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Abstract

We consider the identification of a single open crack in a simply-

supported beam having non-uniform smooth profile and undergoing

infinitesimal in-plane flexural vibration. The profile is assumed to be

symmetric with respect to the mid-point of the beam axis. The crack

is modelled by inserting a rotational linearly elastic spring at the dam-

aged cross section. We establish sufficient conditions for the unique

identification of the crack by a suitable pair of natural frequency data,

and we present a constructive algorithm for determining the damage

parameters. The result is proved under a technical a-priori assump-

tion on the zeros of a suitable function determined in terms of the

eigenfunctions of the problem. Extensions to beams under different

sets of end conditions are also discussed. Theoretical results are con-

firmed by an extensive numerical investigation, both on simulated and

experimental data.

Keywords : Damage identification, cracks, resonant frequencies, non-uniform

beams, inverse problems

1 Introduction

In this paper we continue a line of research on dynamic methods for damage

detection in structures initiated in Rubio et al. (2015) and aimed at the

determination of a single open crack in one-dimensional beam elements with

variable profile by minimal frequency data.
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A crucial point in damage identification is the modelling of the damage.

Among various models that have been proposed in the literature to describe

open cracks in beams, the localized flexibility model of cracks is the most

common. In the case of beams under in-plane flexural vibration, the problem

that we shall consider in this paper, an open crack is modelled by inserting

a massless rotational elastic spring at the damaged cross-section, see, for

example, Wendtland (1972), Freund and Herrmann (1976), Chondros and

Dimarogonas (1980), Gudmundson (1983). The accuracy of the localized

flexibility model has been evaluated in several vibration tests carried out on

steel beams either with single or multiple cracks. The results confirm that

modelling errors on low natural frequencies are comparable to those of the

classical Euler-Bernoulli model for a beam without defects, see, for instance,

Araujo Gomes and Montalvao Silva (1990), Caddemi and Morassi (2013).

The localized flexibility model also provides an appreciable advantage in

formulating the inverse problem. In fact, in the simplest case of a single

crack, the unknown parameters correspond to the position s of the elastic

hinge and to the stiffness K of the rotational spring (which may be related

to the severity of the damage). This makes it reasonable to investigate to

what extent the information on the crack-induced changes in a pair of natural

frequencies can be useful for the identification of the damage.

A common approach to this issue consists in reformulating the inverse

problem as an optimization problem. The damage parameters are estimated

so that the first few natural frequencies (and, in some cases, also a set

of eigenfunction amplitude values) closely match with the measured ones,

see, among other contributions, the research developed by Shen and Taylor
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(1991), Davini et al. (1993), Vestroni and Capecchi (1996, 2000), Teughels

et al. (2002), Sinha et al. (2002), Rubio (2009). The above identification

methods allow to dealing with a large class of problems, such as, for example,

crack detection in elastic frames (Morassi and Rovere (1997) and Greco and

Pau (2012)), but they suffer the lack of general results. Basic questions such

as how many data are necessary to ensure the uniqueness of the solution are

rarely discussed in the literature and are still open.

Some general results on the identification of a single open crack in a bend-

ing vibrating beam are available when the beam is uniform and the crack is

small. One of the first rigorous contributions to this inverse problem is due

to Narkis (1994), who proved that a single small crack in a pinned-pinned

uniform beam can be uniquely localized (up to a symmetric position) by

the first two natural frequencies. Later on, working on the same problem,

Morassi (2001) found closed-form expressions for s and K in terms of the

frequency data, and extended Narkis’s result to other suitable pairs of nat-

ural frequencies. Few years later, Dilena and Morassi (2004) proved that an

appropriate use of natural frequencies and antiresonant frequencies can avoid

the non-uniqueness of the damage location problem, which occurs, for exam-

ple, in symmetrical beams when natural frequency data only are used. Key

features of the method developed by Morassi and co-workers are, on the one

side, the explicit expression of the eigenfrequency change induced by a small

crack written in terms of known quantities of the undamaged configuration

and, on the other side, the simple form taken by this expression for uniform

beams under special set of boundary conditions. The methods by Narkis and

Morassi are based on a perturbation analysis of the eigenvalue problem in a
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neighborhood of the undamaged beam, and are hardly applicable in the case

of beams with variable profile.

A limited number of studies focussed on crack identification in non-

uniform beams by frequency data. Among these, Nandwana and Maiti (1997)

considered the identification of an open and no necessarily small crack in a

piecewise-uniform cantilever. The procedure by Nandwana and Maiti has

been subsequently extended by Chaudhari and Maiti (2000) to cantilever

beams formed by two segments, one uniform in depth, the other segment

with linearly varying depth, see also Chinchalkar (2001). The identification

of multiple open cracks in a piecewise-constant beam under general boundary

conditions was considered by Attar (2012) by using the exact expression of

the characteristic equation of the damaged beam.

When the beam has generic variable profile the characteristic equation

cannot be written in closed form and, at the best of our knowledge, no

general results are available on the crack detection problem, even in the case

of small damage. This open problem has been the motivation of our research

and the present paper is a contribution to this issue.

In order to illustrate the main findings of our work, we refer, for the sake

of clarity of presentation, to a simply-supported beam with variable profile.

The profile is assumed to be smooth and symmetric with respect to the mid-

point of the beam axis. Our analysis is based on three main steps. First, we

show that the eigenvalue problem for the cracked beam can be transformed

in an equivalent eigenvalue problem for a simply-supported beam carrying

a point mass m = 1
K

at the cracked cross-section s, with suitable bending

stiffness and linear mass density coefficients (see Proposition 2.2 for a precise
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statement). Therefore, the crack detection problem is transformed into the

equivalent problem of determining the location s and magnitude m of the

point mass from a pair of natural frequencies. In the second step, we study

the so-called λ − m and λ − s curves, that is the functions λn = λn(s, ·)

and λn = λn(·,m), for fixed s and fixed m, respectively, where λn is the nth

eigenvalue, n = 1, 2 (see Proposition 4.2 and Theorem 4.5). The analysis is

based on the explicit determination of the eigenvalue derivatives with respect

to the parameters s and m (see Proposition 4.1) and on specific properties

of the eigenpairs of the cracked beam. Under a technical a-priori assumption

on the zeros of a suitable function determined in terms of the eigenfunctions

of the problem, the above properties are used in the third and last step to

define a constructive algorithm for solving the inverse problem (see Section

5). More precisely, it is shown that Narkis’s result can be extended to non-

uniform pinned-pinned beams, e.g., the crack can be uniquely determined,

up to a symmetric position, from the knowledge of the first two natural

frequencies of the beam.

For the sake of completeness, we comment the significant differences we

have found in the present analysis and in the research recently developed

by us in (Rubio et al., 2015) on the analogous inverse problem of detecting

a single open crack in a longitudinally vibrating rod with variable profile

from two natural frequencies. In the present case, two kind of additional

difficulties arise. A first hindrance is connected with the study of qualitative

properties of the eigenfunctions of the cracked beam, such as, the number

of zeros and interlacing properties between the zeros of eigenfunctions and

their derivatives. This study was carried out in Rubio et al. (2015) by
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extending classical Sturm-Liouville techniques for the undamaged rod to a

rod with a crack. Sturm-Liouville methods are not easily extendable to

fourth order operators, such as the Euler-Bernoulli operator governing the

bending vibration of a cracked beam, and, therefore, we were forced to follow

a different approach, mainly based on the study of the oscillatory character

of the statical Green’s function of the cracked beam. A second obstruction

is connected with the study of the qualitative behavior of the λ–s curves

and, particularly, with the determination of their stationarity points. It can

be shown that the argument used by Rubio et al. (2015) does not apply

to the fourth-order case. The technique we have adopted here is different

and it is essentially based on a deformation argument which allowed us to

reduce the analysis to the study of the zeros of a suitable function defined on

the undamaged configuration (see the proof of Theorem 4.5). It is precisely

at this point that, in order to apply the deformation argument, we have

introduced the Vanishing Condition (20), that is an a-priori assumption on

the zeros of a suitable function determined in terms of the eigenfunctions of

the cracked beam. It can be shown that the hypothesis (20) is actually a

property of the problem in the case of small damage (see Section 8).

The identification method has been tested on an extensive series of numer-

ical simulations on beams having different profile and with various positions

and severities of the crack. A selected set of numerical numerical results,

both on simulated and experimental data, is presented and commented in

Section 7. Numerical simulations performed even for severe levels of damage

have not disproved the validity of our a-priori assumption, whose general

validity, however, remains an open question. Finally, extension of the above
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results to beams under different set of end conditions is presented in Section

6.

2 Formulation of the inverse problem and main

result

Let us consider a straight thin simply supported beam with variable profile

under bending vibration. We assume that the beam has a single crack at the

cross-section of abscissa zd, with 0 < zd < L, where L is the length of the

beam. The crack is assumed to remain open during the vibration and it is

modelled as a massless rotational linearly elastic spring with stiffness K̂, see,

for example, Freund and Herrmann (1976) for a justification of this localized

flexibility model of crack based on Fracture Mechanics arguments, and to

Caddemi and Morassi (2013) for an alternative derivation. The value of K̂

depends on the geometry of the cracked cross-section and on the material

properties of the beam.

The free undamped bending vibrations of the beam with radian frequency

ω and spatial amplitude u = u(x) (x = z
L
, z ∈ [0, L]) are governed by the

following eigenvalue problem (written in dimensionless form)

(au′′)′′ − λρu = 0, in (0, s) ∪ (s, 1),

u(0) = u′′(0) = 0,

[[u(s)]] = [[(au′′)(s)]] = [[(au′′)′(s)]] = 0,

K[[u′(s)]] = a(s)u′′(s),

u(1) = u′′(1) = 0,

(1)

(2)

(3)

(4)

(5)
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where s = zd
L
, s ∈ (0, 1), K = K̂L

EI0
, K ∈ (0,∞), λ = L4ω2

EI0
and I0 = CL4, with

C > 0 a suitable absolute constant. We use the notation (·)′ = d(·)
dx

, [[u(s)]] =

(limx→s+ u(x) − limx→s− u(x)) to indicate x-differentiation and the jump of

the function u = u(x) at x = s, respectively. Here, E is the (constant)

Young’s modulus of the material, E > 0; ρ = ρ(x) is the linear mass density;

a = a(x) is the (dimensionless) second moment of area about the axis through

the centroid of the cross-section, at right angles to the plane of vibration

(the neutral axis). We shall assume throughout that both a(x) and ρ(x) are

strictly positive in [0, 1], i.e., there exist constants a0, ρ0 such that

a(x) ≥ a0 > 0, ρ(x) ≥ ρ0 > 0, in [0, 1], (6)

and twice continuously differentiable in [0, 1], i.e.,

a ∈ C2([0, 1]), ρ ∈ C2([0, 1]). (7)

Under our assumptions, each eigenfunction u is a continuous function in [0, 1]

and belongs to C4((0, s) ∪ (s, 1)).

The main properties of the eigenpairs of (1)–(5) are stated in the following

proposition.

Proposition 2.1. Under the above assumptions:

1. there exists a numerable sequence of real positive eigenvalues {λn}∞n=1

of (1)–(5), with limn→∞ λn = ∞.

2. The eigenvalues {λn}∞n=1 of (1)–(5) are all simple, e.g.,

0 < λ1 < λ2 < ... < λn < ..., (8)
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and to each eigenvalue λn we can associate a unique eigenfunction, e.g.,

if un and ũn are eigenfunctions associated to the same eigenvalue λn,

then un(x) = Cũn(x) in [0, 1], where C is a no-vanishing constant.

3. The set of eigenfunctions {un(x)}∞n=1 forms an orthonormal basis of the

space of continuous functions on [0, 1], vanishing at x = 0 and x = 1,

with respect to the usual scalar product < f, g >=
∫ 1

0
ρfg.

4. The nth eigenfunction un(x) has exactly (n− 1) simple zeros in (0, 1),

n ≥ 1.

Properties 1. and 3. follow from general results for self-adjoint compact

operators in Hilbert spaces. The arguments shown, for example, in Brezis

(1986) can be adapted to obtain a proof of 1. and 3.. Properties 2. and

4. (which do not hold, in general, for the Euler-Bernoulli operator) follows,

for example, from the oscillatory character of the statical Green’s function

associated to (1)–(5), see the Appendix (subsection 10.1) for details.

We shall consider hereinafter symmetric beams in (1)–(5), that is beams

for which the moment of inertia and the linear mass density are even functions

with respect to the mid-point of the beam axis, e.g.,

a(x) = a(1− x), ρ(x) = ρ(1− x), x ∈ [0, 1]. (9)

In order to study the inverse problem of detecting a single crack from a

pair of natural frequencies of (1)–(5), we found convenient reformulate (1)–

(5) as an equivalent eigenvalue problem. The equivalence is stated in the

next proposition.

Let u be a non-trivial solution of (1)–(5) associated to an eigenvalue λ.

Proposition 2.2.
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i) Let (λ, u) be an eigenpair of (1)–(5). Then λ is an eigenvalue of the

problem 

(bv′′)′′ − λrv = 0, in (0, s) ∪ (s, 1),

v(0) = v′′(0) = 0,

[[v(s)]] = [[v′(s)]] = [[(bv′′)(s)]] = 0,

[[(bv′′)′(s)]] = λmv(s),

v(1) = v′′(1) = 0,

(10)

(11)

(12)

(13)

(14)

where

v = −au′′ in (0, s) ∪ (s, 1), b = ρ−1 and r = a−1 in ∈ [0, 1], m = K−1.

(15)

ii) Conversely, let (λ, v) be an eigenpair of (10)–(14). Then λ is an eigen-

value of the problem (1)–(5) with

u = −bv′′ in (0, s) ∪ (s, 1), a = r−1 and ρ = b−1 in [0, 1], K = m−1.

(16)

Proof. Let us consider the statement i), the proof of ii) being similar. Using

(15) in (1), dividing by ρ and differentiating twice, we obtain (10). The end

conditions v(0) = v(1) = 0 and the jump conditions [[v(s)]] = [[v′(s)]] = 0

follow directly by the corresponding end and jump conditions of (1)–(5). The

end conditions v′′(0) = v′′(1) = 0 and the jump condition [[(bv′′)(s)]] = 0

can be deduced by using the differential equation (1) to determine the limit

values of v′′ at x = 0+, x = 1−, x = s±. Finally, inserting v = −au′′ in

(1), dividing by ρ, differentiating and using (4), one can deduce the jump

condition (13).

11



Remark 2.3. Problem (10)–(14) describes the free bending vibration of a

beam simply supported at the ends, with bending stiffness b and linear mass

density r, carrying a point mass m at x = s. Note that, by properties (6)–(7)

of the coefficients a and ρ, we have

b(x) ≥ b0 > 0, r(x) ≥ r0 > 0, b ∈ C2([0, 1]), r ∈ C2([0, 1]), (17)

for some constants b0, r0. Moreover, after reduction to the equivalent problem

by Proposition 2.2, the functions b = b(x) and r = r(x) still remain even

functions with respect to the mid-point of the beam axis, e.g.,

b(x) = b(1− x), r(x) = r(1− x), x ∈ [0, 1]. (18)

Remark 2.4. Basing on the equivalence between the eigenvalue problems

(1)–(5) and (10)–(14) stated in Proposition 2.2, in the following we shall be

mainly concerned with the formulation in terms of the vibration of the beam

with the point mass. The functional space suitable for (10)–(14) is made by

functions more regular than those occurring in (1)–(5), e.g., the jump of the

first derivative v′ at x = s is not allowed, whereas u′ may be discontinuous

at the crack location. This additional regularity simplifies the study of the

dependence of an eigenvalue on the damage parameters s and K (or m), see

Section 4.

Let (λn, vn(x; s,m)) be the nth eigenpair of (10)–(14). For every m,

m ≥ 0, let us introduce the function

f (n)
m : [0, 1] → R, f (n)

m (s) =

(
vn(x; s,m)

dvn(x; s,m)

dx

)
|x=s, n = 1, 2.

(19)

In the sequel we shall consider cracked beams such that, for n = 1, 2, and for
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every m > 0, the function

f (n)
m = f (n)

m (s) has a finite number of zeros in [0, 1], all of which are simple.

(20)

We call (20) the Vanishing Condition for f
(n)
m .

Remark 2.5. It is possible to show that the Vanishing Condition (20) is in fact

a property satisfied by the eigensolutions of the problem (10)–(14), provided

that the mass intensity m is small enough, i.e., in the case of small crack.

We refer to Section 8 for a proof.

We are now in position to state our main result.

Theorem 2.6. Under the above assumptions, the measurement of the first

two natural frequencies of (10)–(14) allows for the unique determination of

the intensity m and the location s of the point mass, up to the symmetric

position 1− s. The identification procedure is constructive.

Basing on the equivalence stated in Proposition 2.2, a direct consequence

of the above theorem is the following result.

Corollary 2.7. Under the assumptions of Theorem 2.6, the measurement of

the first two natural frequencies of (1)–(5) allows for the unique determina-

tion of the severity of the damage K and the location s of the crack, up to

the symmetric position 1− s. The identification procedure is constructive.
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3 Some properties of the equivalent eigen-

value problem

The next proposition states some properties of the zeros of the first and

second eigenfunction of (10)–(14) which will be useful in our analysis. For

reader’s convenience, details of a proof are collected in the Appendix (sub-

section 10.2).

Proposition 3.1. Let vn(x) be the nth eigenfunction of (10)–(14). Under

the above assumptions:

1. v1(x) has no zeros in (0, 1) and v′1(x) has exactly one simple zero in

(0, 1).

2. v2(x) has exactly one simple zero in (0, 1), say at ξ1, and v′2(x) has

exactly two simple zeros in (0, 1), say at η1, η2. Moreover, η1 < ξ1 < η2.

Weak and variational formulation of the eigenvalue problem (10)–(14)

will be used throughout the paper. Let us denote by H the functional space

of admissible deformations of the beam:

H = {f | f ∈ H2(0, 1), f(0) = f(1) = 0}, (21)

where H2(0, 1) is the Hilbert space of Lebesgue measurable functions f :

(0, 1) → R such that f , and its first and second weak derivatives are square

summable in (0, 1), e.g.,
∫ 1

0
(f 2 + (f ′)2 + (f ′′)2) < +∞.

The weak formulation of (10)–(14) consists in finding v ∈ H \ {0} such

that ∫ 1

0

bv′′φ′′ = λ

(
mv(s)φ(s) +

∫ 1

0

rvφ

)
, for every φ ∈ H. (22)
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The Rayleigh’s Quotient associated to (22) is

R[·] : H \ {0} → R, R[φ] =

∫ 1

0
b(φ′′)2

mφ2(s) +
∫ 1

0
rφ2

. (23)

The eigenvalues can be determined by solving the chain of minimum problems

R[vn] = min
φ∈Vn\{0}

R[φ] = λn, (24)

where

Vn =

{
φ ∈ H s.t. mvi(s)φ(s) +

∫ 1

0

rviφ = 0, i = 1, ..., n− 1

}
. (25)

An equivalent formulation follows from the Maximum-Minimum Principle

for the eigenvalues of (10)–(14), namely

λn = max
li∈H′, i=1,...,n−1

{
min

φ∈H\{0}, li(φ)=0, i=1,...,n−1
R[φ]

}
, (26)

where H′ is the dual space of H, that is the space of all the linear and

continuous real-valued functionals li on H. We refer to Weinberger (1965)

for a complete account of the above formulations.

In the next sections we shall often compare the eigenpairs of the problem

(10)–(14) for finite, no-vanishing m, and s ∈ (0, 1), to those obtained by

taking either m = 0 or {s = 0, s = 1} in (10)–(14). We shall denote by

(λU
n , v

U
n ) the nth eigenpair of the unperturbed problem

(bvU
′′
)′′ − λUrvU = 0, x ∈ (0, 1),

vU(0) = vU
′′
(0) = 0,

vU(1) = vU
′′
(1) = 0.

(27)

(28)

(29)

By analogy, the eigenpairs {(λn, vn)}∞n=1 of the problem (10)–(14) will also

be called perturbed eigenpairs. There exists a numerable sequence of real,
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simple, strictly positive eigenvalues of (27)–(29), say 0 < λU
1 < λU

2 < ...,

with limn→∞ λU
n = +∞, and Proposition 3.1 is well-known when m = 0 (see,

for example, Gladwell (2004)). Weak, variational and Maximum-Minimum

formulation of (27)–(29) can be deduced by the corresponding formulations

(22), (24)–(25) and (26), respectively, taking formally m = 0.

Variational and Maximum-Minimum formulations are useful to derive

the following bounds, see, for example, Courant and Hilbert (1966; Vol. 1,

Chapter VI, Paragraph 2).

Proposition 3.2. Under the above assumptions and notation, we have

λU
n−1 ≤ λn ≤ λU

n , for every n ≥ 1, (30)

where we have defined λU
0 = 0.

The right inequality in (30) (upper bound of λn) shows that the addition

of a mass m decreases the natural frequencies of the unperturbed beam, or,

in other words, that a crack decreases natural frequencies. The left inequality

in (30) (lower bound of λn) follows as in any constrained system by adding

the linear constraint v(s) = 0 to the perturbed system having a point mass

at s or, equivalently, by assuming that the bending moment vanishes at the

crack location in equations (1)–(5).

4 λ-m and λ-s curves

In order to extract quantitative information on the identification parameters

m and s from the eigenvalues, in the following proposition we shall introduce

the first-order derivatives of an eigenvalue of (10)–(14) with respect to m and
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s. For given coefficients b and r, an eigenpair (λ, v) of (10)–(14) depends on

the perturbation parameters s and m. When necessary, we shall explicitly

show this dependence by writing λ = λ(s,m) and v = v(x; s,m), where

x ∈ [0, 1] is the current spatial variable.

Proposition 4.1. Let (λ, v) be an eigenpair of (10)–(14). We have

∂λ

∂s
= −2λ

mv(s)v′(s)

mv2(s) +
∫ 1

0
rv2

, (31)

∂λ

∂m
= −λ

v2(s)

mv2(s) +
∫ 1

0
rv2

, (32)

where v(s) = v(x; s,m)|x=s, v
′(s) =

(
dv(x;s,m)

dx

)
|x=s.

The proof of the proposition can be obtained by adapting the ideas of the

proof of the analogous property for a cracked beam under axial vibration,

see Proposition 4.1 in Rubio et al. (2015).

We shall now study the so-called λ-m and λ-s curves, that is the func-

tions λn = λn(s, ·), λn = λn(·,m), n = 1, 2. This analysis will be useful in

implementing the identification algorithm of Section 5.

We begin with the study of the dependence of λn on the parameter m,

for a given position s of the point mass.

Proposition 4.2. Let (λn, vn), (λ
U
n , v

U
n ) be the nth eigenpair of the problem

(10)–(14), (27)–(29), respectively, n = 1, 2.

i) If vUn (s0) = 0 for some s0 ∈ [0, 1], then λn(s0,m) = λU
n for every finite

positive m.

ii) If vUn (s0) ̸= 0 for some s0 ∈ (0, 1), then λn = λn(s0,m) is a monotonically

decreasing function of m in [0,∞).
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iii) If λn(s0,m0) = λU
n for some s0 ∈ [0, 1] and m0 ∈ (0,∞), then vUn (s0) = 0.

iv) If vn(s0; s0,m0) = 0 for some s0 ∈ [0, 1] and m0 ∈ (0,∞), then vUn (s0) =

0.

A proof of the proposition can be obtained following the lines of the

proof of the analogous property for a cracked beam under axial vibration,

see Proposition 5.1 in Rubio et al. (2015).

A simple consequence of the symmetry (18) of the coefficients b and r on

the eigenpairs of the problem (10)–(14) is the following property.

Proposition 4.3. Let (λn, vn) be the nth eigenpair of (10)–(14) for coeffi-

cients b and r satisfying (17) and (18), n ≥ 1. Let m be given, 0 < m < ∞.

Then

λn(s) = λn(1− s), s ∈ [0, 1]. (33)

If s = 1
2
, then

for n odd, we have vn(x) = vn(1− x), (34)

and

for n even, we have vn(x) = −vn(1− x), x ∈ [0, 1]. (35)

The above statements can be easily verified by direct calculation. We

notice the following simple result.

Corollary 4.4. Under the assumptions of Proposition 4.3, for every n ≥ 1,

we have

∂λn

∂s
(s) = 0 for s ∈ {0, 1, 1

2
}. (36)

The identification method described in Section 5 is based on the following

key result, which is presented for the first two eigenvalues of (10)–(14) only,

since solely them are used to formulate and solve our inverse problem.
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Theorem 4.5. Let (λn, vn), n = 1, 2, be the nth eigenpair of (10)–(14) for

coefficients b and r satisfying (17) and (18). Assume that the Vanishing

Condition (20) is satisfied. Then, for a given m, m > 0, we have:

i) λ1 = λ1(s) is a strictly decreasing function in
(
0, 1

2

)
;

ii) there exists a unique s̃ ∈
(
0, 1

2

)
such that ∂λ2

∂s
(s̃) = 0, that is λ2 = λ2(s) is

a strictly decreasing function and a strictly increasing function in (0, s̃) and

in (s̃, 1
2
), respectively.

For a proof of Theorem 4.5 we shall make use of the following Deformation

Lemma.

Lemma 4.6. Let ft = ft(x) be a t-family of real-valued functions of x ∈ [0, 1]

which are continuous and jointly continuously differentiable in x and in t,

where the parameter t belongs to the interval [t1, t2], −∞ < t1 < t2 < +∞.

Suppose that for every t ∈ [t1, t2], the function ft has a finite number of zeros

in [0, 1], all of which are simple, and has boundary values at x = 0 and x = 1

that are independent of t. Then, the number of zeros of ft is independent of

t, for all t satisfying t1 ≤ t ≤ t2.

This lemma has been introduced in Pöschel and Trubowitz (1987, p. 41).

Proof of Theorem 4.5. Case i). By the expression (31) of the partial deriva-

tive of λ1 with respect to the mass position s, the sign of ∂λ1

∂s
depends on

the sign of the product
(
v1(x; s,m)dv1(x;s,m)

dx

)
|x=s. Let M > 0 be a finite

number. For every m, m ∈ [0,M ], let us introduce the function

f (1)
m : [0, 1] → R, f (1)

m (s) =

(
v1(x; s,m)

dv1(x; s,m)

dx

)
|x=s. (37)

By the regularity of the eigenfunction v1 with respect to s andm, the function

f
(1)
m is continuous and jointly differentiable in s and m, for every s ∈ [0, 1]
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and every m ∈ [0,M ]. The function f
(1)
m vanishes identically at s = 0 and

s = 1, for every m ∈ [0,M ]. Therefore, under the Vanishing Condition

(20), the function f
(1)
m satisfies all the conditions required by Lemma 4.6

to the function ft, where the variables t and x are replaced by m and s,

respectively. It follows that, for every m ∈ [0,M ], the number of zeros of

f
(1)
m is equal to the number of zeros of f

(1)
0 . Noticing that for m = 0 we

have v1(s; s,m = 0) = vU1 (s), namely the eigenfunction v1 coincides with the

unperturbed eigenfunction vU1 , we have

f
(1)
0 (s) = vU1 (s)(v

U
1 (s))

′, s ∈ [0, 1]. (38)

By standard results (or, equivalently, by Proposition 3.1 with m = 0), vU1

has one sign in (0, 1) and (vU1 )
′ has a single simple zero in (0, 1), precisely

at s = 1
2
because of the symmetry of the beam. Therefore, f

(1)
m has only

one simple zero in (0, 1), exactly at s = 1
2
, for every m ∈ [0,M ]. Finally,

taking into account that 0 < λ1(s) ≤ λU
1 in [0, 1] (by Proposition 3.2) and

λ1

(
1
2

)
< λU

1 (since vU1
(
1
2

)
̸= 0, see Proposition 4.2), we can conclude that

s = 1
2
is the only zero of ∂λ1

∂s
in (0, 1). By the arbitrariness of M , the thesis

follows.

Case ii). The proof for n = 2 follows the same lines of the proof of case

i). In brief, under our assumptions, the family of functions

f (2)
m : [0, 1] → R, f (2)

m (s) =

(
v2(x; s,m)

dv2(x; s,m)

dx

)
|x=s, (39)

for s ∈ [0, 1] andm ∈ [0,M ], satisfies the assumptions required in Lemma 4.6.

Moreover, for m = 0, by Proposition 3.1 and Proposition 4.3, the function

f
(2)
0 (s) = vU2 (s)(v

U
2 (s))

′ (40)
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has exactly three simple zeros in (0, 1), namely at 1
2
, η1 ∈

(
0, 1

2

)
and η2 =

1 − η1 ∈
(
1
2
, 1
)
. Then, by Lemma 4.6, the function f

(2)
m has exactly three

simple zeros in (0, 1) for everym ∈ [0,M ]. By the symmetry of the beam, f
(2)
m

vanishes at 1
2
, and the remaining two simple zeros are located at s̃ ∈

(
0, 1

2

)
and at (1−s̃) ∈

(
1
2
, 1
)
. Note that s̃ generally depends onm. Finally, recalling

that λ2(s) ≤ λU
2 in [0, 1] (by Proposition 3.2) and that λ2

(
1
2

)
= λU

2 for every

m (since vU2
(
1
2

)
= 0, see Proposition 4.2), the thesis follows.

5 A constructive identification algorithm

In this section we prove Theorem 2.6 by presenting a constructive algorithm

for the determination of the parameters {s,m} in the problem (10)–(14) (or,

equivalently, the position of the crack s and its severity K in (1)–(5)) from

the knowledge of the first two eigenvalues, say λ1, λ2.

We recall that the beam coefficients b and r satisfy (17) and (18). Let

s ∈ (0, 1) and m ∈ (0,∞).

By Proposition 3.2, input data {λ1, λ2} are chosen such that

0 < λ1 < λU
1 , λU

1 ≤ λ2 ≤ λU
2 . (41)

Note that, by Proposition 4.2 and Proposition 3.1, the upper bound for λ1 is

strict, namely the first eigenvalue is always ’sensitive’ to the point mass m.

If λ2 = λU
2 , then, by Proposition 4.2 and Proposition 4.3, the point mass

is located at s = 1
2
. By Proposition 4.2, λ1 = λ1

(
1
2
,m
)
is a monotonically

decreasing function of m and, in addition, one can prove that

lim
m→∞

λ1

(
1

2
,m

)
= 0+. (42)
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Then, by (42) and by the monotonicity of the function λ1

(
1
2
,m
)
for m ∈

(0,∞), we can uniquely determine m by solving the equation λ1 = λ1

(
1
2
,m
)
.

In the remaining of the section we shall consider the non-trivial condition

λ2 < λU
2 and, by symmetry hypothesis (see Proposition 4.3), we shall assume

s ∈
(
0, 1

2

)
.

Basing on the properties of the λ-m and λ-s curves stated in Section 4,

it can be shown that the algorithm developed in Rubio et al. (2015) for the

identification of a point mass in a longitudinally vibrating rod can be adapted

to the present case. Therefore, in the sequel we shall simply show the main

steps of the identification procedure, referring to the above mentioned paper

for details on the convergence of the method to the actual solution.

The flow-chart of the identification procedure is as follows.

1. Let λ1, λ2 be the measured values of the first and second eigenvalue,

respectively, with λ1 < λU
1 and λU

1 ≤ λ2 < λU
2 .

2. We determine the values m−
1 , m−

2 , 0 < m−
i < ∞, i = 1, 2, of the

parameter m such that

λ1 = λ1

(
1

2
,m−

1

)
, λ2 = λ2

(
s2min,m

−
2

)
, (43)

where s2min ∈
(
0, 1

2

)
is the unique point such that

∂λ2(s,m
−
2 )

∂s
|s=s2min

= 0

(see Theorem 4.5, point ii)). Note that m−
1 ̸= m−

2 and

max{m−
1 ,m

−
2 } < m. (44)

3. We distinguish two main cases.

Case 1. If

max{m−
1 ,m

−
2 } = m−

1 , (45)
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then we determine the curve y = λ2(s,m
−
1 ) in [0, 1], see Figure 1. Let

us consider the curves y = λ2(s,M) for M > m−
1 , M not too large.

Let us denote by P2r(M) the intersection point between y = λ2(s,M)

and y = λ2, with the abscissa s(P2r(M)) such that s(P2r(M)) > s2min.

Moreover, let us denote by P1(M) the unique intersection point be-

tween y = λ1(s,M) and y = λ1, with s(P1(M)) < 1
2
. Then, basing

on Proposition 4.2 and Theorem 4.5, it can be proved that there ex-

ists a unique value of M, say M̃, such that s(P2r(M̃)) = s(P1(M̃)).

The value M̃ is the intensity of the mass m and s = s(P1(M̃)) is its

position.

Case 2. If

max{m−
1 ,m

−
2 } = m−

2 , (46)

we determine the curve y = λ1(s,m
−
2 ), denoting by P1(m

−
2 ) the unique

intersection point between y = λ1(s,m
−
2 ) and y = λ1, with abscissa

s1 = s(P1(m
−
2 )) ∈

(
0, 1

2

)
, see Figure 2.

At this stage, we distinguish two additional subcases.

Case 2. - a): Assume that

s2min ≤ s1. (47)

If s2min = s1, then the problem is solved. If s2min < s1, we can repeat

the procedure used in Case 1, and the inverse problem has a unique

solution, see Figure 2.

Case 2. - b): If

s2min > s1, (48)
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then there exists m∗ > m−
2 such that the intersection point P2l(m

∗)

between y = λ2(s,m
∗) and y = λ2 satisfies s(P2l(m

∗)) < s(P1(m
−
2 )),

where P1(m
−
2 ) is the unique intersection point between y = λ1(s,m

−
2 )

and y = λ1, see Figure 3. By decreasing the mass value from m∗ to m−
2 ,

there exists a unique value, say M̃, such that s(P2l(M̃)) = s(P1(M̃)),

and the identified parameters are m = M̃ and s = s(P1(M̃)).

Applications and details on a selected set of numerical simulations are

reported in Section 7.

6 Extensions

In this section we show how the method presented in previous sections can

be extended to cover other sets of end conditions (Section 6.1), and how it

can be improved to determine a unique solution of the inverse problem from

two suitable frequency data (Section 6.2). Proof of these results are based

on the behavior of the λ-m and λ-s curves for the corresponding eigenvalue

problems. In turn, these properties follow from qualitative results of the

eigensolutions analogous to those presented in previous sections. Since most

of the steps in the preceding proofs can be duplicated, in the sequel we shall

simply state the main results useful for our analysis, leaving the details aside.

6.1 Crack identification in a free-free beam

Let us consider the cracked beam introduced at the beginning of Section 2,

with coefficients a, ρ satisfying (6), (7), and with a single open crack of sever-

ity K, K ∈ (0,∞), at the position s, s ∈ (0, 1). Assume that both ends of
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the beam are free. It should be noted that this set of end conditions is rather

common in experimental investigations, since it avoids the introduction of

uncertainty connected with boundary condition modelling, see, for example,

Araujo Gomes and Montalvao Silva (1990) and Caddemi and Morassi (2013).

The free undamped bending vibrations of the cracked beam are governed by

the following eigenvalue problem (in dimensionless form)

(au′′)′′ − λρu = 0, in (0, s) ∪ (s, 1),

(au′′)(0) = (au′′)′(0) = 0,

[[u(s)]] = [[(au′′)(s)]] = [[(au′′)′(s)]] = 0,

K[[u′(s)]] = a(s)u′′(s),

(au′′)(1) = (au′′)′(1) = 0.

(49)

(50)

(51)

(52)

(53)

The eigenpairs of (49)–(53) are still denoted by {(λn, un)}∞n=0, with 0 = λ0 <

λ1 < λ2 < ..., limn→∞ λn = ∞. The first eigenvalue has double multiplicity

and the corresponding eigenspace is spanned by the two eigenfunctions {1, x}.

By adapting the proof of Proposition 2.2, it can be seen that the positive

eigenvalues of (49)–(53) coincide with the eigenvalues of a clamped-clamped

beam carrying a point mass m = K−1 at x = s:

(bv′′)′′ − λrv = 0, in (0, s) ∪ (s, 1),

v(0) = v′(0) = 0,

[[v(s)]] = [[v′(s)]] = [[(bv′′)(s)]] = 0,

[[(bv′′)′(s)]] = λmv(s),

v(1) = v′(1) = 0,

(54)

(55)

(56)

(57)

(58)

where, analogously to (15), v = −au′′ in (0, s) ∪ (s, 1), and the coefficients

b = ρ−1, r = a−1 satisfy (17).
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A direct inspection of the proofs of previous results shows that Proposi-

tion 3.1 (qualitative properties of the zeros of the eigenfunctions), Proposition

4.1 (eigenvalue derivatives) and Proposition 4.2 (behavior of the λ−m curves)

can be suitably extended also to cover the set of free-free end conditions.

Hereinafter, we shall assume that the coefficients b and r satisfy the sym-

metry conditions (18). Therefore, the statements of Proposition 4.3 and

Corollary 4.4 hold for the eigenpairs of the free-free beam.

For every m, m ≥ 0, we assume that the Vanishing Condition (20) is

satisfied by the eigenfunctions vn = vn(x; s,m), n = 1, 2, of the problem

(54)–(58). As for the pinned–pinned end conditions, it is possible to show

that this Vanishing Condition actually is a property of the eigensolutions of

the problem (54)–(58) for small mass intensity m, i.e., in the case of small

crack.

The analogue of Theorem 4.5 is the following result.

Theorem 6.1. Let (λn, vn), n = 1, 2, be the nth eigenpair of (54)–(58) for

coefficients b, r satisfying (17) and (18). Under the above assumptions, for

every m, m ∈ (0,∞), we have:

i) λ1 = λ1(s) is a strictly decreasing function of s in
(
0, 1

2

)
, with λ1(0) =

λ1(1) = λU
1 , λ1

(
1
2

)
< λU

1 ,
∂λ1

∂s
(0) = ∂λ1

∂s

(
1
2

)
= ∂λ1

∂s
(1) = 0;

ii) there exists a unique s̃ ∈
(
0, 1

2

)
such that ∂λ2

∂s
(s̃) = 0, with λ2(s̃) < λU

2 ;

moreover, λ2(0) = λ2

(
1
2

)
= λ2(1) = λU

2 ,
∂λ2

∂s
(0) = ∂λ2

∂s

(
1
2

)
= ∂λ2

∂s
(1) = 0.

From Theorem 6.1, it is evident that the constructive algorithm presented

in Section 5 can be adapted to identify a single point mass in a free-free beam.

More precisely: the knowledge of the first and second eigenvalue allows to

uniquely determine the intensity m and the position s of the point mass, up
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to a symmetric position with respect to the mid-point of the beam. We refer

to Section 7.3 for an application to experimental data.

6.2 Unique crack identification by two natural frequen-

cies belonging to different spectra

Let us denote by {µm}∞n=1 the eigenvalues of the cracked beam considered at

the beginning of Section 6.1 when the boundary condition (50), at x = 0, is

replaced by

u(0) = u′(0) = 0, (59)

that is the left end of the beam is clamped. Therefore, by Proposition 2.2,

the eigenvalues {µm}∞n=1 are those of a beam carrying a point mass m = K−1

at x = s, with reversed end conditions:

(bv′′)′′ − λrv = 0, in (0, s) ∪ (s, 1),

(bv′′)(0) = (bv′′)′(0) = 0,

[[v(s)]] = [[v′(s)]] = [[(bv′′)(s)]] = 0,

[[(bv′′)′(s)]] = λmv(s),

v(1) = v′(1) = 0,

(60)

(61)

(62)

(63)

(64)

where v = −au′′, b = ρ−1 and r = a−1 in [0, 1].

By adapting the methods illustrated in preceding sections, under the

symmetry assumption (18) for b and r, and accepting a Vanishing Condition

analogous to (20), we can prove the following result.

Theorem 6.2. For given m, 0 < m < ∞, the first eigenvalue of (60)–(64) is

a strictly increasing function of s, with µ1(0) < µU
1 , µ1(1) = µU

1 ,
∂µ1

∂s
(1) = 0.
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The main consequence of Theorem 6.2 is the following improvement of

the identification result found in Section 5, namely: the knowledge of the

first eigenvalue of the clamped-clamped beam and of the first eigenvalue of

the free-clamped beam is enough for the unique determination of the mass

location and intensity. Note that the symmetric solution is now avoided.

The proof of this result can be obtained by adapting the reconstruction pro-

cedure illustrated in Section 5, see also Rubio et al. (2015, Section 7) for an

analogous identification problem in a free-free longitudinally vibrating rod

by one resonant frequency and one antiresonant frequency.

7 Applications

7.1 Numerical approximation

The practical application of the damage identification method requires the

development of a specific numerical code. Fore the sake of simplicity and

with the aim of illustrating the main aspects of the procedure, in the present

section and in the next one reference is made to damage identification in a

symmetric simply supported beam from the first two natural frequencies (see

Section 5).

To find a finite element model of the weak formulation (22) of the eigen-

value problem (10)–(14), we work on the standard finite-dimensional sub-

space HN of H (defined in (21)) formed by three-degree polynomial spline

approximation of the transverse displacement of the beam axis. More pre-

cisely, let {x0 = 0 < x1 < x2 < ... < xN < xN+1 = 1} be the nodes of a mesh

of the interval [0, 1], with xi+1 − x1 = ∆x = 1
N+1

, for every i = 0, 1, ..., N .
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The mesh is chosen such that there exists an index is ∈ {1, ..., N} for which

s = is∆x. Therefore, the discrete version of the eigenvalue problem (10)–(14)

consists in finding the approximating eigenpair (λ̃, ṽ), ṽ ∈ R2N \{0}, solution

to

Kṽ = λ̃Mṽ, (65)

where K, M is the 2N × 2N real symmetric matrix of the stiffness and of

the inertia of the beam, respectively. The stiffness and mass matrix entries

have been determined by integrating the exact expressions of the stiffness

and mass density coefficients of the beam.

The numerical code of the reconstruction algorithm follows the steps

shown in Section 5. In particular, a search strategy divided in two steps

and having different size of the incremental mass step value ∆m has been

implemented during the construction of the λ-s curves corresponding to in-

creasing values of the point mass intensity. For the first iterations, we have

used ∆m1 = k1m
−
1 (case 1) and ∆m2 = k2m

−
2 (case 2a and 2b, respectively),

k1 and k2 being two positive numbers less than 1 to be chosen by the user.

In the second stage, we have applied a constant incremental step ∆mf . In

our experience, good choices are k1 = k2 = 1
20
, and ∆mf = 10−5 for all the

case studied.

The reconstruction algorithm has been implemented on a computer with

an Intel(R) Core (TM) i3 2.53 GHz processor and 4 GB of RAM. The whole

procedure was built in Matlab environment.
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7.2 Results of numerical simulations

The identification algorithm has been tested on a large class of beam profiles

having different intensity and position of the point mass. A selected, but

representative, series of results is presented in the sequel for beams with

(normalized) bending stiffness a(x) and linear mass density ρ(x) given by

aS(x) = (0.8−0.2 sin(3πx))3, ρS(x) = 0.8−0.2 sin(3πx), (sinusoidal profile)

(66)

aP (x) = (0.8−0.8x(x−1))3, ρP (x) = 0.8−0.8x(x−1), (parabolic profile)

(67)

x ∈ [0, 1]. The approximating eigenvalue problem (65) was defined by divid-

ing the interval [0, 1] into 200 equally spaced finite elements. The selected

mesh size ensures negligible errors on the estimate of the first two natural

frequencies of the beam.

Tables 1 and 2 collect the results of identification for various locations

and intensities of the point mass. Specifically, ten equally spaced positions

along the half-span and four intensities were considered. The values chosen

for m are associated to crack depth that may occur in practical situations

(see also the experiments presented in the next section). For instance, the

considered values for m (from 0.01 to 0.5) correspond to percentage crack

depth between 0.1 to 0.56 for a single transversal crack in a beam having

rectangular cross-section and width-to-length ratio equal to 0.1.

It can be seen that the agreement between identified and actual values

of the damage parameters is good. Generally speaking, some discrepancy

emerged for cracks located near the end of the beam, which is known to

be a point of vanishing sensitivity to damage for the natural frequencies
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of a simply supported beam. Moreover, errors are larger in case of small

cracks (e.g., small values of m) and they decrease as m increase. The typical

computing time for each identification ranges from 30−100 s to 300−2200 s in

case ofm = 0.01 andm = 0.50, respectively, suggesting that the computation

burden is larger in case of more severe levels of damage.

7.3 Applications to experimental data

With the aim of evaluating the stability of the method to errors on the data,

an experimental application on a real cracked steel beam is presented in this

section.

The mechanical model is a double T free-free steel beam of the series

HE100B. The length is L = 4 m. The beam was suspended by means of

two steel ropes so to simulate free-free boundary conditions. The damage was

obtained by saw cutting the beam at progressive depth at the cross-section

of abscissa zd = 0.7 m far from the left end, see Figure 4. Two damage

configurations, denoted as D1 and D2 in the following, were realized. The

width of each cut was equal to about 1.5 · 10−3 m and, because of the small

level of the excitation, during dynamic test the crack can be considered always

open.

In order to measure the lower resonant frequencies of the beam, a modal

analysis procedure based on impulsive excitation and measurement of the

frequency response function (inertance) of the beam was adopted. Details

of experiments can be found in Biscontin et al. (1998) and Caddemi and

Morassi (2013). In brief, the transverse excitation was introduced at one

end by means of an impulse force hammer, while the transverse response was
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measured by a piezoelectric accelerometer fixed at the same end of the beam.

Vibration signals were acquired by a dynamic analyzer and then processed

in the frequency domain to measure the relevant frequency response term.

Natural frequencies were estimated by means of the classical single mode

technique.

Table 3 compares the first two (positive) natural frequencies for the un-

damaged and damaged beam. For the sake of completeness, Table 3 also col-

lects the theoretical values of the natural frequencies. Dynamic tests on the

undamaged configuration were interpreted by means of the classical Euler-

Bernoulli model, with mass density ρ = 20.775 kgm−1 and bending stiffness

a = 961421 Nm−2. The mass density was evaluated from the total mass of

the specimen under the hypothesis that the material is homogeneous, whereas

the (constant) bending stiffness was calculated by matching the theoretical

and the experimental values of the fundamental frequency. The analytical

model of the cracked beam was defined by assuming the position zd of the

damage as known and determining the theoretical value of the stiffness K

such that, for each damage configuration, the measured and the analytical

fundamental frequency coincide. From Table 3 it emerges that, although the

analytical model can be considered very accurate in the frequency range ex-

plored, the percentage experimental/modelling errors and the crack-induced

frequency shifts of the damage configuration D1 are comparable for the sec-

ond frequency of the beam. In fact, frequency shifts with respect to the un-

damaged configuration of the first and second resonant frequency are equal

to −1.57, −6.19 per cent in configuration D1, respectively, whereas they are

equal to −7.05, −22.24 per cent in configuration D2.

32



Table 4 collects the estimated values of the position of the cracked cross-

section and the point mass. In the present case, identification is based on

Theorem 6.1 and it has been performed by adapting the reconstruction al-

gorithm shown in Section 5 to a beam under free-free end conditions. The

agreement between actual and estimated values is good for configuration D2,

whereas, as expected, the inaccuracy of the data (particularly, on the second

natural frequency) prejudices the identification of configuration D1. The

sensitivity of diagnostic techniques based on natural frequencies to exper-

imental/modelling errors is a well-known pathology of the present class of

inverse problems, and it has been pointed out by several authors, see, for

example, Cerri and Vestroni (2000) and Dilena and Morassi (2004).

8 A proof of the Vanishing Condition for small

m

In this section we show that the Vanishing Condition (20) is actually satisfied

by the eigenfunctions of the problem (10)–(14) for small mass intensity m,

that is, if m is small enough, then the function f
(n)
m defined in (19) has a finite

number of zeros in [0, 1], all of which are simple zeros, n ≥ 1. We provide

a proof for a beam under pinned-pinned end conditions. Similar analysis

can be developed for other sets of boundary conditions. Note that we are

considering n = 1, 2.

Let (λn, vn) be the nth eigenpair of (10)–(14), for positive functions b, r

satisfying the regularity conditions (17) and the symmetry conditions (18).

LetM > 0 be a finite given number and consider a point massm, m ∈ [0,M ],
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located at the position s ∈ [0, 1]. We find convenient to rewrite the function

f
(n)
m : [0, 1] → R introduced in the proof of Theorem (4.5) as

f (n)
m (s) = V (n)

m (s)D(n)
m (s), (68)

where

V (n)
m (s) = vn(x; s,m)|x=s, D(n)

m (s) =
dvn(x; s,m)

dx
|x=s. (69)

The quantities V
(n)
m (s) and D

(n)
m (s) are, respectively, the value of the nth

principal mode and the value of the x-derivative of the nth principal mode

of the beam both evaluated at the cross-section in which the point mass m

is located. Hereinafter, in order to simplify the analysis, we shall assume the

following normalization conditions

mv2n(s; s,m) +

∫ 1

0

r(x)v2n(x; s,m)dx = 1,
dvn(x; s,m)

dx
|x=0 > 0 (70)

on the eigenfunction vn of (10)–(14), for every s ∈ [0, 1] and everym ∈ [0,M ].

It should be noticed that these conditions are not restrictive, since we are

interested in studying the zeros of the function f
(n)
m .

Let us start by noticing that, by definition, the function V
(n)
m vanishes

at s = 0 and s = 1, and that D
(n)
m (s) ̸= 0 at s = 0 and s = 1 (e.g.,

D(n)(0) = dvn(x;0,m)
dx

|x=0 = (vUn )
′(0) ̸= 0, and similarly at s = 1). Therefore,

s = 0 and s = 1 are simple zeros of f
(n)
m . By the symmetry of the problem,

it is easily seen that

f (n)
m (s) = −f (n)

m (1− s), s ∈ [0, 1], (71)

therefore s = 1
2
is another (simple) zero of f

(n)
m .

We shall present a proof in three steps:
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Step 1. The functions V
(n)
m and D

(n)
m do not vanish simultaneously.

Step 2. The zeros of V
(n)
m are finite in number, and are all simple.

Step 3. The zeros of D
(n)
m are finite in number, and are all simple.

In order to simplify the notation, hereinafter we omit the index m in

denoting the functions V
(n)
m and D

(n)
m , and we shall simply write V (n) and

D(n).

Proof of Step 1. In the sequel we restrict our attention to the open

interval (0, 1). V (1) does not vanish in (0, 1). Then, if z ∈ (0, 1) is such that

V (2)(z) = D(2)(z) = 0, then v2(x; z,m)|x=z = 0 and dv2(x;z,m)
dx

|x=z = 0, which

is impossible since the zeros of v2 and those of v′2 interlace by Proposition

3.1.

Proof of Step 2. Let us assume n = 2.

We first show that the set of zeros of V (n) coincides with the set of ze-

ros of vUn . Therefore, the zeros of V (n) are finite in number. If V (n)(z) =

vn(z; z,m) = 0 for certain z ∈ (0, 1), then vUn (z) = 0 by Proposition 4.2

(point iv)). Conversely, if vUn (z) = 0 for z ∈ (0, 1), then the function vUn

satisfies (10)–(14), with the point mass m located at z and the eigenvalue

equal to λU
n . Then, vUn is an eigenfunction of (10)–(14). Since vUn has n − 1

zeros in (0, 1), the function vUn actually coincides with the nth eigenfunction

vn. Therefore, 0 = vn(z; z,m) = V (n)(z), and z is a zero of V (n).

Let z be a zero of V (n). We shall prove that, for m small enough,

V (n)′(s)|s=z ̸= 0. (72)

Assuming V (n) of C1-class in (0, 1) and for a given s0 ∈ (0, 1), by direct

calculation and using Lagrange’s theorem with 0 < |αh| < |h| and 0 < |βh| <
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|h|, we have

V (n)′(s)|s=s0 = lim
h→0

vn(s0 + h; s0 + h,m)− vn(s0; s0,m)

h
=

= lim
h→0

vn(s0 + h; s0 + h,m)− vn(s0; s0 + h,m) + vn(s0; s0 + h,m)− vn(s0; s0,m)

h
=

= lim
h→0

(
dvn(x; s0 + h,m)

dx
|x=s0+αh

+
dvn(s0; s,m)

ds
|s=s0+βh

)
=

=
dvn(x; s0,m)

dx
|x=s0 +

dvn(s0; s,m)

ds
|s=s0 . (73)

Let us evaluate the partial derivative of the eigenfunction vn of (10)–(14)

with respect to the position s of the point mass m, under the normalization

conditions (70). We begin with the incremental version of the variational

formulation of the eigenvalue problem (22), precisely (here, we omit the de-

pendence on m and we write (·)′ = ∂(·)
∂x

to further simplify the notation):∫ 1

0

b(∆hv
′′
n)φ

′′ = ∆hλn

(
mvn(s; s)φ(s) +

∫ 1

0

rvnφ

)
+

+ λn [m (v′n(s+ ζh; s+ h)φ(s) + ∆h(vn(z; s))|z=sφ(s))+

+ mvn(s+ h; s+ h)∆h(φ(s)) +

∫ 1

0

r(∆hvn)φ

]
, (74)

for every φ ∈ H = {f | f ∈ H2(0, 1), f(0) = f(1) = 0}, 0 < ζh < |h|, |h| > 0

and s ∈ [|h|, 1− |h|], where the operator ∆h is defined as

∆hf(x; s) =
f(x; s+ h)− f(x; s)

h
, h > 0, s ∈ [0, 1− h]. (75)

We look for the function ∆hvn in the form

∆hvn =
∞∑
j=1

a
(h)
nj vj (76)

and we assume that the series is uniformly convergent in [0, 1], together with

its derivatives with respect to x up to the order 2 included. By replacing (76)
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in (74), choosing φ = vl(= vl(x; s,m), with s and m given), and integrating

by parts, we have

(λn − λl)a
(h)
nl = −∆hλnδnl−

− λnm (v′n(s+ ζh; s+ h)vl(s; s) + vn(s+ h; s+ h)∆hvl(x; s)|x=s) , (77)

for every l, l ≥ 1, and n. Taking n = l and evaluating the limit of (77) as

h → 0 we obtain (31). If n ̸= l, then we have

a
(h)
nl = −λnm

v′n(s+ ζh; s+ h)vl(s; s) + vn(s+ h; s+ h)∆hvl(x; s)|x=s

(λn − λl)
. (78)

By applying the incremental operator ∆h to the normalization condition (70),

we easily get

a
(h)
ll = 0, for every l ≥ 1. (79)

Then, by inserting (78), (79) in (76), and taking the limit as h → 0, we have:

dvn(x; s,m)

ds
=

= −mλn(s;m)
∞∑

l=1, l ̸=n

(
dvn(x;s,m)

dx
vl(x; s,m) + vn(x; s,m)dvl(x;s,m)

dx

)
|x=s

λn(s,m)− λl(s,m)
·vl(x; s,m).

(80)

If z is a zero of V (n), then vn = vUn , λn = λU
n (see Proposition 4.2, proof of

the point iv)), and dvn
ds

at (x = z; s = z,m) takes the form

dvn(z; s,m)

ds
|s=z = −mλU

n

dvUn (x; z,m)

dx
|x=z

∞∑
l=1, l ̸=n

v2l (z; z,m)

λU
n − λl(z,m)

. (81)

Replacing (81) in (73), and writing (73) for s0 = z (where z is a zero of V (n)),

we have

V (n)′(s)|s=z =
dvUn (x; z,m)

dx
|x=z

(
1 +mλU

n

∞∑
l=1, l ̸=n

v2l (z; z,m)

λl(z,m)− λU
n

)
. (82)
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Now consider the beam in (10)–(14) with the point mass m at x = s, and

acted on by a concentrated transversal time-harmonic force F = F0 exp(i
√
λt)

at the point x1 of the beam axis, with radian frequency
√
λ. The transversal

deflection v = v0 exp(i
√
λt) at the point x2 is given by

v0 = HF−v(x1, x2;λ)F0, (83)

where the function HF−v(x1, x2;λ) : [0, 1]× [0, 1]× (R \
∪∞

l=1 λl(s,m)) → R,

HF−v(x1, x2;λ) =
∞∑
l=1

vl(x1; s,m)vl(x2; s,m)

λl(s,m)− λ
, (84)

is the force-displacement receptance between the points x1 and x2, evaluated

at λ. It follows that expression (82) can be written as

V (n)′(s)|s=z =
dvUn (x; z,m)

dx
|x=z

(
1 +mλU

n H̃F−v(z, z;λ
U
n )
)
, (85)

where H̃F−v means that the nth term of the series (84) of HF−v has been

omitted. The function H̃F−v(z, z;λ) is well-defined at λ = λU
n and, therefore,

since dvUn (x;z,m)
dx

|x=z ̸= 0 (e.g., the zeros of vUn and those of vUn
′
interlace),

condition (72) is satisfied for m small enough.

Proof of Step 3. Let n = 1, 2. We start by proving that if all the zeros of

D(n) are simple, then D(n) necessarily has a finite number of zeros in (0, 1).

Let us assume that there exists an infinite family {z}∞i=1, zi ∈ (0, 1), such

that D(n)(zi) = 0 for every i. Then, on assuming D(n) regular enough, there

exists ζi, zi−1 < ζi < zi, for every i ≥ 2, such that D(n)′(ζi) = 0. By Bolzano-

Weierstrass’s theorem, there exists z ∈ (0, 1) such that limi→∞ zi = z, and

D(n)(z) = 0. Moreover, we also have limi→∞ ζi = z and D(n)′(z) = 0, and z

is not a simple zero of D(n), a contradiction.
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To simplify the notation, let us write dv(x;s,m)
dx

|x=s = dv
dx
(s; s). By direct

calculation and by Lagrange’s theorem, for every s0 ∈ (0, 1) and with 0 <

|γh| < |h|, 0 < |δh| < |h|, we have

D(n)′(s)|s=s0 = lim
h→0

dvn
dx

(s0 + h; s0 + h)− dvn
dx

(s0; s0)

h
=

= lim
h→0

dvn
dx

(s0 + h; s0 + h)− dvn
dx

(s0; s0 + h) + dvn
dx

(s0; s0 + h)− dvn
dx

(s0; s0)

h
=

= lim
h→0

(
d2vn
dx2

(s0 + γh; s0 + h) +
d

ds

(
dvn
dx

)
(s0; s0 + δh)

)
=

=
d2vn(x; s0,m)

dx2
|x=s0 +

d2vn(s0; s,m)

dsdx
|s=s0 . (86)

On assuming sufficient regularity on vn with respect to the variables x and s

(e.g., continuous second order partial derivatives), by Schwarz’s theorem we

have

d2vn
dsdx

=
d

dx

(
dvn
ds

)
, (87)

where dvn
ds

takes the expression (80). Then, deriving by series, we obtain

d2vn(x; s,m)

dsdx
=

= −mλn

∞∑
l=1 l ̸=n

(
dvn(x;s,m)

dx
vl(x; s,m) + vn(x; s,m)dvl(x;s,m)

dx

)
|x=s

λn(s,m)− λl(s,m)
·dvl(x; s,m)

dx
.

(88)

Let z be a zero of D(n), e.g., dvn(x;z,m)
dx

|x=z = 0. Then, by (86) and (88) we

have

D(n)′(s)|s=z =
d2vn(x; z,m)

dx2
|x=z−mλn(z,m)vn(z; z,m)

∞∑
l=1 l ̸=n

(
dvl(x;z,m)

dx
|x=z

)2
λn(z,m)− λl(z,m)

,

(89)

where vn(z; z,m) ̸= 0 because the zeros of vn and those of v′n interlace.
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As in Step 2, we consider the beam in (10)–(14) subject to a concentrated

bending time-harmonic couple C = C0 exp(i
√
λt) acting at the point x1 of

the beam axis. The rotation ϑ (= − dv
dx
) of the transversal cross-section of

the beam ϑ = ϑ0 exp(i
√
λt) at the point x2 is given by

ϑ0 = HC−v′(x1, x2;λ)C0, (90)

where the function HC−v′(x1, x2;λ) : [0, 1]× [0, 1]× (R \
∪∞

l=1 λl(s,m)) → R,

HC−v′(x1, x2;λ) =
∞∑
l=1

v′l(x1; s,m)v′l(x2; s,m)

λl(s,m)− λ
, (91)

is the couple-rotation receptance between the points x1 and x2, evaluated at

λ. Then, expression (89) becomes

D(n)′(s)|s=z =
d2vn(x; z,m)

dx2
|x=z −mλn(z,m)vn(z; z,m)H̃C−v′(z, z;λn(z,m)),

(92)

where H̃C−v′ is obtained from the corresponding HC−v′ by omitting the nth

term. The function H̃C−v′(z, z;λ) is well-defined at λ = λn(z,m). Therefore,

noting that d2vn(x;z,m)
dx2 |x=z ̸= 0 (e.g., the zeros of v′n and those of v′′n interlace),

if m is small enough, then D(n)′(s)|s=z ̸= 0, and the zero is simple.

Remark 8.1. It should be noted that the result presented in this section holds

only asymptotically, that is when m is small enough or, equivalently, when

the crack is sufficiently small. It would be useful to state the result from a

quantitative point of view, namely by finding a value of the mass intensity

in terms of the given data, say m∗, such that the Vanishing Condition (20)

holds for m ≤ m∗.
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9 Conclusions

This paper has been devoted to the inverse problem of identifying a single

crack in a bending vibrating beam by minimal natural frequency data. The

crack is assumed to remain open during vibration and it is modelled by

a massless rotational linearly elastic spring located at the damaged cross-

section.

We have established sufficient conditions for the unique identification of

the crack location and severity in terms of a suitable pair of natural fre-

quencies. The result is proved for a beam with symmetric smooth varying

profile and has been derived without any assumption on the smallness of the

crack severity. The methodology used for the proof leads to a constructive

damage identification algorithm, and it is based on a careful analysis of the

eigenvalues as functions of the damage position and damage intensity. Nu-

merical results are in agreement with the theory when exact analytical data

are employed in identification. Application to experimental data shows that

the results of identification are rather sensitive to modelling errors.

Our result is proved under a technical a-priori assumption, namely the

Vanishing Condition (20), on the zeros of a function determined in terms

of the eigenfunctions associated to the natural frequencies used as data. It

should be noted the Vanishing Condition (20) is actually a property of the

eigenpairs of a simply supported beam with variable profile when the crack

is small. In addition, by means of a different approach, we have recently

shown in Fernández-Sáez et al. (2016) that the Vanishing Condition can be

omitted when the simply-supported beam is uniform, without introducing

any restriction on the damage severity. Whether the Vanishing Condition
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may or may not be definitively removed from the analysis of the inverse

problem remains an open question, at the moment.

The method proposed in this paper may be used, in principle, also to

deal with more general diagnostic problems for frame structures. Among

possible applications, we mention the identification of a single crack in multi-

span beams (see also Vestroni and Capecchi (2000)) or frames (see Pau et

al. (2011), Greco and Pau (2012) and Caddemi and Caliò (2013)), and the

determination of multiple cracks (see Zheng and Fan (2001) and Caddemi and

Caliò (2014)). However, it should be noted that some of the mathematical

tools we have adopted in the treatment of the bending vibration of a single

beam with a single crack have no straightforward generalization to those

cases, and a preliminary analysis suggests that new ideas are needed to deal

with these diagnostic problems.
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10 Appendix

In this section we collect the proofs of some of the statements made in Sec-

tions 2, 3 and 4.

10.1 Proof of points 2. and 4. in Proposition 2.1

In order to prove properties 2. and 4. stated in Proposition 2.1 it is enough to

prove that the statical Green’s function G = G(x, σ) : [0, 1]×[0, 1] → R of the

pinned-pinned Euler-Bernoulli cracked beam considered at the beginning of

Section 3 is an oscillatory kernel, see, for instance, Gladwell (2004; Chapter

10 and Chapter 13).

We recall that the Green’s function value G(x, σ) is equal to the statical

transversal deflection of the beam axis at x, when a transversal unit con-

centrated force is applied at the point of the beam axis of abscissa σ. A

direct calculation shows that the Green’s function for a pinned-pinned beam,

having bending stiffness a(x), a(x) ≥ a0 > 0 in [0, 1] and a ∈ C2([0, 1]), and

with a crack described by an elastic rotational spring of stiffness K located

at s (see the jump conditions (3)–(4)), has the following expression.

For σ ≥ s:

G(x, σ) = σx

∫ 1

σ

(1− t)2

a(t)
dt+(1−σ)

[
(1− x)

∫ x

0

t2

a(t)
dt+ x

∫ σ

x

t(1− t)

a(t)
dt

]
+

+
xσ(1− σ)(1− s)

K
, x ∈ [0, s], (93)

G(x, σ) = σx

∫ 1

σ

(1− t)2

a(t)
dt+(1−σ)

[
(1− x)

∫ x

0

t2

a(t)
dt+ x

∫ σ

x

t(1− t)

a(t)
dt

]
+

+
s2(1− σ)(1− x)

K
, x ∈ [s, σ], (94)
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G(x, σ) = (1−x)(1−σ)

∫ σ

0

t2

a(t)
dt+σ

[
x

∫ 1

x

(1− t)2

a(t)
dt+ (1− x)

∫ x

σ

t(1− t)

a(t)
dt

]
+

+
s2(1− σ)(1− x)

K
, x ∈ [σ, 1], (95)

and an analogous expression holds for σ ≤ s. The Green’s function is sym-

metric, e.g., G(x, σ) = G(σ, x) for every (x, σ) ∈ [0, 1] × [0, 1]. Note that G

is not defined for K = 0.

Let us introduce some notation. Let I be the open interval (0, 1) and, for

every n ≥ 1, let Q = {y = (y1, ..., yn) ∈ Rn | 0 < y1 < ... < yn < 1}.

The kernel G(x, σ) is oscillatory if the following three conditions are sat-

isfied:

i) G(x, σ) > 0, for every x ∈ I and for every σ ∈ I;

ii) G(x, σ) ≥ 0, for every x ∈ Q and for every σ ∈ Q, where x =

(x1, ..., xn), σ = (σ1, ..., σn) and

G(x, σ) = det


G(x1, σ1) · · · · · · G(x1, σn)

G(x2, σ1) · · · · · · G(x2, σn)

...
...

...
...

G(xn, σ1) · · · · · · G(xn, σn)


. (96)

iii) G(x,x) > 0, for every x ∈ Q.

Condition i) follows from the explicit expression (93)–(95) and from the

analogous for σ ≤ s.

To prove condition iii), let us assume that n transversal concentrated

forces {fi}ni=1 are applied at points {xi}ni=1 of the axis, n finite and n ≥ 1.

By the linearity of the boundary value problem, the transversal displacement

of the beam axis at xj is given by u(xj) =
∑n

i=1G(xj, xi)fi, j = 1, ..., n. The

external work W e exerted by {fi}ni=1 on the transversal deflection of the
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beam is equal to W e =
∑n

j=1 u(xj)fj =
∑n

i,j=1G(xj, xi)fifj. By Clapeyron’s

theorem, W e is twice the strain energy stored in the cracked beam, namely

n∑
i,j=1

G(xj, xi)fifj =

∫ 1

0

M2(x)

a(x)
dx+

M2(s)

K
, (97)

where M(x) = −a(x)u′′(x) is the bending moment acting at the cross-section

of abscissa x. From (97), the symmetric n × n matrix with entries Gji =

G(xj, xi), j, i = 1, ..., n, is positive definite. Therefore, det(Gji) = G(x,x) >

0, for every x ∈ Q.

The proof of the property ii) is more involved and, roughly speaking, it

is based on the ’oscillatory’ character of the transversal displacement u(x)

of the beam under the action of n forces {fi}ni=1. More precisely, it can be

shown (see, for instance, Gladwell (2004), Chapter 10 and Chapter 13) that

ii) holds true if the system has the following property.

Proposition 10.1. Let {fi}ni=1 be a finite set of n concentrated forces acting

at points {σi}ni=1, respectively, with 0 < σ1 < ... < σn < 1, n ≥ 1. Then, the

transversal displacement of the beam axis u(x) has at most (n − 1) changes

of sign in (0, 1).

The proof of Proposition 10.1 follows the lines used by Gladwell (2004,

Theorem 13.2.6) to establish the analogous result for a beam without crack.

Therefore, in the remaining of this section we only sketch the main steps of

the proof, emphasizing the role played by the singularity in the analysis.

Following the arguments of the proof of Theorem 13.2.6 in (Gladwell,

2004), it is possible to prove that the second derivative u′′(x) of the transver-

sal displacement u(x) has at most (n − 1) changes in sign in (0, 1), say at

{ξi}n−1
i=1 , with 0 < ξ1 < ... < ξn−1 < 1. Note that, since the bending moment

49



M(x) = −a(x)u′′(x) is a piecewise-linear continuous function in [0, 1] (van-

ishing at the ends x = 0 and x = 1), actually each change of sign occurs in

a node (simple zero) of u′′(x).

In order to estimate from above the zeros of u′(x), we need to consider

the jump condition K[[u′(s)]] = a(s)u′′(s) at the cracked cross-section. We

distinguish two main cases, depending on whether u′′(s) vanishes or not.

If u′′(s) = 0, then the crack is not ’activated’ by the forces {fi}ni=1, and

the function u′(x) is continuous in [0, 1]. Therefore, we can use the results

already available in (Gladwell, 2004) to conclude that u′(x) has at most n

nodes in (0, 1), say at {ηi}ni=1, with 0 < η1 < ... < ηn < 1. Finally, taking the

boundary conditions u(0) = 0 = u(1) into account, one can show that u(x)

cannot change its sign in the end intervals (0, η1), (ηn, 1), hence u(x) has at

most (n− 1) changes of sign (nodes) in (0, 1).

Conversely, if u′′(s) ̸= 0, then there exists an index j, j ∈ {0, ..., n − 1},

such that s ∈ (ξj, ξj+1), where ξ0 = 0 and ξn = 1. The function u′(x) is a

regular (continuous) function in (0, ξj) and in (ξj+1, 1). Therefore, we can

apply standard arguments (see Gladwell (2004), Theorem 13.2.25) to prove

that u′(x) has at most one change of sign (node) in each of the intervals

(0, ξ1), (ξ1, ξ2), ..., (ξj−1, ξj), (ξj+1, ξj+2), ..., (ξn−1, 1), for a total of, at most,

j + (n− j − 1) = n− 1 changes of sign.

To conclude the analysis for u′(x), it is enough to prove that there is at

most one change of sign of u′(x) in (ξj, ξj+1).

The proof is by contradiction. Suppose that there exist two points η, η̃,

with ξj < η < η̃ < ξj+1, such that u′(η) = u′(η̃) = 0. If either s < η or s > η̃,

then the function u′ is regular in (η, η̃) and, by Rolle’s Theorem, there exists
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z ∈ (η, η̃) such that u′′(z) = 0, contrary to hypothesis that u′′(x) ̸= 0 in

(ξj, ξj+1). It remains the case in which η ≤ s ≤ η̃. Without loss of generality,

we can assume u′′(x) > 0 in (ξj, ξj+1). Integrating u′′(x) in (η, s) and in

(s, ξj+1), respectively, we have

u′(s−) = u′(η) +

∫ s

η

u′′(t)dt =

∫ s

η

u′′(t)dt > 0, (98)

u′(x) = u′(s+) +

∫ x

s

u′′(t)dt, x ∈ (s, ξj+1). (99)

We can determine u′(s+) from the jump condition K[[u′(s)]] = a(s)u′′(s),

namely

u′(s+) = u′(s−) +
a(s)u′′(s)

K
, (100)

and by (98) and (100), we obtain u′(s+) > 0. Evaluating (99) for x = η̃ we

get

0 = u′(η̃) = u′(s+) +

∫ η̃

s

u′′(t)dt > 0, (101)

a contradiction.

Therefore, we have shown that u′(x) has at most n changes (nodes) of

sign in (0, 1).

To conclude, we need to estimate (from above) the number of zeros of

u(x).

The function u′(x) is a continuous function in [0, 1] \ {s}, with a possible

jump at x = s (e.g., at the crack position). If s coincides with one of the

changes of sign of u′(x), say s = ηj for some j, j ∈ {1, ..., n}, then we can

use Corollary 13.2.2 in (Gladwell, 2004) to conclude that u(x) has at most

(n− 1) changes of sign (nodes) in (0, 1). Note that in this step we have used

the end conditions u(0) = 0 = u(1) to exclude that u(x) can change of sign

in the end intervals (0, η1), (ηn, 1).
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Therefore, we only need to discuss the case in which s ∈ (ηj, ηj+1), for

a certain index j, j ∈ {1, ..., n}. Without loss of generality, we can assume

u′(x) > 0 in (ηj, ηj+1). We proceed by contradiction as in the previous step.

Suppose that u(ζ) = u(ζ̃) = 0, with ηj < ζ < ζ̃ < ηj+1. If either s < ζ or

s > ζ̃, the function u(x) is regular in (ζ, ζ̃) and, by Rolle’s Theorem, there

exists χ ∈ (ζ, ζ̃) such that u′(χ) = 0, a contradiction. It remains the case

s ∈ (ζ, ζ̃). We have

u(s−) =

∫ s

ζ

u′(t)dt > 0, (102)

u(x) = u(s+) +

∫ x

s

u′(t)dt, x ∈ (s, ηn+1). (103)

By the jump condition [[u(s)]] = 0 we have u(s−) = u(s+) and then, evalu-

ating (103) for x = ζ̃, we have

0 = u(ζ̃) = u(s+) +

∫ ζ̃

s

u′(t)dt > 0, (104)

a contradiction.

Collecting the above results, we can conclude that u(x) has at most (n−

1) changes of sign (nodes) in (0, 1), and the proof of Proposition 10.1 is

completed.

10.2 Proof of Proposition 3.1

Proof of statement 1. The function y1(x) = −v1(x) = a(x)u′′
1(x) belongs to

C2(0, 1) by (10) and (12). In particular, y1 is a non trivial solution to
y′′1 = λ1ρu1, in (0, 1),

y1(0) = 0 = y1(1),

(105)

(106)
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where u1 is the first eigenfunction of (1)–(5). By Proposition 2.1 (point 4.),

u1 does not vanish in (0, 1), for instance u1(x) > 0 in (0, 1). Then, the right-

end side of (105) is positive in [0, 1] and, by the Maximum Principle (see,

for instance, Weinberger (1965)), y1 attains its maximum at the boundary of

[0, 1]:

y1(x) ≤ 0, in [0, 1]. (107)

Suppose that there exists χ ∈ (0, 1) such that y1(χ) = 0. Then, by Rolle’s

Theorem there exist χ−, χ+, χ− ∈ (0, χ), χ+ ∈ (χ, 1), such that y′1(χ
−) =

0 = y′1(χ
+). Again by Rolle’s Theorem, there exists χ̃ ∈ (χ−, χ+) such that

y′′1(χ̃) = 0, contrary to hypothesis u1(x) > 0 in (0, 1), and we can conclude

that y1 does not vanish in (0, 1).

Clearly, there exists at least one point ξ ∈ (0, 1) such that y′1(ξ) = 0. We

prove that this point is unique. By (105) and since u1 does not change sign in

(0, 1), the function y′ is either a monotonically increasing function of x (when

u1 > 0 in (0, 1)) or a monotonically decreasing function of x (when u1 < 0

in (0, 1)) in (0, 1). Therefore, in both cases, the point ξ ∈ (0, 1) at which y′1

vanishes is unique. The zero is obviously simple, since y′′1(ξ) ̸= 0.

Proof of statement 2. By Proposition 2.2, the eigenfunction v2 satisfies the

orthogonality condition∫ 1

0

r(x)v1(x)v2(x)dx+mv1(s)v2(s) = 0. (108)

Therefore, since v1 does not vanish in (0, 1) by previous statement 1, the

function v2 has at least one change of sign in (0, 1). We shall prove that this

change of sign is unique and that it corresponds to the unique simple zero

(node) of v2. Note that v2 ∈ C2([0, 1]).
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Suppose that there are two changes of sign of v2 in (0, 1), say at χ1, χ2,

with 0 < χ1 < χ2 < 1. Then, by Rolle’s Theorem, there exist points {γi}3i=1

such that v′2(γi) = 0, i = 1, 2, 3, with γ1 ∈ (0, χ1), γ2 ∈ (χ1, χ2), γ3 ∈ (χ2, 1).

Again by Rolle’s Theorem, there exist η1 ∈ (γ1, γ2) and η2 ∈ (γ2, γ3) such

that v′′2(η1) = v′′2(η2) = 0, namely v′′2 has at least two zeros in (0, 1). This

is a contradiction, since v′′2 = −λ2ρu2 and, by Proposition 2.1, u2 has only

one (simple) zero in (0, 1). Therefore, v2 has exactly one change of sign in

(0, 1), say at ξ1 ∈ (0, 1). Using again Rolle’s Theorem, one can show that

v2(x) ̸= 0 in (0, 1) for x ̸= ξ1 and ξ1 is the unique zero of v2 in (0, 1). Finally,

if v′2(ξ1) = 0, there exist χ̃ ∈ (0, ξ1), χ̂ ∈ (ξ1, 1) such that v′′2(χ̃) = v′′2(χ̂) = 0,

again a contradiction. Therefore, ξ1 is simple.

Since v2 has exactly one simple zero in (0, 1), say v2(ξ1) = 0, there exist

at least two points in (0, 1) at which v′2 = 0. Using Rolle’s Theorem it

can be shown that there are exactly two points η1, η2 ∈ (0, 1) such that

v′2(η1) = v′2(η2) = 0, with 0 < η1 < ξ1 < η2 < 1. Moreover, since
∫ 1

0
v′2 = 0,

v′2 must change sign (at least once) in (0, 1), Without loss of generality, we

can assume that v′2 changes sign at η1 and vanishes at η2. It is easy to see that

η1 and η2 are simple zeros of v′2 (that is, there is a change in sign also in η2).

If η2 is not a simple zero of v′2, then v′′2(η2) = 0. Since v′2(η1) = 0 = v′2(η2),

there exits η ∈ (η1, η2) such that v′′2(η) = 0, and v′′2 has two distinct zeros in

(0, 1), a contradiction. Using similar considerations, one can prove that η1 is

a simple zero of v′2. Therefore, the function v′2 has two simple zeros in (0, 1)

at η1 and at η2, and η1 < ξ1 < η2.
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Table Captions

Table 1. Identification of the mass intensity m and position s in a simply-

supported non-uniform beam with the sinusoidal profile given in (66), by the

first two natural frequencies. Percentage errors: em = 100 × (mest −m)/m,

es = 100× (sest − s)/s.

Table 2. Identification of the mass intensity m and position s in a simply-

supported non-uniform beam with the parabolic profile given in (67), by the

first two natural frequencies. Percentage errors: em = 100 × (mest −m)/m,

es = 100× (sest − s)/s.

Table 3. Experimental test: first two (positive) natural frequencies fn = ωn

2π
,

n = 1, 2, (expressed in Hz) of the undamaged free-free beam and their values

associated to damage configurations Di, i = 1, 2. Note: Modelling errors ∆

are reported in brackets, ∆ = 100× (fModel
n − fExp

n )/fExp
n .

Table 4. Identification results based on experimental data: actual values

(s, m) versus estimated values (sest, mest). Percentage errors in brackets:

100× (sest − s)/s, 100× (mest −m)/m. t=computing time (in seconds).
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Figure Captions

Figure 1. The λ–curves identification algorithm based on first two resonant

frequencies: first case.

Figure 2. The λ–curves identification algorithm based on first two resonant

frequencies: second case, subcase a).

Figure 3. The λ–curves identification algorithm based on first two resonant

frequencies: second case, subcase b).

Figure 4. Experimental model and damage configurations. Lengths in

millimeters.
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Table 1: Identification of the mass intensity m and position s in a simply-

supported non-uniform beam with the sinusoidal profile given in (66), by the

first two natural frequencies. Percentage errors: em = 100 × (mest −m)/m,

es = 100× (sest − s)/s.

m=0.01 m=0.05 m=0.20 m=0.50

s em es Case em es Case em es Case em es Case

0.03 -8.90 4.63 2b -0.05 0.03 2b -3.09 1.51 2b -1.77 0.85 2b

0.08 1.77 -0.98 2b 0.14 -0.08 2b -0.11 0.06 2b 0.01 -0.01 2b

0.13 0.04 -0.02 2b -0.01 0.01 2b 0.00 0.00 2b 0.00 0.00 2b

0.18 0.07 -0.06 2b 0.02 -0.02 2b 0.00 0.00 2b 0.00 0.00 2b

0.23 0.03 -0.07 2b 0.01 -0.02 2b 0.00 -0.01 2b 0.00 -0.01 2b

0.28 0.02 0.04 2a 0.00 0.01 2a 0.00 0.00 2a 0.00 0.00 2a

0.33 0.07 0.03 2a 0.01 0.01 2a 0.00 0.00 2a 0.00 0.00 1

0.38 0.04 0.01 1 0.01 0.00 1 0.00 0.00 1 0.00 0.00 1

0.43 0.03 0.00 1 0.01 0.00 1 0.00 0.00 1 0.00 0.00 1

0.48 0.05 0.00 1 0.00 0.00 1 0.00 0.00 1 0.00 0.00 1
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Table 2: Identification of the mass intensity m and position s in a simply-

supported non-uniform beam with the parabolic profile given in (67), by the

first two natural frequencies. Percentage errors: em = 100 × (mest −m)/m,

es = 100× (sest − s)/s.

m=0.01 m=0.05 m=0.20 m=0.50

s em es Case em es Case em es Case em es Case

0.03 -34.90 24.06 2b -4.44 2.18 2b -2.21 1.06 2b 0.43 -0.23 2b

0.08 0.35 -0.19 2b -0.39 0.21 2b 0.02 -0.01 2b 0.02 -0.01 2b

0.13 0.12 -0.08 2b 0.02 -0.01 2b 0.00 0.00 2b 0.00 0.00 2b

0.18 0.08 -0.08 2b 0.02 -0.02 2b 0.00 0.00 2b 0.00 0.00 2b

0.23 0.09 -0.21 2b 0.01 -0.04 2b 0.00 0.00 2b 0.00 0.00 2a

0.28 0.06 0.08 2a 0.02 0.02 2a 0.00 0.00 2a 0.00 0.00 2a

0.33 0.04 0.02 2a 0.00 0.00 2a 0.00 0.00 1 0.00 0.00 1

0.38 0.07 0.01 1 0.02 0.00 1 0.00 0.00 1 0.00 0.00 1

0.43 0.05 0.00 1 0.01 0.00 1 0.00 0.00 1 0.00 0.00 1

0.48 0.10 0.00 1 0.01 0.00 1 0.00 0.00 1 0.00 0.00 1
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Table 3: Experimental test: first two (positive) natural frequencies fn = ωn

2π
,

n = 1, 2, (expressed in Hz) of the undamaged free-free beam and their values

associated to damage configurations Di, i = 1, 2. Note: Modelling errors ∆

are reported in brackets, ∆ = 100× (fModel
n − fExp

n )/fExp
n .

Undamaged D1 D2

Exp. Model Exp. Model Exp. Model

f1 47.875 47.875 47.125 47.125 44.500 44.500

(0.00) (0.00) (0.00)

f2 129.250 131.971 121.250 123.365 100.500 101.808

(2.11) (1.74) (1.30)
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Table 4: Identification results based on experimental data: actual values

(s, m) versus estimated values (sest, mest). Percentage errors in brackets:

100× (sest − s)/s, 100× (mest −m)/m. t=computing time (in seconds).

D1 D2

s 0.1750 0.1750

m 0.1241 0.5475

sest 0.1366 (-21.96) 0.1671 (-4.51)

mest 0.2816 (126.96) 0.6311 (15.26)

t 670.18 1076.26
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Figure 1: The λ–curves identification algorithm based on first two resonant

frequencies: first case.
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Figure 2: The λ–curves identification algorithm based on first two resonant

frequencies: second case, subcase a).
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Figure 3: The λ–curves identification algorithm based on first two resonant

frequencies: second case, subcase b).
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Figure 4: Experimental model and damage configurations. Lengths in mil-

limeters.
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