pd-O-Ce linkages via strong metal-support interaction for solution 

combustion synthesized Ce-containing samples might prevent the sintering of Pd particles and 

maintain Pd highly dispersed on the support. High dispersion and smaller particles of 

palladium have been indicated to enhance the catalytic activity [17, 30] and are less susceptible 

to deactivation in the presence of water [17]. 

5.2 Catalytic performance in wet-stoichiometric conditions 

In order to study the effect of oxygen concentration on water poisoning, the catalytic 

performance of 1PdCe SCS and 1PdCZ75 SCS has been investigated also in oxygen-deficient 

conditions (0.5% CH4, 1.0% O2 with 10 vol.% of H2O in He), following the same experimental 

procedure used for wet-lean experiments.  
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Figure 5.20: catalytic activity of 1PdCe SCS with and without water in stoichiometric conditions; 
closed symbols: heating; open symbols: cooling. 

 
Figure 5.21: catalytic activity of 1PdCZ75 SCS with and without water in stoichiometric 
conditions; solid line, closed symbols: heating; dotted line, open symbols: cooling. 
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As observed in lean conditions, the addition of water into the reaction mixture deactivates the 

catalysts, increasing the temperature of the onset of methane oxidation. During the first cycle, 

for both samples the addition of water into the gas stream negatively affects methane 

oxidation with a large thermal hysteresis between heating and cooling ramp. Performing a new 

cycle on the used catalysts, T10 is delayed of approximately 80 K and T50 increases of only  50 

K with respect to dry conditions. Looking at the light-off curves of 1PdCZ75 SCS, a strong 

deactivation of the catalyst during the first cycle is observed. The delay becomes less 

pronounced during the second wet cycle where T10 and T50 increases of 78 K and 57 K 

compared to dry conditions; the presence of steam negatively affects Pd re-oxidation during 

cooling, causing a drop of CH4 conversion to 26 %. However, for both catalysts the 

deactivation is completely reversible and the patterns in dry conditions are quickly recovered 

once water is removed from the reaction mixture, with a slight improvement of activity during 

the heating ramp. 

In order to further examine the effect of water under different oxygen partial pressure, the 

temperature difference in terms of T10 and T50 recorded during the second heating ramp in dry 

and wet feed is illustrated in Figure 5.22. 

 
Figure 5.22: temperature difference for 10 % and 50 % methane conversion between dry and wet 
feed during the second heating ramp in stoichiometric and lean conditions; A) 1PdCe SCS and B) 
1PdCZ75 SCS 
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For 1PdCe SCS, the oxygen partial pressure does not affect significantly the temperature 

difference between dry and wet feed at 10% and 50% of conversion, showing a similar 

deactivation in lean and stoichiometric oxidation. Regarding 1PdCZ75 SCS instead, the oxygen 

partial pressure seems to have a stronger effect: a higher deactivation degree is observed in 

stoichiometric conditions for both T10 and T50.   

The results seem in contrast with those obtained by Mihai et al. who observed a more marked 

deactivation using high oxygen concentration. This discrepancy can be related to the different 

experimental conditions used to evaluate the catalytic activity (catalyst: Pd/Al2O3, 5% H2O 

with reducing/oxidizing steps used to pre-treat catalyst before activity test) [32]. 

Looking at the inset of Figure 5.20, it is possible to observe the formation of small traces of 

carbon monoxide during cycle 1 and 2 H2O beyond 1000 K but in lower amount compared to 

that measured in dry conditions (i.e cycle 2 dry and after H2O). This is in line with the results 

obtained by Mihai et al. who measured a higher amount of CO produced in dry conditions 

than in the presence of water [32]. When oxygen becomes the limiting reactant, water present 

in the gas stream might participate during methane oxidation through steam reforming or 

water gas shift reaction [32]. Again, for CZ-supported catalyst the formation of CO is not 

detected. However, these results need further investigation to assess the occurrence of 

additional reactions when methane oxidation is carried out in wet and oxygen-deficient 

conditions. 

Conclusions 

The effect of water poisoning on the series of Pd/CexZr1-xO2 catalysts was evaluated both in 

transient and steady-state conditions. The results can be summarized in the following points:  

 the presence of water in the reaction mixture inhibits the oxidation of methane, 

causing an increase of the light-off temperature. The deactivation becomes less severe 

when Ce-Zr is used as a support; in particular for 1PdCZ75 SCS, T10 and T50 increase of 

only 52 K and 19 K, respectively, against 60-70 K measured for other samples.  

 Water has some effect also on PdO-Pd-PdO phase transformation but only when the 

reaction takes place. However for 1PdCe SCS and 1PdCZ75 SCS samples, the initial 

activity is completely restored upon water removal, while for their corresponding IW 

counterparts water poisoning is not completely reversible over the entire cycle. 

 During time-on-stream tests, the presence of water accelerates the deactivation of the 

catalysts, especially in the case of impregnated samples. When zirconium oxide is used 

as a carrier, the catalysts exhibit a high resistance to hydrothermal aging, maintaining a 

high conversion level throughout the test. 
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 The difference between SCS and IW samples becomes even more clear during the 

activity recovery experiments. The cyclic wet/dry treatment does not suppress the 

activity of SCS samples: they are able to restore quickly the conversion recorded in dry 

conditions after being subjected to wet atmosphere. On the contrary, for IW catalysts 

the activity remains lower than that observed without water, confirming the results 

obtained during temperature programmed experiments.  

 FTIR analysis on the aged catalysts evidences the presence of linearly and bridging CO 

coordinated to metallic Pd sites; in particular, on IW catalysts CO occupies mainly 

bridging sites. TEM characterization of CZ75-based catalysts confirms the results of 

FTIR analysis: after aging treatment, Pd particles size increases much more on the 

sample prepared by impregnation method, suggesting that the deactivation during 

cyclic wet/dry aging can be attributed to the sintering of noble metal particles. The 

strong Pd/ceria interaction obtained with SCS procedure might suppress the sintering 

of Pd species, thus accounting for the very good dispersion maintained by 1PdCZ75 SCS 

after the aging cycles as confirmed by FTIR (prevalence of linear bonded CO) and TEM.  

 

Therefore, we can conclude that solution combustion synthesized catalysts demonstrate to 

have a superior activity under different reaction conditions (dry and wet) with an improved 

resistance to hydrothermal ageing compared to their IW counterparts. When ceria is present 

in the support, the intimate Pd-ceria contact, the presence of various PdO species (as inferred 

from TPO and TPR patterns (Chapter 3, Figure 3.11 and Figure 3.13)) and stable, smaller Pd 

particles (as inferred from FTIR and TEM analysis), can be considered the main responsible of 

their higher tolerance to water poisoning. In particular the use of supports with high oxygen 

mobility like ceria-zirconia mixed oxide reveals to be an interesting approach to minimize the 

effect of water deactivation. However, we obtained interesting results also in the case of 1PdZr 

SCS, which shows a good resistance to cyclic wet/dry treatment with a complete recovery of its 

initial conversion level and a good stability with time-on-stream. As for other solution 

combustion synthesized catalysts, different PdO species have been identified by TPO and TPR 

experiments (Chapter 3, Figure 3.11 and Figure 3.13), but they might not explain entirely the 

behavior observed. Noble metal-zirconia interaction can effectively reduce the deactivation 

induced by aging [33]. Moreover, the structural difference of zirconia support (more tetragonal 

in the case of 1PdZr SCS) could play a role in the degree of deactivation and improve somehow 

the resistance to hydrothermal aging as suggested by some authors [34]. 

Regarding the experiments in oxygen-deficient conditions, the presence of water continues to 

affect negatively the catalytic performance with a shift of light-off temperatures towards higher 
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values. When Pd is supported on pure ceria, the change in gas composition does not 

significantly modify the degree of deactivation. Contrarily, for 1PdCZ75 SCS the deactivation 

under stoichiometric conditions appears to be more severe, but the activity is complete 

reversible upon water removal, as observed during lean oxidation. Furthermore, side reactions 

like steam reforming, partial oxidation or water-gas shift can occur depending on the 

temperature and catalysts composition. 
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Chapter 6 

 

 

Effect of SiO2 and Al2O3 addition on the structural and 

redox behavior of Pd/CeO2 catalysts 

 

 

This chapter addresses the discussion of the structural and morphological characterization of 

Pd-ceria catalysts doped with different amount of silica and alumina prepared by solution 

combustion synthesis. BET surface area measurements and XRD analysis have been employed 

to characterize the catalysts by a morphological point of view. The second part of the chapter 

is focused on the investigation of PdO thermal stability in 2% O2/N2 mixture with the aim to 

study the influence of the introduction of SiO2 and Al2O3 on the dynamics of PdO-Pd-PdO 

phase transformation. To gain further insights into the redox properties of these samples the 

results of H2-TPR characterization are also presented. 
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6.1.  Surface area and X-ray diffraction analysis 

Catalysts compositions, BET surface area and mean particle size of the catalysts (D), calculated 

by Scherrer’s equation from the line broadening of the most intense diffraction peak (2 = 

28.2°), are summarized in Table  6.1. 

Table 6.1: characteristics of Ce-Si and Ce-Al supported catalysts  

  
SiO2/Al2O3 

content 
(nominal) 

BET surface 
area (m2/g) 

D 
(nm) 

Catalyst Sample name wt.% mol. %   

1%Pd/CeO2 1PdCe SCS - - 6.6 46 

1%Pd/CeO2-2% SiO2 1PdCeSi2 SCS 2 5.5 14.4 34 

1%Pd/CeO2-5% SiO2 1PdCeSi5 SCS 5 13 12.7 40 

1%Pd/CeO2-13% SiO2 1PdCeSi13 SCS 13 29 11.4 30 

1%Pd/CeO2-20% SiO2 1PdCeSi20 SCS 20 41 7.8 42 

1%Pd/CeO2-13% Al2O3 1PdCeAl13 SCS 13 20 7.4 31 

 

The surface area of all samples is quite low, due to the high temperature reached during 

combustion synthesis, but the addition of SiO2 increases the surface area of 1PdCe SCS (6.6 

m2/g). Silica, in fact, acts a surface area-stabilizer for ceria support [1]. The improvement, 

however, decreases with increasing amount of silica, and this can be due to the segregation of 

some silicon oxide at higher SiO2 loadings (see the XRD patterns). Also for the Al-doped 

sample the surface area is slightly higher than that measured for 1PdCe SCS, due to the 

stabilization effect of Al2O3 on CeO2 support upon severe treatment during the synthesis [2]. 

XRD characterization (Figure 6.1) of Si-containing catalysts shows sharp diffraction peaks 

relative to cubic ceria, suggesting the sintering of CeO2 as a result of the severe conditions 

reached during combustion synthesis [3]. 
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Figure 6.1: XRD patterns of all catalysts: (a) 1PdCeAl13 SCS, (b) 1PdCeSi2 SCS, (c) 1PdCeSi5 SCS, 
(d) 1PdCeSi13 SCS (e) 1PdCeSi20 SCS; ■ CeO2, ●Ce4.94 Si3O13, □ CeAlO3; x SiO2 tetragonal; ○ SiO2 

hexagonal (top); XRD spectra in the range of 20°< 2θ < 35° (bottom) 

On the samples with SiO2 loading higher than 2 wt.%, weak peaks are detected at 21.2°, 22.4° 

and 30.9° belonging to a hexagonal cerium silicate phase (possibly Ce4.94Si3O13), more visible in 

Figure 6.1 (bottom). No indication of the presence of ceria-silica alloy is observed on 1PdCeSi2 

SCS likely due the low SiO2 loading and/or to the high dispersion of this phase (see TPO 

profile for more details). At 31.4° ceria-silica support shows the typical diffraction bands of 



 

102 
 

tetragonal SiO2; for 1PdCeSi20 SCS an additional peak at 26.5° is observable corresponding to 

hexagonal SiO2. When ceria is doped with alumina, the oxide carrier shows the characteristic 

peaks of cubic ceria and small peaks relative to the formation crystalline CeAlO3 in tetragonal 

structure. No obvious diffraction peak belonging to Pd or PdO phase is observable from XRD 

profile due to the high dispersion and/or to the low loading of the active phase.  

The presence of CeAlO3 and cerium silicate has been already observed in previous works from 

ours and other groups. Trovarelli and co-workers, through morphological investigation by 

HRTEM and XRD analysis on CeO2/SiO2 oxides, found the formation of Ce9.33(SiO4)6O2 phase 

upon reduction treatment and reported its progressive decomposition in oxidizing atmosphere 

at T > 873 K [4]. In some previous works, our group investigated a series of CeO2/Al2O3 mixed 

oxides. After treatment in reductive atmosphere, it was observed the formation of ceria-

alumina binary oxide, i.e CeAlO3 phase, attributed  to a strong ceria-alumina interaction [2]. 

Similar observations have been reported by Damyanova et al.: these authors suggested the 

occurrence of a strong ceria-alumina interaction in reducing atmosphere above 800 K. Ce-Al 

interaction leads to the formation of CeAlO3 mixed oxide due to a facile diffusion of Al3+ ions 

into CeO2-x lattice [5]. Also Liotta et al. found the presence of CeAlO3 phase: after treatment in 

reducing conditions, they detected the evidence of crystalline CeAlO3 on noble metal-free 

CeZrAl washcoat  [6], promoted by the reaction of Ce3+ with alumina.  

In our case, solution combustion synthesis involves a redox reaction  between salts precursors 

and organic fuel and very high temperatures (> 1273 K) can be easily reached in the furnace [3, 

7, 8]. Therefore, it is reasonable to attribute the origin of these Ce-based compounds to a 

strong Ce-Si and Ce-Al interaction promoted by redox conditions achieved during the 

synthesis. The presence of CeAlO3 and cerium silicate (Ce4.94Si3O13) indicates that ceria is 

stabilized in 3+ form [2, 4 ,6]. 

 

6.2 Redox behavior in oxidizing and reducing atmosphere 

6.2.1 TPO experiments  

The stability of palladium oxide has been evaluated through TPO experiments in 2 vol.% O2/N2 

mixture. For each sample three decomposition/re-oxidation cycles  have been performed up to 

1273 K, monitoring continuously the oxygen concentration at increasing/decreasing 

temperature. The main goal is to study the influence of silica/alumina doping on the dynamics 

of PdO-Pd-PdO phase transformation. The qualitative oxygen uptake/release profile during 

the three TPO cycles of 1PdCeSi13 SCS is reported in Figure 6.2, as an example for silica-doped 

catalysts. 
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Figure 6.2: O2 uptake/release during the three TPO cycles for 1PdCeSi13 SCS in 2 vol.% O2/N2 

Focusing on the heating part of cycle 1, a broad negative peak in the range of 600-800 K is 

observable likely due to the oxidation of metal Pd particles, not visible by XRD analysis due to 

their high dispersion or small size. At further increasing temperature, in the range 960 K-1050 

K, a sharp oxygen uptake is present and a small one appears above 1050 K, which corresponds 

to PdO decomposition. In the cooling part of TPO cycle a single oxygen uptake with a 

minimum at 911 K appears whose threshold does not change in the following cycles. The 

qualitative oxygen profile recorded during the heating part of the 2nd and 3rd cycle is 

completely different from the first one since PdO-Pd transformation takes place in three well 

defined steps with the maximum at 1021 K, 1078 K and 1153 K, respectively.  

Figure 6.4 illustrates the comparison of the oxygen uptake/release profile during the first TPO 

cycle of all Si-containing samples. 
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Figure 6.3: comparison of the 1st TPO cycle of all Si-doped catalysts in 2 vol.% O2/N2; heating: 
solid line, cooling: dotted line  

The shape of PdO decomposition is strongly modified upon SiO2 addition: only the dynamics 

of PdO-Pd transition of 1PdCeSi2 SCS appears similar to 1PdCe SCS with two oxygen release 

peaks centred at 1006 K and 1076 K with an additional weak oxygen uptake between 960 K and 

987 K. At increasing SiO2 amount, two main features deserve to be highlighted: i) the negative 

peak before PdO decomposition becomes larger at increasing SiO2 content and ii) the oxygen 

release step, associated to the decomposition of PdO to Pd, becomes less defined due to the 

overlapping with the oxygen uptake peak. Looking at the cooling branch, the onset of Pd re-

oxidation ( 950 K) does not change significantly.  

Trying to assess the nature of the oxygen uptake peak between 947-1053 K, the heating ramp 

was stopped at 1053 K (first TPO cycle stopped@1053 (point 1) in Figure 6.3) and the sample was 

cooled down in pure nitrogen to be collected for XRD and HRTEM analysis. The results of XRD 

analysis of 1PdCeSi13 SCS are reported as an example in Figure 6.4. 
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Figure 6.4: XRD patterns of (A)  fresh and (B) after first TPO cycle stopped@1053. 

On the sample collected after TPO stopped@1053 (pattern B), the diffraction peaks belonging 

to the cerium silicate phase and tetragonal SiO2 disappear, as inferred by the magnification 

showed in the inset of Figure 6.4, with the increase of the intensity of the peak relative to cubic 

ceria.  

These results seem to be in agreement with the ones obtained by Rocchini et al. Upon 

reduction of CeO2-13 wt.% SiO2 oxide, they detected the formation of Ce9.33(SiO4)6O2 phase, 

that decomposed into CeO2 and amorphous SiO2 after oxidation at T > 873 K. This conclusion 

has been suggested by the progressive increase of the intensity of X-ray diffraction peaks of 

cubic ceria and the disappearance of the characteristic bands of cerium-silicate [9]. Therefore, 

the oxygen uptake in the range of 947-1053 K can be assigned to the decomposition of cerium-

silicate compound into ceria and silica. 

The results of HRTEM characterization, that confirm this observation, are shown in Figure 6.5. 
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Figure 6.5: HRTEM images of (A,B,C) fresh 1PdCeSi13 SCS and (D,E) after first TPO stopped@1153 

All particles are highly crystalline. A careful analysis of the lattice fringes reveals the presence 

of ceria crystallites in a large extent, whereas much less abundant crystallites of cerium silicate 

are observed (Figures 6.5 (A) and  Figures 6.5 (B)). In Figure 6.5 (B), the particle labeled 

Ce4.xSi3O13 is oriented along the [011] crystallographic direction as deduced from the Fourier 

Transform (FT) image. It is not possible to distinguish between different cerium silicates, such 

as Ce4.94Si3O13 or Ce4.67Si3O13, indicated by Rocchini et al. [4]. Concerning palladium, it occurs 

mostly as PdO as individual nanoparticles of about 2-5 nm in size (Figure 6.5 (C)). 

The most important effect of oxidation up to 1053 K during the first TPO cycle (Figure 6.5 (D) 

and (E)) is the disappearance of the cerium silicate phase, which is transformed into ceria and 

silica. In Figure 6.5 (D), only ceria crystallites are visible along with amorphous patches of 

silica, as indicated in the figure. The inset shows an enlargement of the area enclosed in the 

black rectangle. The (111) lattice fringes of ceria at 3.12 Å are clearly seen in contact with 

amorphous silica (with lower electron contrast). Figure 6.5 (E), shows the occurrence of a PdO 

nanoparticle, showing the (101) crystallographic planes at 2.65 Å, in contact with a ceria 

crystallite ((111) planes at 3.12 Å). 

The results of HRTEM characterization confirm the ones obtained from XRD analysis, and 

thus the oxygen uptake observed during the first TPO cycle can be unequivocally assigned to 

the decomposition of cerium-silicate phase into ceria and amorphous silica, in agreement with 

the results reported in the literature by Rocchini and co-workers [4]. 
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The thermal stability of palladium oxide over 1PdCeAl13 SCS has been investigated with the 

same experimental procedure performing three reduction/oxidation cycles and the results are 

reported in Figure 6.6. 

 
Figure 6.6: O2 uptake/release during the three TPO cycles for 1PdCeAl13 SCS in 2 vol.% O2/N2 

During the first TPO run, two separate oxygen release steps can be identified: the first one at 

lower temperature (1013 K) and a second one at high temperature (1085 K). During the 

following cycles three steps relative to PdO decomposition can be clearly distinguished: a first 

O2 release occurs with maximum at 1018 K, whose area increases from cycle 1 to cycle 3, a 

second release peak at 1085 K and a last one at higher temperature (1145 K) with a sharp release 

peak, whose intensity slightly decreases from cycle 2 to cycle 3. During the cooling branch, 

PdO re-formation occurs in a single step at about 924 K, not showing significant modification 

during the entire TPO measurements.  

Since from the second TPO cycle onward no further modifications are detected in the 

qualitative oxygen/release profile, the comparison of redox behavior is made on the basis of 

the 3rd cycle;  the corresponding results for 1PdCe SCS are added as reference in Figure 6.7.  
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Figure 6.7: comparison of the 3rd TPO cycle on Si- and Al-doped catalysts in 2 vol.% O2/N2 

Table 6.2: quantitative analysis of the 3rd TPO cycle (2% O2/N2) for Si- and Al-doped catalysts 

Sample 

Tmax of first 
oxygen 

release peak  
(K) 

Tmax of re-
oxidation 
peak (K) 

µmol 
O2/gPd×10

-3
 

release 

µmol 
O2/gPd×10

-3
 

uptake 

% PdO 
red.

[a]
 

%PdO 
ox. 

[a]
 

1PdCeSi2 SCS 1013 926 3.59 2.92 70 62 

1PdCeSi5 SCS 1020 926 3.53 3.27 75 70 

1PdCeSi13 SCS 1021 917 3.47 3.50 73 67 

1PdCeSi20 SCS 1019 924 3.82 3.60 81 77 

1PdCeAl13 SCS 1018 924 3.78 3.07 81 65 

[a] PdO red: amount of PdO reduced during heating; PdO ox.: amount of Pd re-oxidized during cooling 

 

By looking at the heating part of the third TPO cycle, all catalysts show a similar dynamic 

behavior during PdO-Pd transformation. The first positive peak, typical of solution 

combustion synthesized catalysts, is located at about 1020 K, as inferred in Table 6.2, and likely 

corresponds to the oxygen release from the smaller PdO particles. The second large oxygen 

release peak reaches a maximum at ~ 1070 K and contains the contribution of bulk PdO or 

larger PdO clusters [10]. The peak at high temperature can be attributed to the stabilization of 
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palladium oxide operated by ceria [10, 11] or to the core of bigger PdO particles as suggested by 

Chen et al. [12]. The doping of Pd/ceria with silica or alumina does not influence the 

decomposition threshold, confirming that PdO-Pd transformation is a process ruled by the 

thermodynamics of PdO/O2 system [10], but it has an effect on the amount of PdO 

decomposed in each step, as clearly observed by the fitting of TPO patterns shown in Figure 

6.6. When silica or alumina are present on the support, the contribution of the last peak 

represents about 35-45 % of the entire PdO against 24% on 1PdCe SCS. This suggests an 

improvement of PdO stability upon SiO2 and Al2O3 introduction.  

In the cooling part of the cycle PdO re-generation starts at ~ 950 K and is completed at ~ 900 

K, occurring with a single oxygen uptake peak. The position of the minimum is set almost at 

the same temperature (Tox ≅ 925 K) and similar to that observed on 1PdCe SCS; only for the 

sample with 13 wt.% of SiO2, Pd-PdO transition is slightly delayed, showing a larger hysteresis 

with respect to the decomposition process. The re-oxidation of Pd to PdO has been 

determined to be a kinetic-ruled process where diffusion kinetics of oxygen [10], OSC of the 

support and particle size play a key role in the threshold and the extent of Pd-PdO 

transformation [13]. 

6.2.2 H2-TPR 

H2-TPR experiments have been performed to investigate the redox properties of the catalysts 

and to gain further insights on the metal-support interaction. The reducibility of Pd-based 

catalysts has been evaluated in 4.5% H2/N2 reaction mixture, monitoring the hydrogen 

uptake/release at increasing temperature. In Figure 6.8 the profile of H2 uptake/release is 

plotted against temperature, and the corresponding reduction profile of 1PdCe SCS is reported 

as reference. Table 6.4 reports the quantitative analysis of hydrogen consumed and the degree 

of reduction of ceria calculated after subtracting the contribution of H2 due to PdO reduction. 
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Figure 6.8: H2-TPR profiles of all Si- and Al-doped catalysts 

Table 6.3: quantitative analysis for TPR experiments 

Sample μmolH2/gcat 

up to 723 K 
x in CeO2-x 

up to 723 Ka 

1PdCe SCS 111 0.004 

1PdCeSi2 SCS 194 0.017 

1PdCeSi5 SCS 363 0.055 

1PdCeSi13 SCS 492 0.080 

1PdCeSi20 SCS 392 0.065 

1PdCeAl13 SCS 144 0.011 

 a 
calculated as CeO2 + xH2  CeO2-x + xH2O up to 723 K  

All catalysts, irrespective of the composition, exhibits four hydrogen consumption peaks (peak 

, β,  and δ) and one hydrogen release peak (peak ε). The large hydrogen consumption peak 

near room temperature (260-320 K) is attributed to the reduction of PdO to metallic Pd and to 

the simultaneous reduction of part of the support, due to the well-known spillover 

phenomenon [14, 15, 16]. The peak is splitted into two features (indicated as  and β) which 

have been attributed to different types and/or a heterogeneous particle size distribution of 

palladium oxide [17, 18, 19, 20, 21] The peak located at  280K (peak ) likely contains the 
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contribution of small PdO particles or particles finely dispersed on the surface of the support 

[17, 19]. The second one (~ 300 K) (peak β) might be assigned to the reduction of more stable or 

larger PdO clusters [20]. Peak  located at around 360 K and barely present on 1PdCe SCS likely 

contains the contribution of PdO particles in strong interaction with the oxide carrier [17, 19]. 

This peak should account also for a partial reduction of surface Ce4+, facilitated by the 

hydrogen activation promoted by noble metal and its migration to the support (spillover) [14, 

15, 16]. The low-temperature peak on Al-doped sample consists of two poor-resolved peaks 

centred at ca. 279 K and ca. 286 K.  At high temperature, a broad hydrogen consumption (peak 

) is observed in the range of 1040-1080 K and it is ascribed to the reduction of the ceria bulk 

[14]. The maximum of this peak is shifted to lower values with respect to 1PdCe SCS, especially 

for high SiO2 loading, i.e 13 wt.% and 20 wt.%. The decomposition of β-hydride species (PdH2), 

resulting from hydrogen adsorption/diffusion in the metallic Pd particles [22], occurs with a 

negative peak (peak ε) at around 340 K.  For 1PdCeSi20 SCS, peak ε appears to be sharp if 

compared to other catalysts, likely indicating a partial sintering of Pd [21].  

The incorporation of SiO2 into CeO2 support strongly modifies the reduction profile of 

Pd/CeO2 catalysts, especially for dopant concentration of 5-20 wt.%. The hydrogen 

consumption, estimated by the integration of the peak area between 200 K and 723 K, is higher 

than the theoretical value (~ 87 μmol H2/gcat) implying the occurrence of surface ceria 

reduction, originated by the hydrogen spillover from the noble metal to the support [19, 22]; 

the hydrogen amount consumed within this range progressively increases with SiO2 content. 

The reduction degree (x in Table 6.3) calculated up to 723 K is one order of magnitude higher 

on Si-containing samples; the highest ceria reduction degree corresponds to SiO2 amount of 13 

wt.%. Similar results have been obtained by Rocchini et al. who observed a marked increase of 

reducibility of CeO2 doped with 13 wt. % of silica [4].  

When Al2O3 is used as dopant, the hydrogen amount consumed up to 723 K is higher than for 

1PdCe SCS, but the area of the high temperature peak (peak ) is definitely lower than in pure 

Pd/CeO2. The TPR patterns displayed by Si-modified catalysts are very similar to that observed 

for Pd catalysts supported on Ce0.75Zr0.25O2 mixed oxides (Chapter 3, Figure 3.13). This suggests 

that the addition of SiO2 into ceria support enhances the reducibility of CeO2, promoting the 

oxygen mobility of pure ceria. This behaviour though is not a result of a perturbation of the 

ceria lattice as in the case of ceria-zirconia oxides but it is due to the formation of ceria-silica 

phase (Ce9.33(SiO4)6O2) [9]. In our case cerium silicate is present on the catalysts as-prepared 

and likely formed by strong ceria-silica interaction upon redox conditions and high 

temperatures achieved during SCS procedure [3]. 
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Conclusions 

Silica and alumina-modified catalysts were characterized by the structural point of view by 

means of BET surface area and X-ray Powder Diffraction analysis. The doping of Pd/ceria with 

SiO2 and Al2O3 induces important structural modifications. XRD analysis revealed on Si-doped 

and Al-doped catalysts the presence of new phases, namely cerium silicate (likely Ce4.94Si3O13) 

phase and CeAlO3, likely generated by the strong interaction of ceria-silica and ceria-alumina 

which stabilize Ce in the 3+ form. The formation of these phases can be promoted by the high 

temperatures and redox conditions realized during combustion synthesis. The presence of 

cerium-silicate phase affects the TPO profile of Pd-based samples: during the first 

heating/cooling ramp all catalysts show an oxygen uptake in the range of 950-1050 K, which 

becomes larger at increasing SiO2 amount and likely corresponds to the decomposition of 

Ce4.94Si3O13 phase into ceria and silica crystallites, as inferred from XRD and HRTEM analysis.  

The shape as well as the dynamics of PdO-Pd transformation showed during the third TPO 

cycle is typical of solution combustion synthesized catalysts where three-well defined 

decomposition steps can be distinguished: the occurrence of separate steps can be ascribed to 

various kinds of PdO species with different phase boundary or particle size. The nature of the 

support does not affect the onset of Pd decomposition/oxidation, but only the amount of PdO 

decomposed/re-oxidized in each step. 

The introduction of SiO2 increases the reducibility of bare Pd/ceria sample, as observed for 

Pd/ceria-zirconia. The presence of SiO2 enhances the interaction of ceria with hydrogen, 

promoting the reducibility of surface ceria at lower temperature. This behavior is not the result 

of a structural modification of the ceria lattice, as it happens in the case of ceria-zirconia, but 

of the formation of cerium-silicate phase. 
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Chapter 7 

 

 

Catalytic performance of Si- and Al-doped Pd/CeO2 

catalysts in methane oxidation in the absence and in 

the presence of water 

 

 

This chapter presents the results of the catalytic performance of the series 1 wt.% Pd supported 

on Si- and Al-modified ceria catalysts prepared by solution combustion synthesis. The catalytic 

behavior of various samples was examined during cyclic temperature programmed combustion 

experiments up to 1173 K, both in lean and stoichiometric reaction conditions, in the absence 

and in the presence of water. To understand deeply the catalytic behavior in the presence of 

water, the results obtained from TPO experiments in wet atmosphere are illustrated and 

supported by HRTEM analysis. 

The catalysts deactivation under long-time exposure to lean reaction mixture has been 

evaluated by time-on-stream experiments at 723 K for 24 hours.  
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7.1 Catalytic methane oxidation in the absence of water 

7.1.1  Catalytic activity and stability in lean reaction conditions 

In order to  investigate the activity for methane oxidation, two heating/cooling ramps up to 

1173 K were performed for each sample. Figure 7.1 presents the methane conversion profiles 

obtained during two heating/cooling cycles for various samples. 

 
Figure 7.1: catalytic activity of CeO2-SiO2 and CeO2-Al2O3 supported catalysts during two 
heating/cooling cycles for lean methane oxidation; solid line, filled symbols: heating; dotted line, 
open symbols: cooling 
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All samples show the typical hysteresis behavior of Pd-based catalysts during cyclic methane 

oxidation. Regardless of the catalyst composition, the hysteresis between heating and cooling 

branch markedly changes from one cycle to another: the hysteresis effect is larger during the 

first heating/cooling cycle, becoming narrower int the next one. For an easier comparison, the 

thermal hysteresis have been calculated as temperature difference in terms of T50 between the 

heating and cooling segment, according to the equation below: 

∆𝑇50 = 𝑇50 (ℎ𝑒𝑎𝑡) − 𝑇50(𝑐𝑜𝑜𝑙)  

The values are shown in Figure 7.2 for all samples. 

 
Figure 7.2: thermal hysteresis values (ΔT50) for the first and second oxidation cycles for all 
samples 

As clearly illustrated in Figure 7.2, a larger difference of T50 values is observed during the first 

oxidation cycle and ∆T50 progressively increases at increasing SiO2 loading, reaching a 

maximum of 79 K for 1PdCeSi20 SCS. During the second run, the hysteresis becomes smaller 

and equal to about 13-18 K for all samples. Similar results are obtained for the Al-doped sample: 

the hysteresis is equal to 53 K in the first oxidation cycle, then decreases to 15 K.  

Performing a new oxidation cycle on the used catalysts results in an enhancement of the 

catalytic activity. The behavior of Si-modified catalysts can be explained taking into account 

the results of TPO measurements (Chapter 6). PdO-Pd phase transformation in fact evolves 

differently during the first and second/third TPO cycle. When silica is added to ceria support, 

the first TPO run is characterized by the decomposition of Ce4.94Si3O13 phase, followed by a not 

well defined PdO decomposition peak. The second (and third) cycle, which represents the 

state of PdO during the second light-off cycle, shows three well-defined steps of PdO 

decomposition. Therefore, the different hysteresis behavior between the first and second light-
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off curve might be attributed to the different thermal treatment of Pd particles in air during 

the synthesis and under reaction mixture [1, 2, 3]. In the case of Ce-Si-based samples the 

situation is much more evident with respect to non-doped Pd-ceria catalysts (Chapter 4). 

Figure 7.3 compares the heating and cooling part of the second oxidation cycle for Si-doped 

samples.   

 
Figure 7.3: comparison of the heating (top) and cooling (bottom) light-off curves during the 

second methane oxidation cycle for all Si-doped catalysts 

During the heating ramp, all silica-doped catalysts show a similar light-off behavior up to ~ 

700 K. At increasing temperature, 1PdCeSi13 SCS considerably exceeds the performance of the 

other samples, reaching 100% conversion around 800 K; the samples containing 2 wt. % and 20 

wt.% of SiO2, instead, reach the full conversion at  920 K. By observing the cooling part of the 
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curve (Figure 7.3 (bottom)), the conversion profiles present a pronounced minimum, 

attributed to the presence of metallic Pd at high temperature [4, 5, 6]. The presence of SiO2 

slightly delays Pd-PdO transformation, but the amount of silica does not have a strong effect 

as all catalysts behave similarly. Also the minimum value of CH4 conversion does not change 

significantly with catalyst composition and is equal to 40-45%. After Pd re-oxidation the 

conversion starts again to increase, reaching the full conversion around 900 K: Si-containing 

catalysts maintain high conversion values up to 720 K, while for 1PdCe SCS the activity 

decreases immediately below 900 K. However, the light-off curves continue to be very similar 

to each other below 620 K.  

Figure 7.4 compares the light-off behavior of doped samples with the same amount of  dopant 

(Si or Al) with that of 1PdCe SCS.  

 
Figure 7.4: comparison of the second light-off cycle on 1PdCeSi13 SCS, 1PdCeAl13 SCS and 1PdCe 
SCS; solid line, closed symbols: heating; dotted line, open symbols: cooling. 

Focusing on the heating part of the cycle, in the kinetically-limited region, 1PdCeAl13 SCS 

exhibits a superior activity towards methane oxidation. On doped-samples, the full CH4 

conversion is achieved at ~ 780 K, 140 K lower with respect to that observed for 1PdCe SCS. 

Beside a slight temperature shift, the shape of the activity loss as well as the minimum in CH4 

conversion are not affected by the composition of the support. After PdO re-formation, the 

catalytic activity is quickly recovered for doped catalysts, reaching again 100% of conversion, 

with a slight improvement of performance during the cooling step. 

In order to understand quantitatively the difference among various samples, the activities were 

compared in terms of reaction rates calculated at 623 K, using the recycle apparatus described 

in section 2.6. During kinetic measurements, the recycle ratio was maintained at high value 

(R=25), with the purpose to ensure the occurrence of differential conditions and, thus, 
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performing a correct kinetic analysis. The results are reported in Table 7.1 in terms of CH4 

moles reacted per unit of time and gram of Pd. 

Table 7.1: reaction rates at 623 K on Si- and Al-doped samples for methane oxidation in lean 
conditions 

 

 

 

 

 

Taking 1PdCe SCS as reference, the  samples doped with 2, 5 and 20 wt.% of SiO2, show a 

higher efficiency towards methane oxidation. For the sample containing 13 wt.%  of SiO2, 

instead, the moles of CH4 reacted per unit of time are very similar to those observed for 

undoped sample, as suggested by light-off experiments. The positive effect of silica 

introduction to Pd/CeO2 towards methane oxidation has been also highlighted by Hoffmann et 

al.: they obtained a series of catalysts with a superior activity towards methane oxidation with 

respect to pure Pd/CeO2 [7]. When ceria is doped with alumina, the difference becomes more 

marked, where the  reaction rate is approximately twice than that measured for 1PdCe SCS and 

sensibly higher with respect to silica-containing samples. Considering the TPO profiles 

performed during the third heating/cooling cycle (Chapter 6, Figure 6.7), the introduction of 

SiO2 and Al2O3 leads to an increase of the fraction of palladium oxide interacting with the 

support and this might explain the increase of reaction rate for doped-samples.  

The stability of different Si- and Al-modified samples has been evaluated by time-on-stream 

tests in order to check the catalysts deactivation over time. Figure 7.5 illustrates the 

deactivation profile of all Pd-based catalysts measured at 723 K for 24 hours, where normalized 

methane conversion is plotted against time-on-stream. 

sample Rate@623 K (µmol CH4/gPd*s) 

1PdCe SCS 111.4 

1PdCeSi2 SCS 132.9 

1PdCeSi5 SCS 146.4 

1PdCeSi13 SCS 108.7 

1PdCeSi20 SCS 147.9 

1PdCeAl13SCS 218.3 



 

121 
 

 
Figure 7.5: stability of Al- and Si-modified catalysts at 723 K in lean methane oxidation 

All Si-containing catalysts show a good stability during the entire time-on-stream test: after 24 

hours the catalytic activity decreases of only 3-5%, indicating no severe deactivation. For Al-

doped sample instead, during the first half of the test methane conversion rapidly decreases of 

about 10% with respect to the initial conversion value. In the following hours the deactivation 

further proceeds on but more slowly, with a residual activity equal to 88% of the initial value 

after 24 hours. The decrease of activity with time might be ascribed to the build-up of water 

molecules on the catalytic surface produced from methane oxidation, whose desorption has 

been demonstrated being very slow [8]. The poor stability of Al-containing sample is in line 

with the published data, which report the severe deactivation of Pd catalysts supported on 

alumina in steady-state conditions [9, 10, 11]. The high affinity of alumina for water has been 

suggested to cause the decrease of stability when Al2O3 is used as support  [10, 11]. 

7.1.2 Catalytic activity in stoichiometric conditions 

The activity of 1PdCeSi13 SCS and 1PdCeAl13 SCS has been evaluated under stoichiometric 

reaction conditions (O2/CH4 = 2) during two heating/cooling cycles. The characteristic 

temperatures measured on each sample are reported in Table 7.2. 
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Table 7.2: T10 and T50 measured on 1 PdCeSi13 SCS and 1PdCeAl13 SCS during the heating ramps of 
subsequent two oxidation cycles (O2/CH4 = 2) 

 Cycle 1 Cycle 2 

Sample T10 (K) T50 (K) T10 (K) T50 (K) 

1PdCeSi13 SCS 620 711 567 626 

1PdCeAl13 SCS 663 734 627 676 

Both samples present a remarkable improvement of activity during the second cycle, as already 

observed under lean reaction conditions (Figure 7.1). In particular, for Si-doped sample T10 and 

T50 decrease of 53 K and 85 K, respectively, while for Al-doped one T10 and T50 are lowered of 36 

K and 58 K, respectively.  Figure 7.6 shows the effect of oxygen concentration on the evolution 

of CH4 conversion with temperature for 1PdCeSi13 SCS. 

 
Figure 7.6: comparison of the 2nd oxidation cycle for 1PdCeSi13 SCS in O2/CH4= 2 and O2/CH4= 4 
reaction mixture; solid line, closed symbols: heating; dotted line, open symbols: cooling. 
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Figure 7.7: comparison of the 2nd oxidation cycle for 1PdCeAl13 SCS in O2/CH4= 2 and O2/CH4= 4 
reaction mixture; solid line, closed symbols: heating; dotted line, open symbols: cooling. 

For Si-doped sample, the decrease of the oxygen amount in the feed does not change 

significantly the catalytic performance during the heating ramp, with similar T10 and T50 values 

in lean and stoichiometric conditions. The main effect of varying oxygen partial pressure is 

observed during the cooling part of the cycle, where the re-oxidation of Pd to PdO takes place 

50 K lower than in oxygen-rich atmosphere, but the minimum in methane conversion remains 

unchanged (38 %). 

Differently from what observed for Si-doped sample, the activity of 1PdCeAl13 SCS (Figure 7.7) 

is strongly affected by the feed composition: the threshold of methane oxidation moves 

towards higher temperature during stoichiometric operation, where T10 and T50 increases of 64 

K and 56 K, respectively. Above 860 K, when oxygen becomes the limiting reagent, the activity 

falls down sharply to rise again above  1020 K (homogeneous reaction). Upon cooling, the 

activity reaches a minimum of 37 % at 900 K, against 44% at 940 K in oxygen-rich atmosphere. 

Furthermore, the hysteresis during cyclic oxidation becomes larger when oxygen partial 

pressure decreases; this might be due to a different reconstruction of Pd/PdO particles on 

alumina under lower oxygen concentration. For both samples, the decrease of oxygen partial 

pressure leads to a delay of Pd re-oxidation, pushing the position of the minima to lower 

values, according to the results obtained previously by ours and other research groups [5, 12, 

13]. These results confirm the essential presence of high oxygen concentration to maintain 

palladium as PdO in the high-temperature region. Figure 7.8 shows the comparison of the 

second light-off curve with the one of 1PdCe SCS obtained in stoichiometric conditions. 
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Figure 7.8: comparison of the second oxidation cycle for 1PdCe SCS, 1PdCeSi13 SCS and 1PdCeAl13 
SCS during methane oxidation in stoichiomtric conditions; solid line, closed symbols: heating; 
dotted line, open symbols: cooling. 

The light-off temperatures increase in the following order: 1PdCeSi13 SCS < 1PdCe SCS < 

1PdCeAl13 SCS, and Si-doped sample has the best catalytic performance over the entire 

temperature range. The trend of activity changes completely with respect to lean conditions 

(Figure 7.4): the best light-off performance is obtained for Si-containing sample, whereas Al-

doped one is less active for CH4 oxidation in these reaction conditions. In the present study we 

are not able to state which is the active form of palladium in these reaction conditions and the 

debate about the active phase (Pd, PdO or a mixture of PdO/Pd) under stoichiometric/rich 

methane oxidation is still open [14]. However, the mechanism and kinetics of methane 

oxidation can change when O2/CH4 ratio is switched from lean to stoichiometric/rich regime, 

where reforming reactions and WGS might occur at increasing/decreasing temperature [15, 16, 

17]. 
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7.2 Catalytic methane oxidation in the presence of water 

7.2.1 Catalytic activity and stability in lean reaction conditions  

Similarly to what reported for ceria-zirconia supported catalysts, also on these samples the 

deactivation in the presence of external water was investigated. Briefly, two subsequent 

oxidation cycles (heating/cooling) were performed in the presence of water (0.5 CH4, 2% O2, 10 

% H2O(v) in He), named cycle 1 H2O and cycle 2 H2O. In order to assess the reversibility of 

water poisoning, a third cycle (named after H2O) was carried out without water in the feed (0.5 

CH4, 2% O2, in He). The second oxidation cycle in dry-lean conditions (cycle 2 dry) is added as 

reference one.  

Figure 7.9 presents the activity of 1PdCeSi2 SCS in the presence and in the absence of water 

vapor in the feed. 

 
Figure 7.9: catalytic activity of 1PdCeSi2 SCS with and without water in lean conditions; closed 
symbols, solid line: heating; open symbols, dotted line: cooling. 

When water is added into the gas stream, T10 and T50 increase of 80 K and 70 K, respectively, 

compared to cycle 2 dry, where the two oxidation cycles appeared almost identical to each 

other (see Figure 7.9). In wet atmosphere, no significant changes are detected on the activity 

loss during cooling as well as on the temperature of Pd re-oxidation. When water is removed 

from the gas stream (red curve), the catalytic activity is completely restored with a slight 

improvement of performance during heating above 600 K.  
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Figure 7.10: catalytic activity of 1PdCeSi5 SCS with and without water; closed symbols, solid line: 
heating; open symbols, dotted line: cooling. 

1PdCeSi5 SCS (Figure 7.10) displays a stable catalytic activity throughout two heating/cooling 

ramps with the second cycle more active than the first one and very narrow thermal hysteresis. 

After removing water, the heating ramp is slightly shifted to higher temperatures with an 

increase of T50 from 635 K (cycle 2 dry) to 652 K: this suggests that water deactivation is not 

immediately reversible for this sample. It is interesting to observe that in the presence of water  

and, in particular, after water removal the size of the activity loss due to Pd-PdO 

transformation is smaller than in dry conditions: the position of the minima is the same that in 

dry conditions (962 K) but the value reached in "after H2O" cycle is equal to 60% against 46% 

in dry atmosphere. 
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Figure 7.11: catalytic activity of 1PdCeSi13 SCS with and without water; closed symbols, solid line: 
heating; open symbols, dotted line: cooling. 

The oxidation profiles in wet atmosphere of 1PdCeSi13 SCS are illustrated in Figure 7.11. The 

deactivation caused by water is less severe in terms of T10 with respect to other silica-doped 

samples: the gap between dry and second wet light-off curve is equal to 66 K. As detected for 

the sample with 5% of SiO2, the loss in conversion during cooling is slightly reduced in the 

presence of water, especially during cycle 1 H2O; this reduction, however, is not maintained 

after water removal. 

 
Figure 7.12: catalytic activity of 1PdCeSi20 SCS with and without water; closed symbols, solid line: 
heating; open symbols, dotted line: cooling. 
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For the catalysts doped with 20 wt.% of SiO2 (Figure 7.12), a strong deactivation is observed 

during the first oxidation cycle with a shift of T10 and T50 of 93 K and 86 K, respectively, 

compared to dry conditions. After performing another cycle on the used sample, the catalytic 

activity is considerably improved with T10 and T50 decreased of 32 K and 53 K, respectively. 

Nevertheless, by observing the cooling part of cycle 2 H2O, a strong deactivation is observed 

when Pd is present in metallic form reaching a minimum of 34% at 942 K. Below this 

temperature, upon PdO re-formation, the activity is not completely restored with the cooling 

segment less active than the heating one. After two heating/cooling cycles in the presence of 

water, the activity is better than in dry atmosphere during heating, overlapping with the 

cooling segment of cycle 2 dry when the temperature is decreased. 

 

Figure 7.13: catalytic activity of 1PdCeAl13  SCS with and without water; closed symbols, solid line: 
heating; open symbols, dotted line: cooling. 

As soon as water is added into the gas feed, the catalytic activity of 1PdCeAl13 SCS is definitely 

deteriorated during the first cycle (Figure 7.13): a strong deactivation operated by water is 

observed with an increase of T10 of 116 K. In the following cycle, the catalytic activity is 

improved, with a smaller thermal hysteresis between heating and cooling branch. Above  920 

K, a dramatic drop in methane conversion is detected due to the decomposition of PdO to 

metallic Pd. Despite a strong inhibition effect during the heating segment, water has no effect 

neither on temperature of Pd re-oxidation nor on the size of activity loss during cooling. If we 

look at the light-off behavior after two cycles in wet atmosphere, the poisoning is not 

reversible and the conversion level remains lower with respect cycle 2 dry: 10% and 50% of 

conversion are achieved at 39 K and 60 K higher than in dry conditions, respectively. 
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Surprisingly, the size of activity loss is significantly reduced, reaching a minimum of 60% 

against  44% during cycle 2 dry.  

The behavior displayed by 1PdCeAl13 SCS well reflects the poor activity of alumina-supported 

catalysts in the presence of water with a strong deterioration of catalytic activity [1, 18, 19]. The 

storage of water in the support, the high affinity of alumina for water molecules and its low 

oxygen mobility can explain the severe deactivation when Pd is supported on alumina-

containing oxides [10, 19, 20, 21]. Also the acid/base properties of the support might influence 

the activity towards methane oxidation and could play an important role on the deactivation 

induced by water [22, 23]. In our case it is difficult to assess the role of acidity/basicity of 

dopants as both Al2O3 and SiO2 are mainly acidic, but their effect is somehow opposite on 

methane oxidation in presence of water. 

Table 7.3 reports the difference in the characteristic temperatures measured during “cycle 2 

dry” and “cycle 2 H2O” of all doped-catalysts, where ∆T10 and ∆T50 have been calculated as 

follows: 

drycycleOHcycle

drycycleOHcycle

TTT

TTT

2,5022,5050

2,1022,1010




 

Table 7.3: T10 and T50 measured with and without water in the feed  

 T10 (K) T50 (K) 

 
cycle 2 

dry 
cycle 2 

H2O 
∆T10 

cycle 2 
dry 

cycle 2 
H2O 

∆T50 

1PdCeSi2 SCS 570 650 80 635 705 70 

1PdCeSi5 SCS 579 657 78 635 710 75 

1PdCeSi13 SCS 585 651 66 641 712 71 

1PdCeSi20 SCS 584 652 68 655 698 43 

1PdCeAl13 SCS 560 676 116 620 727 107 

 

The increase of light-off temperatures in the presence of water is almost similar for all silica-

doped catalysts and equal to 70-80 K; only for 1PdCeSi20 SCS the increase in T50 is lower with 

respect to the other samples. By comparing the temperatures achieved in wet atmosphere, no 

influence of different SiO2 loadings can be detected on the catalytic activity, showing close T10 

and T50 values. When water is added to reaction feed, Al-doped sample is less active towards 

methane oxidation, differently from what observed in the absence of water (Figure 7.4).  

Since during light-off experiments the activity loss showed some changes upon water addition 

and removal, TPO experiments  were performed in wet atmosphere (2% O2/N2, 10% H2O) in 

order to evaluate the effect of water on PdO-Pd-PdO phase transformation. Similar to activity 

tests, for each sample two TPO cycles were carried out in wet atmosphere (only the second one 
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is shown) followed by a cycle without water (2% O2/N2) (after H2O). The TPO profiles of 

1PdCeSi13 SCS obtained with and without water in the feed are shown as an example (Figure 

7.14). The points marked with an arrow (2, 2’ and 3) indicate the temperatures at which the 

TPO was stopped and samples for HRTEM analysis were collected (see below). 

 
Figure 7.14: TPO profile of 1PdCeSi13 SCS with and without water in the feed 

Differently from the results obtained for Pd/CexZr1-xO2 samples (Chapter 5, Figure 5.7), the 

qualitative oxygen release/uptake profile is clearly affected by the addition of water. PdO-Pd 

phase transformation continues to be characterized by three separate oxygen release steps but 

the shape as well the position of the maxima markedly change.  During cycle 2 H2O, no change 

in the decomposition threshold of first oxygen release peak can be observed, and its maximum 

is set at 1021 K; the second step, instead, which likely correspond to the decomposition of bulk 

PdO [12], becomes broader and less defined. The main effect caused by water is related to the 

shift of the position of third oxygen release peak, corresponding to PdO species in strong 

interaction with the support  [12]: the decomposition of the stable PdO species moves towards 

higher temperature ( 70 K) with respect to the one in dry conditions. Focusing on the cooling 

part of the cycle, apparently no differences can be detected on the re-oxidation of metallic Pd. 

When water is removed from the feed, the qualitative oxygen/release profile continue to be 

different from that obtained in dry atmosphere: the position of the third oxygen release peak is 
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shifted to higher temperature, likely due to the slow desorption rate of hydroxyls groups from 

the catalytic surface that slows the return of the TPO to the dry profile. 

Figure 7.15 illustrates the comparison of the second TPO cycle of Si- and Al-doped samples 

carried out in the presence and in the absence of water. 

 
Figure 7.15: second TPO cycle with and without water for Si- and Al-doped samples; solid line: dry 
(2% O2/N2); dotted line: wet (2 % O2/N2, 10% H2O) 

When water is present in the feed gas, the dynamic of PdO-Pd transformation evolves 

differently for all catalysts. Two main effects have to be highlighted: i) the decomposition of 

the stable PdO species takes place at higher temperature, irrespective of the composition of 

the support, whereas no effect operated by water is detected on the decomposition threshold 

of the first and second step; ii) the second oxygen release peak becomes broader and less 

defined. For 1PdCeSi2 SCS, the decomposition of the third PdO species takes place with 

maximum at 1189 K, 46 K higher than during cycle 2 dry. A similar behavior can be observed 

for the other Si-based catalysts but the maximum of the third step is delayed of about 70 K at 

higher silica loadings. Analogues considerations can be done for the Al-doped sample: when 

water is added into the feed stream, the temperature of the maximum of the third oxygen 

release peak increases of 54 K with respect to the one in dry atmosphere. The introduction of 

water modifies also the distribution of the different steps: for Si-doped catalysts the 

contribution of the high temperature step becomes even more pronounced; on the contrary, 

for Al-doped sample the area of the high temperature peak is reduced and this might explain 
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its poor activity in the presence of water (Figure 7.13). Looking at the cooling part of the cycle, 

the oxygen uptake due to Pd re-oxidation is slightly shifted to lower temperatures: this 

behaviour might be related to a possible suppression of PdO re-formation due to the inhibition 

of oxygen mobility caused by water vapor [19]. 

In order to shade some light on the dynamic of PdO-Pd transformation in the presence of 

water, the heating ramp during the second TPO cycle was stopped at different fixed 

temperatures, the sample was cooled down quickly in pure nitrogen and then collected for 

HRTEM analysis following a procedure reported in the literature [24]. During cycle 2 dry, the 

collection temperatures for HRTEM were approximately 1123 K (second dry TPO cycle 

stopped@1123 (point 2) in Figure 7.14), before the third decomposition peak, and at around 1180 

K (second dry TPO cycle stopped@1180 (point 2') in Figure 7.14). With the same procedure, 

during cycle 2 H2O the heating ramp was stopped at around 1153 K (second wet TPO cycle 

stopped@1153 (point 3) in Figure 7.14), corresponding to an intermediate situation before the 

third PdO decomposition step. The samples so collected were characterized by HRTEM 

analysis and the results are illustrated in Figure 7.16. 

 

Figure 7.16: (A, B, C) HRTEM images of 1PdCeSi13 SCS collected during the second dry TPO cycle 
stopped@1123 (point 2); (D,E) HRTEM images of 1PdCeSi13 SCS collected during the second dry 
TPO cycle stopped@1180 (point 2'); (F,G) HRTEM images of 1PdCeSi13 SCS collected during the 
second wet TPO cycle stopped@1153 (point 3) 
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In the sample collected during the second TPO cycle in dry conditions stopped@1123K, there is 

a bimodal distribution of ceria crystallites (Figure 7.16 (A)). The area enclosed in the black 

rectangle is shown enlarged in Figure 7.16 (B). The inset corresponds to the FT of the image 

and shows rings corresponding to the different orientations of a large amount of ceria 

crystallites, ranging from 2 to 4 nm, approximately. However, a change in the state of 

palladium is clearly detected with respect to what reported for fresh 1PdceSi13 SCS (see 

Chapter 6, Figure 6.5). Figure 7.16 (B) evidences the presence of a metallic Pd particle showing 

the (111) crystallographic planes at 2.25 Å, which shows epitaxy with the (111) planes of the ceria 

crystallite support and originate a Moiré pattern. This means that palladium oxide in strong 

interaction with ceria has been reduced. In addition to the metal Pd nanoparticles, the sample 

still contains PdO (Figure 7.16 (C)). In Figure 7.16 (C) a PdO nanoparticle showing the 

characteristic (101) planes of PdO at 2.65 Å can be observed. 

After heating up to 1180 K the sample only contains metallic Pd nanoparticles. Figures 7.16 (D) 

and Figure 7.16 (E) show several Pd nanoparticles in contact with the ceria support crystallites. 

In this case no particular epitaxial relationships are observed and all palladium occurs as Pd 

metal, irrespectively of the contact with the ceria support. As an example, Figure 7.16 (E) shows 

the detail of a Pd metal nanoparticle exhibiting the (200) crystallographic planes at 1.95 Å over 

a ceria crystallite showing the characteristic (111) planes at 3.12 Å, as measured in the 

corresponding FT image. 

The sample subjected to a second TPO cycle in the presence of steam and quenched is virtually 

identical to the equivalent sample subjected to dry TPO and stopped at 1123 K. Again, a clear 

bimodal distribution of ceria crystallites is visible (Figure 7.16 (F)), with maxima at around 20 

nm for the large particles and around 4 nm for the smaller ones, as well as minor amorphous 

silica phase. Figure 7.16 (G) clearly highlights the presence of palladium nanoparticles, and 

reveals the coexistence of both Pd metal and PdO. The presence of palladium nanoparticle 

containing both Pd and PdO is visible at the junction of two ceria crystallites (Figure 7.16 (G)), 

one showing (111) planes at 3.12 Å and the other one oriented along the [112] crystallographic 

direction and showing the (111) planes and the (220) planes at 1.91 Å. The palladium 

nanoparticle is highly disordered and shows two domains. One domain corresponds to Pd 

metal oriented along the [110] direction and shows the (111) and (200) crystallographic planes of 

Pd at 2.25 and 1.95 Å, respectively. The other domain shows lattice fringes at 2.65 Å, which 

corresponds to the (101) crystallographic planes of PdO. 

From HRTEM analysis it seems that  the samples after dry TPO cycle stopped@1123 and after 

wet TPO cycle stopped@1153 do not show significant differences from a morphological point of 

view. Nevertheless, the presence of two domain particles on the sample treated in presence of 

water might indicate that PdO decomposition takes place following a different route in this 
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case. It should also be observed that the presence of amorphous silica after TPO cycles 

prevents somehow the possibility to find a clear relationship between the different phases by 

HRTEM analysis, which is more accurate when crystal lattice fringes are present.  

However, the adsorption of water molecules on the catalytic surface might change metal-

support interaction [25], modifying the thermal stability of PdO interacting with the oxide 

carrier. Moreover, SiO2 and H2O can easily react leading to the formation of Si(OH)4 species 

and this reaction is favoured above 973K [26, 27]. Alternatively, the presence of water at high 

temperature might promote a severe sintering of PdO particles [23]: larger PdO particles might 

require higher temperature to be decomposed. 

The effect of water on the catalysts stability was evaluated by time-on-stream tests  at 723 K 

with a constant concentration of water vapor (10 vol.% (v)). The evolution of methane 

concentration has been continuously monitored with time-on-stream. The results of time-on-

stream experiments are reported in Figure 7.17. 

 
Figure 7.17: time-on-stream behavior of Si- and Al-doped catalysts at 723 K in the presence of 
water 

The introduction of water accelerates the catalysts deactivation, especially in the early hours, 

according to the inhibition effect of water on methane oxidation [28, 29, 30]. The effect of SiO2 

loading on the stability is more remarkable than in dry conditions (Figure 7.6): the 

deactivation increases in the following order 1PdCeSi2 SCS < 1PdCeSi5 SCS < 1PdCeSi13 SCS < 

1PdCeSi20 SCS with an activity loss after 24 hours of 18%, 20%, 28% and 40%, respectively. 

Lamber et al. indicated that, during hydrothermal treatment, SiO2 can react with water 
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molecules leading to the formation of silanol species (Si-OH), which could cause the 

coalescence and migration of Pd particles [26]. 

For 1PdCeAl13 SCS, the effect of water poisoning becomes even more severe: the deactivation 

rate is faster compared to Si-doped samples, with an activity loss of  about 60% during the first 

4 hours. In the following hours, the conversion continues to decrease but more slowly, 

reaching an almost stable value after 18 hours. Stability data confirms what was observed 

during temperature programmed tests: when Al2O3 is added on the support, the catalysts are 

more susceptible to water poisoning. Even though no definitive explanation has been found 

yet, these results are in agreement with the ones obtained from other groups. Kikuchi et al. 

observed a poor stability of Pd-based catalysts when alumina is employed as support: they 

attributed this behavior to high coverage of active sites by OH groups, expressed by the more 

negative value of enthalpy of water adsorption [18]. Nomura et al. [21] and Araya et al. [31] 

attributed the higher deactivation degree of Pd/alumina to the greater affinity of the support 

for water . Moreover, the low oxygen mobility of alumina-based oxides has been proposed to 

cause the progressive deterioration of performance in the presence of water, in agreement with 

the previous results of Ciuparu’s groups [10]. 

7.2.2 Catalytic activity in stoichiometric reaction conditions  

The samples doped with 13 wt.% of metal oxide have been tested also under lower oxygen 

partial pressure and in the presence of water (0.5 % CH4, 1.0 % O2, 10% H2O in He), with the 

aim to study the effect of oxygen concentration on the water poisoning. The second oxidation 

cycle performed in dry stoichiometric conditions is used as reference. 

Figures 7.18 and 7.19 show the catalytic performance of the catalysts with and without water in 

the feed. 
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Figure 7.18: catalytic activity with and without water of 1PdCeSi13 SCS in stoichiometric 
conditions 

 
Figure 7.19: catalytic activity with and without water of 1PdCeAl13 SCS in stoichiometric 
conditions 

Looking at the catalytic performance of 1PdCeSi13 SCS (Figure 7.18), during the second 

oxidation cycle in wet conditions, the onset of the methane oxidation increases from 563 K to 

637 K and 50% of methane conversion is reached 54 K higher with respect to the dry 
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atmosphere. No effect operated by water, instead, is observed on the transient deactivation at 

high temperature after the first cycle in presence of water. Once water is switched off, the 

initial activity is quickly recovered and overlaps with the one recorded during cycle 2 dry. The 

deactivation due to PdO-Pd transformation during cooling is slightly improved, reaching a 

minimum of 51 % against 43 % in dry atmosphere. 

By observing the results obtained for Al-doped catalyst (Figure 7.19) and focusing on the 

heating ramp of cycle 1 H2O, a strong inhibition effect of water is detected, where T10 and T50 

increase of 65 K and 100 K, respectively, reaching the full conversion only above 1000 K when 

there is likely also the contribution of homogeneous reaction. A dramatic loss in conversion 

due to PdO-Pd transition is observed in fact during heating, indicating a strong effect of water 

in stoichiometric conditions on the stability of the PdO phase in presence of water. Performing 

a new oxidation cycle, the activity is enhanced with respect to the previous cycle, with a shift 

of light off temperatures of only 29 K and 40 K, much lower than in fuel lean conditions 

(Figure 7.13). Nevertheless, again at temperatures above 840 K the activity dramatically 

decreases due to the decomposition of palladium oxide. When water is removed from the feed, 

the activity is strongly improved during the heating ramp with respect to cycle 2 dry.  

Table 7.4 summarizes the temperature differences in terms of T10 and T50 between cycle 2 dry 

and cycle 2 H2O in lean and stoichiometric conditions, calculated as follows: 

drycycleOHcycle

drycycleOHcycle

TTT

TTT

2,5022,5050

2,1022,1010





 

Table 7.4: ∆T10 and ∆T50 values in lean and stoichiometric conditions 

 ∆T10 (K) ∆T50 (K) 

Catalyst lean stoich lean stoich 

1PdCeSi13 SCS 66 74 71 54 

1PdCeAl13 SCS 116 29 107 40 

The effect  of oxygen partial pressure on the deactivation caused by water is not 

straightforward to define and seems to be strictly correlated to the nature of the support, even 

if in both cases a reduction of the deactivation is observed, the effect being much more evident 

for 1PdCeAl13 SCS. This result seems to be in good agreement with the one obtained recently 

by Mihai et al. on Pd/Al2O3 catalyst [32]: at increasing oxygen partial pressure in the feed, the 

inhibition effect of water was much greater.  

 

  



 

138 
 

Conclusions 

The catalytic performance of the series of Pd-supported on CeO2-SiO2 with different SiO2 

loadings and CeO2-Al2O3 samples have been evaluated under different reaction conditions in 

the presence and in the absence of external water.  

 Methane oxidation in the absence of water: Pd-based catalysts supported on 

different ceria-silica and ceria-alumina mixed oxides have been tested for methane 

oxidation. Catalytic measurements reveal that SiO2 introduction affects positively the 

activity for methane oxidation for some SiO2 loadings: the addition of 2, 5 and 20 wt.% 

of silica enhances the activity, reaching a maximum value for 1PdCeSi20 SCS. On the 

contrary, the catalytic performance of the sample containing 13 wt.% of SiO2 is similar 

to the one of 1PdCe SCS. The addition of alumina into CeO2 support further improves 

the activity for methane oxidation in temperature programmed tests, even more with 

respect to silica-containing samples. Nevertheless, the latter ones exhibit a good 

stability under long-time exposure to reaction mixture whereas alumina-doped sample 

deactivates more severely, losing ~ 12% of its initial conversion (against 3-5% for Si-

doped catalysts). 

The effect of gas composition on the catalytic performance has been evaluated for the 

sample doped with 13 wt.% of silica or alumina. When O2/CH4 ratio is decreased from 

lean to stoichiometric, the activity of 1PdCeSi13 SCS is not substantially modified in the 

low temperature window. For the sample doped with alumina, instead, the activity is 

drastically reduced and the hysteresis behavior depends on the feed composition.  

Based on these results, it seems that even if the addition of alumina improves the light-

off behavior of Pd-ceria catalysts, the addition of silica is more effective in stabilizing 

the performances under stoichiometric conditions and prolonged time-on-stream 

operation.  

 Methane oxidation in the presence of water: when methane oxidation is carried out 

in lean reaction conditions, the addition of water causes an increase of the light-off 

temperature which does not markedly depend on the composition of the support, 

being equal to ~ 70-80 K for all samples. For some silica loadings (i.e 5 and 13 wt.%), the 

activity is not immediately recovered when water is removed from the gas feed, while 

for 1PdCeSi2 SCS and 1PdCeSi20 SCS, the activity is quickly restored. When Pd/CeO2 is 

doped with alumina, the introduction of water induces a severe deactivation of the 

catalyst, shifting T10 and T50 of ~ 110 K to higher values. After water removal, the activity 
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remains lower than the one recorded in dry atmosphere, suggesting that water 

poisoning is not reversible on 1PdCeAl13 SCS.  

The presence of water in the feed does not only affect the catalytic performance but 

also PdO-Pd-PdO phase transformation, as observed from TPO experiments. The 

decomposition of PdO to metallic Pd evolves differently in wet atmosphere: the onset 

of the third decomposition step, i.e PdO species in interaction with the support, 

increases of 54 K for Al2O3-containing sample and 55-70 K for SiO2-based ones. 

Moreover, the presence of water markedly changes the distribution of PdO fraction 

decomposed in each step: for Si-doped samples, a higher amount of PdO decomposes 

at higher temperature, while for Al-doped one a minor fraction of PdO interacts with 

the support and this might explain the lower activity and stability of this catalyst under 

wet conditions. HRTEM analysis does not reveal a significant difference between the 

sample after oxidation in dry and wet atmosphere under a morphological point of view. 

The adsorption of water/hydroxyls on the catalytic surface or the formation of Si(OH)4, 

at high temperature [26, 27] might change metal-support interaction and modify the 

onset of the decomposition of PdO species in contact with the oxide carrier. Moreover, 

the presence of water at high temperature is able to promote PdO sintering [23], which 

might need higher temperature to decompose. 

Prolonged exposure to wet atmosphere accelerates the catalysts deactivation with time-

on-stream and the degree of deactivation increases with SiO2 amount on the support. 

For alumina-ceria-based sample, the presence of water speeds up the deactivation over 

time, much more than for Si-doped ones. High affinity of Al2O3 for water molecules or 

lower oxygen mobility of the support or the minor fraction of palladium which 

interacts strongly with the support, as inferred from TPO profile in wet atmosphere 

(Figure 7.15), can contribute to its severe deactivation [10, 19]. 

The deactivation degree induced by water vapor on Si-containing sample seems to be 

independent of oxygen partial pressure, as inferred from tests in stoichiometric 

conditions, whereas for 1PdCeAl13 SCS water poisoning is more severe than what 

observed in lean atmosphere, at least at high temperature. Water deactivation, 

however, is completely reversible for both samples and the activity recorded in dry 

conditions is easily recoverable.  
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Conclusions 

 

 

The research work developed in this PhD thesis has been focused on the investigation of the 

catalytic methane oxidation over different Pd/CeO2-based catalysts. The main focus has been 

directed to gain further insights on the effect of water poisoning, a key issue for Pd-based 

catalysts in NGVs application. Pd-based materials supported on various metal oxides        

(CexZr1-xO2, Ce-Si and Ce-Al) have been prepared by single-step solution combustion synthesis 

(SCS), and their catalytic performance has been evaluated in lean and stoichiometric reaction 

conditions, in the absence and in the presence of water vapor. 

When methane oxidation was carried out in lean conditions and in the absence of water, 

solution combustion synthesized catalysts supported on intrinsically active oxides like CeO2 

and Ce0.75Zr0.25O2 displayed the best performance in terms of reaction rate. The presence of 

CeO2 has been also demonstrated to be beneficial in terms of transient deactivation, which 

occurs at high temperatures due to PdO-Pd-PdO phase transformation: the use of reducible 

oxides enables to better stabilize PdO phase, yielding a faster PdO re-formation with an 

improvement of activity loss during the cooling part of the light-off. By comparing the catalytic 

behavior of SCS samples with that of the corresponding ones prepared by conventional IW 

method, SCS proved to be a more effective procedure to obtain Ce-based materials with an 

enhanced activity towards methane oxidation. This improvement was also observed during 

time-on-stream-test, where SCS catalysts showed a lower deactivation degree with time, 

maintaining a high conversion level during long-time exposure to reaction stream. The higher 

catalytic performance of 1PdCe SCS and 1PdCZ75 SCS in terms of lower light-off temperatures, 

transient deactivation and stability can be attributed to the presence of Pd-O sites stabilized 

by strong Pd/ceria and Pd/ceria-zirconia interaction, promoted by high temperature and redox 

conditions achieved during the combustion synthesis.  

Experimental results have also pointed out that decreasing the ceria content, the preparation 

procedure plays a minor role in the improvement of catalytic performance: ZrO2-supported 

catalysts, in fact, showed nearly identical light-off behavior and resistance to lean-aging 

treatment. However, the use of ZrO2 remarkably enhances the stability of Pd catalysts, which 

showed a low deactivation extent after long-time exposure to reaction mixture.  

The catalytic tests carried out in the presence of external water have highlighted the 

inhibition/deactivation role of water vapor on the activity and stability of Pd-based catalysts, 
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irrespective of the feed composition. Water deactivation has been found to be completely 

reversible for solution combustion synthesized Pd/CexZr1-xO2, which demonstrated a 

remarkable light-off performance and an improved resistance to hydrothermal aging with 

respect to their IW counterparts, attaining a complete regeneration after prolonged exposure 

to water. Different kind of PdO species and/or heterogeneous Pd/PdO particle size 

distribution, smaller noble metal particles, higher oxygen mobility and strong Pd/Ce 

interaction via Pd-O-Ce sites formation effectively enhance the catalytic performance and 

resistance to aging treatment. The use of Ce0.75Zr0.25O2 mixed oxide has been found to reduce 

catalyst deactivation: its higher oxygen mobility seems to prevent or minimize the deactivation 

induced by water vapor, making it a promising support for the application to NGVs.  

Despite of a similar catalytic performance has been observed for ZrO2-supported catalysts 

during transient and steady state tests, 1PdZr SCS displayed an enhanced resistance to 

hydrothermal treatment with respect to its IW counterpart, outperforming analogues 

Pd/CexZr1-xO2 SCS. Polymorphic structure of zirconia, acid/base properties and/or Pd-zirconia 

interaction could be involved in the improvement of resistance to water deactivation. 

The introduction of SiO2 and Al2O3 into solution combustion synthesized Pd/CeO2 strongly 

enhances the catalytic performance in the absence of water, especially when Al2O3 is used as 

dopant. Nevertheless, when the gas stream contains a large amount of water vapor, this 

improvement is not maintained and the addition of  small amount of SiO2 represents a better 

choice to stabilize the catalytic performance with respect to Al2O3. The introduction of SiO2 or 

Al2O3 has a clear effect on the occurrence of PdO-Pd-PdO phase transformation in the 

presence of water: the dynamic behavior of PdO/Pd conversion is strongly modified in wet 

atmosphere, and the results of HRTEM characterization might suggest that the decomposition 

of PdO likely follows a different path with respect to the one observed in dry conditions.  

When oxygen partial pressure is decreased from 2 vol.% to 1 vol.%, the light-off temperatures 

of 1PdCe SCS and 1PdCeSi13 SCS remained almost similar to the ones obtained in rich oxygen 

atmosphere, both in the absence and in the presence of water vapor. Contrarily, for 1PdCZ75 

SCS and 1PdCeAl13 SCS the activity and deactivation degree in the presence of water were 

sensitive to the change of oxygen partial pressure. Side reactions such as methane reforming or 

WGS could take place at varying temperature and catalyst composition, suggesting that 

catalytic activity of Pd-supported catalysts and their deactivation is closely related to O2/CH4 

ratio. 

To conclude, solution combustion synthesis appears to be an interesting approach to prepare 

more efficient and stable Pd/CexZr1-xO2 catalysts with a greater tolerance to water poisoning 

and high durability. Moreover, the results also highlighted that structural, physic-chemical 

properties of the support and oxygen partial pressure could effectively influence the 
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deactivation extent of catalysts, outlining a complex picture where several aspects are involved 

in the deactivation/inhibition effect of water. 

For a deeper understanding of PdO-Pd decomposition process in wet atmosphere, HRTEM 

investigation of undoped and Al-doped catalysts, following the same procedure used for Si-

containing catalyst, would be useful to gain further insights on the complex mechanism of 

PdO/Pd transformation. 

 

 


