




A B S T R A C T

This thesis is focused on theoretical and experimental studies regarding semi-

active control of the noise and vibration response of a thin cylindrical shell

using electromagnetic transducers. The motivation of this research is the in-

creasing interest in low cost, low energy consumption and low weight practical

solution to the noise and vibration problems encountered in transportation ve-

hicles such as cruise ships, trains, aircraft and cars.

Initially, a fully coupled structural-acoustic model of a cylindrical shell and

acoustic enclosure, based on the Modal-Interaction-Model, is presented, which

derives flexural displacement from a modal expansions of the in vacuo flexural

modes of a simply supported cylinder and the interior acoustic pressure field

from a modal expansion of acoustic natural modes for the rigidly-walled cylin-

drical cavity. An energy formulation is adopted to describe the flexural and

acoustic response of the system subject to a rain-on-the-roof stochastic excita-

tion. A systematic convergence analysis aimed at finding the natural modes that

should be included in the modal expansion for the sound pressure response of

the cylindrical enclosure and for the flexural response of the cylindrical wall is

presented.

Then, the effects of classical mechanical fixed Tuned Vibration Absorbers

(TVA) are assessed with a low-frequency simulation study. The tuning crite-

ria of the classical fixed TVA are first recalled and a reduced structural-TVA

model that considers only one natural structural mode was used to derive gen-

eral guidelines regarding the positions of vibration absorbers on cylindrical

structures.

The last part of the thesis is devoted to the time-varying shunted electromag-

netic absorbers. An electro-mechanical analogy study, which lead to the design

of the RL shunt circuit, is presented. The shunted electromagnetic absorber is

operated in the sweeping mode, in which the values of shunt elements are con-

tinuously varied as to harmonically vary the stiffness and damping properties

of the absorber so that its mechanical fundamental natural frequency is contin-

uously swept in a broad frequency range which correspond to the frequency

range of interest whereas its mechanical damping is continuously adapted to

maximise the vibration absorption from the hosting structure. In this operation

mode the time-varying shunted electromagnetic absorber produces a broad-
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band control of the cylinder flexural response and of the interior noise without

need of tuning and system identification of the structure.
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1
I N T R O D U C T I O N

Flexural vibration of distributed structures is an important practical problem,

especially when it is associated to noise radiation into enclosures such as for

example the passenger cabins in cruise ships, trains, aircraft and cars [1–3]. In-

deed the undesired and potentially dangerous effects of noise and vibration on

humans could cause, in the harmless case, discomfort and annoyance, leading

to speech interference or activity disturbance, interfering with wanted activi-

ties such as, for example, rest, relaxation and hand or foot movements. Also,

the effects of vibrations or acoustical disturbances could lead to hearing dam-

age risks, sleep disturbances, vision difficulties, headaches, nausea, effects on

cognitive performances and a wide variety of health diseases [4–6].

Excessively high levels of noise and vibration could also be harmful for the

structures involved, they can lead to large displacements and stresses which

may cause fatigue, breakage, wear or improper operation [7, 8].

The address of the noise and vibration issues are driven by two main moti-

vating factors. The first comes from the legal regulations that many countries

have set on these topic; in the European Union some of them are for exam-

ple the Noise at Work Directive 2003/10/EC [9], the Directive 2006/42/EC on

machinery [10], the Human Vibration Directive 2002/44/EC [11] and the Direc-

tive 2000/14/EC on the approximation of laws of the member states relating to

the noise emission in the environment by equipment for use outdoors [12].The

second aspect is related to customer demand. Customer requirements and ex-

pectation represent an incentive to the noise and vibration control problem,

since the user discomfort leads to competitive disadvantage and a loss of the

market share.

Over the years several materials, designs, mechanical treatments and control

devices have been developed to mitigate vibrations in thin walled structures

[7, 13–21]. Mass, stiffness and damping treatments, double wall constructions

with sound absorbing materials, Tuned Vibration Absorbers (TVA), Helmholtz

1
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Resonators (HR) and composite materials are typical examples of noise and

vibration treatments.

The amplitude of mechanical vibrations can span from metres to nanometres

and the associated frequency can varies from a fraction of Hertz to several

kHz. Thus, the selection and the design of the most appropriate treatment for

a system is a complex process and the solution is often a trade-off between the

design constrains (weight and dimension limits, fabrication and maintenance

costs, structural requirements, etc. ) and the effectiveness of the remedy.

Usually, the control techniques are categorised, depending on the use of ex-

ternal power sources, in passive and active systems [17, 22–27]. Recently, a big

effort has been dedicated to the study and development of a new category of

control techniques, the semi-active. These systems enhance the control effects

obtained with classical passive treatments but require less energy and are more

robust to sensor failure than active devices.

1.1 passive vibration control

The aim of the passive treatments is to modify the response of the system in

order to make it less sensitive to the excitation. No external energy is given to

the system to obtain the change of the response.

The modification of the response can be obtained changing the structural

properties of the systems by means of mass, stiffness and damping treatments.

The classical classification [17] divides the passive vibration approaches into

four main categories. The first approach of passive vibration control is by struc-

tural design. This method relies on a full knowledge of the excitation source and

requires an accurate model to estimate the level of structural vibration. The de-

sign process should therefore be focused on the optimisation of the structural

quantities in order to reduce the vibration level, e.g. by shifting the system

resonances away from the frequencies of the excitation field [28].

A second approach, particularly suitable when the vibration of structure is

characterised by many resonance, involves the increasing of the structure damp-

ing [21]. This approach, in the past misapplied and thus undervalued, emerged

in the last years due also to the development of new and advanced materials.

The basic principle of this approach is to convert the vibration energy into heat;

this can be done applying highly damped materials, such as especially manu-

factured polymers, on strategic positions in the structure.

The third approach, referred as isolation [29], is applied when the vibration

is transmitted through different components of the system. For example, the en-
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gine of a car generates unbalanced oscillatory forces which can propagate to the

supporting structure. A second case of application of this technique is encoun-

tered when a sensitive equipment is connected to a support characterised by

a high vibration level, as for example in the case of the cutting tool connected

to the lathe. The transmission of the vibration may be efficiently reduced by

making the connections sufficiently soft or resilient so to isolate the sensitive

system from the source of vibration.

The fourth approach is related to the addition of localised elements, which

may be simple elements as a lumped mass [30], or combination of mass, stiff-

ness and damping elements which can be either tuned to a resonance of the

structure (Vibration Absorber) or to the disturbance frequency (Vibration Neu-

tralized) [31–34]. These system can effectively reduce the vibration level of the

hosting structure only over a narrow frequency range to which they are tuned.

These devices thus require an a priori knowledge of the structural response or

the frequency characteristics of the excitation field.

1.2 active vibration control

The active control system strongly rely on an external source of power. These

system uses sensors applied on the structure to detect the vibration level, the

signal is then precessed by electronic systems to drive active actuators ( which

may be electromechanical, electrohydraulic or electropneumatic) which reduce

the vibrations. The effects of the actuators on the structure is to generate a vi-

bration that counteracts that produced by the excitation field. The requirement

of an external power supply makes them more costly but generally the active

system achieve performances that no passive system can achieve [22, 29]. The

need of a proper maintenance and the possibility of failure, which require a

passive system as a back-up, are others drawbacks of the active systems. The

way a disturbance is rejected leads the classification of active control systems

into two main approaches [22, 29]:

feedforward : generally used when the excitation is tonal or deterministic

and the reference signal is correlated to the disturbance. The idea, origi-

nally developed for noise control [23], is to produce a secondary distur-

bance such that it destructively interfere with the primary disturbance at

the location of the sensors [35]. This does not guarantee global control,

unless the system is characterised by a small number of modes. Using

the reference signal allows the control system to adapt to different work-

ing conditions. Thus, to obtain good performances of the controller it is
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of paramount importance to exploit efficient algorithms to tune the con-

troller in real time.

feedback : generally adopted when a reference signal is not available, e.g.

when the structure is subject to a broadband random disturbance from

many sources. This kind of control system is widely used for controlling

the vibration of lightly damped structures, characterised by well sepa-

rated resonance peaks in the low frequency region. Control of such struc-

tures is achieved with direct velocity feedback, which increases the effec-

tive damping in the system, as in the sky-hook damper [36].

1.3 semi-active vibration control

Semi-active control devices are passive systems that can adjust their parame-

ters to adapt to changes in the working conditions, as for example temperature,

pressurisation or tensioning effects that alter the dynamic response of the host-

ing structure, but they do not put energy directly in the hosting system.

Their development was driven by the will to overcome the drawbacks of

the passive and active techniques. A passive resonant device gradually loses

its control performances if there is a change of the operating conditions. Active

systems are power-consuming devices, which makes them costly and extremely

vulnerable to power failure. They effectiveness is also affected by sensor failure,

which can compromise the stability of the control system, yielding to an en-

hancement of the vibration level of the system under control.

Many efforts were made to develop techniques that can change the prop-

erties of semi-active devices. Magneto-rheological fluids are used in magneto-

rheological dampers to obtain devices which can vary their damping effect. The

viscosity of these fluids can be modified when they are exposed to a magnetic

field, which is usually produced with an electromagnet. Varying the current

across the coil that generates the magnetic field it is thus possible to change the

viscous damping of the device [29].

The stiffness of the device could be varied in order to track the frequency

changes of the excitation field. This can be achieved, for example, changing

the pressure of the air in pneumatic springs [37]. Shape memory alloys, which

changes the Young’s modulus with temperature, could also be used to control

the stiffness of the device [38]. Another example of tuning the stiffness of the

semi-active element is to change the geometric shape of the stiffness element,

for example using piezoelectric materials [39].
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The field of metamaterials gained a lot of popularity in the last years. These

are engineered materials whose vibro-acoustic properties derive from the pe-

riodic repeating patterns in which, for example, piezoelectric patches are ar-

ranged. A vibration stop band effect could also be obtained using shunted

piezoelectric patch vibration absorbers, both via the spatial distribution of the

patches and via the resonating shunts connected to the piezoelectric patches

[40–43].

Semi-active systems could also be obtained by properly shunting an elec-

tromechanical transducer. This approach has been used for both electromag-

netic and piezoelectric transducers [44–48]. The electric elements of the shunt

circuit are varied to obtain a mechanical effect which correspond to the de-

sired control effect; the electrical elements could also be implemented digitally

because their value could lay outside from the commercial ranges or because

their size and weight could represent a problem for the particular application.

1.4 time-varying tuneable vibration absorber

At the end of the previous century and during the first years of the current

one, the switching techniques were developed. They basically consist in cycli-

cally open and close the shunt circuit connected to the transducer according to

a time-dependent law related to the motion of the structure [49–51].

Switching Tuneable Vibration Absorbers, whose stiffness and damping prop-

erties varies between discrete values, has been firstly investigated [52–56]. In

the switching operation mode, the control algorithm switches the stiffness and

damping parameters of the absorbers such that the device is sequentially tuned

to control the response of several resonant modes of the hosting structure. The

effectiveness in the control performances of this operation mode strongly rely

on the knowledge of the dynamic response of the hosting structure.

Recent studies have shown the possibility of blindly control the flexural

response of thin structures over a broad frequency band using sweeping ab-

sorbers [57–63]. In the sweeping operation mode, the stiffness and damping

properties of the device are continuously varied such that its natural frequency

is uniformly varied within a given band and the damping ratio is maintained

constant. In this way the absorber periodically control the vibration response

due to the several modes that resonate within the frequency band.

As highlighted in reference [56], for semi-active or adaptive absorbers, the

prefix tuneable is more advisable in place of tuned.
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1.5 objective of the thesis

The main objective of this thesis is to study and develop semi-active vibra-

tion absorbers using shunted electromagnetic transducers for the broadband

control of the flexural and acoustic response of a cylindrical shell and enclo-

sure. The electrical parameters of the shunt circuit can be adjusted to adapt the

mechanical properties of the device.

1.6 contributions of the thesis

The main contributions of this thesis are:

• development of a structural-acoustic fully coupled model for the noise

and vibration analysis of cylindrical systems (chapter 3);

• analysis of the traditional mechanical fixed tuned vibration absorber effect

on the noise and vibration response of cylindrical structures (chapter 4);

• development of general guidelines regarding the positions for vibration

absorbers on cylindrical structures (chapter 4);

• development of an electrical-mechanical equivalence criteria for the elec-

tromagnetic transducer (chapter 5);

• development of a RL shunt circuit for the tuning of electromagnetic trans-

ducer used as vibration absorber (chapter 5);

• development of sweeping vibration absorbers, which use electromagnetic

transducers connected to time-varying RL shunts for the broadband con-

trol of the flexural and acoustic response of a thin circular cylinder (chap-

ter 5).

• realisation and testing an electro-magnetic shunted vibration absorbers

(chapter 6);

• testing the vibration control performances of an digitally implemented

shunted electro-magnetic vibration absorbers on a thin cylindrical struc-

ture (chapter 6).
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1.7 structure of the thesis

chapter two presents the model of the problem at hand, summarising the

geometrical and physical parameters of the cylindrical shell and acoustic

enclosure. The objective of the thesis is briefly reported in this section.

chapter three introduces the fully coupled structural-acoustic model to

analyse the coupled structural and acoustic cylindrical system. First the

derivation of the in vacuo response of the cylindrical shell and the rigidly

walled response of the acoustic enclosure are presented. These formula-

tions represent the basis for the Modal Interaction Model used to describe

the coupled response, in which the flexural displacement and the acoustic

response are described in terms of simply supported in vacuo structural

flexural and of rigidly walled acoustic mode shapes. An energy formula-

tion is used to describe the structural and acoustic responses, which are

expressed by means of the Power Spectral Density of the total kinetic

energy and of the Power Spectral Density of the total acoustic potential

energy.

chapter four presents the classical mechanical Tuned Vibration Absorber.

First the characterisation of the mechanical behaviour is expressed in

terms of base impedance. Several tuning criteria are presented and the

optimum values of the damping and stiffness elements to maximise the

vibration absorption effect are adopted. The vibration control effect of the

mechanical absorbers are initially assessed considering first the in vacuo

cylindrical shell. From this study the guidelines for the positioning of the

vibration absorbers on cylinders are derived. The effects of the fixed tuned

vibration absorbers on the coupled noise and vibration response are then

assessed through simulation results.

chapter five starts with the description of the electro-magnetic coupling

phenomenon and its application to the electromagnetic transducer. The

constitutive equations and the parameters that characterise electromag-

netic transducers are presented. An electro-mechanical equivalence study

is presented, which constitute the basis to the development of the shunt

circuit for the electromagnetic transducers. The electrical elements can in-

deed be used to modify the mechanical response of the transducer. These

can therefore be selected in order to make the electromagnetic transducer

suitable for flexural control of thin structures. Then the time-varying elec-

tromagnetic absorber is presented. In the so called sweeping operation
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mode an harmonic function is used to continuously vary the shunt in-

ductance and resistance between a lower and upper value, corresponding

with the lower and upper values of the frequency range of interest. The re-

sults obtained with the time-varying sweeping electromagnetic absorbers

are compared to the results obtained using the classical mechanical fixed

tuned absorbers.

chapter six presents the experimental results of the digitally implemented

shunted electro-magnetic TVA. In the first part of the chapter the mechan-

ical and electrical experimental characterisation of an actual transducer

is presented. The digital implementation of the shunt circuit is then re-

ported, focusing on both the front-end circuit and the digital algorithm

for the realisation of the shunt circuit. The measured effects of several re-

sistive and resistive-inductive shunt circuits on the base impedance of the

transducer are presented, providing general guidelines to the tuning of

the actual transducer. The vibration control performances of the digitally

implemented shunted electro-magnetic TVA are then assessed consider-

ing both the fixed and the sweeping operation modes. Experimental tests

of the TVA mounted on a cylindrical shell are presented.

chapter seven summarises the presented studies and suggested ideas for

future work.



2
M O D E L P R O B L E M C O N S I D E R E D I N T H I S T H E S I S

The model used in this thesis is composed by a thin walled aluminium cylin-

der of length L simply-supported at the two ends, which is connected to rigid

cylindrical extensions, which form rigid baffles for the exterior unbounded air

fluid. The interior cylindrical cavity is also filled with air and is bounded by

rigid walls placed in correspondence to the circular edges of the flexible cylin-

drical wall [28, 64, 65], as depicted in figure 2.1 (a). The geometrical and phys-

ical properties of the thin cylinder and of the interior cavity, summarised in ta-

ble 2.1, are adapted from references [66–69] to resemble the fuselage section of

small aircraft. Figure 2.1 (a) also shows the generic Cartesian reference system

(x, y′, z′) and the cylindrical reference system (x, r, ϑ), which will be adopted

for the description of the acoustical cylindrical domain. The superscripts on the

y and z Cartesian axes are adopted to distinguish them from the ones used in

Chapter 3 in the derivation of the structural equations on motion.

(a)

'y
'z

L
h

R

r

x

J

(b)

Figure 2.1: Thin walled cylindrical shell; dimensions with coordinate system (a) and
distribution of the 24 uncorrelated white noise point forces (b).

9
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Table 2.1: Geometrical and physical properties of the thin walled cylinder and acoustic
cavity.

Parameter Symbol Value

Cylindrical shell Length L 2 [m]

Radius R 1.3 [m]

Thickness h 1.2 [mm]

Density ρ 2700 [kg/m3]

Young’s modulus E 71 [GPa]

Poisson ratio ν 0.3 [−]

Modal damping ratio ζs 1% [−]

Acoustic cavity Density ρ0 1.21 [kg/m3]

Speed of sound c0 343 [m/s]

Modal damping ratio ζ0 5% [−]

The aircraft considered is the Hawker Siddeley HS 748, whose drawings and

picture are shown in figure 2.2, which is a medium-sized two-engines turbo-

prop airliner.

The model used in this thesis has the purpose of provide an estimation of

the effect of the control devices, so it is not necessary to provide a point to

point representation of the structural response of the cylindrical shell nor the

internal acoustic field. The aircraft fuselage is generally composed of a huge

amount of structural elements (frames, stringers, floor, trim, shell, etc.) but in

this study it is modelled by a finite, isotropic and homogeneous cylinder. In

this model the increased stiffness and mass effects due to the presence of the

rings and stringers is considered by adjusting the thickness and the structural

damping, such as smearing the effects of the structural reinforcing elements

over the entire surface of the cylinder [67, 68].

As shown in figure 2.1 (b), the cylinder is considered to be exposed to a

white noise rain on the roof excitation [28, 47, 63, 72], which is approximated

by a uniform grid of uncorrelated point forces oriented in the radial direction,

equally spaced in 8 circumferential and 3 axial positions [64, 65]. The excitation

field considered, as discussed in [28, 73], has the property to equally excite

all the flexural mode. Thus, it can be conveniently used to asses the intrinsic

control effects of the control devices considered. The vibrational field of the

1Images licensed under the Creative Commons Attribution 3.0 Unported license.
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(a)

(b)

Figure 2.2: Three-view drawing (a) [70] and picture (b) [71] of the Hawker Siddeley HS
7481.

shell and the acoustic field in the enclosure are studied in the 20 - 100 Hz

frequency band.

Figure 2.3 schematically shows the cylindrical shell equipped with a classical

mechanical fixed Tuned Vibration Absorber (TVA), plot (a), and with the device

proposed in this study, which is a time-varying shunted electromagnetic TVA,

plot (b).

The classical mechanical TVA, which will be described in chapter 4, is a well-

known passive device composed essentially by a mass suspended by a spring

[19, 31, 32, 74, 75]. This device can be used to reduce the harmonic response
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Figure 2.3: Thin walled equipped with a classical mechanical TVA (a) and with a time-
varying shunted electromagnetic TVA (b). (The dimensions of the two TVAs
are intentionally bigger than their actual values to highlight the differences
between the two devices).

amplitude of the hosting system subject to tonal excitation or alternately it can

be used to control the hosting structure resonant response subject to broad band

disturbances.

Recent studies have shown the possibility to blindly control the response

of hosting structures over a broad frequency band using time-varying vibra-

tion absorbers [47, 56, 57, 60, 63]. As will be discussed in chapter 5, the time-

varying TVAs could be obtained considering a time-varying RL shunt which

periodically varies the mechanical proprieties of an electromagnetic transducer

[64, 65].



3
C O U P L E D S T R U C T U R A L - A C O U S T I C R E S P O N S E : M O D E L

A N D S I M U L AT I O N R E S U LT S

This chapter presents the mathematical model for the structural-acoustic cou-

pled response of a thin cylindrical structure. The structural vibrations of the

shell and the acoustic pressure fluctuations of the cylindrical enclosure subject

to structural and acoustic stochastic excitation are first presented as unclou-

pled. Particular attention is given to the structural and acoustic mode shapes,

highlighting the positions of nodal and anti-nodal patterns. The orientation of

both the flexural deflection and the acoustic pressure was assessed considering

arrays of single and double point excitation sources.

The last part of the chapter is devoted to the derivation of the fully coupled

structural-acoustic equation of motion, which is derived using the Modal Inter-

action Analysis.
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3.1 introduction

Large cylindrical structures are very common in every field of structural en-

gineering, with examples of applications from the aerospace and aeronautical

engineering [76–78] to naval engineering [79–81] and small scale piping system

[82, 83]. The case analysed in this thesis, which is focused on the interaction

between the flexural vibration of the cylindrical shell and the internal acoustic

sound pressure, falls into the field of acoustoelasticity [84–87]. Representative ex-

amples of this kind of problems are the cabin noise in flight vehicles and the

internal sound field in a transportation vehicle.

As shown in chapter 2, the parameters of the cylindrical shell are chosen such

that it resembles the fuselage section of a small aircraft. This kind of structure

is usually composed by a huge variety of structural elements, such as stingers,

frames, rings, bulkheads and longerons. A lot of effort has been given to model

these structural elements in conjunction with the cylindrical shell, which rep-

resents the so-called skin of the fuselage [88–92]. Nevertheless, a first order

estimation of the fuselage vibration and of the internal acoustic fields could be

obtained considering a simple model in which the fuselage is composed by a

simply supported cylinder [30, 66–68, 93–97].

In the first part of the chapter the response of the in vacuo cylindrical shell is

considered. The fundamental steps needed to obtain the structural equation of

motion for the flexural displacements are presented, giving some details about

the several shell theories proposed in literature. In particular, the equation of

motion is derived considering the Donnell-Mushtari shell theory (also called

the Donnell-Mushtari-Vlasov shell theory) [98], which represents the most com-

monly adopted approach to describe the flexural vibration of cylindrical shells.

With the considered theory it is indeed possible to uncouple the equation of

motion for the flexural (radial) displacement from the ones for the axial and

circumferential deformations. The separation of variable approach is used to

obtain the structural natural frequencies and the structural mode shapes for

the simply supported cylindrical shell considered. Due to the cylindrical sym-

metry of the case considered, it is shown that two components for each mode

shapes have to be considered in order to describe a general flexural deflection

field. A description of the nodal patterns and their locations is also provided.

The response of the simply supported cylindrical shell exposed to a white noise

rain-on-the-roof excitation is derived considering an energetic approach, which

describe the global flexural response in terms of the flexural kinetic energy

PSD. Finally, a simplified model composed by a single structural mode subject
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to different configurations of the excitation field, is used to obtain indications

regarding the orientation of the flexural deflection in relation with the orienta-

tion of the excitation field.

The second part of the chapter is devoted to the analysis of the acoustic cylin-

drical cavity. The wave equation is first derived for the one-dimensional case

and then applied to the three dimensional rigidly walled cylindrical case consid-

ered in this study. The homogeneous wave equation is then considered, which,

together with the separation of variables procedure, lead to the definition of the

acoustic natural frequencies and mode shapes. As well as for the structural case,

due to the cylindrical symmetry of the acoustic enclosure, two components for

each acoustic mode are needed to obtain a complete representation of the inter-

nal sound field. Considering a specific excitation field, composed by an array

of white noise uncorrelated point monopole sources, the acoustic response of

the enclosure is derived in terms of the total acoustic potential energy PSD. A

simplified model, composed by a single acoustic mode, is used to gather the

relationship between the circumferential orientation of the acoustic pressure in-

side the cylindrical domain and the orientation of the array of point monopole

sources.

Finally, the last part of the chapter consider the coupled structural-acoustic

system. The structural response and the transmitted noise are investigated by

means of a Modal Interaction Analysis (MIA) [30, 99, 100]. As discussed in

reference [3], the sound transmission through the aircraft fuselage could be de-

scribed with three different models, depending on the frequency range consid-

ered. In the low frequency range considered in this thesis, the sound transmis-

sions may be calculated using a shell model in which the structural properties

are smeared in an equivalent isotropic cylindrical skin. The Modal Interaction

Model [64, 99] developed expresses the shell response in terms of the in vacuo

structural modes and the interior acoustic response in terms of the uncoupled

interior cavity modes for the fluid in the enclosure with rigid boundaries. The

use of rigid-walled cavity modes guarantee convergence to the acoustic pres-

sure on the interior and on the wall surface of the cylindrical cavity but not

to the normal acoustic particle velocity at the flexible walls of the cavity [99].

However only the former acoustic quantity is used in the energy formulation,

while the latter is not actually taken into account. The MIA formulation leads to

a fully coupled equation of motion which results in a non-symmetric equation

due to the presence of the structural-acoustic and acoustic-structural coupling

terms. A particular converge study is required to obtain the correct number

of structural and acoustic modes which guarantee an accurate representation
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of the structural and acoustic response. This systematic convergence analysis

is described in appendix B. As well as for the uncoupled cases, for the fully

coupled system the responses are obtained with an energetic approach which

describe the structural response in terms of the flexural kinetic energy PSD and

the internal sound response in terms of theacoustic potential energy PSD.

3.2 equation of motion for the cylindrical shell

A cylindrical shell, as shown in figure 2.1 (a), is a thin sheet of elastic mate-

rial formed into a cylinder. It could be considered as a generalization of a flat

plate, while a flat plate could be considered as a special case of shell having no

curvature [98]. In the first part of this chapter the fundamental equations of the

thin shell theory are presented in their most simple form, considering the ma-

terial as linearly elastic, isotropic and homogeneous; the thickness is assumed

constant due to the assumption of the smeared structural properties and the dis-

placements are assumed to be small compared to the geometrical dimensions.

Furthermore the shear deformation and the rotary inertia are neglected.

A large number of different shell theory have been proposed in literature [98,

101, 102] and several studies have been proposed to highlight the differences

between the various thin shell theories [103–105]. Compared to the thin plate

theory, which yields to a single fourth order differential equation of motion

universally accepted, the shell theory represent a slightly difficult, and thus

interesting, problem. Several monographs are presented on the subject [98, 106–

109].

Differences in the theories result from slightly different simplifications or in

the point in which the simplifications are made. However, all the theories are

based on common steps in the derivation of the equation of motion of a curved

shell, which are as follow [98, 101, 106, 107, 110]:

1. Derivation of the strain - displacement relations;

2. Derivation of the stress - strain relations using Hooke’s law;

3. Obtaining the force and moment resultants by integrating the stresses;

4. Using the resultants in the equilibrium equations to obtain the equations

of motions in terms of the displacements.

In the classical theory of small displacements of thin shells, the following

assumptions were made by Love [98, 111, 112]:
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1. The thickness of the shell is small compared to other dimensions;

2. Strains and displacements are sufficiently small so that the quantities of

second- and higher-order magnitude in the strain - displacements rela-

tions may be neglected in comparison with the first-order terms;

3. The transverse normal stresses are small compared with the other normal

stress components and may be neglected;

4. Normals to the undeformed middle surface remain straight and normal

to the deformed middle surface and suffer no extension.

These assumptions, which lead to the so called first approximation shell the-

ory, are universally adopted in all the different shell theories. The first assump-

tion leads to the definition of thin shell and permits to neglect the term h/R,

being h the thickness and R the radius of the shell, at various places in the

derivation of the equation of motion. The second assumption allows to refer

the calculations to the undeformed shell and ensures that the differential equa-

tions will be linear. The third and fourth assumptions, known as Kirchhoff’s

hypotheses, are related to the constitutive equations and lead to consider a

special type of orthotropy of the shell.

3.2.1 Strain - displacement relations

The strain - displacements relations of the three - dimensional theory of elas-

ticity can be expressed in the cylindrical coordinate system of figure 3.1 (a) as

[98, 106]:

εx =
∂U

∂x
, (3.1a)

εϑ =
∂V

R∂ϑ
+

W

R
, (3.1b)

εz =
∂W

∂z
, (3.1c)

γxϑ =
∂U

R∂ϑ
+

∂V

∂x
, (3.1d)

γxz =
∂U

∂z
+

∂W

∂x
and (3.1e)

γϑz =
∂V

∂z
− V

R
+

∂W

R∂ϑ
, (3.1f)

where εx, εϑ and εz are the normal strains, γxϑ, γxz and γϑz are the shear strains

and U, V and W are the displacements along the axial, circumferential and
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transverse (radial) directions respectively, at an arbitrary point. Figure 3.1 (a)

shows the generic Cartesian reference system (x, y, z) and the cylindrical refer-

ence system (x, z, ϑ). The radial z direction is supposed to assume zero value in

correspondence to the neutral surface of the shell, which corresponds to a dis-

tance R from the axis of the cylinder. The three displacements are also shown in

figure 3.1 (a). In order to satisfy the Kirchhoff’s hypotheses, the displacements

are restrict to a class which respects the following linear relationships:

U(x, ϑ, z) = u(x, ϑ) + zβ1(x, ϑ), (3.2a)

V(x, ϑ, z) = v(x, ϑ) + zβ2(x, ϑ) and (3.2b)

W(x, ϑ, z) = w(x, ϑ), (3.2c)

where u, v and w are the components of the displacement at the middle surface

in the x, ϑ and z directions and β1 and β2 are the rotations of the normal to the

middle surface during deformation about the ϑ and x axes respectively, given

by:

β1 =
∂U(x, ϑ, z)

∂z
and (3.3a)

β2 =
∂V(x, ϑ, z)

∂z
. (3.3b)

Substituting equations (3.3) into equations (3.2) and then substituting the

resulting equations into equations (3.1), yields:

εx = εo
x + zKx, (3.4a)

εϑ = εo
ϑ + zKϑ, (3.4b)

γxϑ = γo
xϑ + zKxϑ, (3.4c)

γxz = 0, (3.4d)

γϑz = 0 and (3.4e)

εz = 0. (3.4f)
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Figure 3.1: Notation and positive directions of displacements (plot (a)) and of stresses
acting on a cylindrical shell element (plot (b)).
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The transverse normal and shear strains, εz, γxz and γϑz are set to zero as a

consequence to the assumption of the Kirchhoff’s hypotheses. The normal and

shear strains of the middle surface (z = 0) are given by:

εo
x =

∂u

∂x
, (3.5a)

εo
ϑ =

∂v

R∂ϑ
+

w

R
and (3.5b)

γo
xϑ =

∂u

R∂ϑ
+

∂v

∂x
. (3.5c)

In this thesis the Donnell-Mushtari shell theory is considered. It applies to

shells that are loaded normal to their surface and concentrates on transverse

deflection behaviour. According to this theory, the contribution of the in-plane

deflections can be neglected in the bending strains, therefore the changes in

curvature and twist are given by [98, 101]:

Kx = −∂2w

∂x2
, (3.6a)

Kϑ = − ∂2w

R2∂ϑ2
and (3.6b)

Kxϑ = −2
∂2w

∂xR∂ϑ
. (3.6c)

3.2.2 Stress - strain relationship

Assuming the material is linearly elastic, isotropic and homogeneous, the

three-dimensional Hooke’s law can be written as [102, 113]:

εx =
1

E
[σx − ν (σϑ + σz)] , (3.7a)

εϑ =
1

E
[σϑ − ν (σx + σz)] , (3.7b)

εz =
1

E
[σz − ν (σx + σϑ)] , (3.7c)

γxϑ =
2 (1 + ν)

E
τxϑ =

1

G
τxϑ, (3.7d)

γxz =
2 (1 + ν)

E
τxz =

1

G
τxz and (3.7e)

γϑz =
2 (1 + ν)

E
τϑz =

1

G
τϑz, (3.7f)
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where σx, σϑ and σz are the normal stresses, τxϑ is the shear stress in the tangen-

tial (x and ϑ) directions and τxz and τϑz are the transverse (in the z direction)

shear stresses, acting upon the transverse faces of a shell element as shown in

figure 3.1 (b). Also, E is the Young modulus and G is the shear modulus. The

assumptions of the Kirchhoff’s hypothesis, expressed by equations (3.4d)-(3.4f),

yields τxz = τϑz = 0 and σz = ν (σx + σϑ).

Retaining the assumption that σz is negligible reduces the problem to a case

of plane stress, so equations (3.7) reduce to

εx =
1

E
(σx − νσϑ) , (3.8a)

εϑ =
1

E
(σϑ − νσx) and (3.8b)

γxϑ =
1

G
τxϑ, (3.8c)

which can be inverted to obtain the stresses:

σx =
E

1 − ν2
(εx − νεϑ) , (3.9a)

σϑ =
E

1 − ν2
(εϑ − νεx) and (3.9b)

τxϑ = Gγxϑ. (3.9c)

3.2.3 Force and moments resultants

The force resultants acting on the lateral faces of the shell element, shown in

figure 3.2 (a), can be obtained integrating the stresses acting on each face over

the element thickness dz. The force resultants, expressed in unit of force per

unit length of middle surface can thus be expressed as [98]:

Nx =
∫ h/2

−h/2
σx dz, (3.10a)

Nϑ =
∫ h/2

−h/2
σϑ dz and (3.10b)

Nxϑ = Nϑx =
∫ h/2

−h/2
τxϑ dz, (3.10c)

where the positive directions of the force resultants are shown in figure 3.2 (a).
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(a)

(b)

Figure 3.2: Notation and positive directions of force resultants (plot (a)) and of moment
resultants (plot (b)) acting on a cylindrical shell element.
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Similarly, the moment resultants shown in figure 3.2 (b) , having dimensions

of moments per unit length of the middle surface, are given by:

Mx =
∫ h/2

−h/2
σx z dz, (3.11a)

Mϑ =
∫ h/2

−h/2
σϑ z dz and (3.11b)

Mxϑ = Mϑx =
∫ h/2

−h/2
τxϑ z dz. (3.11c)

Substitution of equations (3.9) into equations (3.10) and (3.11) and then the

substitution of equations (3.5) and (3.6) into equation (3.4) and the resulting

equation in the resulting equations (3.10) and (3.11) gives the expressions of the

force and moment resultants in terms of the middle surface displacements:

Nx = K
Å

∂u

∂x
+ ν

∂v

R∂ϑ
+ ν

w

R

ã

, (3.12a)

Nϑ = K
Å

∂v

R∂ϑ
+

w

R
+ ν

∂u

∂x

ã

, (3.12b)

Nxϑ = Nϑx =
K(1 − ν)

2

Å

∂u

R∂ϑ
+

∂v

∂x

ã

, (3.12c)

Mx = D

Ç

−∂2w

∂x2
− ν

∂2

R2∂ϑ2

å

, (3.12d)

Mϑ = D

Ç

− ∂2

R2∂ϑ2
− ν

∂2w

∂x2

å

and (3.12e)

Mxϑ = Mϑx =
D(1 − ν)

2

Ç

−2
∂2w

∂xR∂ϑ

å

, (3.12f)

where

K =
E h

1 − ν2
(3.13)

is the membrane stiffness and

D =
E h3

12(1 − ν2)
(3.14)

is the shell bending stiffness. The transverse force resultants Qx and Qϑ have

been omitted since their derivation is obtained from the equation of motion, by

virtue of the moment equilibrium equations.



24 coupled structural-acoustic response : model and simulation results

3.2.4 Equation of motion

Considering the shell element subject to the internal elastic force and moment

resultants shown in figure 3.2, and under the influence of an external force q,

whose components qx, qϑ and qr act at the middle surface in the three directions

respectively, the moment equilibrium equation leads to :

Qx =
∂Mx

∂x
+

∂Mϑx

R∂ϑ
and (3.15a)

Qϑ =
∂Mxϑ

∂x
+

∂Mϑ

R∂ϑ
. (3.15b)

In the Donnell-Mushtari shell theory, the transverse force resultants Qx and

Qϑ are neglected in the axial and circumferential components of the equation of

motion but not in the radial component. Thus the force equilibrium equations

can be written as:

∂Nx

∂x
+

∂Nϑx

R∂ϑ
+ qx = 0, (3.16a)

∂Nxϑ

∂x
+

∂Nϑ

R∂ϑ
+ qϑ = 0 and (3.16b)

−Nϑ

R
+

∂Qx

∂x
+

∂Qϑ

R∂ϑ
+ qr = 0. (3.16c)

These force equilibrium equations become the dynamic equations of mo-

tion considering the forcing terms as the sum of the effective external forces

( fx, fϑ, fr), which act in the axial, circumferential and radial direction respec-

tively, and the translatory inertia forces:

qx = fx − ρ h
∂2u

∂t2
, (3.17a)

qϑ = fϑ − ρ h
∂2v

∂t2
and (3.17b)

qr = fr − ρ h
∂2w

∂t2
. (3.17c)
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Substituting equations (3.17) and (3.12) into equations (3.16) yield the expres-

sion of the equation of motion in terms of the displacements:

K

ñ

∂2u

∂x2
+

1 − ν

2

∂2u

R2∂ϑ2
+

1 + ν

2

∂2v

∂xR∂ϑ
+

ν

R

∂w

∂x

ô

− ρ h
∂2u

∂t2
= − fx, (3.18a)

K

ñ

1 + ν

2

∂2u

∂xR∂ϑ
+

1 − ν

2

∂2v

∂x2
+

∂2v

R2∂ϑ2
+

∂w

R2∂ϑ

ô

− ρ h
∂2v

∂t2
= − fϑ and (3.18b)

K

ñ

− ν

R

∂u

∂x
− ∂v

R2∂ϑ
− w

R2
− h2

12
∇4

s w

ô

− ρ h
∂2w

∂t2
= − fr, (3.18c)

where ∇4
s = ∇2

s∇2
s and

∇2
s =

∂2·
∂x2

+
∂2·

R2∂ϑ2
(3.19)

is the two-dimensional Laplace operator in cylindrical coordinates.

The coupled equations of motions (3.18) can be written in a more compact

fashion as:

LD-M [w(xs, t)]− ρhLt [w(xs, t)] = −f, (3.20)

where w(xs, t) =
[

u v w
]T

is the displacement vector at time t of the point

xs = (x, ϑ) laying on the middle-surface, f =
[

fx fϑ fr

]T
is the force vec-

tor, Lt [·] =
ï

∂2·
∂t2

∂2·
∂t2

∂2·
∂t2

òT

is the differential operator of time and LD-M [·]
is the matrix differential operator of the Donnell - Mushtari’s theory of thin

cylindrical shells, expressed as:

LD-M [·] = K























∂2·
∂x2

+
1 − ν

2

∂2·
R2∂ϑ2

1 + ν

2

∂2·
∂xR∂ϑ

ν

R

∂·
∂x

1 + ν

2

∂2·
∂xR∂ϑ

1 − ν

2

∂2·
∂x2

+
∂2·

R2∂ϑ2

∂·
R2∂ϑ

− ν

R

∂·
∂x

− ∂·
R2∂ϑ

− ·
R2

− h2

12
∇4

s w























.

(3.21)

The form in which equation (3.20) is written makes it suitable to be used for

shell theory other than the Donnell - Mushtari; indeed substituting the matrix

differential operator with the general operator

L [·] = LD-M [·] + h2

12R2
LMOD [·] (3.22)

yields to the equations of motion according to the shell theory selected with the

modifying operator LMOD. As an example, the modifying operator in order to
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obtain the equation of motion for the Love - Timoshenko shell theory is given

by:

LL-T [·] =





















0 0 0

0 (1 − ν)
∂2·
∂x2

+
∂2·

R2∂ϑ2
− ∂3·

∂x2∂ϑ
− ∂3·

R2∂ϑ3

0 (2 − ν)
∂3·

∂x2∂ϑ
+

∂3·
R2∂ϑ3

0





















. (3.23)

The circular cylindrical shell shown in figure 2.1 (a) is considered to be subject

to the following boundary conditions:

v(0, ϑ, t) = v(L, ϑ, t) = 0, (3.24a)

w(0, ϑ, t) = w(L, ϑ, t) = 0, (3.24b)

Nx(0, ϑ, t) = Nx(L, ϑ, t) = 0 and (3.24c)

Mx(0, ϑ, t) = Mx(L, ϑ, t) = 0. (3.24d)

The type boundary conditions described by means of equations (3.24) are

usually called simply supported or shear diaphragms boundary conditions [98,

101, 106].

Solutions to the equations of motions (3.18), subject to the boundary condi-

tions given in equations (3.24) can be assumed to have the form [98]:

u(x, ϑ, t) = A cos
Å

m1πx

L

ã

cos (m2ϑ) cos (ωt) , (3.25a)

v(x, ϑ, t) = B sin
Å

m1πx

L

ã

sin (m2ϑ) cos (ωt) and (3.25b)

w(x, ϑ, t) = C sin
Å

m1πx

L

ã

cos (m2ϑ) cos (ωt) , (3.25c)

where A, B and C are undetermined coefficients, m1 = 1, 2, 3, . . . , m2 = 0, 1, 2, . . .

and ω is the angular frequency of free vibration, in radians per seconds. Sub-

stitution of the set of solution given in equations (3.25) into the homogeneous

equations of motion (3.20) and factorization the common terms, leads to a set

of homogeneous equation which can be written in matrix form as:











ρhω2 − F11 F12 F13

F21 ρhω2 − F22 F23

F31 F32 ρhω2 − F33





















A

B

C











=











0

0

0











, (3.26)
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where

F11 = K

ñ

Å

m1π

L

ã2

+
1 − ν

2

Å

m2

R

ã2
ô

, (3.27a)

F12 = F21 = K
1 + ν

2

m1π

L

m2

R
, (3.27b)

F13 = F31 =
νK

R

m1π

L
, (3.27c)

F22 = K

ñ

1 − ν

2

Å

m1π

L

ã2

+
Å

m2

R

ã2
ô

, (3.27d)

F23 = F32 = K
m2

R2
and (3.27e)

F33 =
K

R2
+ D

ñ

Å

m1π

L

ã2

+
Å

m2

R

ã2
ô2

. (3.27f)

For a nontrivial solution, the determinant of the coefficient matrix of equation

(3.26) has to be zero. The resulting characteristic equation can be written as

ω6 + a1ω4 + a2ω2 + a3 = 0, (3.28)

where

a1 = − 1

ρh
(F11 + F22 + F33) , (3.29a)

a2 =
1

(ρh)2

Ä

F11F22 + F11F33 + F22F33 − F
2
12 − F

2
13 − F

2
23

ä

and (3.29b)

a3 =
1

(ρh)3

Ä

F11F
2
23 + F22F132 + F33F

2
12 + 2F12F13F23 − F11F22F33

ä

. (3.29c)

The cubic frequency equation (3.28) has three positive, real roots for every

given (m1, m2) combination. The cylindrical shell, defined by its geometrical

parameters h, R and L, has three vibrational frequencies, each having an equal

number of circumferential and longitudinal waves (related to the modal in-

dices m1 and m2), which characterise a different vibrational mode. The modes

associated with each frequency can be classified as primary radial (or flexural),

longitudinal (or axial) or circumferential (or torsional).

Once m1 and m2 have been defined, three values of ω could be determined.

Subsequently, for each ω, different values of A/C and B/C (i.e. the undeter-

mined constants of equations (3.25) ) are obtained. The lowest value of ω, out

of the three possible ones, correspond to the case in which the amplitude ratios

are A/C < 1 and B/C < 1. This indicates that the motion is primarily flexural

(or radial), since the displacement w is dominant in comparison with u and v.
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Another commonly adopted simplification in the Donnell - Mushtari shell

theory is to neglect the in-plane (tangential) inertia terms in the equation of

motion (3.18) [101]. These can thus be written as:

∂Nx

∂x
+

∂Nϑx

R∂ϑ
= 0, (3.30a)

∂Nxϑ

∂x
+

∂Nϑ

R∂ϑ
= 0 and (3.30b)

−Nϑ

R
+

∂Qx

∂x
+

∂Qϑ

R∂ϑ
− ρ h

∂2w

∂t2
= − fr. (3.30c)

Introducing the Airy’s stress function φ, defined as [101]:

Nx =
∂2φ

R2∂ϑ2
, (3.31a)

Nϑ =
∂2φ

∂x2
and (3.31b)

Nxϑ = − ∂2φ

∂xR∂ϑ
, (3.31c)

the first two equations (3.30) are satisfied, and the third becomes:

D∇4
s w +

∂2φ

R∂x2
+ ρ h

∂2w

∂t2
= fr. (3.32)

In order to eliminate the Airy’s stress function from this equation, the strain

- displacement relationship (3.4) are algebraic manipulated to eliminate from

them the displacements. The resulting equation results:

Eh

R

∂2w

∂x2
−∇4

s φ = 0. (3.33)

Operating on equation (3.32) with ∇4
s and on equation (3.33) with ∂2(·)/R∂x2,

leads to the equation of motion for the flexural vibration of a cylindrical shell,

uncoupled from the tangential displacements:

D∇8
s w +

Eh

R2

∂4w

∂x4
+ ρ h∇4

s

∂2w

∂t2
= ∇4

s fr, (3.34)

which can be written in a more compact form as:

LD-M,w [w(xs, t)] + ρhLt,w [w(xs, t)] = Lf,w [ fr(xs, t)] , (3.35)
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where:

LD-M,w [·] = D∇8
s (·) +

Eh

R2

∂4·
∂x4

, (3.36a)

Lt,w [·] = ∇4
s

∂2·
∂t2

and (3.36b)

Lf,w [·] = ∇4
s (·). (3.36c)

The in-plane (tangential) displacements can be obtained by means of the

following relationships:

∇4
s u = ν

∂3w

R∂x3
− ∂3w

∂xR3∂ϑ2
and (3.37a)

∇4
s v = −(2 + ν)

∂3w

∂x2R2∂ϑ
− ∂3w

R∂x3
. (3.37b)

3.3 structural natural modes and frequencies

In the free vibration case, the forcing term is set equal to zero, fr = 0, and

the equation of motion (3.34) can be written as:

D

ñ

∂8w

∂x8
+ 4

∂8w

∂x6R2∂ϑ2
+ 6

∂8w

∂x4R4∂ϑ4
+ 4

∂8w

∂x2R6∂ϑ6
+

∂8w

R8∂ϑ8

ô

+

+
Eh

R2

∂4w

∂x4
+ ρ h

ñ

∂4ẅ

∂x4
+ 2

∂4ẅ

∂x2R2∂ϑ2
+

∂4w

R4∂ϑ4

ô

= 0

(3.38)

where the symbol ẅ indicates the double derivative with respect to time of

the flexural displacement. The free vibration solution can be found using the

method of separation of variables as [114]:

w(xs, t) = ϕ(xs)g(t) = X(x)Θ(ϑ)g(t) (3.39)

substituting equation (3.39) into equation (3.38), and dividing for X(x)Θ(ϑ)g(t)

yields

D

ñ

1

X

d8X

dx8
+ 4

Ç

1

X

d6X

dx6

åÇ

1

Θ

d2Θ

dR2ϑ2

å

+ 6

Ç

1

X

d4X

dx4

åÇ

1

Θ

d4Θ

dR4ϑ4

å

+

+4

Ç

1

X

d2X

dx2

åÇ

1

Θ

d6Θ

dR6ϑ6

å

+
1

Θ

d8Θ

dR8ϑ8

ô

+
Eh

R2

Ç

1

X

d4X

dx4

å

+

+ ρ h

ñÇ

1

X

d4X

dx4

å

+ 2

Ç

1

X

d2X

dx2

åÇ

1

Θ

d2Θ

dR2ϑ2

å

+

Ç

1

Θ

d4Θ

dR4ϑ4

åôÇ

1

g

d2g

dt2

å

= 0.

(3.40)
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The functions X(x) and Θ(ϑ) are assumed to satisfy the conditions [101]:

d2X

dx2
= −k2

xX and
d2Θ

dϑ2
= −k2

ϑΘ, (3.41)

thus, the higher order derivatives of X(x) and Θ(ϑ) are equal to

d4X

dx4
= k4

xX,
d4Θ

dϑ4
= k4

ϑΘ, (3.42a)

d6X

dx6
= −k6

xX,
d6Θ

dϑ6
= −k6

ϑΘ, (3.42b)

d8X

dx8
= k8

xX and
d8Θ

dϑ8
= −k8

ϑ.Θ (3.42c)

Furthermore, the function g(t) is assumed to satisfy the condition

d2g

dt2
= −ω2

s g. (3.43)

Substitution of the assumptions given in equations (3.41), (3.42) and (3.43)

into equation (3.40) gives

D

ñ

k2
x +

k2
ϑ

R2

ô4

+
Eh

R2
k4

x − ρh

ñ

k2
x +

k2
ϑ

R2

ô2

ω2 = 0. (3.44)

From equation (3.44) it is possible to obtain the angular frequency of the free

vibration in terms of the axial and circumferential wavenumbers, kx and kϑ, as

ω2
s =

E

ρ R2







(Rkx)
4

î

(Rkx)
2 + k2

ϑ

ó2
+

h2/R2

12(1 − ν2)

î

(Rkx)
2 + k2

ϑ

ó2







. (3.45)

The values of the axial and circumferential wavenumbers, kx and kϑ, can be

obtained by considering the general solution to equations (3.41), which are of

the form:

X(x) = A1 cos(kxx) + A2 sin(kxx) and (3.46a)

Θ(ϑ) = B1 cos(kϑϑ) + B2 sin(kϑϑ). (3.46b)

The boundary condition (3.24b) are satisfied if

A1 = 0 and (3.47a)

kxL = m1π, (3.47b)
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which yields to

kx =
m1π

L
, (3.48)

with m1 = 1, 2, 3, . . . . No structural boundary condition applies to the func-

tion Θ(ϑ) but a more physical boundary condition have to be satisfied, which

requires that both the displacement and the slope of the displacement be contin-

uous in the entire region 0 ≤ ϑ < 2π. This condition can be be satisfied if only

an integer number of wavelengths fits within the circumference 2πR. Thus, the

circumferential wavenumber has also to be an integer number:

kϑ = m2, (3.49)

with m2 = 0, 1, 2, . . . . It is worth noting that this periodic boundary condition

does not imply any limitation on the values of B1 and B2, thus both the cosine

and sine function have to be taken into account.

Substitution of equations (3.48) and (3.49) into equation (3.45) gives the an-

gular frequency in terms of the modal indices m1 and m2 [98, 101]:

ω2
s,m =

E

ρ R2























Å

m1πR

L

ã4

ñ

Å

m1πR

L

ã2

+ m2
2

ô2
+

h2/R2

12(1 − ν2)

ñ

Å

m1πR

L

ã2

+ m2
2

ô2























, (3.50)

at which correspond two distinct flexural natural modes, namely the symmetric

and anti-symmetric flexural natural modes, given by

ϕs
m(xs) = sin

Å

m1π

L
x
ã

cos (m2ϑ) and (3.51a)

ϕa
m(xs) = sin

Å

m1π

L
x
ã

sin (m2ϑ) , (3.51b)

where the subscript m indicates the couple of indices (m1, m2).

A common representation of the natural structural frequencies for the cylin-

drical shell [98, 101] is reported in figure 3.3 (a), where the natural structural fre-

quency obtained from equation (3.50) is plotted versus the circumferential index

m2 for several values of the axial index m1. This plot highlights an important

characteristic of the simply supported cylindrical shell, the minimum frequency

occurs for combinations of the modal indices m1 and m2 which are not the mini-

mum, as instead happen for the case on the flat rectangular plate [102, 113, 115–

117]. Another common representation of the frequency trend is by means of the

k-space [118–120], or wavenumber diagram [99, 121], shown in figure 3.3 (b). In
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this rectangular domain the axial and circumferential wavenumbers kx and kϑ

are interpreted as Cartesian coordinates. Each of the values of kx and kϑ given

by equations (3.48) and (3.49) respectively, corresponds to a straight line per-

pendicular to the corresponding axis. The equations (3.48) and (3.49) represent

two sets of equidistant and mutually orthogonal lines in the k-space and con-

stitute the lattice represented with the light grey lines. The intersections of the

lines correspond to a given natural frequency. The curves of constant frequency

are represented with the solid black line. It can be clearly seen that these curve

presents a twofold behaviour, depending on the frequency ratio

Ω =
ωs,m

ωR
, (3.52)

between the structural natural frequency and the ring frequency ωR =
»

E/(ρR2),

according to the definition given in references [122, 123]. For Ω < 1, to a given

value of kx corresponds two possible values of kϑ, while for Ω >

√
2 each value

of kx is associated with an unique value of kϑ. In the region comprised between

this two values, only a limited number of value of kx is associated with two

values of kϑ.
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Figure 3.3: Variation of the structural natural frequency fs,m with the circumferential
index m2 for different values of the axial index m1 (a) and wavenumber
diagram of the k−space with the modal lattice (light grey rectangular grid)
and iso- fs curves (black lines) (b).

Figure 3.4 shows some of the structural modes described by equations (3.51);

in particular plot (a) shows the mode characterized by the couple of indices

(1, 0), plot (b) shows the (1, 1) mode, plot (c) shows the (2, 0) mode, plot (d)

shows the (2, 2) mode, plot (e) shows the (3, 1) mode and finally plot (f) shows

the (3, 3) structural natural mode. In every plot of figure 3.4, the left images
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are axonometric views of the structural modes and the right images represent a

cross section of the cylindrical shell, respectively of the symmetric component

(top images) and of the anti-symmetric component (bottom images). For the

cross-section images, the thick grey lines represent the undeformed surface of

the cylinder while with the thin solid and dashed lines are shown the deformed

surface of the cylinder during the flexural vibration.

The images in figure 3.4 are reported for illustrative purposes only. Indeed,

the structural modes here presented are the ones for which the graphical rep-

resentation is the most readable. This is due to the limited values (up to 3) of

m1 and m2 that correspond to clearly observable patterns. On the other hand,

higher values of m1 and m2 lead to an unreadable and misleading graphical

representation. From figure 3.3 (a) it can be deduced that the lowest values of

m2 are associated with structural natural frequencies which are well above the

frequency range considered in this study.

From plots (a) and (c) of figure 3.4 it can be clearly seen that when the cir-

cumferential index m2 is zero, the anti-symmetric component of the flexural

structural mode is everywhere zero, implying that this component does not

contribute to the total vibration of the structure. Indeed, when the circumferen-

tial modal index m2 is equal to zero, the flexural displacement is independent

of the angular coordinate.

This can also be seen considering the nodal pattern of the symmetric and

anti-symmetric components of the flexural structural modes, shown in figure

3.5 for the (2, 3) mode. Considering the nodal positions, represented with the

dash-dot lines, the following relationships can be gathered:

• The number of axial nodal lines is equal to m1 − 1;

• The number of circumferential nodal lines is equal to 2m2.

Alternatively, the relationship between the modal indices and the axial and

circumferential wavelengths can be established:

• the axial modal index m1 represents the number of axial half-wavelengths;

• the circumferential modal index m2 represents the number of circumfer-

ential wavelengths.
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(a) fs = 628 Hz (b) fs = 506 Hz

(c) fs = 629 Hz (d) fs = 505 Hz

(e) fs = 611 Hz (f) fs = 507 Hz

Figure 3.4: Axonometric (left images) and cross-section (right images) views of the
symmetric (top images) and anti-symmetric (bottom images) of the struc-
tural natural mode shapes (1, 0) (a), (1, 1) (b), (2, 0) (c), (2, 2) (d), (3, 1) (e),
(3, 3) (f).
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Figure 3.5: Nodal pattern for the symmetric (top plots) and for the anti-symmetric com-
ponent (bottom plots) of the structural mode (2, 3).

As shown in the right images of figure 3.5, where are shown the cross sec-

tions of the cylindrical shell, at a nodal cirumferential position for a mode com-

ponent, correspond an anti-nodal circumferential position for the other com-

ponent. The two components present the axial nodal lines at the same axial

positions. The general position of nodal line are presented in Table 3.1.

Table 3.1: Nodal and anti-nodal positions for the cylindrical shell.

Direction
Symmetric Anti-symmetric

component component

Axial
nodal α1

L

m1

anti - nodal
L

2m1
+ α2

L

m1

Circumferential
nodal

π

2m2
+ β

π

m2
β

π

m2

anti - nodal β
π

m2

π

2m2
+ β

π

m2

where α1 = 0, 1, . . . , m1, α2 = 0, 1, . . . , m1 − 1 and β = 0, 1, . . . , m2 − 1.
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3.4 structural modal equation of motion

When a disturbance excites the cylindrical shell, the various mode are ex-

cited in various amounts, which may be limited little for certain modes and

otherwise may assume large values for others, depending on the excitation

field [101]. Assuming that the flexural displacement of the cylinder is separable

in space and time [114], it can be represented in terms of the following modal

summation:

w(xs, t) =
M
∑

m=1

ϕs
m(xs)b

s
m(t) +

M
∑

m=1

ϕa
m(xs)b

a
m(t), (3.53)

where ϕs
m(xs) and ϕa

m(xs) are the symmetric and anti-symmetric flexural nat-

ural mode shapes for the simply supported cylinder given in equations (3.51),

bs
m(t) and ba

m(t) are the symmetric and anti-symmetric flexural modal ampli-

tudes (sometimes also referred as modal participation factors [101]) and M is

the number of flexural modes considered in the summation. This series expres-

sion can be rearranged in the following matrix form:

w(xs, t) =
[

ϕϕϕs(xs) ϕϕϕa(xs)
]







bs(t)

ba(t)







= ϕϕϕ(xs)b(t), (3.54)

where ϕϕϕs(xs) and ϕϕϕa(xs) are the row vectors with the symmetric and anti-

symmetric structural flexural natural modes, whose dimensions are 1 × M,

ϕϕϕ(xs) =
[

ϕϕϕs(xs) ϕϕϕa(xs)
]

is the 1 × 2M vector of the structural flexural modes,

bs(t) and ba(t) are the column vectors with the symmetric and anti-symmetric

flexural modal amplitudes whose dimensions are M × 1 and finally b(t) =
[

bs T(t) ba T(t)
]T

is the 2M × 1 vector of the structural modal amplitudes.

Substitution the modal summation of equation (3.54) into the in vacuo equa-

tion of motion for the flexural displacement (3.35) yields:

LD-M,w [ϕϕϕ(xs)] b(t) + ρh∇4
s ϕϕϕ(xs)b̈(t) = ∇4

s fr(xs, t), (3.55)

where the symbol ¨ indicates the double derivative with respect to time. From

the eigenvalue/eigenvector analysis of Section 3.3, it can be easily shown that:

LD-M,w [ϕm(xs)] bm(t) = ρh ω2
s,m∇4

s ϕm(xs)bm(t). (3.56)
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Inserting equation (3.56) into equation (3.55) leads:

ρh∇4
s ϕϕϕ(xs)ΩΩΩ

2
s b(t) + ρh∇4

s ϕϕϕ(xs)b̈(t) = ∇4
s fr(xs, t), (3.57)

where ΩΩΩs is a 2M × 2M diagonal matrix whose element are the structural nat-

ural frequencies such that:

Ωs,(m,m) = Ωs,(m+M,m+M) = ωs,m (3.58)

where m = 1, . . . , M and ωs,m is the m-th natural frequency of the cylinder given

in equation (3.50).

After some algebraic manipulation, equation (3.57) can be rewritten in the

following form:

ρh ϕϕϕ(xs)b̈(t) + ρh ϕϕϕ(xs)ΩΩΩ
2
s b(t) = fr(xs, t). (3.59)

Each term of equation (3.59) is then pre-multiplied by the column vector

ϕϕϕT(xs) and integrated over the surface S of the cylindrical shell, yielding to the

following matrix modal equation of motion:

Msb̈(t) + Ksb(t) = ΦΦΦsf(t), (3.60)

where Ms and Ks are the 2M × 2M diagonal structural modal inertia and stiff-

ness matrices, defined as:

Ms = ρh

∫

S
ϕϕϕT(xs)ϕϕϕ(xs)dS = mcΛΛΛ and (3.61a)

Ks = ρh

∫

S
ϕϕϕT(xs)ϕϕϕ(xs)ΩΩΩ

2
s dS = MsΩΩΩ

2
s , (3.61b)

where mc is the mass of the cylinder and ΛΛΛ is the 2M × 2M diagonal matrix

of the structural normalization coefficients whose elements are derived in ap-

pendix A. Also, ΦΦΦs and f(t) are the modal excitation matrix and the excitation

vector.

The energy dissipation in the structure can be modelled in terms of an equiv-

alent viscous damping factor [101, 114], thus the damped modal equation of

motion for the cylinder can be written as:

Msb̈(t) + Csḃ(t) + Ksb(t) = ΦΦΦsf(t), (3.62)
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where Cs is the 2M × 2M diagonal modal damping matrix given by

Cs = 2ζsMsΩΩΩs, (3.63)

where ζs is the structural damping ratio, assumed equal for all the structural

modes.

3.4.1 Structural excitation field

The structural excitation field, shown in figure 2.1 (b), is assumed to be a

uniform distribution of uncorrelated, stochastic, radial forces resembling a rain

on the roof excitation [47, 72, 73]. The stochastic and uncorrelated nature of the

rain on the roof excitation actuate all the structural modes efficiently, evening

out the resonance response of all the structural modes [28]. The white noise rain

on the roof excitation field is modelled with a uniform array of 24 uncorrelated

point forces (8 in the circumferential direction and 3 in the axial direction) [64,

65]. The forcing term in equation (3.59) is then expressed as:

fr(xs, t) =
NR
∑

i=1

fR,i(t)δ(xs − xs,i), (3.64)

where fR,i(t) is the time-dependent amplitude of the i-th rain on the roof point

force and δ(xs − xs,i) is the two-dimensional Dirac delta function, which in

cylindrical coordinate is given by [101]

δ(xs − xs,i) = δ(x − xi)
1

R
δ(ϑ − ϑi), (3.65)

at the position xs,i = (xi, ϑi) where the i-th force acts. The modal excitation

matrix and the excitation vector of equation (3.62) are thus a 2M × NR matrix

and a NR × 1 column vector respectively, where NR is the total number of forces.

Following the procedure described in the previous section, the first M rows of

the modal excitation matrix ΦΦΦs are given by the symmetric structural modes

evaluated at the forcing positions and the second M row are the anti-symmetric

structural modes evaluated at the same points. Thus, the generic elements of

the modal excitation matrix are given by:

Φs,(m,i) = ϕs
m(xs,i) and (3.66a)

Φs,(m+M,i) = ϕa
m(xs,i), (3.66b)
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where m = 1, . . . .M. The excitation vector is thus of the form:

f(t) =
[

fR,1(t) fR,2(t) . . . fR,NR
(t)
]T

. (3.67)

3.4.2 Frequency analysis of the structural response

Noise and vibration problems resulting from stationary random disturbances

are normally studied in the frequency domain by considering the spectra of

the responses [28]. Assuming harmonic motion, the time harmonic functions

presented in the previous sections can be expressed in the form

g(t) = Re[g(ω)ejωt], (3.68)

where ω is the circular frequency, g(ω) is the frequency-dependent complex

amplitude of the time-harmonic function g(t), j is the imaginary unit such that

j2 = −1 and Re[·] is the real part operator. Then, the differential equation (3.62)

that describe the time-dependent flexural displacement of the cylinder can be

expressed as
î

−ω2Ms + jωCs + Ks

ó

b(ω) = ΦΦΦsf(ω), (3.69)

where b(ω) and f(ω) are the column vectors of the frequency-dependent com-

plex amplitudes of the time-harmonic flexural modal displacements and excita-

tion forces.

An appropriate measure of the global flexural response of the cylindrical

structure is given by the Power Spectral Density of the total kinetic energy

of the cylinder [22, 28, 64, 72], which, for brevity, will be stated as flexural

kinetic energy PSD. This quantity can be derived with the following expression

[124, 125]

SK(ω) =
1

2
ρh

∫

S
lim

T→∞

E
ï

1

T
ẇ∗(xs, ω)ẇ(xs, ω)

ò

dS, (3.70)

where E [·] is the expectation operator, the superscript ∗ indicates the complex

conjugate operator and ẇ(xs, ω) is the frequency-dependent amplitude of the

flexural velocity at a cylindrical surface point xs. According to equation (3.54),

the flexural velocity is defined as

ẇ(xs, ω) = ϕϕϕ(xs)ḃ(ω), (3.71)
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where ḃ(ω) is the 1 × 2M column vector of the complex frequency-dependent

amplitudes of the flexural modal velocities and may be obtained by equation

(3.69) as

ḃ(ω) = Y(ω)ΦΦΦsf(ω). (3.72)

Here

Y(ω) = jω
î

−ω2Ms + jωCs + Ks

ó−1
(3.73)

is the 2M× 2M mobility matrix derived from equation (3.69). Substituting equa-

tion (3.72) into (3.71)and the resulting expression into equation (3.70) leads to

SK(ω) =
1

2
ρh

∫

S
lim

T→∞

E
ï

1

T
fT(ω)ΦΦΦT

s YH(ω)ϕϕϕT(xs)ϕϕϕ(xs)Y(ω)ΦΦΦsf(ω)
ò

dS

=
1

2
mcTr [Sbb(ω)] ,

(3.74)

where the superscript H indicates the Hermitian operator, Tr [·] is the trace op-

erator and Sbb(ω) is the 2M × 2M fully populated matrix with the PSD of the

modal structural velocities given by:

Sbb(ω) = lim
T→∞

E
ï

1

T
ΛΛΛY(ω)ΦΦΦsf(ω)fT(ω)ΦΦΦT

s YH(ω)
ò

= ΛΛΛY(ω)ΦΦΦsSff(ω)ΦΦΦT
s YH(ω),

(3.75)

where Sff(ω) is the NR × NR matrix with the PSD of the rain on the roof force

excitations, which is assumed to be an identity matrix [64, 72]:

Sff(ω) = lim
T→∞

E
î

f(ω)fT(ω)
ó

≡ I. (3.76)

Thus, the PSD of the cylinder flexural kinetic energy is given by:

SK(ω) =
1

2
mcTr

î

ΛΛΛY(ω)ΦΦΦsIΦΦΦ
T
s YH(ω)

ó

. (3.77)

From equations (3.53) and (3.54) it can be seen that the flexural displacement

of the cylindrical shell can be thought as the sum of two components, the first

related to the symmetric components of the motion and the second related to

the anti-symmetric components of the motion:

w(xs, t) = ws(xs, t) + wa(xs, t), (3.78)
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where

ws(xs, t) = ϕϕϕsbs(t), (3.79a)

wa(xs, t) = ϕϕϕaba(t). (3.79b)

In the same way the PSD of the flexural kinetic energy can be expressed as

the sum of two terms, the former related with the symmetric and the latter

related with the anti-symmetric motion:

SK(ω) = Ss
K(ω) + Sa

K(ω), (3.80)

where the two terms are defined as:

Ss
K(ω) =

1

2
ρh

∫

S
lim

T→∞

E
ï

1

T
ẇs∗(xs, ω)ẇs(xs, ω)

ò

dS, (3.81a)

Sa
K(ω) =

1

2
ρh

∫

S
lim

T→∞

E
ï

1

T
ẇa∗(xs, ω)ẇa(xs, ω)

ò

dS. (3.81b)

Following the same procedure which leads to the expression of the PSD of

the flexural kinetic energy of the cylinder given in equation (3.77), the PSDs

related to the two components motion can be expressed as:

Ss
K(ω) =

1

2
mcTr

î

βββs
ΛΛΛY(ω)ΦΦΦsIΦΦΦ

T
s YH(ω)βββsT

ó

, (3.82a)

Sa
K(ω) =

1

2
mcTr

î

βββa
ΛΛΛY(ω)ΦΦΦsIΦΦΦ

T
s YH(ω)βββaT

ó

, (3.82b)

where βββs and βββa are the M × 2M matrices given by:

βββs =
[

IM×M 0M×M

]

and (3.83a)

βββa =
[

0M×M IM×M

]

, (3.83b)

being IM×M and 0M×M the M × M identity and zero matrices respectively.
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3.4.3 Simulation results

In figure 3.6 are shown the 20-100 Hz flexural kinetic energy PSD for the sym-

metric component defined in equation (3.82a), plot (a), for the anti-symmetric

component defined in equation (3.82b), plot (b), and for the global response

defined in equation (3.77), plot (c).
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Figure 3.6: Spectra of the flexural kinetic energy of the symmetric component (a), the
anti-symmetric component (b) and of the total response (c), which considers
both the components.
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From these figures appear quite clear two main characteristics. First, the un-

even distribution of the resonance peaks, which straightforwardly derive from

the expression of the structural natural frequencies given in equation (3.50). Sec-

ond, the amplitudes of the resonance peaks are fairly even, since the rain on

the roof equally excites all the modes.

The response is characterised by several resonance peaks, some of which are

clustered in small band of few Hz. In particular, the response is characterised

by almost separate peaks below about 60 Hz and by a more uniform and flat

response above 60 Hz, due to the high modal overlap factor which characterise

the cylindrical shells [99, 122, 123, 126].

3.4.4 Effects of the spatial distribution of the excitation field

In this section, the influence of the forcing field spatial distribution on the

cylindrical shell response is analysed. The analysis is carried out considering

for simplicity a single structural mode.

If just the single flexural mode shape m̃ is considered, the flexural displace-

ment can be expressed as:

w̃(xs, t) = ϕs
m̃(xs)b

s
m̃(t) + ϕa

m̃(xs)b
a
m̃(t). (3.84)

If a single point force is applied on the cylindrical shell at position xF, the

equation of motion (3.69), considering just a single flexural mode shape, can

be expressed as two uncoupled equations related to the symmetric and anti-

symmetric component:

Ä

−ω2Ms
m̃ + jωCs

m̃ + Ks
m̃

ä

bs
m̃(ω) = ϕs

m̃(xF) fR(ω) and (3.85a)

Ä

−ω2Ma
m̃ + jωCa

m̃ + Ka
m̃

ä

ba
m̃(ω) = ϕa

m̃(xF) fR(ω), (3.85b)

where Ms, Cs, Ks and Ma, Ca, Ka are respectively the (m̃, m̃) and the (m̃ +

M, m̃ + M) elements of the modal inertia, damping and stiffness matrices given

in equations (3.61) and (3.63). As shown in appendix A, the symmetric and anti-

symmetric terms are the same except for the case where the circumferential in-

dex is zero, m2 = 0. But in this case, as shown in section 3.3, the anti-symmetric

component of motion is zeros, and the motion is completely described by the

symmetric component. Thus, assuming m̃2 6= 0, the dynamic stiffness [127] can

be defined as :

D̃(ω) = −ω2M̃ + jωC̃ + K̃ (3.86)
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where M̃ = Ms
m̃ = Ma

m̃, C̃ = Cs
m̃ = Ca

m̃ and K̃ = Ks
m̃ = Ka

m̃. Equations (3.85) can

thus be solved for the modal amplitudes, yielding:

bs
m̃(ω) =

ϕs
m̃(xF) fR(ω)

D̃(ω)
and (3.87a)

ba
m̃(ω) =

ϕa
m̃(xF) fR(ω)

D̃(ω)
. (3.87b)

The frequency-dependent flexural displacement due to the m̃-th flexural mode

shape can be expressed from equation (3.84) as

w̃(xs, ω) =
ϕs

m̃(xs)ϕs
m̃(xF) fR(ω)

D̃(ω)
+

ϕa
m̃(xs)ϕa

m̃(xF) fR(ω)

D̃(ω)
. (3.88)

Expressing in an explicit manner the mode shapes as given in equations

(3.51), the flexural displacement can be written as:

w̃(xs, ω) =
fR(ω)

D(ω)
sin
Å

m̃1π

L
x
ã

sin
Å

m̃1π

L
xF

ã

[cos(m̃2ϑF) cos(m̃2ϑ)

+ sin(m̃2ϑ) sin(m̃2ϑF)] ,

(3.89)

and recalling the trigonometric identity

cos(α − β) = cos(α) cos(β) + sin(α) sin(β), (3.90)

the flexural displacement can be written as:

w̃(xs, ω) =
fR(ω)

D(ω)
sin
Å

m̃1π

L
x
ã

sin
Å

m̃1π

L
xF

ã

cos [m̃2(ϑ − ϑF)] . (3.91)

This equation shows the fact that when a single force acts on the the cylinder,

the flexural displacement related to a flexural mode tends to orientate itself

in order to presents its maximum deflection at an orientation which coincides

with the orientation of the force [22, 101].

This is shown in figure 3.7 where are shown the deflections of the structural

modes characterised by modal indices (1, 2), plot (a), and (1, 3), plot (b), when

they are excited by a single point force oriented at π/6 and π/4 respectively.

The symmetric and anti-symmetric components, shown in the left and central

graphs respectively, present an amplitude which depends on the position of the

force thus that the resulting deflection, shown in the right graphs, presents its

maximum deflection in correspondence to the orientation of the force.
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(a)

(b)

Figure 3.7: Circumferential orientation of the symmetric component (left graphs), anti-
symmetric component (central graphs) and of the total flexural displace-
ment (right graphs) at the mid-section of the cylindrical shell for the (1, 2)
structural mode shape (plot (a)) and for the (1, 3) structural mode ( plot (b))
when a single point force acts on the cylinder.

When two point forces act on the cylindrical shell, the equation of motion

results in the following two equations:

Ä

−ω2Ms
m̃ + jωCs

m̃ + Ks
m̃

ä

bs
m̃(ω) = ϕs

m̃(xF1) fR1(ω) + ϕs
m̃(xF2) fR2(ω), (3.92a)

Ä

−ω2Ma
m̃ + jωCa

m̃ + Ka
m̃

ä

ba
m̃(ω) = ϕa

m̃(xF1) fR1(ω) + ϕa
m̃(xF2) fR2(ω), (3.92b)

and solving for the modal amplitudes, leads to

bs
m̃(ω) =

ϕs
m̃(xF1) fR1(ω)

D̃(ω)
+

ϕs
m̃(xF2) fR2(ω)

D̃(ω)
and (3.93a)

ba
m̃(ω) =

ϕa
m̃(xF1) fR1(ω)

D̃(ω)
+

ϕa
m̃(xF2) fR2(ω)

D̃(ω)
, (3.93b)

where the assumption of m̃2 6= 0 is made. The flexural displacement due to the

m̃-th mode can be written as:

w̃(xs, ω) =
1

D(ω)
sin
Å

m̃1π

L
x
ã

{ fR1(ω) sin
Å

m̃1π

L
xF1

ã

cos [m̃2(ϑ − ϑF1)] +

fR2(ω) sin
Å

m̃1π

L
xF2

ã

cos [m̃2(ϑ − ϑF2)]
™

(3.94)



46 coupled structural-acoustic response : model and simulation results

From this equation it can be seen that no explicit orientation of the flexural

displacement derive from the orientation of the two applied forces. If the two

forces are such that

fR1(ω) sin
Å

m̃1π

L
xF1

ã

= fR2(ω) sin
Å

m̃1π

L
xF2

ã

= f̃ (ω, xF1, xF2) (3.95)

equation (3.94) can be written as

w̃(xs, ω) =
f̃ (ω, xF1, xF2)

D(ω)
cos
ï

m̃2

Å

ϑF1 − ϑF2

2

ãò

sin
Å

m̃1π

L
x
ã

cos
ï

m̃2

Å

ϑ − ϑF1 + ϑF2

2

ãò

(3.96)

This equation shows that the displacement will orientate itself to present the

maximum displacement at an circular position which corresponds to the mean

orientation of the two forces.

Figure 3.8 shows the deflection of the cylindrical shell characterised by the

structural mode with modal indices (1, 3) when the two forces are uncorrelated

in amplitude and position, plot (a), and when the two forces are such to satisfy

equation (3.95), plot (b). The dot-dashed lines represent the mean orientation

of the two forces. It is clearly observable that the condition shown in plot (a)

does not lead to the orientation of the flexural deflection according to the mean

orientation of the forces. Instead, for the condition shown in plot (b), the global

deflection of the structure is oriented according to the mean orientation of the

two forces.

It has to be highlighted that the condition given in equation (3.95) represents

a more mathematical than practical condition. Indeed, also if the two force

apply in two position which would satisfy the geometrical part of the equation,

the amplitude of the two forces could vary over time, especially if the two forces

have a stochastic nature.

This analysis could be enhanced considering a greater number of forces, but

the analogous condition to the one expressed in equation (3.95) becomes more

complex and loses any practical sense.
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(a)

(b)

Figure 3.8: Circumferential orientation of the symmetric components (left graphs), of
the anti-symmetric component (central graphs) and of the total flexural dis-
placement (right graphs) at the mid-section of the cylindrical shell for the
(1, 3) flexural mode shape when two forces act on the cylinder. Plot (a) rep-
resents the general case, plot (b) represents the case in which the two forces
satisfy the condition of equation (3.95).

3.5 wave equation for the cylindrical enclosure

In this section the derivation of the acoustic wave equation expressed in terms

of the acoustic pressure is presented. For simplicity, the acoustic wave equation

is derived for the one-dimensional case and then it will be extended to the

three-dimensional case considered in this study.

The derivation of the acoustic wave equation in terms of acoustic pressure for

an acoustic volume follows three steps, which can be summarized as [128–130]:

1. Derivation of the continuity equation;

2. Derivation of the Euler’s equation;

3. Derivation of the equation of state.
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3.5.1 Continuity equation

The continuity equation connect the motion of a fluid with its compression

or expansion. Considering the element shown in Figure 3.9, the net rate of mass

which flows into the element through its surface must equal the net rate with

which mass varies [128].

xd

Sd

ip x
x

p
p i

i d
¶

¶
+

xv x
x

v
v x

x d
¶

¶
+

Figure 3.9: Fluid element subject to a pressure gradient in which fluid enters at the left
and exits at the right.

The net influx of mass into the volume is given by:

ï

ρivx −
Å

ρivx +
ρivx

∂x
dx
ãò

dS = −ρivx

∂x
dV, (3.97)

where ρi = ρ0 + ρ̃ is the instantaneous density of the fluid, given by the sum

of the equilibrium density ρ0 and of the acoustic density ρ̃, vx is the particle

velocity of the fluid element in the x direction, dx, dS and dV are the length,

the transverse surface and the volume of the elemental volume of figure 3.9.

The net influx must equal the rate with which mass increase (∂ρi/∂t)dV,

∂ρi

∂t
+

ρivx

∂x
= 0 (3.98)

This exact continuity equation can be linearised considering that the defini-

tion of the instantaneous density,

∂ (ρ0 + ρ̃)

∂t
+

(ρ0 + ρ̃) vx

∂x
= 0, (3.99)

and recognizing that the equilibrium density is constant with time (∂ρ0/∂t = 0)

and neglecting the product ρ̃vx since it is a second order term [128, 130], the

linearised continuity equation can be written as

∂ρ̃

∂t
+ ρ0

vx

∂x
= 0. (3.100)
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If mass is injected into the volume, as for example in case where a loud-

speaker is present in the volume, the linearised continuity equation can be

expressed as [128, 129]
∂ρ̃

∂t
+ ρ0

vx

∂x
= ρ0 q (3.101)

where q is the fluctuating volume flow per unit volume and correspond to a

monopole source.

3.5.2 Euler’s equation

The Euler’s equation represents the Newton’s second law for the fluid case

and, in absence of dissipations due to viscosity, it states that the net force on a

fluid element due to an acoustic gradient equals the product of the acceleration

and the mass of the fluid element. With reference to figure 3.9, the net force

acting on the fluid element is

ï

pi −
Å

pi +
∂pi

∂x
dx
ãò

dS = −∂pi

∂x
dV. (3.102)

where pi = p0 + p is the instantaneous pressure, given by the sum of the equi-

librium pressure p0 and of the acoustic pressure p. This term must be equal to

(∂vx/∂t) ρidV, thus

−∂pi

∂x
= ρi

∂vx

∂t
(3.103)

This exact equation can be linearised assuming that the equilibrium pressure is

homogeneous and neglecting the term ρ̃vx in the right hand side [130], yielding

to

−∂p

∂x
= ρ0

∂vx

∂t
, (3.104)

which represents the linear inviscid Euler’s equation [128].

3.5.3 Equation of state

The equation of state represents a relation between the density and pressure

in the form p = p(ρ). Assuming that the acoustic precesses are isentropic [130,

131], the instantaneous and equilibrium pressure and density are related by the

isentropic relation:
pi

p0
=

Ç

ρi

ρ0

åγ

, (3.105)
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where γ represents the ratio of specific heats. The relation between the acous-

tic quantities can be obtained considering the Taylor’s expansion of equation

(3.105), in the form

pi − p0 =

Ç

∂pi

∂ρi

å

s,ρ0

(ρi − ρ0) +
1

2

Ç

∂2 pi

∂ρ2
i

å

s,ρ0

(ρi − ρ0)
2 + . . . , (3.106)

where the subscripts s,ρ0 indicate that the partial derivatives are determined for

isentropic process about its equilibrium density. Retaining only the first term

and recognising in pi − p0 the acoustic pressure p and in ρi − ρ0 the acoustic

density ρ̃, equation (3.106) can be expressed as

p = c2
0ρ̃, (3.107)

where

c2
0 =

Ç

∂pi

∂ρi

å

s,ρ0

(3.108)

is the speed of sound [128].

3.5.4 Acoustic wave equation

The acoustic wave equation can be obtained combining together the equa-

tions (3.101), (3.104) and (3.107), leading to the well-known one dimensional

inhomogeneous wave equation [128–130]:

∂2 p

∂x2
− 1

c2
0

∂2 p

∂t2
= −ρ0

∂q

∂t
. (3.109)

This wave equation describing the behaviour of the acoustic pressure, can be

easily extended for the three-dimensional case as

∇2 p(x, t)− 1

c2
0

∂2 p(x, t)

∂t2
= −ρ0

∂q(x, t)

∂t
, (3.110)

where ∇2 is the three dimensional Laplacian operator in cylindrical coordinates

and x = (x, ϑ, r) represent the generic position in the acoustic volume, given in

the cylindrical coordinates shown in figure 2.1 (a).
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3.6 acoustic natural modes and frequencies

The acoustic natural modes for the acoustic pressure can be obtained assum-

ing the free response of the acoustic volume, thus neglecting the source term in

equation (3.110). Expressing the Laplacian operator in cylindrical coordinates,

this equation can be rewritten as [128, 132]

∂2 p(x, t)

∂r2
+

1

r

∂p(x, t)

∂r
+

1

r2

∂2 p(x, t)

∂ϑ2
+

∂2 p(x, t)

∂x2
− 1

c2
0

∂2 p(x, t)

∂t2
= 0. (3.111)

As for the flexural displacement of the cylindrical shell, the acoustic pressure

can be expressed using the separation of variables as a product of functions,

each of which depending only upon a single variable [128, 129, 131, 132]:

p(x, t) = ψ(x)g(t) = X(x)Θ(ϑ)R(r)g(t). (3.112)

Substitution of equation (3.112) into equation (3.111) yields:

XΘg
d2R

dr2
+

XΘg

r

dR

dr
+

XRg

r2

d2Θ

dϑ2
+ ΘRg

d2X

dx2
− XΘR

c2
0

d2g

dt2
= 0. (3.113)

where the dependence of the functions on the variables is omitted and the

partial derivatives is substituted by ordinary derivatives. Dividing by XΘRg

gives
1

R

d2R

dr2
+

1

rR

dR

dr
+

1

r2Θ

d2Θ

dϑ2
+

1

X

d2X

dx2
− 1

g c2
0

d2g

dt2
= 0. (3.114)

The only way that equation (3.114) can be satisfied by three independent

functions is that each term depending upon a coordinate is equal to a constant

and those constants sums to 0. Thus equation (3.114) can be expressed as four

ordinary differential equations as

1

g

d2g

dt2
= −ω2, (3.115a)

1

X

d2X

dx2
= −k2

x, (3.115b)

1

Θ

d2Θ

dϑ2
= −n2

2 and (3.115c)

1

R

d2R

dr2
+

1

rR

dR

dr
+

n2
2

r2
= −k2

ϑ,r, (3.115d)
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with

k2
x + k2

ϑ,r = k2 =
ω2

c2
0

. (3.116)

From equations (3.115c) and (3.115d) it can be seen that the radial and cir-

cumferential terms are related, since the term m2 appears both in the radial

and in the circumferential equation. The values for the constants in equations

(3.115) can be determined solving the equations, once the boundary conditions

are stated. The acoustic volume shown in figure 2.1 (a) is considered to be

subject to rigid walled boundary conditions. For this boundary conditions, the

particle velocity normal to the surface of the cylindrical enclosure must be zero

[128, 129], thus:

vx(x = 0, t) = vx(x = L, t) = vr(r = R, t) = 0, (3.117)

where vx and vr are the components of the particle velocity in the axial and

radial directions, respectively. According to the Euler’s equation (3.104), these

conditions can be written as [128]:

∂p(x, t)

∂x

∣

∣

∣

∣

∣

x=0

=
∂p(x, t)

∂x

∣

∣

∣

∣

∣

x=L

=
∂p(x, t)

∂r

∣

∣

∣

∣

∣

r=R

= 0. (3.118)

The solution to the equation for the function in the axial direction, (3.115b),

is of the form

X(x) = cos (kxx) , (3.119)

where the axial wavenumber are of the form

kx =
n1π

L
, (3.120)

with the axial modal indices given by integer numbers, n1 = 0, 1, 2, . . . . As in

the case of the cylindrical shell, no explicit boundary conditions are posed on

the circumferential function Θ(ϑ), except the fact that the acoustic pressure and

the slope of the acoustic pressure be continuous with the circumferential angle.

Thus solution to equations (3.115c) are of the form

Θ(ϑ) = cos (n2ϑ) + sin (n2ϑ) , (3.121)

where, due to the periodicity of the boundary condition, the circumferential

modal indices assumes integers values, n2 = 0, 1, 2, . . . .
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Equation (3.115d) can be rewritten in the more common form as

r2 d2R

dr2
+ r

dR

dr
+
Ä

k2
ϑ,rr

2 − n2
2

ä

R = 0. (3.122)

This equation for R(r) represent the Bessels’s equation [129, 132], which, for

each integer value of n2, has two linearly independent solutions, the integer-

order Bessel functions of the first and second kinds, also referred as Bessel

functions, Jn2 (kϑ,rr), and Neumann functions, Yn2 (kϑ,rr), where the subscript in-

dicates the integer value of m2 in the Bessel’s equation (3.122). Since the Bessel

functions of the second kind, Yn2((kϑ,rr), assume an infinite value for r → 0,

Yn2 (0) = −∞, [133, 134], this set of solutions must be neglect in order to obtain

a solution which is continue at r = 0. In order to satisfy the rigid walled bound-

ary condition given by equation (3.118), the argument of the Bessel function of

the first kind must be such as:

dR(r)

dr

∣

∣

∣

∣

∣

r=R

=
dJm2 (kϑ,rr)

dr

∣

∣

∣

∣

∣

r=R

= 0. (3.123)

The value of λn2n3 = kϑ,rR, which is the (n3 + 1)-th extremum of the n2-th

Bessel function of the first kind is generally tabulated and an expression is

only available for the asymptotic values. Some of these values are reported in

appendix A, where the Bessel functions of the first orders are also shown. The

coupled circumferential-radial wavenumber can thus be expressed as

kϑ,r =
λn2n3

R
(3.124)

and the radial function can be written as

R(r) = Jn2 (kϑ,rr) . (3.125)

The general solution of equation (3.115a) is of the form

g(t) = ejωt, (3.126)

yielding to the fact that the pressure oscillations can only be harmonic in ab-

sence of external sources. Substituting equations (3.120) and (3.124) into equa-
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tion (3.116), the acoustic natural angular frequency can be expressed in terms

of the modal indices n1, n2 and n3 as [128–130]:

ωa,n =

Ã

c2
0

ñ

Å

n1π

L

ã2

+
Å

λn2n3

R

ã2ô

, (3.127)

where the subscript n indicates the combination of the three modal indices

(n1, n2, n3). Figure 3.10 shows the variation of the acoustic natural frequency

with the circumferential index n2 for different values of the axial index n1 with

n3 = 0 plot (a), n3 = 1 plot (b) and n3 = 2 plot (c). From these plot it can

be seen that the acoustic natural frequency fa,n, obtained dividing the angular

frequency ωa,n in equation (3.127) by 2π, has an increasing behaviour as each

of the modal indices increases. The lowest frequency corresponds to the case in

which all the three modal indices are zero, and it assumes a value equal to zero.

This particular mode is referred as compliant mode [23].

Another common representation of the variation of the acoustic natural fre-

quency fa,n is shown in Figure 3.10 (d) where the iso- fa lines (thick black

lines) are plotted in the acoustic k-space. Despite the acoustic domain is a

three-dimensional, due to the coupling between the radial and circumferen-

tial wavenumbers, the acoustic wavaspace for the cylindrical acoustic enclosure

is a two-dimensional [131, 132, 135]. From equation (3.116), the iso- fa curves in

the k-space, whose coordinates are the acoustic axial wavenumber kx and the

coupled circumferential - radial wavenumber kϑ,r, assume the form of quarters

of circles.

Combining together the expressions given by equations (3.119), (3.121) and

(3.125), the expression for the acoustic mode shapes can be derived. As in the

case of the flexural displacements of the cylindrical shell, due to the circum-

ferential symmetry of the cylindrical domain, the acoustic mode shapes can be

written in terms of a symmetric and an anti-symmetric component [28, 128, 129]:

ψs
n(x) = cos

Å

n1π

L
x
ã

cos (n2ϑ) Jn2

Å

λn2n3

R
r
ã

and (3.128a)

ψa
n(x) = cos

Å

n1π

L
x
ã

sin (n2ϑ) Jn2

Å

λn2n3

R
r
ã

. (3.128b)

The presence of two modal shape components for each combination of the

triplet of acoustic modal indices (n1, n2, n3), yields to a twofold degeneracy of

the acoustic modes [132], which is necessary to describe a general acoustic field

in the cylindrical domain, which can have any arbitrary angular orientation, as

will be discussed in section 3.7.4.
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Figure 3.10: Variation of the acoustic natural frequency fa,n with the circumferential
index n2 for different values of the axial index n1 for fixed value of the
radial index, n3 = 0 (a), n3 = 1 (b), n3 = 2 (c) and wavenumber diagram
of the k−space with the modal lattice (light grey rectangular grid) and
iso- fa curves (black lines) (d).

Figure 3.11 shows some of the acoustic mode shapes given by equation

(3.128), in particular in plot (a) is shown the (0, 0, 0) (compliant) mode, in

plot (b) is shown the (1, 0, 0) mode, in plot (c) the (0, 1, 0) mode, in plot (d)

the (0, 0, 1) mode, in plot (e) the (3, 1, 1) mode and finally in plot (f) the (3, 1, 3)

acoustic mode. In each plot the image represents the symmetric component and

the right image represents the anti-symmetric component. From the analysis of

these plots it can be seen that when the circumferential index n2 is zero, the

anti-symmetric component of the mode is everywhere zero in the acoustic do-

main. This is a reasonable result since when the circumferential index is zero,

the acoustic pressure does not present any variation along the circumferential

direction, thus the symmetric component is sufficient to completely describe

the acoustic field.
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(a) fa = 0 Hz (b) fa = 85 Hz

(c) fa = 77 Hz (d) fa = 160 Hz

(e) fa = 341 Hz (f) fa = 554 Hz

Figure 3.11: Axonometric view of the symmetric (left hand side) and anti-symmetric
(right hand side) components of the acoustic mode shape (0, 0, 0) (a),
(1, 0, 0) (b), (0, 1, 0) (c), (0, 0, 1) (d), (3, 1, 1) (e), (3, 1, 3) (f).

In figure 3.12 is shown the nodal pattern for the symmetric component (upper

images) and for the anti-symmetric component (bottom images) of the acoustic

mode shape (1, 3, 2). From this figure it can be easily deduced the relationship

between the acoustic modal index and the number of nodal lines in the three

directions, in particular:

• the axial index n1 corresponds to the number of axial nodal lines;

• the circumferential index n2 corresponds to the number of nodal lines in

the circumferential directions;

• the radial index n3 indicates the number of radial nodal lines.

Alternatively, the acoustic modal indices can be related to the wavenumbers

in the three directions as
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• the axial index n1 represents the number of axial half-wavelengths;

• the circumferential index n2 represents to the number of wavelengths in

the circumferential directions;

• the radial index n3 indicates the number of radial half-wavelengths, at

which one-fourth radial wavelength must be summed.

Figure 3.12: Nodal pattern for the symmetric (top plots) and for the anti-symmetric
component (bottom plots) of the acoustic mode shape (1, 3, 2).

It is interesting to note that the nodal positions in the axial and radial direc-

tions correspond for the two components, while a nodal position in the circum-

ferential direction correspond an anti-nodal position for the other component.

The positions of the nodal and anti-nodal points for the cylindrical enclosure

are reported in table 3.2, where γn2δ is the δ-th zero of the first kind Bessel

function of order n2 , such that Jn2(γn2δ) = 0.

A final consideration about the acoustic mode shapes regards the classifica-

tion of the mode shapes [131]. Apart from the complaint mode and the axial

modes, which have only axial dependence, it is not possible to separate the

modes into purely axial and tangential modes, due to the coupling between

the radial and the circumferential directions. This can be particular appreciated

considering again figure 3.11 (c), which presents the mode with the only cir-

cumferential index different than zero. According to the classical classification
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Table 3.2: Nodal and anti-nodal positions for the cylindrical enclosure.

Direction
Symmetric Anti-symmetric

component component

Axial
nodal

L

2n1
+ α1

L

n1

anti - nodal α2
L

n1

Circumferential
nodal

π

2n2
+ β

π

n2
β

π

n2

anti - nodal β
π

n2

π

2n2
+ β

π

n2

Radial
nodal R

γn2δ

λn2n3

anti - nodal R
λn2δ

λn2n3

where α1 = 0, 1, . . . , n1 − 1, α2 = 0, 1, . . . , n1, β = 0, 1, . . . , m2 − 1

and δ = 0, . . . , n3.

[129, 131], this should be defined a ϑ-axial mode, but it can be clearly seen that

the acoustic pressure is not independent of the radial position [132].

3.7 acoustic modal equation of motion

The acoustic pressure at the generic position x is approximate into the fol-

lowing finite modal summation [28, 30, 99, 129]

p(x, t) =
N
∑

n=1

ψs
n(x)as

n(t) +
N
∑

n=1

ψa
n(x)aa

n(t), (3.129)

where ψs
n(x) and ψa

n(x) are the rigid-walled symmetric and anti-symmetric

acoustic natural mode shapes given in equations (3.128), as
n(t) and aa

n(t) are

the symmetric and anti-symmetric acoustic modal amplitudes and N is the

number of flexural modes considered in the summation. This series expression

can be rearranged in the following matrix form:

p(x, t) =
[

ψψψs(x) ψψψa(x)
]







as(t)

aa(t)







= ψψψ(x)a(t), (3.130)

where ψψψs(x) and ψψψa(x) are the 1 × N row vectors with the symmetric and anti-

symmetric acoustic natural modes, ψψψ(x) =
[

ψψψs(x) ψψψa(x)
]

is the 1 × 2N vector

of the acoustic modes, as(t) and aa(t) are the column vectors with the symmet-

ric and anti-symmetric acoustic modal amplitudes whose dimensions are N × 1
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and finally a(t) =
[

as T(t) aa T(t)
]T

is the 2N × 1 vector of the acoustic modal

amplitudes.

Substituting the modal summation given in equation (3.130) into the three-

dimensional wave equation (3.110) yields to

∇2ψψψ(x)a(t)− 1

c2
ψψψ(x)ä(t) = −ρ0

∂q(x, t)

∂t
. (3.131)

From the analysis presented in section 3.6, the acoustic natural modes satisfy

the following eigenvalue-eigenvector relation:

∇2ψψψ(x) = − 1

c2
0

ψψψ(x)ΩΩΩ2
a, (3.132)

where Ωa is the 2N × 2N diagonal matrix of the acoustic natural frequencies

whose diagonal elements are given by

Ωa,(n,n) = Ωa,(n+N,n+N) = ωa,n, (3.133)

where n = 1, 2, . . . , N and ωa,n is the acoustic natural frequency given in equa-

tion (3.127). Thus equation (3.131) can be rewritten as

ψψψ(x)ä(t) +ψψψ(x)ΩΩΩ2
aa(t) = ρ0c2

0q̇(x, t), (3.134)

where ˙ and ¨ indicate the first and the second time derivative, respectively.

Assuming a viscous damping, the energy dissipation can be modelled as a term

proportional to the time derivative of the acoustic pressure [23, 99], thus:

ψψψ(x)ä(t) +ψψψ(x)dȧ(t) +ψψψ(x)ΩΩΩ2
aa(t) = ρ0c2

0

∂q(x, t)

∂t
, (3.135)

where d is a 2N × 2N diagonal matrix whose diagonal elements are the equiv-

alent acoustical damping terms given by:

d(n,n) = d(n+N,n+N) = 2ζ0 ωa,n, (3.136)

where ζ0 is the acoustic modal damping ratio given in table 2.1, which is as-

sumed equal for all the acoustic modes [28, 64, 99]. Pre-multiplying both sides

of equation (3.135) by the column vector with the acoustic mode shapes ψψψT(x)
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and integrating over the acoustic volume of the cylindrical enclosure lead to

the following matrix equation:

Qä(t) + Dȧ(t) + Ha(t) = ΨΨΨq̇(t), (3.137)

where Q, D and H are the 2M × 2M diagonal acoustic modal inertia, damping

and stiffness matrices [99], given by:

Q =
∫

Vc

ψψψT(x)ψψψ(x)dV = VcΓΓΓ, (3.138a)

D =
∫

Vc

ψψψT(x)ψψψ(x)d dV = 2ζ0VcΩΩΩaΓΓΓ and (3.138b)

H =
∫

Vc

ψψψT(x)ψψψ(x)ΩΩΩ2
a dV = QΩΩΩ

2
a, (3.138c)

where Vc is the volume of the cylindrical enclosure and ΓΓΓ is the 2N × 2N diago-

nal matrix of the acoustic normalization coefficient whose elements are derived

in appendix A. Also, ΨΨΨ and q̇(t) are the modal source matrix and the source

vector.

3.7.1 Acoustic source field

The source distribution presented here will be considered only in this section

since, as will be described in section 3.8, in the remaining of this thesis the only

excitation source for the acoustic domain will be flexural displacement of the

cylindrical shell.

In order to obtain the most general response of the acoustic domain, the

source distribution considered is of the rain on the roof type [28], which is a

modelled with an array of 27 point force (equally distributed in three axial,

three circumferential and three radial positions). The source term in equation

(3.110) can thus be expressed as

q(x, t) =
Ns
∑

k=1

qk(t)δ(x − xk), (3.139)

where qk(t) is the time-dependent amplitude of the k-th rain on the roof point

source, Ns is the number of sources considered and δ(x − xk) is the three-

dimensional Dirac delta function given by [23]

δ(x − xk) = δ (x − xk)
1

R
δ (ϑ − ϑk) δ (r − rk) (3.140)
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at the position xk = (xk, ϑk, rk) where the k-th point source is placed. Pre-

multiplying the right hand side of equation (3.135), given the expression (3.139),

the modal source matrix results in 2N × Ns matrix whose columns are the

acoustic natural mode shapes evaluated at the source position, multiplied by

the fluid density and the speed of sound at the second power,

Ψ(n,k) = ρ0c2
0ψs

n (xk) and (3.141a)

Ψ(n+N,k) = ρ0c2
0ψa

n (xk), (3.141b)

where n = 1, 2, . . . , N. The Ns × 1 column vector q̇(t) is composed by the time-

dependent amplitudes of the Ns point sources qk(t), with k = 1, 2, . . . , Ns.

3.7.2 Frequency analysis of the acoustic response

Expressing the time-harmonic functions as in equation (3.68), the time-dependent

equation (3.137) can be expressed in the frequency domain as:

î

−ω2Q + jωD + H
ó

a(ω) = jωΨΨΨq(ω), (3.142)

where a(ω) and q(ω) are the column vectors of the frequency-dependent com-

plex amplitudes of the time-harmonic acoustic modal pressures and excitation

sources.

The overall sound field in the acoustic enclosure can be established in terms

of the Power Spectral Density of the total acoustic potential energy [28, 60,

64, 65], which, for brevity, will be referred as acoustic potential energy PSD,

defined as:

SP(ω) =
1

2ρ0c2
0

∫

Vc

lim
T→∞

E
ï

1

T
p∗(x, ω)p(x, ω)

ò

dV, (3.143)

where, as in section 3.4.2, E [·] is the expectation operator, the superscript ∗ in-

dicates the complex conjugate operator and p(x, ω) is the frequency-dependent

amplitude of the acoustic pressure in the point x which, from equation (3.130),

can be expressed as

p(x, ω) = ψψψ(x)a(ω). (3.144)

The vector of the frequency-dependent complex amplitude of the time-harmonic

acoustic modal pressures a(ω) is given by equation (3.142) as

a(ω) = jωA(ω)ΨΨΨq(ω). (3.145)
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Here A =
î

−ω2Q + jωD + H
ó−1

is the acoustic modal admittance matrix [28,

127]. The PSD function in equation (3.143) can be rewritten as:

SP(ω) =
1

2ρ0c2
0

∫

Vc

lim
T→∞

E
ï

1

T
aH(ω)ψψψT(x)ψψψ(x)a(ω)

ò

dV

= − ω2

2ρ0c2
0

∫

Vc

lim
T→∞

E
ï

1

T
qT(ω)ΨΨΨTAH(ω)ψψψT(x)ψψψ(x)A(ω)ΨΨΨq(ω)

ò

dV

= −ω2 Vc

2ρ0c2
0

Tr [Saa(ω)] ,

(3.146)

where Saa(ω) is the fully populated matrix with the PSDs of the modal pressure

amplitudes which, after some mathematical manipulations, result given by:

Saa(ω) = lim
T→∞

E
î

ΓΓΓA(ω)ΨΨΨq(ω)qT(ω)ΨΨΨTAH(ω)
ó

= ΓΓΓA(ω)ΨΨΨSqq(ω)ΨΨΨTAH(ω),
(3.147)

where Sqq(ω) is the Ns × Ns matrix with the PSD of the rain on the roof

monopole sources, which, in analogy with references [64, 72] is assumed to

be an identity matrix:

Sqq(ω) = lim
T→∞

E
î

q(ω)qT(ω)
ó

≡ I. (3.148)

Finally, the PSD of the acoustic potential energy is given by:

SP(ω) = −ω2 Vc

2ρ0c2
0

Tr
î

ΓΓΓA(ω)ΨΨΨSqq(ω)ΨΨΨTAH(ω)
ó

. (3.149)

As for the case of the PSD of the flexural kinetic energy, which can be ex-

pressed as the sum of two terms due to the fact that the flexural displacements

can be as well expressed as the sum of two components, also the PSD of the

acoustic potential energy can be expressed as the sum of two terms, the for-

mer related with the symmetric and the latter related with the anti-symmetric

component of the acoustic pressure:

SP(ω) = Ss
P(ω) + Sa

P(ω), (3.150)
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where the two terms are defined as:

Ss
P(ω) =

1

2ρ0c2
0

∫

Vc

lim
T→∞

E
ï

1

T
ps∗(x, ω)ps(x, ω)

ò

dV and (3.151a)

Sa
P(ω) =

1

2ρ0c2
0

∫

Vc

lim
T→∞

E
ï

1

T
pa∗(x, ω)pa(x, ω)

ò

dV. (3.151b)

Following the same mathematical manipulation procedure which leads to

equation (3.149), the PSDs related to the two components of the acoustic pres-

sure can be expressed as:

Ss
P(ω) = −ω2 Vc

2ρ0c2
0

Tr
î

αααs
ΓA(ω)ΨΨΨSqq(ω)ΨΨΨTAH(ω)αααsT

ó

and (3.152a)

Sa
P(ω) = −ω2 Vc

2ρ0c2
0

Tr
î

αααa
ΓA(ω)ΨΨΨSqq(ω)ΨΨΨTAH(ω)αααaT

ó

, (3.152b)

where αααs and αααa are the N × 2N matrices given by:

αααs =
[

IN×N 0N×N

]

and (3.153a)

αααa =
[

0N×N IN×N

]

, (3.153b)

being IN×N and 0N×N the N × N identity and zero matrices, respectively.

3.7.3 Simulation results

Figure 3.13 the 20-100 Hz spectra of the acoustic potential energy PSD of

the cylindrical enclosure, when only the symmetric component is considered

(plot (a)), when the anti-symmetric component is considered (plot (b)) and

when the total response is considered (plot (c)). In the frequency range con-

sidered the acoustic enclosure is characterised by three natural frequency, the

first due to the compliant mode. The acoustic response is thus characterised by

a resonant peak at frequency close to zero. Comparing plots (a) and (b), the

response related to the anti-symmetric component presents just one resonant

peak, while the response related to the symmetric component presents three

resonant peaks, related to the three resonant frequencies of the enclosure. This

is due to the fact that the first (compliant) and the third resonant modes are

characterised by a circumferential index which is equal to zero. Due to the

value of the modal damping ratio chosen, ζ0, the resonant peaks are particu-

larly smooth. The results are expressed in decibels, where the reference value
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is considered 1 J s, since the rain on the roof sources are assumed to have unity

amplitude, equation (3.148), and their dimensions are [s−1].
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Figure 3.13: Spectra of the acoustic potential energy PSD due to the symmetric compo-
nent (a), the anti-symmetric component (b) and the total response, which
considers both components (c).

3.7.4 Effects of the spatial distribution of the source field

In analogy of the circumferential orientation of the flexural displacement due

to the excitation field presented in section 3.4.4, in this section the effect of
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the spatial distribution of the acoustic sources on the spatial orientation of the

acoustic domain is presented. The acoustic pressure considering just the ñ-th

acoustic mode shapes in equation (3.129), p̃(x, t), can be expressed as

p̃(x, t) = ψs
ñ(x)as

ñ(t) + ψa
ñ(x)aa

ñ(t). (3.154)

If a single point source acting at position xq =
Ä

xq, ϑq, rq

ä

is considered, the

matrix equation (3.142) can be rewritten as two uncoupled equations related to

the symmetric and anti-symmetric component of the acoustic pressure:

Ä

−ω2Qs
ñ + jωDs

ñ + Hs
ñ

ä

as
ñ(ω) = jωρ0c2

0ψs
ñ(xq)q(ω) (3.155a)

Ä

−ω2Qa
ñ + jωDa

ñ + Ha
ñ

ä

aa
ñ(ω) = jωρ0c2

0ψa
ñ(xq)q(ω) (3.155b)

where Qs
ñ, Ds

ñ, Hs
ñ and Qa

ñ, Da
ñ, Ha

ñ are respectively the (ñ, ñ) and the (ñ+ N, ñ+

N) elements of the modal acoustic inertia, damping and stiffness matrices given

in equations (3.138). Assuming that the circumferential index n2 is different

than zero, as shown in appendix A, each symmetric term corresponds to the

the anti-symmetric one. Thus the following terms can be defined:

Q̃ = Qs
ñ = Qa

ñ, (3.156a)

D̃ = Ds
ñ = Da

ñ, (3.156b)

H̃ = Hs
ñ = Ha

ñ and (3.156c)

α̃(ω) = −ω2Q̃ + jωD̃ + H̃. (3.156d)

Defining for brevity β(ω) = ρ0c2
0q(ω), the solutions of equations (3.155) are

of the form:

as
ñ(ω) =

jωψs
ñ(xq)β(ω)

α̃(ω)
and (3.157a)

aa
ñ(ω) =

jωψa
ñ(xq)β(ω)

α̃(ω)
, (3.157b)

and the acoustic pressure due to the ñ-th mode results:

p̃(x, ω) =
jωψs

ñ(x)ψ
s
ñ(xq)β(ω)

α̃(ω)
+

jωψa
ñ(x)ψ

a
ñ(xq)β(ω)

α̃(ω)

=
jωβ(ω)

α̃(ω)

î

ψs
ñ(x)ψ

s
ñ(xq) + ψa

ñ(x)ψ
a
ñ(xq)

ó

.

(3.158)
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Expressing the acoustic mode shapes in the explicit manner given in equa-

tions (3.128) , the acoustic pressure can be written as:

p̃(x, ω) =
jωβ(ω)

α̃(ω)
cos
Å

ñ1π

L
x
ã

cos
Å

ñ1π

L
xq

ã

Jñ2

Å

λñ2ñ3

R
r
ã

Jñ2

Å

λñ2ñ3

R
rq

ã

·
î

cos(ñ2ϑ) cos(ñ2ϑq) + sin(ñ2ϑ) sin(ñ2ϑq)
ó

.

(3.159)

Recalling the trigonometric identity (3.90), the acoustic pressure due to the

ñ-th acoustic mode shape can be expressed as

p̃(x, ω) =
jωβ(ω)

α̃(ω)
cos
Å

ñ1π

L
x
ã

cos
Å

ñ1π

L
xq

ã

·

Jñ2

Å

λñ2ñ3

R
r
ã

Jñ2

Å

λñ2ñ3

R
rq

ã

cos
î

ñ2

Ä

ϑ − ϑq

äó

.

(3.160)

Equation (3.160) proves that each acoustic mode shape orients itself such that

it presents an anti-nodal position at an orientation which corresponds to the

orientation of the source. The angular positions of the nodal and anti-nodal

lines can be thus be expressed with reference to the orientation of the source ϑq

as

ϑN = ϑq + α
π

n2
and (3.161a)

ϑAN = ϑq +
π

2n2
+ α

π

n2
, (3.161b)

where the subscripts N and AN identify the nodal and anti-nodal angular coor-

dinate and α is an integer such that α = 0, 1, . . . , 2n2 − 1.

Figure 3.14 shows the acoustics pressure distribution of (1, 1, 1) mode, plot (a),

and of (1, 2, 2) mode, plot (b), at the base of the cylindrical enclose when a sin-

gle monopole source (indicated with red circle) is considered. The dash-dotted

lines are oriented as the sources, which are at an angular coordinate equals to

π/6 for the case considered in plot (a) and 3π/8 for the case considered in

plot (b). The orientation of the symmetric and anti-symmetric components of

the acoustic mode, left graphs and central graphs respectively, are not depen-

dent on the source orientation, indeed present nodal and anti-nodal circumfer-

ential positions as given in table 3.2. The source position influence the ampli-

tude of the components, which is represented by the intensity of the colours.

The total response, given by the sum of the two components and shown in the

right graphs, is instead oriented as the source, presenting nodal and anti-nodal

circumferential positions at the angles given by equations (3.161).
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some cumbersome algebraic manipulation, equation (3.163) can be expressed as

p̃(x, ω) =
jω
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Jñ2

Å

λñ2ñ3
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λñ2ñ3

R
rq2

ã

cos
î

ñ2

Ä
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(3.164)

where no explicit angular orientation appears, since this depend upon the cir-

cumferential position of the sources and also on the axial and radial positions

and on the amplitudes. If the two sources are such that:

β1(ω) cos
Å
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L
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ã

Jñ2

Å

λñ2ñ3

R
rq1

ã

= β2(ω) cos
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λñ2ñ3

R
rq2

ã

= c̃(ω),

(3.165)

the acoustic pressure can be expressed as:

p̃(x, ω) =
jωc̃(ω)

α̃(ω)
cos
Å

ñ1π
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ã
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λñ2ñ3

R
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ã
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2

ô
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2

åô

.

(3.166)

This equation shows that, when the two sources are such that equation (3.165)

is satisfied, the resulting acoustic mode is oriented in a way to present the anti-

nodal position at an orientation which corresponds to the mean orientation of

the two sources. These results are graphically presented in figure 3.15, where

the acoustic pressure distribution at the base of the cylindrical enclosure is

shown. The two sources, represented by the two red circles, are considered in

the general case, plot (a), and in the case in which equation (3.165) is satisfied,

plot (b). As in the case of a single source, the orientation of the symmetric

component (left graphs) and of the anti-symmetric component (central plots)

are not affected by the orientation of the two sources, presenting nodal and anti-

nodal angular positions given by the values reported in table 3.2. The positions

and the amplitudes of the two sources affect instead the amplitudes of the two

components, as can be deduced by the intensity of the colours. It is indeed the

relative amplitude the two components that lead to the orientation of the total

acoustic pressure (right graphs) which, as expected, does not coincide with the

mean orientation of the two sources (shown with the dash-dotted black line) in

plot (a) while in plot (b) the total acoustic orientation is oriented as the mean

orientation of the two sources.

The considerations about the orientation of the acoustic pressure with refer-

ence to the orientation of the sources can be extended to a larger number of
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The flexural response of the cylinder is derived from the modal expansion of

the in-vacuo flexural modes of the simply-supported cylinder, equations (3.51)

and (3.53), and the interior acoustic field is derived from the modal summa-

tion of the acoustic pressure natural modes for the cylindrical cavity with rigid-

walled boundary conditions, as presented in equations (3.128) and (3.129), as

presented for example in references [30, 100, 120, 136, 137]. As discussed in

reference [99], the use of the rigid walled acoustic modes guarantees the con-

vergence to the correct acoustic pressure on the interior and on the wall sur-

face of the cylindrical cavity but not to the normal acoustic particle velocity

at the flexible walls of the cavity. However, only the former acoustic quantity

is considered in the formulation while the latter is not considered, thus the

rigidly-walled acoustic modes can be suitably used in the model.

The interactions between the structural and acoustic domain are formulated

in terms of acoustic-structural and structural-acoustic modal coupling factors

[30, 64, 94, 99, 136, 138], which represent the coupling mechanism between

the structural cylindrical shell and the acoustic enclosure. Since the coupling

between this two domains is severely selective [64, 69, 136], a convergence study

is presented in appendix B.

The only excitation field at which the coupled system is exposed is the white

noise rain on the roof force excitation described in section 3.4.1 and shown in

figure 2.1 (b). Thus the flexural vibration of the cylindrical shell represent the

only source for the acoustic domain.

3.8.1 Coupled structural-acoustic modal equation of motion

The derivation of the modal equation of motion for the structural domain

presented in section 3.4 can be used as the basis for the derivation of the cou-

pled modal equation for the structural side. Indeed the procedure is the same,

as long as the acoustic effect on the cylindrical shell is considered. The forcing

term given in equation (3.64) must thus be substituted by the sum of the forces

exerted by the rain on the roof point forces fR,i(t)δ(xs − xs,i) and the pressure

distribution due to the acoustic pressure at the shell walls p(xs, t):

fr(xs, t) =
NR
∑

i=1

fR,i(t)δ(xs − xs,i) + p(xs, t). (3.167)
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Expressing the acoustic pressure in terms of its modal summation (3.130),

equation (3.167) can be written as

fr(xs, t) =
NR
∑

i=1

fR,i(t)δ(xs − xs,i) +ψψψ(xs)a(t), (3.168)

where the acoustic mode shapes are evaluated at the position xs = (x, ϑ, R) on

the cylindrical walls.

Analogously, the coupled modal equation for the coupled system for the

acoustic side can be obtained according to the derivation presented in section

3.7. The difference with the results obtained considering the uncoupled acoustic

domain is that, in the fully coupled system, the only acoustic source is the

flexural displacement of the cylindrical shell. Thus, the source term given in

equation (3.139), for the fully coupled system without acoustic sources can be

written as [64, 99]:

q(x, t) = −2ẇ(xs, t)δ(r − R), (3.169)

where ẇ(xs, t) is the flexural velocity of the cylindrical wall, directed outwards

from the cavity and δ(·) is the one-dimensional Dirac delta function. Expressing

the flexural velocity with the finite modal summation given in equation (3.54),

equation (3.169) can be written as:

q(x, t) = −2ϕϕϕ(xs)ḃ(t)δ(r − R). (3.170)

To obtain the fully coupled equation of motion for the flexural vibration and

the acoustic pressure, the following procedure is implemented:

1. the modal summation for the flexural displacement given in equation

(3.54) and the expression for the forcing term of equation (3.168) are sub-

stituted into the structural equation of motion for the cylinder, equation

(3.55);

2. both sides of the resulting equation (3.55) are pre-multiplied by the col-

umn vector with the flexural modes ϕϕϕT(xs) and integrated over the sur-

face of the cylindrical wall;

3. the modal summation for the acoustic pressure given in equation (3.130)

and the acoustic source term of equation (3.170) are inserted into the three-

dimensional wave equation for the cylindrical enclosure, equation (3.110);
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4. both sides of the resulting equation (3.110) are pre-multiplied by the col-

umn vector with the acoustic modes ψψψT(x) and integrated over the acous-

tic volume of the cylindrical enclosure.

This mathematical procedure leads to the following set of 2M + 2N ordinary

differential equations, given in matrix form as:


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ΦΦΦs

0
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f(t),

(3.171)

where Ms,Cs and Ks are the structural modal inertia, damping and stiffness

matrices given in equations (3.61) and (3.63), Q, D and H are the acoustic

modal inertia, damping and stiffness matrices given in equations (3.138) and

b(t) and a(t) are the column vectors containing respectively the flexural modal

amplitudes and the acoustic modal amplitudes. Also, ΦΦΦs and f(t) are the modal

excitation matrix and the excitation vector given by equations (3.66) and (3.67).

Finally, the off-diagonal matrices R and S are the acoustic-structural and the

structural-acoustic coupling matrices [99], whose detailed expressions are given

in appendix B. It is again important to highlight that the presence of this two

terms, which actually couple the two sets of equations, are introduced by the

fact the flexural vibration is modelled in terms of the in vacuo flexural modes

and the interior acoustic field is modelled in terms of the rigidly-walled acoustic

modes.

Equation (3.171) can be written in the following compact form:

M̂ ¨̂q(t) + Ĉ ˙̂q(t) + K̂q̂(t) = Φ̂ΦΦf(t), (3.172)

where M̂, Ĉ and K̂ are the global inertia, damping and stiffness modal ma-

trices of the fully coupled structural-acoustic system and Φ̂ΦΦ is the excitation

modal matrix for the fully coupled system. The definitions of these matri-

ces can be straightforwardly obtained from equation (3.171). Finally q̂(t) =
[

bT(t) aT(t)
]T

is the (2M + 2N)× 1 column vector of the modal amplitudes

for the coupled system.

3.8.2 Frequency analysis of the coupled structural-acoustic response

As presented in the previous sections 3.4.2 and 3.7.2, the global flexural re-

sponse and the global interior sound response could be established by the flex-

ural kinetic energy PSD and by the acoustic potential energy PSD. The use of
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these two energy functions is particularly convenient since it allows the repre-

sentation of the spatially distributed characteristic of the structural vibration

and sound fields with just two terms [28]. From the definitions given in equa-

tions (3.70) and (3.143), the two PSD functions can be written as:

SK(ω) =
1

2
ρh

∫

S
lim

T→∞

E
ï

1

T
ẇ∗(xs, ω)ẇ(xs, ω)

ò

dS and (3.173a)

SP(ω) =
1

2ρ0c2
0

∫

Vc

lim
T→∞

E
ï

1

T
p∗(x, ω)p(x, ω)

ò

dV, (3.173b)

where S and Vc represents the lateral surface and the volume of the cylindrical

enclosure, E[·] is the expectation operator and the superscript ∗ indicates the

complex conjugate operator. As in equations (3.70) and (3.143), ẇ(xs, ω) repre-

sents the frequency-dependent complex amplitude of the time-harmonic flexu-

ral velocity at a point xs of the cylindrical shell and p(x, ω) is the frequency-

dependent complex amplitude of the time-harmonic acoustic pressure at a

point x inside the acoustic enclosure. According to equations (3.71) and (3.144),

these two quantities may be expressed as:

ẇ(xs, ω) = ϕϕϕ(xs)ḃ(ω) and (3.174a)

p(x, ω) = ψψψ(x)a(ω), (3.174b)

where ϕϕϕ(xs), ψψψ(x) are the row vectors of the flexural structural modes and of the

the acoustic mode shapes defined in equations (3.54) and (3.130) respectively

and ḃ(ω), a(ω) are the column vector with the frequency-dependent complex

amplitudes of the flexural modal velocities and acoustic modal pressures. These

vectors are given by the finite Fourier transform of equation (3.172), which gives:

ḃ(ω) = β̂ββŶ(ω)Φ̂ΦΦf(ω) and (3.175a)

a(ω) =
1

jω
α̂ααŶ(ω)Φ̂ΦΦf(ω). (3.175b)

Here

Ŷ(ω) = jω
î

−ω2M̂ + jωĈ + K̂
ó−1

(3.176)
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is the modal mobility matrix of the coupled structural-acoustic system derived

from the Fourier transform of equation (3.172) and

β̂ββ =
[

I2M×2M 02M×2N

]

and (3.177a)

α̂αα =
[

02N×2M I2N×2N

]

, (3.177b)

where I and 0 are identity and zero matrices with the dimensions indicated by

the subscripts.

Substitution of equations (3.174) into equations (3.173) gives

SK(ω) =
1

2
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∫

S
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T→∞

E
ï

1

T
ḃH(ω)ϕϕϕT(xs)ϕϕϕ(xs)ḃ(ω)

ò

dS
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1

2
mcTr

î

Ŝbb(ω)
ó

, (3.178a)
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1
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aH(ω)ψψψT(x)ψψψ(x)a(ω)

ò

dV

=
Vc

2ρ0c2
0

Tr
î

Ŝaa(ω)
ó

, (3.178b)

where the superscript H indicates the Hermitian operator, mc and Vc are the

mass of the cylindrical shell and the volume of the acoustic enclosure and Tr [·]
is the trace matrix operator. Finally, Ŝbb(ω) and Ŝaa(ω) are the fully populated

populated matrices with the PSD of the modal structural velocities and of the

modal pressure amplitudes given by

Ŝbb(ω) = lim
T→∞

E
ï

1

T
ΛΛΛḃH(ω)ḃ(ω)

ò

and (3.179a)

Ŝaa(ω) = lim
T→∞

E
ï

1

T
ΓΓΓaH(ω)a(ω)

ò

, (3.179b)

where ΛΛΛ and ΓΓΓ are the diagonal matrices with the normalization coefficients

whose expressions are given in appendix A. Substitution of equations (3.175)

into equations (3.179) and using the cyclic property of the trace matrix operator,

follows:
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Ŝbb(ω) = lim
T→∞

E
ï

1

T
ΛΛΛβ̂ββŶ(ω)Φ̂ΦΦf(ω)fH(ω)Φ̂ΦΦ

T
ŶH(ω)β̂ββ

T
ò
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T

ŶH(ω)β̂ββ
T

, (3.180a)
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In these two equations Sff(ω) is the matrix with the PSDs of the excitation

forces, which, as discussed in section 3.4.1, for the uncorrelated rain on the roof

force considered are assumed to one such that [64, 72]:

Sff(ω) = lim
T→∞

E
î

f(ω)fT(ω)
ó

≡ I, (3.181)

where I is the NR × NR identity matrix.

Substitution of equation (3.181) into equations (3.180), and the resulting equa-

tions into equations (3.178) lead to the final expressions of the PSDs functions

of the cylindrical flexural kinetic energy and of the acoustic potential energy,

which result given by

SK(ω) =
1

2
mcTr

[

ΛΛΛβ̂ββŶ(ω)Φ̂ΦΦIΦ̂ΦΦ
T

ŶH(ω)β̂ββ
T
]

and (3.182a)

SP(ω) =
Vc

2ρ0c2
0ω2

Tr
[

ΓΓΓα̂ααŶ(ω)Φ̂ΦΦIΦ̂ΦΦ
T

ŶH(ω)α̂ααT
]

. (3.182b)

3.8.3 Simulation study

Figure 3.16 show the 20-100 Hz spectra of the flexural kinetic energy PSD

(plot (a)) and of the acoustic potential energy PSD (plot (b)) of the coupled

cylinder shell structure and acoustic enclosure.

The coupled structural response correspond with the one obtained consider-

ing the in vacuo structure, as shown in plot (a) of figure 3.18, where is shown

the overlay of the coupled (thin solid black line) and of the in vacuo (thick solid

cyan line) responses.

The several resonance peaks of the coupled acoustic response in figure 3.16 (b)

are due to to the cavity acoustic natural modes, which are specified by the thick-

cyan triangles at about 78 and 85 Hz and to the resonances of the flexural modes

of the cylinder, which are effectively coupled with the interior sound field in

the 20-100 Hz frequency band.
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Figure 3.16: Spectra of the flexural kinetic energy PSD (plot (a)) and of the acoustic
potential energy PSD (plot (b)) for the fully coupled structural-acoustic
system in the 20-100 Hz frequency range.

The correspondence of the resonance peaks in the structural and acoustic re-

sponse could be assessed in figure 3.17, which shows the overlay of the coupled

structural (thin solid black line) and of the acoustic (thick solid cyan line) re-

sponse. In this figure it is also possible to observe that the structural resonance

peaks are fairly even in amplitude while the amplitudes of the resonance peaks

of the acoustic response are somewhat uneven compared to those in the flexu-

ral kinetic energy PSD. This is because, despite all structural modes are equally

excited by the rain on the roof disturbance, the coupling between the structural

domain and the acoustic domain varies a lot for each structural mode, as can

be deduced from table B.1 of appendix B.

Finally, in figure 3.18 (b) is shown the overlay of the coupled (thin solid

black line) and of the rigidly-walled cylindrical enclosure (thick solid cyan line)

acoustic potential energy PSDs. Also in this figure it appears that the coupling

with the structural domain yields to the presence of resonance peaks in the

coupled response which correspond to the structural resonance frequencies.
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Figure 3.17: Overlay of the spectra of the flexural kinetic energy PSD (thin solid black
line) and of the acoustic potential energy PSD (thick cyan line) in the 20-100

Hz frequency range. The cyan triangles point at the response in correspon-
dence of the natural frequency of the uncoupled acoustic cavity.
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Figure 3.18: Overlay of the spectra of the flexural kinetic energy PSD considering the
uncoupled (thick cyan lines) and coupled (thin black line) cylindrical shell
(plot (a)), and overlay of the spectra of the acoustic potential enelgy PSD
considering the uncloupled (thick cyan line) and the coupled (thin black
line) acoustic enclosure (plot (b)). The cyan triangles point at the response
in correspondence of the natural frequency of the uncoupled acoustic cav-
ity.

3.9 chapter concluding remarks

The study presented in this chapter is devoted to the derivation of the fully

coupled structural-acoustic response which constitute the fundamental model
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for the assessment of the noise and vibration properties of the Tuned Vibration

Absorbers presented in the following chapters. The uncoupled structural and

acoustic responses are first presented in order to highlight the peculiarity of

each domain, focusing on a deep description of the procedures which lead to

the structural equation of motion and the acoustic wave equation.

A common characteristic for both the domains is related to the cylindrical

geometry. Indeed, for each natural shape of both the flexural vibration and the

acoustic pressure, two orthogonal components are needed to obtain a full repre-

sentation of the oscillatory quantities. Furthermore, a simplified model shown

that both structural and responses are influenced by the particular orientation

of the related excitation field.

Finally, the fully coupled structural-acoustic system is presented. The re-

sponses of the flexural vibration and of the internal acoustic field are expressed

with the flexural kinetic energy PSD and the acoustic potential energy PSD.

The study showed that when the coupled system is subject to an array of white

noise rain on the roof uncorrelated point forces, both the structural and acous-

tic domain are excited and that the acoustic response is strongly affected by the

structural response.
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F I X E D T U N E D V I B R AT I O N A B S O R B E R : M E C H A N I C A L

A B S O R B E R

This chapter studies the noise and flexural vibration control effect produced

on a thin cylindrical shell and acoustic enclosure by a mechanical fixed Tuned

Vibration Absorber. In particular, the dynamic characteristics of a mechanical

TVA are first presented, showing the principal operating issues of the classical

mechanical fixed tuned device and reporting the optimal tuning criteria.

A coupled structural-TVA simplified model is also presented in which gen-

eral guidelines for the positioning of the TVA on cylindrical structures are pro-

vided.
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4.1 introduction

The control of vibration and acoustic noise over the last years have received

a lot of interest. This is principally due to the attempt of increase payload size

and increase the efficiency of aerospace structures, which lead them to become

progressively lighter, with the drawback of a low frequency decrease of the

transmission loss, where passive sound absorption treatments are ineffective.

A review of the applications of vibration absorbers in propeller aircraft was

given by Wright and Kidner [139]. Most of the recent works are related to

active techniques, in particular to Active Vibration Control (AVC) [140–142]

and Active Noise Control (ANC) [23, 67, 68]. Active Structural Acoustic Control

(ASAC), in which the vibration control is obtained in conjunction with sound

sensors, has also been studied [93, 140, 142, 143].

Despite the huge effort on the study of active techniques, limited literature

is available on passive vibration and noise control of cylindrical shells [69, 139].

Some theoretical results can be found in references [69, 138, 144] while the ex-

perimental results of the application of passive TVAs can be found in references

[145–147].

In this chapter the use of fixed Tuned Vibration Absorbers to control the flex-

ural and internal acoustic response of a coupled cylindrical shell and enclosure

is considered.

Tuned Vibration Absorbers [148] are passive devices composed by a seismic

mass suspended on a spring and damper system. The suspension system is at-

tached to a base mass which allows the connection with the hosting structure.

Since this base mass is usually small, it is sometimes neglected in the analysis

of the TVA. Since their invention [74], the devices were largely studied and em-

ployed in a wide rage of application, from high precision mechanical systems

to civil engineering [29]. They are known under several names and acronyms,

such as, for example, Tuned Vibration Absorber (TVA) [148–150], Dynamic Vi-

bration Absorber (DVA) [31, 32, 151–153], Vibration Neutralizer [7, 17, 18, 37]

and Tuned Mass Dampers (TMD) [34, 149]. This is partially due to the fact that

the same system can tackle the problem of reduce the vibration of the hosting

structure due either to tonal or broadband disturbance.

In the former case, shown in plot (a) of figure 4.1, the TVA is usually called

DVA or Vibration Neutralizer and it is used to reduce the amplitude of the

response of the hosting (often also called primary) system subject to a tonal

disturbance. The natural frequency of the absorber should be tuned to the exci-

tation frequency and the damping should be as low as possible.
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Figure 4.1: Schematic representation and amplitude of the response per unit excitation
of a sdof primary system equipped with a Vibration Neutralizer (plot (a))
and with a TVA (plot (b)).

In this way, the device offers the greatest mechanical impedance at the exact

frequency at which it is tuned. Figure 4.1 (a) shows on the right the spectrum

of the velocity response per unit excitation of the primary system, considered

as a single-degree-of-freedom (sdof) system without any control system (thin

solid black line) and with a Vibration Neutralizer (undamped TVA) tuned at the

resonance frequency of the primary system (thick solid red line). The response

of the system equipped with the Vibration Neutralizer presents two resonance

peaks and a sharp anti-resonance at the frequency at which the device is tuned.

In the latter case, shown in figure 4.1 (b), the TVA is often referred as TVA or

TMD. In this case it operates with optimal levels of damping to reduce the

broadband vibration response of the hosting structure subject to broad fre-

quency band random disturbances. In this case the natural frequency of the

device and the damping should be tuned in order to minimise the resonant
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response of a target mode of the hosting structure over a broad frequency band.

The normalised response of the primary system without TVA (thin solid black

line), with an undamped TVA (thin dashed red line) and with an optimally

damped TVA (thick solid blue line) are compared in the right graph in plot (b)

of figure 4.1. The response of the primary system equipped with the optimally

damped TVA presents the two resonance peaks, but these are smooth due to

the damping effects. Also, the response is no more characterised by the anti-

resonance in correspondence of the frequency at which the device is tuned.

The first part of the chapter is devoted to the analysis of the TVA. The dy-

namic response is first described in terms of the base impedance. Then, a review

of the tuning criteria is provided. The principal operation limitations of the clas-

sical mechanical TVA are presented considering both the effects of a mistuned

TVA and the ones of a single TVA on a multi-degrees-of-freedom system. A

simplified model, composed by just one structural mode of the cylindrical shell

and a simplified TVA is used to obtain general guidelines for the positioning of

the TVAs on cylindrical shells.

The last part of the chapter presents the simulation study on the control

effects produced by arrays of 12 and 18 TVAs.

4.2 characterization of the tva

In a recent study, Rohlfing et al. [154] described the response of a velocity

feedback control unit in terms of the open- and closed-loop base impedance.

They defined the base impedance of the device as

Zb(ω) =
fb(ω)

ẇb(ω)
, (4.1)

where fb(ω) and ẇb(ω) are the complex amplitudes of the time-harmonic force

and velocity at the base of the device. This equation allows for a straightfor-

ward physical interpretation of both stability and control performances. This

approach has been used also in other studies, as for example [155, 156]. The

base impedance can also be used to assess the dynamic behaviour of a TVA

[157].
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cA

wb

ws

fb

ms

mb

kA

Figure 4.2: Lumped parameter
model for the classi-
cal mechanical TVA.

Table 4.1: Reference parameters for the mechanical
TVA.

Parameter Symbol Value

Seismic mass ms 115 [g]

Base mass mb 185 [g]

Natural frequency fA 20 [Hz]

Damping ratio ζA 2 [%]

Considering the notation shown in the lumped parameter model depicted in

figure 4.2, the Newton’s law for the base and seismic masses can be written as:

mbẅb(t) = kA(ws(t)− wb(t)) + cA(ẇs(t)− ẇb(t)) + fb(t), (4.2a)

msẅs(t) = −kA(ws(t)− wb(t))− cA(ẇs(t)− ẇb(t)), (4.2b)

where ws(t), wb(t) are the time-dependent displacements of the seismic and

base masses ms and mb, cA and kA are the damping and stiffness elements

of the TVA and fb(t) is the time-dependent amplitude of the force acting on

the base mass. Assuming time harmonic dependence, these equations can be

written in terms of the complex amplitudes of the time-harmonic velocities of

the two masses ẇs(ω) and ẇb(ω) and of the force fb(ω) as

(Zmb(ω) + Zs(ω)) ẇb(ω) = Zs(ω)ẇs(ω) + fb(ω), (4.3a)

(Zms(ω) + Zs(ω)) ẇs(ω) = Zs(ω)ẇb(ω), (4.3b)

where Zmb(ω) = jωmb is the impedance of the base mass, Zms(ω) = jωms is

the impedance of the seismic mass and Zs(ω) = cA + kA/(jω) is the impedance

of the mechanical suspension [127, 158]. The complex amplitude of the velocity

of the seismic mass can be obtained from equation (4.3b) as

ẇs(ω) =
Zs(ω)

Zms(ω) + Zs(ω)
ẇb(ω), (4.4)
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which, substituted in equation (4.3a), gives

Ç

Zmb(ω) +
Zms(ω)Zs(ω)

Zms(ω) + Zs(ω)

å

ẇb(ω) = fb(ω). (4.5)

Thus, the base impedance of the mechanical TVA results given by:

Zb(ω) = Zmb(ω) +
Zms(ω)Zs(ω)

Zms(ω) + Zs(ω)
. (4.6)

Figure 4.3 shows the magnitude (upper plot) and phase (lower plot) of Zb(ω),

calculated considering the TVA parameters listed in table 4.1. At low frequen-

cies the two masses move nearly in phase and thus the TVA produces a mass

impedance effect Z(ω) = Zmb(ω) + Zms(ω) . At higher frequencies, above the

resonance frequency of the TVA, the top mass is characterized by little oscil-

lations and behaves like a seismic reference system. Thus the TVA produces a

mass impedance effect Z(ω) = Zmb(ω) . At frequencies around the fundamen-

tal natural frequency at 20 Hz, the spring mass system resonates and produces

a sharp resonance peak followed by a sharp low, respectively with −180 phase

lag and +180 phase lead. This indicates that, at the resonance frequency, the
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Figure 4.3: Base impedance FRFs (amplitude in the top plot and phase in the bottom
plot) of the classical mechanical TVA.

absorber is characterized by a large dissipative impedance, that is, a large vibra-

tion absorption effect. TVA systems can therefore be used to effectively absorb

vibration energy. They can be used, for instance, to attenuate the response pro-
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duced by a resonant mode of a flexible structure by properly tuning the TVA

fundamental resonance frequency and damping ratio.

4.3 tuning laws for the tva

The first optimisation criterion, proposed by Omondroyd and Den Hartog in

1928 [75], sets the natural frequency of the vibration absorber such that the two

peaks in the coupled displacement response of the primary system have the

same amplitude. Also, the damping ratio is set such that the derivative at the

two peaks is zero. Several others optimisation criteria have been proposed, as

summarised in references [159, 160], for the broadband control of the resonant

response of structures. In general, they can be categorised in two groups, which

either consider H∞ (e.g. [34, 75, 161]) or H2 (e.g. [159, 162–164]) cost functions

[165].

kA

k1

cA

c1

ms

m1

wb

ws

f

Figure 4.4: Lumped parameter model of a sdof system equipped with the fixed TVA.

The optimisation parameters are derived considering a hosting structure

(also referred as primary structure) modelled as a single-degree-of-freedom

(sdof) system characterised by mass, stiffness and damping parameters denoted

by m1, k1 and c1, as shown in figure 4.4. The fixed Tuned Vibration Absorber

is modelled as a single-mass-dashpot-spring system, with mass, stiffness and

damping elements denoted by ms, kA and cA. The optimisation criteria are de-

rived with reference to the ratio

µ =
ms

m1
(4.7)
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Table 4.2: Optimisation criteria of the Tuned Vibration Absorber. Adapted from [159]

Optimisation Objective Proposed by Optimal parameters

1
H∞

Minimisation of the
maximum
displacement of the
primary mass

Ormondroyd & Den
Hartog [75],
Nishihara & Asami
[161]

ζopt =

…

3µ

8(1 + µ)

νopt =
1

1 + µ

2
H2

Minimisation the
transient vibration of
the system

Iwata [164],
Warburton[163]

ζopt =

…

µ(4 + 3µ)

8(1 + µ)(2 + µ)

νopt =

 

2 + µ

2 (1 + µ)2

3 Stability
maximisation

Minimisation of the
total displacement of
the primary mass
over all frequency

Miller et al. [166],
Yamaguchi[167]

ζopt =

…

µ

1 + µ

νopt =
1

1 + µ

4
H∞

Minimisation of the
displacement of the
primary and the
relative displacement

Krenk [34]
ζopt =

…

µ

2(1 + µ)

νopt =
1

1 + µ

5
H2

Minimisation of the
total kinetic energy
of the primary mass
over all frequencies

Warburton [163]
ζopt =

√
µ

2

νopt =
1

√

1 + µ

6
H2

Maximisation of the
power dissipated by
the absorber

Zilletti et al. [159]
ζopt =

√
µ

2

νopt =
1

√

1 + µ

between the TVA seismic mass and the mass of the the primary system. As

summarised in table 4.2, the objective of the several optimisation criteria is to

provide the optimal value of the TVA damping ratio, defined as

ζA =
cA

2msωA
(4.8)

and of the frequency ratio ν,

ν =
ωA

ω1
(4.9)
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between the fundamental natural frequency of the TVA, ωA, and the natural

frequency of the primary structure, ω1. These are defined as

ωA =

 

kA

ms
and (4.10a)

ω1 =

 

k1

m1
. (4.10b)
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Figure 4.5: Kinetic energy spectrum of the primary system without TVA (thin black
line) and with a TVA whose parameters are tuned according to the six opti-
misation criteria of table 4.2.

In figure 4.5 are shown the kinetic energy spectra of the primary system with-

out TVA (thin solid black line) and equipped with a fixed TVA. The parameters

of the TVA are selected according to the theory proposed by Ormondroyd and

Den Hartog [75] (thick solid green line), by Iwata [164] (thin dotted red line), by

Miller et al. [166] (thin dash-dot blue line), by Krenk [34] (thick dashed grey line)

and by Warburton [163], whose parameters corresponds to the ones proposed

by the theory derived by Zilletti et al. [159], (thick solid cyan line).

In this thesis, the time-averaged kinetic energy minimisation criterion pro-

posed by Zilletti et al. [159] is adopted. The optimal damping ratio and the

optimal frequency ratio are therefore given by:

ζopt =

√
µ

2
and (4.11a)

νopt =
1

√

1 + µ
. (4.11b)



88 fixed tuned vibration absorber : mechanical absorber

When the TVA is applied on a distributed structure, such as the cylinder con-

sidered in this thesis, the mass ratio given in equation (4.7) has to be substituted

by the following relation [29, 56]:

µ =
ms

mm
ϕ2

m(xA), (4.12)

where mm is the modal mass of the controlled mode of the structure and ϕm(xA)

is the amplitude of the targeted mode at the TVA position xA. It is interesting to

note how, for distributed structures, the mass ratio is defined in a comparable

manner as the coupling parameter between an acoustic mode of an acoustic

cavity and a Helmholtz Resonator [168].

4.4 issues of the tva

As highlighted in the previous section, the values of the optimal parameters

depend on the mass ratio, given in equations (4.7) and (4.12) for the case of a

sdof or distributed hosting structure, respectively. To limit the problems related

to an excessive weight of the TVA, the mass ration is typically µ w 1− 8%, thus

the frequency ratio νopt is given normally by a value close to one. According

to equation (4.9), the natural frequency of the TVA should be tuned to a value

close to the natural frequency of the controlled mode. This implies that a precise

knowledge of the dynamic response of the hosting system is required. This a

priori knowledge of the dynamic response of the system is difficult to obtain

for engineering system and becomes of little use when operation conditions of

the structure, such as for example temperature, pressuring or tensioning effects,

modify the dynamic behaviour of the structure. In plot (a) of figure 4.6 is shown

the effect of a mistuned of the TVA. A sdof system is considered as the hosting

structure. The left graph shows the velocity response of the system when it

presents a resonance frequency which coincides with the nominal value ωn,

without TVA (thin black line) and when the system is equipped with a TVA

tuned to ωn (thick solid blue line). In this case, the TVA effectively control

the resonant response of the hosting structure. In the central and right graphs

are considered the cases in which, due to operation conditions, the structure

changes its dynamic behaviour and as a consequence it presents a resonance

frequency which is 5% lower (central graph) or higher (right graph) than the

nominal value ωn. If a classical mechanical fixed TVA is considered, the change

of the dynamic response of the hosting structure is not tracked by the passive

control device, which, being tuned to the nominal value ωn, results mistuned
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Figure 4.6: Amplitude of the velocity response per unit excitation of a sdof primary

system with no TVA (thin solid black lines and thin dashed black lines) and
with the TVA tuned to the the nominal value of ωn (thick blue line and thick
green lines) (plot (a)) when the resonance frequency coincides with ωn (left
graph) and when the resonance frequency is 5% lower (central graph) and
5% higher (right graph) of the nominal value and velocity spectra per unit
excitation of a three-degrees-of-freedom system (plot (b)) with no TVA (thin
solid black lines) and with the TVA (thick solid blue lines) tuned to the first
(left graph), the second (central graph) and the third (right graph) natural
frequency.

to the actual resonance frequency of the primary system. The velocity response

per unit excitation of the primary system subject to operation conditions is

shown in the central and right graphs of figure 4.6 (a) with the thin solid black

lines and the nominal velocity response is shown with the thin dashed black

lines. The responses of the primary system equipped with the mistuned TVA

are shown with the thick solid green lines. The set of the three graphs in plot (a)

shows how the TVA loses its control performances when the primary system is

subject to operation effects which modify its dynamic response.

Plot (b) of figure 4.6 presents the normalised amplitude velocity response

of a three-degrees-of-freedom primary system without TVA (thin black lines)

and when the primary system is equipped with a TVA (thick blue lines) tuned
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to the first (left graph), to the second (central graph) and to the third (right

graph) natural frequency of the hosting structure. The set of the three graphs

of plot (b) shows how, when a multi-degrees-of-freedom system is equipped

with a single TVA, the control effect is achieved only for the resonance peak

which correspond to the natural frequency at which the device is tuned.

From the former analysis, the principal operative drawbacks of the TVAs can

be summarised as:

• The TVA requires a precise tuning to the natural frequency corresponding

to the targeted resonance peak; this implies that

• A precise knowledge of the dynamic response of the hosting structure is

required;

• The control effect of the TVA is achieved only at a targeted resonance

peak, thus to control several resonance peaks of a mdof (or distributed)

system a huge number of devices is needed.

4.5 positioning criteria

In this section the positioning of the TVA on cylindrical structures is analysed.

Indeed, as well as the tuning, the positioning of a TVA plays a key role in

the effectiveness of the device in the vibration control, since a misplaced TVA

would give similar effects as a mistuned TVA.

For structures that do not present the twofold modal degeneracy presented

in section 3.3 of the previous chapter, e.g. beams and rectangular plates, the

positioning is a relatively simple task, since the TVA should be place as close as

possible to the anti-nodal positions of the target mode to maximise the vibration

absorption effect [169]. Some initial results on the positioning of the TVA on

a cylindrical structure are given by Huang and Fuller [69]. They compared

the results obtained considering several configurations of the TVAs when the

cylindrical shell subject to both point and distributed forces.

In this section, a simplified model of the cylindrical shell, composed by just

a single structural mode, is used to assess the control effects of a single TVA or

the combination of two TVAs. Furthermore, also a simplified model of the TVA

is considered, in which the base mass is neglected.

In section 3.4.4 of the previous chapter is shown that the frequency-dependent

modal equation of motion considering just a single flexural mode results in two
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uncoupled modal equation, related to the symmetric and anti-symmetric com-

ponent of the selected mode:

Ä

−ω2M̃ + jωC̃ + K̃
ä

bs
m̃(ω) = ϕs

m̃(xF) fR(ω), (4.13a)

Ä

−ω2M̃ + jωC̃ + K̃
ä

ba
m̃(ω) = ϕa

m̃(xF) fR(ω), (4.13b)

where M̃, C̃ and K̃ are the modal inertia, damping and stiffness coefficients

for the m̃-th mode, assuming m2 6= 0. Also, fR(ω) is the frequency-dependent

amplitude of the single point force acting on the cylinder and ϕs
m̃(xF), ϕa

m̃(xF)

are the symmetric and anti-symmetric mode shapes of the m̃-th structural mode

at the position xF where the force is applied. When on the cylinder is applied

a single TVA at the position xA = (xA, ϑA), the force due to the TVA must be

included in the right-hand-side of equations (4.13). From the definition of the

base impedance given in equation (4.1), the frequency-dependent amplitude of

the point force that the TVA exerts on the structure can be expressed as

fTVA(x, ω) = −ZA(ω) ˙̃w(xA, ω)δ(xs − xA), (4.14)

where ZA(ω) is the impedance of the simplified TVA given by:

ZA(ω) =
Zms(ω)Zs(ω)

Zms(ω) + Zs(ω)
=

jωms (cA + kA/(jω))

jωms + cA + kA/(jω)
. (4.15)

Substituting in equation (4.14) the expression for the flexural displacement

due to the m̃-th mode,

w̃(xs, ω) = ϕs
m̃(xs)b

s
m̃(ω) + ϕa

m̃(xs)b
a
m̃(ω), (4.16)

and integrating the resulting equation over the surface of the cylinder, pre-

multiplied by the symmetric or anti-symmetric structural mode shape, the two

modal forces due to the TVA are given by:

f s
TVA(ω) = −jωϕs

m̃(xA)ZA(ω)ϕs
m̃(xA) bs

m̃(ω)− jωϕs
m̃(xA)ZA(ω)ϕa

m̃(xA) ba
m̃(ω),

(4.17a)

f s
TVA(ω) = −jωϕa

m̃(xA)ZA(ω)ϕs
m̃(xA) bs

m̃(ω)− jωϕa
m̃(xA)ZA(ω)ϕa

m̃(xA) ba
m̃(ω).

(4.17b)



92 fixed tuned vibration absorber : mechanical absorber

These expression can be written in a compact form by defining

Zss
A (ω) = ϕs

m̃(xA)ZA(ω)ϕs
m̃(xA), (4.18a)

Zsa
A (ω) = ϕs

m̃(xA)ZA(ω)ϕa
m̃(xA), (4.18b)

Zas
A (ω) = ϕa

m̃(xA)ZA(ω)ϕs
m̃(xA), (4.18c)

Zaa
A (ω) = ϕa

m̃(xA)ZA(ω)ϕa
m̃(xA), (4.18d)

which, substituted into equations (4.17) and the resulting equations inserted in

equations (4.13), yield to coupled modal equations of motion for the m̃ mode

of the cylinder subject to a single force and equipped with a single TVA:

Ä

−ω2M̃ + jωC̃ + jωZss
A (ω) + K̃

ä

bs
m̃(ω) + jωZsa

A (ω)ba
m̃(ω) = ϕs

m̃(xF) fR(ω),

(4.19a)

jωZas
A (ω)bs

m̃(ω) +
Ä

−ω2M̃ + jωC̃ + jωZaa
A (ω) + K̃

ä

ba
m̃(ω) = ϕa

m̃(xF) fR(ω),

(4.19b)

Defining the dynamic stiffness [127] as :

D̃(ω) = −ω2M̃ + jωC̃ + K̃, (4.20)

equations (4.19) could be rewritten as:

î

D̃(ω) + jωZss
A (ω)

ó

bs
m̃(ω) + jωZsa

A (ω)ba
m̃(ω) = ϕs

m̃(xF) fR(ω), (4.21a)

jωZas
A (ω)bs

m̃(ω) +
î

D̃(ω) + jωZaa
A (ω)

ó

ba
m̃(ω) = ϕa

m̃(xF) fR(ω), (4.21b)

Comparing equations (4.21) with equations (3.85) given in section 3.4.4 of

the previous chapter, one can clearly see that the TVA couples the two modal

equations of motion for the m̃-th structural mode.

The modal amplitudes of the m̃-th structural mode, for the symmetric and

anti-symmetric component can be obtained by solving equations (4.21) as:

bs
m̃(ω) =

î

D̃(ω) + jωZaa
A (ω)

ó

ϕs
m̃(xF) + jωZsa

A (ω)ϕa
m̃(xF)

D̃(ω)
î

D̃(ω) + jωZss
A (ω) + jωZaa

A (ω)
ó fR(ω), (4.22a)

ba
m̃(ω) =

jωZas
A (ω)ϕs

m̃(xF) +
î

D̃(ω) + jωZss
A (ω)

ó

ϕa
m̃(xF)

D̃(ω)
î

D̃(ω) + jωZss
A (ω) + jωZaa

A (ω)
ó fR(ω). (4.22b)
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The frequency-dependent amplitude of the flexural displacement due to the

m̃ structural mode could thus be obtained from the expression given in equa-

tion (4.16).

In section 3.4.4 it was shown that the effect of a single point force on a cylin-

drical shell is to orient the resulting deflection such that the shell presents the

maximum displacement at an angular orientation that corresponds to the orien-

tation of the force. Thus, in order to maximise the vibration control effect of the

TVA, it should be located in an anti-nodal position for the resulting deflection,

as shown in figure 4.7. In plot (a) are shown the reference undeformed cylin-

drical shell (thick solid grey lines), the deflection of the cylindrical shell due to

a point force without the TVA (thin dashed blue lines) and with the TVA (thin

solid blue lines). In plot (b) are shown the spectra of the flexural kinetic energy

PSD versus the normalised frequency of the plain cylindrical shell (thin solid

black lines) and of the cylinder equipped with the TVA (thick solid blue lines)

for the symmetric (left), anti-symmetric (central) and resulting (right graphs)

components. When the TVA is positioned in an angular position which cor-

responds to an anti-nodal circumferential position of the resulting deflection,

both the symmetric and anti-symmetric components are effectively controlled,

thus the global response is controlled.

As highlighted in section 3.4.4, the positions of the nodal and anti-nodal lines

could be derived only if one single point force acts on the cylindrical shell and

the direction of this force is known. In the general case, the distribution of forces

could be unknown or the forces are characterised by a stochastic nature. In

these case the position of the nodal and anti-nodal lines could not be predicted.

This condition is shown in figure 4.8, where the TVA results misplaced with

respect to the anti-nodal positions of the resulting deflection due to a single

point force. In this case both the symmetric and anti-symmetric components,

and thus also the global deflection, are only slightly affected by the presence

of the TVA. This can be seen both in plots (a) and (b) of figure 4.8, where

are shown the deflection of the middle-surface of the cylindrical shell and the

spectra of the flexural kinetic energy for the symmetric (left), anti-symmetric

(central) and global (right graphs) deflection.
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Figure 4.7: Middle-section deformation of the cylindrical shell, plot (a), and spectra
of the flexural kinetic energy PSD, plot (b) for the symmetric (left), anti-
symmetric (central) and global (right graphs) components when the TVA is
placed in an anti-nodal position of the global deflection.
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Figure 4.8: Middle-section deformation of the cylindrical shell, plot (a), and spectra
of the flexural kinetic energy PSD, plot (b) for the symmetric (left), anti-
symmetric (central) and global (right graphs) components when the TVA is
misplaced with respect to the anti-nodal position of the global deflection.
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Figure 4.9 and 4.10 show the control effect on the middle-surface deflection

(plots (a)) and on the spectra of the flexural kinetic energy PSDs (plots (b))

of a single TVA placed in an anti-nodal position of the symmetric and anti-

symmetric components, respectively. The two figures show that when the TVA

is located on an anti-nodal position of a given component, it can effectively

control the flexural response of only that component. This is confirmed by con-

sidering equations (4.22). Indeed, if the TVA is placed on an anti-nodal position

for a symmetrical component, the mode shapes are such that ϕs
m̃(xA) 6= 0 and

ϕa
m̃(xA) = 0, thus only the term Zss

A (ω) in equations (4.18) results different

than zero, while the terms Zsa
A (ω),Zas

A (ω) and Zaa
A (ω) are zero. The frequency-

dependent modal amplitudes for the two components given in equations (4.22)

result:

bs
m̃(ω) =

ϕs
m̃(xF)

î

D̃(ω) + jωZss
A (ω)

ó fR(ω), (4.23a)

ba
m̃(ω) =

ϕa
m̃(xF)

D̃(ω)
fR(ω), (4.23b)

thus only the response of the symmetric component is affected by the presence

of the TVA. When the TVA is placed on an anti-nodal position for the anti-

symmetrical mode shape, the amplitudes of the two components of the mode

shape at the TVA position are ϕs
m̃(xA) = 0 and ϕa

m̃(xA) 6= 0, thus the terms in

equations (4.18) result Zaa
A (ω) 6= 0 and Zss

A (ω) = Zsa
A (ω) = Zas

A (ω) = 0. The

frequency-dependent modal amplitudes are given by:

bs
m̃(ω) =

ϕs
m̃(xF)

D̃(ω)
fR(ω), (4.24a)

ba
m̃(ω) =

ϕa
m̃(xF)

î

D̃(ω) + jωZaa
A (ω)

ó fR(ω), (4.24b)

and in this case only the anti-symmetric response is affected by the presence of

the TVA.
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Figure 4.9: Middle-section deformation of the cylindrical shell, plot (a), and spectra
of the flexural kinetic energy PSD, plot (b) for the symmetric (left), anti-
symmetric (central) and global (right graphs) components when the TVA is
placed on an anti-nodal position for the symmetric component.
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Figure 4.10: Middle-section deformation of the cylindrical shell, plot (a), and spectra
of the flexural kinetic energy PSD, plot (b) for the symmetric (left), anti-
symmetric (central) and global (right graphs) components when the TVA
is placed on an anti-nodal position for the anti-symmetrical component.
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This analysis suggests the use of two TVA, each of them placed on an anti-

nodal position of the two components. The positions of the nodal and anti-

nodal lines for a cylindrical shell are given in table 3.1 with reference of the

zero angle coordinate shown in figure 2.1 (a). The definition of the origin of

the circumferential coordinate is totally arbitrary, since the cylindrical shell has

an infinite number of circumferential symmetry axes. The values of the nodal

and anti-nodal circumferential positions given in table 3.1 are thus not absolute

values, but relative values, since they depend on the circumferential position

selected as the origin. The angular distance between two consecutive nodal

and anti-nodal positions remains instead constant and does not depend on

the circumferential position selected as the origin, but depends only on the

circumferential modal index m2.

Therefore two TVA are needed for the flexural control of a cylindrical shell

when the excitation field does not allow the identification of the resulting ori-

entation. Furthermore, the absolute angular positions of the two TVA are not

important, but the relative position between them is fundamental. From the

values reported in table 3.1, the angular distance between the TVA should be:

∆ϑAk =
Å

k +
1

2

ã

π

m2
, (4.25)

with k = 0, 1, . . . , m2 − 1. As an example, for the structural mode with m2 = 3

shown in figures 4.7-4.12, the two TVAs should be separated along the cir-

cumference by an arc with angular aperture of either π/6 (30◦), π/2 (90◦)

or 5π/6 (150◦). The vibration control effects of the two TVA placed on the

cylinder with an angular distance given by equation (4.25) are shown in fig-

ure 4.11. Plot (a) shows the flexural displacement of the middle-section of the

cylinder for the three possible configurations of the three TVA. With the two

TVA optimally located, the displacements due to both components are reduced,

and thus the resulting displacement is also reduced. This can also be seen in

plot (b), where are shown the spectra of the flexural kinetic energy PSDs for

the two components and for the resulting response. In this plot, since the three

TVAs configurations give exactly the same spectra results, only the results due

to one configuration is reported.

In figure 4.12 are shown the effects on the middle-section deflection (plot (a))

and on the spectra of the flexural kinetic energy PSD (plot (b))when two TVA

are applied on the cylindrical shell but these are not separate by an angular

aperture given by equation (4.25). The vibration control effect is slightly in-

creased compared with the case of a single misplaced TVA, due to the addi-
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Figure 4.11: Middle-section deformation of the cylindrical shell, plot (a), and spectra
of the flexural kinetic energy PSD, plot (b) for the symmetric (left), anti-
symmetric (central) and global (right graphs) components when the two
TVA are optimally positioned.

tional mass effect related to the mass of the second TVA. The two misplaced

TVAs are not able to control the resonance peak of the structural mode, but

they just reduce the amplitude of the resonance peak.
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Figure 4.12: Middle-section deformation of the cylindrical shell, plot (a), and spectra
of the flexural kinetic energy PSD, plot (b) for the symmetric (left), anti-
symmetric (central) and global (right graphs) components when the two
TVA are not optimally positioned.

4.6 coupled structural-acoustic-tva response

The derivation of the fully coupled structural-acoustic-TVA equation of mo-

tion is based on the mathematical procedure presented in section 3.8. For the

sake of comprehensiveness, the structural equation of motion for the flexural

displacement and the acoustic wave equation for the acoustic pressure is pre-

sented again.

According to the Donnell-Mushtari shell theory presented in chapter 3, the

equation of motion for the flexural displacement of the cylindrical shell can be

written as

D∇8
s w(xs, t) +

Eh

R2

∂4w(xs, t)

∂x4
+ ρ h∇4

s

∂2w(xs, t)

∂t2
= ∇4

s fr(xs, t), (4.26)

where w(xs, t) is the flexural displacement of a point xs = (x, ϑ) on the cylindri-

cal shell, ∇2
s is the two-dimensional Laplace operator in cylindrical coordinate

defined in equation (3.19) and fr represents the force term acting in the radial

direction. The flexural displacements can be expressed with the finite modal

summation of the in vacuo symmetric and anti-symmetric flexural mode shapes



100 fixed tuned vibration absorber : mechanical absorber

for the simply supported cylinder, which can be arranged in the following ma-

trix form:

w(xs, t) =
[

ϕϕϕs(xs) ϕϕϕa(xs)
]







bs(t)

ba(t)







= ϕϕϕ(xs)b(t), (4.27)

where the symmetric and anti-symmetric flexural natural modes are given in

equations (3.51).

When the cylindrical structure is equipped with an array of TVA, the radial

forcing term given in equation (4.26) is due to three components: first, the lo-

calised pressure exerted by the external rain-on-the-roof point forces fR,i(t)δ(xs −
xs,i), with i = 1, . . . , NR, being NR the number of uncorrelated rain-on-the-

roof forces; second, the pressure distribution p(xs, t) due to the cavity acoustic

pressure and third, the localised forces generated at the absorbers footprints

fA,j(t)δ(xs − xs,Aj), with j = 1, . . . , NA being NA the number of TVAs. Thus, the

radial force per unit area exerted on the cylindrical shell can be expressed as

follows:

fr(xs, t) =
NR
∑

i=1

fR,i(t)δ(xs − xs,i) + p(xs, t) +
NA
∑

j=1

fA,j(t)δ(xs − xs,Aj), (4.28)

where fR,i and fA,j are the point forces produced by the rain-on-the-roof excita-

tion field and by the TVAs, xs,i and xs,Aj are the position where the forces due

to the excitation field and due to the TVA act and δ(·) is the two-dimensional

Dirac delta function in cylindrical coordinate whose definition is given in equa-

tion (3.65). As shown in figure 4.2, the mechanical fixed TVA is modelled as

a base and seismic lumped masses, mbj and msj, connected by the suspension

spring, kAj, and damper, cAj, mechanical elements arranged in parallel. Thus,

the forces produced by the TVAs on the cylinder are given by:

fA,j(t) = −mbjẅbj(t) + cAj∆ẇAj(t) + kAj∆wAj(t), (4.29)

where

∆wAj(t) = wsj(t)− wbj(t) (4.30)

is the relative displacement between the base and seismic mass of the j-th TVA,

being wsj the displacement of the seismic mass and

wbj(t) ≡ w(xs,Aj, t) (4.31)

the displacement of the base mass, which coincides with the radial displace-

ment of the cylinder w(xs,Aj, t) at the position xs,Aj of the j-th TVA.
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The acoustic wave equation for the cylindrical enclosure can be written as:

∇2 p(x, t)− 1

c2
0

∂2 p(x, t)

∂t2
= −ρ0

∂q(x, t)

∂t
, (4.32)

where p(x, t) is the acoustic pressure at a point x = (x, ϑ, r) in the cylindrical en-

closure, ∇2 is the three-dimensional Laplace operator in cylindrical coordinates

defined in equation (3.111) and q(x, t) is the monopole-type source term. The

acoustic pressure is expressed with the finite modal summation of the symmet-

ric and anti-symmetric acoustic mode shapes for the rigidly-walled cylindrical

enclosure, which can be arranged in the following matrix form:

p(x, t) =
[

ψψψs(x) ψψψa(x)
]







as(t)

aa(t)







= ψψψ(x)a(t) (4.33)

where the symmetric and anti-symmetric acoustic natural modes are given in

equations (3.128). In absence of any acoustic source in the enclosure, the source

term q(x, t) in equation (4.32) is due to the flexural displacement of the cylin-

drical surface:

q(x, t) = −2ẇ(xs, t)δ(r − R). (4.34)

In addition to the structural equation of motion and the acoustic wave equa-

tion, also a set of equations of motion for the TVAs must be included in the fully

coupled structural-acoustic-TVA equation of motion. Newton’s second law ap-

plied to the seismic mass of the j-th TVA can be expressed as:

msjẅsj(t) = −cAj∆ẇAj(t)− kAj∆wAj(t), (4.35)

with j = 1, 2, . . . , NA.

To solve the equations of motion for the flexural structural waves, the acoustic

waves and the TVA seismic masses given in equations (4.26), (4.32) and (4.35) ,

the following procedure is implemented:

1. the truncated modal summation expression for the flexural displacement

given in equation (4.27) is inserted into equations (4.26), (4.29), (4.34) and

(4.35);

2. the truncated modal summation expression for the acoustic pressure given

in equation (4.33) is inserted into equations (4.28) and (4.32);

3. the resulting equation (4.29) is substituted into equation (4.28), which is

then inserted into equation (4.26);
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4. the resulting equation (4.34) is substituted into equation (4.32);

5. both sides of the resulting equation (4.26) are pre-multiplied by the col-

umn vector with the flexural modes ϕϕϕ(xs) and integrated over the surface

of the cylindrical wall;

6. both sides of the resulting equation (4.32) are pre-multiplied by the col-

umn vector with the acoustic modes ψψψT(x) and integrated over the acous-

tic volume of the cylindrical enclosure.

This mathematical procedure leads to the following set of 2M + 2N + NA

ordinary differential equations, given in matrix form as:











Ms 0 0

R Q 0

0 0 MA





























b̈(t)

ä(t)

ẅA(t)



















+











Cs 0 −cA

0 D 0

−cT
A 0 CA





























ḃ(t)

ȧ(t)

ẇA(t)



















+











Ks −S −kA

0 H 0

−kT
A 0 KA





























b(t)

a(t)

wA(t)



















=



















ΦΦΦs

0

0



















f(t).

(4.36)

Here

Ms = Ms +ΦΦΦ
T
AmbΦΦΦA, (4.37a)

Cs = Cs +ΦΦΦ
T
ACAΦΦΦA, (4.37b)

Ks = Ks +ΦΦΦ
T
AKAΦΦΦA, (4.37c)

where Ms,Cs and Ks are the structural modal inertia, damping and stiffness

matrices given in equations (3.61) and (3.63), mb, CA and KA are the NA × NA

diagonal matrices with the base masses mbj, the damping parameters cAj and

the stiffness parameters kAj of the NA TVAs and

ΦΦΦA =













ϕϕϕ(xs,A1)
...

ϕϕϕ(xs,ANA
)













(4.38)

is the NA × 2M matrix whose rows are formed by the modal amplitudes of the

symmetric and anti-symmetric flexural structural modes at the positions xs,Aj of

the NA TVAs. Also, MA is the NA × NA diagonal matrix with the seismic masses
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msj of the NA TVAs, Q, D and H are the acoustic modal inertia, damping and

stiffness matrices given in equations (3.138), R and S are the acoustic-structural

and the structural-acoustic coupling matrices and

cA = ΦΦΦ
T
ACA, (4.39a)

kA = ΦΦΦ
T
AKA (4.39b)

are the 2M× NA damping and stiffness coupling matrices between the structure

and the TVAs. Finally, ΦΦΦs, f(t) are the modal excitation matrix and the vector

with the NR rain on the roof force vector, given by equations (3.66) and (3.67)

and the column vectors b(t), a(t), wA(t) contain respectively the flexural modal

amplitudes, the acoustic modal amplitudes and the displacements of the TVA

seismic masses.

Equation (4.36) can be written in the following compact form:

Mq̈(t) + Cq̇(t) + Kq(t) = ΦΦΦf(t) (4.40)

where q(t) =
[

bT(t) aT(t) wT
A(t)

]T
and M, C, K, ΦΦΦ are the global inertia,

damping, stiffness and excitation modal matrices of the fully coupled structural-

acoustic-TVA system.

4.6.1 Frequency domain formulation

As shown in section 3.8.2 of the previous chapter, a frequency domain formu-

lation is derived from the time response of the coupled structural-acoustic-TVA

system. The frequency domain analysis is usually adopted for noise and vibra-

tion problems subject to stationary random disturbances [28, 72, 99] and in this

thesis the flexural kinetic energy PSD and the acoustic potential energy PSD

[124, 125, 162] are used to established the global flexural and interior sound

responses. The two PSD functions can be written as [28, 60, 64, 65]:

SK(ω) =
1

2
ρh

∫

S
lim

T→∞

E
ï

1

T
ẇ∗(xs, ω)ẇ(xs, ω)

ò

dS and (4.41a)

SP(ω) =
1

2ρ0c2
0

∫

Vc

lim
T→∞

E
ï

1

T
p∗(x, ω)p(x, ω)

ò

dV. (4.41b)

Equations (4.41) are analogous to (3.173) and the mathematical procedure is

the same as in section 3.8.2, therefore a reduced formulation is presented here
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to highlight the differences with the previous formulation. Equations (4.41) can

be expressed as

SK(ω) =
1

2
mcTr [Sbb(ω)] and (4.42a)

SP(ω) =
Vc

2ρ0c2
0

Tr [Saa(ω)] , (4.42b)

where, for a linear and time invariant system, the matrices Sbb(ω) and Saa(ω)

containing the PSDs of modal structural velocities and the modal pressure am-

plitudes. These matrices are defined as

Sbb(ω) = ΛΛΛβββY(ω)ΦΦΦSff(ω)ΦΦΦTYH(ω)βββT and (4.43a)

Saa(ω) =
1

ω2
ΓΓΓαααY(ω)ΦΦΦSff(ω)ΦΦΦTYH(ω)αααT. (4.43b)

Here Y(ω) is the modal mobility matrix of the coupled structural-acoustic-

TVA system, obtained from the Fourier transform of equation (4.40) as:

Y(ω) = jω
î

−ω2M + jωC + K
ó−1

(4.44)

and

βββ =
[

I2M×2M 02M×2N 02M×NA

]

(4.45a)

ααα =
[

02N×2M I2N×2N 02N×NA

]

, (4.45b)

where I and 0 are respectively identity and zero matrices with the dimensions

indicated by the subscripts. Finally, the matrix Sff(ω) contains the PSD func-

tions of the 24 uncorrelated white noise forces acting on the cylindrical shell

and is given by the 24 × 24 identity matrix I.

By substituting equations (4.43) into equations (4.42), the cylinder flexural

kinetic energy and the acoustic potential energy PSDs are given by:

SK(ω) =
1

2
mcTr

î

ΛΛΛβββY(ω)ΦΦΦIΦΦΦTYH(ω)βββT
ó

and (4.46a)

SP(ω) =
Vc

2ρ0c2
0ω2

Tr
î

ΓΓΓαααY(ω)ΦΦΦIΦΦΦTYH(ω)αααT
ó

. (4.46b)
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4.6.2 Simulation study

This section discusses the vibration and sound control effects produced by

arrays of 12 and 18 fixed TVAs. The values of the base and seismic mass of each

TVA are reported in table 4.1, thus the total mass for the two arrays the TVAs

corresponds respectively to 5% and 8% of the cylinder total mass.

The 12 TVAs are tuned in pairs to control the 3rd, 5th, 7th, 10th, 19th and 29th

structural modes, whose resonance frequencies are highlighted by the orange

arrows in plots (a) and (c) of figure 4.14. The 18 TVAs are instead tuned in pairs

to control the 1st, 3rd, 5th, 7th, 10th, 19th, 25th, 29th and 35th structural flexural

modes, whose resonance frequencies are highlighted by the cyan arrows in

plots (b) and (d) of figure 4.14. These modes were chosen since, as reported

in table B.1 of appendix B, where the structural-acoustic coupling is analysed,

they are characterised by the highest coupling coefficient. The coupling effects

between these structural modes and the associated acoustic ones give rise to

the highest resonance peaks in the acoustic response, as discussed in section

3.8.3 and shown in the bottom plots of figure 4.14.

The damping and stiffness parameters of the 12 and 18 TVAs, cAj and kAj,

are derived from the optimal damping and frequency ratio given in equations

(4.11), according to the time-averaged kinetic energy minimisation criterion pro-

posed by Zilletti et al. [159]. For each TVA these parameters are thus given by

cAj = 2 ζopt,j ms ωAj and (4.47a)

kAj = ms ω2
Aj, (4.47b)

where ωAj is the angular tuning frequency, given by

ωAj = νopt,j ωs,T, (4.48)

being ωs,T the structural natural frequency of the target modes. The tuning fre-

quencies and the damping ratios for the fixed tuned Vibration Absorbers are

reported in table 4.3. The positions of the TVAs are here reported as well. These

positions where chosen in order to locate the TVAs in two axial sectors, corre-

sponding at 0.4 and 0.6 times the length of the cylinder. The circumferential

position of each couple of TVAs are selected in order to satisfy the conditions

discussed in section 4.5. The positions of the TVAs are also schematically shown

in Figure 4.13.
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Table 4.3: TVA parameters for the fixed tuned operation mode.

TVA Reference mode Position Tuning frequency Damping ratio

n m (xA, ϑA) fA [Hz] ζA [%]

1
10

(0.4L, π/7)
49.8 5.8

2 (0.6L, 15π/14)

3
19

(0.4L, 0)
65.1 5.8

4 (0.6L, 13π/12)

5
29

(0.4L,−π/5)
89.2 5.8

6 (0.6L, 9π/10)

7
3

(0.4L, π/2)
31.2 5.8

8 (0.6L, 37π/24)

9
5

(0.4L, 4π/9)
33.9 5.8

10 (0.6L, 3π/2)

11
7

(0.4L, 5π/8)
39.9 5.8

12 (0.6L, 23π/16)

13
1

(0.6L,−π/11)
30.1 5.8

14 (0.4L, 21π/22)

15
25

(0.6L, 0)
77.7 5.8

16 (0.4L, 43π/42)

17
35

(0.6L, π/23)
92.9 5.8

18 (0.4L, 45π/46)

L
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x
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Figure 4.13: Schematic representation of the positions of the TVAs on the cylindrical
structure. On the left image the two axial positions of the TVAs are rep-
resented with the red (0.4L) and blue (0.6L) dashed lines. The red and
blue arrows on the right image indicated the angular position of the TVAs
placed at 0.4L and 0.6L, respectively.
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In figure 4.14 are shown the 20 - 100 Hz flexural kinetic energy PSDs (top

plots) and the 20 - 100 Hz acoustic potential energy PSDs of the plain cylinder

(thin black lines) and of the cylinder equipped with an array of 12 (thick orange

lines in left plots) and 18 (thick cyan lines in right plots) fixed TVAs.

The thick orange line in plot (a) of figure 4.14 shows that, when the cylinder is

equipped with 12 fixed TVAs, the structural response is effectively reduced by

7 to 10 dB at the targeted resonance frequencies below 60 Hz. Instead, smaller

reductions of the order of 2 dB are produced at the targeted resonance frequen-

cies above 60 Hz. This effect could be due to the high modal overlap factor

[99, 123, 126] that characterises thin cylindrical structures. The thick orange

line in plot (c) of figure 4.14 shows that the 12 fixed TVAs effectively control

the acoustic response at all the target resonance frequencies in the 20-100 Hz

band by values comprised between 5 and 12 dB. This is because the targeted

frequencies were selected considering those structural modes that better couple

to the interior acoustic field.
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Figure 4.14: Spectra of the flexural kinetic energy PSD (top plots) and acoustic potential
energy PSD (bottom plots) without TVAs (thin solid black lines), with 12

fixed Tuned Vibration Absorbers (thick orange lines in plots (a) and (c))
and with 18 fixed Tuned Vibration Absorbers (thick cyan lines in plots (b)
and (d)).
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The thick cyan line in plot (b) of figure 4.14 shows the effects produced by

the array of 18 fixed TVAs. Compared to the 12 TVAs, the 18 fixed tuned TVAs

further reduce the flexural response to values comprised between 10 and 15

dB at the target frequencies below 60 Hz and to values comprised between 3

to 5 dB at the target resonance frequencies above 60 Hz. Moreover, as shown

by the thick cyan line in plot (d) of figure 4.14, the 18 fixed TVA substantially

reduce the acoustic response at all targeted resonance frequencies by values

comprised between 8 and 20 dB. Also in this case, this has to be attributed to

the fact that the target resonances of the 18 fixed TVA were selected considering

those structural modes that better couple to the interior acoustic field.

It is worth noting two peculiar characteristics of the structural and acoustic

responses when the cylinder is equipped with the TVAs. Firstly, the spectra

of both the structural and the acoustic responses are characterised by shifts to

lower frequencies of the first few resonances. This effect could be explained

considering the mass effect produced by the TVAs, which occurs at frequen-

cies both below and above the fundamental natural frequency of the TVA, as

discussed in section 4.2. Secondly, both structural and acoustic spectra are char-

acterised by control spillover effects, which however have little impact on the

overall control performances of the TVAs since they occur in correspondence to

the troughs between resonances.

It is again important to highlight that these results are obtained by accurately

tuning the TVAs to the structural resonant modes in the 20-100 Hz frequency

band that better couple to the acoustic modes of the interior pressure field. This

is relative simple to implement in a simulation study as the one proposed in

this thesis. On the contrary, it turns out to be a cumbersome and impractica-

ble task in real applications because it would require a sophisticated system

identification procedure during the installation of the TVAs. Furthermore, in

most practical applications, an online tuning system is needed to track the vari-

ations of the dynamic response of the cylinder due to changes of the working

conditions, such as temperature changes, pressuring and tensioning effects.

4.7 chapter concluding remarks

This chapter presented a theoretical and simulation study on classical me-

chanical fixed tuned vibration absorbers connected to a thin cylindrical shell to

control its flexural and internal acoustic response. A fully coupled structural-

acoustic-TVA analytical model was presented, which was developed consider-

ing the Modal Interaction Model.
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The first part of the chapter was devoted to analyse the dynamic character-

istic of the fixed TVA. The dynamic response of the device was presented in

terms of the base impedance, which results an appropriate feature to describe

the mechanical behaviour of TVA. Several tuning criteria presented in literature

are reported and the differences between them was shown.

A simplified model composed by a single mode of the cylindrical shell and

a TVA was used to obtain general guidelines for the positioning of TVAs in

cylindrical structures. This study shows that when a cylindrical structure is

subject to an excitation field which orients the flexural deflection of the struc-

ture in an unpredictable direction, two TVAs are needed to control the response

at each resonance frequency of the cylinder. A simple relation for the angular

positioning of the TVA was derived.

Finally, the last part of the chapter deals with the simulation study of the

structural and acoustic responses of the cylindrical shell and enclosure. The

effects produced by arrays of 12 and 18 fixed tuned absorbers were examined.

The TVAs were accurately tuned in pairs to structural frequencies related to

flexural modes characterised by the highest structural-acoustic coupling effects

in the 20-100 Hz frequency band. The simulation results show how the fixed

TVA can be used to effectively control both the structural and the acoustic

responses.
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This chapter deals with the simulation study concerning the low frequency

control of the flexural vibration and internal acoustic field of a thin cylindrical

structure subject to a rain on the roof white noise excitation and equipped with

an array of time-varying shunted electro-magnetic vibration absorbers.

The constitutive equation governing the electro-magnetic transducer is first

presented. An idealised transducer is used to derive the electro-mechanical

analogies, which allows to describe in mechanical terms the effect of an electri-

cal element used to shunt the electro-magnetic transducer.

The sweeping operation mode is then described, focusing on the description

of the period law by which the natural frequency of the transducer is varied.

The time variations of the shunt parameters is then derived.
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5.1 introduction

During the last years several studies have considered the possibility of us-

ing time-varying vibration absorbers to control the flexural response of thin

structures in a broadband frequency range [47, 56, 57, 59, 62].

Two operation modes were presented. In the first one, called switching oper-

ation mode, the stiffness and damping parameters are iteratively set to pairs of

values so that the natural frequency and the damping ratio of the absorber are

switched to cyclically control the response of multiple resonant modes. In the

second operation mode, referred as sweeping operation mode, the parameters

are continuously swept between given ranges to control the resonance response

of all the natural modes of the hosting structure in a given frequency band.

Also if the two operation modes appear very similar, they require a different

a priori knowledge of the hosting structure. Indeed, for the switching operation

mode a fully knowledge of the dynamic response of the hosting structure is

required in order to tune the various steps of the switch to the targeted reso-

nance responses. On the other hand, the sweeping operation mode can blindly

operate in a given frequency range, without the need of a precise system iden-

tification of the hosting structure.

Electro-magnetic transducers are well-known device used mainly for active

control [155, 170–176] but they have also been used for vibration isolation [177]

and for adaptive and passive vibration control using a RC shunt circuit [178–

180]. Also, a recent study showed some preliminary results on the possibility

of using a voice coil transducer for the realisation of a time-varying mechanical

vibration absorber [57].

In this chapter the implementation of time-varying shunted electro-magnetic

vibration absorbers for broadband noise and vibration control is considered.

The chapter begins with a description of the model of the electro-magnetic

transducer, recalling the fundamental physical laws that govern the electro-

mechanical transduction phenomenon. The mechanical response of the trans-

ducer is then assessed in terms of the transducer base impedance introduced

in the previous chapter. This mechanical property is expressed in terms of the

electrical parameters that characterise the shunt circuit.

An idealised coil-magnet transducer is used to obtain an electro-mechanical

analogy scheme, which allows the derivation of the equivalent mechanical ef-

fect produced by electrical shunt elements. The elementary passive components

are first considered and the results are used to obtain the mechanical equivalent

effect of series and parallel of these elements.
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The results of the electro-mechanical analogy study lead to the design of an

optimal RL shunt circuit, which permits an independent tuning of the damp-

ing and stiffness parameters of the shunted TVA. Simple formulas are derived

for the selection of the proper electrical parameters of the shunt for a given

mechanical resonance frequency and damping ratio of the device.

The last part of the chapter is devoted to the analysis of the shunted electro-

magnetic absorber operating in the sweeping mode. A control law for the time

variation of the resonance frequency of the absorber is presented, which leads

to a particular time variation of the shunt inductance and resistance. The ef-

fectiveness of noise and control properties of the sweeping TVA are assessed

considering arrays of 12 and 18 devices mounted on the thin cylindrical shell

coupled with the interior sound field presented in the previous chapters.

In reference [56] the authors suggest to use the prefix tuneable to describe the

semi-active or adaptive absorbers. To avoid confusion and misinterpretations, in

this chapter the electro-magnetic transducers operating in the sweeping mode

are referred as sweeping TVA.

5.2 electro-magnetic transducer model

An electro-mechanical transducer is a device which converts energy from

mechanical to electrical form and vice versa. There exist two main categories of

transducers, in the first type energy can only be transferred from one form to

the other and in the second type energy can also be stored, either in mechanical

or electrical form [181].

An electro-magnetic transducer (also called voice-coil or moving-coil trans-

ducer) is an energy transformer in which energy is converted from electrical

to mechanical (and vice versa) through the interaction of a permanent mag-

net and a coil. Over the years, several configurations have been adopted to

the practical realisation of the electro-magnetic transducer [182]. As shown in

figure 5.1 (a), the electro-magnetic transducer considered in this thesis is com-

posed by a cylindrical permanent magnet which is encircled by a ferromagnetic

cylindrical element in which the coil is rigidly fixed. The two elements are con-

nected via torsional springs, which provide a soft axial stiffness and a much

higher transverse stiffness [183]. Figure 5.1 (b) shows the lumped parameter

scheme used to model the electro-magnetic transducer. It is composed by base

and seismic masses, mb and ms, which represent the mass of the inner magnet

and the mass of the outer yoke and coil assembly, respectively. The stiffness and
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damping effects are modelled with a spring and damper elements in parallel

having stiffness k and damping c respectively.

(a)

Zsh

N

S

(b)

c

ms

mb

k fem

fem

Rei

Zsh

Le

y y eem

Figure 5.1: Sketch (a) and equivalent lumped parameter model (b) for the shunted
electro-magnetic transducer.

The transduction effect is modelled with the electro-mechanical coupling

coefficient ψ [184–186], furthermore the resistive and inductive effects of the

coil are modelled with a resistance Re and inductance Le connected in series

[181, 186, 187]. The mechanical and electrical properties of the transducer are

reported in table 5.1.

Table 5.1: Physical properties of the open-circuited electro-magnetic transducer.

Parameter Symbol Value

Seismic mass ms 115 [g]

Base mass mb 185 [g]

Natural frequency fA 20 [Hz]

Damping ratio ζA 0.2 [-]

Coil resistance Re 12 [Ω]

Coil inductance Le 4.35 [mH]

Transduction coefficient ψ 22.5 [N/A]

The constitutive equations which describe the two transduction effects follow

from Faraday and Lorentz force laws [186]. Faraday’s law stated that the poten-

tial increment deem over the elementary length dl of the coil, induced by the

relative motion between the coil and the magnet is:

deem = ∆ẇA × B · dl, (5.1)
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where ∆ẇA = ẇs − ẇb is the relative velocity of the coil and the magnet, being

ẇs and ẇb the velocities of the seismic and base masses, and B is the permanent

magnetic flux. As shown in plot (a) of figure 5.1, the magnetic flux is radial, the

two elements are allowed to move only in the axial direction and the coil is

winded up along the circumference of the cylindrical outer case, thus the three

quantity in equation (5.1) are mutually orthogonal, yielding:

deem = −∆ẇABdl. (5.2)

According to Lorentz’s force law, when a small charge dq moves with a ve-

locity v in an magnetic field B, it results subject to a force given by:

dfem = dq v × B. (5.3)

Assuming that the small charge is constrained to move in a conductor, the

product of the charge and velocity is equal to the electric current flowing in the

conductor multiplied by the elementary length of the conductor:

dfem = idl × B. (5.4)

Considering again the sketch of the electro-magnetic transducer shown in

figure 5.1 (a), the Lorentz force results in the axial direction, thus equation (5.4)

could be written as:

d fem = −iBdl. (5.5)

Integrating equations (5.2) and (5.5) over the length l = 2πrn of the coil,

being n the number of turns of the coil around the magnet, yields:

eem = −∆ẇABl and (5.6a)

fem = −iBl. (5.6b)

Defining the electro-mechanical transduction coefficient as

ψ = Bl, (5.7)

the constitutive equations for the electro-magnetic transducer could be written

as:

eem = −ψ∆ẇA and (5.8a)

fem = −ψi. (5.8b)
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The mechanical behaviour of the electro-magnetic transducer, when it is con-

nected to a shunt circuit as shown in plot (b) of figure 5.1, could be revised in

terms of the base impedance introduced in section 4.2 of the previous chapter.

In this case, in addition to the Newton’s law for the base and seismic masses,

also the Kirchhoff’s voltage law should be inserted in the formulation:

mbẅb = k (ws − wb) + c (ẇs − ẇb) + fem + fb, (5.9a)

msẅs = −k (ws − wb)− c (ẇs − ẇb)− fem, (5.9b)

eem + Rei + Le
di

dt
+ Zshi = 0. (5.9c)

Substituting equation (5.8b) into equations (5.9a) and (5.9b) and substituting

equation (5.8a) into equation (5.9c) and considering the complex amplitudes of

the time-harmonic functions gives:

Ç

jωmb + c +
k

jω

å

ẇb(ω) =

Ç

c +
k

jω

å

ẇs(ω)− ψI(ω) + fb(ω) (5.10a)

Ç

jωms + c +
k

jω

å

ẇs(ω) =

Ç

c +
k

jω

å

ẇb(ω) + ψI(ω) (5.10b)

ψ (ẇs(ω)− ẇb(ω)) = − (Re + jωLe + Zsh) I(ω) (5.10c)

Defining the electrical impedance of the series of the inherent resistance and

inductor and the shunt circuit as:

Zel = Re + jωLe + Zsh, (5.11)

from equation (5.10c) the complex amplitude of the current flowing in the coil

result:

I(ω) = − ψ

Zel
(ẇs(ω)− ẇb(ω)) . (5.12)

Substituting this expression in equations (5.10a) and (5.10b), gives

(Zmb + Zs) ẇb(ω) = Zsẇs(ω) + ψ
ψ

Zel
(ẇs(ω)− ẇb(ω)) + fb(ω) (5.13a)

(Zms + Zs) ẇs(ω) = Zsẇb(ω)− ψ
ψ

Zel
(ẇs(ω)− ẇb(ω)) (5.13b)

where Zmb = jωmb is the impedance of the base mass, Zms = jωms is the

impedance of the seismic mass and Zs = c + k/(jω) is the impedance of the
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mechanical suspension. From equation (5.13b), the complex amplitude of the

velocity of the seismic mass is derived as:

ẇs(ω) =

Ç

Zs +
ψ2

Zel

å

Ç

Zms + Zs +
ψ2

Zel

å ẇb(ω), (5.14)

which, substituted in equation (5.13a), gives:











Zmb
+

Zms

Ç

Zs +
ψ2

Zel

å

Ç

Zms + Zs +
ψ2

Zel

å











ẇb(ω) = fb(ω). (5.15)

The base impedance of the shunted electro-magnetic transducer results thus

given by [64, 65]:

Zb(ω) =
fb(ω)

ẇb(ω)
= Zmb

+

Zms

Ç

Zs +
ψ2

Zel

å

Ç

Zms + Zs +
ψ2

Zel

å . (5.16)

This result shows that an electric shunt circuit could be used to modify

the mechanical behaviour of the transducer. In figure 5.2 are shown the base

impedance FRFs (magnitude top plot and phase bottom plot) of the open- (thin

solid black lines) and short-circuited transducer (thick solid green lines). When

the device operates in the open-circuit condition, the electrical impedance of

shunt circuit results Zsh = ∞, yielding ψ2/Zel = 0. The open-circuited trans-

ducer behaves thus like the purely mechanic TVA described in section 4.2 of

the previous chapter.

When the transducer operates in the short-circuited mode, it presents the

mass behaviour at frequencies below and well above the resonance frequency.

However, as will be explained in the next section, the mechanical effect of the

inherent coil resistance and inductance corresponds to a damping effect which

smoothens the resonance peak of the transducer base impedance.

5.3 electro-mechanical analogies

In this section the mechanical effect produced by elementary shunts con-

nected to an idealised coil-magnet transducer are first analysed. The results
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Figure 5.2: Base impedance FRFs (amplitude in the top plot and phase in the bottom
plot) of the open- (thin solid black lines) and short-circuited (thick solid
green lines) electro-magnetic transducer.

here reported represent an extension of the ones published by the author in

[64, 65]. In figure 5.3 is shown the model used in the preliminary study. It

consists of an electro-magnetic two poles element, which is composed by two

massless elements connected via an idealised coil-magnet electro-mechanical

transducer, whose passive mechanical and electrical effects are neglected. The

idealised transducer is connected to an electrical shunt component.

fa

wb

ws

Dwa

fa

fem

fem

y y eem esh Zsh

i

Figure 5.3: Model of the idealised coil-magnet transducer with an electrical shunt.
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The equilibrium condition between the pair of external reactive forces fa ap-

plied to the massless elements and the electro-magnetic forces fem can be ex-

pressed as:

fa(t)− fem(t) = 0. (5.17)

Kirchhoff’s voltage law applied to the electric network gives:

eem(t) + esh(t) = 0, (5.18)

where eem is the transducer back electromotive force and esh is the voltage drop

across the shunt impedance. Substituting equation (5.8b) into equation (5.17)

and considering the complex amplitudes of time-harmonic functions gives:

fa(ω) = −ψI(ω). (5.19)

Also, substituting equation (5.8a) into equation (5.18) leads to the following

equation:

Zsh(ω)I(ω) = −ψ∆ẇA(ω), (5.20)

where the voltage drop produced by the shunt is expressed as esh(ω) = Zsh(ω)I(ω),

being Zsh(ω) the electrical impedance of the shunt. Substitution of equation

(5.20) into equation (5.19) leads to the equivalent mechanical impedance effect

produced by the shunted idealised coil magnet [127, 158]:

Zmec(ω) =
fa(ω)

∆ẇA(ω)
=

ψ2

Zsh(ω)
. (5.21)

When an electrical resistance is used as shunt element, characterised by an

electrical impedance Zsh = R, the equivalent mechanical impedance results

Zmec = ψ2/R, which corresponds to the mechanical impedance of a damper

[127]. If the idealised electro-mechanical device is shunted with an inductor,

whose electrical impedance is given by Zsh(ω) = jωL, the equivalent mechan-

ical impedance results given by Zmec(ω) = ψ2/(jωL), which corresponds to

the mechanical behaviour of a spring. Finally, when a capacitor is connected to

the idealised coil-magnet transducer, characterised by an electrical impedance

given by Zsh(ω) = 1/(jωC), the equivalent mechanical effect results Zmec(ω) =

jωψ2C, thus a mass-like behaviour. These results are summarised in table 5.2.

It is interesting to note that to obtain a large damping and stiffness effect, a

small resistance and inductance is respectively required, while to obtain a large

mass effect a large value of the capacitance is required.



120 time varying tva : rl shunted electromagnetic transducer

Table 5.2: Mechanical equivalent effects produced by shunt of electric elements con-
nected to the idealised coil-magnet electro-mechanical transducer. Adapted
from [64, 65].

Element Scheme

Electrical Equivalent Equivalent

Mechanical Mechanical

Impedance Impedance scheme

Zsh Zmec

R R R
ψ2

R c

L L jωL
ψ2

jωL k

C C
1

jωC
jψ2ωC m

When several elementary electrical elements are connected in series, the re-

sulting electrical impedance results given by:

Zsh(ω) =
∑

i

Zsh,i(ω), (5.22)

where Zsh,i(ω) is the electrical impedance of the i-th electrical element. The

equivalent mechanical impedance could be obtained from equation (5.21) as:

Zmec(ω) =
1

∑

i
1

Zmec,i(ω)

, (5.23)

where zmec,i(ω) is the equivalent mechanical effect of the i-th electrical element.

Table 5.3 summarised the electro-mechanical analogies for the series of elemen-

tary elements.

When the electrical elements are connected in parallel, the resulting electrical

impedance is given by:

1

Zsh(ω)
=
∑

i

1

Zsh,i(ω)
, (5.24)
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where Zsh,i(ω) is the electrical impedance of the i-th electrical element. The

mechanical equivalent impedance of electrical elements connected in parallel

are given by:

Zmec(ω) =
∑

i

Zmec,i(ω), (5.25)

where Zmec,i(ω) is the mechanical equivalent impedance of the i-th electrical

element. Table 5.4 summarised the electro-mechanical analogies when the ele-

mentary elements are connected in parallel.

Comparing the two tables, it is interesting to note that there is a straightfor-

ward relationship between the electrical element and the equivalent mechanical

elements only when the electrical elements are connected in parallel.

Considering for example the resistance and inductance elements represented

in the first rows of table 5.3 and 5.4 for the series and parallel connection, re-

spectively, the equivalent mechanical element is given by a stiffness and damper

elements connected in series and parallel, respectively.

For the series case, the two equivalent mechanical elements result given by:

ceq =
ψ2R

R2 + ω2L2
and (5.26a)

keq =
ω2ψ2L

R2 + ω2L2
. (5.26b)

The two equivalent mechanical elements assume values that depends on

both the inductance and the resistance. Furthermore, their value is a frequency-

dependent quantity.

For the parallel RL shunt, the equivalent damping and stiffness elements are

given by:

ceq =
ψ2

R
and (5.27a)

keq =
ψ2

L
. (5.27b)

In this case there is a direct correspondence between one electrical element

and one mechanical property, e.g. the damping effect is related to only the elec-

trical resistance. Furthermore, the values of the equivalent mechanical elements

are not frequency-dependent.
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Table 5.3: Mechanical equivalent effects produced by shunt of electric elements in series connected to the idealised coil-magnet electro-

mechanical transducer. Adapted from [64, 65].

Circuit Scheme

Electrical Equivalent Equivalent

Mechanical Mechanical

Impedance Impedance scheme

Zsh Zmec

R − L
R

L
R + jωL

ψ2

R + jωL
k

c

R − C
R

C
R +

1

jωC

ψ2

R +
1

jωC

m

c

L − C
L

C
jωL +

1

jωC

ψ2

jωL +
1

jωC

m

k

R − L − C

R

L

C

R + jωL +
1

jωC

ψ2

R + jωL +
1

jωC

m

c

k
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Table 5.4: Mechanical equivalent effects produced by shunt of electric elements in parallel connected to the idealised coil-magnet electro-
mechanical transducer. Adapted from [64, 65].

Circuit Scheme

Electrical Equivalent Equivalent

Mechanical Mechanical

Impedance Impedance scheme

Zsh Zmec

R − L R L
1

1

R
+

1

jωL

ψ2

R
+

ψ2

jωL

c k

R − C CR
1

1

R
+ jωC

ψ2

R
+ ψ2 jωC

mc

L − C CL
1

1

jωL
+ jωC

ψ2

jωL
+ ψ2 jωC

mk

R − L − C R L C
1

1

R
+

1

jωL
+ jωC

ψ2

R
+

ψ2

jωL
+ ψ2 jωC

mc k
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The electro-mechanical analogy study could be furthermore enhanced consid-

ering the simplified model for the electro-magnetic transducer shown in figure

5.4, in which the mechanical properties of the transducer (masses, damping and

stiffness parameters) are considered but the inherent electrical properties of the

coil (resistance and inductance) are neglected.

c

ms

mb

k fem

fem

i

y y

eem

Zsh

Figure 5.4: Simplified model of the electro-magnetic transducer with an electrical
shunt.

When the simplified model is shunted with a resistive element, the equivalent

mechanical element results in a damper element, as derived in the first row of

table 5.2. This results in parallel with the mechanical damper of the transducer,

as shown in the first row of table 5.5, thus the resulting damper element is given

by the sum of the two elements. As shown in the second row of table 5.5, if the

simplified transducer is shunted with an inductive element, the mechanical

equivalent results in a spring element, as derived from the second row of table

5.2. The mechanical and equivalent stiffness elements result in parallel, thus the

resulting stiffness element is given by the sum of the two elements.

When a capacitor is used to shunt the simplified electro-magnetic transducer,

the equivalent mechanical element is given by a mass element, as shown in

the third row of table 5.2. In this case the equivalent mass results in parallel

with the mechanical stiffness and damping element and in series with the base

and suspended masses. In this case it is not possible to define an equivalent

global element that takes into account the purely mechanical and the equivalent

parameter. This could also be observed considering equation (5.16), which for

a shunt circuit composed by a capacitor gives:

Zb(ω) = Zmb
+

Zms

Ä

Zs + Zmeq

ä

Zms + Zs + Zmeq

, (5.28)
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where Zmeq = jωψ2C is the mechanical equivalent impedance of the electric

capacitor.

In the fourth row of table 5.5 is considered the case in which the simplified

electro-magnetic transducer is shunted with a resistance and an inductance

in series. In this case, as shown in the first row of table 5.3, the equivalent

mechanical system is given by a series of a damping and stiffness elements. In

this case, both the stiffness and damping global elements result to be a function

of the pertinent purely mechanical element and of the frequency ω and of both

the resistance and the inductance of the shunt circuit.

Table 5.5: Mechanical equivalent effects produced by shunt of electric elements con-
nected to the simplified coil-magnet electro-mechanical transducer.

Element Simplified Equivalent Global equivalent

\ shunted Mechanical Mechanical

Circuit transducer transducer parameter

R

c

ms

mb

k fem

fem

i

y y

eem

R
c cR

ms

mb

k ceq

ms

mb

k

ceq = c +
ψ2

R

L

c

ms

mb

k fem

fem

i

y y

eem

L
c kL

ms

mb

k c

ms

mb

keq

keq = k +
ψ2

L

C

c

ms

mb

k fem

fem

i

y y

eem

C
c mC

ms

mb

k

not definable not definable

RL

series
c

ms

mb

k fem

fem

i

y y

eem

L

R

c cRL

ms

mb

k

kRL

ceq

ms

mb

keq

ceq = f (c, ω, R, L)

keq = f (k, ω, R, L)

RL

parallel
c

ms

mb

k fem

fem

i

y y

eem
LR

ms

c cR

mb

k kL ceq

ms

mb

keq

ceq = c +
ψ2

R

keq = k +
ψ2

L
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Finally, in the last row of table 5.5 is presented the simplified electro-magnetic

transducer shunted with a parallel of a resistance and an inductance. As shown

in the first row of table 5.4 this electrical shunt corresponds to a mechanical

system composed by a parallel of a damping and stiffness elements. This two

equivalent elements are in parallel with the inherent mechanical elements, thus

the resulting global stiffness element is given by the sum of the inherent me-

chanical stiffness and of the equivalent stiffness element, which depends only

on the electric inductance. Also, the resulting global damping element is given

by the sum of the inherent mechanical and of the equivalent damping element,

which depends only on the electric resistance.

5.4 time varying shunted electro-magnetic vibration absorbers

5.4.1 Optimal shunt circuit

Having established the mechanical effects produced by electric shunts con-

nected to an idealised coil-magnet transducer, it is now possible to consider the

mechanical response of the electro-magnetic transducer when connected to the

specifically designed shunt circuit. The lumped parameter model of the electro-

magnetic transducer connected to the specifically designed shunt is shown in

figure 5.5 (a).

(a)

c

ms

mb

k fem

fem

Re Rs1

Rs2

i Le Ls1

Ls2y y eem

(b)

ceq

ms

mb

keq

Figure 5.5: Lumped parameter model for the shunted electro-magnetic transducer (a)
and equivalent purely mechanical system (b).

The shunt circuit is designed to both annihilate the effects produced by the

inherent resistance and inductance of the coil and to tune the damping and

stiffness parameters. It is thus composed by a negative resistance Rs1 and a
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negative inductance Ls1 and in series with these elements is connected a parallel

of a variable resistance Rs2 and a variable inductance Ls2.

For simplicity, the electrical circuit shows idealised negative resistance Rs1

and negative inductance Ls1, which in practice are produced by active circuits

with operational amplifiers implementing negative impedance converters (NIC)

[188]. These are tuned in such a way as to cancel the inherent resistance Re and

inductance Le effects of the coil-magnet transducer.

The equivalent mechanical effects of the variable resistance Rs2 and variable

inductance Ls2 are modelled as a variable damper ψ2/Rs2 and a variable stiff-

ness ψ2/Ls2 in parallel with the mechanical damper and spring elements, c and

k. The equivalent variable damping and variable stiffness parameters of the

device are thus given by:

ceq = c +
ψ2

Rs2
and (5.29a)

keq = k +
ψ2

Ls2
. (5.29b)

The impedance of the suspension [127] results thus given by

Zs,eq(ω) = ceq +
keq

jω
(5.30)

and the base impedance of the electro-magnetic transducer shunted with the

circuit shown in figure 5.5 (a) results given by:

Zb,eq(ω) = Zmb(ω) +
Zms(ω)Zs,eq(ω)

Zms(ω) + Zs,eq(ω)
. (5.31)

The shunt elements could thus be used to modify the dynamic mechanic

response of the electro-magnetic transducer. Plot (a) of figure 5.6 shows the

base impedance of the transducer when the shunt inductance is varied in such

a way as to tune the device to series of frequencies between 30 and 100 Hz. This

graph enlightens a rather important aspect of the tuning mechanism, that is, the

resonance peaks become progressively sharper as the tuning frequency rises. In

plot (b) of figure 5.6 are shown the effects of increasingly lower values of the

shunt resistance Rs2 for three tuning frequencies. The shunted electro-magnetic

transducer could thus be effectively used as a Tuned Vibration Absorber.
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Figure 5.6: Base impedance FRFs (amplitude in the top plots and phase in the bottom
plots) of the electro-magnetic transducer in open- (thin solid black lines),
short-circuit (thick solid green lines) and when it is shunted with the pro-
posed circuit for several values of the shunt inductance Ls2, faint solid red
lines in plot (a), and of the shunt resistance Rs2, faint blue lines in plot (b).

Recalling that the fundamental natural frequency and the damping ratio of

the two masses-damper-stiffness TVA are given by

ωA =

√

keq

ms
and (5.32a)

ζA =
ceq

2msωA
, (5.32b)
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the values of the shunt inductance and resistance, for given values of the natural

frequency and the damping ratio, are obtained from the following expressions:

Ls2 =
ψ2

keq − k
=

ψ2

msω2
A − k

and (5.33a)

Rs2 =
ψ2

ceq − c
=

ψ2

2ζAmsωA − c
. (5.33b)

Figure 5.7 shows the variation of the shunt inductance Ls2 (solid red line) and

of the shunt resistance Rs2 (dashed blue lines) against the natural frequency

of the TVA in the 25-100 Hz frequency range when the TVA damping ratio

is set at 5.8 %. This figure shows how the shunt inductance tends to a very

high value when the tuning frequency approaches the inherent open circuit

resonance frequency of the electro-magnetic transducer. The electro-magnetic

TVA should thus be designed with a natural frequency much lower than the

lower end of the target frequency range. It is furthermore important to note how

in the higher frequency region the dynamic response of the system becomes

very sensitive to the electrical parameters. Indeed, a very small variation of

the shunt inductance Ls2 will cause a variation of several Hertz of the natural

frequency of the device.

20 30 40 50 60 70 80 90 100
w A [Hz]

0

50

100

150

200

250

300

Ls
2 [m

H
]

0

50

100

150

200

250

300

Rs
2 [ 

W
]

Figure 5.7: Shunt inductance (solid red line) and resistance (dashed blue line) versus
the natural frequency of the TVA assuming a fixed value of the damping
ratio ζA = 5.8%.
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5.4.2 Sweeping operation mode

The shunted electro-magnetic TVA can be operated to periodically vary its

stiffness and damping properties, so that the TVA fundamental natural fre-

quency is continuously swept in a given frequency band and the TVA damping

is set to maximise the vibration absorption at each frequency. This sweeping

TVA [56, 58, 61, 62, 64, 65] can be applied on thin flexible structures to "blindly"

control the flexural vibration in a broad frequency band. In this operation mode,

there is no need to know in advance the dynamic response of the hosting struc-

ture.

For the simulation study presented in the following section, the shunt induc-

tance was swept in such a way as the fundamental natural frequency of the

TVA followed the periodic law:

ωA(t) = (ωA,max − ωA,min) cos2
Å

2π

Th
t
ã

+ ωA,min, (5.34)

where ωA,min and ωA,max are the lower and upper frequencies of the sweep

respectively, assumed to be 25 and 100 Hz, and Th is the period of the cosine

harmonic function. It is worthwhile to note that since the sweep law is a second

power of a cosine function, the period of the harmonic function results double

of the period of the sweep, Tsw = Th/2. The square cosine function was chosen

to produce a greater frequency sweep rate at the higher frequency end of the

sweep. As discussed in reference [56], the transient response of the TVA is con-

trolled by its characteristic time constant, which decreases with the frequency.

The chosen sweeping law allows a more uniform action of the TVA in the whole

frequency of the sweep. Considering the mechanical properties of the cylindri-

cal hosting structure listed in table 2.1 and the electro-mechanical properties of

the electro-magnetic TVA listed in table 5.1, the period of the sweep was cho-

sen after a trial and error simulation study which has shown that the control

performances follow a smooth bell shape curve as the frequency of the sweep

is increased from zero, with a maximum for fsw = 12 Hz (thus Tsw
∼= 0.083) s.

Also, the resistance was swept in such a way to ensure the damping ratio of

the TVA was kept constant and equal to ζA = 5.8 %, as for the case of the fixed

TVA reported in table 4.3.

Using equations (5.33), the inductance Ls2 and resistance Rs2 of the shunt

were swept according to the time law given in equation (5.34)in the ranges

Ls2,min−max = 7 − 285 mH and Rs2,min−max = 27 − 190 Ω.
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Figure 5.8: Shunt inductance (a) and resistance (b) and corresponding TVA equiva-
lent stiffness (c) and equivalent TVA damping coefficient (d) necessary
to produce the 25-100 Hz sweep of the TVA fundamental natural fre-
quency (e) and constant damping ratio equal to 5.8 % (f). The dashed lines
in plots (c), (d), (e) and (f) show the pertinent inherent parameters for the
open-circuit TVA.

Figure 5.8 shows the periodic variation over time of the shunt inductance

Ls2 (plot (a)) and of the shunt resistance Rs2 (plot (b)) as well as the resulting

periodic variation of the TVA equivalent stiffness keq (plot (c)) and TVA equiv-

alent damping factor ceq (plot (d)), which lead to the desired periodic sweep

of the TVA fundamental natural frequency ωA between ωA,min = 25 Hz and

ωA,max = 100 Hz (plot (e)) and the desired constant value of the TVA damping

ratio ζA = 0.058 (plot (f)). It is interesting to note that, as it can be deduced by

the expressions in equations (5.29), the equivalent stiffness keq and the equiva-

lent damping factor ceq reach their maxima when the shunt inductance Ls2 and

resistance Rs2 are at their minima and vice versa.
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5.4.3 Fully coupled structural-acoustic-sweeping TVA equation of motion

The procedure to obtain the fully coupled structural-acoustic-TVA for the

sweeping devices is the same as the one presented in section 4.6 of the previous

chapter for the fixed TVAs.

When the sweeping TVAs are used to control the flexural vibration of the

cylindrical shell and the acoustic response of the interior enclosure, the damp-

ing and stiffness properties of the TVAs are cyclically varied with time, thus the

expression (4.29) for the force produced by the TVAs on the cylinder should be

substituted with the following expression:

fA,j(t) = −mbjẅbj(t) + cAj(t)∆ẇAj(t) + kAj(t)∆wAj(t)

= −mbjẅbj(t) +

Ç

cj +
ψ2

Rs2,j(t)

å

∆ẇAj(t) +

Ç

k j +
ψ2

Ls2,j(t)

å

∆wAj(t),

(5.35)

where cAj(t) is the equivalent damping coefficient given by equation (5.29a)

of the j-th sweeping TVA, being cj and Rs2,j(t) the inherent mechanical damp-

ing coefficient and the time dependent shunt resistance for the j-th TVA. Also,

kAj(t) is the equivalent stiffness coefficient given by equation (5.29b) of the j-th

sweeping TVA, with k j and Ls2,j(t) the inherent mechanical damping coefficient

and the time dependent shunt inductance for the j-th TVA.

The time varying effects of the damping and stiffness properties of the TVA

should also be taken into account in the equation of motion for the TVA given

in equation (4.35), which, for the sweeping TVA, could be written as

msjẅsj(t) = −cAj(t)∆ẇAj(t)− kAj(t)∆wAj(t)

= −
Ç

cj +
ψ2

Rs2,j(t)

å

∆ẇAj(t)−
Ç

k j +
ψ2

Ls2,j(t)

å

∆wAj(t).
(5.36)
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Following the same procedure described in section 4.6, the fully coupled

equation of motion for the structural-acoustic-sweeping TVA results given by:
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(5.37)

where the expressions for all the matrices contained in equation (5.37) are given

in section 4.6 of the previous chapter. Equation (5.37) could be written in a more

compact form as:

Mq̈(t) + C(t)q̇(t) + K(t)q(t) = ΦΦΦf(t) (5.38)

The global damping and stiffness modal matrices of the fully coupled structural-

acoustic-TVA system, C(t) and K(t), result time-dependent due to the time-

dependent nature of the damping and stiffness properties of the sweeping

TVAs.

5.4.4 State space formulation

The set of time-dependent differential equations given in matrix form by

equation (5.38) can be cast in the following state space matrix formulation

ẋ(t) = A(t)x(t) + Bf(t), (5.39)

where the state vector is given by
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(5.40)
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and the time-varying state matrix and the constant input matrix are given by:

A(t) =





0 I

−M−1K(t) −M−1C(t)



 and (5.41a)

B =





0

−M−1
ΦΦΦ



 . (5.41b)

Here, the zero matrix 0 and the identity matrix I have dimensions (2M +

2N + NA)× (2M + 2N + NA).

For the time-varying system subject to stochastic disturbances considered in

this chapter, the numerical integration of equation (5.39) requires a particular

algorithm based on the Runge-Kutta integration methods, which is described

in appendix C.

The time-dependent flexural modal velocities and the time-dependent acous-

tic modal pressures can be obtained from the state vector as:

ḃ(t) = Cbx(t) and (5.42a)

a(t) = Cax(t), (5.42b)

where the two output matrices are given by:

Cb =
[

I2M×2M 02M×2N 02M×NA
02M×2M 02M×2N 02M×NA

]

, (5.43a)

Ca =
[

02N×2M 02N×2N 02N×NA
02N×2M I2N×2N 02N×NA

]

. (5.43b)

5.4.5 Frequency formulation

As in section 3.8.2 for the coupled structural-acoustic response and in section

4.6.1 for the coupled structural-acoustic-fixed TVA response, also for the cou-

pled structural-acoustic-sweeping TVA the response of the system is studied in

the frequency domain. In the previous chapters, the global flexural response

and the global interior sound response were established by the flexural kinetic

energy PSD and by the acoustic potential energy PSD.

When the time-varying shunted vibration absorbers are used, the time his-

tory of the total flexural kinetic energy and of the total acoustic potential energy

are not stationary and therefore the two PSDs could not be defined [124, 125].

However, since the velocity of the sweep of the shunted electro-magnetic TVAs

is such that a large number of cycles are completed over the time integration pe-
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riod T, the process exhibits a second-order periodicity and can be classified as

cyclostationary, allowing a Fourier transform analysis to estimate the flexural

kinetic energy and acoustic potential energy PSDs [189].

The flexural kinetic energy PSD and the acoustic potential energy PSD are

thus not derived with the procedure described in section 4.6.1 of the previous

chapter, but a slightly different approach is used. Recalling that the two PSDs

functions are defined as [28, 64, 72]:

SK(ω) =
1

2
ρh

∫

S
lim

T→∞

E
ï

1

T
ẇ∗(xs, ω)ẇ(xs, ω)

ò

dS, (5.44a)

SP(ω) =
1

2ρ0c2
0

∫

Vc

lim
T→∞

E
ï

1

T
p∗(x, ω)p(x, ω)

ò

dV (5.44b)

and that the frequency dependent complex amplitudes of the flexural velocity

ẇ(xs, ω) and of the acoustic pressure p(x, ω) could be expressed as

ẇ(xs, ω) = ϕϕϕ(xs)ḃ(ω) and (5.45a)

p(x, ω) = ψψψ(x)a(ω), (5.45b)

the flexural kinetic energy PSD and the acoustic potential energy PSD could be

expressed as:

SK(ω) =
1

2
mcTr [ΛΛΛSn

bb(ω)] and (5.46a)

SP(ω) =
Vc

2ρ0c2
0

Tr [ΓΓΓSn
aa(ω)] . (5.46b)

Here the superscript n indicates that the matrices with the PSDs of the modal

structural velocities and of the modal pressure amplitudes are obtained with

the numerical estimation algorithm presented in appendix C.

5.4.6 Simulation results

This section discusses the vibration and sound control effects produced by

arrays of 12 and 18 sweeping shunted electro-magnetic TVAs. The TVAs are

blindly operated to control the whole set of resonance peaks that characterise

the 20 to 100 Hz spectra of the structural and acoustic response.

The position of the two arrays of sweeping TVAs are the same as those of the

fixed TVAs, listed in table 4.3 and schematically represented in figure 4.13 of

the previous Chapter. The shunt inductance Ls2 and resistance Rs2 of the TVAs
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are synchronously varied in time such that the fundamental natural frequencies

ωA of the devices vary according to the sweeping law given in equation (5.34)

between 25 and 100 Hz and the damping ratios of the TVAs ζA remain constant

and equal to 5.8 %. The properties of the two arrays of TVAs are listed in table

5.6.

Table 5.6: TVA parameters for the sweeping operation mode.

TVA Frequency range Damping ratio Shunt inductance Shunt resistance

nr° fA [Hz] ζA [%] Ls1 [mH] Ls2 [mH] Rs1 [Ω] Rs2 [Ω]

1 ÷ 12 25 ÷ 100 5.8 −4.35 7 ÷ 285 −22 37 ÷ 190

1 ÷ 18 25 ÷ 100 5.8 −4.35 7 ÷ 285 −22 37 ÷ 190

The thick red line in plot (a) of figure 5.9 shows that, when the cylinder is

equipped with 12 sweeping TVAs, the flexural response of the cylindrical struc-

ture is reduced in correspondence of the majority of the resonance frequencies,

with attenuations of 7 to 10 dB below 60 Hz and much lower attenuations

around 1 dB and 2 dB above 60 Hz.

The thick red line in plot (c) of figure 5.9 shows that the 12 sweeping TVAs

effectively control the acoustic response at all the resonance frequencies of the

structural modes that effectively couple to the interior acoustic field in the

whole 20 - 100 Hz frequency band, with reductions comprised between 7 and

12 dB.

Considering the case in which the array of 18 sweeping TVAs is implemented,

the thick green line of plot (b) in figure 5.9 the structural response is effectively

reduced at the majority of the resonance peaks, with attenuations comprised

between 3 dB and 12 dB. Also in this case, the higher reductions are obtained

for frequencies below 60 Hz. Also, the thick green line of plot (d) in figure 5.9

shows that the array of 18 sweeping TVAs produce large reductions comprised

between 10 and 15 dB at all the resonance frequencies of the structural modes

that effectively couple to the interior acoustic field in the whole 20 - 100 Hz.

To better quantify and contrast the control effects produced by the two ar-

rays of fixed tuned TVAs presented in the previous chapter and the arrays of

sweeping TVAs presented in this one, figure 5.10 shows the third-octave band

reductions of the flexural kinetic energy PSD (plot (a)) and acoustic potential

energy PSD (plot (b)) produced by the 12 fixed tuned (orange first bars), 12

sweeping (red second bars), 18 fixed tuned (cyan third bars) and 18 sweeping

TVAs (green fourth bars). From the two plots it can be gathered that the sweep-

ing TVAs produce vibration and noise control effects comparable to those ob-
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Figure 5.9: Spectra of the flexural kinetic energy PSD (top plots) and acoustic potential
energy PSD (bottom plots) without TVAs (thin solid black lines), with 12

sweeping Tuneable Vibration Absorbers (thick red lines in plots (a) and (c))
and with 18 sweeping Tuneable Vibration Absorbers (thick green lines in
plots (b) and (d)).

tained with the fixed tuned device. Furthermore it can be noted that the noise

and control effects are higher in the low frequency band and tend to decrease

as the frequency raises. It is worthwhile to note that the minimum reduction of

the acoustic response occurs at the third-octave band centred at 80 Hz, which

correspond to the third-octave band where the acoustic natural frequencies lay.

5.5 chapter concluding remarks

The study presented in this chapter has shown the effects of using arrays of

time-varying shunted electro-magnetic vibration absorbers attached to a thin

cylindrical shell to control the flexural and internal sound responses in the low

frequency range up to 100 Hz.

An electro-mechanical analogy study was presented, which led to the design

of an optimal shunt circuit for the electro-magnetic transducers. The aim of the
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Figure 5.10: Third octave band reduction of the flexural kinetic energy PSD (plot (a) )
and acoustic potential energy PSD (plot (b)) produced by 12 fixed tuned
(orange 1st bars), 12 sweeping tuneable (red 2nd bars), 18 fixed tuned (cyan
3rd bars) and 18 sweeping tuneable vibration absorbers (green 4th bars).

shunt circuit is to both annihilate the inherent electrical properties of the trans-

ducer and to obtain independent damping and stiffness equivalent mechanical

effects.

Continuous time variations of the electrical parameters of the shunt is pro-

posed and analysed together with the control law. It was shown that these

kind of sweeping absorbers are able to control both the flexural and the in-

terior acoustic responses of the cylindrical shell. Better control performances

were obtained for very low frequencies, where the cylinder flexural response

is characterised by well separated resonance peaks, while at higher frequency

the control performances are lower due to the overlap of the modal flexural

response.

It was shown that the arrays of sweeping TVAs produce similar vibration

and noise control effects than the arrays of fixed tuned TVAs. This is an impor-

tant result, particularly when it is considered that the time-varying TVAs work

without a precise tuning to targeted resonant frequencies, but only the damp-

ing ratio and initial and final values of the frequency range of the sweep are

needed. Furthermore, they can be blindly operated in a given frequency band

without the need of performing a system identification to obtain the hosting

structural dynamic response.
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E X P E R I M E N TA L R E S U LT S

This chapter reports the experimental implementation of a shunted electro-

magnetic TVA and the evaluation of its control performances of the flexural

vibrations of a cylindrical shell.

First, the experimental characterisation of both the mechanical and electrical

properties of an electromagnetic transducer is conducted.

Then the digital implementation of shunt circuit is presented. This was done

using a dSPACE Auto Box DS1103 board system. A particular front-end circuit

is required, whose design and features are described. The effects of several

resistive and resistive-inductive shunt circuits, digitally implemented, on the

Base Impedance response of the shunted EM transducer are assessed.

In the last part of the chapter, the response of a steel cylindrical shell is

evaluated considering a shunted EM TVA operating in the fixed tuned and the

sweeping operation mode.
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6.1 description of the test rig

This chapter describes the initial experimental results regarding the vibra-

tion control performances of a shunted Electro-Magnetic Tuneable Vibration

Absorber (EM TVA) connected to a cylindrical shell. Therefore it constitutes the

experimental counterpart of the simulation results presented in the previous

chapters 4 and 5, regarding the fixed tuned and sweeping operation mode of

the TVA, respectively.

This section is devoted to the description of the test rig used in the exper-

imental evaluations of the vibration control performances of the shunted EM

TVA. Indeed, the results presented in this chapter are related to a simplified

primary structure with respect to the analytical one presented in the previous

chapters.

First, a different configuration of the cylindrical shell is adopted. The differ-

ences are related to the boundary conditions applied to the cylindrical shell and

to its geometrical and physical properties. As shown in figure 6.1 (a), the cylin-

drical shell is suspended with four ropes and held to a specifically designed

frame. In such a way the cylindrical shell is subject to free-free boundary con-

ditions. This appears to be a discrepancy with the simply-supported boundary

conditions considered in the previous chapters for the simulation results. As

discussed in Chapter 3, the choice of the simply-supported boundary conditions

for the cylindrical shell, in accordance with references [30, 66–68, 93–97], was

led by possibility to obtain a simple closed-form analytic expression for the

results. On the other hand, the free-free boundary conditions appears to be the

easiest to achieve in practice [98]. Considering that the two boundary condi-

tions are related to similar dynamic parameters (i.e. modal density and modal

overlap factor) [190–192] and that the boundary conditions just slightly affect

the dynamic response of the cylindrical shell [96], the discrepancy is therefore

only apparent. As reported in table 6.1, the dimension of the cylinder was cho-

sen such that it could more suitably be hosted into the "Laboratorio di Controllo

e Regolazione Automatica" at the Università degli Studi di Udine. Finally, for

manufacturing reasons, the cylinder was made in steel, despite the simulation

results are related to an aluminium shell. As discussed in Section 3.3 for the

simply-supported boundary conditions, the structural natural frequencies are a

function of the ratio between the Young modulus and the density of the mate-

rial, i.e. E/ρ. This ratio assumes comparable values considering the material as

aluminium or steel [193]. Thus the choice of a different material, led by manu-

facturing reasons, would not affect considerably the results.
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Second, only the vibration control effects of the TVA are assessed, neglect-

ing the noise control ones. Precise noise measurements would require that the

experiments are conducted in an anechoic chamber [194], with a dedicated con-

figuration of the acquisition and analysis devices, to avoid that the operating

noises of these devices alter the acoustic measurements. At the time of the ex-

periments were conducted, the anechoic chamber of the Università degli Studi

di Udine was not available, thus in order to avoid misleading results it was

chosen to neglect the noise control performances of the TVA.

The electro-magnetic transducer used is a H2W TECHNOLOGIES NCM02-

17-035-2F, shown in figure 6.1 (b). This voice coil transducer, as sketched in

figure 5.1 (a) of the previous chapter, is composed of a cylindrical permanent

magnet encircled by a ferromagnetic case which host the coil. The two ele-

ments are connected with a torsional spring. The physical parameters of the

transducer are presented in table 6.1.

(a) (b)

Figure 6.1: Images of the suspended cylindrical shell connected to the shaker (a) and
of the electro-magnetic transducer (b).
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Table 6.1: Geometrical and physical properties of the thin walled cylinder and of the
electro-magnetic transducer.

Parameter Value

Cylindrical shell Length L [mm] 500

Radius R [mm] 350

Thickness h [mm] 3

Material steel

Mass mc [kg] 26

Electro-magnetic transducer Seismic mass ms [g] 185

NCM02-17-035-2F Base mass mb [g] 115

Natural frequency ft [Hz] 18

Damping ratio ζt [%] 22

Coil resistance Re [Ω] 22

Coil inductance Le [mH] 4.35

Transduction coefficient ψ [N/A] 22.5

6.2 mechanical and electrical characterisation of the em trans-

ducer

In this section, the mechanical and electrical properties of the electro-magnetic

transducer are presented. First, the Base Impedance of the transducer is consid-

ered, in both the open- and short-circuited conditions. The measured mechani-

cal properties are then compared with the simulated Base Impedance obtained

with the expression given in equation (5.16) of the previous chapter. The elec-

trical impedance of the transducer is then analysed. The setup for the two ex-

periments are presented in figure D.1 and D.2 of appendix D, respectively. Both

measurements were conducted with the DataPhysics Abacus, which is shown

in figure 6.2 (a). The main features of this dynamic signal analyser are:

• realtime rate of 49 kHz and 120 dB dynamic range, with a self-adjusting

sampling rate depending on the higher frequency of the measurement;

• 16 BNC input channels and 1 BNC output channel with a voltage range

of ±10V.
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for the acceleration output and of 23.32 mV/N for the force output. The shaker

was fed with a random signal and the upper frequency of the measured is set

to 400 Hz with a sampling frequency of 1024 Hz.

(a) (b)

Figure 6.3: Pictures of the EM transducer mounted horizontally on the shaker (a) and
blocked between two rigid and heavy masses (b).

In figure 6.4 is shown the 10-400 Hz FRF (amplitude in the top plot, phase

in the central plot and coherence in the bottom plot) of the open- and short-

circuited Base Impedance of the electro-magnetic transducer. The curves re-

lated to the measures (thin dashed black lines for the open-circuited and thin

dashed blue lines for the short-circuited condition) show a good experimen-

tal agreement with the simulated curves (thick solid light grey lines for the

open-circuited and thick solid cyan lines for the short-circuited condition). It

is interesting to note that the coherence function for the open-circuited Base

Impedance assumes values slightly lower than one for frequency below about

60 Hz. This is due to the fact that, as will be apparent in the following figures,

the response of the transducer is characterised by secondary rocking modes

which are not modelled and that affect the Base Impedance measurement which

consider only the longitudinal vibration.
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Figure 6.4: Base Impedance FRF (amplitude in the upper plot, phase in the central plot
and coherence in the lower plot) of the electro-magnetic transducer in open-
(thick solid grey lines simulated and thin dashed black lines measured) and
short-circuit (thick solid cyan lines simulated and thin dot-dash blue lines
measured).

6.2.2 Electrical characterisation

The electrical characterisation of the transducer is obtained connecting the

wires of the device to the DataPhysics system through 2 BNC - Crocodile Clips

test lead. In order to avoid the effect of the electromotive force eem, related to

the relative velocity of the magnet and the coil as expressed by equation (5.8a),

the device was blocked between two heavy and very rigid masses, as shown

in figure 6.3 (b). The transducer was fed with a random signal and the upper

frequency range was fixed to 12 kHz, with a sampling frequency set to 32 kHz.

In figure 6.5 is shown the simulated (thick solid light grey lines) and mea-

sured (thin solid blue lines) FRFs (amplitude top plot, phase central plot and

coherence bottom plot) of the electrical impedance of transducer. The two curve

present a good agreement in the low frequency resistive region below about

100 Hz and above this value the two curve seem to describe different electrical

behaviours. The amplitude of the simulated RL impedance, represented with

the light grey lines, increase as the frequency increase following an inductive
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behaviour. The amplitude of the measured electrical impedance raises with fre-

quency with a different slope than the simulated one. This could be justified

considering that in the real electro-magnetic transducer appear some capacitive

effects that are not taken into account in the lumped parameter model. Fig-

ure 6.5 also reports with the red diamonds the values of the amplitude of the

electrical impedance obtained with a BK PRECISION 878B RLC meter. These

points are in good agreement with the values obtained with the DataPhysics,

confirming the the good quality of the experimental measurements.

20

30

40

50

 | 
Z el

 | 
[d

B 
]

110 102 103 104

-90

0

90

 
  Z

el
   

[d
eg

] 

 frequency  [Hz] 

0.6

0.8

1

 C
oh

er
en

ce

Figure 6.5: Simulated (thick solid grey lines) and measured (thin solid blue lines) elec-
trical impedance FRFs (amplitude in the upper plot, phase in the central
plot and coherence in the lower plot) of the blocked electro-magnetic trans-
ducer. The red diamonds in the amplitude plot are the measured points
obtained with the RLC-meter.

6.3 digital implementation of the shunt circuit

The shunt circuit used to tune the transducer described in the previous chap-

ter 5, was digitally implemented with the dSPACE Auto Box DS1103 board

shown in figure 6.2 (b). The main features of this controller board are
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• a CPU with a 1 GHz clock, 32 MB of memory for the application and 96

MB for data storage;

• 4 sample and hold ADC converters connected to 16 multiplexed inputs

with a voltage range of ±10 V;

• 8 DAC converters with an output range of ±10 V and ±5 mA.

The sampling rate of the controller was set to 48 kHz. As schematically shown

in figure 6.6, the electro-magnetic transducer is connected to the dSPACE board

through a front-end circuit board, which is specifically designed to allow the

interfacing between the transducer and the dSPACE board.
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Figure 6.6: Scheme of electro-magnetic transducer connected the front-end circuit and
the dSPACE board.

6.3.1 Front-end Circuit

The connection between the EM transducer and the dSPACE board is ob-

tained by means of the front-end board shown in figure 6.7. The electrical cir-

cuit, whose schematic representation is shown in figure 6.8, was adapted from

the one presented in references [196, 197].

The front-end circuit is basically composed by three stages. In the first stage

the current i which flows through the coil of the transducer is measured with

the resistance R1. This signal is then amplified with the amplifier U1A with

a fixed gain set to 11 in order to obtain a high signal to noise ratio at the

input of the digital controller. In the dSPACE unit the current is multiplied

by the desired impedance and the voltage output of the controlled is added

to the voltage measured with the resistance R1 to give the voltage across the
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terminals of the transducer. The final stage of the front-end circuit is composed

by an additional power amplifier which supplies the required values of current

which are not obtainable connecting directly the transducer to the dSPACE

board.

Figure 6.7: Picture of the front-end board.

In figures D.8 (b), D.9 (b) and D.10 (b) of appendix D are shown the ex-

perimental results of the three tests described in figures D.8 (a), D.9 (a) and

D.10 (a). These tests were made to verify the correct construction and opera-

tion of the front-end board on the electrical impedance digitally implemented

by the dSPACE unit. In such a way it was verified the absence of secondary

effects due to the front-end circuit. The set of the three tests were conducted

connecting directly the front-end board to the DataPhysics and providing a ran-

dom excitation signal. The upper end of the frequency range was set to 2 kHz

corresponding to a the sampling rate of about 5 kHz.
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Figure 6.8: Schematic representation of the front-end circuit. Adapted from references [196, 197]
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6.3.2 Digital implementation of the shunt electrical impedance

The digital implementation of the shunt electrical impedance is obtained with

the dSPACE controller through the SIMULINKr scheme shown in figure 6.9.

Several tests were made leading to the choice of a shunt circuit composed by a

resistance and inductance connected in series, as will be explained in the follow-

ing section 6.4. The practical digital implementation of the RL shunt inductance

requires the addition of a low pass filter, such that the electrical impedance of

the shunt is of the form:

Zsh(ω) =
jωLs + Rs

jωτf + 1
, (6.2)

where τf = 1/ωc is the time constant of filter, being ωc the cut-off frequency.

Several tests where conducted and it was observed that the system composed

by the shunted transducer becomes unstable if the amplitude of the electrical

impedance of the shunt is higher than 130 V/A. The cut-off frequency of the

low-pass filter was therefore selected such that the amplitude of the electrical

impedance of the RL circuit would not exceed 110 V/A. The cut-off frequency

was thus tuned according to the following law:

ωc =

√

g2
max − R2

s

L2
s

, (6.3)

where gmax is the maximum amplitude of the electrical impedance, set to 110

V/A.
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-K-
A0/B0

INPUT

OUTPUT

Figure 6.9: Scheme of the SIMULINKr model used for the digital implementation of
the shunt impedance.
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To obtain the best frequency-domain match between the continuous-time and

discretized impedance of the shunt, the expression given in equation (6.2) is

transformed in the discrete-time domain with the bilinear approximation (or

Tustin) method [198]. This can be easily done with the double substitution s =

jω and

s =
2

Ts

z − 1

z + 1
, (6.4)

where s and z are the Laplace and discrete-time variables, respectively and Ts

is the sampling period, set to 1/48000 s. The discrete-time expression for the

electrical impedance of the filtered shunt circuit could be expressed as:

Zsh(z) =
A0 + A1z−1

B0 + B1z−1
, (6.5)

where

A0 = TsRs + 2LS, (6.6a)

A1 = TsRs − 2LS, (6.6b)

B0 = Ts +
2

ωc
and (6.6c)

B1 = Ts −
2

ωc
. (6.6d)

Recalling that the discrete-time expression for the electrical impedance of the

filtered shunt is given by

Zsh(z) =
E(z)

I(z)
, (6.7)

the voltage across the terminals of the implemented shunt at the discrete-time

step z could be expressed as

E(z) =
A0

B0
I(z) +

A1

B0
I(z − 1)− B1

B0
E(z − 1). (6.8)

The first part of the block diagram shown in figure 6.9 represents the expres-

sion given in equation 6.8. The subsequent two constant gain blocks are related

to the constant gain by which the input signal of the dSPACE is amplified by

the front-end board (Physical gain block) and the need to invert the sign of the

output voltage of the dSPACE (Inverting block).

In figure 6.10 are shown the simulated (thick cyan lines) and the measured

(thin purple lines) FRFs (amplitute top plot, phase central plot and coherence

bottom plot) of the discrete-time electrical impedance of the filtered shunt cir-

cuit assuming a shunt resistance of −22.5Ω and a shunt inductance of 40 mH.
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The cut-off frequency of the filter, derived by equation (6.3), results to be of

about 430 Hz. The two curves present a very good agreement especially at

frequency below 1 kHz. Above this frequency value the delay due to the AD

and DA conversions causes a phase lag which was estimated to be of about 4

deg/kHz. In figure 6.10 it is also shown with the ochre lines the FRFs of the

ideal RL shunt (without the low pass filter). It is interesting to note how the

presence of the low pass filter affects both the amplitude and the phase of the

electrical impedance of the RL shunt circuit.
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Figure 6.10: Simulated (thick cyan lines) and measured (thin purple lines) FRFs (mag-
nitude top plot, phase central plot and coherence bottom plot) of the elec-
trical impedance of the RL shunt assuming Rs = -22.5Ω and Ls = 40 mH.
The thick ochre lines represent the simulated electrical impedance of the
shunt circuit without the low-pass filter.

6.4 base impedance of the shunted em transducer

In this section the experimental results of the implementation of the digi-

tal shunt circuit and its effects on the Base Impedance of the electro-magnetic

transducer are presented.
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Several attempts where made to implement the optimally designed shunt cir-

cuit depicted in figure 5.5 of the previous chapter, but two main hurdles was

encountered. Firstly, as shown in figure 6.5, the actual electrical behaviour of

the electro-magnetic transducer does not coincide with the one modelled with

the inherent resistance Re and inductance Le of the coil. This results particularly

true in the high-frequency inductive region. Furthermore the electrical parame-

ters appear to be extremely depending on the working conditions. Indeed, the

inherent resistance Re resulted to be strongly dependent on the room tempera-

ture and on the temperature reached in the coil due to Joule heating effect.

Secondly, when the shunt parameters are chosen to annihilate the effects

produced by the inherent coil parameters, the system composed by the shunted

transducer becomes unstable, leading to the saturation of the dSPACE output.

In order to overcome these difficulties, the choice has fallen upon the imple-

mentation of a shunt circuit composed by a resistance Rs and a inductance Ls

connected in series, as shown in figure 6.11 (a). These elements simply sums

with the inherent electrical elements of the coil and, as shown by the fourth row

of table 5.5 of the previous chapter, they produce an equivalent mechanical ef-

fect which could be modelled with a series of a dashpot and a spring, as shown

in figure 6.11 (b).

(a)

c
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c

csh

ms

mb

k ksh

Figure 6.11: Lumped parameter model for the shunted electro-magnetic transducer (a)
and equivalent lumped parameter model (b).

In section 5.3 of Chapter 5 was discussed the electro-mechanical analogies.

In particular, in the first row of table 5.3 is reported the equivalent mechanical

impedance of a shunt circuit composed by a resistance and a inductance con-

nected in series. As discussed in the previous section of this Chapter, two other

effects have to be taken in account. First, the application of the low-pass filter,

whose cut-off frequency is selected according to the electrical elements of the
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shunt circuit. Furthermore, the AD and DA conversions causes a delay in the ac-

tuation of the output od the dSPACE controller. The total electrical impedance

seen by the electro-magnetic transducer could therefore be expressed as:

Zsh(ω) =
jωLs + Rs

(jωτd + 1)

(

jω

√

L2
s

g2
max − R2

s

+ 1

) , (6.9)

where τd is the time-delay due to the AD and DA conversion.

In this case it was not possible to obtain a simple expression for the dashpot

csh and the stiffness ksh due to the electrical shunt as a function of the shunt

resistance Rs and the shunt inductance Ls. From the experimental results it was

found that expressions similar to the ones given in equations (5.29) could be

used as a rule of thumb:

csh ∝
1

Re + Rs
and (6.10a)

ksh ∝
1

Le + Ls
. (6.10b)

A preliminary consideration could be made considering the short-circuited

transducer. The mechanical response, expressed in term of the Base Impedance,

of the short-circuited transducer is characterised by a more smoother curve than

the one corresponding to the open-circuited configuration, as shown in figure

6.4. This is due to the higher value of damping introduced by the presence of

the coil resistance.

Considering the equivalent mechanical parameters of the inherent electrical

elements, the equivalent damping element is softer than the equivalent stiffness

element. The equivalent damping element could therefore considered as rigidly

connected to the suspended mass and the base mass. The effect of the inherent

inductance of the coil could thus be neglected as far as the equivalent stiffness

element is more rigid than the equivalent damping element. In the next sec-

tion the effects of different configurations of the digitally implement shunt is

assessed considering the base impedance of the transducer.

6.4.1 Positive resistive shunt

The first case considered is related to a shunt circuit composed by a purely

resistive positive element. In this case, the definition of the cut-off frequency of



6.4 base impedance of the shunted em transducer 155

the low-pass filter, given by equation (6.3), is no longer applicable. The cut-off

frequency was therefore set to 10 kHz.

The positive shunt resistance Rs sums with the inherent resistance of the coil

Re, yielding to a resulting resistance which is higher than the inherent one.

The equivalent mechanical element (i.e. the damping element) results therefore

softer as the shunt resistance Rs increases, as express by equation (6.10a). The

resulting global damping of the transducer, given by the sum of the purely me-

chanical damping (open-circuited configuration) and the one due to the shunt

circuit, assumes values which gradually approaches the purely mechanical one

as the shunt resistance increases. This behaviour could be clearly seen in figure

6.12. Here the FRF (amplitude in top plot, phase in central plot and coherence

in bottom plot) of measured Base Impedance of the shunted transducer, con-

sidering a digitally implemented positive resistance of Rs = 160Ω (thin solid

blue lines) is compared with the measured Base Impedance obtained consider-

ing the open- (thick dashed black lines) and short-circuited (thick dotted black

lines) configurations. The positive resistive shunted response is characterised by

a lighter damping compared to the short-circuit configuration and by a higher

damping compared to the open-circuited configuration. Figure 6.12 also reports

the Base Impedance measured shunting the transducer with a physical resis-

tance, drawn in the thick solid yellow lines. The responses obtained shunting

the transducer with a digitally implemented and a physical positive resistance

are in very good agreement, confirming the good quality of the measurements

and of the digital implementation of the shunt circuit.

Figure 6.13 shows the effect on the Base Impedance of the shunted trans-

ducer of increasing positive values of the shunt resistance Rs. As the value

of Rs assumes higher values, the measured Base Impedance of the shunted

transducer, drawn in the solid thin blue lines, tend towards the measured Base

Impedance of the open-circuited transducer. Again, this is due to the fact that

for increasing positive values of the shunt resistance, the equivalent damping

effect assumes gradually smaller values. The global damping effect therefore

tends to the purely mechanical damping, which corresponds to the damping

characteristic of the open-circuited configuration.
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Figure 6.12: Measured Base Impedance FRF (amplitude in the upper plot, phase in
the central plot and coherence in the lower plot) of the electro-magnetic
transducer in open- (thick dashed black lines), short-circuit (thick dotted
black lines) and with a physical (thick solid yellow lines) and digitally
implemented shunt circuit (thin solid blue lines) composed by a Rs =
160 Ω resistance.
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Figure 6.13: Measured Base Impedance FRF (amplitude in the upper plot and phase in
the lower plot) of the electro-magnetic transducer in open- (thick dashed
black lines), short-circuit (thick dotted black lines) and shunted with in-
creasing values of digitally implemented positive resistance (thin solid
blue lines).
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6.4.2 Negative resistive shunt

The second case considered is related to a shunt circuit composed by a neg-

ative resistance. In this case, the global resistance of the transducer assumes

values which are smaller than the inherent one. Consequently, as expressed

by equation (6.10a), the equivalent damping parameter assumes higher val-

ues than the one obtained considering the short-circuited configuration. The

equivalent damping parameter assumes therefore values characterised by an

impedance comparable to the impedance of the equivalent spring element, re-

lated to the inherent coil inductance Le. The equivalent spring elements could

no more be neglected if a shunt circuit composed by a negative resistance is con-

sidered. The equivalent spring element combines with the mechanical spring el-

ement, given a global stiffness which is higher than the purely mechanical one,

obtainable considering the open-circuited transducer. The effect of the global

stiffness is shown in figure 6.14, where in the purple lines is drawn the mea-

sured Base Impedance of the transducer shunted with a digitally implemented

negative resistance of Rs = −21Ω.
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Figure 6.14: Measured Base Impedance FRF (amplitude in the upper plot and phase in
the lower plot) of the electro-magnetic transducer in open- (thick dashed
black lines), short-circuit (thick dotted black lines) and with a digitally
implemented shunt circuit (thin solid purple lines) composed by a Rs =
−21 Ω resistance.
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The Base Impedance of the shunted transducer is characterised by a higher

resonance frequency compared to the one obtained with the open-circuited

transducer, drawn in the thick dashed black lines. The value of the resonance

frequency is closely related to the value of the inherent coil inductance Le.

Figure 6.15 shows the effects on the measured Base Impedance of increasing

values of the shunt resistance. The response of the shunted response, drawn

in the thin solid purple lines, is compared with the open- (thick dashed black

lines) and short-circuited (thick dotted black lines) configurations. It is inter-

esting to note that, in contrast to the previous case, as the shunt resistance Rs

increases the response of the shunted transducer is characterised by a higher

value of the damping. This is due to the fact that as the global resistive charac-

teristic assumes lower values (i.e. for a higher absolute value of negative shunt

resistance Rs), the equivalent mechanical damping tends toward a rigid connec-

tion. The equivalent mechanical stiffness, related to the inherent coil inductance

Le, assumes gradually more importance contributing to the global stiffness of

the shunted transducer.
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Figure 6.15: Measured Base Impedance FRF (amplitude in the upper plot and phase in
the lower plot) of the electro-magnetic transducer in open- (thick dashed
black lines), short-circuit (thick dotted black lines) and shunted with in-
creasing values of digitally implemented negative resistance (thin solid
purple lines).

6.4.3 Negative resistive-inductive shunt

The last analysis of the effects of the digitally implemented shunt circuit on

the Base Impedance of the transducer is related to the possibility of shifting the

resonance frequency of the shunted transducer. This could be obtained varying

the value of the global inductance of the electrical circuit of the transducer. In-
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deed, considering the expression given in equation (6.10b), the equivalent stiff-

ness parameter is, to a first approximation, inversely proportional to the global

inductance, which results given by the sum of the inherent coil inductance Le

and the shunt inductance Ls. A change in the value of the shunt inductance Ls

corresponds to a variation of the equivalent mechanical stiffness elements and

therefore a shift of the resonance frequency.

Figure 6.16 shows a comparison of the measured Base Impedance FRFs ob-

tained considering the open- (thick dashed black lines), short-circuited (thick

dotted black lines) and shunted (thin solid red lines) transducer. The shunt

considered here is composed by a series of a negative resistance fixed to Rs =

−22Ω and an inductance fixed to Ls = 5 mH. In this case the measured reso-

nance frequency is about 80 Hz, which results smaller compared to the value

of about 100 Hz obtained for the configuration presented in figure 6.14.
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Figure 6.16: Measured Base Impedance FRF (amplitude in the upper plot, phase in
the central plot and coherence in the lower plot) of the electro-magnetic
transducer in open- (thick dashed black lines), short-circuit (thick dotted
black lines) and with a digitally implemented shunt circuit (thin solid red
lines) composed by a Rs = −22 Ω resistance and a Ls = 5 mH inductance.

For increasing values of the shunt resistance, the Base Impedance response

appears smoother, corresponding to increasing values of the damping. This be-

haviour is shown in figure 6.17, where the Base Impedance responses obtained

in the open- and short-circuited configurations are compared to the responses

of the shunted transducer obtained considering a shunt circuit composed of an
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inductance fixed to Ls = 5 mH and a negative resistance Rs assuming increas-

ing values.
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Figure 6.17: Measured Base Impedance FRF (amplitude in the upper plot and phase in
the lower plot) of the electro-magnetic transducer in open- (thick dashed
black lines), short-circuit (thick dotted black lines) and shunted with a
digitally implemented circuit composed by a series of a negative resistance
Rs assuming increasing values and an inductance fixed to Ls = 5 mH (thin
solid green lines).

An interesting behaviour of the shunted transducer could be noted consider-

ing figure 6.18. Here the Base Impedance response of the transducer operating

in the open- (thick dashed black lines) and in the short-circuited (thick dot-

ted black lines) configurations are compared to the responses of the shunted

transducer (thin solid red lines). In this case the shunt circuit is composed by

a negative resistance fixed to Rs = −22Ω and an inductance Ls, whose values

are gradually increased. As the shunt inductance Ls increases, the resonance

frequency decreases, as suggested by equation (6.10b). Moreover, as the shunt

inductance Ls increases, the resonance peak gradually smooths over. This ef-

fect is related to the inherent mechanical damping element, whose effect on

the resonance peak is related to the frequency at which the peak assumes the

maximum value. Recalling that the damping ratio is defined as:

ζ =
c

2msωn
, (6.11)

it appears clear that for a fixed value of the damping coefficient c, the damp-

ing ratio ζ assumes lower values as the natural frequency ωn increases. The

analysis of figure 6.18 lead to the conclusion that at low frequency the damp-

ing ratio could not assumes values particularly smaller than the one related to

the open-circuited configuration of the transducer. As reported in table 6.1, the

damping ratio related to the purely mechanical damping mechanism assumes
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a particularly high value, ζt = 22%, compared to the optimal values derived in

Section 4.6.2 for the fixed TVA.

It is interesting to compare figures 5.6 (a) and (b) presented in Chapter 5 to

figures 6.17 and 6.18, which represent their experimental counterpart.
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Figure 6.18: Measured Base Impedance FRF (amplitude in the upper plot and phase in
the lower plot) of the electro-magnetic transducer in open- (thick dashed
black lines), short-circuit (thick dotted black lines) and shunted with a
digitally implemented circuit composed by a series of a negative resistance
fixed to Rs = −22Ω and an inductance Ls characterised by increasing
values (thin solid red lines).

It is furthermore worth mentioning that all the measured responses of the

Base Impedance presented in this Section are characterised, by different amounts,

by discontinuities at about 40 and 70 Hz. These are due to the presence of sec-

ondary rocking vibration modes of the electro-magnetic transducer.

To conclude the analysis of the effects of the digitally implemented shunt cir-

cuit on the Base Impedance response, figure 6.19 shows some of the measured

Base Impedance responses. Here are compared the FRFs (amplitude top plot

and phase bottom plot) of the open- (thick dashed black lines), short-circuited

(thick dotted black lines) and shunted transducer. The responses related to a

shunt resistance fixed to Rs = −21.5Ω are here drawn in cyan, the curves re-

lated to a shunt resistance fixed to Rs = −22Ω are drawn in purple and finally

the curves related to a shunt resistance fixed to Rs = −225Ω are drawn in

green. The several curves are obtained implementing a shunt inductance Ls

fixed respectively to −6, −4, −2, 0, 2, 5, 10, 20, 40, 80 and 150 mH (from right

to left).
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Figure 6.19: Measured Base Impedance FRF (magnitude top plot and phase bottom plot) of the open- (dashed black lines), short-circuited
(dotted black lines) and shunted electro-magnetic transducer. The coloured curves are obtained implementing a negative shunt
resistance Rs of −22.5 Ω (green lines), −22 Ω (purple lines) and −21.5 Ω (cyan lines) and with a shunt inductance Ls of −6, −4,
−2, 0, 2, 5, 10, 20, 40, 80 and 150 mH, from right to left respectively.
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6.5 structural response of the cylinder equipped with the shunted

tva

In this section, the experimental evaluation of the vibration control of the

fixed and the sweeping electro-magnetic TVA are assessed considering the TVA

mounted on the cylindrical shell.

The first part of the section is devoted to the dynamic characterisation of the

cylindrical shell. The flexural velocity of the cylindrical shell is first measured in

two points by means of two PCB Piezotronics 288D01 Impedance Heads. The

two sensors are characterised by a natural frequency above 20kHz, a weight

of 18 grams and a sensitivity of 9.94 mV/(m/s2) for the acceleration output

and of 23.32 mV/N for the force output. The two sensors, whose positions are

reported in table 6.2, are connected to the TIRA GmbH TV 51140 shaker and

to the EM transducer. A vibrometric analysis of the plain cylindrical shell is

then presented, which leads to the identification of the deflection shapes of the

cylinder. This analysis allows for the definition of best position of the EM TVA.

In the second part of the section the control performances of the TVA, both

in the fixed and the sweeping operation modes, are presented. Based on the ex-

perimental results presented in the previous Section, the EM transducer is con-

nected to a digitally implemented shunt circuit in order to modify its mechan-

ical response. Finely selecting the electrical parameters, the dynamic character-

istic of the transducer could be accurately tuned. Consequently, as presented in

Chapter 4, the EM transducer would behave like a fixed TVA when mounted

on the cylindrical shell. By means of a dedicated algorithm, the electrical pa-

rameters of the shunt circuit could be periodically varied over time, yielding to

a cyclically variation over time of the mechanical behaviour of the transducer.

Therefore, as presented in Chapter 5, the EM transducer would behave as a

sweeping TVA when mounted on the cylindrical shell.

Figure 6.20 shows a picture of the test rig used for the measurements of

the velocity in the two points. The right side of the picture shows the shaker

mounted on a very rigid and heavy frame. The shaker is connected to the

cylinder through a stinger connected to the Impedance Head. The left side of

the picture shows the connection between the cylindrical shell and the electro-

magnetic transducer, whose wires are connected to the dSPACE board. The

schematic representation of the experimental setup is shown in figure D.7 of

Appendix D.
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Table 6.2: Positions of the excitation point and of the TVA application point.

Axial Circumferential

[mm] [deg]

Shaker 135 0

TVA 185 170

Figure 6.20: Picture of the cylinder connected to the shaker and to the EM transducer.
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6.5.1 Response of the plain cylinder

The setup for the experimental measurement of the velocity of the plain cylin-

der is presented in figure D.5 of Appendix D. The shaker is fed with a random

signal in order to excite the cylinder with a stochastic white-noise point force.

The acceleration signals of the two Impedance Heads are integrated in post-

processing to obtain the velocities at the two points. The force signal produced

by the Impedance Head connected to the shaker is used as reference signal to

obtain the velocity response per unit primary force excitation.

Figure 6.21 shows the 10-150 Hz spectra of the amplitude of the velocity per

unit primary excitation force measured at the excitation point, plot (a), and

at the control point, plot (b). The two responses are characterised by several

well separated resonance peaks, whose amplitudes are fairly even. In corre-

spondence of about 45, 85 and 103 Hz a two resonance peaks are clustered in

a small band of few Hz. The peculiar characteristic of the response at these

frequencies will be explained and justified by means of the vibrometric anal-

ysis. It is furthermore interesting to note how the resonance peaks are fairly

separated by anti-resonance for the response measured at the forcing position,

plot (a), while for the response measured at the control position the recurrence

of resonance and anti-resonance peaks is less even.
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Figure 6.21: Spectra of the velocity per unit primary force excitation of the plain cylin-
der measured at the positions where the force acts (plot (a)) and at the
control position (plot (b))
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6.5.2 Vibrometric analysis of the plain cylinder

The dynamic response of the cylindrical shell is furthermore investigated

by means of the vibrometric analysis. The setup of the test is presented in

figure D.6 of Appendix D. A panoramic picture of setup is shown in figure 6.22.

Here are shown the Polytec PSV-500 Scanning Vibrometer used, in the centre of

figure, the Front End and the laptop in the left side and the cylinder connected

to the shaker in the right side.

Figure 6.22: Panoramic view of the vibrometic measurements on the plain cylindrical
shell.

The Vibrometer used is a 1D acquisition system, suitable for measurements

of flat surfaces. In order to obtain a measurements of the deflection shapes of

the cylindrical shell, the cylindrical surface was divided into sector of angular

dimension of π/4. Due to the symmetry of the domain, four scan was sufficient

to obtain the deflection modes. The position of the scanning head in the four

scans sections are shown in figure 6.23 (a). For each scan, the vibration level is

acquired in 45 point, arrange in a grid of 5 vertical positions and 9 horizontal

(circumferential) positions, as shown in figure 6.23 (b). The data obtained with

the four acquisitions are subsequently merged together in post-processing.

For the free-free cylindrical shell here considered, the analytical mode shapes

could be expressed as [199]:

ϕs
m(xs) = cos

Å

m1π

L
x
ã

cos (m2ϑ) and (6.12a)

ϕa
m(xs) = cos

Å

m1π

L
x
ã

sin (m2ϑ) , (6.12b)
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(a)

(b)

Figure 6.23: Positions of the scanning head in 4 different sectors, plot (a), and acquisi-
tion grid, plot (b)

where the subscript m indicates the couple of modal indices (m1, m2) and two

components for each mode shape should be taken into account due to the cylin-

drical symmetry.
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Figure 6.24 shows a comparison between the analytical mode shapes ex-

pressed by equations (6.12) and the measured deflection shapes. Here the ana-

lytical mode shapes are shown in the left image of each plot while the deflection

shapes are shown in the right image of each plot.

As highlighted in Section 3.4.4 of Chapter 3, if a single point force excites the

cylindrical shell, independently to the boundary conditions, the modes shapes

orientates in order to present the maximum deflection in correspondence to

the angular position of the force. This suggest that for the case at hand, a sin-

gle component is sufficient to describe the deflection of the cylindrical shell.

Considering for example plots (c) and (d) of figure 6.24, which correspond to

the deflection shapes of the resonance peaks of 44 and 45 Hz, it is clear that

them are characterised by the same spatial distribution, and thus by the same

combination of modal indices m1 and m2, but a different circumferential geom-

etry. The same could be noted considering plots (f) and (g) corresponding to

the responses at 85 and 86 Hz and also plots (h) and (i) corresponding to the

responses measured at 103 and 106 Hz, respectively.

The presence of two resonance peaks characterised by two very close reso-

nance frequencies, which present the same spatial distribution is mainly due to

the weld joint. This section represents indeed a discontinuity on the cylindrical

surface and therefore the flexural wave propagating in the cylindrical shell are,

in some amount, obstructed by the presence of the weld joint.

Figure 6.25 shows the overlay of the average velocity response per unit pri-

mary excitation force obtained with the vibrometric analysis and the identifica-

tion of the deflection shape for each resonance frequency. The average spectra

is obtained by summing together the responses measured in correspondence of

the 180 points (4×45) and therefore does not present any anti-resonance.
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(a) fr = 16 Hz (b) fr = 26 Hz

(c) fr = 44 Hz (d) fr = 45 Hz

(e) fr = 60 Hz (f) fr = 85 Hz

(g) fr = 86 Hz (h) fr = 103 Hz

(i) fr = 106 Hz (j) fr = 139 Hz

Figure 6.24: Comparison of the simulated mode shapes and of the measured deflection
shapes of the free-free cylindrical shell for the (0, 2) (a), (1, 2) (b), (0, 3) (c)
and (d), (1, 3) (e), (0, 4) (f) and (g), (1, 4) (h) and (i) and for the (0, 5) (j)
mode and deflection shapes.
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Figure 6.25: Overlay of the average velocity response of the cylindrical shell and of the deflection shapes.
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6.5.3 Response of the cylinder equipped with the fixed shunted EM TVA

Based on the vibrometric analysis presented in the previous section, the con-

trol position where the EM TVA is connected is selected in order to be the most

suitable for the flexural control, as discussed in section 4.5 of Chapter 4. The

selected control position is reported in table 6.2.

First, the effects on the open-circuited transducer mounted on the cylindrical

shell are considered. Figure 6.26 shows the 10-150 Hz spectra of the velocity per

unit primary force measured at the excitation point, plot (a), and at the control

point, plot (b). The responses of the plain cylinder are drawn in thick solid cyan

lines and the responses of the cylinder equipped with the open-circuit EM TVA

are drawn in the thin solid black lines. The open-circuited EM TVA presents,

as reported in table 6.1, a resonance frequency of about 16 Hz which is slightly

lower than the first resonance frequency of about 18 Hz. The device is therefore

mistuned and, in addition to its high value of the damping, it does not provide

significant control performances. The two responses of the cylinder equipped

with the open-circuit EM TVA are furthermore only slightly affected at higher

frequency by the mass-like impedance of the TVA.
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Figure 6.26: Measured spectra of the velocity per unit primary force excitation at the
positions where the force acts (plot (a)) and at the control position (plot (b))
without the TVA (thick solid cyan lines) and when the open-circuited TVA
is mounted on the cylinder (thin solid black lines).

Based on the results obtained in Section 6.4 of this Chapter, the EM TVA is

then shunted with a digitally implemented circuit composed by a negative re-

sistance Rs and an inductance Ls. The electrical parameters are selected in order

to tuned the shunted EM TVA to the fourth, sixth and ninth resonance modes,

whose frequencies are 45, 85 and 106 Hz respectively. The selected electrical

parameters are reported in table 6.3.
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Table 6.3: TVA parameters for fixed and sweeping operation modes.

Operation Frequency range Damping ratio Shunt inductance Shunt resistance

mode fA [Hz] ζA [%] L1 [mH] R1 [Ω]

Fixed (6.27 (a), (b)) 45 10.5 40 −22.5

Fixed (6.27 (c), (d)) 85 4 2.5 −22.5

Fixed (6.27 (e), (f)) 106 4 −1 −22.5

Sweeping 40 ÷ 150 4 ÷ 11 −5 ÷ 45 −22.5

Figure 6.27 shows the 10-150 Hz spectra of the velocity per unit primary force

measured at the excitation position, left plots, and at the control position, right

plots. Here the responses obtained considering the open-circuited EM TVA are

drawn in solid thin black lines ones obtained considering the fixed shunted

EM TVA are drawn in solid thin red lines. Plots (a) and (b) are related to the

fixed TVA tuned to the fourth resonance frequency, plots (c) and (d) are related

to the fixed TVA tuned to the sixth resonance frequency and finally plots (e)

and (f) are related to the fixed TVA tuned to the ninth resonance frequency.

The frequencies at which the fixed TVA is tuned are highlighted by the red

arrows.

The fixed tuned shunted TVA effectively control the resonance peaks corre-

sponding at the target resonance frequencies at which they are tuned, present-

ing reductions of 9 to 15 dB at the excitation position and of 11 to 20 dB at the

control position.

It is worth mentioning that higher reductions are obtained in correspondence

to the resonance peaks characterised by the higher resonance frequency. This

is justified considering the results obtained in Section 6.4 of this Chapter. In-

deed, as shown in figures 6.18 and 6.19, the damping ratio of the transducer

decreases as the resonance frequency raises. Tuning the resonance frequency of

the transducer to 45 Hz implies that the damping ratio assumes a higher value

than the optimal one, which results to be about 4 %.

It is furthermore important to highlight how these results are obtained by

accurately tuning the TVA to the resonance frequencies of the cylindrical shell.
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Figure 6.27: Measured spectra of the velocity per unit primary force excitation at the
positions where the force acts (left plots) and at the control position (right
plots) of the cylinder with the open-circuited TVA (solid thin black lines)
and with the TVA tuned to control the resonant response of the fourth
(plots (a) and (b)), sixth (plots (c) and (d)) and ninth (plots (e) and (f))
structural modes (solid thin black lines).
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6.5.4 Response of the cylinder equipped with the sweeping shunted EM TVA

In this section the flexural vibration control performances of a sweeping

shunted EM TVA are assessed. As introduced in Section 5.4 of Chapter 5, when

the shunted EM TVA are operated in the sweeping mode, it cyclically varies its

resonance frequency while the damping ratio is constant over time and fixed

to the optimal value. This could be achieved periodically varying the electrical

parameters of the shunt circuit.

As highlighted by the results discussed in Section 6.4 of this Chapter, it is not

possible to obtain a simple and straightforward relation between the electrical

parameters of the shunt circuit and the mechanical parameters of the shunted

transducer. This is due to series circuit selected to shunt the transducer. In

addition to this, the effects of the low-pass filter and of the delay introduced by

the AD and DA conversions have to take into account.

A different approach to obtain the sweeping operation mode has been adopted.

By means of the experimental findings presented in Section 6.4, it is possible to

select the value of the shunt inductance Ls in order to obtain a given resonance

frequency. Subsequently, instead of considering the analytic sweeping law pre-

sented in Section 5.4 of the previous Chapter, the following periodic law was

chosen for the time-variation of the shunt inductance:

Ls(t) = Ls,max − (Ls,max − Ls,min) cos2 (2π fswt) , (6.13)

where Ls,max, Ls,min are the upper and lower values of the shunt inductance, set

to 45 and −5 mH respectively and fsw is the frequency of the sweep, which

was set at 10 Hz after several experimental test. The shunt resistance was set

to Rs = −22.5 Ω and kept constant over time in order to obtain the minimum

value of the damping of the shunted sweeping TVA for each value of the shunt

inductance.

The frequency range of the sweep and the electrical parameters are reported

in the last row of table 6.3.

Figure 6.28 shows the 10-150 Hz spectra of the velocity per unit primary force

measured at the excitation position, plot (a), and at the control position, plot (b).

Here the velocity responses of the cylinder equipped with the open-circuited

EM are drawn in solid thin black lines and the velocity response considering

the sweeping shunted EM TVA are drawn in solid thick green lines. Figure 6.28

shows that, when the cylinder is equipped with the shunted sweeping TVA,

the structural response is effectively reduced at the majority of the resonance

peaks, with reductions comprised between 3 dB and 10 dB for the point where
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the force is applied and between 6 dB and 10 dB for the response measured

where the sweeping TVA is applied.
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Figure 6.28: Measured spectra of the velocity per unit primary force excitation at the
positions where the force acts (plot (a)) and at the control position (plot (b))
of the cylinder with the open-circuited TVA (solid thin black lines) and
when the shunted TVA operating in the sweeping mode (solid thick green
lines) in the frequency range pointed by the green arrows.

6.6 chapter concluding remarks

This chapter presented experimental results of the semi-active control effects

of fixed tuned and sweeping vibration tuneable absorbers on a thin cylindrical

shell using a digitally implemented shunted electro-magnetic transducer.

First, the test rig used for the experimental validation of the sweeping electro-

magnetic TVA is presented. Unlike the simulated results presented in the previ-

ous Chapters, the cylindrical shell here considered is subject to free-free bound-

ary condition. This anyway does not constitute a limitation of the experimental

work since, as stated in Chapter 2, the developed analytical model has the pur-

pose of only provide an estimation of the performances of the control device.

Indeed, a free-free cylinder presents the same dynamic properties (i.e modal

density and modal overlap factor) of a simply-supported cylindrical shell with

the same geometrical dimensions. Also the choice of a different material (i.e.

steel instead of aluminium) does not constitute a significant difference with

the results presented in the previous Chapters. This is due to the fact that the

two materials present comparable values of the Young’s modulus to density

ratios (E/ρ). Therefore the choice has fallen upon a material which is easier to

weld, yielding to economic benefits. The choice of different geometrical dimen-

sions for the cylindrical shell was driven by the necessity for it to be suitably by
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hosted into the "Laboratorio di Controllo e Regolazione Automatica" at the Uni-

versità degli Studi di Udine. The geometrical dimensions was anyway selected

in order to present a length to radius ratio (L/R) comparable to the one consid-

ered in the simulation study. The control performances of the shunted EM TVA

are assessed only by means of the vibration control effects, neglecting the noise

control ones. This is due to the fact that the anechoic chamber of the Università

degli Studi di Udine was not available at the time when the experiments were

made.

The mechanical and electrical characteristics of the actual electro-magnetic

transducer were evaluated, showing how the two mass-daspot-spring model

presented in chapter 5 could be effectively used to predict the mechanical re-

sponse of the transducer. On the other hand, the electrical behaviour of the

actual transducer appears to be different to the one modelled with the inherent

electrical resistance and inductance. This aspect would require a further inves-

tigation and an improvement of the analytical model of the electro-magnetic

transducer. This set of analyses was not included in the present investigation.

This choice was made after pondering all the variables and selecting the most

representative for this study considering the limited amount of time available

for the present work.

A specific front-end circuit was designed and tested for the connection of

the electro-magnetic transducer and the controller platform. The digital imple-

mentation of shunt circuit was obtained with a discrete-time algorithm imple-

mented on the dSPACE platform.

The effects of the digitally implemented shunt circuit on the Base Impedance

of the transducer was measured. Several types of resistive, both with positive

and negative values, and resistive-inductive shunt circuits were tested. This

survey led to the development of general guidelines for the design of the shunt

circuit. The shunt considered in the experimental study is composed by a se-

ries of a resistance and an inductance. This aspect represents a substantial dif-

ference with the ideal shunt circuit presented in Chapter 5. Indeed, the ideal

shunt circuit is composed by a series of a negative resistance and a negative in-

ductance connected to a parallel of a resistance and an inductance. The first to

negative electrical elements are tuned to cancel the inherent resistance and in-

ductive effects of the coil. Considering the non ideal electrical behaviour of the

actual transducer, the cancellation of the inherent electrical effects are extremely

difficult. Furthermore the inherent electrical effects appears to be strongly de-

pendent on the operation conditions, due to the Joule heating effect. The choice

of RL series shunt circuit led to the experimental demonstration of how the
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electrical shunt could modify the mechanical behaviour of the shunted electro-

magnetic transducer.

The last part of the Chapter is devoted to the evaluation of the vibration

control performances of a shunted EM TVA, in both the fixed and the sweep-

ing operation mode. The dynamic response of the cylindrical structure is first

evaluated. In particular, the cylinder was identified in terms of its resonance fre-

quency and the deflection shapes associated to these frequencies. A vibrametric

analysis was conducted in order to identify the deflection shapes associated to

each resonance frequency. The scanning vibrometer used for the measurement

is an instrument suitable for the analysis of flat surface. Four measurements

to adjacent sections of the cylindrical surface were conducted. The data ob-

tained with the four measurements are subsequently merged together in post-

processing in order to show the deflection of half the cylindrical surface. The

deflection shapes are then compared to the analytical mode shapes for the free-

free cylinder. One interesting finding that emerge from this analysis is that the

response of the cylindrical shell is characterised, in the low frequency region, by

well separated resonance peaks. At some frequencies two resonance peaks are

clustered in small bands of few Hz. The two resonant modes whose resonance

frequencies are clustered are associated with the same spatial distribution of

flexural waves. This effect is ascribable to the weld joint, which, by different

amounts, obstructs the circumferential propagation of the flexural waves.

The vibration control performances are assessed considering the velocity of

two points on the cylindrical surface, namely the position where the force due

to the shaker is exerted and the point where the EM transducer is connected

to the cylindrical shell. Firstly, the control performances of the fixed tuned

shunted TVA are evaluated. The results obtained considering the fixed TVA

finely tuned to three resonance frequency are presented. The experimental re-

sults showed very good reduction performances both at the control and exci-

tation points, with reduction of the order of 10 ÷ 20 dB. Secondly, the effects

of the sweeping shunted TVA on the vibration of the cylindrical shell are as-

sessed. Due to the different shunt circuit adopted, the ideal time-variation law

described in Chapter 5 could not be implemented. Thus, a different sweeping

law is used, which led to a time-variation of the shunt inductance and therefore

of the resonance frequency of the shunted EM TVA. The shunt resistance was

set to the minimum possible value and kept constant over time. The sweeping

EM TVA would therefore be characterised by the minimum value of damping

for each value of the shunt inductance. The reduction obtained with this oper-

ation mode were quantified to be of the order of 5 ÷ 10 dB. This is a rather
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promising result, considering that the sweeping TVA does not require a pre-

cise tuning to targeted resonant frequency. Indeed, it can blindly operated in a

given frequency band.



7
S U M M A RY, C O N C L U S I O N S A N D F U T U R E W O R K

This final Chapter recapitulates the principal findings of this thesis and sug-

gests advancements for future research work. A more detailed discussion of the

results is provided at the end of each Chapter.

7.1 summary

In chapter 3 the fully coupled structural-acoustic system is described. The in

vacuo response of the cylindrical shell is first derived according to the Donnell-

Mushtari shell theory [98, 101], which is particularly suitable for the description

of the flexural vibration of cylindrical structures. The twofold degeneracy due

to the cylindrical symmetry of the structure leads to the representation of each

structural natural mode shape with two components, referred as symmetric

and anti-symmetric components. A graphical representation of the two struc-

tural mode shape components is given, concerning in particular the positions

of the nodal and anti-nodal positions. The response of the cylindrical shell sub-

ject to an array of 24 white noise uncorrelated rain on the roof point forces is

assessed in terms of the flexural kinetic energy PSD [60, 64, 65, 72]. A simpli-

fied model consisting of a single structural mode and either single or couples

of point forces is used to obtain a criteria for the orientation of the resulting

flexural deflection. Then, the acoustic response of the rigidly walled cylindrical

enclosure is considered. The acoustic modal shapes need a representation via

two components due to the cylindrical symmetry of the acoustic enclosure. An

array of distributed white noise uncorrelated point monopole sources are con-

sidered to excite the acoustic domain. The acoustic response is assessed in terms

of the total acoustic potential energy PSD [28, 60, 64, 65]. The chapter concludes

with the analysis of the coupled structural-acoustic response. The approach to

obtain the coupled response is based on the Modal Interaction Model [30, 99],

which describe the coupled flexural displacement in terms of the in vacuo flex-
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ural modes and the acoustic pressure in terms of the rigidly walled acoustic

modes. The coupling phenomenon is expressed in terms of structural-acoustic

and acoustic-structural coupling terms [28, 30, 64, 120, 136].

Chapter 4 presented the simulation studies on the noise and vibration control

effects produced by arrays of fixed Tuned Vibration Absorbers. First, the dy-

namic behaviour of the TVA is analysed in terms of the device Base Impedance

[154]. Several tuning criteria presented in literature [159] are reported . The

principal operating issues of the TVA are also presented, in particular the effect

of the mistuning of the TVA is assessed considering a simplified model com-

posed by a single degree of freedom primary system. The effects of a single

TVA on a multi degrees of freedom system is also considered. A simplified

model composed by a single structural mode is used to obtain general guide-

lines for the positioning of the TVAs both when the excitation field permits a

precise knowledge of the resulting orientation of the flexural displacement and

when the distribution of forces or the stochastic nature of these do not allow

the prediction of the resulting anti-nodal positions. A fully coupled structural-

acoustic-TVA [64, 65] model is presented, and the noise and vibration control

performances are assessed in terms of the PSDs energies. The study showed

that the fixed tuned TVAs could effectively be used to control the resonance

response of both the flexural and acoustic domains. Large attenuations are ob-

tained for frequencies below 60 Hz while smaller reductions are obtained for

frequencies comprised between 60 and 100 Hz. This could be explained con-

sidering the high modal overlap factor which characterise the cylindrical shell

structures.

In chapter 5 the time-varying tuneable vibration absorbers are presented

[58, 61, 65]. These device are obtained using electro-magnetic transducers, thus

the chapters starts with a description of this kind of transducers, focusing in

particular on the physical laws that govern the electro-magnetic-mechanical in-

teraction [184–186]. The mechanical response of the shunted device is studied

in terms of the Base Impedance, which turns out to be dependent on the elec-

trical elements of the shunt circuit. An idealised coil-magnet transducer is used

to conduct a survey on the equivalent mechanical effects produced by shunt

circuits composed by elementary passive electrical elements and series and par-

allel connection of these [64, 65]. The results of the survey reveal that the paral-

lel connection between electrical elements is the most suitable for the shunting

of electro-magnetic, since this configuration allows an independent tuning of

the equivalent mechanical parameters. Based on these results, a shunted circuit

is presented, which is composed by a series of a negative resistance and nega-
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tive inductance connected with a parallel of a variable resistance and variable

inductance [64, 65]. The first part of the shunt is used to annihilate the inher-

ent electrical characteristic of the coil while the latter part is used to obtain a

precise tuning of the device. If the electric elements of the tuning section are var-

ied over time with a specific time-harmonic law, the shunted electro-magnetic

transducer could be used as a sweeping TVA. The noise and vibration control

performances are assessed with reference of the coupled structural-acoustic sys-

tem and result to be comparable to those obtained with the fixed tuned devices.

Considering that with the sweeping TVAs there is no need to perform a system

identification of the hosting structure to determine its physical properties, as

the sweeping operation mode only requires the initial and final values of the

targeted frequency band and the damping ratio value, they can offer signifi-

cant practical advantages for the development of effective, robust and easy to

use modular devices.

In chapter 6 the experimental evaluation of the vibration control performances

of a shunted electro-magnetic TVA mounted on a cylindrical shell were pre-

sented. Several experimental test were presented in order to characterise the

mechanical and electrical behaviour of an actual electro-magnetic transducer.

These results showed how the two-degrees-of-freedom system presented in

chapter 5 could effectively be used to model the mechanical behaviour of the

transducer. On the other hand, the electrical behaviour of the transducer coil

presents an high-frequency discrepancy with the simulated resistive-inductive

model. Furthermore, the electrical characteristics of the transducer result to be

extremely dependent on the room and operating temperature. These aspects

led to the implementation of a shunt circuit constituted by a series of a resis-

tance and an inductance, which needs a low-pass filter for its actual use. The

effects on the Base Impedance of the transducer of several resistive and resistive-

inductive digitally implemented shunts are experimentally assessed. These re-

sults provided general guidelines for the tuning of the electrical elements of the

shunt circuit. The final part of the Chapter was focused on the vibration control

performances on a cylindrical shell of the electro-magnetic TVA operating in

both the fixed and the sweeping mode. The experimental results showed that

the fixed tuned operation modes guarantees the best control performances but

requires a detailed tuning. On the other hand, also if the attenuations obtained

with the shunted electro-magnetic TVA result smaller than the ones obtained

with the fixed TVA, these are achieved without the precise tuning of the ab-

sorber. Indeed with the sweeping operation mode there is no need to perform a
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system identification of the primary structure in order to determine its dynamic

properties and therefore it blindly operates in a given frequency range.

7.2 conclusions

The research presented in this thesis is focused on the broadband noise and

vibration control of thin cylindrical structures using fixed Tuned Vibration Ab-

sorbers and sweeping Tuneable Vibration Absorbers. The sweeping TVAs are

realised with electro-magnetic transducers connected to a specifically designed

RL shunt circuit, which allows an independent tuning of the damping and stiff-

ness properties of the TVAs.

The results presented in this study show that single-unit or arrays of sweep-

ing TVA effectively control the flexural vibrations of a cylindrical shell. The

performances of proposed sweeping absorber are assessed both with simula-

tion and experimental results.

In Chapter 3 the Modal Interaction Model have been adopted. The advan-

tages in simplicity and easiness of this method are exploited, obtaining a full

analytical description of the dynamics involved. Due to the extremely selec-

tivity of the structural-acoustic coupling, a dedicated convergence study has

been performed. This technique has led to a comparable, or even better, de-

scription of the global vibration and acoustic fields compared to similar studies

[28, 94, 138], achieved with a much lower computational cost.

In Chapter 4, some original contribution have been proposed, related to the

positioning criteria of the fixed TVA on cylindrical shells. This aspect appears

to be quite a novelty, since very little research work is present in the literature

[169].

Chapter 5 has described the the model of an electro-magnetic TVA. A sim-

ple model for the study of the electro-mechanical analogies has been presented.

This analogy study has been furthermore improved yielding to a deep under-

standing of how the electrical parameters could affect the mechanical response

of an electro-magnetic transducer. The analogy study was based on the classi-

cal analytical model of an electro-magnetic transducer [29, 162, 181, 200]. The

choice of consider an analytic model for the electromagnetic transducer was

made due to the lack of experimental data on the mechanical and electrical

properties of actual transducer when the analogy study was performed. Based

on the analogy study, a novel shunt circuit has been proposed, which allows

for an independent tuning of the TVA damping and stiffness parameter. The

control performances of a sweeping electromagnetic TVA, obtained by period-
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ically varying its stiffness and damping parameters, are numerically assessed.

The simulation study has shown that the proposed sweeping shunted electro-

magnetic TVA produce similar performances than those produced by fixed

tuned TVA [64, 65].

In Chapter 6 the flexural vibration control performance of a fixed tuned and

a sweeping shunted electromagnetic TVA are experimentally proved. The un-

availability of the anechoic chamber of the Università degli Studi di Udine

during the experimental work prevented the possibility of evaluate the noise

control performances of the device. These are anyway strictly connected with

the vibration control performances, as highlighted in the simulation results

[60, 64, 65]. The prototype on which the control performances of the EM TVA

are assessed is a suspended steel cylinder. The choice of this configuration,

which resembles the free-free boundary condition does not limit the validity of

the results, since the dynamic characteristics (i.e. modal density and modal over-

lap factor) of the simulated and tested structures are comparable. Furthermore,

the selection of a different material, driven by manufacturing reasons, does not

constitute a discrepancy with the analytical model, since the two materials are

characterised by comparable values of the Young’s modulus to density ratio

(E/ρ). The dimensions of the actual cylindrical shell where designed in order

to it to be suitably be hosted into the "Laboratorio di Controllo e Regolazione

Automatica" at the Università degli Studi di Udine. These has been selected in

order to present a length to radius ratio (L/R) comparable to the one considered

in the simulation study. The electrical characterisation of the actual electromag-

netic transducer has shown some discrepancy with the one obtainable with the

analytical model of the devise. A further investigation of this aspect was not

included due to the limited period of time of the present work. The electrical

behaviour of the transducer, together with its dependence on the operating con-

ditions, has led to a different implementation of the shunt circuit. This aspect

does not constitute a limitation of the objective of the present research study,

which is primarly focused on the implementation of a shunt circuit for the me-

chanical tuning of the electromagnetic transducer usable as a vibration absorber.

A comprehensive experimental survey has shown the capability of resistive and

resistive-inductive shunt circuits to modify the mechanical dynamic response

of the shunted transducer. This survey furthermore has led to hints necessary

for the development of general guidelines for the tuning of the shunted elec-

tromagnetic transducer. Finally, the experimental results have shown that the

sweeping shunted TVA, blindly operating in a given frequency band, has pro-

duces similar reduction of the flexural vibration of the cylindrical shell than the
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ones produced by the fixed tuned TVA which, on the contrary, has required a

detailed tuning to targeted resonance frequencies, which have been identified

by means of the analysis the dynamic response of the cylindrical shell.

7.3 future work

The following works could be carried out concerning the Modal Interaction

Model presented in chapter 3 for the fully coupled structural acoustic system:

• Study the coupled system with a numerical method (e.g. using structural-

acoustic finite element analysis) and compare the results obtained with

the analytical formulation derived with the Modal Interaction Model.

• Investigate the effects of localised structural elements such as rings, stringers

and longerons to obtain a more accurate model for the aircraft fuselage.

For the fixed tuned vibration absorbers presented in chapter chapter 4, fur-

ther work could progress regarding the following points:

• Study of the effective footprint contact surface of the TVA and in what

amount the non idealised point TVA force affect the positioning criteria.

• Investigate the effects of distributed TVA, which could be smeared along

some particular direction of the cylindrical shell.

In addition, regarding the shunted electro-magnetic absorbers presented in

chapter 5, the following ideas emerged as a natural continuation of the current

research:

• Study the effect of the implementation of a capacitive shunt. As shown

in the electro-mechanical analogy study, this passive electrical element

produces a mass-like mechanical equivalent effect, which could enhance

the control performances of the shunted TVA.

• Study the effects of an asynchronously time variation of the elements of

the arrays, in which the sweeping law of each device presents a given

phase shift each other.

• Consider the possibility of replacing the resistor in the shunt with an en-

ergy scavenging circuit and study the amount of energy that could be

harvested in order to obtain self-powered shunted electro-magnetic vibra-

tion absorbers.
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Finally, with respect to the experimental implementation of the shunted electro-

magnetic TVA presented in chapter 6, the following features could be further

investigated:

• Measure the noise control performances of the fixed and sweeping TVA.

• Study the electrical characteristic of the actual transducer in order to re-

alise a model which is able to trace the actual electrical behaviour.

• Implement a tracking algorithm which measure the inherent resistance of

the transducer coil. In this way the variation of the electrical parameters

due to the working conditions would not affect the desired mechanical

behaviour.

• Study the effects of the time delay induced by the digital conversion and

of the low-pass filter on the relations between the electrical elements of

the shunt and the mechanical equivalent elements in order to obtain an

univocal expression between the elements.

• Evaluate the effects of the positions of the shunted TVA on its vibration

control performances and conduct a study aimed at the identification of

the best position for the sweeping TVA.

• Investigate the vibration control effects of arrays of sweeping TVA.
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A
N O R M A L I Z AT I O N C O E F F I C I E N T S F O R T H E

C Y L I N D R I C A L S H E L L A N D E N C L O S U R E

In this appendix the normalization matrices for the structural and the acous-

tical domain, ΛΛΛ and ΓΓΓ, are derived. From these matrices the modal structural

inertia matrix Ms and the modal acoustic inertia matrix Q can be obtained from

equations (3.61a) and (3.138a), respectively.

a.1 structural normalization coefficients

From equation (3.61a), the modal structural inertia matrix can be expressed

as:

Ms = ρh

∫

S
ϕϕϕT(xs)ϕϕϕ(xs)dS

= ρh

∫

S

[

ϕϕϕs(xs) ϕϕϕa(xs)
]T [

ϕϕϕs(xs) ϕϕϕa(xs)
]

dS

= ρh

∫

S





ϕϕϕsT(xs)ϕϕϕs(xs) ϕϕϕsT(xs)ϕϕϕa(xs)

ϕϕϕaT(xs)ϕϕϕs(xs) ϕϕϕaT(xs)ϕϕϕa(xs)



 dS

= mc





ΛΛΛ
ss

ΛΛΛ
sa

ΛΛΛ
as

ΛΛΛ
aa





= mcΛΛΛ,

(A.1)

where mc is the mass of the cylindrical shell and the 2M × 2M matrix of the

structural normalization coefficients can be considered as a block matrix.

The generic element of each of the four sub-matrices is of the form:

Λ
α,β
m,p =

mc

ρh

∫

S
ϕα

m(xs)ϕ
β
p(xs)dS, (A.2)

where α, β = s, a and m, p = 1, 2, . . . , M.
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a.1.1 Orthogonality of the structural modes

The structural mode shapes are said to be orthogonal if:

∫

S
ϕα

m(xs)ϕα
p(xs)dS = 0 ∀p 6= m. (A.3)

In order to prove the orthogonality property, it is sufficient to prove that

∫ L

0
sin
Å

m1π

L
x
ã

sin
Å

p1π

L
x
ã

dx = 0 if p1 6= m1. (A.4)

Recalling Werner’s formula

sin(a) sin(b) =
1

2
[cos (a − b)− cos (a + b)] , (A.5)

equation (A.4) can be expressed as:
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(A.6)

Since m1, p1 ∈ N, it follows that (m1 − p1) , (m1 + p1) ∈ Z . Both sine func-

tion in the result will thus be of the form sin(kπ) which, for k ∈ Z is equal to

zero. This proves the orthogonality property defined in equation (A.4), thus:

ρh

∫

S
ϕs

m(xs)ϕs
p(xs)dS = ρh

∫

S
ϕa

m(xs)ϕa
p(xs)dS = 0 if p 6= m. (A.7)
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a.1.2 Orthogonality of the symmetrical and anti-symmetrical components of the struc-

tural modes

In this section it is proved that the symmetrical and anti-symmetrical compo-

nent of the structural modes shapes are orthogonal:

∫

S
ϕs

m(xs)ϕa
m(xs)dS =

∫

S
ϕa

m(xs)ϕs
m(xs)dS = 0 ∀m. (A.8)

To prove this it is sufficient to prove that:

∫ 2π

0
cos(m2ϑ) sin(m2ϑ)dϑ = 0. (A.9)

Recalling Werner’s formula,

sin (a) cos (b) =
1

2
[sin (a + b) + sin (a − b)] , (A.10)

the integral in equation (A.8) results:

∫ 2π

0
cos(m2ϑ) sin(m2ϑ)dϑ =

1

2

∫ 2π

0
sin (2m2ϑ)dϑ

= − 1

4m2
cos(m2ϑ)

∣

∣

∣

∣

2π

0

= 0.

(A.11)

Thus the orthogonality of the symmetrical and anti-symmetrical component

of the structural modes is proved.

a.1.3 Derivation of the structural normalization coefficients

The result obtained in equation (A.11) yields to the fact that the off-diagonal

sub-matrices are matrices of zeros:

ΛΛΛ
sa = ΛΛΛ

as = 0. (A.12)

The result obtained in equation (A.7) yields to the fact that the main-diagonal

sub-matrices are diagonal matrices.
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These two results reduce the problem of determining the normalization fac-

tors to the evaluation of the integrals

ρh

∫

S
[ϕs

m(xs)]
2 dS = ρh

∫ L

0

∫ 2π

0
sin2

Å

m1π

L
x
ã

cos2(m2ϑ)Rdϑdx

= ρh

∫ L

0
sin2

Å

m1π

L
x
ã

dx

∫ 2π

0
cos2(m2ϑ)Rdϑ

(A.13)

and

ρh

∫

S
[ϕa

m(xs)]
2 dS = ρh

∫ L

0

∫ 2π

0
sin2

Å

m1π

L
x
ã

sin2(m2ϑ)Rdϑdx

= ρh

∫ L

0
sin2

Å

m1π

L
x
ã

dx

∫ 2π

0
sin2(m2ϑ)Rdϑ.

(A.14)

The integrals to be solved are thus:

∫ L

0
sin2

Å

m1π

L
x
ã

dx, (A.15a)

∫ 2π

0
cos2(m2ϑ)Rdϑ and (A.15b)

∫ 2π

0
sin2(m2ϑ)Rdϑ. (A.15c)

The integral presented in (A.15a), common to both components, can be solved

considering the trigonometric identity

sin2(a) =
1 − cos(2a)

2
, (A.16)

which, substituted into equation (A.15a), gives:

∫ L

0
sin2

Å

m1πx

L

ã

dx =
∫ L

0

1

2

ï

1 − cos
Å

2m1π

L
x
ãò

dx

=
1

2

∫ L

0
dx − 1

2

∫ L

0
cos
Å

2m1π

L
x
ã

dx

=
1

2
x|L0 − L

4m1π
sin
Å

2m1πx

L

ã
∣

∣

∣

∣

L

0

=
L

2
− L

4m1π
[sin (2m1π)− sin(0)]

=
L

2
.

(A.17)

The solution to the integral along the circumferential direction for the sym-

metrical component, equation (A.15b), depends on the value of the circumfer-
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ential index m2. Two cases must be considered; the first case, in which m2 = 0,

the integral (A.15a) results in:

∫ 2π

0
cos2(0ϑ)Rdϑ =

∫ 2π

0
Rdϑ = 2πR. (A.18)

In the case in which m2 6= 0, the solution is obtained recalling the trigono-

metric identity:

cos2(a) =
1 + cos(2a)

2
, (A.19)

which substituted into (A.15b), gives

∫ 2π

0
cos2(m2ϑ)Rdϑ =

∫ 2π

0

1 + cos(2m2ϑ)

2
Rdϑ

=
1

2

∫ 2π

0
Rdϑ +

1

2

∫ 2π

0
cos(2m2ϑ)Rdϑ

=
1

2
Rϑ|2π

0 +
R

4m2
sin (2m2ϑ)

∣

∣

∣

∣

2π

0

= πR.

(A.20)

The results obtained in equations (A.18) and (A.20) can be summarized as:

∫ 2π

0
cos2(m2ϑ)Rdϑ =







2πR if m2 = 0

πR if m2 6= 0
. (A.21)

Also the integral concerning the anti-symmetric component along the circum-

ferential direction, equation (A.15c), depends upon the circumferential index.

For m2 = 0, it results

∫ 2π

0
sin2(0ϑ)Rdϑ =

∫ 2π

0
0Rdϑ = 0. (A.22)

When the circumferential index is such that m2 6= 0, with equation (A.16),

equation (A.15c) gives:

∫ 2π

0
sin2(m2ϑ)Rdϑ =

∫ 2π

0

1 − cos(2m2ϑ)

2
Rdϑ

=
1

2

∫ 2π

0
Rdϑ − 1

2

∫ 2π

0
cos(2m2ϑ)Rdϑ

=
1

2
Rϑ|2π

0 − R

4m2
sin (2m2ϑ)

∣

∣

∣

∣

2π

0

= πR.

(A.23)
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The results obtained in equations (A.22) and (A.23) can be summarized as:

∫ 2π

0
sin2(m2ϑ)Rdϑ =







0 if m2 = 0

πR if m2 6= 0
. (A.24)

Combining now the results of equations (A.17) and (A.21), the integral in

equation (A.13) gives:

ρh

∫

S
[ϕs

m(xs)]
2 dS = ρh

L

2







2πR

πR
=



















ρhπRL if m2 = 0

ρhπRL

2
if m2 6= 0

. (A.25)

Since the mass of the cylinder is obtained as

mc = ρ2πRLh, (A.26)

equation (A.25) can be rewritten as:

ρh

∫

S
[ϕs

m(xs)]
2 dS =























1

2
mc if m2 = 0

1

4
mc if m2 6= 0

. (A.27)

Similarly, considering the results of equations (A.22) and (A.24), and the def-

inition of the mass of the cylinder given in equation (A.26), the integral in

equation (A.14) gives:

ρh

∫

S
[ϕa

m(xs)]
2 dS =



















0 if m2 = 0

1

4
mc if m2 6= 0

. (A.28)

The modal structural normalization matrix ΛΛΛ is thus a 2M× 2M diagonal ma-

trix whose first 1, 2, . . . , M diagonal elements and second M + 1, M + 2, . . . , 2M

diagonal elements, respectively for the symmetric and anti-symmetric flexural

modes, are given by:

Λm,m =























1

2
if m2 = 0

1

4
if m2 6= 0

(A.29)
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and

Λm+M,m+M =























0 if m2 = 0

1

4
if m2 6= 0

, (A.30)

where m = 1, . . . , M.

a.2 acoustical normalization coefficients

From equation (3.138a), the modal acoustic inertia matrix may be defined as

Q =
∫

Vc

ψψψT(x)ψψψ(x)dV

=
∫

Vc

[

ψψψs(x) ψψψa(x)
]T [

ψψψs(x) ψψψa(x)
]

dV

=
∫

Vc





ψψψsT(x)ψψψs(x) ψψψsT(x)ψψψa(x)

ψψψaT(x)ψψψs(x) ψψψaT(x)ψψψa(x)



 dV

= Vc





ΓΓΓ
ss

ΓΓΓ
sa

ΓΓΓ
as

ΓΓΓ
aa





= VcΓΓΓ,

(A.31)

where Vc is the volume of the cylindrical enclosure and ΓΓΓ is the 2N × 2N matrix

of the acoustic normalization coefficients, which can be considered as a block

matrix.

The generic element of each of the four sub-matrices is of the form:

Γ
α,β
n,q =

1

Vc

∫

Vc

ψα
n(x)ϕ

β
q (x)dV, (A.32)

where α, β = s, a and n, q = 1, 2, . . . , N.

a.2.1 Orthogonality of the acoustical modes

The acoustical mode shapes are said to be orthogonal if they satisfy the rela-

tion
∫

Vc

ψα
n(x)ψ

α
q (x)dV = 0 ∀q 6= n. (A.33)
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In order to prove the orthogonality property, it is sufficient to prove that

∫ L

0
cos
Å

n1π

L
x
ã

cos
Å

q1π

L
x
ã

dx = 0 if n1 6= q1. (A.34)

Recalling Werner’s formula

cos(a) cos(b) =
1

2
[cos (a + b) + cos (a − b)] , (A.35)

equation (A.34) can be expressed as:

∫ L

0
cos
Å

n1π

L
x
ã

cos
Å

q1π

L
x
ã

dx =
1

2

∫ L

0

®

cos

ñ

(n1 + q1)π

L
x

ô

+ cos

ñ

(n1 − q1)π

L
x

ô´

dx

=
1

2

∫ L

0
cos

ñ

(n1 + q1)π

L
x

ô

dx

+
1

2

∫ L

0
cos

ñ

(n1 − q1)π

L
x

ô

dx

=
L

2(n1 + q1)
sin

ñ

(n1 + q1)π

L
x

ô

∣

∣

∣

∣

∣

L

0

+
L

2(n1 − q1)
sin

ñ

(n1 − q1)π

L
x

ô

∣

∣

∣

∣

∣

L

0

.

.

(A.36)

The result obtained in equation (A.36) is analogous to that obtained in equa-

tion (A.6), thus it yields to the same conclusion.

This proves the orthogonality of the acoustical mode shapes:

∫

Vc

ψs
n(x)ψ

s
q(x)dV =

∫

Vc

ψa
n(x)ψ

a
q(x)dV = 0 if q 6= n. (A.37)

a.2.2 Orthogonality of the symmetrical and anti-symmetrical components of the struc-

tural modes

Another characteristic of the acoustic mode shapes is that the symmetrical

and the anti-symmetrical component of each mode are orthogonal:

∫

Vc

ψs
n(x)ψ

a
n(x)dV =

∫

Vc

ψa
n(x)ψ

s
n(x)dV = 0 ∀n. (A.38)

To prove this it is to prove that:

∫ 2π

0
cos(n2ϑ) sin(n2ϑ)dϑ = 0, (A.39)
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which corresponds to the condition for the structural modes and was already

proved in section A.1.2. Following the same procedure, the orthogonality of the

symmetrical and anti-symmetrical component of the acoustical mode shapes

could be proved.

a.2.3 Derivation of the acoustical normalization coefficients

The orthogonality of the two components of the acoustical mode shapes,

equation (A.38), yields to the fact that the off-diagonal sub-matrices are ma-

trices of zeros:

ΓΓΓ
sa = ΓΓΓ

as = 0 (A.40)

and the orthogonality of the modes, equation (A.37), yields to the fact that the

main-diagonal sub-matrices are diagonal matrices.

These two results reduce the problem of determining the normalization fac-

tors to the evaluation of the integrals

∫

Vc

[ψs
n(x)]

2 dV =
∫ L

0

∫ 2π

0

∫ R

0
cos2

Å

n1π

L
x
ã

cos2(n2ϑ)J2
n2

Å

λn2n3

R
r
ã

drrdϑdx

=
∫ L

0
cos2

Å

n1π

L
x
ã

dx

∫ 2π

0
cos2(n2ϑ)dϑ

∫ R

0
J2
n2

Å

λn2n3

R
r
ã

rdr

(A.41)

and

∫

Vc

[ψa
n(x)]

2 dV =
∫ L

0

∫ 2π

0

∫ R

0
cos2

Å

n1π

L
x
ã

sin2(n2ϑ)J2
n2

Å

λn2n3

R
r
ã

drrdϑdx

=
∫ L

0
cos2

Å

n1π

L
x
ã

dx

∫ 2π

0
sin2(n2ϑ)dϑ

∫ R

0
J2
n2

Å

λn2n3

R
r
ã

rdr.

(A.42)

Thus, the integrals to be solved are:

∫ L

0
cos2

Å

n1π

L
x
ã

dx, (A.43a)

∫ 2π

0
cos2(n2ϑ)dϑ, (A.43b)

∫ 2π

0
sin2(n2ϑ)dϑ and (A.43c)

∫ R

0
J2
n2

Å

λn2n3

R
r
ã

rdr. (A.43d)
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The integrals in equations (A.43b) and (A.43c) are analogous to the ones of

the structural case, equations (A.15b) and (A.15c), whose solutions are:

∫ 2π

0
cos2(n2ϑ)dϑ = 2π εs

n2
(A.44)

and
∫ 2π

0
sin2(n2ϑ)dϑ = 2π εa

n2
, (A.45)

where

εs
n2

=











1 if n2 = 0

1

2
if n2 6= 0

(A.46)

and

εa
n2

=











0 if n2 = 0

1

2
if n2 6= 0

. (A.47)

For the acoustical mode shapes, since the axial acoustic modal index may also

assume the value zero, the integral along the axial direction, equation (A.43a),

depends on the value of the axial index n1. For n1 = 0, equation (A.43a) results:

∫ L

0
cos2(0x)dx =

∫ L

0
dx = L. (A.48)

Otherwise, for n1 6= 0, the solution is obtained recalling the trigonometric

identity given in equation (A.19), which substituted into (A.43a), results in

∫ L

0
cos2

Å

n1π

L
x
ã

dx =
∫ L

0

1

2

ï

1 + cos
Å

2n1π

L
x
ãò

dx

=
1

2

∫ L

0
dx +

1

2

∫ L

0
cos
Å

2n1π

L
x
ã

dx

=
1

2
x|L0 +

L

4n1π
sin
Å

2n1π

L
x
ã
∣

∣

∣

∣

2π

0

=
L

2
.

(A.49)

The results obtained in equations (A.48) and (A.49) can be summarized as:

∫ L

0
cos2

Å

n1π

L
x
ã

dx = L εn1
, (A.50)

where

εn1
=











L if n1 = 0

L

2
if n1 6= 0

. (A.51)
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The integral along the radial direction, equation (A.43d), can solved consid-

ering the following property of the Bessel functions [129, 133, 134, 201]:

∫

J2
m(z)zdz =

z2

2

î

J2
m(z)− Jm−1(z)Jm+1(z)

ó

, (A.52)

which, applied to equation (A.43d), gives:

∫ R

0
J2
n2

Å

λn2n3

R
r
ã

rdr =
R2

2

î

J2
n2
(λn2n3)− Jn2−1(λn2n3)Jn2+1(λn2n3)

ó

. (A.53)

In order to obtain a result which depends only on the Bessel function of order

n2, the following properties of the Bessel function may be considered:

J′m(z) = Jm−1(z)−
m

z
Jm(z) and (A.54a)

J′m(z) = −Jm+1(z) +
m

z
Jm(z). (A.54b)

where the superscript ′ indicates the derivative. Since J′n2
(λn2n3) = 0, the rela-

tions (A.54) result in

Jn2−1(λn2n3) =
n2

λn2n3

Jn2(λn2n3) and (A.55a)

Jn2+1(λn2n3) =
n2

λn2n3

Jn2(λn2n3), (A.55b)

which, substituted in equation (A.53) gives

∫ R

0
J2
n2

Å

λn2n3

R
r
ã

rdr =
R2

2

[

J2
n2
(λn2n3)−

Ç

n2

λn2n3

å2

J2
n2
(λn2n3)

]

=
R2

2
J2
n2
(λn2n3)

[

1 −
Ç

n2

λn2n3

å2
]

.

(A.56)

Combining the results of equations (A.44), (A.50) and (A.56), equation (A.41)

results:

∫

Vc

[ψs
n(x)]

2 dV = L εn1
2π εs

n2

R2

2
J2
n2
(λn2n3)

[

1 −
Ç

n2

λn2n3

å2
]

, (A.57)

which, recognising the volume of the cylindrical enclosure as

Vc = πR2L, (A.58)
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could be written as:

∫

Vc

[ψs
n(x)]

2 dV = Vc εn1
εs

n2
J2
n2
(λn2n3)

[

1 −
Ç

n2

λn2n3

å2
]

. (A.59)

Similarly, considering the results obtained in equations (A.50), (A.45) and

(A.56), equation (A.42) results in

∫

Vc

[ψa
n(x)]

2 dV = Vc εn1
εa

n2
J2
n2
(λn2n3)

[

1 −
Ç

n2

λn2n3

å2
]

. (A.60)

The modal acoustical normalization matrix ΓΓΓ is thus a 2N × 2N diagonal ma-

trix whose first 1, 2, . . . , N diagonal elements and second N + 1, N + 2, . . . , 2N

diagonal elements, respectively for the symmetric and anti-symmetric acousti-

cal modes, are given by:

Γn,n = εn1
εs

n2
J2
n2
(λn2n3)

[

1 −
Ç

n2

λn2n3

å2
]

(A.61)

and

Γn+N,n+N = εn1
εa

n2
J2
n2
(λn2n3)

[

1 −
Ç

n2

λn2n3

å2
]

, (A.62)

where n = 1, . . . , N and the definitions of the coefficients εn1
, εs

n2
and εa

n2
are

given in equations (A.51), (A.46) and (A.47), respectively.

a.3 bessel functions

In table A.1 are listed the values of the extrema of the Bessel function of the

first kind, λn2n3 , such that

dJn2(x)

dx

∣

∣

∣

∣

∣

x=λn2n3

= 0, (A.63)

and in table A.2 are listed the zeros of the Bessel functions of the first kind,

γn2n3 , such that

Jn2 (γn2n3) = 0. (A.64)

In figure A.1 are shown the graphs of the Bessel functions of the first kind of

order 0 (upper row), of order 1 (central row) and of order 2 (bottom plots) of

the type:

Jn2 (λn2n3 x) , (A.65)
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where the variable x is in the range 0 − 1.

Table A.1: Extrema of the Bessel functions
of the first kind λn2n3 .

n2
n3

0 1 2 3 4

0 0 3.83 7.02 10.17 13.32

1 1.84 5.33 8.54 11.71 14.86

2 3.05 6.71 9.97 13.17 16.35

3 4.20 8.02 11.35 14.59 17.79

4 5.32 9.28 12.68 15.96 19.20

5 6.41 10.52 13.99 17.31 20.58

Table A.2: Zeros of the Bessel functions of
the first kind γn2n3 .

n2
n3

0 1 2 3 4

0 - 2.40 5.52 8.65 11.79

1 0 3.83 7.02 10.17 13.32

2 0 5.14 8.42 11.62 14.80

3 0 6.38 9.76 13.02 16.22

4 0 7.59 11.06 14.37 17.62

5 0 8.77 12.34 15.70 18.98
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Figure A.1: Graphs of the Bessel functions of the first kind of order 0, 1 and 2 in the
range 0-1.





B
C O U P L I N G C O E F F I C I E N T A N D C O U P L I N G A L G O R I T H M

In section 3.8 the fully coupled structural-acoustic response of the cylindrical

shell and acoustic cylindrical enclosure is derived using the Modal-Interaction-

Model. Since with this technique the flexural vibration and interior acoustic

fields are modelled with in-vacuo simply supported flexural modes and rigid-

walled acoustic modes, the coupled equation of motion for the coupled sys-

tem, equation (3.171), contains off-diagonal matrices that couple the two sets

of modal equations and thus represent the coupling between the two domains.

In this appendix the derivation of the acoustic-structural matrix R and of the

structural-acoustic matrix S is first provided with a description of the coupling

mechanism. The convergence analysis aimed at finding the number of struc-

tural and acoustic natural modes that should be included in the modal expan-

sions is also presented.

b.1 derivation of the coupling coefficient

The coupling matrices present in equation (3.171) derived by the mathemat-

ical procedure implemented to obtain the coupled equation of motion. In par-

ticular, the structural-acoustic coupling matrix is defined as

S =
∫

S
ϕϕϕT(xs)ψψψ(xs)dS, (B.1)

where ϕϕϕ(xs) =
[

ϕϕϕs(xs) ϕϕϕa(xs)
]

is the 1 × 2M row vector with the flexural

mode shapes and ψψψ(xs) =
[

ψψψs(xs) ψψψa(xs)
]

is the 1 × 2N column vector with

the acoustic mode shapes evaluated on the cylindrical surface of the enclosure.

The acoustic-structural coupling matrix is defined as:

R = 2ρ0c2
0

∫

Vc

ψψψT(x)ϕϕϕ(xs)δ(r − R)dV = 2ρ0c2
0

∫

S
ψψψT(xs)ϕϕϕ(xs)dS, (B.2)

201
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where the integral property of the Dirac delta function is used to obtain the

surface integral. Comparing equations (B.1) and (B.2), the following relation

can be established:

R = 2ρ0c2
0ST, (B.3)

which relates the acoustic-structural and the structural-acoustic coupling matri-

ces. In the following only the structural-acoustic coupling matrix S is consid-

ered for the derivation of the coupling coefficients. Expanding the expression

for the modes shapes, equation (B.1) can be rewritten as:

S =
∫

S
ϕϕϕT(xs)ψψψ(xs)dS

=
∫

S

[

ϕϕϕs(xs) ϕϕϕa(xs)
]T [

ψψψs(xs) ψψψa(xs)
]

dS

=
∫

S





ϕϕϕsT(xs)ψψψs(xs) ϕϕϕsT(xs)ψψψa(xs)

ϕϕϕaT(xs)ψψψs(xs) ϕϕϕaT(xs)ψψψa(xs)



 dS

=





Sss Ssa

Sas Saa



 ,

(B.4)

thus the structural-acoustic coupling matrix could be considered as a block

matrix, in which each block couples the components of the mode shapes of one

domain to the components of the mode shapes of the other domain.

Considering the expressions for the structural and acoustic mode shapes

given in equations (3.51) and (3.128) respectively, the generic elements of the

sub-matrices are of the form:

Sss
mn =

∫

S
ϕs

m (xs)ψs
n (xs)dS

=
∫ L

0

∫ 2π

0
sin
Å

m1π

L
x
ã

cos(m2ϑ) · cos
Å

n1π

L
x
ã

cos(n2ϑ)Jn2

Å

λn2n3

R
R
ã

dxRdϑ

= RJn2 (λn2n3)
∫ L

0
sin
Å

m1π

L
x
ã

cos
Å

n1π

L
x
ã

dx

∫ 2π

0
cos(m2ϑ) cos(n2ϑ)dϑ,

(B.5)

Ssa
mn =

∫

S
ϕs

m (xs)ψa
n (xs)dS

=
∫ L

0

∫ 2π

0
sin
Å

m1π

L
x
ã

cos(m2ϑ) · cos
Å

n1π

L
x
ã

sin(n2ϑ)Jn2

Å

λn2n3

R
R
ã

dxRdϑ

= RJn2 (λn2n3)
∫ L

0
sin
Å

m1π

L
x
ã

cos
Å

n1π

L
x
ã

dx

∫ 2π

0
cos(m2ϑ) sin(n2ϑ)dϑ,

(B.6)
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Sas
mn =

∫

S
ϕa

m (xs)ψs
n (xs)dS

=
∫ L

0

∫ 2π

0
sin
Å

m1π

L
x
ã

sin(m2ϑ) · cos
Å

n1π

L
x
ã

cos(n2ϑ)Jn2

Å

λn2n3

R
R
ã

dxRdϑ

= RJn2 (λn2n3)
∫ L

0
sin
Å

m1π

L
x
ã

cos
Å

n1π

L
x
ã

dx

∫ 2π

0
sin(m2ϑ) cos(n2ϑ)dϑ

(B.7)

and

Saa
mn =

∫

S
φa

m (xs)ψa
n (xs)dS

=
∫ L

0

∫ 2π

0
sin
Å

m1π

L
x
ã

sin(m2ϑ) · cos
Å

n1π

L
x
ã

sin(n2ϑ)Jn2

Å

λn2n3

R
R
ã

dxRdϑ

= RJn2 (λn2n3)
∫ L

0
sin
Å

m1π

L
x
ã

cos
Å

n1π

L
x
ã

dx

∫ 2π

0
sin(m2ϑ) sin(n2ϑ)dϑ.

(B.8)

First, it is now shown that the mode shape components of different domains

are orthogonal:

∫

S
ϕs

m (xs)ψa
n (xs)dS =

∫

S
ϕa

m (xs)ψs
n (xs)dS = 0. (B.9)

To prove this it is sufficient to prove that

∫ 2π

0
cos(m2ϑ) sin(n2ϑ)dϑ =

∫ 2π

0
sin(m2ϑ) cos(n2ϑ)dϑ = 0 ∀m2, n2. (B.10)

The case in which m2 = n2 was already proved in equation (A.11). For m2 6=
n2, using the Werner’s formula given in equation (A.10), equation (B.10) could

be written as:

∫ 2π

0
sin(m2ϑ) cos(n2ϑ)dϑ =

1

2

∫ 2π

0
sin [(m2 + n2) ϑ]dϑ

+
1

2

∫ 2π

0
sin [(m2 − n2) ϑ]dϑ

= − 1

2 (m2 + n2)
cos [(m2 + n2) ϑ]|2π

0

− 1

2 (m2 − n2)
cos [(m2 − n2) ϑ]|2π

0 = 0.

(B.11)
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Thus, the cross-terms between the components of the mode shapes in the

two domains are zero; this leads to the fact that the off-diagonal blocks of the

couplig matrix are matrices of zeros:

Ssa = Sas = 0, (B.12)

this means that the coupling between the structural and the acoustic domain is

possible only through mode shapes with the same circumferential symmetry.

This also reduces the number of integrals to be solved, which result:

∫ L

0
sin
Å

m1π

L
x
ã

cos
Å

n1π

L
x
ã

dx = Ix, (B.13a)

∫ 2π

0
cos(m2ϑ) cos(n2ϑ)dϑ and (B.13b)

∫ 2π

0
sin(m2ϑ) sin(n2ϑ)dϑ. (B.13c)

The results of the integrals presented in equations (B.13b) and (B.13c) are

derived in equations (A.44) and (A.45) and can be rewritten in this case as:

∫ 2π

0
cos(m2ϑ) cos(n2ϑ)dϑ = 2π γs

n2
(B.14)

and
∫ 2π

0
sin(m2ϑ) sin(n2ϑ)dϑ = 2π γa

n2
, (B.15)

where

γs
n2

=























0 if m2 6= n2

1 if m2 = n2 = 0

1

2
if m2 = n2 6= 0

(B.16)

and

γa
n2

=























0 if m2 6= n2

0 if m2 = n2 = 0

1

2
if m2 = n2 6= 0

. (B.17)

From these results one can see that the structural and acoustical mode shapes

couple only between pair of modes with the same circumferential index.
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The integral (B.13a) can be solved considering again the Werner’s formula

(A.10), which substituted yields:

Ix =
∫ L

0

1

2

®

sin

ñ

(m1 + n1)π

L
x

ô

+ sin

ñ

(m1 − n1)π

L
x

ô´

dx

=
1

2

∫ L

0
sin

ñ

(m1 + n1)π

L
x

ô

dx +
1

2

∫ L

0
sin

ñ

(m1 − n1)π

L
x

ô

dx

= − L

2π (m1 + n1)
cos

ñ

(m1 + n1)π

L
x

ô

∣

∣

∣

∣

∣

L

0

− L

2π (m1 − n1)
cos

ñ

(m1 − n1)π

L
x

ô

∣

∣

∣

∣

∣

L

0

=
L

2π (m1 + n1)
[1 − cos [π (m1 + n1)]] +

L

2π (m1 − n1)
[1 − cos [π (m1 − n1)]] .

(B.18)

Since m1, n1 ∈ N , it follows that (m1 + n1) , (m1 − n1) ∈ Z, thus substituting

the trigonometric identity

cos(nπ) = (−1)n n ∈ Z (B.19)

into the previous expression leads

Ix =
L

2π (m1 + n1)

î

1 − (−1)(m1+n1)
ó

+
L

2π (m1 − n1)

î

1 − (−1)(m1−n1)
ó

=
L

2π
Ä

m2
1 − n2

1

ä

î

m1 − n1 − (m1 − n1)(−1)m1+n1 + m1 + n1 − (m1 + n1)(−1)m1−n1
ó

=
L

2π
Ä

m2
1 − n2

1

ä

î

2m1 − (m1 − n1)(−1)m1+n1 − (m1 + n1)(−1)m1−n1
ó

.

(B.20)

The results depends on the values of the axial modal indices. If both indices

are even, they can be written as :















m1 = 2a

n1 = 2b

−→















2a + 2b = 2(a + b)

2a − 2b = 2(a − b)

(B.21)

and, independently of the actual values of the two indices, both the sum and

the difference are even numbers, thus:

(−1)m1+n1 = (−1)m1−n1 = 1 −→ Ix = 0. (B.22)
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When the indices m1 e n1 are both odd numbers, they can be written as:















m1 = 2a + 1

n1 = 2b + 1

−→















2a + 2b + 2 = 2(a + b + 1)

2a − 2b + 1 − 1 = 2(a − b)

(B.23)

and both their sum and difference result in even numbers, thus it results:

(−1)m1+n1 = (−1)m1−n1 = 1 −→ Ix = 0. (B.24)

When one index is even and the other is odd, as for example















m1 = 2a

n1 = 2b + 1

−→















2a + 2b + 1 = 2(a + b) + 1

2a − 2b − 1 = 2(a − b)− 1

, (B.25)

both the sum and the difference are odd numbers, thus:

(−1)m1+n1 = (−1)m1−n1 = −1. (B.26)

In this last case, the integral in equation (B.20) may be written as:

Ix =
L

2π
Ä

m2
1 − n2

1

ä

î

2m1 − (−m1 + n1 − m1 − n1) (−1)m1+n1
ó

=
L

2π
Ä

m2
1 − n2

1

ä [2m1 + 2m1]

=
4m1L

2π
Ä

m2
1 − n2

1

ä

=
2m1L

π
Ä

m2
1 − n2

1

ä .

(B.27)

According to the results obtained in equations (B.22),(B.24) and (B.26), the

integral in equation (B.13a) results:

∫ L

0
sin
Å

m1π

L
x
ã

cos
Å

n1π

L
x
ã

dx = Lδm1,n1
, (B.28)

where

δm1,n1
=



















0 if (m1 + n1) even

2m1

π
Ä

m2
1 − n2

1

ä if (m1 + n1) odd
. (B.29)
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Considering the results obtained in equations (B.14), (B.16) and (B.28), the

coupling term in equation (B.5) results:

Sss
mn =

∫

S
ϕs

m (xs)ψs
n (xs)dS = RJn2 (λn2n3) 2π γs

n2
Lδm1,n1

, (B.30)

where it is possible to recognise the lateral surface of the cylindrical shell,

S = 2πRL. (B.31)

Then, equation (B.30) could be written as:

Sss
mn =

∫

S
ϕs

m (xs)ψs
n (xs)dS = SJn2 (λn2n3) γs

n2
δm1,n1

. (B.32)

Similarly, considering the results obtained in equations (B.15), (B.17) and

(B.28), the coupling term in equation (B.8) results:

Saa
mn =

∫

S
ϕa

m (xs)ψa
n (xs)dS = SJn2 (λn2n3) γa

n2
δm1,n1

. (B.33)

The elements of the structural-acoustic coupling matrix S thus result:

Sm,n = SJn2 (λn2n3) γs
n2

δm1,n1
(B.34)

and

Sm+M,n+N = SJn2 (λn2n3) γa
n2

δm1,n1
, (B.35)

with the coefficients γs
n2

,γa
n2

and δm1,n1
defined in equations (B.16), (B.17) and

(B.29) respectively, m = 1, 2, . . . , M and n = 1, 2, . . . , N.

The elements of the acoustic-structural coupling matrix R, from equation

(B.3), can be defined as:

Rn,m = 2ρ0c2
0SJn2 (λn2n3) γs

n2
δm1,n1

(B.36)

and

Rn+N,m+M = 2ρ0c2
0SJn2 (λn2n3) γa

n2
δm1,n1

. (B.37)

The former analysis led to three conditions that have to be satisfied for an

acoustic mode and a structural mode to be coupled [30, 120, 136]:

i correspondence of the circumferential symmetry, thus symmetric compo-

nents of the structural modes couple only with symmetrical components

of the acoustic modes and the same for the anti-symmetric components;
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ii equality of the circumferential wavelength, which corresponds to the equal-

ity of the circumferential modal index;

iii a relationship of the axial wavelength such that the sum of the axial in-

dices is an odd number.

Figure B.1 presents the four possible coupling configurations of the (1, 2)

structural mode and the (0, 2, 0) acoustic mode shape. For the sake of improv-

ing the clarity and readability, the mode shapes are represented in just half of

the circumferential domain and apart from each other. Furthermore, to high-

light the differences between the two domains, both the flexural displacement

and the acoustic pressure are shown in absolute value. This anyway does not

constitute a difficulty, keeping in mind the cyclic nature of the positions of

nodes and anti-nodes presented in tables 3.1 and 3.2. Plot (a) shows the sym-

(a) (b)

(c) (d)

Figure B.1: Coupling configurations between the (1, 2) structural mode and the (0, 2, 0)
acoustic mode, S-S (a), S-A (b), A-S (c) and A-A (d).

metric component of the structural mode and the symmetric component of the

acoustical mode (S-S configuration), plot (b) shows the S-A configuration, in



B.1 derivation of the coupling coefficient 209

which the symmetric component of the structural mode and the anti-symmetric

component of the acoustic mode are considered, plot (c) presents the A-S con-

figuration and finally plot (d) presents the A-A configuration. As expressed

by equation (B.12), different components of the two domains are orthogonal,

thus the combination of the components shown in plots (b) and (c) does not

provide any coupling. This appears quite evident since at a nodal position for

one domain corresponds an anti-nodal position for the other domain. For ex-

ample, the effect of the flexural displacement on the acoustical pressure gives

a global effect that balances out, resulting thus in no net effect. On the other

side, for the S-S and A-A configurations of plot (a) and (d), each section of the

domain delimited by two adjacent nodal lines sums with the others, giving a

net effect different than zero. Thus these two configurations effectively couple

the structural and acoustic domains.

Figure B.2 shows the S-S (left plots) and the A-A coupling configurations for

the (1, 2) structural mode and (1, 2, 0) acoustic mode, plot (a), and for the (1, 2)

structural mode and the (0, 1, 0) acoustic mode, plot (b).

In the first case shown in plot (a) the two modes have axial indices such that

their sum is an even number, thus according to equation (B.29), they do not cou-

ple. Considering the axial anti-nodal region of the structural mode, the acoustic

mode presents here a nodal line which divide two axial regions with opposite

amplitude. The source effect of the structural vibration on the acoustic domain

in one zone is therefore compensated on the other zone, giving as a result a net

effect which correspond to no source effect of the structural vibration.

Considering now the two modes shown in figure B.2 (b), they present a dif-

ferent number of circumferential wavelengths, thus different circumferential

modal indices. According to equations (B.14) and (B.15), these two modes do

not couple, also for the S-S and A-A configurations. Indeed, the two domains

could be imagined as composed by circumferential subsections which present

amplitudes with opposite sign. The coupling effect in one subregion is com-

pensated by the contribution obtained in other region, thus the net result is

zero.

The analysis of figures B.1 and B.2 gives thus a graphical interpretation of the

coupling conditions given in equations (B.16), (B.16) and (B.29). This is made

considering low values for the modal indices in order to provide a clear and

readable observation of the coupling phenomenon, but can easily be extended

to higher values of the modal indices.
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(a)

(b)

Figure B.2: S-S (left plots) and A-A (right plots) coupling configurations for the (1, 2)
structural mode and the (1, 2, 0) acoustic mode, plot (a) and for the (1, 2)
structural mode and the (0, 1, 0) acoustic mode, plot (b).

b.2 coupling algorithm for the coupled structural-acoustic

response

For the low frequency analysis of cylindrical structural-acoustic coupled sys-

tem, the most severe coupling condition results to be the equality of the circum-

ferential wavelength, expressed mathematically in equations (B.16) and (B.17).

This is due to the different dependence of the structural and acoustic natural fre-

quencies on the circumferential indices. Indeed, as highlighted in sections 3.3

and 3.6, lower acoustic natural frequencies fa,n are associated with lower val-

ues of the circumferential index n2 while lower structural natural frequencies

fs,m are associated with values of the circumferential indices m2 that depend

on the geometrical dimensions of the shell and are generally given by values

comprised between 10 and 20 [98].
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left one related to the acoustic modes and the right one associated with the

structural modes.

Since these two regions does not have any point in common, there is no cou-

pling between the structural and acoustic modes characterised by natural fre-

quencies in the 0-100 Hz range. Thus, considering just the M̂ structural modes

with natural frequency in the 0-100 Hz (M̂ = 39) in the truncated modal sum-

mation for the flexural displacement and just the N̂ acoustic modes with natu-

ral frequency in the 0-100 Hz (N̂ = 3) in the truncated modal summation for

the acoustic pressure , the coupling matrices S and R result matrices of zeros,

leading to no coupling between the two domains.

A first attempt to solve this problem and obtain a fully coupled system is to

increase the upper frequency which correspond to the threshold of the natural

frequency for the modes to be included in the truncated modal summations,

keeping the same frequency range for the study. However, following this ap-

proach, a huge number of structural and acoustic modes have to be included

before the modes which actually couple with the mode of interest are included.

This will exponentially and uselessly increment the dimension of the system

and thus the computational cost of the analysis. Figure B.4 (a) shows the total

number of elements (thin black line) and the number of non-zero elements (thin

red line) of the structural-acoustic matrix S considering an increasing value of

the frequency under which modes are included in the truncated modal summa-

tions. Figure B.4 (b) shows the ratio of the non-zero elements to the total num-

ber of elements of the structural-acoustic coupling matrix. This ratio is zero up
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Figure B.4: Variation of the total number of elements (thin black line) and of the num-
ber of non-zero elements (thin red line) of the structural-acoustic matrix S
with the frequency under which the structural and acoustic modes are in-
cluded in the modal summations, plot (a) and ratio of the nonzero elements
to the total number of elements of the structural-acoustic coupling matrix,
plot (b).
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to about 200 Hz, where the first combination of structural and acoustic modes

couple. But at this frequency the total number of elements is already about

104, and it is not guaranteed that the coupling phenomenon occurs between

modes characterised by a natural frequency comprised in the 0-100 frequency

band. Increasing the frequency under which structural and acoustic modes are

included in the modal summations, the elements ratio raises between 600 and

700 Hz and then slightly decreases. The maximum value of the ratio is 0.4%,

thus the number of structural and acoustic modes that effectively couple are

very small compared to the total number of structural and acoustic modes con-

sidered in the truncated modal summation for the flexural displacement and

the acoustic pressure.
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Figure B.5: First (plot (a)) and third (plot (c)) columns and second (plot (b)) and third
(plot (d)) rows of the acoustic-structural coupling matrix R obtained con-
sidering 5000 structural modes and 5000 acoustic modes.

Figure B.5 shows some of the terms of the acoustic-structural coupling ma-

trix R, obtained considering 5000 structural modes and 5000 acoustic modes. In

particular, plots (a) and (c) represent the first and the third columns of the ma-

trix R, which correspond to the coupling terms between the first and the third
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structural modes with the 5000 acoustic modes and plots (b) and (d) show the

second and the third rows of the matrix R, which correspond to the coupling

terms between the second and the third acoustic modes with the 5000 structural

modes. For all four considered cases, the first non-zero elements correspond to

a higher-order mode; in particular the first acoustic mode which couples with

the first structural mode (m = 1) is the 124th (n = 124) and for the third struc-

tural mode (m = 3) it is the 154th acoustic mode (n = 154). The first mode

which couples with the second acoustic mode (n = 2) is the 626th structural

mode (m = 626) and for the third acoustic mode (n = 3) the structural mode

is the 977th, (m = 977). It is interesting to note that the highest coupling coeffi-

cient correspond to the couple of mode with the lowest order and the value of

the coupling coefficient decreases as the modal order increases.
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Figure B.6: Spectra of the flexural kinetic energy PSD (top plots) and acoustic potential
energy PSD (bottom plots) of the in vacuo cylinder (thick solid light grey
lines), and of the coupled system (thin blue lines) adding to the truncated
modal summation of the flexural displacement the structural mode which
couples with the second acoustic mode (plots (a) and (c)) and with the third
acoustic mode (plots (b) and (d)).

In figure B.6 are shown the spectra of the flexural kinetic energy PSD (top

plots) and of the acoustic potential energy PSD (bottom plots) when in the
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truncated modal summation for the flexural displacement are considered only

the M̂ in vacuo structural modes (thick grey lines in plots (a) and (b)) and when

in the addition to the M̂ structural modes are considered also the structural

mode which couples with the second acoustic mode (blue lines in plots (a)

and (c)) and with the third acoustic mode (blue lines in plots (b) and (d)).

The addition of an higher-order structural mode does not modify the 20-100

Hz structural response but it allows the presence of the resonance peak of the

resonant acoustic mode which effectively couples with the added structural

mode.
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Figure B.7: Spectra of the flexural kinetic energy PSD (top plots) and acoustic potential
energy PSD (bottom plots) of the in vacuo cylinder (thick solid light grey
lines), and of the coupled system (thin blue lines) adding to the truncated
modal summation of the acoustic pressure the acoustic mode which couples
with the first structural mode (plots (a) and (c)) and with the third structural
mode (plots (b) and (d)).

In figure B.7 are shown the spectra of the flexural kinetic energy PSD (top

plots) and of the acoustic potential energy PSD (bottom plots) when in the

truncated modal summation for the flexural displacement are considered only

the M̂ in vacuo structural modes (thick grey lines in plots (a) and (b)) and in

the truncated modal summation for the acoustic pressure are considered the
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acoustic mode which couples with the first structural mode (plots (a) and (c))

and with the third strictural mode (plots (b) and (d)). The addition of an higher-

order acoustic mode does not modify the 20-100 Hz structural response but it

allows the presence of a resonance peak at a frequency which corresponds to

the one of the structural mode at which it is coupled.

A different approach is thus followed, which consists of adding in the struc-

tural modal summations just the modes which actually couple with the N̂

acoustic modes with natural frequency comprised between 0 and 100 Hz and

adding in the truncated modal summation for the acoustic pressure just the

acoustic modes which actually couple with the M̂ structural characterised by

a natural frequency comprised between 0 and 100 Hz. This approach is graph-

ically shown in figure B.3 (b), in which the light yellow region identifies the

structural modes which, satisfying the circumferential coupling condition, could

effectively couple with the N̂ acoustic modes. Also, the light orange region iden-

tifies the region for the acoustic modes that satisfy the circumferential coupling

condition with the M̂ structural mode. Nevertheless, the structural modes in

the yellow region and the acoustic modes in the orange region have also to

satisfy the axial coupling condition.

The effects of the addition in the truncated modal summations of structural

and acoustic modes which actually couple with the M̂ structural and N̂ acous-

tic modes with resonance frequency in the range 0-100 Hz is considered in

terms of the time-averaged total flexural kinetic energy K and the time-averaged

total acoustic potential energy P, which can be obtained by the flexural ki-

netic energy and acoustic potential energy PSDs given in equations (3.182) as

[28, 124, 125]:

K =
1

2π

∫ 628

0
SK(ω)dω and (B.38a)

P =
1

2π

∫ 628

0
SP(ω)dω, (B.38b)

where the range of integration corresponds to the frequency considered in the

convergence study, 0-100 Hz.

The following algorithm is used for obtaining the number M of structural

modes to be considered in the truncated modal summation for the flexural

displacement:
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• for each of the N̂ acoustic modes, ∆m structural modes which present the

maximum coupling term are added in the truncated modal summation

for the flexural displacement, with ∆m = 1, 2, . . . , 40;

• the time-averaged total flexural kinetic energy and total acoustic potential

energy are then evaluated, once the PSDs functions are obtained using the

formulation presented in section 3.8.

The result of this procedure is shown in figure B.8 (a) where the variations

of the time-averaged total flexural kinetic energy (left graph) and the varia-

tion of the time-averaged total acoustic potential energy (right graph) are plot-

ted against the number of structural modes ∆m added in the structural modal

summation for each of the N̂ acoustic modes. With this procedure, high-order

structural modes are added in the truncated modal summation for the flexural

displacement, characterised by a natural frequency well above the frequency

of considered in this study. The structural response in the 0-100 Hz is not af-

fected by the increased number of structural mode considered. The inclusion of

higher-order structural modes, leads to the presence of the N̂ resonance peaks

in the acoustic response. These peaks are relatively smooth, due to the value of

the acoustical modal damping ζ0 assumed, and thus in this case P assumes low

values.

Also, an analogous algorithm is used to obtain the number N of acoustic

modes to be added in the truncated modal summation for the acoustic pressure:

• for each of the M̂ structural modes, ∆n acoustic modes which present the

maximum coupling term are added in the truncated modal summation

for the acoustic pressure, with ∆n = 1, 2, . . . , 40;

• the time-averaged total flexural kinetic energy and total acoustic potential

energy is then evaluated, once the PSDs functions are obtained using the

formulation presented in section 3.8.

The results of this procedure are presented in figure B.8 (b) where the time-

averaged total flexural kinetic and acoustic potential energies are plotted against

the number of acoustic modes ∆n added for each of the M̂ structural modes.

The acoustic modes that effectively couple with the structural modes represent

a damping term on the structural response [99], but this effect just slightly affect

the structural response since the considered fluid is air. The acoustic response

in the 20-100 Hz frequency range is instead very affected by the addition of

acoustic modes, also if these are characterised by a natural frequency much

higher than the upper frequency limit considered in the simulation study. This
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Figure B.8: Variation of time-averaged total flexural kinetic energy K (left graphs) and
of the time-averaged total acoustic potential energy P (right graphs) for
an increasing number of structural modes (plot (a)) and for an increasing
number of acoustic modes (plot (b)) considered in the truncated modal
summations.

is due to the fact that, since these acoustic modes effectively couple with the

M̂ structural modes, resonance peaks in correspondence to the M̂ structural

frequency appears in the acoustic response, as shown in figure B.7.

The presented convergence analysis highlights that, for the 20-100 Hz fre-

quency band considered in this study, it is necessary to include the 39 flexural

natural modes with natural frequencies comprised between 0 and 100 Hz plus

three higher order flexural natural modes with natural frequencies beyond 100

Hz for a total of 42 flexural natural modes.

Also, it is necessary to include the 3 acoustic natural modes with natural

frequencies comprised between 0 and 100 Hz plus other 39 acoustic modes

which are selected in such a way as to have for each of the 39 structural modes
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with natural frequency comprised between 0 and 100 Hz the acoustic mode

that give raise to the highest structural-acoustic coupling.

Table B.1 summarises the modal indices and natural frequencies of the flex-

ural modes and the acoustic modes considered in the simulation study. The

table highlights that, to achieve a correct convergence of both the flexural ki-

netic energy PSD and acoustic potential energy PSD it would be necessary to

include acoustic modes with natural frequency much higher than the 100 Hz

limit considered in the simulation.
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Table B.1: Structural and acoustic natural modes considered in the simulations.

flexural modes acoustic modes coupling

of the cylindrical wall of the cylindrical cavity coefficient

m (m1, m2) fs,m[Hz] n (n1, n2, n3) fa,n[Hz] Rnm (×105)

1 1,11 30.3 124 0,11,0 538.6 1.38

2 1,10 31.0 101 0,10,0 494.2 1.32

3 1,12 31.4 154 0,12,0 582.8 1.34

4 1,13 33.9 190 0,13,0 626.8 1.31

5 1,9 34.1 80 0,9,0 449.8 1.47

6 1,14 37.4 227 0,14,0 670.8 1.28

7 1,8 40.2 60 0,8,0 405.1 1.52

8 1,15 41.7 273 0,15,0 714.7 1.25

9 1,16 46.7 318 0,16,0 758.5 1.23

10 1,7 50.1 46 0,7,0 360.2 1.59

11 1,17 52.1 368 0,17,0 802.2 1.20

12 1,18 58.1 432 0,18,0 845.9 1.18

13 2,15 60.6 278 1,15,0 719.8 0.83

14 2,16 61.3 324 1,16,0 763.3 0.82

15 2,14 61.7 231 1,14,0 676.3 0.86

16 2,17 63.6 377 1,17,0 806.8 0.80

17 1,19 64.4 494 0,19,0 889.4 1.16

18 2,13 65.1 194 1,13,0 632.7 0.87

19 1,6 65.5 33 0,6,0 314.9 1.67

20 2,18 67.1 435 1,18,0 850.2 0.79

21 2,12 71.0 159 1,12,0 589.0 0.89

22 1,20 71.1 559 0,20,0 933.0 1.14

23 2,19 71.8 502 1,19,0 893.6 0.77

24 2,20 77.2 565 1,20,0 936.9 0.76

25 1,21 78.2 640 0,21,0 976.5 1.12

26 2,11 79.8 132 1,11,0 545.4 0.92

27 2,21 83.4 644 1,21,0 980.2 0.75

28 1,22 85.7 719 0,22,0 1020.1 1.11

29 1,5 89.9 22 0,5,0 269.4 1.76

30 2,22 90.2 727 1,22,0 1023.6 0.74

31 3,18 90.9 454 2,18,0 863.1 0.71

32 3,19 91.5 519 2,19,0 905.8 0.69

33 2,10 92.0 107 1,10,0 501.6 0.95

34 3,17 92.1 395 2,17,0 820.3 0.72

35 1,23 93.6 805 0,23,0 1063.4 1.09

36 3,20 93.7 585 2,20,0 948.6 0.68

37 3,16 95.3 345 2,16,0 777.6 0.73

38 3,21 97.3 669 2,21,0 991.4 0.67

39 2,23 97.6 817 1,23,0 1066.8 0.73

626 1,1 506.3 2 0,1,0 77.2 2.74

976 1,0 627.8 1 0,0,0 0 9.42

977 2,0 627,8 3 1,0,0 85.7 6.28



C
N U M E R I C A L A L G O R I T H M S F O R T H E T I M E VA RY I N G

S Y S T E M

This appendix is devoted to the description of the numeric algorithms used

in the derivation of the response of the fully coupled structural-acoustical-

sweeping TVA. As described in chapter 5, the global damping and stiffness

matrices of the fully coupled structural-acoustic-sweeping TVA equation of mo-

tion, equation (5.38), result time-dependent due to the time-dependence of the

damping and stiffness properties of the sweeping TVAs. Thus a specific algo-

rithm is required to obtain the structural and acoustic coupled responses.

In the first part of this chapter is described the numerical integration of

stochastic differential equations. Indeed, the coupled system is considered to be

subject to a stochastic white noise rain on the roof excitation, thus a dedicated

integration algorithm is used, which is based on the Runge-Kutta integration

methods.

The numerical estimation of PSD the structural velocities and pressure ampli-

tudes matrices is then presented. This is obtained considering the MATLABr

pwelch function, focusing on the description of the several parameters used in

the simulation study.

c.1 numerical integration of stochastic differential equations

The time integration of time-invariant equations of motion is usually derived

by casting the equation in the following state-space form:

ẋ(t) = Ax(t) + Bf(t), (C.1)

where x(t) is the state vector, A and B are the state (or system) and input matri-

ces, respectively and t is the time. The several algorithms found in commercial

software to solve differential equations of the type given in equation (C.1) are

usually based on the Runge-Kutta integration methods. When deterministic

221
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processes are considered, the deterministic time-invariant ordinary differential

equation (C.1) is expressed with the Runge-Kutta method as [202]:

ẋ(t) = f (x, t), (C.2)

where f (x, t) is a deterministic function of the state vector and time. The Runge-

Kutta method approximates the Taylor series of f (x, t) with a linear combina-

tion of values of f (x, t), which does not require a explicit evaluation of the

time-derivatives of f (x, t). The solution at the instant tk+1 is thus approximated

as [202]:

xk+1 = xk + α1k1 + α2k2 + · · ·+ αnkn, (C.3)

where

k1 = ∆t f (xk, tk), (C.4a)

kj = ∆t f

Ñ

xk +
j−1
∑

i=1

βijki(tk) + ∆tγj

é

, (C.4b)

∆t is the time step if the integration and n is the order of approximation of

the algorithm. The coefficients αi, βij and γj are calculated by matching the

coefficients of the Taylor expansion of x(t) and the coefficients of the Taylor

expansion of xk to ensure that the Runge-Kutta solution xk approximates the

exact solution x(t) with an error of order (∆t)n+1 [202]. Usually commercial

software use variable step integration algorithms to reduce the simulation time.

The integration time is varied comparing the value of the derivative of the ap-

proximated solution calculated at every time step of integration with a tolerance

value.

When stochastic stochastic disturbances are considered, as the white noise

rain on the roof stochastic forces considered in this thesis, the differential equa-

tion is expressed with the Runge-Kutta method as [202, 203]:

ẋ(t) = f1(x, t) + B f, (C.5)

where the first term accounts for deterministic dependence of x and t and the

second one is related to the stochastic dependence of the disturbance. The ap-

proximated solution at time tk+1 can be written as [202, 203]:

xk+1 = xk + σ1g1 + σ2g2 + · · ·+ σngn, (C.6)
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where

g1 = ∆t f1(xk, tk) + ∆tB f1, (C.7a)

gj = ∆t f1

Ñ

xk +
j−1
∑

i=1

τijki(tk) + ∆tηj

é

+ ∆tB fj (C.7b)

and fj is a vector of random forces generated at each step. In order for the

numerical solution xk to have the same statistical properties of the exact solution

x(t), the coefficients σi, τij and ηj are determined by matching the coefficients

of the Taylor expansion of the covariance matrix of the exact solution and the

approximated one. The values of the coefficients σi, τij and ηj of the fourth order

Runge-Kutta algorithm used to obtain the results presented in section 5.4 can

be found in [202]. Since in the case of stochastic disturbance also the error is

estimated on the covariance of the solution, for this class of problems fix time

step integration algorithms must be used.

c.2 numerical estimation of psd the structural velocities and

pressure amplitudes matrices

The estimated matrices with the PSD of the modal structural velocities and

of the modal pressure amplitudes in equations (5.46), Sn
bb(ω) and Sn

aa(ω), are

numerically obtained from the time-dependent pertinent values given in equa-

tions (5.42). This could be obtained using MATLABr pwelch function, whose

output is the PSD estimate of the input signal, and whose parameters with the

values used in this study are:

window: divides the input signal vector in sub-vectors, this study considered

windows of 100000 samples which means windows with a length of 3.3

seconds;

noverlap: specifies the overlap in samples, set to 50%;

nfft: sets the number of DFT points, also 500000 samples were considered

which gives a resolution of 0.02 Hz for the output vector;

fs: indicates the sampling frequency of the input time vector, set to 10 kHz.

The validity of this approach is proved considering the spectra of the flexu-

ral kinetic energy PSD and of the acoustic potential energy PSD of the plain

coupled structural-acoustic system (without TVAs). Figure C.1 shows the two

responses calculated with equations (3.182) (thin solid black lines) and obtained
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substituting in equations (3.178) the matrices Sn
bb(ω) and Sn

aa(ω) obtained us-

ing the numerical integration algorithm and the numeric estimation technique

(thick solid green lines).

The curves match quite well, there are only some differences at the first struc-

tural natural frequency at around 30 Hz, where the response calculated via

the finite Fourier transform is somewhat overestimated. Nevertheless, this was

found to be the best trade-off between the random error present in the signal

and the correct estimation of the peaks [124, 198, 204].
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Figure C.1: Spectra of the flexural kinetic energy PSD (plot (a)) and acoustic potential
energy PSD (plot (b)) obtained using equations (3.182) (thin black lines)
and using the numerical approach (thick green lines).

c.3 numeric integration of the time varying equation of mo-

tion

The numerical integration of the stochastic ordinary differential equation for

the coupled structural-acoustic system equipped with the sweeping TVA is

characterised by time-varying stiffness and damping parameters of the TVA. In

this case, the matrix A in equation (5.39) is updated with the new stiffness and
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damping parameters at every time step of the integration algorithm described

above.





D
S E T U P S O F T H E M E A S U R E M E N T S A N D T E S T S O N T H E

F R O N T E N D B O A R D

In this appendix are briefly presented the schematic representation of the

setups of the measurements presented in chapter 6 and the tests made on the

front-end board.

d.1 setups for the experiments

Laptop

DataPhysics

Amplifier

Shaker

Impedance Head

EM Transducer

Figure D.1: Schematic representation of the setup for the measurement of the electro-
magnetic transducer Base Impedance.

227
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Laptop

DataPhysics EM Transducer

Figure D.2: Schematic representation of the setup for the measurement of the electro-
magnetic transducer electrical impedance.

Laptop dSPACE

DataPhysics FE board

Figure D.3: Schematic representation of the setup for the measurement of the digitally
implemented shunt electrical impedance.

Shaker

Laptop

dSPACE

DataPhysics

Amplifier

Impedance Head

EM Transducer

FE board

Figure D.4: Schematic representation of the setup for the measurement of the base
impedance of the shunted electro-magnetic transducer.
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Impedance HeadShaker

Laptop

DataPhysics

Amplifier

Cylinder

Impedance Head

Figure D.5: Schematic representation of the setup for the measurement of the response
of the plain cylinder.

Impedance HeadShaker

Laptop

Front End

Amplifier

Cylinder

Scanning Head

Figure D.6: Schematic representation of the setup for the vibrometric analysis of the
plain cylindrical shell.

Impedance HeadShaker

Laptop

dSPACE

DataPhysics

Amplifier

Cylinder

Impedance Head

EM TransducerFE board

Figure D.7: Schematic representation of the setup for the measurement of the response
of the cylinder equipped with the electro-magnetic TVA.
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d.2 tests of the front end board
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Figure D.8: Scheme (plot (a)) and measurement results (plot (b)) of the first test made
on the front-end board.
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Figure D.9: Scheme (plot (a)) and measurement results (plot (b)) of the second test
made on the front-end board.
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Figure D.10: Scheme (plot (a)) and measurement results (plot (b)) of the third test made
on the front-end board.
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