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Šimunič B, Koren K, Rittweger J, Lazzer S, Reggiani C, Rejc
E, Pišot R, Narici M, Degens H. Tensiomyography detects early
hallmarks of bed-rest-induced atrophy before changes in muscle
architecture. J Appl Physiol 126: 815–822, 2019. First published
January 24, 2019; doi:10.1152/japplphysiol.00880.2018.—In young
and older people, skeletal muscle mass is reduced after as little as 7
days of disuse. The declines in muscle mass after such short periods
are of high clinical relevance, particularly in older people who show
a higher atrophy rate and a slower or even a complete lack of muscle
mass recovery after disuse. Ten men (24.3 yr; SD 2.6) underwent 35
days of 6° head-down tilt bed rest, followed by 30 days of recovery.
During bed rest, a neutral energy balance was maintained, with three
weekly passive physiotherapy sessions to minimize muscle soreness
and joint stiffness. All measurements were performed in a hospital at
days 1–10, 16, 28, and 35 of bed rest (BR1–BR10, BR16, BR28, and
BR35, respectively) and days 1, 3, and 30 after reambulation (R � 1,
R � 3, and R � 30, respectively). Vastus medialis obliquus (VMO),
vastus medialis longus (VML), and biceps femoris (BF) thickness (d)
and pennation angle (�) were assessed by ultrasonography, whereas
twitch muscle belly displacement (Dm) and contraction time (Tc)
were assessed with tensiomyography (TMG). After bed rest, d and �
decreased by 13–17% in all muscles (P � 0.001) and had recovered
at R � 30. Dm was increased by 42.3–84.4% (P � 0.001) at BR35
and preceded the decrease in d by 7, 5, and 3 days in VMO, VML, and
BF, respectively. Tc increased only in BF (32.1%; P � 0.001) and
was not recovered at R � 30. TMG can detect early bed-rest-induced
changes in muscle with higher sensitivity before overt architectural
changes, and atrophy can be detected.

NEW & NOTEWORTHY Detection of early atrophic processes and
irreversible adaptation to disuse are of high clinical relevance. With
the use of tensiomyography (TMG), we detected early atrophic
processes before overt architectural changes, and atrophy can be
detected using imaging technique. Furthermore, TMG detected irre-
versible changes of biceps femoris contraction time.

aging; contraction time; rehabilitation; skeletal muscle; tensiomyog-
raphy

INTRODUCTION

Hospitalization, due to injury or disease, can lead to a period
of forced inactivity. In those conditions, skeletal muscle disuse
is followed by atrophy, which in turn, implies loss of contrac-
tile performance and metabolic dysregulation (30). Micrograv-
ity during space flight and the experimental models of disuse
have a similar impact on muscle mass and function. Studies in
young adults documented that skeletal muscle mass and
strength are reduced after as little as 7 days of spaceflight (20,
26) or bed rest (12) and continue to decline with the length of
exposure (1). Declines in muscle mass and function after such
short periods are of high clinical relevance to most patients
who are, on average, hospitalized for �7 days (15). The
disuse-induced loss of muscle mass is particularly relevant for
the elderly who show higher atrophy after 14-day bed rest and
a much slower recovery or even complete lack of recovery for
at least 14 days afterward (33, 36). Therefore, there is a
substantial need to develop methods to detect early stages of
muscle atrophy-related processes.

Evidences exist that muscle atrophy is not symmetrical
throughout the muscle mass. Antigravity muscles show the
greatest atrophy, and distal muscles atrophy more than proxi-
mal muscles (8). In addition, muscles with different functional
roles across different joints and even muscles across the same
joint may respond differently to unloading (3, 8). Rehabilita-
tion programs and assessments after any period of disuse
should thus primarily focus on postural muscles and at the
same time, not overlook the nonpostural muscles (8, 49).

At the human single-muscle fiber level, evidence suggests
that type I fibers depict stronger atrophy in bed rest than type
II muscle fibers, both after bed rest (6, 7) and spaceflight (17).
Furthermore, there is a slow-to-fast myosin isoform transition
after bed rest (31, 45) and spaceflight (50) that would result in
faster contractile properties of the muscle, which will be
accentuated by an increase in maximal shortening velocity of
both types I and II muscle fibers after 17-day bed rest (48) and
17-day spaceflight (47). The latter effect seems reversed after
42 (25) and 84 days of bed rest (45), as well as after 180 days
of spaceflight (17). At the whole muscle level, it has been
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reported that the time-to-peak twitch isometric tension of the
triceps surae muscles was increased by 13%, indicating a
slowing of the musculotendinous system after 120 days of bed
rest (22). However, in this latter case, this was attributable to
reduced tendon stiffness and increased muscle-tendon passive
elasticity (24, 35) and thus not due to alterations in muscle
contractile properties.

Whereas ultrasound provides a reliable and noninvasive tool
to follow structural changes of skeletal muscle during disuse,
functional assessment of, e.g., twitch torque requires special-
ized equipment and may not always be possible in a bed-ridden
patient (21, 34, 38, 39, 41). To overcome this problem, rela-
tively simple and low-cost mechanomyographic methods were
developed, where, for instance, tensiomyography (TMG) al-
lows for noninvasive and reliable (38, 44) estimation of con-
traction time (Tc), selectively in superficial muscle heads. This
method can estimate the percentage of type I myosin heavy
chain (MHC), at least in the vastus lateralis muscle (39) and
possibly also in other muscles. There is a clear distinction
between results obtained from twitch torque and TMG. For
example, the Tc is 42.7% shorter when estimated from TMG
than from twitch torque (21). This indirectly confirms that
TMG gives better insights to the muscle contractility, as it is
less affected by the surrounding tissues (16, 21).

With the use of TMG, it was found that after 35 days of bed
rest, there was no change in the Tc of the vastus medialis but
an increased Tc in gastrocnemius medialis muscle (34). The
authors did, however, report that the TMG amplitude [displace-
ment (Dm)] was increased in both muscles and that for gas-
trocnemius medialis, the change in Dm was negatively corre-
lated to the change in thickness (r � �0.70). The Dm increase
in both muscles in the above-mentioned study may indicate a
lower muscle resting tension and possibly, decreased vis-
coelasticity (16).

Whereas TMG detects changes after a prolonged disuse
period (34), nothing is known about the possibility to adopt this
method to follow initial and early changes in the adaptive
response of muscle to disuse before overt measurable atrophy.
Therefore, the aim of our study was to assess the following: 1)
the time course of changes in muscle architecture and TMG
parameters during 35 days of bed rest and the following 30
days of supervised recovery in young men and 2) whether
TMG is able to detect early changes that occur just after a few
days of disuse.

METHODS

Participants. Ten healthy men (age 24.3 yr; SD 2.6; Table 1) with
no history of neuromuscular or cardiovascular disorders participated
in our study. The study was approved by the Slovenian National
Medical Ethics Committee (Approval Number 72/06/08). All partic-

ipants were fully informed about the study procedures and the possi-
ble health risks of study participation. Routine medical and laboratory
analyses were performed to exclude participants with chronic dis-
eases. None of the subjects regularly took any medication. From all
participants, written, informed consent was obtained before the study.
All procedures were in accordance with the ethical standards in the
1964 Declaration of Helsinki and its amendments.

Experimental design. The bed-rest study was conducted in the
Orthopaedic Hospital of Valdoltra under medical supervision. Partic-
ipants arrived 1 week before the bed rest and were asked to visit the
laboratory on several occasions to become familiar with testing
procedures. All baseline data were collected (BDC) 1 day before the
start of bed rest. After BDC, participants went through 35 days of 6°
head-down tilt bed rest, followed by 30 days of supervised recovery.
Subsequent measurements were performed at days 1–10, 16, 28, and
35 of bed rest (BR1–BR10, BR16, BR28, and BR35, respectively) and
days 1, 3, and 30 after completion of bed rest (reambulation; R � 1,
R � 3, and R � 30, respectively). During recovery, a fitness
professional was available, and all participants received written re-
covery instructions. Recovery consisted of 12 sessions (3 sessions/
week). Each session lasted ~60 min and consisted of a 10-min
warm-up, 5 min active stretching, followed by 20 min strength and
balance exercises, 20 min aerobic exercises, and a 5-min cool-down.

During bed rest, the participants received three weekly passive
physiotherapy sessions to minimize muscle soreness and joint stiff-
ness. Each participant received a weight-maintaining diet with an
energy content of 1.4 and 1.2 times his resting energy expenditure,
calculated using the Food and Agriculture Organization of the United
Nations/World Health Organization equations (29), for the pre-bed-
rest and bed-rest period, respectively (5). The diet contained 60% of
energy as carbohydrate, 25% as fat, and 15% as protein. Six meals
were administered daily: three main meals (breakfast, lunch, and
dinner) and three snacks. Subjects were required to consume all food
served.

Ultrasonography. Muscle architecture was determined at rest with
B-mode ultrasonography (MyLab 25, 13–4 MHz linear array trans-
ducer probe LA523; Esaote Biomedica, Geneva, Italy). Biceps fem-
oris (BF) scans were taken with the participant prone and with a knee
angle set at 5° flexion with foam pads. The BF measuring site was
half-way between the ischial tuberosity and the posterior knee-joint
fold, along the line of the BF long head. Vastus medialis obliquus
(VMO) scans were obtained supine at a knee angle set at 30° flexion
with foam pads. The VMO measuring site was at the midpoint of the
line from the patella to the VMO innervation point. The vastus
medialis longus (VML) scans were obtained supine at 30° knee
flexion at the midpoint of the line from the patella to the VML
innervation point. The VMO and VML innervation points were
detected using monophasic tetanic stimulation (impulse width 0.1 ms;
frequency 10 Hz). To ensure that all subsequent ultrasound measure-
ments were taken at the same anatomical location, the ultrasound
probe was positioned in the midsagittal plane, orthogonal to the
mediolateral axis, and its positioning was marked on acetate paper
using moles and small angiomas as reference points.

For each muscle, three scans were obtained. Thickness (d; in
millimeters) and pennation angle (�; in degrees) were measured using

Table 1. Anthropometric data of participants

BDC BR35 R � 30 P (�2)

n 10
Body height, m 1.78 (SD 6.5) 1.78 (SD 6.5)* 1.78 (SD 6.6) 0.92
Body mass, kg 75.3 (SD 9.3) 72.2 (SD 8.7)† 74.8 (SD 8.2) �0.001 (0.709)
Fat mass, kg 15.8 (SD 3.6) 15.7 (SD 3.2) 14.4 (SD 2.6)‡ 0.003 (0.470)
Body mass index, kg/m2 23.7 (SD 1.9) 22.7 (SD 1.7)† 23.6 (SD 1.7) �0.001 (0.700)

Values are means � SD; n � number of participants. BDC, before bed rest; BR35, 35 days bed rest; R � 30, after 30 days recovery. *Body height was
measured 12 h after reambulation. †P � 0.001 significantly different from BDC. ‡P � 0.01.
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Matlab (MathWorks, Natick, MA). In each scan, the fascicular path
was determined as the interspaces between echoes coming from the
perimysial tissue surrounding the fascicle. Muscle thickness was
defined as the shortest distance between the deep and superficial
aponeuroses. Pennation angle was defined as the angle between the
fascicle pathway and the deep aponeurosis of the muscle. The average
values for each architecture parameter of three scans were used for
further analysis.

Tensiomyography. TMG was assessed in the same muscles at the
same body positions and at the same measurement sites as ultrasound
scans. TMG measurements were performed during electrically evoked
maximal isometric contractions. A single, 1-ms maximal monophasic
electrical impulse was used to elicit a twitch contraction that caused
the muscle belly to oscillate. These oscillations were recorded using a
sensitive digital displacement sensor (TMG-BMC Ltd., Ljubljana,
Slovenia) that was placed on the surface of the skin at the
measuring site of the muscle of interest. Initially, the stimulation
amplitude was set just above the threshold and then gradually
increased until the amplitude of the radial twitch Dm (in millimeters)
increased no further. Electrical pulses ranged between 85 and 110 mA
at constant 30 V. From two maximal twitch responses, also Tc (in
milliseconds) was calculated (Fig. 1) as the time for the amplitude to
increase from 10% to 90% of Dm (Fig. 1) (39, 42). Furthermore, the
velocity of radial displacement (Vr) was calculated by dividing 0.8 ·
Dm with Tc (37).

Statistics. SPSS software (IBM Ltd., Armonk, NY) was used for all
statistical analyses. All data in text and tables are presented as means
with SD, whereas in figures, SE was used. Visual inspection and the
Shapiro-Wilk test indicated that all data were normally distributed.
Sphericity (homogeneity of covariance) was verified by the Mauch-
ly’s test. When the assumption of sphericity was not met, the signif-
icance of the F-ratios was adjusted according to the Greenhouse-
Geisser procedure. Main effects were studied with a general linear
model repeated-measures ANOVA with time (BDC, BRi, R � j,
where i � 1–10, 16, 28, 35, and j � 1, 3, 30) and muscle (VMO,
VML, BF) as within factors. If a significant time 	 muscle interaction
were found, then the analysis was repeated with relative data repre-
senting percent change from BDC to exclude any bias related to, e.g.,
a difference in muscle thickness at BDC between muscles. Where
significant time, muscle, and interaction time 	 muscle effects were
found, post hoc analysis with Bonferroni corrections was used to
locate the differences in time (p= � p/16, where 16 is the number of
comparisons with the BDC value) for each muscle. Pearson regress-
ion analysis was used to correlate relative changes during bed rest
(BR35 � BDC)/BDC in Tc and Dm to changes in muscle architecture.
Statistical significance was accepted at P � 0.05. The effect size for
dependent variables was given as partial �2.

RESULTS

The variations in muscle structure, as determined by ultra-
sonography, and muscle contractile function, as measured with
TMG, are reported in Fig. 2. Skeletal muscle thickness
changed during the study (P � 0.001; �2 � 0.865; Fig. 2A).
Specifically, thickness declined progressively by 4.5% at BR7
(P � 0.048) to 15.2% at BR35 (P � 0.001) and recovered to
BDC thickness at R � 30 (P � 0.22). The absence of a time 	
muscle interaction (P � 0.50) indicates that the percent chan-
ges in muscle thickness during bed rest and recovery did not
differ significantly between muscles.

The time 	 muscle interaction (P � 0.001; �2 � 0.938) for
� indicates that the changes in � over time differed among the
three muscles. Whereas the time course was qualitatively
similar for the three muscles (P � 0.001; �2 � 0.592; Fig. 2B),
post hoc analysis revealed that in the VMO, � was first
significantly decreased at BR6 (13.6%; P � 0.033), whereas in
VML and BF, it was already decreased at BR2 (5.5%; P �
0.037) and BR3 (7.4%; P � 0.019), respectively, interestingly
at a smaller decrease due to lower variance. In VMO and VML,
� had recovered to BDC at R � 30 (P 
 0.05), whereas in BF,
it was already recovered at R � 3 (P � 0.32).

Two parameters characterize the TMG signal—Dm and
Tc—as well as the ratio between them, the Vr. The muscle 	 time
interaction for Dm (P � 0.001; �2 � 0.186) indicates that the
changes in Dm during the study (P � 0.001; �2 � 0.782) differed
among the three muscles (Fig. 2C). Whereas the time course was
qualitatively similar for the muscles, the magnitude of the rise in
Dm was larger in the VML (84.4%) and BF (75.6%) than in the
VMO (42.3%) at BR35 (P � 0.013; �2 � 0.381). Dm increased
already after BR1, BR4, and BR6 in VMO, VML, and BF,
respectively, and had returned to BDC at R � 3 (P � 0.050).

The muscle 	 time interaction for Tc (P � 0.001; �2 �
0.255) indicates that the changes in Tc during the study (P �
0.001; �2 � 0.397; Fig. 2D) differed among the three muscles.
Post hoc analysis revealed that the Tc of the VMO did not
change significantly during bed rest and recovery (P � 0.35),
whereas the Tc of the VML (P � 0.001; �2 � 0.300) and BF
(P � 0.001; �2 � 0.393) did change. We were unable to locate
the difference with post hoc tests in the VML. In the BF, we
found an increased Tc at BR7 (23.6%; P � 0.043), being

Fig. 1. Typical tensiomyographic response of the vastus medialis obliquus (left) and biceps femoris (right) at baseline (solid lines) and after 35 days of bed rest
(dashed lines). Tc, contraction time defined as the time from 10% to 90% of the maximal displacement amplitude (Dm).
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highest at R � 1 (39.3%; P � 0.013). BF Tc did not return to
the BDC value even at R � 30 (26.4%; P � 0.041).

The muscle 	 time interaction for Vr (P � 0.001;
�2 � 0.283) indicates that the changes in Vr during the study

(P � 0.001; �2 � 0.733; Fig. 2E) differed among the three
muscles. We found differences in Vr at BDC (P � 0.017),
where Vr was slowest in BF compared with VM muscles (P �
0.014). Furthermore, post hoc analysis revealed that Vr of the

Fig. 2. Changes in (A) thickness (d), (B) pennation angle
(�), (C) tensiomyographic displacement (Dm), (D) con-
traction time (Tc), and (E) velocity of radial displacement
(Vr) during 35-day bed rest and 30-day recovery in the
vastus medialis oblique (VMO), vastus medialis longus
(VML), and biceps femoris (BF). Values are means � SE.
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VMO, VML, and BF increased during bed rest for 40.7% (P �
0.001; �2 � 0.609) after BR9, for 74.6% (P � 0.001;
�2 � 0.679) after BR6, and for 36.1% (P � 0.001; �2 � 0.418)
after BR16, respectively. In all muscles, Vr returned to BDC at
R � 1.

The contractile parameters measured with TMG and the
structural parameters measured with ultrasonography revealed
correlations (Fig. 3). Changes in muscle thickness and Dm
between BDC and BR35 were negatively correlated. This
negative correlation was significant in the BF (P � 0.001) but
not in the VMO (P � 0.09) and VML (P � 0.06). There was
also a positive correlation between Dm and � in VMO (P �
0.008) and VML (P � 0.050).

Changes in Tc did not correlate significantly with changes in
any of the architectural parameters (data not shown).

DISCUSSION

Thirty-five days of 6° head-down bed rest induced a similar
degree of atrophy (reduction in thickness) across all three
muscles that had recovered 30 days after completion of bed
rest. The atrophy was accompanied by a reduction in � that
returned to baseline levels as soon as 3 days after cessation of
bed rest. Whereas the degree of atrophy became significant
only after 7 days of bed rest, the increase in Dm was significant
as soon as 1, 4, and 6 days after initiation of bed rest in the
VMO, VML, and BF, respectively. This suggests that Dm,
determined by TMG, can be used to detect noninvasively and
easily early hallmarks of the atrophy process, before overt
atrophy was measurable by ultrasound.

After 35 days bed rest, the muscle thickness was decreased
by 16–23%, which is similar to the amount of atrophy seen in
other studies (2, 4, 8, 28). In contrast to other studies (2, 4, 8,
28), we did not observe differences in the relative degree of
atrophy between muscles. The discrepancy between these stud-
ies and ours may well be related to the range of muscles

studied, where we assessed the bed-rest-induced changes only
in the thigh, where others have compared the thigh muscles
with muscles in the lower leg that atrophied more. It is likely
that this difference in bed-rest-induced decreases in muscle
mass between muscles is related to a larger reduction in
recruitment of lower leg than thigh muscles during bed rest. As
expected, the atrophy was accompanied by a decline in � in all
muscles, as was previously also demonstrated (8).

Similar to a previous study, we found that in all muscles, Dm
was increased by 35 days of bed rest, although the increase in
the present study was more pronounced than in that study using
horizontal bed rest (34). This suggests that the fluid shift, away
from the legs toward the head, somehow affects the atrophy-
induced increase in Dm. The fluid shift may also contribute to
the observation that Dm was already elevated after as little as
24 h of bed rest, before any overt architectural changes and
muscle atrophy had taken place. In addition, the magnitude of
Dm increase was between 42% and 84% after 35 days of
head-down tilt bed rest and exceeded the atrophy that ranged
between 16% and 23%. Another indicator that the fluid shift
may play an important role in the increase in Dm with bed rest
is the almost instantaneous return of Dm after cessation of bed
rest (at R � 3), again before any significant architectural and
muscle mass recovery had taken place (at R � 30, except � in
BF at R � 3). How the fluid shift affects these changes is a
matter of further research, but one might speculate that Dm
may also be applicable to assess the hydration status of the
muscle.

It is possible that fluid shifts out of the muscle may increase
Dm by decreasing the viscoelasticity of the muscle-tendon
tissue and the decrease in muscle tone, resulting in a larger
bulging of the muscle in response to an identical electrical
stimulus. The fluid shift from extremities to the chest can
amount to a 4.4% decrease in extracellular fluid content that is
particularly attributable to a loss of interstitial volume by 3%,

Fig. 3. Pearson correlations between changes in tensiomyographic displacement (Dm) after 35-day bed rest and thickness (d; A–C) and pennation angle (�; D–F)
in the vastus medialis obliquus (VMO), vastus medialis longus (VML), and biceps femoris (BF).
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in parallel with a 12.3% reduction in plasma volume in just 4
days (19). After the 4th day of bed rest, plasma volume
continues to decrease but at a much slower rate (19). Later,
also, intracellular fluid loss can occur that then parallels muscle
atrophy (19).

Furthermore, dry immersion induces an increase in Dm and
decrease in muscle-tendon viscoelasticity (10, 23) that is, at
least partly, attributable to a similar fluid shift away from the
muscles. A decrease in muscle tone, which occurs as early as
after 1 day of dry immersion, may further contribute to the
increased Dm after 3 days of dry immersion (10) and after 20
days of bed rest (23). Such changes have indeed been observed
to translate into higher transversal muscle oscillations during
voluntary and electrically evoked contractions (27).

Recent data show that merely a few days (e.g., 5–7 days) of
disuse substantially reduce skeletal muscle mass (11, 12), with
a slower recovery rate in seniors than in young adults (33, 43).
As a consequence, it has been suggested that the accumulation
of such short (�10 days), successive periods of bed rest or
immobilization during short-term illness or hospitalization
may contribute to the loss of muscle mass and metabolic
decline observed throughout life (14, 46). Given this slow
recovery in the older person and being more prone to hospi-
talization, it is important to minimize or even prevent any
atrophy. Identification of early functional and structural mark-
ers of muscle deconditioning may help in the design of ade-
quate interventions to slow such atrophy even before it be-
comes overt and assess the success of an intervention to
prevent atrophy (10). Our data show that Dm may be such a
functional marker, a parameter that can be determined with
high reproducibility (38, 44).

Bed rest did not induce a significant change in the Tc in the
VMO but did induce an increase in the Tc in the VML and BF
muscles. That observed increase was much more pronounced
for BF, where Tc also did not recover until 30 days after bed
rest. Previously, we found a positive correlation between Tc
and the MHC-I proportion in vastus lateralis (39), and given
that disuse is often associated with a slow MHC-I to fast
MHC-IIx transition, the correlation may not apply to disused
muscles, where, for instance, a decreased viscoelasticity may
have a larger—and opposite—effect than the MHC transition.
However, the velocity of Vr increased in all muscles, resulting
from increased Dm and the following: 1) unchanged Tc in
VMO, 2) slightly increased Tc in VML, and 3) substantially
increased Tc in BF. Although Vr should not be paralleled to the
contractile velocity of the whole muscle, it is evident that Vr is
sensitive to muscle disuse, as well as to assess peripheral
fatigue after training (8a) or peripheral arterial disease (18).
However, further research is needed for the interpretation of Vr

changes. Whatever the explanation, the data are analogous to
the lower TMG-derived Tc in children and adults who partic-
ipated regularly in sports (40, 42) or high-speed plyometric
exercise (51). Indeed, when compared with previously pub-
lished data, the magnitude of the increase in Tc after 35 days
of bed rest was comparable to or even more pronounced than
that of sedentary childhood/adolescence or sedentary aging
(Table 2).

The increase in Tc in the BF following bed rest may have
significant implications, as it has been observed that a lower Tc
correlated to a higher vertical jump (51). The increase in Tc
following bed rest in the BF, which was found also in seniors

(42), may thus have significant clinical implications for the
quality of life after hospitalization. Therefore, Tc of the BF is
a parameter, like Dm, of special interest in assessing the
efficacy of therapeutical interventions of people experiencing
any kind of disuse, especially in the older population (33, 43).

Conclusions/relevance. In conclusion, our study showed that
TMG can be used to detect early bed-rest-induced muscle
dysfunction, before overt atrophy and atrophy-associated ar-
chitectural changes can be detected with ultrasound. It remains
to be seen whether such early changes are a result of the fluid
shift away from muscles during head-down bed rest and/or are
a reflection of structural bed-rest-induced changes. Future
studies in horizontal bed rest or unilateral limb suspension may
shed light on the role of fluid shifts in TMG parameters. If no
such changes are observed in such a model, then it is probably
worthwhile to assess whether TMG can be used as a clinical
diagnostic tool for atrophy and/or to assess the hydration
status, something particularly important in older people and
chronically ill patients, where dehydration is related to sar-
copenia and muscle weakness (9).
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