
24 April 2024

Università degli studi di Udine

Original

Inferring Safe Maude Programs with ÁTAME

Publisher:

Published
DOI:10.1007/978-3-319-96418-8_1

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:

Springer Verlag

This version is available http://hdl.handle.net/11390/1140021 since 2018-10-30T15:19:40Z

Inferring Safe Maude Programs with ÁTAME?

M. Alpuente1, D. Ballis2, and J. Sapiña1

1 DSIC-ELP, Universitat Politècnica de València
Camino de Vera s/n, Apdo 22012, 46071 Valencia, Spain

{alpuente,jsapina}@dsic.upv.es
2 DMIF, University of Udine,

Via delle Scienze, 206, 33100, Udine, Italy
demis.ballis@uniud.it

Abstract. In this paper, we present ÁTAME, an assertion-based pro-
gram specialization tool for the multi-paradigm language Maude. The
program specializer ÁTAME takes as input a set A of system assertions
that model the expected program behavior plus a Maude program R to
be specialized that might violate some of the assertions in A. The out-
come of the tool is a safe program refinement R′ of R in which every
computation is a good run, i.e., it satisfies the assertions in A. The spe-
cialization technique encoded in ÁTAME is fully automatic and ensures
that no good run of R is removed from R′, while the number of bad runs
is reduced to zero. We demonstrate the tool capabilities by specializing
an overly general nondeterministic dam controller to fulfill a safety policy
given by a set of system assertions.

Keywords: Program specialization, program adaptability, assertions,
Maude, rewriting logic

1 Introduction

Adaptability refers to the ability of a piece of software to satisfy requirements
dedicated to the specific context in which it is used. In concurrent object-oriented
software, adaptability is very fragile as the slightest attempt to modify the foun-
dation of any program component may damage the whole system, ruining the
effectiveness of standard reusing mechanisms.

Maude is a high-level programming language and system that supports func-
tional, concurrent, logic, and object-oriented computations and provides equa-
tional reasoning modulo algebraic axioms such as associativity, commutativity,
and identity. In this paper, we propose an adaptation technique for Maude pro-
grams that integrates system assertions and program specialization.

In the literature, program specialization is often used to mean partial evalu-
ation [5], which takes a program of n inputs and produces a simpler and usually

?This work has been partially supported by the EU (FEDER) and the Spanish
MINECO under grants TIN2015-69175-C4-1-R, and by Generalitat Valenciana ref.
PROMETEOII/2015/013.

2

faster version where some of the inputs are fixed to particular values. In this
paper, we consider a somehow dual specialization transformation where we take
a program of n outputs, or more generally, a program that explores n execution
traces, and then we produce a more specific version of the original program where
we disregard some of the output traces according to the assertional constraints
being considered.

Our specialization technique works with Maude programs that are equipped
with system assertions, with each assertion consisting of a pair Π | ϕ where
Π (the state template) is a term and ϕ (the state invariant) is a quantifier-
free first-order formula with equality that defines a safety property ϕ which
must be enforced on all the system states that match (modulo equations and
axioms) the state template Π. In our technique, assertions take an active role
since they are directly embedded into the specialized program to safely guide
its execution. Given a set of system assertions A and an overly general Maude
program R = (Σ,E,R) (i.e., a program that deploys all desired traces but may
disprove some of the assertions), our transformation coerces R into a specialized
program R′ that enforces A. This means that: (i) every execution of R′ is an
execution ofR (i.e., no spurious computation states are produced); and (ii) every
assertion in A is satisfied by all computation states in R′. The program R′ is
obtained from R by inserting suitable conditions (abetted by the assertions of
A) in the rules of R and defining them by means of new equations that are
added to E until a suitable adaptation of the original program is automatically
inferred which satisfies all the assertions.

The advantage of this technique is that more refined versions of a program
can be incrementally built without any programming effort by simply adding new
logical constraints into the given assertion set. Specifically, this makes it possible
to adapt existing Maude programs to predefined safety policies and allows the
inexperienced user to largely forget about Maude syntax and semantics.

This paper is organized as follows. After some technical preliminaries in Sec-
tion 2, we introduce a running example that we use to illustrate the kind of
specialization that we aim to produce automatically. Section 3 shows how safety
policies can actually be defined as system assertions in our rewriting setting, and
then applied for program specialization. Section 4 shows how software adapta-
tion can be performed efficiently in the ÁTAME system, which implements our
specialization methodology. Section 5 concludes the paper.

2 Modeling Software Systems in Maude

Nondeterministic as well as concurrent software systems can be formalized
through Maude programs. A Maude program essentially consists of two com-
ponents, E and R, where E is a canonical (membership) equational theory that
models system states as terms of an algebraic data type, and R is a set of rewrite
rules that define transitions between states. Algebraic structures often involve
axioms like associativity (assoc), commutativity (comm), and/or identity (also
known as unity) (id) of function symbols, which cannot be handled by ordinary

3

term rewriting but instead are handled implicitly by working with congruence
classes of terms. More precisely, the membership equational theory E is decom-
posed into a disjoint union E = ∆]Ax, where the set ∆ consists of (conditional)
equations and membership axioms (i.e., axioms that assert the type or sort of
some terms) that are implicitly oriented from left to right as rewrite rules (and
operationally used as simplification rules), and Ax is a set of algebraic axioms
that are implicitly expressed as function attributes and are only used for Ax-
matching.

The system evolves by rewriting states using equational rewriting, i.e., rewrit-
ing with the rewrite rules in R modulo the equations and axioms in E [7]. For-
mally, system computations (also called execution traces) correspond to rewrite

sequences t0
r0−→E t1

r1−→E . . ., where t
r−→E t′ denotes a transition (modulo E)

from state t to t′ via the rewrite rule of R that is uniquely labeled with label
r. The transition space of all computations in R from the initial state t0 can
be represented as a computation tree whose branches specify all of the system
computations in R that originate from t0.

The following Maude program will be used as a running example throughout
the paper.

Example 1. Consider a Maude program RDAM that models a simplified, non-
deterministic dam controlling system to monitor and manage the water volume
of a given basin1. In the program code, variable names are fully capitalized.

We assume that the dam is provided with three spillways called s1, s2, and
s3 each of which has 4 possible aperture widths of increasing discharge capacity
close, open1, open2, open3. Each spillway is formally specified by a term [S,O],
where S ∈ {s1, s2, s3} and O ∈ {close, open1, open2, open3}. A global spillway
configuration is a multiset [s1,O1] [s2,O2] [s3,O3] that groups together the
three spillways by means of the usual associative and commutative infix, union
operator __ (written in mixfix notation with empty syntax) whose identity is the
constant empty. System states are defined by terms of the form { SC | V | T

| AC } where SC is a global spillway configuration, V is a rational number that
indicates the basin water volume (in m3), T is a natural number that timestamps
the current configuration, and the Boolean flag AC, called apertureCommand,
enables changes of the spillway aperture widths only when its value is true.

Figure 1 shows the equational specification that formalizes basin water inflow
and outflow. To keep the exposition simple, we assume that the basin water
inflow is constant, while the basin outflow depends on the width of the spillway
apertures and can be computed as the sum of the outflows of each spillway in
the spillway configuration. Note that inflow and outflow values are measured in
m3/min and are hard-coded into the dam controller. More realistic scenarios
could be easily defined by sophisticating the basin inflow and outflow functions.

1 Maude’s syntax is hopefully self-explanatory. Due to space limitations and for the
sake of clarity, we only highlight those details of the system that are relevant to
this work. A complete Maude specification of the dam controller is available at the
ÁTAME website at http://safe-tools.dsic.upv.es/atame. For more information
about the Maude language, see [4].

http://safe-tools.dsic.upv.es/atame

4

eq inflow = 3000 . --- Basin water inflow

eq aperture(close) = 0 . --- Outflow for a closed spillway

eq aperture(open1) = 200 . --- Outflow for aperture width open1

eq aperture(open2) = 400 . --- Outflow for aperture width open2

eq aperture(open3) = 1200 . --- Outflow for aperture width open3

--- Basin water outflow for a given spillway configuration

eq outflow(empty) = 0 .

eq outflow([S,O] SS) = aperture(O) + outflow(SS) .

Fig. 1: Equational definition of basin inflow and outflow.

rl [nocmd] : { SC | V | T | true } => { SC | V | T | false } .

rl [openC-1] :

{ [S,close] SS | V | T | true } => { [S,open1] SS | V | T | false } .

rl [open1-2] :

{ [S,open1] SS | V | T | true } => { [S,open2] SS | V | T | false } .

rl [open2-3] :

{ [S,open2] SS | V | T | true } => { [S,open3] SS | V | T | false } .

rl [close1-C] :

{ [S,open1] SS | V | T | true } => { [S,close] SS | V | T | false } .

rl [close2-1] :

{ [S,open2] SS | V | T | true } => { [S,open1] SS | V | T | false } .

rl [close3-2] :

{ [S,open3] SS | V | T | true } => { [S,open2] SS | V | T | false } .

crl [volume] : { SC | V | T | false } => { SC | V’ | (T + deltaT) | true }

if V’ := (V + inflow * deltaT) - (outflow(SC) * deltaT) .

Fig. 2: (Conditional) rewrite rules for the dam controlling system.

The system dynamics is specified by the eight rewrite rules in Figure 2, which
implement system state transitions. The openX-Y rewrite rules progressively
increment the aperture width of a given spillway (e.g., the rule open1-2 increases
the aperture of the spillway S from level open1 to level open2). Dually, closeX-Y
rewrite rules progressively decrement the aperture width of a spillway. The rule
nocmd specifies the empty command which basically states that no action is taken
on the spillway configuration by the dam controller at time instant T. The rule
is fired only when the AC flag is enabled, and its application disables the flag to
allow a new basin water volume to be computed in the next time instant. These
eight rules, called aperture command rules, implement instantaneous spillway
modifications that do not change the time instant or the basin water volume.

The temporal evolution of the basin water volume is specified by the condi-
tional rewrite rule volume that computes the volume V’ at time T + deltaT,
given the input volume V at time T. The parameter deltaT is measured in min-
utes and can be set by the user. The volume computation changes the input
volume V by adding the water inflow and subtracting the corresponding water
outflow over the deltaT interval.

5

The use of the apertureCommand flag in the rule definitions guarantees a
fair interleaving between the applications of the rule volume and the remaining
aperture command rules. Specifically, this implies that a new basin water volume
is computed after each spillway aperture width modification.

Note that computations in RDAM may reach potentially hazardous system
states (e.g., an extremely high water volume). This is because RDAM does not
implement any spillway management policy that safely restricts the applications
of the aperture command rules.

3 Defining Safety Policies through Assertions

A safety policy for a Maude program R is defined by means of a set A of system
assertions, each assertion being of the form Π | ϕ, which R must satisfy. Intu-
itively, system assertions specify those computation states such that, for every
subterm of a state that matches the algebraic structure of the state template Π
with substitution (modulo the axioms) σ, the constraints given by the instanti-
ated invariant ϕσ are satisfied. Besides the usual Boolean operators and Maude
predefined predicates, the state invariant ϕ may include user-defined predicates
as well as functions that can be specified via suitable equational definitions.

Example 2. Let us consider the user-defined function openSpillways(SC) that
returns the number of open spillways in the spillway configuration SC, whose
equational definition is

eq openSpillways(empty) = 0 .

eq openSpillways([S,O] SC) = if (O =/= close)

then (1 + openSpillways(SC))

else openSpillways(SC)

fi .

and the safety policy ADAM of Figure 3 for the dam controller of Example 1 that
specifies some safety constraints to prevent basin critical situations.

(a1) { SC | V | T | AC } | (V < 50000000)

(a2) { [S1,O1] [S2,O2] [S3,O3] | V:Rat | T:TimeStamp | AC:Bool } |

(V:Rat > 40000000) implies (

(O1 == open3 and O2 =/= close and O3 =/= close) or

(O2 == open3 and O1 =/= close and O3 =/= close) or

(O3 == open3 and O1 =/= close and O2 =/= close))

(a3) { SC | V | T | AC } | (V < 10000000) implies

(openSpillways(SC) == 0)

(a4) { SC | V | T | AC } | ((V >= 10000000) and (V <= 40000000)) implies

(openSpillways(SC) == 2)

Fig. 3: Safety policy ADAM for the dam controller RDAM.

6

More specifically, assertion a1 states that, in every system state, the basin
water volume must be less than 50 million m3 to avoid dam bursts and poten-
tially disastrous floods. Assertion a2 specifies that, whenever the basin water
volume is greater than 40 million m3, all of the spillways must be open and the
aperture width of at least one spillway must be maximal (level open3). Asser-
tion a3 requires the closure of all the spillways when the basin water volume
is particularly low (10 million m3). Finally, assertion a4 specifies the spillway
handling for an intermediate water volume (10 million m3 ≤ V ≤ 40 million m3);
in this scenario we require that exactly two spillways be constantly open.

4 Computing Safe Maude Programs with ÁTAME

Program specialization techniques make it possible to automatically transform
a program into a specialized version, according to an execution context. In our
approach, we use assertions to set the specialization scenario and guide a two-
phase program specialization technique that allows a Maude program R to be
refined into a program R′ w.r.t. a safety policy A as follows.

The first phase translates the safety policy A to be fulfilled into an executable
equational definition Eq(A) that can be used to detect assertion violations within
system states. Roughly speaking, given a system state t, a violation of some
assertion in A is detected in t if t can be simplified into the special constant
fail by using the equational theory E of R extended with Eq(A).

The second phase transforms the original rewrite rules of R into guarded,
conditional rewrite rules that can only be fired if no system assertion is violated.
Intuitively, this is achieved by transforming each rewrite rule r : (λ⇒ ρ if C) of
R into a refined version r′ : (λ⇒ ρ if C∧check(ρ)=/=fail) of r that contains
the extra constraint check(ρ) =/= fail that holds when (the instances of) the
right-hand side ρ cannot by simplified to fail by using the extended equational

theory E ∪Eq(A). This ensures that any state transition t1
r′−→E∪Eq(A) t2, that

yields the system state t2 by means of the application of the rule r′, is enabled
only if t2 is a safe state, that is, a state that does not violate any assertion.

Computations in the resulting program R′ are both reproducible in R and
guaranteed to meet A. In other words, for each computation C in R′, (i) C is
also a computation in R, and (ii) there is no system state t in C that violates
one or more system assertions of A.

The proposed specialization technique has been efficiently implemented in a
Maude tool called ÁTAME (Assertion-based Theory Amendment in MaudE) that
has been implemented in Maude itself by using Maude’s meta-level capabilities.
ÁTAME integrates a RESTful Web service that is written in Java, and an in-
tuitive Web user interface that is based on AJAX technology and is written in
HTML5 and Javascript. The implementation contains about 600 lines of Maude
source code, 600 lines of C++ code, 750 lines of Java code, and 700 lines of
HTML5 and JavaScript code.

As an additional feature, ÁTAME provides the interconnection with the AN-
IMA Maude stepper [1], which integrates program animation capabilities into the

7

ÁTAME system. Indeed, we can execute the computed specialization by incre-
mentally building and exploring the computation tree of R′ w.r.t. a given input
initial state. The tool ÁTAME is publicly available together with a number of
examples at http://safe-tools.dsic.upv.es/atame.

In order to demonstrate the tool capabilities, in the following we show the
specialization of the dam controller RDAM w.r.t. the safety policy ADAM that can
be achieved by ÁTAME.

Animate

F���� ������� ������ (�������� ������� �������)



 ceq fail AUX1:Spillways -ren = (fail).Spillways if AUX1:Spillways =/= empty-ren .

 ceq {SC:Spillways | V:Rat | T:TimeStamp | AC:Bool}-ren = (fail).State
 if not ori(V:Rat < 50000000) .

 ceq {SC:Spillways | V:Rat | T:TimeStamp | AC:Bool}-ren = (fail).State
 if not ori(V:Rat < 10000000 implies openSpillways-ren(SC:Spillways) == 0) .

 ceq {SC:Spillways | V:Rat | T:TimeStamp | AC:Bool}-ren = (fail).State
 if not ori(V:Rat <= 40000000 and V:Rat >= 10000000 implies openSpillways-ren(SC:Spillways) == 2) .

 ceq {[S1:SpillwayId,O1:Aperture]-ren [S2:SpillwayId,O2:Aperture]-ren [S3:SpillwayId,O3:Aperture]-ren -ren -ren | V:Rat | T:TimeStamp
 if not ori(V:Rat > 40000000 implies
 O1:Aperture =/= close-ren and O2:Aperture =/= close-ren and O3:Aperture == open3-ren or
 O1:Aperture =/= close-ren and O3:Aperture =/= close-ren and O2:Aperture == open3-ren or
 O2:Aperture =/= close-ren and O3:Aperture =/= close-ren and O1:Aperture == open3-ren) .

 crl {SC:Spillways | V:Rat | T:TimeStamp | false} => {SC:Spillways | V':Rat | deltaT + T:TimeStamp | true}
 if V':Rat := (V:Rat + deltaT * inflow) - deltaT * outflow(SC:Spillways)
 /\ check({SC:Spillways | V':Rat | deltaT + T:TimeStamp | true}) =/= (fail).State [label volume] .

 crl {SC:Spillways | V:Rat | T:TimeStamp | true} => {SC:Spillways | V:Rat | T:TimeStamp | false}
 if check({SC:Spillways | V:Rat | T:TimeStamp | false}) =/= (fail).State [label nocmd] .

 crl {SC:Spillways [S:SpillwayId,close] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,open1] | V:Rat | T:TimeStamp | f
 if check({SC:Spillways [S:SpillwayId,open1] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label openC-1] .

 crl {SC:Spillways [S:SpillwayId,open1] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,close] | V:Rat | T:TimeStamp | f
 if check({SC:Spillways [S:SpillwayId,close] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label close1-C] .

 crl {SC:Spillways [S:SpillwayId,open1] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | f
 if check({SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label open1-2] .

 crl {SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,open1] | V:Rat | T:TimeStamp | f
 if check({SC:Spillways [S:SpillwayId,open1] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label close2-1] .

 crl {SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,open3] | V:Rat | T:TimeStamp | f
 if check({SC:Spillways [S:SpillwayId,open3] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label open2-3] .

 crl {SC:Spillways [S:SpillwayId,open3] | V:Rat | T:TimeStamp | true} => {SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | f
 if check({SC:Spillways [S:SpillwayId,open2] | V:Rat | T:TimeStamp | false}) =/= (fail).State [label close3-2] .
endm

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

Fig. 4: A fragment of the safe specialization for RDAM computed by ÁTAME.

Example 3. By feeding the ÁTAME system with the Maude program for the
dam controller RDAM of Example 1 and the safety policy ADAM of Example
2, a program specialization R′

DAM for RDAM is automatically computed. Fig-
ure 4 shows a fragment of such a specialization that includes Eq(ADAM) (i.e.,
the equations for detecting assertion violations) and the constrained, condi-
tional versions of the original rewrite rules. Note that all the operators in
the equations of Eq(ADAM) are renamed by adding the textual suffix -ren.
This guarantees that assertion checking is orthogonal to system computa-
tions, that is, there is no interference between the assertion checking mecha-

http://safe-tools.dsic.upv.es/atame

8




-+

{[
s1
,o
pe
n3
]
[s
2,
op
en
1]
 [
s3
,o
pe
n1
]
|
49
97
00
00
 |
 2

0
|
tr

ue
}

s 1

cr
l:
 n
oc
md

{[
s1
,o
pe
n3
]
[s
2,
op
en
1]
 [
s3
,o
pe
n1
]
|
49
97
00
00
 |
 2

0
|
fa
ls
e}

s 2
+

cr
l:
 o
pe

n1
-2

{[
s1
,o
pe
n3
]
[s
2,
op
en
2]
 [
s3
,o
pe
n1
]
|
49
97
00
00
 |
 2

0
|
fa
ls
e}

s 5
+

cr
l:
 o
pe

n1
-2

{[
s1

,o
pe
n3

]
[s
2,
op
en
1]
 [
s3
,o
pe
n2
]
|
49
97
00
00
 |
 2

0
|
fa
ls
e}

s 8

+
cr
l:
 v
ol

um
e

{[
s1
,o
pe
n3
]
[s
2,
op
en
2]
 [
s3
,o
pe
n1
]
|
49
97
80
00
 |
 2

5
|
tr

ue
}

s 1
1

cr
l:
 n
oc
md

{[
s1
,o
pe
n3
]
[s
2,
op
en
2]
 [
s3
,o
pe
n1
]
|
49
97
80
00
 |
 2

5
|
fa
ls
e}

s 1
2

+
cr
l:
 o
pe
n1
-2

{[
s1
,o
pe
n3
]
[s
2,
op
en
2]
 [
s3
,o
pe
n2
]
|
49
97
80
00
 |
 2

5
|
fa
ls
e}

s 1
5

+
cr

l:
 c
lo

se
2-
1

{[
s1

,o
pe
n3

]
[s
2,

op
en
1]
 [
s3
,o
pe
n1
]
|
49
97
80
00
 |
 2

5
|
fa
ls
e}

s 1
8

+
cr

l:
 o
pe

n2
-3

{[
s1

,o
pe
n3
]
[s
2,
op
en
3]
 [
s3
,o
pe
n1
]
|
49
97
80
00
 |

 2
5
|
fa
ls
e}

s 2
1

+
cr
l:
 v
ol
um
e

{[
s1
,o
pe
n3
]
[s
2,
op
en
2]
 [
s3
,o
pe
n1
]
|
49
98
60
00
 |
 3

0
|
tr
ue
}

s 2
4

+
cr
l:
 v
ol
um
e

{[
s1
,o
pe
n3
]
[s
2,
op
en
2]
 [
s3
,o
pe
n2
]
|
49
98
50
00
 |
 3

0
|
tr
ue
}

s 2
7

+
cr

l:
 v
ol

um
e

{[
s1

,o
pe
n3

]
[s
2,

op
en
1]
 [
s3
,o
pe
n1
]
|
49
98
70
00
 |
 3

0
|
tr

ue
}

s 3
0

+
cr

l:
 v
ol

um
e

{[
s1

,o
pe
n3
]
[s
2,
op
en
3]
 [
s3
,o
pe
n1
]
|
49
98
40
00
 |

 3
0
|
tr

ue
}

s 3
3

Zo
om

: -
 1

00
%

 +

En
te

r
yo

ur
 q

ue
ry

 h
er

e
an

d
pr

es
s

en
te

r.

F
ig

.5
:

A
co

m
p

u
ta

ti
on

tr
ee

fr
a
g
m

en
t

fo
r
R

′ D
A
M
.

nism and the applications of the rewrite rules that make the system evolve
only through safe states that meet ADAM. A fragment of the computation
tree that is deployed by the Maude stepper ANIMA for the initial state
s={[s1,open3] [s2,open1] [s3,open1] | 49970000 | 20 | true} in R′

DAM

is shown in Figure 5. Note that all of the states in the considered tree fragment
fulfill the system assertions formalized in ADAM.

In practice, the runtime cost of checking the assertions must be weighed
against the saving gained from embedding them into the code and thus omitting

9

the need for executing programs within a monitored runtime environment. The
manual inclusion of safety policies as a piece of code is generally problematic,
since such conditions may not be easily coded by non-specialists. Moreover, as
shown in [2], the monitored runtime verification of external constraints generally
incurs more cost than running the specialized program that is automatically
inferred by our approach. In the case of the running example of this paper,
as expected the specialized program R′

DAM is slightly slower than the original
programRDAM. Nevertheless, runningR′

DAM is 68% faster than runningRDAM within
a runtime environment that supports dynamic assertion-checking. As for the time
necessary for computing the program specializations, it is almost negligible (a
few milliseconds). For a detailed empirical evaluation, we refer to [2].

5 Concluding Remarks

The technique described in this paper presents similarities with automated pro-
gram correction and related problems such as code fixing and repair techniques.
The discussion of these similarities is outside the scope of this paper; a detailed
comparison can be found in [2]. Loosely related to this work is also the concept
of program specialization of terminating programs based on output constraints
(i.e., program post-conditions) [6]. This methodology translates the constraints
into a characterization function for the program’s input that is used to guide
a partial evaluation process. In contrast, we deal with non-terminating concur-
rent programs and the specialization that we achieve cannot be produced by
any (conventional or unconventional) partial evaluation techniques for Maude
[3]. To our knowledge, the assertion-based functionality for molding programs
supported by ÁTAME is beyond the capabilities of all existing Maude tools.

References

1. Alpuente, M., Ballis, D., Frechina, F., Sapiña, J.: Exploring Conditional Rewriting
Logic Computations. Journal of Symbolic Computation 69, 3–39 (2015)

2. Alpuente, M., Ballis, D., Sapiña, J.: Static Correction of Maude Programs with
Assertions. Tech. rep., Universitat Politècnica de València (2018), available at: http:
//hdl.handle.net/10251/100268

3. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Partial Evaluation of
Order-sorted Equational Programs modulo Axioms. In: Proceedings of LOPSTR
2016. Lecture Notes in Computer Science, vol. 10184, pp. 3–20. Springer (2016)

4. Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer,
J., Talcott, C.: Maude Manual (Version 2.7.1). Tech. rep., SRI International (2016),
available at: http://maude.cs.uiuc.edu/maude2-manual/

5. Danvy, O., Glück, R., Thiemann, P. (eds.): Proceedings of the International Sem-
inar on Partial Evaluation (Dagstuhl 1996), Lecture Notes in Computer Science,
vol. 1110. Springer (1996)

6. Khoo, S.C., Shi, K.: Program Adaptation via Output-Constraint Specialization.
Higher-Order and Symbolic Computation 17(1), 93–128 (2004)

7. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

http://hdl.handle.net/10251/100268
http://hdl.handle.net/10251/100268
http://maude.cs.uiuc.edu/maude2-manual/

	Introduction
	Modeling Software Systems in Maude
	Defining Safety Policies through Assertions
	Computing Safe Maude Programs with ÁTAME
	Concluding Remarks

