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Preface 

 

This Ph.D. thesis is the result of three years of work carried out at the Edmund Mach Foundation (FEM) under 

the supervision of Professor Gianfranco Anfora and at the Oregon State University under the supervision of 

Professor Vaughn M. Walton. Financial support for this study was provided by the University of Udine, Italy and 

Edmund Mach Foundation. 

The Ph.D. project proposal was conceived to elucidate multiple aspects of the biology of the invasive species 

Drosophila suzukii, and the main goal was to find management alternatives to chemical treatments.  

The thesis is thus focused on different life traits of D. suzukii, presenting an innovative and effective free-

insecticide attractant matrix for controlling damages and spreads of this invasive species. The short general 

discussion at the end aims at putting the obtained results into a broader perspective. 
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Aim of the work 

Drosophila suzukii (Matsumura), also known as Spotted Wing Drosophila (SWD), is a vinegar fly belonging to the 

Diptera order and Drosophilidae family. It is native to South East Asia and it has recently invaded western 

countries, affecting fruit production. This pest species is considered alien owing to its great tolerance of a wide 

range of climatic conditions, extreme fecundity, wide host range and high dispersal potential. Because of its 

rapid spread, the economic impact has been huge in most of the invaded countries. D. suzukii infestations 

generate direct and indirect economic impacts, through yield losses, shorter shelf life of infested fruits, extra 

labor and costs for monitoring, field sanitation and post-harvest handling (especially in organic production) as 

well as the closure of international markets for fruits produced in infested areas. For all these reasons, deeper 

information about the biology, ecology, chemical-ecology, genetics and behavior are necessary to better 

manage the species. This thesis was developed to contribute towards a better understanding of these topics, in 

order to find a scientifically supported and effective solution. In particular, this work focused on four aspects: 

1) analyze the genetic structure of different Italian populations, 2) understand the spread and therefore the 

capacity of movement of D. suzukii in large and small scale, 3) study the oviposition behavior with an in depth 

characterization of the chemical volatiles involved in the substrate choice and 4) manipulate the egg-laying 

behavior thanks to an innovative lure, which can work as an alternative oviposition substrate.  

 

Taken together, the results presented in this thesis highly contribute to enhancing our understanding of D. 

suzukii biology, ecology and chemical and to expand integrated pest management options.  
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Abstract 

Drosophila suzukii, an insect pest from South-East Asia, invaded America (USA) and Europe (EU) continents in 

2008 and since then has caused extensive economic damage to the soft fruits’ industry all over the world. D. 

suzukii population control mostly relies on the use of chemical pesticides, practice with serious drawbacks 

because of their use close to harvest and the following risk of high residues left on fruits. Pest management 

programs are, therefore, in permanent search for alternative strategies including those based on biocontrol.  

In order to identify new solutions, in depth studies concerning the spread capacity, ecology, behavior and 

chemical ecology of the species are requested. For this reason, part of my thesis focused on some basic aspects 

of D. suzukii biology and ecology, in particular the genetic structure characterization of Italian D. suzukii 

populations (chapter 2), the dispersal ability of the species (either large and small scale, and in close proximity 

of host fruits) (chapters 3 and 4), the oviposition behavior (Chapter 5) and its oviposition manipulation (chapter 

6).  In the first chapter, we characterized the genetic structure of the invasive species D. suzukii in Italy. Our 

analysis showed extensive genetic homogeneity among D. suzukii collected in Italy. The relatively isolated 

Sicilian population suggests a largely human-mediated migration pattern while the warm climate in this region 

allows the production of soft fruit, and the associated D. suzukii reproductive season occurring much earlier 

than on the rest of the peninsula.  

Understanding seasonal and daily migrations D. suzukii populations is fundamental, since it could help farmers 

and industries decide where to apply specific management techniques. This was the aim of the third and fourth 

chapter. Furthermore, the finding of a consistent seasonal and daily movement from the crop to the 

surrounding vegetation and towards areas with different altitude, may lead to use treatments, especially 

chemical, in precise periods of the year and in defined zones on the border of the crop. In both papers we found 

that abiotic factors, such as temperature and humidity, play a fundamental role in the environmental 

distribution of the species. In particular, in the third chapter data seem to indicate that as soon as seasons 

change, and as a consequence the temperature and the availability of food, D. suzukii adults are able to move 

towards different altitude in order to exploit better conditions for their survival. In the fourth chapter, focused  
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on the movement of the species between a crop and the surrounding forests, results provide evidence that  

suboptimal cropping conditions with respect with fly development coupled with more optimal surrounding 

vegetation environments can respectively act as ‘push and pull’ forces for D. suzukii populations. 

The fifth chapter was focused on the oviposition behavior of D. suzukii. The goal of this work was to elucidate 

behavioral and chemical aspects of short-range site selection of this species. Video recording evidenced several 

discrete and repeated steps during oviposition. In particular the final step was the release of an anal secretion 

over the fruit surface near the oviposition site. Choice and non-choice tests indicated oviposition preference 

towards egg-infested fruits, suggesting a role of the released liquid as a marking pheromone attracting multiple 

oviposition. The knowledge gained with this study may accelerate establishment of control strategies based on 

the interference and disruption of the D. suzukii communication during the oviposition processes.  

Finally, the main target of my sixth chapter had more practical purposes focusing on the identification of new 

attractants for D. suzukii able to interfere with its movement and, consequently, with the potential to be used 

as baits for pest monitoring and control. This project, carried out at the Oregon State University, led to the 

development of a new gum matrix as a potential sink for D. suzukii eggs in a commercial-standard cropping 

system. Field trials were thereafter conducted over periods of 72 ± 2 to 96 ± 2 hours on commercial-standard 

blueberry bushes. Fruit on bushes exposed to predetermined numbers of D. suzukii displayed 50 to 76% 

reductions of fruit infestation and total eggs laid, respectively, in gum treatments.   

In conclusion we can say that all together the data collected during three years of PhD and the performed 

analyses have definitely increased the knowledge about the species and more importantly, support a valid new 

control alternative against the invasive species D. suzukii. 
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Riassunto 

Drosophila suzukii, una specie invasiva proveniente dal sud-est asiatico, dal 2008 ha invaso sia il continente 

americano che l’Europa, e da allora ha causato danni ingenti all’industria dei piccoli frutti. Il controllo di questa 

specie dannosa si basa principalmente sull’uso di insetticidi, pratica che a lungo andare causa seri effetti negativi 

agli ambienti naturali e agli agroecosistemi e, per via dei residui che si possono accumulare sui frutti trattati 

prossimi alla raccolta, alla salute umana. I nuovi programmi di controllo sono pertanto rivolti alla ricerca di 

strategie alternative incluse quelle basate sul biocontrollo.  

Per accellerare la messa a punto di nuovi strumenti, sono necessari studi approfonditi riguardo la capacitá di 

diffusione, l’ecologia, la biologia e il comportamento. Per tale ragione, parte della mia tesi si basa su aspetti 

quali la struttura genetica di popolazioni campionate in diverse regioni della nostra Penisola (capitolo 2), sulla 

capacitá di dispersione della specie (sia ad ampia che a piccola scala, e in prossimitá dei campi coltivati) (capitoli 

3 e 4), il suo comportamento di oviposizione (capitolo 5) e come si puó manipolare il suo comportamento di 

oviposizione attraverso la creazione di un alternativo substrato di oviposizione (capitolo 6). Nel secondo 

capitolo i dati raccolti hanno permesso di definire come la popolazione Siciliana sia quella geneticamente piú 

isolata e che il trasporto di merci sia la principale fonte di dispersione tra diverse localitá della specie invasiva. 

Allo stesso tempo risulta fondamentale conoscere come la specie percorre lunghe o brevi distanze stagionali 

e/o giornaliere in modo da poter aiutare gli operatori agricoli a definire quando e dove applicare i trattamenti 

siano essi chimici o di altra natura. Questo é stato lo scopo del terzo e del quarto capitolo. I risultati ottenuti 

evidenziano uno spostamento giornaliero tra il campo coltivato e il bosco adiacente in relazione al cambio di 

temperatura e umiditá, cosí come migrazioni tra altitudini differenti sempre ricoducibili alle variazioni di 

paramentri abiotici e di risorse alimentari. In particolare nel terzo capitolo i dati sembrano indicare che quando 

la temperatura, e di conseguenza la disponibilitá di cibo iniziano a variare, D. suzukii é in grado di migrare ad 

altitudini diverse per riuscire a sfruttare al meglio queste risosre e trovare un ambiente favorevole alla 

sopravvivenza. Nel quarto capitolo, focalizzato sul volo giornaliero tra ambiente coltivato e bosco circostante, i 

risultati sembrano evidenziare che condizioni subottimali del campo  
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coltivato accoppiato con migliori condizioni abiotiche nelle zone circostanti possono rispettivamente fungere 

da ‘push and pull’ nella distribuzione di D. suzukii. 

Il quinto manoscritto di questa tesi si focalizza sul comportamento di oviposizione di D. suzukii. Il goal finale di 

questo progetto é quello di elucidare l’aspetto comportamentale e chimico della selezione di siti di oviposizione 

della specie. Le registrazioni video hanno permesso di evidenziare diversi comportamenti ripetuti durante la 

fase di oviposizione. In particolare, dopo l’oviposizione dell’uovo all’interno del frutto, la femmina rilascia sulla 

superficie dello stesso una secrezione anale. I test di comportamento indicano che le femmine sono attratte 

maggiormente verso frutti giá infestati, suggerendo pertanto la presenza di feromoni di attrazione in tale 

secrezione. Le conoscenze che traiamo da tale lavoro potrebbero acellerare metodi di controllo innovativo 

basati sull’interferenza della communicazione olfattiva durante il comportamento di oviposizione. 

Il mio ultimo progetto presentato in questa tesi, sesto capitolo, ha uno scopo piú strettamente pratico basato 

sull’identificazione di attrattivi per D. suzukii capaci di interferire con il comportamento di oviposizione della 

specie in pieno campo, e pertanto con l’obiettivo di essere usati in trappole innovative per il monitoraggio e 

controllo della specie. Questo lavoro, sviluppato all’Oregon State University, ha portato allo sviluppo di 

substrato di oviposizione artificiale altamente attrattivo. I risultati ottenuti in campo, dimostrano una riduzione 

dell’infestazione dei frutti pari al 50%, e una riduzione del numero di uova deposte su di essi pari al 76%. 

In conclusione possiamo affermare che le ricerche svolte durante i tre anni di dottorato incrementano 

significativamente le conoscenze sulla specie e cosa piú importante supportano lo sviluppo di nuovi validi mezzi 

di controllo di D. suzukii. 
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Introduction 

1.1 Drosophila suzukii, a new global pest 

The spotted wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), is a pest species 

which has spread from its original range in Asia to a number of western countries in the past decade, including 

the Mediterranean basin (Asplen et al., 2015; Atallah et al., 2014), Europe, and USA (Hauser et al., 2011; Cini et 

al., 2012). The history of the geographical spread and infestation of D. suzukii is still under investigation: it is 

known that this species was first recorded in Japan in 1939. Initially it was described by Dr. Shounen Matsumara 

in 1931 as Leucophenga suzukii then amended by Kanzawa as Drosophila suzukii cherry fruit fly (Kanzawa, 1934). 

Since it first recognized it was then recorded in other Asian countries included Thailand, Korea, China, India and 

Russia (Hauser et al., 2011; Calabria et al., 2012; Walsh et al., 2011). In Hawai islands the first recognition 

happened in 1983 (Kaneshiro, 2983). Europe and the Americas were colonized much later, possibly during the 

last 9 years (Lee et al., 2011; Hauser et al., 2011; Cini et al., 2012; Deprà et al., 2014). First adults of D. suzukii 

were caught contemporaneously in the region of Catalonia, Spain (Calabria et al., 2012) and in Tuscany, Central 

Italy, in 2008 (Cini et al., 2012). In 2009 D. suzukii individuals were found on both wild hosts (Vaccinium, Fragaria 

and Rubus spp.) and several species of cultivated berries in Trento Province, North Eastern Italy, where also the 

first economically important damage by this species in Europe was reported (Grassi et al., 2011). In Italy the 

species was registered in multiple regions: Piemonte, Valle d’Aosta, Lombardia, Veneto, Emilia Romagna, 

Liguria, Marche and Campania. Always during years 2010 and 2011, D. suzukii was recorded also in France, 

Switzerland, Slovenia, Croatia, Austria, Germany and Belgium (Cini et al., 2012). During the following years, D. 

suzukii has been spreading rapidly across Europe, with documented infestations ranging from Mediterranean 

regions (i.e. Greece, Turkey) to northern latitudes (i.e. Sweden, Poland, UK) (EPPO Global Database, Drosophila 

suzukii – DROSSU, 2017) (Figure 1).  
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Figure 1: D. suzukii worldwide distribution (https://gd.eppo.int/taxon/DROSSU/distribution). 

 

In contrast to other Drosophila species, D. suzukii threats ripe and un-damaged fruits by laying eggs under their 

skin by means of a serrated ovipositor of females (Walsh et al., 2011; Cuthbertson et al., 2014; Emiljanowicz et 

al., 2014). Evolution of the ovipositor in D. suzukii acted to make females able not only to puncture skin of intact 

fruits and laying eggs inside, but also to change the insect diet from protein-rich (as other Drosophila flies that 

feed on rotten fruits) to carbohydrate rich (Rendon et al., 2018). Although it is still not known how can D. suzukii 

larvae develop with low dietary protein, this adaptation is important for larvae to avoid interspecific 

competition by utilizing unused food resource, whereas adults still feed on rotten fruits and fermenting material 

(Jaramillo et al., 2014; Rendon et al., unpublished data). 

D. suzukii is a highly polyphagous species, attacking several economically important crops (Kanzawa 1939; Bolda 

et al., 2010; Grassi et al., 2011; Lee et al., 2011; Walsh et al., 2011; Bellamy et al., 2013). In addition to cultivated 

crops, this alien pest has been reported to attack more than 50 wild plants in Europe and the USA (Baroffio et 

al., 2015; Lee et al., 2015; Poyet et al., 2013; Briem et al., 2016; Kenis et al., 2016). For example, jujube (Ziziphus 

jujube Mill) and rough bindweed (Smilax aspera L.) are wild hosts that serve as reservoirs of the pest and insure 

the re-infestation of the crops throughout the year (Baser et al., 2015). This frugivorous pest is known for being 

a multivoltine species due to its high fecundity and short developmental time per generation thus resulting in  

https://gd.eppo.int/taxon/DROSSU/distribution
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fast outbreaks of attacks (Kanzawa 1939). D. suzukii is not only highly polyphagous (Cini et al., 2014; Kenis et 

al., 2016), but is well adapted to temperate climatic conditions characterized by alternations of warm summers 

and cold winters (Mitsui et al., 2010; Anfora et al., 2012; Ometto et al., 2013; Shearer et al., 2016; Rossi Stacconi 

et al., 2016). All these factors allow the species to survive even in an alpine climate, where the temperature has 

ample fluctuations during the year. Another important characteristic is that D. suzukii developed the ability to 

overwinter in reproductive diapause in a distinct relatively cold-resistant morphotype (Ometto et al., 2013; 

Stacconi et al., 2016; Shearer et al., 2016). Actually, it has developed a tolerance to climatic variations by 

morphological changes of the colour and thickness of the body (Anfora et al., 2012; Ometto et al., 2013; Shearer 

et al., 2016; Stacconi et al., 2016).  

Such escalating records highlight the role of D. suzukii as a major global pest of fruit industry, calling for an 

immediate and a serious pest management program. Various researchers, local growers, producers from 

different European countries met in 2012 to exchange information and research ideas to understand this pest’ 

biology and ecology (Cini et al., 2012). It has been since then that almost 400 research articles have been 

published in the last five years describing the bio-ecological features, invasive history and management 

practices of this pest. 

 

1.2 Morphology and identification 

The species is also known as Spotted Wing Drosophila (SWD). The name comes from the male individuals 

carrying a dark spot on the top edge of each wing. Females do not carry any wing-spot, instead, possess large 

serrated ovipositor (Kanzawa 1934; Hauser et al., 2011; Calabria et al., 2012; Walsh et al., 2011) (Figure 2): this, 

together with the typical Drosophila male tarsal sex combs, make it a certain sexual dimorphic species. Based 

on phylogenetic analysis, D. suzukii belongs to the suzukii subgroup within the melanogaster species group, 

along with its close relatives D. pulchrella (Van der Linde et al., 2008) and D. biarmipes (Chiu et al., 2013; Ometto 

et al., 2013). D. takahashii of the takahashii subgroup is sister to the suzukii subgroup (Van der Linde et al., 

2008; Ometto et al., 2013; Chiu et al., 2013). The drosophila flies ancestors were characterized by  short, weakly  
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sclerotized ovipositors, which specifically evolved in long, strongly saw-like ovipositors in D. suzukii and some 

closely related species such as D. pulcherella and D. subpulcherella (Sasaki et al., 1996). Since these species 

share similar serrated ovipositor morphology but vary in their shapes, Atallah et al. (2014) suggested that 

ovipositor shape evolved after the evolution of enlarged bristles around it. The female serrated ovipositor and 

the male wing spot are the key characteristic used for identifying D. suzukii in the field, although their presence 

in other species can make identification more challenging. For example, the serrated ovipositor is shared with 

D. subpulchrella and D. pulchrella (Takamori et al., 2006), while similar wing-spots characterize D. biarmipes 

(Hauser et al., 2013) and D. immacularis among others (Okada 1954; Kimura 2004). Other characters, such as 

the number and position of sex combs on the fore tarsi may definitively guide to their correct identification (Cini 

et al., 2012). D. suzukii males have two sets of sex combs on their front legs: one on the first tarsal segment and 

another on the second, placed in the direction of the leg (Cini et al., 2012; Hauser et al., 2013). Sex combs of D. 

biarmipes, however, are only present on the first tarsomere and placed in two separated rows (Hauser et al., 

2013), and D. subpulchrella has sex combs arranged in two separated rows (Takamori et al., 2006). 

 

 

Figure 2: Male (left) and female (right) of D. suzukii (source: Gompel, 2012). 
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1.3 Biology and ecology 

D. suzukii is not a single strict fruit-specialist but can easily attack a large variety of soft-bodied fruits such  

as blueberries, strawberries, cherries, raspberries and blackberries although it can occasionally infect hard fruits 

likes apples and pears as well (Walsh et al., 2011, Dreves et al., 2009; Poyet et al., 2013). The wide range of 

hosts (more than 30 fruit species) and the fast dispersal potential have allowed D. suzukii to fully exploit wild 

land hosts that ripe throughout the year (Bolda et al., 2010; Lee et al., 2011; Asplen et al., 2015). An adult of D. 

suzukii reaches the sexual maturity one-two days after the emergence, in relation to the weather condition. 

The coupling is possible since the first day of life and females are able to lay eggs since the second day. During 

the life a mature female can lay around 400 eggs. Eggs hatch after one-two days after having been laid, and 

larvae need 3-15 days before becoming pupae. The pupae can persist inside the berry until the hatching or 

directly in the soil for 3-15 days always in relation with the weather conditions. This short life cycle allows the 

species to have 7-25 generations per year (Cini et al., 2012).  

The species is able to survive during winter condition thanks to the capacity to go into reproductive diapause 

(Bouletreau and Fouillet 2002; Kimura 2004; Dalton et al., 2011). Such ability has left a genetic signature in D. 

suzukii genome (Ometto et al., 2013). Because overwintering implies fewer generations per year, the D. suzukii 

genome is accordingly slower evolving than other Drosophila genomes likely because fewer generations have 

resulted in less changes of passing mutations to the offspring (Ometto et al., 2013). D suzukii can both 

overwinter and survive dry summers: it can easily tolerate temperature as low -1.6°C for females and -1.0°C for 

males, and as high as 32.6°C for females and 32.2°C for males (Kimura 2004). Such a broad range of temperature 

tolerance in D. suzukii is also one of the reasons for its worldwide invasive spread. However, too little is known 

about how this species manages to survive in winter and maintains their colonization. Two scenarios have been 

proposed. The first assumes that D. suzukii is cold-susceptible and it would try to escape cold by migrating to 

warm areas (Mitsui et al., 2010; Kimura 2004). Alternatively, if they are unable to escape the cold, they would 

die in a given location which will be re-colonized from infested fruits transported from  other warmer places in 

the following spring (Dalton et al., 2011). It is also possible that the species might manage to survive by hiding  
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under debris or trees-barks (Kanzawa 1939; Park et al., in preparation) or exploit a natural adult plasticity and/or 

develop into winter-morphs by undergoing population bottleneck and regaining their effective population size 

in forthcoming spring (Asplen et al., 2015; Ometto et al., 2013; Jakobs et al., 2017; Shearer et al., 2016). 

Although scientists propend for the second hypothesis, one paper of mine (Publication II, Tait et al., 2018) 

describes how collected data suggest a natural migration of D. suzukii, at least in the studied area (Valsugana 

Valley, Trentino-Alto Adige, Italy). 

 

1.4 Weather resistance  

D. suzukii survival, number of eggs laid, and generation time all depend on temperature. The optimal 

temperature for the pest (i.e. the temperature at which more eggs are produced, and less time is required to 

complete a full egg-adult cycle) is ≈ 25°C. D. suzukii is considered to be highly adapted to temperate climate and 

has a considerable thermal tolerance (Kanzawa et al., 1939; Lee et al., 2011; Enriquez & Colinet, 2017). Enriquez 

& Colinet (2017) tested the fly survival at extreme temperatures, taking also into account humidity, sex and life 

stage (either pupa or adult). Males resulted colder tolerant than females while females were more tolerant to 

extreme heat than males. At temperature above 5 °C, adult mortality dropped under 20% after one month of 

exposure. Pupae were less cold tolerant than adults but more heat tolerant. Finally, high humidity values 

enhanced the fly survival at high temperature but had no effect on low temperature survival. Another key factor 

of D. suzukii efficiency as a pest is its ability to overwinter. Only adult D. suzukii flies can successfully overwinter 

(Kanzawa, 1939; Lee et al., 2011; Shearer et al., 2016). The winter morph is characterized by a darker 

pigmentation and a longer wing length, and has a higher cold tolerance compared to the summer morph 

(Hamby et al., 2016; Shearer et al., 2016) (Figure 3). In fact, winter morph flies have a lower lethal temperature 

and can survive for longer periods at 1 °C compared to summer morph flies (Hamby et al., 2016; Shearer et al., 

2016; Grassi et al., 2017). Shearer et al. (2016) sequenced the RNA of winter morph D. suzukii adults in order to 

find DEGs. Genes involved in known mechanisms of cold-hardening (for example  
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carbohydrate metabolism) were found to be up-regulated. Moreover, genes related to oogenesis and DNA 

replication were found to be down-regulated: this is consistent with a reproductive diapause during winter 

months and confirms several other studies that suggested the presence of this diapause (Enriquez & Colinet, 

2017; Grassi et al., 2017). Grassi et al. (2017) confirmed phenotypically the presence of a reproductive diapause 

during winter months, showing that D. suzukii females have a decreased level of mature eggs during the 

dormant period and that this level is positively correlated to Degree Days (i.e. cumulative heat). 

 

 

Figure 3: summer morph and winter morph of D. suzukii of both sexes, with clear phenotypic differences (Shearer et al., 

2016). 

 

 

1.5 Dispersal ability and genetic spread 

Anthropogenic activities play a major role in the worldwide spread of invasive alien species (Taylor 1974; Taylor 

et al., 1984; Bigsby et al., 2011). Animal dispersal is typically studied by following the movement patterns of 

marked individuals (Nathan et al., 2003). Therefore, while human movements and global trade are likely the 

cause of the rapid passive spread of D. suzukii on a continental scale (Cini et al., 2012), little information is 

available on its active shorter-range dispersal capacity, apart from limited small-scale field studies (Klick et al., 

2015). According to the number of trap catches throughout the season and across elevational gradients, Mitsui 

et al. (2010) hypothesized that D. suzukii migrates progressively towards higher elevations during summer and  
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returns to progressively lower elevations as temperatures decrease. It was speculated that this behavior would 

enable D. suzukii to minimize exposure to suboptimal high temperatures and resource-limited conditions at low 

elevations during summer. Consequently, this behavior would also allow such populations, generation after 

generation, to exploit suitable food resources, i.e. ripening fruits, as they progressively become susceptible for 

colonization at higher elevations as the season progresses (Tonina et al., 2016). 

 There are multiple approaches to study the dispersal capacity of insects (Hagler and Jackson 2001). Insect 

marking techniques include use of stable radio isotopes (Hagler and Jackson 2001; Boina et al., 2009; Zhang et 

al., 2016), fluorescent dusts (Schneider 1989; Skovga 2002; Coviella et al., 2006), and immunomarking (Hagler 

and Jackson 2001; Hagler and Jones 2010; Klick et al., 2014; Lessio et al., 2014). An ideal marker should have no 

effect on insect behavior, resist severe weather conditions, be inexpensive, be easily applicable to the study 

species over large areas, and be readily detectable (Hagler and Jackson 2001). Immunomarking techniques, 

which make use of proteins from animal or plant sources, fulfill most of these requirements and have been 

applied successfully in mark–release–recapture studies, whereby wild or reared insects were marked by contact 

with contaminated plants in the field or directly marked with the proteins under controlled conditions (Jones 

et al., 2006; Klick et al., 2014; Lessio et al., 2014; Blaauw et al., 2016). 

Invasion dynamics can be studied using molecular markers that can discriminate and characterise the genetic 

relationships between source and derived populations, migration flows and population expansion patterns 

(Sunnucks et al., 2015; Schlötterer et al., 2004). In particular, Single Nucleotide Polymorphism (SNP) and Simple 

Sequence Repeat (SSR) markers have played an increasingly significant role in the study of genetic 

differentiation across species populations (Morin et al., 2007). Thanks to their great discrimination power and 

high reproducibility and variability, SSRs represent one of the most robust and informative molecular markers 

available for genotyping individuals (Murphy et al., 2016). For instance, their use in Drosophila species was 

pivotal in studying intra-population genetic variation and evolution (Hutter et al., 1998; Amos et al., 2003). 

In relation to D. suzukii, SSRs have been exploited to study genetic aspects of the colonisation process in the 

USA and Europe. Jeffrey and colleagues based their research on the use of six X-linked genes and suggested  
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that the invasions of the USA and Europe are two independent events (Adrion et al., 2014). Bahder et al., (2015) 

in particular analysed samples of D. suzukii populations collected in California and Washington and determined 

that while D. suzukii in the former region had high levels of genetic variation, the latter was highly monomorphic 

(Bahder et al., 2015). Furthermore, Fraimout’s group investigated Hawaiian and Spanish populations by 

exploiting microsatellite markers, finding a significant level of genetic differentiation (Fraimout et al., 2017). 

Although both studies exploited two different sets of microsatellites and tested different populations, the 

authors were led to similar conclusions: they demonstrated the presence of a specific differentiation process 

among ancestral and derived populations and suggested that for D. suzukii a genetic analysis approach is 

valuable not only to better understanding of the evolutionary history of the species, but also to manage its great 

potential for invasiveness. Different studies on the invasiveness of species, including D. suzukii, have 

demonstrated the relationship between their spread and human trade (Hulme 2009; Cini et al., 2014; Manni et 

al., 2017). 

 

1.6 Control strategies  

In order to stop D. suzukii from spreading into new countries and to avoid an increase in its population in already 

infested areas, integrated pest management techniques have to be developed and consistently applied. Several 

different approaches are being studied and some are already being used in the field. Removing any possible 

oviposition target of D. suzukii, either inside or outside the crop, is fundamental to prevent new infestations or 

an increase in the fly population (Walsh et al., 2011; Cini et al., 2012). This means removing overripe fruits or 

non-collected fruits as well as non-crop hosts and ornamental host plants. After removal, fruits have to be 

destroyed. Composting and similar techniques are definitely to be avoided, since larvae and eggs are not 

destroyed and can quickly complete their development thanks to the warm environment produced by the  

decomposition of the fruits (Walsh et al., 2011; Cini et al., 2012). Several options for disposal of potentially 

contaminated fruits have been proposed and, on the EPPO (European Plant Protection Organization) website,  
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guidelines on how to decrease the risk of persistence of sources of re-infestation can be found (EPPO Alert list, 

“Drosophila suzukii” entry). Among the possible IPM approaches, the scientific community has chosen to 

concentrate on environmentally safe strategies. Here are examples of major environmentally safe D. suzukii 

control strategies: RNA interference, parasitoids and microorganisms.  

RNA interference is the process by which the presence of dsRNA triggers a sequence-specific gene silencing 

cascade. In insects, it has been shown how the ingestion of dsRNA can cause RNAi that can lead to larval stunting 

and mortality (Baum et al., 2007; Taning et al., 2016). RNA interference to control pest population can be 

supplied to insects either by spraying of the dsRNA on infested plants or by genetically engineering crops to 

produce the dsRNA (Baum et al., 2007; Taning et al., 2016). Both mechanisms have advantages and 

disadvantages. dsRNA spraying fits well with current pesticides delivery methods but is not cost effective 

because of the use of in vitro synthesized RNA (Taning et al., 2016). Engineering plants, on the opposite, can be 

cost effective because of the production of transgenic strains that do not need continuous RNA synthesis (Baum 

et al., 2007; Taning et al., 2016). However, this approach is hindered by public hesitancy in accepting transgenic 

food (Taning et al., 2016).  

Biological control aims at exploiting natural enemies of the pest, like predators, parasitoids, microbes and 

viruses, introducing them into the environment to decrease pest population (Zabalou et al., 2004; Cini et al., 

2012; Pfab et al., 2018). Parasitoids are the organisms most used as biological controls; they are arthropods 

(mainly Hymenoptera and Diptera) which develop inside or on the surface of other arthropods and consume 

the host’s tissues during their own development (Chabert et al., 2012; Cini et al., 2012, Stacconi et al., 2016). 

The possible practical usage of parasitoids to control D. suzukii population has been debated, because of the 

pest high-reproduction rate (Cini et al., 2012, Pfab et al., 2018). Nonetheless, parasitoids are being studied 

intensively because of the long-term negative effect that they have on phytophagous populations if   

permanently introduced in infested environments (Walsh et al., 2011; Chabert et al., 2012; Cini et al., 2012; 

Stacconi et al., 2018). The absence of invasive species natural enemies is often regarded as one of the key  

factors for a successful biological invasion; parasitoid introduction aims at removing this key factor, slowing the  
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invasion of the pest (Chabert et al., 2012; Ioriatti et al., 2018). However, this approach has some practical 

difficulties, among which there is the usually low efficiency of local parasitoids in attacking new pests. Insects 

that invade new environments can often survive local parasitoids thanks to strong immune reactions or because 

they are not targeted at all by parasitoids, and this can happen even if the exotic insect is similar or closely 

related to local parasitoids hosts (Zabalou et al., 2004; Chabert et al., 2012; Cini et al., 2012; Mazzetto et al., 

2016). For this reason, local European parasitoids have been tested for D. suzukii parasitization rate (Chabert et 

al., 2012; Stacconi et al., 2018). Among the major European parasitoids, the pupal parasitoid Trichopria 

drosophilae showed high parasitization rate against D. suzukii (Chabert et al., 2012; Mazzetto et al., 2016; Zhu 

et al., 2017; Stacconi et al., 2018) and several authors have argued that it could be used to efficiently control D. 

suzukii population. 

Among the microorganisms used as biological control, endosymbionts are the most common. In arthropods, 

microorganisms can strongly interfere with their host biology (Cini et al., 2012). Control strategies targeting 

these microorganisms could thus be directed to reduce the pest population. One of the most known examples 

of microorganisms interacting with host insect biology is Wolbachia (Werren et al., 2008; Kaur et al., 2017). 

Wolbachia are gram negative bacteria that infect more than half of the living insect species as well as several 

nematodes (Werren et al., 2008; Cini et al., 2012). Wolbachia are vertically and horizontally transmitted and 

can manipulate their hosts in several different ways (Zabalou et al., 2004; Werren et al., 2008; Cattel et al., 

2016). These bacteria can induce different phenotypes depending on the host species and on the bacterium 

strain. Known phenotypes caused by Wolbachia infections are Cytoplasmic Incompatibility (CI), 

parthenogenesis induction, feminization of genetically male individuals and male killing (Werren et al., 2008; 

Zabalou et al., 2008). CI, the most common effect caused by Wolbachia infections, could be exploited in pest 

control strategies (Zabalou et al., 2008; Cini et al., 2012). Cytoplasmic Incompatibility prevents infected males  

from successfully mating with females with different Wolbachia infection status, i.e. non-infected or infected 

with incompatible strains (Werren et al., 2008, Cini et al., 2012; Rota-Stabelli et al., 2016). 
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In particular, Single Nucleotide Polymorphism (SNP) and 
Simple Sequence Repeat (SSR) markers have played an 
increasingly significant role in the study of genetic 
differentiation across species populations [15]. Thanks to 
their great discrimination power and high reproducibility and 
variability, SSRs represent one of the most robust and 
informative molecular markers available for genotyping 
individuals [16]. For instance, their use in Drosophila species 
was pivotal in studying intra- population genetic variation and 
evolution [14, 17–20]. 

In relation to D. suzukii, SSRs have been exploited to study 
genetic aspects of the colonization process in the USA and 
Europe. Jeffrey and colleagues based their re- search on the 
use of six X-linked genes and suggested that the invasions of 
the USA and Europe are two independent events [21]. Bahder 
et al. in particular analysed samples of 
D. suzukii populations collected in California and Washing- 
ton and determined that while D. suzukii in the former re- gion 
had high levels of genetic variation, the latter was highly 
monomorphic [22]. Furthermore, Fraimout’s group 
investigated Hawaiian and Spanish populations by exploit- 
ing microsatellite markers, finding a significant level of gen- 
etic differentiation [23]. Although both studies exploited two 
different sets of microsatellites and tested different 
populations, the authors were led to similar conclusions: they 
demonstrated the presence of a specific differentiation process 
among ancestral and derived populations and sug- gested that 
for D. suzukii a genetic analysis approach is valuable not only 
to better understanding of the evolution- ary history of the 
species, but also to manage its great po- tential for 
invasiveness. Different studies on the invasiveness of species, 
including D. suzukii, have demonstrated the relationship 
between their spread and human trade [24–26]. For this 
reason, it is very important to con- sider the correlation 
between gene flow analysis and the sale of soft fruit all over 
the country. Taking into account this aspect, we used a 
population genetic approach to characterize genetic diversity 
among D. suzukii individuals collected in different regions of 
Italy. In order to perform this work a set of 15 microsatellites 
validated by Fraimout and colleagues [23] were employed. 
The current research is the first study that provides new 
insights on the trend of gen- etic diversity in Italian 
populations of D. suzukii. 

 
Methods 
D. Suzukii collection, identification and DNA extraction 

A total of 278 individuals of D. suzukii collected from nine 
populations in Italy were analysed (Fig. 1). Adult D. 

 

suzukii were collected between October 2015 and April 
2016 using Droskidrink®-baited traps [27] left exposed 
for 3 days. In order to limit the likelihood of sampling 
individuals related to each other, three traps per location 
were used, at a distance of at least 500 m from each other. 
In the laboratory, D. suzukii individuals were identified 
using a 7×-45× stereomicroscope, according to Hauser’s 
(2011) morphological characteristics, such as the structure 

of the ovipositor for females and spots on the wings and 
tarsal combs for males. Samples were pre- served in 96% 
ethanol and kept at 4 °C until DNA ex- traction. For each 
location, we selected 15 females and 15 males for DNA 
extraction, with genomic DNA being extracted from each 
individual separately using the Macherey Nagel Kit 
(NucleoSpin Tissue, Macherey Nagel, Düren, Germany). 

 
Microsatellite analysis 

The SSRs used for this work were selected from a set of 
microsatellites previously designed and validated  [23].  Of 
the 28 published SSRs, 22 continuous di-nucleotide loci 
were tested on a pool of 20 D. suzukii individuals. Seven of 
these loci were discarded because of amplifica- tion 
problems, leaving 15 SSR markers distributed across 
chromosomes 2 and 3 (Fig. 2) [28]. 

Each pair of primers was used for PCR amplification in 
25 μL final volume, containing 1X GoTaq G2 Master Mix, 
0.5 μL of each primer, 10.5 μL of distilled deionized water 
and 1 μL of genomic DNA. The PCR program was set with 
an initial period of denaturation at 94 °C (30 s) followed by 
32 cycles of additional denaturation at 94 °C (30 s), an 
annealing phase at 57 °C (1 min 30 s), an elongation phase 
at 72 °C (1 min) and ending with an- other extension phase 
at 72 °C (30 min). PCR products were checked using 
electrophoresis on 1.5% agarose gel, stained with ethidium 
bromide and visualized under UV light. Each amplicon was 
then diluted 1:10 in distilled water and 1 μL of this dilution 
was added to 12.5 μL of    a mixture of deionized 
Formamide (Sigma-Aldrich) and GeneScan-500 ROX size 
standard (Life Tech, Waltham, MA USA). Prior to 
denaturation for 4 min at 94 °C, ca- pillary electrophoresis 
was carried out in an ABI PRISM 
310 Genetic Analyzer (Life Tech) and the fragments were 
sized with GeneMapper v.4.0 software in binning mode. If 
no sample amplification was obtained after two PCR 
attempts, the locus was classified as missing data. 

 
Statistical analysis 

Microsatellite allele data were processed with Tandem 
program v.1.08 [29]. GenAIEx software v.6.41 [30] was 
run to study the genetic variability between populations 
using the following statistics: mean number of alleles  (Na), 
effective number of alleles (Ne), expected heterozy- gosity 
(HE), observed heterozygosity (HO), number of 
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the Arlequin v.3.5 [35] program was performed to esti- mate 
variability distribution within and between the tested 
groups. The level of genetic differentiation in pop- ulations 
was detected using the FST values obtained with 
Microsatellite Analyzer (MSA) v.4.05 software [19]. The 
program allows comparison of each observed FST value with 
that obtained in 10,000 matrix permutations in order to 
define the statistical significance of each FST. 

The Bayesian method was implemented with STRUC- 
TURE software v.2.3.3 [36, 37]. This program was 
employed in order to obtain clusters of individual geno- 
types. The analysis was run using the admixture hypoth- 
esis, which is based on correlated allele frequencies, in 
which each sample contains a portion of the genome of 
each ancestral population. This, correlated to the allele 
frequency model, allows calculation of the log likelihood 
for the data, L(K). Not knowing the origin and the de- gree 
of isolation of the studied populations a priori, this model 
is considered to be the most appropriate in these situations 
[36]. Prior probability, i.e. the probability that an individual 
belongs to any K reference populations, is defined as l/K. 
The K value was fixed from 1 to 10 with 20 replicates of 
each K to test the convergence of the Markov chain. A total 
of 1000,000 simulations per run and 500,000 Markov 
Chain Monte Carlo MCMC repeti- tions were fixed. Once 
the results were obtained, they were scored with 
STRUCTURE HARVESTER software to detect the 
number of K groups that best fit the  data- set according to 
the Evanno test [38, 39]. GENECLASS 
v.2.0 [40] was run to estimate the probability of each in- 
dividual in a population belonging only to that popula- tion, 
the probability of it being an immigrant from each of the 
other populations, and the probability of it being a   migrant   
to   the   other   populations.  BOTTLENECK 
v.1.2.02 [41] was run in order to evaluate whether demo- 
graphic events such as population contraction or expan- 
sion took place in each population. 

Heterozygosity excess, which is associated with a 
population expansion, was tested with the two-phase 
mutation model (TPM) using Wilcoxon signed-rank test, 
which according to Piry et al. is  the  most  appropriate and 
powerful test when dealing with less  than  twenty loci [41]. 
Parameters were set as 20% multiple-step mu- tations and 
80% single-step mutations with 1000 itera- tions. In order 
to verify the effect of isolation by distance, and therefore 
to find possible correlation be- tween genetic and 
geographical distances, the ISOLDE option in GENEPOP 
software was run. 

 
Results 
Genetic diversity 

The variability indices of the 15 SSR loci are shown in 
Table 1. The number of alleles per locus across popula- 
tions ranged from 8 (DS17) to 20 (DS07), with an 

 
Table 1 Summary of the genetic variability at 15 microsatellite 
loci 

 

Locus Repeat PIC Allele range N HO HE H-W 

DS05 (TG)10 0.74 250–284 bp 11 0.79 0.77 ** 

DS07 (CA)13 0.84 180–220 bp 20 0.89 0.86 NS 

DS08 (AG)10 0.81 118–158 bp 17 0.84 0.83 *** 

DS09 (AC)15 0.72 200–230 bp 13 0.71 0.75 NS 

DS14 (TG)10 0.68 136–239 bp 11 0.75 0.71 ** 

DS15 (GT)11 0.76 238–278 bp 13 0.88 0.79 * 

DS16 (AC)13 0.78 85–119 bp 15 0.91 0.81 *** 

DS17 (GT)10 0.70 93–113 bp 8 0.90 0.74 *** 

DS20 (AG)12 0.74 207–235 bp 13 0.84 0.77 * 

DS22 (GT)11 0.71 304–334 bp 13 0.83 0.75 NS 

DS23 (AC)10 0.75 236–266 bp 13 0.76 0.77 NS 

DS25 (CA)10 0.71 222–280 bp 18 0.74 0.74 *** 

DS26 (CA)10 0.73 79–109 bp 10 0.76 0.77 NS 

DS28 (TG)11 0.78 141–161 bp 11 0.86 0.81 *** 

DS32 (TG)15 0.83 310–376 bp 18 0.68 0.85 *** 

Repeat, motive of the microsatellite; PIC polymorphic information content; 
Allele range, N number of alleles, Ho,observed heterozygosity, He 
expected heterozygosity 

 

average (± standard deviation) of 13.6 ± 3.37. The PIC 
estimate ranged from 0.68 (DS14) to 0.84 (DS07), sug- 
gesting that this set of loci is informative for population 
analysis. Only five alleles were in Hardy-Weinberg Equi- 
librium (DS07, DS09, DS22, DS23, DS26), while the other 
10 showed significant HWE deviations, with nine loci 
having an excess of HO (Table 1). The reason for the HWE 
disequilibrium could be the presence of null allele that may 
affect estimation of population differentiation [42, 43]. The 
mean HO across loci ranged from 0.68 (DS32) to 0.91 
(DS16), while HE ranged from 0.71 (DS14) to 0.86 (DS07). 
Mean HO across populations ranged from 0.66 ± 0.16 
(Trentino2), to 0.89 ± 0.09 (Tuscany) (Table 2). Allelic 
richness ranged from 6.23 in Trentino1 to 8.58 in Apulia. 
For most of the loci the FIS was negative. FIS values ranged 
from −0.28 in Sicily to 
0.07 in Trentino2. In the Additional file 1 are reported    all 
the data concerning the observed and expected het- 
erozygosity, the number of alleles, the effective number of 
alleles, the number of private alleles, the F-statistic (Fis, 
Fit and Fst) and the fixation index. The Tukey test revealed 
a significant effect of population origin on the 
heterogeneity of Ne on comparing the following sampled 
populations: Trentino1 and Apulia, Trentino2 and Apu- lia, 
Sicily   and   Apulia, and   Sicily   and   Tuscany (P < 0.001). 
On analysing all the populations together with ANOVA, 
using the collection site as a factor, Ne showed a significant 
difference between populations (F = 3.86, P < 10−10). The 
effect of the collection site   was also evident in mean HE 
(F 4.19, P < 0.001). 
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Table 2 Level of genetic diversity across 9 populations of D. suzukii 

 Na Ne Ar Np Ap HO HE An FIS 

Trentino1 6.40 ± 1.29 3.65 ± 0.93 6.23 1 0.06 0.68 ± 0.18 0.70 ± 0.07 0.01 0.02 

Trentino2 7.60 ± 1.50 3.83 ± 1.01 7.36 8 0.53 0.66 ± 0.16 0.72 ± 0.08 0.03 0.07 

Sardinia 7.87 ± 1.40 4.37 ± 0.80 7.69 6 0.40 0.82 ± 0.10 0.76 ± 0.05 0.03 −0.08 

Latium 7.80 ± 1.37 4.18 ± 0.87 7.44 6 0.40 0.83 ± 0.13 0.74 ± 0.06 0.04 −0.11 

Sicily 5.60 ± 0.98 3.25 ± 0.58 5.44 1 0.06 0.87 ± 0.11 0.68 ± 0.05 0.11 −0.28 

Apulia 8.87 ± 3.44 5.22 ± 2.53 8.58 25 1.66 0.81 ± 0.13 0.77 ± 0.07 0.01 −0.04 

Tuscany 7.47 ± 1.12 4.68 ± 0.98 7.23 2 0.13 0.89 ± 0.09 0.77 ± 0.04 0.06 −0.14 

Liguria 7.40 ± 1.50 4.41 ± 0.77 7.11 3 0.20 0.87 ± 0.10 0.76 ± 0.03 0.05 −0.13 

Veneto 7.53 ± 1.30 4.14 ± 0.50 7.26 5 0.33 0.83 ± 0.16 0.75 ± 0.02 0.04 −0.10 

Na mean number of alleles, Ne mean effective number of alleles, Ar mean of allele richness, Np number of private alleles, Ap mean frequency of private alleles, HO 
mean observed heterozygosity, HE mean expected heterozygosity, An mean frequency of null alleles, FIS mean inbreeding coefficient 

 

Genetic population structure and gene flow 

An estimate of variability distribution (AMOVA) within 
the tested populations indicated that 96% of the vari-  ation 
occurred within individuals, while only 4% of total 
variation was detected between populations. Table  3 gives 
a summary of analysis of variance for the nine D. suzukii 

populations. The results of PCoA are shown in Fig. 3. The 
first axis explains 57.9% of genetic variation, while the 
second axis explains 18.9%. The first axis sepa- rates the 
Sicilian population from the remaining popula- tions. The 
second axis mainly divides Apulia, Tuscany, Liguria and 
Veneto from the others. The unweighted Neighbour-
Joining dendrogram represented in Fig. 4 supports data 
obtained using PCoA: the Sicilian group has the same 
origin as the other populations, but indi- viduals belong to 
a separated cluster. 

The FST values confirmed the genetic differentiation 
between the Sicilian group and the others. Considering all 
the populations, 30 of the 36 pairwise comparisons tested 
were significantly different from zero (Table 4). The least 
significant differentiation was between Liguria and Veneto 
(FST = 0.003), while the greatest divergence was between 
Sicily and Trentino1 (FST = 0.135). Population structure 
analysis led to the identification of two clusters (K = 2), 
based on the Evanno method (Fig. 5) and revealed genetic 
homogeneity between most popula- tions, with the 
exception of flies collected in Sicily. The data of gene flow 
are reported in Table 5. The findings show that the Sicilian 
population did not migrate signifi- cantly to any other 
populations (m < 0.100). Although there was no gene flow 
from Sicily to the other regions, migrant flow occurred 
from Trentino2 (m = 0.100), 

 
Table 3 Analysis of molecular variance test (AMOVA) 

 
 

Source of variation DF SS VC %PV 

Among Populations 8 165.16 0.24 4% 

Within Individuals 278 167.05 6.00 96% 
 

 

DF degree of freedom, SS sum of squares, VC variance components, %PV 

percentage of total variation 

Sardinia (m =  0.176),  Lazio  (m   =  0.281),  Tuscany (m 
= 0.195), and Liguria (m = 0.111). On the other hand, 
migration occurred from Apulia to other regions, but not 
to Apulia (m < 0.100) from other regions. Excluding Sicily 
and Apulia, the remaining seven populations both received 
and provided significant genetic information in relation to 
other populations (m > 100). Comparisons of Trentino2 and 
Veneto (m = 0.430 and m = 0.485 re- spectively), Sardinia 
and Tuscany (m   =   0.316   and m =   0.327   respectively) 
and   Lazio   and   Liguria (m = 0.376 and m = 0.315 
respectively) revealed a similar migration rate in both 
directions. Considering the likelihood of the presence of 
migrants across popula- tions, nine migrants (seven 
females and two males) were detected with a probability of 
less than 0.01. 

Results from the individual population analysis using the 
TPM model did not support an expansion scenario. On the 
contrary, population bottleneck, defined by signifi- cant 
heterozygote deficiency was present in the Trentino2 
population (P = 0.004). The nine populations showed no 
significant correlation when comparing genetic and geo- 
graphical distances [R2 = 0.014, P = 0.568, FST/(1- FST) = 
0.049 + Ln (geographical distance) = 0.001]. 

 
Discussion 
Genetic diversity 

The introduction of invasive species to new environ- ments 
poses threats to biodiversity, agriculture, public health and 
ecosystem integrity [44–47]. For this reason, considerable 
attention is paid to the rapid spread of alien species [46, 48]. 
Genetic characteristics deeply affect the capacity for 
expansion [49]. Therefore, in order to miti- gate their 
impact and define management strategies it is imperative to 
study these fundamental characteristics. Currently 
techniques such as genomics [50–52], tran- scriptomics 
[53, 54], and metagenomics [55, 56] allow us to investigate 
these basic traits. 

This research investigated the genetic structure of D. 

suzukii collected in different areas of Italy. In particular, 
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Abstract  
Drosophila suzukii (Diptera: Drosophilidae) is an invasive alien species devastating soft fruit crops in newly invaded territories. 
Little is known about the importance and potential of long-distance dispersal at a regional scale. The goal of this work is to 
investigate D. suzukii dispersal ability during different times of the season, and along an elevational gradient in a mountain valley 
in Trentino Province, Italy. We employed a mark–release–recapture strategy using protein markers. Flies were recaptured using 
fruit- baited traps. The protein-marked flies were positively identified using ELISA procedure. Additional microsatellite analyses 
were performed on D. suzukii collected during autumn at different elevations to characterize the population structure. Results 
suggest that a portion of the local D. suzukii population moves from low to high elevations during spring and summer and travels 
back to low elevations in autumn. Genetic analysis further revealed that samples collected during autumn at different elevations 
belong to the same population. These results show that D. suzukii are able to fly up to about 9000 m away from the marking point 
and that seasonal breezes likely facilitate long-distance movement. We suggest that these migrations have multiple functions for 
D. suzukii, including conferring the ability to exploit gradual changes of temperature, food, and ovipositional resources in spring 
and autumn, as well as to assist in the search for suitable overwintering sites in late autumn. Our findings help to unveil the complex 
ecology of D. suzukii in Italian mountainous regions and provide important clues for improving the efficacy of integrated pest 
management control techniques to combat this pest. 
 
Keywords Spotted wing drosophila · Mark–release–recapture · Seasonal movement · ELISA · Microsatellite 

markers · Abiotic factors 
 
 
Key message 
 

 
• This study was conducted to investigate D. suzukii dis-

persal ability during different times of the season, and 
along an elevational gradient in a mountain valley in 
Trentino Province, Italy.  

• The findings of the current study add to scientific under-

standing of D. suzukii seasonal migration patterns, sug-

gesting that this species is able to move and select the 
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most suitable sites in accordance with the change of 
sea-sons.  

• Our data are the first to document D. suzukii dispersal 

over distances of up to 9 km. 
 
 
Introduction 
 
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is an 
invasive insect species belonging to the Drosophila 
melanogaster species group (Yang et al. 2004) . It is pre-sumed 
to be native to Japan, where it was first described in 1931 
(Kanzawa 1939). The species has been collected in other 
Asiatic regions (Cini et al. 2012) and the first individuals of D. 

suzukii were recorded outside of its indigenous range in the 
early 1980s in Hawaii (Lee et al. 2011; Asplen et al. 2015). In 
2008, D. suzukii was found in California, Spain and Italy, and 
the species rapidly expanded throughout 
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Europe and the Americas (Hauser 2011; Calabria et al. 2012; 
Cini et al. 2012; Mazzi et al. 2017; Tait et al. 2017). The eco-
nomic losses due to D. suzukii are considerable in Trentino 
Province, Italy, where in 2011 damage was estimated at €3.3 
million. However, the economic impact of the pest in Tren-tino 
declined from an estimated 13% of potential revenue in the 
absence of management to 7% under an integrated pest 
management strategy (De Ros et al. 2015). In North America, 
Farnsworth et al. (2017) estimated an annual total of $US 511 
million in potential damage.  

Drosophila suzukii is highly polyphagous (Cini et al. 2014) 
and well adapted to temperate climatic conditions characterized 
by alternations of warm summers and cold winters (Mitsui et 
al. 2010; Ometto et al. 2013). These key factors allow the 
species to survive even in an alpine climate, where the 
temperature has significant fluctuation during the year. 
Another important characteristic is that D. suzukii has 
developed the ability to overwinter in reproductive diapause in 
a distinct, relatively cold-resistant morphotype (Dalton et al. 
2011; Ometto et al. 2013; Rossi-Stacconi et al. 2016; Shearer 
et al. 2016). Furthermore, according to the number of trap 
catches throughout the season and across elevational gradients, 
Mitsui et al. (2010) hypothesized that D. suzukii migrates 
progressively towards higher elevations during summer and 
returns to progressively lower elevations as temperatures 
decrease. It was speculated that this behaviour would enable D. 

suzukii to minimize exposure to suboptimal high temperatures 
and resource-limited conditions at low elevations during 
summer. Consequently, this behaviour would also allow such 
populations, generation after genera-tion, to exploit suitable 
food resources, i.e. ripening fruits, as they progressively 
become susceptible for colonization at higher elevations as the 
season progresses (Tonina et al. 2016).  

Anthropogenic activities play a major role in the world-wide 
spread of invasive alien species (Taylor 1974; Taylor et al. 
1984; Bigsby et al. 2011). Animal dispersal is typically studied 
by following the movement patterns of marked individuals 
(Nathan et al. 2003). Therefore, while human movements and 
global trade are likely the cause of the rapid passive spread of 
D. suzukii on a continental scale (Cini et al. 2012), little 
information is available on its active shorter-range dispersal 
capacity, apart from limited small-scale field studies (Klick et 
al. 2015). There are multiple approaches to study the dispersal 
capacity of insects (Hagler and Jackson 2001). Insect marking 
techniques include use of stable radio isotopes (Hagler and 
Jackson 2001; Boina et al. 2009; Zhang et al. 2016), fluorescent 
dusts (Schneider 1989; Skovga 2002; Coviella et al. 2006), and 
immunomarking (Hagler and Jackson 2001; Hagler and Jones 
2010; Klick et al. 2014; Lessio et al. 2014). An ideal marker 
should have no effect on insect behaviour, resist severe weather 
conditions, be inexpensive, be easily applicable to the study 

 
 
species over large areas and be readily detectable (Hagler and 
Jackson 2001). Immunomarking techniques, which make use 
of proteins from animal or plant sources, fulfill most of these 
requirements and have been applied success-fully in mark–
release–recapture studies, whereby wild or reared insects were 
marked by contact with contaminated plants in the field or 
directly marked with the proteins under controlled conditions 
(Jones et al. 2006; Klick et al. 2014; Lessio et al. 2014; Blaauw 
et al. 2016).  

In the present study, we wanted to assess scale dispersal 
ability and the seasonal elevational movement capacity of D. 

suzukii. To attain this aim, we used a procedure that combined 
marking wild D. suzukii individuals by contact with plants 
contaminated with chicken egg albumin with a capture–
release–recapture protocol. The experimental site was a steep 
alpine valley located in Trentino Province (Italy) with a known 
high D. suzukii population density (Rossi Stacconi et al. 2016) 
. Genetic analyses were performed on D. suzukii collected 
during early autumn at different elevations to permit 
characterization of the local population structure. Our 
hypothesis was driven by observed trap catches along an 
elevation gradient (Rossi Stacconi et al. 2016) similar to those 
found by Mitsui et al. (2010). We hypothesized that D. suzukii 
individuals would move from low to high elevations in late 
spring or early summer. As temperatures become unfavourable 
at lower elevations individuals would move to more favourable 
temperatures at higher elevations as host plants become 
available during the progression of the season. Conversely, 
during late summer this trend would be reversed in order to 
exploit available food resources, suit-able climatic conditions, 
and adequate overwintering sites. Results are discussed in light 
of the current knowledge about the biology and ecology of D. 

suzukii and in consideration of implications to pest 
management. 
 
 
Materials and methods 
 
Mark–release–recapture trials 
 
Three trials were conducted in a forested habitat with eleva-
tions ranging from 509 to 1520 m above sea level (a.s.l), along 
the Mocheni Valley, a lateral valley of the Valsugana Valley 
(Trento Province, Italy). This experimental site was selected 
because it hosts a previously studied D. suzukii pop-ulation that 
is causing important losses to soft fruit produc-tion (Fig. 1) 
(Rossi Stacconi et al. 2016). Each trial included a single 
marking point (Fig. 2), respectively, at 664 m (Serso, hereafter 
trial A), 871 m (Mala, trial B) and 1471 m elevation (Passo 
Redebus, trial C). The mark–release–recapture procedure made 
use of chicken egg albumin as the protein marker (Klick et al. 
2014). The marker was applied twice weekly as solution 
(C6534, Sigma–Aldrich) using a 
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Fig. 1  Captures of D. suzukii 

during 2013–2016 in Valsugana 

and Mocheni valleys. Traps were 

Droso-Traps (Biobest, Westerlo, 

Belgium) baited with 

Droskidrink® liquid  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2  Study area along the Valsugana and Mocheni valleys. Red 
points indicate the position of the three immunomarking points (low, 
middle and high elevations): Site A (Serso) corresponds to the low 
elevation spring marking point (46°04′54.91″N, 11°15′58.00″E); Site 
B (Mala) to the middle elevation summer marking point 
(46°05′42.01″N, 11°16′29.60″E); and Site C (Passo Rede-bus) to the 
high elevation autumn marking point (46°07′59.62″N, 
11°18′41.24″E). This image has been adapted from https://earth  
.googl e.com/web/@0,0,24018 .82718 741a,36750 128.22569 

847d,35y,0h,0t,0r/data=CgAoAQ 

 

backpack sprayer with an electric pump (ITALDRIFA, OSS 
company, Trento, 16 L) to soak 300 m2 (mostly consisting out 
of coniferous and deciduous species) and thereby marking wild 
D. suzukii adults within the experimental plot. Wild D. suzukii 
individuals were attracted to the plot by installing two food-
baited Droso-Traps (Biobest, Westerlo, Belgium) in each of the 
three marking sites. These bait stations attracted flies and 
increased the probability of insect contact with albumin-
contaminated vegetation as well as to catch additional D. 

suzukii for the controlled mark-release. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
These traps contained small cups comprising a cotton wick 
soaked with Droskidrink-® liquid to avoid D. suzukii 
drowning in the liquid bait. The -Droskidrink® (Azienda 
Agricola Prantil, Priò, Trento, Italy) liquid consisted of 75% 
apple cider vinegar and 25% red wine + 20 g/l of unrefined 
brown sugar. Individuals found in these traps were collected 
three times per week and were confined in a plastic cage 
soaked with albumin by means of a manual sprayer 
(Growland, ELHO-002, 0.7 L) after which they were 
released into the environment after 5 m in exposure.  

The first and second trials (A, B) were conducted from 
March 18 to May 19, 2016 and from June 26 to August 8, 2016, 
respectively, in order to study D. suzukii dispersal ability from 
low to high elevations. Trial C was conducted from September 
29 to October 31 to determine dispersal from high to low 
elevations. For each trial, food-baited traps as described above 
were deployed around the three marking sites at different 
distances along an elevational gradient (Fig. 3). At Serso 
(46°04′54.91″N, 11°15′ 58.00″E), traps were positioned at a 
linear distance of 40, 100 and 500 m from the marking point in 
each cardinal direction with a range of elevation from 509 to 
790 m a.s.l. Six traps were located at higher elevations from the 
marking point, while another six traps were located at lower 
elevations. At Mala (46°05′42.01″N, 11°16′29.60″E), traps 
were placed at a linear distance of 390, 750, 1100, 2043 and 
3000 m from the marking point. Two of these traps were 
located at a lower elevation than the marking point. At Passo 
Redebus (46°07′59.62″N, 11°18′41.24″E), traps were placed at 
a linear distance of 1080, 1935, 3092, 7716 and 9050 m from 
the marking point, one located at a higher elevation from 
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Fig. 3 Topographic map of experiment 1 (a) (March 29 to May 13, 
2016, Serso marking site, at 664 m a.s.l.), experiment 2 (b) (June 29 to 
August 8, Mala marking site, 871 m a.s.l) and experiment 3 (c) 
(September 21 to October 31, Passo Redebus marking site, 1471 m 
a.s.l). The star indicates the position of the marking point and the dots 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
indicate the positions of the traps. For Experiment 1, the nearest set of 
4 traps was placed at a distance of 40 m from the marking point, with 
the other two sets of traps placed at a distance of 100 and 400 m, 
respectively 

 
 
the marking point (1520 m a.s.l). Flies in each trap were 
collected three times per week and placed in Falcon tubes 

(Fisher Scientific Company, Hampton, NH, USA) separately 
from the other traps in the study; traps were serviced by first 

rinsing them with 70% EtOH and then with deionized water to 
provide a sterile surface area within each of the traps. 
 
Protein‑specific analysis 
 
Insects collected in the mark–release–recapture experiment 
were placed individually into vials within an insulated cold box 
(~ 0–5 °C) and brought to the laboratory. Flies were identified 
to species under a binocular stereoscope. D. suzukii individuals 
were separated from other drosophilids and placed individually 
into 1.5 mL microcentrifuge tubes. All samples were 
subsequently stored at − 80 °C until ELISA was performed. For 
each sample, the ELISA procedure for the identification of 
chicken egg albumin was carried out by analysing pools of two 
same-sex individuals into a single well of a 96-well ELISA 
microplate (Nunc polypro; Nalge Nunc, Naperville, IL, USA). 
Two insects per well maximized the number of screened 
individuals and allowed us to better estimate D. suzukii 
seasonal movements at a population level. Positive results were 
counted as a single marking event, using a modified protocol 
from Jones et al. (2006). Paired insects were placed into a 1.5 
mL microcentrifuge tube containing 1 mL tris-buffered saline 
(TBS, pH 8.0; T- 664, Sigma-Aldrich, Milan, Italy) to which 
0.3 g/l EDTA (Sodium (tetra) ethylenediamine tetra acetate, 
S657; 

 
 
Sigma-Aldrich, Milan, Italy) was added. Each tube contain-ing 
the submerged insects was vortexed for 5 s and left to stand for 
no more than 3 min at room temperature. Two ali-quots (two 
replicates) of 80 μL from each tube were pipetted into 
individual wells of the 96-well ELISA microplate. Each plate 
was subsequently covered with aluminium foil and incubated 
for 2 h at 37 °C. After incubation, all wells were emptied and 
washed five times with 300 μL phosphate-buff-ered saline 
(PBS, pH 7.4; P3813, Sigma-Aldrich) + 0.09% Triton-X100 
(PBST) (Triton-X100; 9002931, MP Biomedi-cals, Irvine, CA, 
USA) followed by the addition of 300 μL of Blocker Solution 
to each well (37426, MP Biomedicals). One hour later, the 
Blocker Solution was discarded and 300 μL of PBST was used 
to wash the wells, and then 80 μL of primary antibodies was 
added. The primary anti-body was diluted in Blocker Solution 
+ 1300 ppm Silwet-77 (2 μL in 8.0 mL), while the secondary 
antibody was diluted only in Starting Block PBS Blocking 
Buffer solution (1.4 μL in 8.0 mL) (37538, ThermoFisher, 
Waltham, MA, USA). After incubation for 30 min, the primary 
antibody was discarded and wells were washed five times with 
500 μL of PBS-SDS and with three times with 300 μL of PBS. 
After this step, 80 μL of TMB (ImmunoPure Ultra TMB 
substrate kit, 34028, Pierce Biotechnology Inc., Rockford, IL, 
USA) was added to each well. The plate was placed on a rotary 
shaker at 37 °C in the dark for 10 min. In order to stop the 
reaction, 80 uL of 2 -NH2SO4 was then added to each well.  

Flies were scored for the presence of the albumin marker 

protein using a dual wavelength plate reader (Universal 

  



 

45 
 

Journal of Pest Science\  
 
Microplate Reader EL 800; Bio Tek Instruments Inc, Win-
ooski, VT) at 450 and 490 nm. Samples were scored as albu-
min- positive if the ELISA optical density (OD) was greater 
than the threshold suggested by Sivakoff et al. (2011). Cal-
culation of the threshold is as follows: μj + 4sj where μ j and 
are the mean and the standard deviation of the 10 negative 
controls on the plate. 
 
Weather data 
 
Daily weather data were obtained from the Climate Fore-
cast System Reanalysis (CFSR) software (Saha et al. 2010). 
CFSR is an historical grid weather data set that is derived 
from station and remote sensing data sources. These weather 
data were plotted for 2016 at the 11 sites where D. suzukii 
were marked, released and recaptured. For each day, the 
maximum and minimum temperatures were recorded. The 
daily temperature values were extracted from the hourly 
0.25 °C CFSR model grid. A lapse rate correction (− 0.65 
°C per 100 m) was applied between the elevation of each 
point and the mean elevation of the grid (Stone and Carlson 
1979; Magarey et al. 2015). 
 
DNA extraction and microsatellite ampli cation 
 
Genomic DNA was extracted from 90 D. suzukii individuals 
collected during early autumn of 2015 at the three different 
elevations in order to characterize the genetic structure of D. 

suzukii present in the Mocheni Valley. Samples were collected 
at the bottom of the valley near Serso, at the middle of the 
valley near Mala, and at Passo Redebus. Fifteen highly 
polymorphic microsatellite simple sequence repeats (SSRs) 
were selected from a set of microsatellites designed and 
validated in previous works and amplified to characterize the 
genetic structure of the sampled insects (Fraimout et al. 2015; 
Tait et al. 2017). All SSRs are continuous di-nucleotide 
combinations. Our choice was based on the known allele 
number of D. suzukii. For each locality, 30 samples were 
genotyped (15 females and 15 males). The DNA was isolated 
from each individual separately using the Macherey–Nagel Kit 
(NucleoSpin Tissue, Macherey–Nagel, Düren, Germany). Our 
choice was based on the known allele number of D. suzukii 
(Fraimout et al. 2015; Tait et al. 2017). Each pair of primers 
was used for PCR amplification in 25 µL final volume 
containing 1X GoTaq G2 Master Mix, 0.5 µL of each primer, 
10.5 µL of ddWater and 1 µL of genomic DNA. The PCR 
program was set with an initial 30 s period of denaturation at 
94 °C followed by 32 cycles of 30 s of additional denaturation 
at 94 °C, an annealing phase of 90 s at 57 °C, an elongation 
phase of 60 s at 72 °C and a final extension phase of 30 min at 
72 °C. The PCR products were checked by electrophoresis on 
1.5% agarose gel stained with ethidium bromide and visualized 
under UV light. Each 

 
 
amplicon was then diluted 1:10 in distilled water; 1 µL of the 
dilution was added to 12.5 µL of a mixture of deionized 
Formamide (Sigma–Aldrich) and GeneScan-500 ROX size 
standard (Life Tech, Waltham, MA). Prior denaturation for 4 
min at 94 °C, capillary electrophoresis was carried out in an 
ABI PRISM 310 Genetic Analyzer (Life Tech) and the 
fragments were sized with the GeneMapper v.4.0 software in 
binning mode. Following two PCR attempts with no sample 
amplification, the locus was scored as a negative result. 
 
 
Statistical analysis 
 
All the statistical analyses were conducted with the soft-
ware Mathematica 11 (Wolfram 1991) and the computing 
environment R (R Core Team 2014).  

For each mark–release–recapture experiment, the rela-
tion between trap elevation and number of marked sam-ples 
was analysed by Poisson regression. This regression is 
based on the assumption that for a trap with elevation (h) 
and distance from the marking point (d) the num-ber of 
marked catches is Poisson -distributed with the mean = c × 
exp(α×h+β×d), where c is a scaling parameter proportional 
to the total number of recaptured marked insects and α and 
β are parameters describe how the expectation for marked 
catches depends on the elevation of the trap and its distance 
to the marking point, respectively.  

The maximum likelihood estimators were obtained for 
parameters α and β. The sign of the parameter α deter-mines 
whether elevation and marked catches are correlated 
positively or negatively. Parameter β is constrained to be 
less than or equal to zero because we assume that, in a flat 
landscape, the number of marked insects should decrease or 
at least not change with the distance from the marking point. 
Significance of those trends was estimated by testing the 
null hypothesis that number of catches is independent of trap 
elevation and trap distance. Dispersal parameter β was 
additionally expressed as the median dispersal dis-tance in 
a flat landscape r0.5 = log(2)/β (Northfield et al. 2009), 
together with a confidence interval for this estima-tion. This 
model is known to provide an adequate phe-nomenological 
description of insect dispersal (Lessio et al. 2014; Northfield 
et al. 2009).  

Finally, data from the three mark–release–recapture 
experiments were used to investigate possible trends in the 
insect sex ratio. Trends were investigated by testing, with 

appropriate χ2 tests, the null hypothesis that the sex ratio is 
independent of the time of the year, and that it is the same 
for total catches and marked catches. The ratio between D. 
suzukii males and females was calculated for total catches 

and marked catches in Trials A, B, and C, computing 95% 
confidence intervals of the binomial proportion. 
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Genetic data analysis 
 
For microsatellite analysis, data obtained upon the fragment 
analysis were processed with Tandem program (Matschiner 
and Salzburger 2009) in order to avoid genotyping errors. 
GENALEX software v.6.41 (Peakall and Smouse 2006) was 
run to determine the genetic variability among populations and 
included the following parameters: mean number of alleles (N 

a), effective number of alleles (Ne), expected and observed 
heterozygosity (He and Ho, respectively), number of private 
alleles (Np) and inbreeding coefficient (Fis). Deviation from 
Hardy–Weinberg equilibrium and the allelic polymorphic 
information content were tested using CER-VUS software 
v.3.0, with Bonferroni correction for multiple testing 
(Kalinowski et al. 2007). The genetic structure of populations 
was evaluated using neighbour-joining tree, AMOVA analysis 
and measuring the index of differentiation Fst. The unrooted 
neighbour-joining tree, based on Nei’s genetic distance, was 
constructed using DARWIN v.5.0 soft-ware (Peakall and 
Smouse 2006). AMOVA analysis obtained from the Arlequin 
v.3.5 program was performed to estimate the variability of the 
distribution within and between the tested groups (Excofer et 
al. 2005). 
 
 
Results 
 
Mark–release–recapture and weather effect 
 
Insects collected in modified food-baited traps during the three 

seasonal experiments were screened for the presence of the 

albumin protein on their bodies. The number of marked 

 
Table 1  Catches of marked D. suzukii during the first experiment A 

(marking at 664 m a.s.l.)  
Elevation Distance from mark- Catches OD value 
a.s.l. (m) ing point (m) (marked/total)  
    

672 40 2/26 1.21 ± 0.74 
683 40 2/6 1.92 ± 0.02 
650 40 2/14 1.27 ± 0.65 
653 40 0/14 0 
667 100 2/30 1.39 ± 0.57 
700 100 2/5 1.94 ± 0.00 
620 100 2/29 1.79 ± 0.08 
626 100 0/20 0 
635 500 0/26 0 
790 500 3/15 1.24 ± 0.77 
509 500 0/21 0 
678 500 0/16 0   
In the table, the elevation of the traps, their distance from the marking 
point, the number of positive wells and the optical density at 450 nm 
(OD) are reported 

 
 
and non-marked insects caught during the three trials is 
presented in Tables 1, 2, and 3. The statistical analysis on the 
regression of the number of marked insects in the trap elevation 
and their distance from the marking point is shown in Table 4. 
For trials A and B (spring and summer experi-ments), catches 
of marked insects significantly increased with an increase in 
trap elevation, while the number of flies decreased numerically 
with an increase in distance from the marking point. The data 
points and regression curves for trial A are shown in Fig. 4. In 
trial C (autumn), catches of marked insects increased with the 
distance from the marking point in a flat landscape. Since this 
seems unrealistic and the trend was not statistically significant, 
we set the corresponding parameter to zero and tested the 
influence of the trap elevation alone. However, the data 
displayed no clear correlation between trap elevation and the 
number of catches of marked D. suzukii. The null hypothesis 
that the number of marked insects is independent of trap 
elevation likewise cannot be rejected. The median dispersal 
distance in Trial  
A and B was, respectively, r0.5 = 176 m and r0.5 = 2525 m 

with lower limits for the 95% confidence interval of 81 and 

1244 m. No upper limits could be found for either trial pos-

sibly because of the low number of catches. In summer and 

autumn, marked D. suzukii were recorded as far as 3000 

 
Table 2  Catches of marked D. suzukii during the second experiment 
B (marking at 871 m a.s.l.)  
Elevation Distance from mark- Catches OD value 
a.s.l. (m) ing point (m) (marked/total)  
    

685 750 20/352 0.63 ± 0.52 
704 1100 4/142 0.47 ± 0.19 

1041 390 14/251 0.46 ± 0.28 
1114 750 19/488 0.41 ± 0.27 
1272 2043 39/777 0.26 ± 0.28 
1367 3000 5/479 0.69 ± 0.41   

In the table, the elevation of the traps, their distance from the marking 
point, the number of positive wells and the optical density at 450 nm 
(OD) are reported 

 
Table 3  Catches of marked D. suzukii during the third experiment 
(marking at 1471 m a.s.l.)  
Elevation Distance from mark- Catches OD value 
a.s.l. (m) ing point (m) (marked/total)  
    

672 9050 2/887 0.10 ± 0.04 
875 7716 7/332 0.09 ± 0.03 

1052 3092 5/101 0.12 ± 0.01 
1232 1935 0/78 0 
1520 1080 5/51 0.17 ± 0.09   

In the table, the elevation of the traps, their distance from the marking 
point, the number of positive wells and the optical density at 450 nm 
(OD) are reported 
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Table 4 Statistical analysis 
of dependence of dispersal on 
elevation in the three marking 
experiments 

 
 
 

Period α ±standard error p value β ±standard error p value 
     

Trial A: 29/3–13/5/16 1.8 × 10−2 ± 8.3 × 10−3 0.031 − 3.9 × 10−3 ± 2.4 × 10−3 0.096 
Trial B: 26/6–8/8/16 1.4 × 10−3 ± 5.7 × 10−4 0.013 − 2.7 × 10−4 ± 1.4 × 10−4 0.057 

Trial C: 21/9–31/10/16 − 3.0 × 10−6 ±7.9 × 10−4 0.997 0 –   
The parameters α and β express the relation between the number of marked catches and the height of the 

trap and its horizontal distance to the marking point 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4  Number of marked catches in the traps in Trial A, together 
with the regression curves. This regression is based on the assump-tion 
that for a trap with elevation (h) and distance from the marking point 
(d) the number of marked catches is Poisson distributed with the mean 
= c × exp(α×h+β×d), where c is a scaling parameter propor-tional to the 
total number of recaptured marked insects and α and β are parameters 
describing how the expectation for marked catches depends on the 
elevation of the trap and its distance to the marking point, respectively  
 
and 9050 m away from the marking point (Tables 2, 3), 
suggesting that these distances are highly likely for seasonal 
migration.  

There is a clear trend towards skewed sex ratios of D. 
suzukii that change throughout the growing season, as was 
confirmed by a test on the independence between sex ratio 
and season. Significantly higher numbers of female flies 
were captured in spring and significantly higher numbers of 
male flies were captured in summer and autumn (P = 0.005 
for marked insects and P < 0.001 for total captures, Fig. 5). 
The sex ratio, however, did not differ significantly when 
comparing marked and total caught insects in 

 
 
any of the three experiments (P = 0.9, P = 0.8 and P = 0.6 
for spring, summer and autumn, respectively), suggesting 
similar migration patterns for males and females.  

Concerning the daily weather conditions, temperature 
values were always notably higher at the lowest-elevation 
experimental site (Serso, 515 m) compared to the highest 
elevation trap locality (Passo Redebus, 1520 m) (Fig. 6), 
supporting the possibility of migration due to the suit-ability 
of local temperatures at different elevations during different 
times of the year. 
 
 
Genetic diversity study 
 
In total, 92 D. suzukii adults were sampled and subjected to 
genotyping for 15 previously identified microsatellite 
markers. The allele distribution of the tested insects is 
summarized in Table 5. A limited expected genetic vari-
ability across D. suzukii collected in the three sample sites 
was measured. DARWIN software was run to estimate 
pairwise genetic distances and subsequently for the con-
struction of a dissimilarity matrix. Once the dissimilarity 
matrix was obtained, data were subjected to cluster analysis 
using the unweighted neighbour-joining method (UNJ). 
Using the parameters of this analysis, no individu-als 
belonged to a separate cluster (Fig. 7), indicating that D. 

suzukii collected at the three different locations share the 
same genetic pattern. Fst values (Table 6) provide no 
evidence of genetic differentiation among the three ana-
lysed groups. 
 

 

 
Fig. 5  Marked catches in the 

three experiments by gender (a) 
and total catches in the three 
experiments by gender (b). The 
error bars correspond to 95% 
confidence intervals for the 
proportions and values outside 
the intervals can be rejected on a 
P = 5% significance level  
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Fig. 6  Weekly temperature 

trends in Serso (545 m a.s.l.) 
and Passo Redebus (1455 m 
a.s.l) during year 2016. Col-
umns represent the mean of 
the D. suzukii adults collected 
weekly from the first week of 
the year to the last 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 5  Level of genetic 

diversity across 3 groups of 
D. suzukii collected at the 3 

different elevations 
 
 
 
 
 

 
Fig. 7  Neighbour-joining tree 

Unrooted neighbour join-ing 
(UNJ) tree obtained from 
DARWIN software based on 
pairwise genetic distances. Each 
branch represents an individual 
fly 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Na Ne Ar Ho He 
F

is 

Passo Redebus 6.06 3.56 5.96 0.708 0.702 0.00 
Mala 6.53 3.87 6.39 0.791 0.726 -0.08 
Serso 7.13 3.71 7.00 0.679 0.709 0.04   
Na mean number of alleles; Ne mean effective number of alleles; Ar mean of allele richness; Ho mean 

observed heterozygosity; He mean expected heterozygosity; Fis mean inbreeding coefficient  

 

 
 
 
 
 
 
 
 
 
 
 
 
Table 6  Pairwise Fst among three groups of D. suzukii 
 

 Mala Passo Redebus Serso 
    

Mala 0   
Passo Redebus 0.011936 0  
Serso 0.006613 0.007712 0   
Collected data provide no evidence of genetic differentiation between 

the three analysed groups 

 
 
 
 
 
 
 
 
 
 
 

 

Discussion 
 
It is known that diverse arthropod species move season-ally 
from one area to another (Coyne et al. 1982; Riley et al. 
1995; Ahmed et al. 2009; Stefanescu et al. 2013). In 
Drosophila, some temperate species migrate from low to 
high elevations in early summer and probably return to low 
elevations in autumn (Kimura et al. 1977; Kimura 
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and Beppu 1993; Kimura 2004; Mitsui et al. 2010). Mitsui 
et al. (2010) described D. suzukii as a fruit specialist spe-
cies that occurs at specific times of the year in mountain-ous 
regions of Japan. For this reason, it may be reason-ably 
assumed that this species is able to perform seasonal 
migration between low and high elevations. The findings of 
the current study add to the scientific understanding of D. 

suzukii seasonal migration patterns, suggesting that this 

species moves and selects environmentally suitable sites. 
Klick et al. (2015) observed that D. suzukii population 
within the cultivated crop is associated with high activity 
levels in the field margin containing host plants. This 
behaviour could be driven both by host crop availability and 
suitable environments within the surrounding vegeta-tion 
and the crop alike. Overall, the results of the current work 
provide additional information on the magnitude of seasonal 
long-distance movement of D. suzukii. Our data are the first 
to document D. suzukii dispersal over dis-tances of up to 9 
km and further suggest that during spring and summer, flies 
move from low to higher elevations. The difference in 
temperature between these elevations may play a role in the 
migration of D. suzukii populations toward more suitable 
temperature regimes (Tochen et al. 2014; Ryan et al. 2016; 
Wiman et al. 2014; Grassi et al. 2017). Migration towards 
higher elevations in spring might be exploratory movement 
to search for additional oviposition sites and food resources 
in favourable envi-ronments (Mitsui et al. 2010; Tochen et 
al. 2014, 2016; Wiman et al. 2014; Evans et al. 2017). 
Summer migration may additionally be a strategy to avoid 
suboptimal high temperatures at lower elevations. It is 
possible that migra-tion in autumn towards lower elevations 
might be driven by suitable climatic conditions during the 
latter portion of the season here. (Evans et al. 2017; 
Stephens et al. 2015). In spring and summer, the number of 
catches of marked individuals significantly increased with 
trap elevation, while it decreased with distance from the 
marking point. This suggests temporal dispersion towards 
outlying regions and towards different elevations. With 
regard to the autumn experiment, data showed no clear 
relationship between trap elevation and the number of 
marked catches but, despite this, positive marked flies were 
recorded at different distances and elevations, suggesting a 
season-ally differentiated spread of D. suzukii. In our experi-
ment, D. suzukii movement was most likely facilitated by 
updrafts (Beerwinkle et al. 1994; Brattström et al. 2008). 
We believe that the dispersal of D. suzukii from a low to a 
high elevation during spring and summer could be 
facilitated by diurnal mass movement of air due to 
fluctuations in temperature from the day to the night. The 
breeze regime in Trentino valleys has been previously 
described by Giovannini et al. (2013). During spring and 
summer, daily wind speed is greater than in autumn and 
winter 

 
 
(Goldreich et al. 1986). With the arrival of cooler autumn 
temperatures, air movement from high to low elevations likely 
promotes the movement of flies towards lower elevations 
(Giovannini et al. 2013). Genetic analysis provided data to 
support our hypothesis. Results from genetic analysis revealed 
that tested insects belonged to the same population. The low 
genetic differentiation among the three collected groups in our 
trials indicates recent colonization by D. suzukii in Italy (Tait 
et al. 2017) and validates the hypothesis of genetic 
homogeneity between D. suzukii insects collected at different 
elevations. This gene homogeneity is not only due to transport 
by human movement towards the valley but may also be 
attributable to a natural migration towards different elevations 
during different times of the year (Mitsui et al. 2010). It is clear 
that the study area provides ideal conditions for the persistence 
and reproduction of D. suzukii populations. Strategies to 
control this destructive species must take into account its high 
dispersal potential. Finally, our results suggest that D. suzukii 

populations are present at lower altitudes during the early 
portion of the season. No D. suzukii are found at high altitudes 
during the early season. Factors contributing to this finding 
include suboptimal winter conditions and the lack of wild fruits 
(Tonina et al. 2016). Considering these observations, a valid 
approach could be to be plant early producing berry varieties in 
high -elevation sites. Such crops might benefit from temporal 
escape from the onset of seasonal migration. 
 

Furthermore, knowledge concerning the capacity of D. 

suzukii dispersal is crucial to better-forecast development of 

pest populations, to validate and optimize population models, 

and to more effectively design management strategies. 
 
 
 
Author contributions 
 
GT contributed to all the steps, planning the experimental 
design, sampling populations, conducting laboratory tests and 
data analysis, as well as writing the manuscript. AG contributed 
to the research concept and design as well to insect sampling. 
FP contributed to data analysis and to the manuscript draft. 
CMC contributed to data interpretation and the manuscript. 
DTD contributed to data analysis, data interpretation and the 
manuscript draft. RM provided weather data. LO and SV 
participated in genetic data interpretation and drafting the 
manuscript. MVRS participated in drafting the manuscript. AG 
contributed to insect samplings. AP contributed to statistical 
data interpretation. GF contributed to genetic data 
interpretation. VMW contributed to data interpretation and 
drafting the manuscript. GA conceived the central idea and 
contributed in drafting the manuscript. All the authors have 
read and approved the final manuscript. 
 

 
 



 

50 
 

\ Journal of Pest Science  
 
Acknowledgements We thank Joe Russo of ZedX inc. (Bellefonte, PA) 
for supplying the CFSR weather data. The supply of these weather data was 
supported by the USDA-NIFA AFRI Competitive Grants Program Food 
Security Challenge Area grant 2015-68004-23179. We thank Elisabetta 
Leonardelli for the technical support. We also thank Linda Brewer who 
helped with the English language revision. 
 
Compliance with ethical standards  
 
Conflict of interest The authors declare no conflict of interest. 
 
Ethical approval All applicable international, national, and/or 
institu-tional guidelines for the care and use of animals were followed. 
This article does not contain any studies with human participants 
performed by any of the authors. 
 
 
 

References 
 
Ahmed S, Compton SG, Butlin RK, Gilmartin PM (2009) Wind-borne 

insects mediate directional pollen transfer between desert fig trees 
160 kilometers apart. Proc Natl Acad Sci 106(48):20342–20347 
Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, 
Gibert P, Gutierrez AP, Hoelmer KA, Hutchinson WD, Isaacs R, 
Jiang ZL, Kárpáti Z, Kimura MT, Pascual M, Philips CR, Plantamp 
C, Ponti L, Vétek G, Vogt H, Walton VM, Yu Y, Zappalà L, Desneux  
N (2015) Invasion biology of spotted wing Drosophila (Dros-

ophila suzukii): a global perspective and future priorities. J Pest 
Sci 88:469–494  

Beerwinkle KR, Lopez JD, Witz JA, Schleider PG, Eyster RS, Lingren 
PD (1994) Seasonal radar and meteorological observations 
associ-ated with nocturnal insect flight at altitudes to 900 meters. 
Environ Entomol 23(3):676–683  

Bigsby KM, Tobin PC, Sills EO (2011) Anthropogenic drivers of 
gypsy moth spread. Biol Invasions 13(9):2077–2090  

Blaauw BR, Jones VP, Nielsen AL (2016) Utilizing immunomarking 
techniques to track Halyomorpha halys (Hemiptera: Pentatomi-
dae) movement and distribution within a peach orchard. PeerJ 
4:e1997  

Boina DR, Meyer WL, Onagbola EO, Stelinski LL (2009) Quanti-
fying dispersal of Diaphorina citri (Hemiptera: Psyllidae) by 
immunomarking and potential impact of unmanaged groves on 
commercial citrus management. Environ Entomol 38:1250–1258 
Brattström O, Kjellen N, Alerstam T, Akesson S (2008) Effects 
of wind and weather on red admiral, Vanessa atalanta, migration 
at a coastal site in southern Sweden. Anim Behav 76(2):335–344  

Calabria G, Máca J, Bächli G, Serra L, Pascual M (2012) First records 
of the potential pest species Drosophila suzukii (Diptera: Droso-
philidae) in Europe. J Appl Entomol 136(1–2):139–147  

Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Dros-

ophila suzukii in Europe and a draft research agenda for integrated 

pest management. Bull Insectology 65(1):149–160  
Cini A, Anfora G, Wscuder-Colomar LA, Grassi A, Santuosso U, Seljak 

G, Papini A (2014) Tracking the invasion of the alien fruit pest 
Drosophila suzukii in Europe. J Pest Sci 87(4):559–566  

Coviella CEC, Garcia JFJ, Jeske DDR, Redak R, Luck RF (2006) 
Feasibility of tracking within-field movements of Homalodisca 
coagulata (Hemiptera: Cicadellidae) and estimating its densities 

using fluorescent dusts in mark-release. J Econ 99(4):1051–1057 
Coyne JA, Boussy IA, Prout T, Bryant SH, Jones JS, Moore JA 
(1982)  

Long-distance migration of Drosophila. Am Nat 119:589–595 Dalton 
DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs  
R (2011) Laboratory survival of Drosophila suzukii under 

 
 

simulated winter conditions of the Pacific Northwest and seasonal 
field trapping in five primary regions of small and stone fruit 
production in the United States. Pest Manag Sci 67:1368–1374  

De Ros GS, Conci ST, Pantezzi T, Savini G (2015) The economic 
impact of invasive pest Drosophila suzukii on berry production in 
the Province of Trento, Italy. J Berry Res 5(2):89–96  

Evans RK, Toews MD, Sial AA (2017) Diel periodicity of Drosophila 
suzukii (Diptera: Drosophilidae) under field conditions. PLoS 

ONE 12(2):e0171718  
Excofer L, Laval G, Schneider S (2005) Arlequin (version 3.0): an 

integrated software package for population genetics data analysis. 
Evol Bioinform Online 1:47–50  

Farnsworth D, Hamby KA, Bolda M, Goodhue RE, Williams JC, 
Zalom FG (2017) Economic analysis of revenue losses and con-
trol costs associated with the spotted wing drosophila, Drosophila 
suzukii (Matsumura), in the California raspberry industry. Pest 
Manag Sci 73(6):1083–1090  

Fraimout A, Loiseau A, Price DK, Xuereb A, Martin J-F, Vitalis R, Fellous 
S, Debat V, Estoup A (2015) New set of microsatellite markers for 
the spotted-wing Drosophila suzukii (Diptera: Droso-philidae): a 
promising molecular tool for inferring the invasion history of this 
major insect pest. Eur J Entomol 112(4):855–859  
Giovannini L, Antonacci G, Zardi D, Laiti L, Panziera L (2013) 

Atlante climatico del Trentino. Sensitivity of simulated wind speed to 
spatial resolution over complex terrain. Energy Proc 59C:323–329 

Goldreich Y, Druyan LM, Berger H (1986) The interaction of valley/ 
mountain winds with a diurnally veering sea/land breeze. J Cli-  

matol 6(5):551–561  
Grassi A, Gottardello A, Dalton DT, Tait G, Rendon D, Ioriatti C, 

Gibeaut D, Rossi Stacconi MV, Walton MV (2017) Seasonal 
reproductive biology of Drosophila suzukii (Diptera: Droso-
philidae) in temperate climates. Environ Entomol. https://doi. 
org/10.1093/ee/nvx195  

Hagler JR, Jackson CG (2001) Methods for marking insects: current 
techniques and future prospects. Annu Rev Entomol 46:511–543 

Hagler JR, Jones VP (2010) A protein-based approach to mark 
arthropods for mark–capture type research. Entomol Exp Appl  

135(2):177–192  
Hauser M (2011) A historic account of the invasion of Drosophila 

suzukii (Matsumura) (Diptera: Drosophilidae) in the continental 
United States, with remarks on their identification. Pest Manag 
Sci 67(11):1352–1357  

Jones VP, Hagler JR, Brunner JF, Baker CC, Wilburn TD (2006) An 
inexpensive immunomarking technique for studying movement 
patterns of naturally occurring insect populations. Environ Ento-
mol 35(4):827–836  

Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the 
computer program CERVUS accommodates genotyp-ing error 
increases success in paternity assignment. Mol Ecol 16(5):1099–
1106  

Kanzawa T (1939) Studies on Drosophila suzukii Mats. Kofu. Rev of 
Appl Entomol 29:622  

Kimura MT (2004) Cold and heat tolerance of drosophilid flies with 
reference to their latitudinal distributions. Oecologia 140:442–449 

Kimura MT, Beppu K (1993) Climatic adaptations in the Drosophila 
immigrans species group-seasonal migration and thermal toler-  

ance. Ecol Entomol 18:141–149  
Kimura MT, Toda MJ, Beppu A, Watabe H (1977) Breeding sites of 

drosophilid flies in and near Sapporo, northern Japan, with sup-
plementary notes on adult feeding habits. Kontyu 45:571–582  

Klick J, Lee JC, Hagler JR, Bruck DJ, Yang WQ (2014) Evaluating 
Drosophila suzukii immunomarking for mark–capture research. 
Entomol Exp Appl 152(1):31–41  

Klick J, Yang WQ, Walton VM, Dalton DT, Hagler JR, Dreves AJ, 

Lee JC, Bruck DJ (2015) Distribution and activity of Drosophila 
 

 

https://doi.org/10.1093/ee/nvx195
https://doi.org/10.1093/ee/nvx195


 

51 
 

Journal of Pest Science\  
 

suzukii in cultivated raspberry and surrounding vegetation. J 
App Entomol 140(1–2):37–46  

Lee JC, Bruck DJ, Dreves AJ, Ioriatti C, Vogt H, Baufeld P (2011) In 
focus: spotted wing drosophila, Drosophila suzukii, across per-
spectives. Pest Manag Sci 67(11):1349–1351  

Lessio F, Tota F, Alma A (2014) Tracking the dispersion of Scaph-

oideus titanus Ball (Hemiptera: Cicadellidae) from wild to cul-
tivated grapevine: use of a novel mark–capture technique. Bull 
Entomol Res 104(4):432–443  

Magarey RD, Borchert DM, Fowler GA, Hong SC (2015) The NCSU/ 
APHIS plant pest forecasting system (NAPPFAST). In: Venette 
R (ed) Pest risk modelling and mapping for invasive alien species. 
CABI, Wallingford  

Matschiner M, Salzburger W (2009) TANDEM: Integrating 
automated allele binning into genetics and genomics workflows. 
Bioinformat-ics 25(15):1982–1983  

Mazzi D, Bravin E, Meraner M, Finger R, Kuske S (2017) Economic 
impact of the introduction and establishment of Drosophila suzukii 

on sweet cherry production in Switzerland. Insects 8(1):18 Mitsui H, 
Beppu K, Kimura MT (2010) Seasonal life cycles and resource uses 

of flower- and fruit-feeding drosophilid flies (Dip-  
tera: Drosophilidae) in central Japan. Entomol Sci 13(1):60–67 

Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for  
estimating long-distance dispersal. OIKOS 103:261–273 

Northfield TD, Mizell RF, Paini DR, Andersen PC, Brodbeck BV,  
Riddle TC, Hunter WB (2009) Dispersal, patch leaving, and dis-
tribution of Homalodisca vitripennis (Hemiptera: Cicadellidae). 
Environ Entomol 38(1):183–191  

Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, 
Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, 
Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli 
O (2013) Linking genomics and ecology to investigate the 
complex evolution of an invasive Drosophila pest. Genome Biol 
Evol 5:745–757  

Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. 
Population genetic software for teaching and research. Mol Ecol 
Notes 6(1):288–295  

R Core Team (2014) R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna  

Riley JR, Reynolds DR, Mukhopadhyay S, Ghosh MR (1995) Long 
distance migration of aphids and other small insects in northeast 
India. Eur J Entomol 92:639–653  

Rossi-Stacconi MV, Kaur R, Mazzoni V, Ometto L, Grassi A, Got-
tardello A, Rota-Stabelli O, Anfora G (2016) Multiple lines of 
evidence for reproductive winter diapause in the invasive pest 
Drosophila suzukii: useful clues for control strategies. J Pest Sci 
89(3):689–700  

Ryan GD, Emiljanowicz L, Wilkinson F, Kornya M, Newman JA 
(2016) Thermal tolerances of the spotted-wing drosophila 
Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol 
109(2):746–752  

Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, 
Woollen J, Behringer D (2010) The NCEP climate forecast system 
reanalysis. Bull Am Meteorol Soc 91(8):1015–1057  

Schneider JC (1989) Role of movement in evaluation of area wide 

insect pest management tactics. Environ Entomol 18:868–874 

 
 

Shearer PW, West JD, Walton VM, Brown PH, Svetec N, Chiu JC 
(2016) Seasonal cues induce phenotypic plasticity of Drosophila 
suzukii to enhance winter survival. BMC Ecol 16:11  

Sivakoff FS, Rosenheim JA, Hagler JR (2011) Threshold choice and 
the analysis of protein marking data in long-distance dispersal 
studies. Methods Ecol Evol 2(1):77–85  

Skovga H (2002) Dispersal of the filth fly parasitoid Spalangia cam-

eroni (Hymenoptera: Pteromalidae) in a swine facility using fluo-
rescent. Environ Entomol 31(3):425–431  

Stefanescu C, Páramo F, Åkesson S, Alarcón M, Ávila A, Brereton T, 
Carnicer J, Cassar LF, Fox R, Heliölä J, Hill JH, Hirneisen N, 
Kjellén N, Kühn E, Kuussaari M, Leskinen M, Liechti F, Musche 
M, Regan EC, Reynolds DR, Roy DB, Ryrholm N, Schmaljohann 
H, Settele J, Thomas CD, Van Swaay C, Chapman JW (2013) 
Multi-generational long-distance migration of insects: studying 
the painted lady butterfly in the western Palaearctic. Ecography 
(Cop.) 36(4):474–486  

Stephens AR, Asplen MK, Hutchison WD, Venette RC (2015) Cold 
hardiness of winter-acclimated Drosophila suzukii (Diptera: 
Dros-ophilidae) adults. Environ Entomol 44(6):1619–1626  

Stone PH, Carlson JH (1979) Atmospheric lapse rate regimes and their 
parameterization. J Atmos Sci 36:415–423  

Tait G, Vezzulli S, Sassù F, Antonini G, Biondi A, Baser N, Sollai G, Cini 
A, Tonina L, Ometto L, Anfora G (2017) Genetic variability in Italian 
populations of Drosophila suzukii. BMC Genet 18:87  

Taylor LR (1974) Insect migration, flight periodicity and the boundary 
layer. J Anim Ecol 43(1):225–238  

Taylor CE, Powell JR, Kekic V, Andjelkovic M, Burla H (1984) 
Disper-sal rates of species of the Drosophila obscura group: 
implications for population structure. Evolution 38:1397–1401  

Tochen S, Dalton DT, Wiman N, Hamm C, Shearer PW, Walton VM 
(2014) Temperature- related development and population param-
eters for Drosophila suzukii (Diptera: Drosophilidae) on cherry 
and blueberry. Environ Entomol 43(2):501–510  

Tochen S, Walton VM, Lee JC (2016) Impact of floral feeding on adult 
Drosophila suzukii survival and nutrient status. J Pest Sci 
89(3):793–802  

Tonina L, Mori N, Giomi F, Battisti A (2016) Development of Dros-

ophila suzukii at low temperatures in mountain areas. J Pest Sci 
89(3):667–678  

Wiman NG, Walton MV, Dalton DT, Anfora G, Burrack HJ, Chiu JC, 
Daane KM, Grassi A, Miller B, Tochen S, Wang X, Ioriatti  
C (2014) Integrating temperature-dependent life table data into a 
matrix projection model for Drosophila suzukii. PLoS ONE 
9(9):e106909  

Wolfram S (1991) Mathematica, a system for doing mathematics by 
computer. Math Gaz 77(478):52–70  

Yang Y, Zhang Y, Qian Y, Zeng Q (2004) Phylogenetic relation-ships 
of Drosophila melanogaster species group deduced from spacer 
regions of histone gene H2A-H2B. Mol Phylogenet Evol 30:336–
343  

Zhang C, Guihong S, Zhao Y, Yan D, Li H, Liu H, Wiwatanaratan-
abutr I, Gong M (2016) Evaluation of isotope 32P method to mark 
Culex pipiens (Diptera: Culicidae) in a laboratory. J Arthropod 

Borne Dis 10(2):211–221 

 
 
 
 
 
 
 
 
 
 
 

 



 

52 
 

 
\ Journal of Pest Science  
 

Afliations 
 

Gabriella Tait
1,2

 · Alberto Grassi
3
 · Ferdinand Pfab

4
 · Cristina M. Crava

1
 · Daniel T. Dalton

5
 · 

Roger Magarey
6
 · Lino Ometto

7
 · Silvia Vezzulli

1
 · M. Valerio Rossi‑Stacconi

3,5
 · Angela 

Gottardello
3
 · Andrea Pugliese

4
 · Giuseppe Firrao

2
 · Vaughn M. Walton

5
 · Gianfranco Anfora

1,8 
 
\   Alberto Grassi  
\   alberto.grassi@fmach.it 
 
\   Ferdinand Pfab  
\   ferdinand.pfab@gmail.com 
 
\   Cristina M. Crava  
\   cristina.crava@gmail.com 
 
\   Daniel T. Dalton  
\   daniel.dalton@oregonstate.edu 
 
\   Roger Magarey  
\   rdmagare@ncsu.edu 
 
\   Lino Ometto  
\   lino.ometto@gmail.com 
 
\   Silvia Vezzulli  
\   silvia.vezzulli@fmach.it 
 
\ M. Valerio Rossi‑Stacconi \ 
mvrs82@gmail.com  
\   Angela Gottardello  
\   angela.gottardello@fmach.it 
 
\   Andrea Pugliese  
\   andrea.pugliese@unitn.it 
 
\   Giuseppe Firrao  
\   giuseppe.firrao@uniud.it 

  
\   Vaughn M. Walton  
\   vaughn.walton@oregonstate.edu 
 
\   Gianfranco Anfora  
\   gianfranco.anfora@fmach.it 
 
1\ Research and Innovation Centre, Fondazione Edmund Mach, 

San Michele all´Adige, Italy  
2\ Department of Agricultural and Environmental Sciences, 

University of Udine, Udine, Italy  
3\ Technology Transfer Centre, Fondazione Edmund Mach, 

San Michele all´Adige, Italy  
4\ Department of Mathematics, University of Trento, Trento, 

Italy  
5\ Department of Horticulture, Oregon State University, 

Corvallis, OR, USA  
6\ NSF Center for Integrated Pest Management, North Carolina 

State University, Raleigh, NC, USA  
7\ Mezzocorona, Italy  
8\ Center of Agriculture Food Environment (C3A), University 

of Trento, San Michele all´Adige



 

53 
 

 

 

 

 

 

 

 

CHAPTER 4. 

 

Drosophila suzukii daily dispersal between crop and surrounding vegetation 

 

To be resubmitted with revisions to the Journal of Economic Entomology (October 24, 2018) 

 

 

 

 

  



 

54 
 

* Prof. Gianfranco Anfora  

Center Agriculture Food Environment (C3A) 

University of Trento/Fondazione Edmund Mach  

via Mach 1, S. Michele all'Adige, 38010 TN, Italy 

phone: 39 0461 615143 

email: gianfranco.anfora@unitn.it 

 

 Drosophila suzukii daily dispersal between commercial blackberry tunnels and and surrounding 

vegetation  

 

Gabriella Tait1,2, Alessandro Cabianca1,3, Alberto Grassi4, Ferdinand Pfab5, Tiziana Oppedisano1, Simone 

Puppato4, Valerio Mazzoni1, Gianfranco Anfora1,3*, Vaughn M. Walton6 

 

1Research and Innovation Centre, Fondazione Edmund Mach, San Michele all´Adige, Italy 

2Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy 

3Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige, Italy 

4Technology Transfer Centre, Fondazione Edmund Mach, San Michele all´Adige, Italy  

5Earth Research Institute, University of California, Santa Barbara, California, USA 

6Department of Horticulture, Oregon State University, Corvallis, Oregon, USA 

 

Gabriella Tait: gabriella.tait@virgilio.it 

Alessandro Cabianca: alessandro.cabianca.3949@student.uu.se 

Alberto Grassi: alberto.grassi@fmach.it 

Ferdinand Pfarb: ferdinand.pfab@gmail.com 

Tiziana Oppedisano: tiziana.oppedisano@gmail.com 

Simone Puppato: simone.puppato@fmach.it 

Valerio Mazzoni: valerio.mazzoni@fmach.it 

Gianfranco Anfora: gianfranco.anfora@unitn.it 

Vaughn M. Walton: vaughn.walton@oregonstate.edu 

 

Abstract 

Drosophila suzukii, Matsumara, (Diptera: Drosophilidae) is an insect pest species originating in South-East Asia 

that has invaded both Europe (EU) the Americas. This insect has subsequently caused extensive economic 

damage to the soft fruit industry. D. suzukii population management relies primarily on chemical pesticides, a 

technique with serious drawbacks related to the risk of residues on fruit. D. suzukii migration from surrounding 

vegetation is believed to significantly increase the risk of crop damage. Targeted solutions towards D. suzukii 

management are therefore dependent on more detailed knowledge concerning its daily migration patterns 

between the crop and surrounding vegetation. This work had the goal to study the daily dispersal patterns 
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between the crop and surrounding vegetation. During the summer of 2017, we employed a mark-capture 

strategy using protein markers. Flies were captured using fruit-baited Droso-Traps and later analyzed for the 

presence of the marker through an ELISA procedure. Results clearly indicate daily movement from the crop to 

the surrounding woody vegetation. Our data suggest that this migration is related to optimal temperature, 

humidity, and suitable alternative hosts found in the surrounding woody vegetation. Up to 78% of D. suzukii 

marked within the crop were collected in surrounding woody vegetation within 24 hours of the marking event. 

These observations will help direct more optimal pest management for this pest and could help farmers and 

industries decide when, where and how to manage D. suzukii pest populations. Furthermore, the finding of 

consistent daily movement from the crop to the surrounding vegetation under these conditions may lead to 

improved D. suzukii targeting and improved management. 

 

Keywords Spotted Wing Drosophila, Immunosorbent technique, migration, abiotic factors 

 

Introduction 

Among the 1500 and more species belonging to the Drosophila genus, Drosophila suzukii Matsumura (Diptera: 

Drosophilidae), a member of the “oriental lineage” of the melanogaster subgroup (Markow and O’Grady, 

2006), can be considered the only real threat to cultivations and agriculture and is now acknowledged as an 

important pest of various fruit plants of different families (Rota Stabelli et al., 2013). D. suzukii is also known 

as cherry drosophila in Japan, because of its ability to penetrate and damage healthy cherry fruits, and spotted-

wing drosophila in the USA, since males have a black spot on each of their wings. This fly combines high 

dispersal ability (Calabria et al., 2012; Cini et al., 2012, Tait et al., 2018) with a wide thermal tolerance that 

enhances its ability to overwinter (Walsh et al., 2011; Enriquez & Colinet, 2017; Shearer et al., 2016; Rossi 

Stacconi et al., 2016; Rendon et al., 2018), and a short generation time, especially in spring and summer (Grassi 

et al., 2017). These characteristics, together with a serrated and more streamlined ovipositor, considerably 

increase the species’ capacity to feed on and oviposit in healthy, ripe fruit. There are at least 15 different 

susceptible fruit, ranging from soft-skinned berry fruits, like raspberries, blackberries, blueberries and 

strawberries, to more resistant stone fruits, like peaches, almonds and plums, and grapes (EPPO, 2013; Walsh 

et al., 2011; Ioriatti et al., 2015; Ioriatti et al., 2018; Tonina et al., 2016; Tait et al., 2017). Because of these 

characteristics, D. suzukii has been able to cause substantial economic damage to production regions that are 

heavily reliant on the cultivation and marketing of these products. It is estimated that in 2009 this insect 

caused up to $500 million of losses in the three major Pacific soft fruits production states (Bolda et al., 2010). 

Two years later, in 2011, the Trentino region (Italy) suffered losses of around € 3 million, (c.a.~10% of the 

average expected revenues of the soft fruit industry, which is one of the main local agricultural activities) (De 

Ros et al., 2013; De Ros et al., 2015). D. suzukii damage can be categorized as direct and indirect. Direct damage 

due to oviposition begins when the female lays eggs into the fruit’s pulp: eggs hatch inside the fruit and 

develop through three larval instars, causing the fruit to rapidly soften and become unmarketable (Walsh et 
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al., 2011; EPPO, 2013; Cini et al., 2014). Indirect damage is due to oviposition wounds that can become sites 

of secondary infections by pathogens such as fungi, yeasts and bacteria, leading to additional revenue loss 

(Chabert et al., 2012; Atallah et al., 2014; Wiman et al., 2014; Ioriatti et al., 2018). To try limit the negative 

impact of this pest on economically important production systems, many management techniques are being 

studied, from agronomic and biological approaches, although most control still relies heavily on pesticides. A 

critical aspect to optimizing D. suzukii control depends on multiple strategies aimed at reducing the potential 

damage and thus the economic losses. For this reason, it is important to increase our knowledge of the daily 

movement of D. suzukii between the cultivated crop and nearby uncultivated areas. This knowledge will 

improve improved targeting of management programs against this pest. D. suzukii has a high dispersal ability 

and is able to travel up to 9 km in 4 to 5 days and to move along extreme elevation gradients during the year 

(Calabria et. al, 2012; Tait et al., 2018). Little is known about D. suzukii’s small-scale movements or the relation 

between near-crop vegetation and the quantity of flies infesting the field. Klick et al. (2016) explained how the 

presence of “Himalayan Blackberry”, a non-crop D. suzukii host, near the border of a crop, increased the 

number of flies that were captured in the crop itself, providing evidence that presence of these plants in the 

crop’s surroundings may increase crop damage. His study, however, did not take into account the relative 

difference and suitability of the crop and border microclimates in relation to each other, nor did it provide 

details of non-crop flora composition, or D. suzukii movement from the crop to the surrounding vegetation 

within daily cycles. Kirkpatrick et al. (2018) demonstrated that the maximum dispersal distance from the crop 

edge to the crop interior is 90 m per day, while Leach et al. (2018) in her work underlined deeper the 

importance of wild alternative host for the survival of D. suzukii. The aim of this study was to investigate 1) 

how D. suzukii’s movement is affected by the time of the day, 2) how temperature and humidity can affect the 

daily migration between different environments, and 3) how the presence of non-crop alternative hosts in the 

surrounding wild area can influence the presence of D. suzukii. 

 

Material and Methods 

To directly document the movement of flies, we marked a sector of a cultivated field with chicken egg albumin, 

which would stick to any flies that came in contact with it. This approach is known as “mark-capture,” and 

differs from “mark-release-recapture.” The collected flies were analyzed for the marker protein following a 

slightly modified version of the protocol in Jones et al. (2006). 

 

Field sites, trap positions and insect marking 

Trials were conducted in a commercial (Rubus fruticosus) field located at San Rocco di Villazzano, Trento, Italy 

(46° 1'58.19"N, 11° 8'43.25"E, 360 m a.s.l) (Figure 1). Spotted-wing drosophila was managed during the 

experimental conditions, using deltamethrin sprays (Decis Evo, Bayer - 50 ml/hl) at 7-day intervals.   

The blackberries were grown inside nylon-covered tunnels (5 m width, 4 m height, covered with Multisolar 3 

nylon - Eiffel S.P.A, shielded with shading white ReduSol - ReduSystems®, Mardenkro B.V. on the roof) of 
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variable length for a total surface area of 1800 m2. The west side of the field was bordered by a wood that 

consisted of a mix of weeds, shrubs and trees (Table 1). The surrounding vegetation was identified to species 

level in a representative 10x13m area where traps were placed within the woods. A relative abundance level 

was assigned to each of the main plants, which were further classified as weeds, shrubs or trees based on their 

mean height. The number of individuals in the selected area was visually estimated and a +++ level was 

assigned when a plant was found in ≥ 10 individuals, a ++ level was assigned when a plant was found in ≥ 5 but 

<10 individuals, a + level was assigned when a plant was found in <5 individuals. The known host status for 

each of the respective non-crop plants is provided (Table 1). 

We assumed that the blackberry field contained D. suzukii based on continued observed fruit infestation 

within this field during the preceding two weeks of monitoring and fruit inspection (data not shown). D. suzukii 

present in the field likely came into direct contact with the marking protein during the marking events (7:00 

am on July 11 and July 31 2017). The mark-capture procedure made use of food-grade chicken egg albumin 

(Egg white, EUROVO srl, S. Maria in Fabriago, RA, Italy) as a protein marker (Klick et al., 2014). The albumin 

was applied in a 10% solution with water using an electric backpack sprayer (ITALDRIFA, OSS company, Trento, 

16 L) on a 900 m2 area at the center of the crop (Figure 1). A total of eight food-baited Droso-Traps (CRI, 

Biobest, Westerlo, Belgium) within the crop were spaced approximately 10 meters apart. Traps were 

numbered from one to eight along s north-south axis, with trap eight situated at the southernmost location 

(Figure 1). Similarly, numbered and spaced traps were placed at the crop border (CRB) and within the woods 

(W). CRB traps were located parallel to the west and were 20 meters away from the traps within the crop, and 

W traps were 30 meters west of the CRB traps. Woods traps were 20 meters higher in altitude compared to 

traps within or on the border of the crop. Traps contained small cups with a cotton wick soaked with 

Droskidrink® liquid (Azienda Agricola Prantil, Priò, Trento, Italy –75% apple cider vinegar and 25% red wine + 

20 g/liter of unrefined brown sugar) to attract flies and avoid insect drowning. Samples were grouped by their 

collection date, time and trap location. Collection dates were in two distinct periods: July 11 to July 14 and July 

31 to August 4. Traps were checked twice daily at 7 am and 5 pm. Flies collected from traps were individually 

placed into 1.5 ml tubes, sited into cooled containers and taken to the laboratory within 2 hours. Flies were 

subsequently stored at -80 °C after being brought to the laboratory, and the egg albumin enzyme-linked 

immunosorbent assay (ELISA) was performed. 

 

ELISA bioassay– OD reading 

Presence of egg albumin on individual flies was assessed using an indirect enzyme-linked immunosorbent 

assay (ELISA). A slightly modified version of the protocol from Jones et al. (2006) was followed. For each 

sample, the ELISA procedure was carried out by analyzing single flies or pools of two individuals of the same 

sex. One or two flies were placed into wells of a 96-well ELISA microplate (Nunc Polypro; Nalge Nulc, 

Naperville, IL, USA). In cases when 15 or more flies were collected, we placed two insects per well in order to 

maximize the number of screened individuals and to estimate D. suzukii seasonal movements at the 
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population level. Positive results were counted as a single marking event. Single and paired flies were placed 

into a 1.5 mL microcentrifuge tube containing 0.5 mL tris-buffered saline (TBS, pH 8.0; T-664, Sigma-Aldrich, 

Milan, Italy), to which 0.3 g/L EDTA was added (Sodium (tetra) ethylenediamine tetra acetate, S657; Sigma-

Aldrich, Milan, Italy). Each 1.5 mL tube was retained for a minimum of 4 min. Two aliquots (replicates) of 80 

μL were transferred from each tube into two wells of the 96-well microplate and replicates from the same 1.5 

mL tube were put into contiguous wells of the same microplate. Each microplate (8 x 12 wells) was laid out as 

follows: on the first column, three wells (A1, B1 and C1) contained 80 μL of TBS plus 4 μL of marker protein, 

while the last two columns (11-12) only contained 80 μL of TBS.  This layout left 81 wells available for use, but 

because two aliquots from each tube were used, one well (H10) remained empty. The samples in the plates 

were then treated following the ELISA protocol used in Tait et al. (2018). The optical density (OD) of the 

samples was measured using a dual wavelength plate reader (Universal Microplate Reader ELx800; Bio Tek 

Instruments Inc., Winooski, VT) at 450 nm, with 490 nm reference standard. Samples were scored as albumin-

positive if the mean OD of the two aliquots (μi) was greater than the mean μj of the OD of the two negative 

control columns plus five times their standard deviation (i.e if μi > μj + 5·σj). 

 

Weather data 

Daily weather data (temperature, °C and humidity RH, %) were recorded (TinyTag data logger, Omni 

Instruments, Dundee, Scotland). These weather data were plotted for 2017 at 12 locations within the 

experimental area where D. suzukii were marked and recaptured (in proximity to traps 1, 3, 5 and 7, Figure 1). 

For each day, temperature and humidity values were acquired every five minutes from 9 am to 9 pm, providing 

288 measurements per day, allowing more detailed description of environmental changes during the days of 

the experimental period. Relative humidity, daylight temperatures and humidity (~12-13 hours per day) values 

were normalized within the range of 0 to 1 for each day. Numbers between 0 and 1 represent values at the 

lower and upper-recorded temperature or humidity respectively. The values were calculated using the 

formula: (value - min)/(max - min). Values close to 0 and 1 represent temperatures close to the minimum and 

maximum-recorded temperatures for each day. We also calculated the maximum and minimum daily 

temperature and humidity value. Finally, we created an index to characterize the normalized range (0 = low 

variation, 1 = high variation) of respective temperature and humidity observations. Values closer to 1 

illustrated relatively high differences. Values closer to 0 illustrated lower levels of differences between 

treatments. 

 

Statistical analysis 

Statistical analyses were performed using a one-way Anova as well as the Chi-square test to describe levels of 

movement of D. suzukii as indicated by marked flies caught within the crop inside (CRI), crop border (CRB), 

and woods (W) using R software (R Core team, 2013).  Factors included date of collection, location of 

collection, trap position on the north – south axis and gender. 
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Data were fitted to a Poisson distribution as necessary to account for over-dispersion in the data. A chi-squared 

goodness-of-fit test (Yates’ corrected) was conducted using R v.3.03 (R core Team 2013) to determine 

significant differences among the numbers of marked flies in the three selected areas. The aggregation of 

catches in the different traps was expressed as an index of dispersion D, which, assuming Poisson distributed 

catch numbers, equals the ratio of variance and the mean of the data (Madden and Hughes, 1995). D = 1 

corresponds to random data, D < 1 to under-dispersed data and D > 1 to over-dispersed data. Significance of 

the dispersion trend was tested using the corresponding chi square test. 

A correspondence analysis was additionally performed using Statistica™ (StatSoft, 2012), in order to provide 

statistical parameters to correlate temperature encountered during each period of the day (morning or 

afternoon), location, and trap counts. We categorized capture events i.e.: none (0 captures), low (1-6), 

medium (7-14), high (15-55) and very high (56+). Student’s t-tests were performed on the number of captures 

to attest the influence of various variables on the number of captured flies. 

 

Results 

During the 11-14 July collection period, a total of 402 insects were collected within traps. Of these, 313 

(77.86%) were collected in W traps, 59 (14.68%) in CRB traps and 30 (7.46%) in CRI traps. The sum of captured 

flies was statistically different between the woods and the other two areas (1-Way ANOVA: W vs CRB: F= 

40.27, df = 3.67, p = 0.0044; W vs CRI: F = 53.67, df = 3.183 p = 0.004).  The number of marked flies collected 

at CRB and CRI were however not statistically different (F= 3.88, df = 4.51, p = 0.112). The index of dispersion 

was D=22, suggesting an aggregation of the catches (Chi square: 505; df = 23; p < 0.001). The number of flies 

captured in the morning was statistically higher than in the evening in the three locations, (W: F= 38.17, df = 

3.369, p = 0.006; CRB: F= 13.29, df = 3.444, p = 0.028; CRI: F= 12.1, df = 3.118, p = 0.0237). 

During the 1-4 August collection period, a total of 737 flies were collected within traps. Of these, 452 (61,3%) 

were collected in W traps, 256 (34,7%) in CRB traps and 29 (3,9%) in CRI traps. W traps collected a non-

significantly higher number of flies compared to the CRB traps (F= 1.75, df = 4.40, p = 0.239) but a significantly 

higher number compared to the CRI traps (F= 10.01, df = 3.10, p = 0.048). The index of dispersion was D=28, 

suggesting an aggregation of the catches (Chi square: 638; df = 23; p < 0.001). The number of flies captured in 

the morning was statistically higher than in the evening in the CRB traps but not in the other two areas (W: F= 

5.09, df = 3.44, p = 0.097; CRB: F= 13.11, df = 3.01, p = 0.036; CRI: F= 2.85, df = 3.02, p = 0.189). 

During 11-14 July, a total of 23 flies scored positive using ELISA. The largest number (16/23, 69.6%; F= 10.57, 

df = 3.88, p = 0.032) were collected from W traps. Only 4 and 3 (17.4% and 13%) were respectively collected 

from the CRB and CRI traps (Table 2). As for the W traps, the number of captures of marked flies was 

significantly higher in the morning than in the evening (W: F = 8.727, df = 3.924, p = 0.042; CRB: F = 2, df = 3.35, 

p = 0.241; CRI: F = 0.09, df = 3.87, p = 0.771).  

During 1-4 August, a total of 31 flies scored positive using ELISA. Positive flies were respectively distributed in 

W (23, 74.2%), CRB (6, 19.4%) and CRI (2, 6.5%) (Table 2). Again, a significant difference was found between 
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the number of marked flies captured by W traps and the others (Chi square: 21.9; df = 2; p < 0.001). The first 

marked insects were collected within 24 hours after the marking procedure, during both trial periods. 

Overall, daily trends of both temperature and humidity in both trials are shown in relation with the daily D. 

suzukii fly captures (Figure 2). Overall, temperatures recorded in W traps were lowest followed by CRB; those 

recorded in the CRI location were warmest as indicated by the normalized values (Table 3). Humidity recorded 

in W was highest during the first trial period followed by CRB, and those recorded in the CRI location were 

lowest. This trend however, was, reversed during the second trial period. 

The smallest and largest daily temperature difference between the hottest and coolest locations (CRI and W 

in all cases) were 0.93 and 3.12 °C respectively. Larger temperature differences were recorded during the first 

trial period compared to the second trial period as indicated by the high range index for this period. Larger 

humidity differences were recorded during the first trial period compared to the second trial period as 

indicated by the high range index for this period. 

The influence of trap position and period of the day on the number of captures are represented in the 

correspondence analysis (Figure 3). P-values obtained from Student’s t tests further confirmed the significance 

of trap position and period of the day, with morning collections having more captures than afternoon 

collections (p-value 0.005) and woods traps collecting more than crop inside traps (p-value 0.0022). To 

visualize the difference in captures between morning and afternoon as well as the influence of temperature 

we created two box plots: one compares morning and afternoon captures and the other one compares the 

average temperature value of the seven hours before collection (figure 4). Figures 5a, 5b, 6a and, 6b 

graphically represent the spatial distribution of the species for both periods. 

 

Discussion 

This is the first study to describe the daily movement of D. suzukii from the crop into surrounding vegetation, 

taking into consideration the relation with temperature and humidity. The trials were conducted during two 

climatically distinct periods within one growing season. The first had relatively higher temperature and 

humidity compared to the second.  Relatively higher D. suzukii fly counts were made during the second period. 

Despite these differences and the fact that this work was carried out in one season, 2017, the collected data 

showed a consistent trend. These observed data are strongly supported by several other studies conducted at 

lower data resolution levels between crop and surrounding vegetation (Klick et al., 2016), indicating the 

importance of microclimate (Rogers et al., 2016, Diepenbruck and Burrack 2017, Tochen et al., 2016). These 

data strongly evidenced the daily D. suzukii migration between crop and surrounding area. We believe that 

these data describe in more detail the underlying reasons for such daily migration (Schneider 1989; Carriere 

et al., 2006; Swezey et al., 2013; Swezey et al., 2014; Blaauw et al., 2015). Our data, together with earlier 

studies under tunnels (Rogers et al., 2016), suggest that temperature and humidity, among others, are factors 

that influenced the migration between these distinct habitats. The first marked insects were collected within 

24 hours after the marking procedure, during both trial periods. The relative high resolution of data collection 
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over this short time span allowed the description of diurnal D. suzukii movements between the distinctly 

different ecosystems. For both trials in July and August, a statistically higher number of marked flies were 

found in the wood (69.6% and 74.2% respectively), suggesting a migration from the marking point into the 

crop towards the forest. In relation to this, the index of dispersion evidenced an aggregation status of the 

species into the wood (D = 22 and D = 28 in July and August respectively). It is possible that the presence of 

DroskiDrink baited traps may have influenced the shorter-range movement of D. suzukii flies.  The distance 

between traps in the three distinct locations were however more than 3 m, the estimated area of attractive 

action of these baited traps. The temperature and humidity recorded fluctuated significantly, but general 

trends within each location were different. During the two experimental trials (11 to 14 July; 31 July to 4 

August), the wood had consistently lower temperatures. These values were closer to 20 °C, the optimal D. 

suzukii developmental temperature compared to the other two areas. The mean humidity values were normal 

or higher in five out of eight days during the experimental periods. These data suggest that the more suitable 

micro-environment for D. suzukii were in the woods (Ometto et al., 2013; Tochen et al., 2014; Tochen et al., 

2016; Enriquez & Colinet, 2017). The microclimate was likely moderated by the architecture within the wood 

resulting in comparatively higher and more optimal levels of humidity than the other two environments. 

Similarly, more optimal and moderated lower temperatures were also found in the woods. In relation to the 

important influence of temperature, there is a strong inverse correlation between the daily temperature’s 

change and the number of collected flies: during the early morning during when the mean temperature is 20 

°C we collected the highest number of D. suzukii (both total and marked), while during the evening the 

temperature reached an average of 30 °C, the number of catches was lower. This underlying the fact that D. 

suzukii activity is lower when temperature are suboptimal (Wiman et al., 2014; Tochen et al., 2014). 

An additional contributing factor to environmental suitability is the presence of alternative host plants that 

provide valuable food and reproductive resources. It was reported that such non-crop hosts may provide 

suitable ovipositional media, and also provide energy in the form of nectar (Lee et al., 2016, Tochen et al., 

2016). We believe that the significantly higher number of marked D. suzukii found in the woods confirms this 

assertion and that some of this movement was toward nutritional resources located in the wood. It is known 

that multiple species are able to migrate from the crop to a nearby crop habitat for more suitable micro and 

macro environmental conditions including refuge, food and protection (Boina et al., 2009, Basoalto et al., 

2010; Lessio et al., 2014; Grassi et al., in preparation). The woods as described in this study likely provided 

such an optimal nutritional environment for D. suzukii. The biotic elements that likely enhanced the suitability 

are three known D. suzukii non-crop hosts: Cornus sanguinea, one of the most frequently encountered shrubs 

and Taxus baccata, a tree also found in the surveyed area (Kenis et al., 2016; Lee et al., 2015). Hedera helix is 

additionally known to serve as an alternative oviposition host during the late dormant period (Grassi et al., 

2018). In particular, Kenis et al. (2016), reports that these two species were frequently found infested by D. 

suzukii, showing a high level of attraction to D. suzukii. (Poyet et al., 2015). T. baccata was also commonly 

found in the woods and is also a known host of D. suzukii’s. Lee et al. (2015) states that many members of the 
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genus Cornus contained populations of D. suzukii. Two other plants found in the area that have been reported 

as hosts of D. suzukii, have not been considered in this analysis, because their presence was infrequent and 

because the literature on their relations with the pest is not clear i.e: Rosa canina and Viburnum lantana. 

Finally, Rubus idaeus, red raspberry, was also found in the surveyed area: this plant is one of the main hosts 

of D. suzukii (Cini et al., 2012) and it may have increased the levels of resources in the woods area for the 

insect, even if it was found only sparsely. Elsensohn & Loeb (2018) investigated the infestation of non-crop 

plants by D. suzukii, underlining the important role of the alternative vegetation as a key survival and 

population buildup factor. For these reasons, we believe that in this case the surveyed woods margin played 

a critical ecological role for D. suzukii populations. An additional factor possibly affecting daily movement, 

could be related not only because the above mentioned favorable abiotic and biotic conditions in the 

surrounding vegetation, but also because pesticide applications within the crop during the experimental 

period. Deltamethrin was applied against D. suzukii (Smirle et al., 2017; Shawer et al., 2018) every seven days 

(at least). This, together with the suboptimal abiotic factors could lead flies to move away from the field. An 

important point that underlies the movement of flies towards the wood instead of remaining into the crop, is 

the fact that most of the marked flies was found in the forest and not in the nearest traps to the marking point. 

Applying attractants in surrounding vegetation together with toxicants/repellents in the crop (push-pull may 

also result in lower rates of D. suzukii damage within the cultivated crop. 

 

The data collected from this study support previous assertions that surrounding vegetation can provide a 

benefit to migrating D. suzukii populations in two ways. First, the woods provided D. suzukii with a refuge from 

adverse climatic conditions. Second, by containing alternative host plants the wood likely provided food and 

reproductive resources. There is increasing evidence that the presence of suitable surrounding vegetation may 

contribute to D. suzukii risk to crop fields. Our data support these studies, but also suggest that D. suzukii can 

migrate to and from surrounding vegetation on a daily basis (Kenis et al., 2016; Diepenbrock et al., 2016). 

Leach et al., (2018) demonstrated that in the landscape surrounding fruit farms may strongly influence the 

dispersal of D. suzukii. Our study supports the assertion that the surrounding vegetation can play an important 

role in D. suzukii management.  If the elements described in this and other supporting studies exist in areas 

surrounding the commercial crop, these areas can provide both nutritional resources and suitable habitat 

during environmentally and other adverse conditions within the crop.  These areas can conversely provide 

refuge for parasitoids and at the same time aid in the management D. suzukii infestation (Santoiemma et al., 

2018). 

In the case of the current study, we demonstrated movement away from the crop to the surrounding 

vegetation.  Results of the present study support the hypothesis that D. suzukii migrate from the crop to the 

surrounding vegetation during the day, which has implications for the pest management programs.  These 

results provide valuable details to more effectively manage D. suzukii, providing further insights into daily 

activities between distinctly different habitats. This information could help farmers and industries decide 
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when and where to apply insecticides or other D. suzukii controls, as well as with which intensity, where to 

add more number of attractant traps and in which way to use behavioral manipulation techniques (Landolt et 

al., 2012; Kirkpatrick et al., 2016; Kirkpatrick et al., 2017; Wallingford et al., 2018, Tait et al., 2018), highlighting 

the possibility to apply such management actions directly to the surrounding vegetation. This strategy would 

be safer to humans compared to applying pesticides directly on fruit, providing that there is no contamination 

of soils and water with toxic pesticides.  

 

In conclusion, these data provide valuable and detailed information on the daily movement of D. suzukii 

between different ecosystems.  A trend of aggregation in more suitable abiotic and biotic conditions suggest 

adaptability of D. suzukii in order to result in increased overall success of these damaging populations. 
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Figure 1. Drosophila suzukii daily movement study area in a commercial blackberry (Rubus ulmifolius) tunnel 

production unit at San Rocco di Villazzano, Trento, Italy during 2017. The west side of the field was bordered 

by a wood.  

 

Figure 2. Number of total collected Drosophila suzukii in relation to temperature and humidity, in a commercial 

blackberry (Rubus ulmifolius) tunnel production unit at San Rocco di Villazzano, Trento, Italy during 2017. 

 

Figure 3. Correspondence analysis. in a commercial blackberry (Rubus ulmifolius) tunnel production unit at 

San Rocco di Villazzano, Trento, Italy during 2017. Each rhombus represents a capture category while circles, 

squares and triangles represent wood, crop border and crop inside capture events, respectively. The specific 

rhombi illustrate variable values of increase or decrease in the quantity of captured flies. Arrows connect 

morning captures with the respective afternoon captures and shows the differences by period of day. The 

longer the arrow, the higher the difference between morning and afternoon captures. 

 

Figure 4 a, b. Comparison of average temperature values recorded during seven hours before protein-marked 

Drosophila suzukii collections in a commercial blackberry (Rubus ulmifolius) tunnel production unit during two 

trial periods at San Rocco di Villazzano, Trento, Italy during 2017.  

 

Figure 5 a, b. Trap catches for both trials (July and August 2017). Each number corresponds to the total number 

of 2017 of protein-marked Drosophila suzukii collected in the three studied areas (wood, border and crop) in 

a commercial blackberry (Rubus ulmifolius) tunnel production unit at San Rocco di Villazzano, Trento, Italy 

during 2017 at the corresponding trap location.  

 

Figure 6a, b: Spatial representation of two trial periods, a) July and b) August 2017 of protein-marked 

Drosophila suzukii collected in the three studied areas (wood, border and crop) in a commercial blackberry 

(Rubus ulmifolius) tunnel production unit at San Rocco di Villazzano, Trento, Italy during 2017 using the inverse 

distance weighting method in Surfer. Crosses indicate the position of the traps. 

 
Table 1. Species composition and relative abundance of flora directly adjacent to a Drosophila suzukii daily movement 

study in a commercial blackberry (Rubus ulmifolius) tunnel production unit at San Rocco di Villazzano, Trento, Italy during 

2017.  There were eight 10x13 m surface areas directly surrounding each of the traps in the surrounding vegetation 

(known D. suzukii hosts are indicated by an asterisk *). 

 

Layer Type Common name Family Species Abundance 

Weed (0-

200 mm 

stratified 

herbaceous Nettle Urticaceae Urtica dioica ++ 
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layer) 

 herbaceous Dandelion Asteraceae 
Taraxacum 

officinale 
+ 

 herbaceous Ground ivy Lamiaceae 
Glechoma 

hederacea 
+ 

 herbaceous Wild raspberry Rosaceae Rubus idaeus  + 

 herbaceous Field bindweed Convolvulaceae Convolvulus spp. ++ 

 herbaceous 
Common 

wormwood 
Asteraceae Artemisia vulgaris +++ 

 herbaceous Absinthe Asteraceae 
Artemisia 

absinthium 
++ 

 herbaceous Red clover Fabaceae Trifolium pratense + 

 herbaceous Common wetch Fabaceae Vicia sativa ++ 

 herbaceous 
Common 

comfrey 
Boraginaceae 

Symphytum 

officinale 
+ 

 herbaceous Lamb's quarters Amaranthaceae Chenopodium spp. ++ 

 herbaceous 
Meadow 

buttercup 
Ranunculaceae Ranunculus acris + 

 herbaceous Blue grass Poaceae Poa pratensis ++ 

 herbaceous White bedstraw Rubiaceae Galium album + 

 herbaceous Barrenwort Berberidaceae Epimedium spp. ++ 

 herbaceous Bastard balm Labiateae 
Melittis 

melissophyllum 
+ 

Shrub 

(0.2m-1m 

stratified 

layer) 

shrub Common hazel Betulaceae Corylus avellana + 

 shrub Butterfly bush Buddlejaceae Buddleja spp. + 

 shrub 
Common 

dogwood 
Cornaceae 

Cornus sanguinea 

* 
+++ 

 shrub 
Common 

hornbeam 
Betulaceae Carpinus betulus ++ 

 shrub Manna ash Oleaceae Fraxinus ornus +++ 

 shrub 
Common 

barberry 
Berberidaceae Berberis vulgaris ++ 

 shrub Common ivy Araliaceae Hedera helix* ++ 

 shrub Wayfarer Caprifoliaceae Viburnum lantana + 

 shrub Dog rose Rosaceae Rosa canina + 
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Tree 

(1-10 m 

stratified 

layer) 

tree European yew Taxaceae Taxus baccata * ++ 

 tree Field maple Sapindaceae Acer campestre ++ 

 tree Silver fir Pinaceae Abies alba + 

 tree 
Common 

hornbeam 
Betulaceae Carpinus betulus +++ 

 tree Manna ash Oleaceae Fraxinus ornus +++ 

 tree Field maple Aceraceae Acer campestre ++ 

 tree Norway spruce Pinaceae Picea abies + 

 

 
Table 2. Number of marked catches (Nm) on the total collected Drosophila suzukii (Nt), % of marked samples and OD 

value in each of two mark recapture trial periods in San Rocco di Villazzano, Trento, Italy during 2017.  

 

 I trial – July 2017 II trial – August 2017 

N/S axis Nm/Nt % µ OD Nm/Nt % µ OD 

1 0/38 0 0 2/110 1.82 0.303 

2 0/26 0 0 3/68 4.41 0.277 

3 0/51 0 0 1/63 1.59 0.075 

4 0/29 0 0 4/67 5.97 0.316 

5 1/49 2.04 0.092 2/50 4 0.126 

6 10/68 14.71 0.314 2/78 2.56 0.144 

7 4/60 6.67 0.145 7/144 4.86 0.145 

8 8/81 9.88 0.194 8/157 6.37 0.237 

 

 

Table 3. Mean comparative normalized, daylight temperature and humidity, extreme daily temperature and humidity, 

normalized difference between extremes of daily temperature and humidity between three locations in San Rocco di 

Villazzano, Trento, Italy during 2017. 

  

Date 11-July 12-July 13-July 14-July 31-July 1-August 2-August 3-August 

Location 
 

Normalized temperature 

Wood  0 0 0 0 0 0 0 0 

CRB  0.488 0.389 0.352 0.419 0.427 0.585 0.165 0.264 

CRI  1 1 1 1 1 1 1 1 
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Normalized humidity 

Wood 1 1 1 1 0.112 0.379 0 0 

CRB 0.538 0.740 0.937 0.592 0 0 0.565 0.450 

CRI 0 0 0 0 28.49 30.74 31.27 31.25 

                                

                                     Daily temperature and humidity extremes 

Temperature max (°C) 26.99 28.48 30.39 25.25 26.46 29.45 30.33 30.32 

Temperature min (°C)  24.25 25.87 27.45 22.13 68.21 62.22 64.08 61.92 

Relative humidity max 

(%) 
73.55 67.69 60.17 79.41 67.23 58.38 56.69 55.14 

Relative humidity min 

(%) 
65.21 62.04 55.48 70.83 0.202 0.129 0.094 0.092 

         

                                    Normalized difference between daily temperature and humidity extremes 

 

Temperature 0.273 0.261 0.293 0.312 0.202 0.129 0.094 0.092 

Humidity 0.834 0.565 0.468 0.858 0.097 0.383 0.738 0.678 

 

 

 
 
Figure 1. Drosophila suzukii daily movement study area in a commercial blackberry (Rubus ulmifolius) tunnel production 

unit at San Rocco di Villazzano, Trento, Italy during 2017. The west side of the field was bordered by a wood.  
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Figure 2. Number of total collected Drosophila suzukii in relation to temperature and humidity, in a commercial 

blackberry (Rubus ulmifolius) tunnel production unit at San Rocco di Villazzano, Trento, Italy during 2017. 

 

 

 

 
 

Figure 3. Correspondence analysis. in a commercial blackberry (Rubus ulmifolius) tunnel production unit at San Rocco di 

Villazzano, Trento, Italy during 2017. Each rhombus represents a capture category while circles, squares and triangles 

represent wood, crop border and crop inside capture events, respectively. The specific rhombi illustrate variable values 

of increase or decrease in the quantity of captured flies. Arrows connect morning captures with the respective afternoon 

captures and shows the differences by period of day. The longer the arrow, the higher the difference between morning 

and afternoon captures. 
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Figure 4. Comparison of average temperature values recorded during seven hours before protein-marked Drosophila 

suzukii collections in a commercial blackberry (Rubus ulmifolius) tunnel production unit during two trial periods at San 

Rocco di Villazzano, Trento, Italy during 2017.  

 

 

 

 
 
Figure 5 a, b. Trap catches for both trials (July and August 2017). Each number corresponds to the total number of 2017 

of protein-marked Drosophila suzukii collected in the three studied areas (wood, border and crop) in a commercial 

blackberry (Rubus ulmifolius) tunnel production unit at San Rocco di Villazzano, Trento, Italy during 2017 at the 

corresponding trap location.  
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Figure 6a, b: Spatial representation of two trial periods, a) July and b) August 2017 of protein-marked Drosophila suzukii 

collected in the three studied areas (wood, border and crop) in a commercial blackberry (Rubus ulmifolius) tunnel 

production unit at San Rocco di Villazzano, Trento, Italy during 2017 using the inverse distance weighting method in 

Surfer. Crosses indicate the position of the traps. 
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Abstract 

Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive fly native to Eastern Asia that has 

successfully invaded Europe and the Americas since its first detection in 2008 outside its native range. Its rapid 

spread and establishment is largely attributed to its ability to exploit for oviposition multiple intact host fruits 

ripening on plants; this ability is due to the presence of a sharp, enlarged ovipositor. However, the mechanisms 

of the oviposition site selection of D. suzukii are still matter of hypothesis. The aim of this work was therefore 

to elucidate behavioral and chemical aspects of short-range site selection of this species. We first analyzed 

whether D. suzukii preferred to lay eggs of on already egg-infested or artificially-pierced fruits instead of intact 

ones. Video recording evidenced several discrete and repeated steps during oviposition. In particular, the final 

step was the release of an anal secretion over the fruit surface near the oviposition site. Gas chromatographic 

analysis revealed the presence of 14 compounds peculiar to the infested fruit, including methyl myristate and 

methyl palmitate, which have been known for being pheromone components in the model species Drosophila 

melanogaster. Further electrophysiological experiments of six of these compounds showed that they were all 

perceived by both males and females D. suzukii antennae. Finally, a synthetic blend composed by the six 

compounds in a ratio similar to that found in the post-oviposition secretion (marking liquid) increased the 

oviposition rate of conspecific females, suggesting that this secretion play a role in promoting oviposition and 

possibly aggregation in D. suzukii. The knowledge gained with this study may accelerate establishment of 

control strategies based on the interference and disruption of the D. suzukii communication during the 

oviposition processes. 

 

1 INTRODUCTION 

An alien species is an organism that lives beyond its natural range and is often combined with the connotation 

of being invasive, continuing to spread and thrive extensively. An alien species occurs in both natural and 
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agricultural systems, and affects many aspects of human well-being, as well as the integrity of the receiving 

environments, and the survival of many of the species they contain (New, 2016). Historically, alien pest 

invasions result in severe production losses and efforts deployment, in order to mitigate their environmental 

disturbances wrought by the invader (Andreazza et al., 2017). Drosophila suzukii (Matsumura) (Diptera: 

Drosophilidae) or Spotted Wing Drosophila (SWD) is a vinegar fly that originated from South East Asia and 

recently invaded western countries, threating soft fruits production there (Cini et al., 2012; Asplen et al., 2015). 

Adult females lay eggs on a variety of fruits by means of an enlarged and serrated ovipositor that permits 

penetration of the intact skin of ripening fruits (Cini et al., 2012; Atallah et al., 2014; Poyet et al., 2015). Larvae 

develop inside the fruit, making them unmarketable. The ability to select the best oviposition sites is 

fundamental to ensure progeny survival and maximize fitness in polyphagous insects, and especially in insect 

species such as D. suzukii whose offspring have limited or no capabilities of relocating themselves (Jaenike, 

1978).  

 

Knowledge of the mechanisms regulating the oviposition behavior of this pest may be of great importance to 

consider alternative methods based on the interference with these behavioral processes, such as oviposition 

disruption and/or mass trapping, to control this invasive species.  

Despite its economic relevance, little information is available concerning the egg-laying behavior of D. suzukii. 

From an evolutionary point of view, egg-lay decision is critical for insect species (Guedes et al., 2016). Egg 

production is costly and therefore the capacity to weigh different options might have been selected to ensure 

better survival of progeny (Yang et al., 2008). Up to now, what is known is that females of Drosophila species 

demonstrate preferences toward egg-laying site characteristics (Takamura et al., 1980; Allemand, 1989; Yang 

et al., 2008; Fountain et al., 2018). In particular, Fountain et al. (2018) has showed how D. suzukii females are 

strongly attracted by isoamyl acetate a well-known yeast volatile, suggesting that yeast developing on the 

surface of the berry can influence the attraction and therefore the egg-oviposition choice. 

The aim of this work is therefore to elucidate the chemical ecology behind the oviposition behavior of D. 

suzukii with the following goals: 1) assess the effect of prior conspecific infestation and population density of 

D. suzukii 2) find out whether the oviposition behavior of D. suzukii includes a marking phase; 3) analyze by 

means of GC-MS the marking liquid for a complete characterization of the compounds; 4) test the antennal 

responses (EAG) of D. suzukii to the compounds identified in the marking liquid; 5) evaluate behavioral 

responses of D. suzukii mated females to a synthetic blend resembling the marking liquid. 

 

2 MATERIALS AND METHODS 

 

2.1 Insects stocks 

D. suzukii cultures were established either at Edomund Mach Fondation (FEM) from a wild strain collected 

from multiple locations in the Adige valley (Italy) in 2016, or at OSU from wild strains collected from multiple 
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locations in the Willamette Valley (Oregon) in 2016. Flies were reared in cubic cages (Bugdorm-1, 30x30x30 

cm) on an artificial cornmeal diet (Prokopy et al., 1972), that served as both food source and oviposition 

medium. Insects were held under constant laboratory conditions (23±2 °C; 70±10 % RH; 16:8 L:D cycle). 

2.2 Intraspecific factors affecting D. suzukii oviposition activity 

Three experiments were carried out in order to assess the effect of prior conspecific infestation (experiments 

1 and 2) and population density (experiment 3) on the egg-laying activity of D. suzukii. All experiments were 

carried out under controlled conditions using 7-15 day-old adult D. suzukii. In all experiments, a water-soaked 

cotton ball was added to the arenas as a moisture source. 

2.2.1 Effect of prior D. suzukii conspecific infestation 

The effect of prior conspecific infestation was tested in both no-choice (experiment 1) and choice (experiment 

2) conditions. For the no-choice test, four sets of 30 vials each were prepared. The first set of vials contained 

one intact blueberry and one 7-15 day old mated D. suzukii female (negative control, NC). The second set of 

vials contained one infested blueberry (3-5 eggs) and one D. suzukii female (treatment 1, T1). Vials from the 

third set contained one intact blueberry and two D. suzukii females (treatment 2, T2). Vials from the fourth 

set contained one artificially pierced blueberry (3-5 holes) and one D. suzukii female (positive control, PC). 

Berries were checked for oviposition after 2, 6 and 24 hours. For the choice test, a set of 30 plastic cylindric 

boxes was prepared (15 x 10 cm). One D. suzukii female was placed in a single box with three blueberries each 

with a different degree of infestation: an intact blueberry, a low infested blueberry (1-2 eggs) and a highly 

infested blueberry (8 eggs). Berries were checked for oviposition after 6 and 24 hours.  

2.2.2 Effect of population density 

To assess the effect of population density on D. suzukii oviposition activity (experiment 3), three sets of 30 

boxes were prepared. All boxes contained three intact blueberries (fixed factor), whereas the number of D. 

suzukii was 1, 3 and 6 for the first (1 female), the second (3 females) and the third (6 females) set of boxes, 

respectively. Berries were checked for oviposition after 6 and 24 hours.  

2.3 Drosophila suzukii marking behavior 

To determine whether the oviposition behavior of D. suzukii includes a marking phase, two experiment were 

carried out. The first consisted of direct observations of ovipositing D. suzukii females, using a high resolution 

camera (Canon). Blueberries were exposed for 8-10 days to mated females in mixed gender cages for 15 

minutes. Then, blueberries on which SWD were resting were moved in the camera frame (about 36 mm2). The 

oviposition behavior of 26 females was recorded from the moment in which they began to oviposit (i.e., 

insertion of the ovipositor into the blueberry) until the fly walked out of frame (mean ± SD = 205.63 ± 51.80 

s). For each video, the occurrence and length in seconds of the following behaviors were noted: walking, 

marking (i.e. the female bends the abdomen’s tip and touches the substrate), and probing (i.e., proboscis 

extends and touches the substrate). The time in seconds between the ovipositor’s extraction and the first 

behavior performed immediately after it was measured. The second experiment was designed to detect 
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marking signs on the oviposition substrate. Mated D. suzukii females (3 to 4 days old) were fed with a sugar 

solution containing 46% water, 46% honey and 8% fluorescent dye (Polyment GmbH, Pinneberg, Germany) for 

24 hours. Two females, one green-marked and one red-marked, were transferred into plastic cups 

(Fisherbrand), and provisioned with a single blueberry, where they remained for two hours. Ten cups were 

prepared. After the flies were removed, the blueberries were checked for marking signs under a 

stereomicroscope using UV light. 

2.4 Characterization of the markings as aggregation pheromone. 

2.4.1 Markings collection and identification 

Collection of the markings were performed by washing 50 highly infested blueberries in 5 mL of methanol 

(Keesey et al., 2016). Each berry was individually immersed in the solvent and gently shaken for 15 seconds. A 

second collection was obtained by repeating the same process on artificially pierced blueberries. Marking 

candidates were identified by direct comparison of the two washings. Methanol was used as control solution. 

Collections were reduced to 100 μL via evaporation under a slow air stream. Chromatographic analyses were 

carried out with a Trace GC Ultra gas chromatograph coupled with a TSQ Quantum XLS Tandemmass 

spectrometer (Thermo Electron Corporation, Waltham, Massachusetts) and equipped with a PAL Combi-xt 

autosampler (CTC Analytics AG, Switzerland). The separation module consisted of a ZB Wax PEG capillary 

column (30 m × 0.25mm inner diameter × 0.25 μm film thickness; Phenomenex, Italy) programmed to increase 

from 60 °C (held for 3min) at 8 °C/min to 220 °C (held for 10 minutes) and, finally, to 250 °C at 10 °C/min for 5 

min. Helium was used as the carrier gas at a flow-rate of 1.2 mL/min. The temperature of the transfer line was 

250 °C. The electron impact energy was 70 eV and the filament current was 50 μA. The compounds were 

characterized by a comparison with synthetic standards, taking into account their GC retention indices and 

with mass spectra via the Wiley Registry of Mass Spectral Data.  

2.4.2 Antennal response to the selected volatile compounds.  

The response of D. suzukii adult antennae to the compounds identified as putative markings, was recorded by 

electroantennography (EAG, Syntech, Hilversum, NL). Ten females and ten males were recorded. The EAG 

connected to the antenna through two glass microcapillaries containing the ground and the recording silver 

electrodes and filled with Kaissling solution [NaCl (7.5 g/L); CaCl2 (0.21 g/L); KCl (0.35 g/L); and NaHCO3 (0.2 

g/L) plus 5g/L polyvinylpyrrolidone]. The protocol included that the head of the insect was mounted on the 

ground electrode via the occipital aperture, while the recording silver electrode was brought in contact with 

the distal tip of one antenna. Each compound was delivered to the antenna through a glass tube (12cm x 8mm) 

via a constant humidified air stream (0.5 l/min) filtered with charcoal. The air tube was located 4-5 mm away 

from the antenna. The test cartridge was connected to a stimulus controller (CS-55, Syntech) that generated 

the air puffs. Stimuli were diluted in hexane to four different concentrations (10−4, 10−3, 10−2, 10−1 μg/μl) and 

10 μl were put on 1.5 cm2 piece of filter paper (Albet 400: Sparks Lab Supply Limited) inside Pasteur pipettes. 

Cartridges were replaced after fifteen puffs. To avoid biases in the response amplitude, stimuli presentation 
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was randomized among individuals. For each individual we delivered odorants in ascending order of 

concentration at 30-40 s intervals. Each odorant and concentration was presented only once to each 

individual. As control stimuli, we used pure hexane and blank air at the beginning, at the middle and at the 

end of each recording. Data obtained were analyzed with EAG2000 software (Syntech, Hilversum, NL), by 

measuring the maximum amplitude of depolarization (mV) elicited by each stimulus and then subtracting the 

amplitude of the response to the hexane control.  

2.6 Behavioral response to the selected volatile compounds. 

To verify the effect on ovipositional activity of the compounds identified as putative markings, a double-choice 

behavioral assay was performed (n=40). The compounds were mixed according to the ratio observed in the 

collection analyzed by GC-MS. The mix was then dissolved in hexane (i.e. marking solution; 100 mg/30 mL). 

Arenas were prepared using 2-L transparent Griffin-style graduated low-form plastic beakers (Nalgene, 

Rochester, NY). For each beaker, 9 ventilation holes (1 cm diameter) were cut along the circumference 

approximately 6 cm from the base and covered with fine mesh in order to prevent D. suzukii escapees. The 

top of each beaker was drilled and connected to a 0.5 cm diameter plastic tube providing a vacuum in order 

to create a constant and uniform air flow (1.5 L min-1) within the containers. Beakers were placed upside down 

on a flat work surface covered with white paper. Two petri dishes (3 cm diameter) containing a single blueberry 

each were placed at opposite sides of each arena. A treated blueberry was marked with 15 droplets of the 

marking solution (2 uL per droplet), and a control blueberry was marked with 15 droplets of solvent. After 

marking, berries were left at room temperature for 10 minutes to permit the solvent to evaporate. A single D. 

suzukii female was released in each arena. Every 15 minutes the position of the female within the arena was 

noted (treated berry, control berry or no choice). After 2 hours, flies were removed and the number of eggs 

on each berry was counted.  

2.5 Statistical analysis 

The effects of intraspecific factors on D. suzukii oviposition activity (experiments 1-4) were tested with the 

Mann-Whitney U test or the Kruskal-Wallis test followed by Dunn's post hoc test. The behavioral response of 

D. suzukii to the marking solution was tested with the Wilcoxon matched pairs test when comparing the 

oviposition on treated and control fruit. A skew index was used to assess whether there was a preference 

either berry. In particular, for each 15-minute interval, the skew index was estimated as (C-T)/(C+T), where C 

is the number of females on the control berry and T is the number of females on the treated berry. This index 

varies between 1 (100% preference for the control berry) and -1 (100 % preference for the treated berry). 

Differences in EAG responses were first evaluated using Student’s t-test, to assess differences between male 

and female responses. Parametric one-way analysis of variance (ANOVA) followed by Tukey’s post-hoc 

multiple comparison test were used to assess the effect of each compound dosage on the amplitude of D. 

suzukii antennal responses. All statistical analysis were performed using Statistica 64© 12 (StatSof. Inc., Tulsa, 

OK). All mean values are presented as averages ± standard deviation (SE).  
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3 RESULTS 

3.1 Intraspecific factors affecting D. suzukii oviposition activity 

In the no-choice test (experiment 1), oviposition (total eggs) generally and gradually increased over the 24 

hours in all treatments (T1, T2) and controls (NC, PC). In T2 and PC, a significantly greater number of eggs were 

laid within 2 hours (H = 17.04; p < 0.001; figure 1a). After 6 hours, both treatments and PC showed a 

significantly greater number of eggs than NC (H = 27.35; p < 0.001), and the same trend was maintained for 

24 hours (H = 22.06; p < 0.001; figure 1a). In experiment 2, oviposition after 6 hours was significantly different 

between treatments and control (H=6.53; p=0.033; figure 1b). The same trend was observed at 24 hours (H = 

10.62; p < 0.01; figure 1b).  

In experiment 3, the female density did not affect oviposition rates and no significant difference in the number 

of eggs laid was observed, after 6 or 24 hours (figure 1c).  

3.2 Drosophila suzukii marking behavior 

Immediately after extraction of the ovipositor from the berry, most of the females walked away from the 

oviposition site (85%), although they remained in the recording frame. The remaining 15% of females 

performed probing (3/26) or marking (1/26) before walking away. The time from the ovipositor extraction to 

each behavior was 1.88 ± 2.56 s for walking, 60.49 ± 103.62 s for probing, and 2.12 s for marking. During the 

entire observation period, marking behavior was observed at least once in 77% of females. Considering the 

females that marked the berry, the number of markings per female was on average 3.30 ± 1.92. For each 

marking, the abdomen of the female was in contact with the berry’s surface for 0.26 ± 0.16 s. The observation 

of the marking signs under fluorescence light revealed three different marks on the oviposition substrate: large 

spots, small spots and scrapings (figure 2). The first two types of marks were observed on all blueberries, 

whereas scraping only occurred on berries in which eggs were laid.  The large spots were 200-300 µm in 

diameter and showed different level of fluorescence intensity (figure 2c,e). Small spots were 25-50 µm in 

diameter and always appeared to be highly fluorescent (figure 2c,e). Scrapings consisted of drop-shaped stains 

(lenght 150-400 µm) aligned over trails surrounding oviposition sites (figure 2d,e). 

3.3 Markings collection and identification  

The GC-MS analysis of the surface washings revealed the presence of several peaks (Figure 3a). A total of 19 

compounds from infested fruit and 9 compounds from artificially pierced fruit were identified (table 1). Five 

compounds were common to both collections and were not considered for the subsequent 

electrophysiological experiments. Among the remaining compounds identified in the infested fruit collection, 

six were selected for further electrophysiological and behavioral analysis, since they corresponded to active 

volatiles previously identified in the D. melanogaster aggregation pheromone (Keesey et al., 2016). These 

compounds were: palmitic acid, palmitoleic acid, myristic acid, lauric acid, methyl myristate and methyl 
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palmitate. 

3.4 Antennal response to the markings. 

Figure 3b shows the changes in EAG response in males and females due to the varying pure compound 

dilutions. An initial t-test was performed to assess the presence of a potential sex-bias in the response 

amplitude. For each of the six compounds tested at all concentration, no statistical difference was detected 

(p > 0.05). Females did not make statistically different responses to the six compounds at all the four 

concentrations. By contrast, males responded significantly to the greatest and least concentrations of palmitic 

and palmitoleic acid. This difference palmitic acid was (F = 5.089, df = 14.63, p = 0.039), and for palmitoleic 

acid, (F = 5.659, df = 13.35, p = 0.032). 

3.5 Behavioral response to the markings. 

The volatiles ratio used for the marking solution was: 43.10% palmitic acid, 41.11% palmitoleic acid, 14.74% 

myristic acid, 0.66% lauric acid, 0.32% methyl palmitate and 0.07% methyl myristate. The number of eggs laid 

was significantly greater on treated berries than on control berries (Wilcoxon Matched Pairs Test: T=144.5, 

Z=2.028, p<0.05; figure 4a). The skew index was always less than than 1 (figure 4b), suggesting that female D. 

suzukii spent more time on berries treated with the marking solutions than on control berries.  

4 DISCUSSION 

Our study aimed to elucidate the chemical ecology behind the oviposition behavior of D. suzukii. This is the 

first evidence of the presence of an aggregation pheromone in D. suzukii. The research allowed us to 

demonstrate that D. suzukii oviposition behavior is affected by multiple factors as happens for other species 

(Frati et al., 2016; Zhang et al., 2015; Wallingford et al., 2016). We performed a set of experiments (choice and 

no-choice tests) to investigate whether infested fruits are more attractive compare to the uninfested one. 

Results consistently showed that highly infested and artificially pierced fruit were the preferred treatments, 

resulting in higher oviposition rates by D. suzukii females (experiment 1 and 2). Even more interesting was the 

fact that high female densities did not negatively affect the oviposition rate (experiment 3). Some hypothesis 

may be outlined as contributing factors for the evolutionary adaptation of D. suzukii to be attracted by 

wounded fruit. Firstly, the loss of sugary liquids from the egg holes over the fruit surface may provide an easy 

food source for egg-laying females, which may be attracted at a relatively long range by the release of volatile 

substances from the wounded fruit surface (Abraham et al., 2015; Revadi et al., 2015; Mazzetto et al., 2016). 

Secondly, start of potential alcoholic fermentations may occur on the wounded fruits, thus leading to bacteria 

and fungi development, which would stand as additional food sources, and attract conspecifics (Fountain et 

al., 2018). Indeed, in such substrates, with respect to healthy fruit, which is a relatively poor diet (Jaramillo et 

al., 2015), growing fungi and other microorganisms can represent a very protein rich diet to Drosophila adults 

and larvae limiting problems of food source competition among individuals. Thirdly, a role of the liquid 

released by females as a marking pheromone can by hypothesized. This substance would likely attract other 
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females and stimulate them to lay eggs. The marking could be exploited by other females as indication of a 

good oviposition substrate, hence providing a reproductive advantage.  

Video recording analysis showed a peculiar behavior of egg-laying females with a release of a liquid from the 

abdomen tip over the fruit surface after oviposition. This behavior was observed in the majority of ovipositions 

(77%), thus suggesting that it is a widespread behavior rather than occasional. The observation of the fruit 

surface under fluorescent light also supported the hypothesis of a marking pheromone, revealing the presence 

of several different mark types. Some of these marks occurred on all the observed berries and could be related 

with the probing activity made with the proboscis tip (large spots), or with the feces produced through the 

normal excretory activity (small spots). On the contrary, the scraping marks were only observed in those 

berries where eggs where laid, and their remarkable shape suggests the intent of the fly to create a trail around 

the oviposition site. 

Proof of the existence of a marking pheromone requires demonstrating that a chemical compound (or mix of 

compounds) is deposited by a female insect on its host in association with oviposition and that the compound 

influences the behavior of females visiting the host subsequently (Nulfio and Papaj, 2001). Here we showed 

the presence of 19 peaks in the surface washing of infested fruit. Most of these peaks (14) were absent in the 

surface washing of the artificially pierced fruit (control), hence they are indicative of compounds originated 

from the insects rather than from the fruit. In particular, we found six carboxylic acids, which were reported 

to interfere with oviposition behavior of several insects (Thiery et al., 1995; Navarro-Silva et al., 2009; Bobera 

and Rafaelib, 2010). Butyric acid was proven to have repellent effect on oviposition of Mosquitoes (Culex p. 

quinquefasciatus and Culex tarsalis) (Hwang et al., 1980). Palmitic acid and palmitoleic acid were shown to 

have deterrent effect as host-marking pheromone on oviposition of Lobesia botrana (Gabel and Thiery, 1996) 

and Cydia pomonella (Thiery et al., 1995). On the other hand, palmitic and palmitoleic acid together with other 

4 compounds that we found in the infested fruit surface washing (myristic acid, lauric acid, methyl myristate 

and methyl palmitate) have been previously identified by Keesey et al. (2016) in D. melanogaster frass and 

described as aggregation pheromones.  

 

EAG tests revealed that the female antennal responses to the six compounds at all the four concentrations 

were not statistically different, while males showed significantly higher EAG responses to the highest and 

lowest concentrations of palmitic and palmitoleic acid. It has been demonstrated that these two acids together 

with myristic acid strongly activate olfactory receptor Or47b, which is a specific pheromone detector in D. 

melanogaster (Dweck et al., 2015). The last experiment performed spraying the synthetic blend of the six 

major compounds resembling the ratio found in the extract over intact blueberry surface, gave us the final 

determining proof about the role of the released anal liquid as an attractive marking pheromone. Results 

indeed indicate that marked fruits attract more flies, which lay more eggs on it. In support of this, the skew 

index was always less than than 1, suggesting that females D. suzukii spent more time on berries treated with 

the marking solutions than on control berries.   
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In future, our findings may give important contribution in the development of environmentally friendly control 

methods by interfering with D. suzukii communication during the phase of oviposition. 
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Figure 2. Marked females of D. suzukii under normal (a) and fluorescent (b) light. c-d) Blueberries exposed to marked D. 

suzukii females under fluorescent light: in the absence of oviposition punctures (c) only large and small spot marks are 

visible, when oviposition occurred (d) scraping marks can be observed. e) Negative pictures of the different mark types.    
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Figure 3. a) GC/MS analysis of the surface washings from the artificially pierced (blue line) and the infested fruit (red 

line), and the control injection (pure hexane, green line). b) EAG absolute responses (Mean±SE, MinmV) to different 

compounds as a function of Stimulus and Concentration. Compounds tested are indicated on top of each plot: MM= 

myristic acid, PTIC A= palmitic acid, MP= methyl palmitate, MA= myristic acid, PEIC A= palmitoleic acid, LA= lauric acid. 

The green line shows the baseline response for the control stimulus (pure hexane).   
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Abstract 
 

Drosophila suzukii is an insect pest of worldwide distribution on soft-skinned fruit. This species is able to utilize different habitats 
and substrates for nutrition and reproduction, a capacity that can be attributed to olfactory cues. The first aim of the current study 
was to create and evaluate a novel gum matrix as a management tool for D. suzukii in a commercial cropping systems. Next, we 
identified a biologically important volatile from an important ingredient within the matrix. The efficacy of the proof of concept 
matrix as a management tool was assessed in laboratory and semi-field conditions. The detection of active volatile compounds was 
performed using gas chromatography (GC) coupled with electroantenna detection (EAD) techniques. Volatiles significantly 
modified response of D. suzukii in controlled electrophysiology and orientation studies, resulting in 46.7% mean oviposition re- 
duction in controlled laboratory trials on five susceptible fruit types. Field trials were thereafter conducted over periods of 72 ± 2 to 
96 ± 2 hours on commercial-standard blueberry bushes. Fruit on bushes exposed to predetermined numbers of D. suzukii displayed 
50 to 76% reductions of fruit infestation and total eggs laid, respectively, in gum treatments. Up to 40% of fruit on untreated plants 
were targeted by D. suzukii, whereas less than 20% of fruit on treated bushes were targeted. These results indicate that the insecticide-
free gum matrix significantly reduces D. suzukii damage under commercial production conditions. This reduction may be due to a 
combination of altered behaviour and the division of reproductive resources. The current work will likely expand integrated pest 
management options to control D. suzukii populations in commercial field settings. 

 
Key words: Spotted-wing drosophila, oviposition, insect bait, behaviour manipulation, Integrated Pest Management. 

 
 

Introduction 
 

The spotted-wing drosophila, Drosophila suzukii 

(Matsumura), indigenous to Southeast Asia, is an invasive 
pest species causing direct damage to soft-skinned fruits 
(Lee et al., 2011; Cini et al., 2012). The first description of 
the economic damage caused by this species was recorded 
in Japan in 1916 (Kanzawa, 1939). D. suzukii has since 
spread to become a pest of worldwide importance (Hauser 
et al., 2011; Asplen et al., 2015). Following its detection in 
2008 in both Europe and USA, its damage caused estimated 
economic losses of €3 million in Trentino province (Italy) 
(Cini et al., 2012) and can cause an estimated $511 million 
in losses annually in western production regions of North 
America (Bolda et al., 2010; Farnsworth et al., 2017). 
Current integrated pest management (IPM) practices for D. 

suzukii include trapping and fruit monitoring (Lee et al., 
2011; 2013; Evans et al., 2017; Kirkpatrick et  al., 2017), 
biological control (Chabert et al., 2012; Kasuya et al., 2013; 
Rossi-Stacconi et al., 2013; 2017; Gabarra et al., 2015; 
Nomano et al., 2015; Woltz et al., 2015; Daane et al., 2016), 
chemical control (Beers et al.,  2011; Bruck et al., 2011; Van 
Timmeren and Isaacs, 2013; Wise et al., 2015; Murphy et 

al., 2015), and cultural control (Lee et al., 2015; Tochen et 

al., 2016a; 2016b). The majority of these control methods 
significantly increases production costs. Pesticides controls 
result in 1-7 days of effect, needing up to twenty appli- 
cations per season. 

 
Oviposition levels of D. suzukii are affected by multiple 

factors, including environmental conditions (Kinjo et al., 
2014; Tochen et al., 2014; 2016b; Enriquez and Colinet, 
2017), sexual maturity (Zerulla et al., 2015; Rossi-Stacconi 
et al., 2016; Ryan et al., 2016; Wiman et al., 2016; Grassi et 

al., 2018), presence of essential food resources (Mitsui et al., 
2006; Briem et al., 2016; Tochen et al., 2016a), and fruit 
susceptibility (Bellamy et al., 2013; Burrack et al., 2013; 
Ioriatti et al., 2015; Lee et al., 2015). Pest detection is one 
of the foundations of effective IPM. To this end, several 
attractants have been tested and are used to bait D. suzukii 

traps (Landolt et al., 2012; Cha et al., 2013; 2017; Tonina et 

al., 2018). Several of these baits are composed of a mix of 
volatiles of red wine, cider wine and sugars and are focused 
on attraction (Landolt et al., 2012; Cha et al., 2017), but little 
focus to this date have been given to manipulation of 
oviposition. In particular, work has been done on oviposition 
deterrents, whereas none tried to encourage oviposition on 
non-crop substrates (Renkema et al., 2016; Wallingford et 

al., 2016a, 2017). The oviposition behaviour of D. suzukii is 
not well characterized (Mitsui et al., 2006). Oviposition 
includes multiple steps during which the insect tests the 
quality of fruit (Karageorgi et al., 2017). One of the 
important steps includes probing of the substrate with the 
proboscis based on the volatiles associated with ripening 
fruit (Karageorgi et al., 2017; Tait, unpublished), and a 
decision is made whether to feed and oviposit or not. It is 
believed that leaves may contribute to volatile signals 
resulting in D. suzukii ov-
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3 holes (~0.3 cm diameter) were cut on the film coverings in 
order to allow the flies to enter the cups. Twenty mated 
females and males were released within each arena, 
allowing them to orient and eventually enter the cups. After 
24 h, the number of D. suzukii caught within each cup was 
counted, as well as flies that did not make any choice. 

 
Oviposition tests 
The principal ingredient A was mixed at a 1.5% rate with 
other proprietary food-grade components (US patent appl. 
62/697,296) under laboratory conditions at 22 °C, 65% RH. 
The matrix also contained between ~84% (SM) and 89% 
(LM) deionized water. The resultant matrices were used for 
D. suzukii efficacy trials within 1-2 hours of preparation in 
both laboratory experiments and field trials. 

 
Laboratory oviposition experiments 

Experiments were performed on blackberries, blueber- 
ries, cherries, strawberries, and raspberries under con- 
trolled conditions. Ventilated arenas were prepared as 
described for the double-choice experiments. Two 25-ml 
Deli cups (Dart Container Corporation, Mason, MI) were 
placed inside each arena, one containing circa 6 ± 0.1 g of 
the SM, and the other containing fresh fruit in treated 
repetitions. The control treatments only contained fruit. For 
each fruit type, we exposed an approximate surface area of 
32 mm2, corresponding to the exposed area of the matrix 
within the Deli cup in the treated repetitions. 15 D. suzukii 

individuals, 10 females and 5 males, were released into each 
arena. After 24 h, the number of eggs laid on the berries and 
into the matrix was counted. The experiment for each fruit 
type was replicated ten times. Initial trials looking at 
increase in cherry fruit per arena did not result in a 
significant reduction in the number of eggs laid per berry 
between treatments (single cherry = 36.5 eggs/cherry; three 
cherries = 49.25 eggs/cherry; F 4, 15 = 4.18, P = 0.82). 

 
Field oviposition trials 

Oviposition trials were conducted from 8 August to 17 
October 2017 at the Lewis-Brown Farm at Oregon State 
University (44°33'13"N 123°13'07"W) in an organic 11-
year-old drip irrigated cv. Elliott blueberry field. Plants were 
spaced approximately 0.76 m apart within rows with 3.05 m 
between rows and were not treated with insecticides. The 
width and height of plants were approximately 1 m and 1.5 
m, respectively. Two drip irrigation lines, one on either side 
of the blueberry plant, were placed under sawdust mulch 
cover within standard raised beds and provided irrigation at 
levels of 100% (255 ± 5 mm water per growing season), of 
the estimated crop evapotranspiration (ETc) requirement 
(Bryla et al., 2011). 

Two series of trials were performed. In the first, single 
fruit clusters were isolated in mesh bags, while the second 
trial was carried out using isolated whole bushes. Field 
oviposition trials including fruit were conducted by covering 
fruit clusters (10-23 berries) with 20 cm × 30 cm white 
organza mesh bags (Uline, Pleasant Prairie, WI). All mesh 
bags were placed approximately 1 mm 

apart on the north side of the bush within the shade of the 
canopy and 0.2 to 1.3 m above ground level. Each mesh bag 
contained 10 D. suzukii adults, 5 females and 5 males. Either 
SM or LM were added to the treatment mesh bags. Solid 
matrix was provided at 40 ± 0.5 mL in 10 cm diameter petri 
dishes (figure 2a) on 8 and 31 August; 13, 15 and 25 
September; and 11 October 2017. Liquid gum matrix was 
applied by spraying 5 mL on the surface of the mesh bags 
using an all-purpose spray bottle (Home Depot, Atlanta, 
GA) (figure 2b) on 13 September, 15 September, and 11 
October 2017. Every trial date contained 10 replicates for 
treated and control clusters each. All trials were started 
between 15:00 and 17:00 and were collected 72 ± 2 hours 
later to determine the levels of oviposition on fruits and 
within the gum matrix. All damaged berries were excluded 
when assessing the egg-laying levels in the laboratory under 
a dissecting microscope. Experiments based on these 
treatments were replicated 10 times on each of the treatment 
dates and were conducted on 10 separate days. 

Whole-bush D. suzukii exposure trials using both SM and 
LM were conducted in order to determine efficacy when the 
matrix is applied at the base of the bush. Entire bushes were 
covered using 80 g Tek-Knit netting (Berry Protection 
Solutions, Stephentown, NY) which extended to the soil 
surface (figure 2c). In total, 100 D. suzukii (50 females and 
50 males) were released within each netted bush. Solid and 
liquid gum matrices were respectively trialled using 100 ± 2 
mL SM placed within 5 Petri dishes (10 cm diameter), or by 
spraying 100 ± 2 mL of LM at the base of the bush on a 15 
× 30 cm microfiber cloth (Costco, Kirkland, WA). 
Replicates of both treated and control plants were exposed 
between 15:00 and 17:00 and fruit were collected 72 ± 2 to 
96 ± 2 hours after initial placement of flies. Solid matrix 
experiments were replicated twice, i.e. on 22 and 24 
September 2017. Liquid matrix experiments were repeated 
3 times, i.e. on 27 September, 3 October and 9 October 2017. 
On each date, 5 replicates (bushes) per treatment were set. 
After the D. suzukii exposure period, 20 firm berries were 
collected from each area of the plant, designated as the top 
(~1.3 m above soil level), middle (~0.8 m above soil level) 
and bottom (~0.3 m above soil level) for a total of 60 berries 
collected per bush. Assessments of oviposition were 
determined by calculating the number of eggs laid per berry 
and percent of infested berries. 

 
Weather data 

Weather data including temperature (°C), humidity (%) 
and rainfall (mm) were obtained from the Corvallis, Oregon 
Agrimet weather site (Oregon State University Hyslop Farm 
44°38'03"N 123°11'24"W) 
(https://www.usbr.gov/pn/agrimet/agrimetmap/crvoda.html). In 
this way it was possible to verify daily the weather 
conditions during the field trials. 

 
Volatile collection 

To extract volatiles from the principal ingredient A, 50 mL 
of water were mixed with 2 g of it in order to obtain a paste. 
10 g of paste were placed into a glass tube 

http://www.usbr.gov/pn/agrimet/agrimetmap/crvoda.html)
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NaHCO3 (0.2 gL−1)] containing 5 gL−1 polyvinylpyrrol- 
idone (PVP, Sigma-Aldrich). The protocol called for the 
head of the insect to be mounted on a microcapillary 
connected to a grounded silver electrode, while the re- 
cording silver electrode was brought in contact with the 
distal tip of one antenna. Two µL of the concentrated 
principal ingredient A extracts were injected into a Clarus 
500 GC (Perkin Elmer Inc., Waltham, MA) in splitless 
mode, with a polar Elite-VMS column (30 m × 0.32 mm; 
Perkin Elmer Inc., Waltham, MA) programmed from 60 °C 
(hold 3 min) at 8 °C min−1 to 250 °C (hold 10 min) with 
hydrogen as the carrier gas and interfaced with the EAG 
apparatus (Revadi et al., 2015). The GC column effluent was 
combined with nitrogen make-up gas and then a 1:1 ratio 
between the flame ionization detector (FID) and an antenna 
of a D. suzukii female. Compounds eluted from the capillary 
column were delivered to the antenna through a glass tube 
(12 cm × 8 mm) via a constant humidified air stream (0.5 L 
min−1) filtered with charcoal. The air tube was located 4-5 
mm from the antenna. Both the antennal and the FID signals 
were amplified and recorded simultaneously using GC- 
EAD Syntech software (Ockenfels Syntech GmbH, 
Buchenbach, Germany). Headspace extracts were tested on 
2 different D. suzukii populations, one originated from 
individuals collected in northern Italy and one from 
individuals collected in Oregon. From each population, 5 
females were tested. The graphical area under the peaks was 
used for analysing the chromatograms. The relative quantity 
of each compound was calculated in relation to the most 
abundant compound, which was set at a value of 100. The 
EAD responses were calculated by Autospike software 
(Syntech) measuring the maximum amplitude of negative 
deflection (mV) elicited by D. suzukii antennae. 

 
Statistical analysis 

Data from laboratory double-choice experiments and 
oviposition trials were analysed using one-way ANOVA, 
and the Tukey’s test was applied to separate difference at α 
< 0.05. Mesh bags field trials data were analysed using one-
way ANOVA tests. Whole-bush field trials data were 
analysed using factorial ANOVA test followed by Tukey’s 
HSD test. Differences in volatile perception between 
Oregon and Italian D. suzukii were tested with the Mann-
Whitney U-test (Mann and Whitney, 1947). All analyses 
were run using Statistica 64©12 (StatSoft Inc., Tulsa, OK) 
(Hill and Lewicki, 2007). 

Results 
 

Laboratory choice assays 
The number of flies selecting Deli cups containing at- 

tractant ingredient A was significantly higher (F2, 33 = 
188.99, P < 0.001, figure 3) than both flies selecting de- 
ionized water and flies not making any choice. 

 
Laboratory oviposition experiments 

Overall, the presence of gum matrix resulted in a sig- 
nificant reduction in egg laying in all fruit types compared 
to untreated control treatments under controlled laboratory 
conditions (mean reduction = 48.3%, F1, 98 = 19.13, P < 
0.001). When flies were presented a choice between gum 
matrices and fruit, a reduction of 46.5%, 46.28%, 51.5%, 
43.5% and 48.5% of eggs in fruits compared to the control 
treatments were recorded for blackberry, blueberry, cherry, 
raspberry and strawberry respectively (table 1). The 
numbers of eggs laid in fruit 

 
 

Figure 3. The number of D. suzukii flies selecting Deli cups 
containing ingredient A compared to flies selecting 
deionized water under controlled laboratory conditions 
within ventilated choice arenas. 

 

Table 1. Mean number of D. suzukii eggs in control compared to berries with liquid matrix (LM). Laboratory oviposition 
experiments included a choice test between a water control and fruit type within an inverted modified 2-L plastic beaker. 
Numbers of deposited eggs were recorded after 24 hours of exposure to D. suzukii. For each F-values the degrees of freedom 
are (1, 19). 

 

Fruit type Eggs in control 
fruit 

Eggs in the 
LM 

Eggs in fruit next to 
LM 

F-
value 

P-
Value 

Blackberries 11.6 ± 2.0 0 ± 0 6.2 ± 1.2 5.42 0.032 

Blueberries 17.2 ± 1.1 11.8 ± 3.12 8.4 ± 1.1 32.27 <0.001 

Cherries 58.1 ± 8.9 2 ± 0.66 28.2 ± 6.2 7.60 0.013 

Raspberries 46.0 ± 4.7 10.2 ± 3.82 26.0 ± 2.6 13.73 0.002 

Strawberries 46.4 ± 4.8 1.1 ± 0.48 23.9 ± 4.1 12.93 0.002 
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their relative quantities of the corresponding volatiles were 
14.47 and 100 for the first CP1 and the second peak CP2 
respectively. D. suzukii individuals elicited consistent 
antennal response only to CP2. No difference in the antennal 
response amplitude was observed between Italian (0.062 ± 
0.096 mV; mean ± SD) and Oregon (0.058 ± 0.094 mV) D. 

suzukii females (U = 11; P = 0.834). 
 
 

Discussion 
 

The data presented provide a novel and proof of concept 
approach to the management of D. suzukii egg-laying 
behaviour through behavioural manipulation. We 
demonstrated significant reductions of egg-laying on 
blueberries, cherries, strawberries, raspberries and 
blackberries under controlled laboratory conditions. Field 
experiments were carried out on blueberry clusters, each 
containing a predetermined number of D. suzukii. Egg-
laying was significantly reduced on 8 out of 9 experimental 
dates. These results were obtained using both SM and LM 
formulations over periods of 72 to 96 ± 2 hours. Then, 
whole-bush field experiments exposing fruit to D. suzukii 

populations over 3-4 days included the location within the 
experimental bush as an additional factor in the 
experimental design. Here, oviposition was significantly 
reduced on all 5 of the experimental dates. The location on 
the bush had the largest impact on the reduction of egg-
laying, with the largest reductions occurring in the middle 
and lower portions of the blueberry bush. Overall, the 
reduction of the absolute number of eggs and the number of 
infested berries was largely similar. In all cases, when egg-
laying was reduced, there was also a reduction in the number 
of infested berries. 

The data were collected under varying environmental 
conditions over a 2-month period for the field experiments 
on blueberry. Considering weather conditions, it appeared 
as if egg-laying was higher under conditions where 
temperatures were above 20 °C and below 30 °C; however, 
it appeared that temperature, humidity and rainfall had 
minimal overall impact on the efficacy of the applied 
treatments. Finally, the data generated from the EAG trials 
indicate a similar response in both the Italian and Oregon 
populations of D. suzukii using volatiles originating from 
carbohydrates within the matrix. Subsequent experiments 
(Rossi-Stacconi et al., in preparation) conducted under 
controlled laboratory conditions showed significant 
attraction to the key volatile identified in the EAG trials. 

The fact that the treated fruit consistently displayed 
significant reductions of D. suzukii damage provides a 
strong impetus of future commercial implementation. 
Research on the control of D. suzukii has predominantly 
focused on attractants (Landolt et al., 2012; Cha et al., 2017; 
Frewin et al., 2017; Tonina et al., 2018). Alternative 
methods looked at the use of sugar, a phagostimulant mixed 
with pesticides and sprayed on the canopy to improve 
efficacy of insecticides (Cowles et al., 2015). Push-pull 
strategies proposing aversive and attractive stimuli in order 
to modify D. suzukii pest 

distribution in the crop resulted in encouraging results 
(Renkema et al., 2016; Wallingford et al., 2016a; 2016b; 
2017; 2018). In the current study, the attractive gum 
matrices for D. suzukii shows comparatively favourable 
results, where treatments using the substrate lead to 
significant reductions of fruit infestation over relatively 
extended periods. It is possible that these reductions are the 
result of altered egg-laying behaviour toward susceptible 
fruit. These data indicate a strong, consistent and 
competitive attraction of the substrate when presented 
together with berries. The current study provides evidence 
that D. suzukii crop damage can be reduced by using 
attractive volatiles in commercial field settings. The 
compound as tested contains no conventional insecticides 
and provides an alternative and environmentally friendly 
management tool for D. suzukii. Since D. suzukii has 
become an economically important pest in both Americas 
and Europe (Cini et al., 2012; Asplen et al., 2015; Tait et al., 
2017), the number of tools and techniques to manage D. 

suzukii commercially has increased. Currently, several trap 
designs (Lee et al., 2011; 2013), synthetic volatiles (Cha et 

al., 2014) and different types of baits (Landolt et al., 2012; 
Cha et al., 2013; Renkema et al., 2014; 2017; Grassi et al., 
2015) are available, aiding in the control of this important 
pest. It is acknowledged that the currently available tools 
have many limitations (Haye et al., 2016). Moreover, the 
prevailing problem with synthetic volatile compositions is 
that they do not mimic natural circumstances. Even with all 
available options, effective management of the pest is a 
challenge and requires a more efficient method of control. 

The matrices described in this study focuses on ma- 
nipulation of pest behaviour. In addition to be an alter- 
native ovipositional medium, this matrix may be providing 
D. suzukii a substrate where several additional activities of 
biological significance may be observed (Tait, unpublished) 
including feeding and mating. Our findings support the use 
of the matrices as a biologically-based product to handle 
problematic D. suzukii infestations in an environmental 
friendly way (Alnajjar et al., 2017; Lanouette et al., 2017; 
Woltz and Lee, 2017). Despite this, it must be considered 
that trials show between 50% and 76% reduction in eggs laid 
in fruit that received the treatments, suggesting a pairing of 
this method with additional approaches available in an IPM 
program (Cossentine and Ajjanath, 2017; Frewin et al., 
2017). One of the characteristics of the gum is that it is 
water-soluble on account of its organic composition and can 
be applied without limitations of time or quantity. 
Considering the work of Tochen et al. (2014; 2016a) and 
Grassi et al. (2018), a consistent application of the substrate 
could be particularly useful during the late dormant period, 
and when fly activity increases. This is because during these 
2 key bottleneck periods of the year, few ovipositional sites 
and limited food sources are available, with the exception of 
berries on secondary plant species including Hedera helix L. 
and Viscum album L. berries during winter/early spring 
(Grassi et al., 2018), and Sarcococca species (Lee et al., 
2015; Kenis et al., 2016). Providing flies with an alternative 
substrate for oviposition could possibly reduce the chances 
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of infestation of early-ripening susceptible commercial 
fruits at the beginning of the growing season (Little et al., 
2017). Moreover, larvae do not survive because of the 
dehydrating effect of both matrix formulations (Tait, 
unpublished), providing a constant reduction of the 
population. Future avenues of research are needed to address 
these concerns. 

Additional laboratory experiments should also focus on 
understanding the mechanisms of the gum, including Gas 
Chromatography-Mass Spectrometry (GC-MS), 
Electroantennography (EAG) dose-response curve, ol- 
factometer tests, wind tunnel experiments, longevity studies 
in the field and primarily find a natural toxicant to include 
into the matrix in order to reduce the natural adult wild 
population in the field. Future goals may include testing the 
product during early and late winter conditions with the aim 
to assay the efficacy of attraction of the lure using winter 
morph D. suzukii. 

Although our data provides information on a non- 
commercial proof of concept, we believe that the matrix 
provides an alternative to conventional control techniques 
and is not directly applied onto fruit, potentially resulting in 
the opportunity of reductions of pesticide residues. 
Ultimately a market-ready product would be applied similar 
to multiple other commercially available behaviour 
disruptors also in the border areas where the surrounding 
vegetation offers refuge to the pest (Ometto et al., 2013; 
Kenis et al., 2016; Enriquez and Colinet, 2017). 
Specifically, this lure is able to attract both females and 
males of D. suzukii and induces females to lay eggs on the 
substrate. All field  trials were conducted for a total of 3 to 
4 days, within the  time span of field longevity periods of 
many currently used conventional pesticides (Van 
Timmeren and  Isaacs 2013; Wise et al., 2015). We observed 
no phytotoxicity associated with the matrices on plant parts. 
Additional studies regarding the persistence of attraction of 
the substrate in different climatic regions is suggested. 
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CHAPTER 7.  

Discussion and Conclusion 
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The goal of my thesis was to scrutinize the ecology, genetics, chemistry and behavior of D. suzukii in search 

of potential targets for integrated pest management programs.  

I am confident that with this work I contributed in expanding the knowledge about this invasive species, 

giving more inputs to create alternative and sustainable strategies of control.  

Chapter 2: Genetic variability of Italian population of Drosophila suzukii 

With the first work we showed how human transportation is the most probable explanation for the 

extensive spread of D. suzukii (Rota-Stabelli et al., 2013; Cini et al., 2012). When an alien species is 

introduced into an environment outside its native range, expansion can be identified not only by analysing 

genetic diversity indices, but also by analysing the genetic flow between populations, which is a direct 

proof of rapid distribution (Adrion et al., 2015; Tait et al., 2017). In particular, in the last 40 years, the risk 

of biotic invaders has increased significantly because of levels of international trade not seen before 

(Hulme et al., 2009). Our population genetic analysis at Italian level supports the hypothesis that human 

activities facilitated the genetic flow between groups located in different areas. Indeed, the level of 

heterozygosity (Fst) increases rather than declining from the likely spreading source of the invasive Italian 

population (Cini et al., 2012), suggesting that there is a high migration rate among localities and that D. 

suzukii moves extensively across most of the Italian peninsula. Interestingly, the case of Sicily region is 

peculiar. The majority of the Sicilian production of vegetables and fruits, including fruits highly susceptible 

to D. suzukii damage, is exported to central and northern Italy. While this could suggest a high probability 

of flies being transported between Sicily and the rest of the peninsula, our results indicate that there was 

no gene flow from Sicily to other regions. This is probably due to the fact that ripe fruits are exported from 

Sicily mostly during the cold season, when moderate temperatures allow the production of soft fruits in 

Sicily, but not in the rest of Italy. Therefore, any D. suzukii accidentally moving from Sicily to the rest of 

Italy would arrive at a time when the winter temperature would cause high mortality rate and the local 

population is made up of a few individuals in reproductive diapause. A second interesting piece of 
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information revealed by our results is related to the scenario in Sardinia. To satisfy local demand for berry 

fruits, this region imports fruit from Italy and northern Europe, Spain, USA and South America. The flies 

used in this study were collected in Arborea, a town 13 km away from the port of Oristano, one of the 

most important commercial ports in Italy. Thus, it is likely that the Sardinian population is made up of 

immigrants from other regions, as suggested by the low differentiation between this population and those 

on the mainland. This research represents the first study investigating the pattern of genetic variability 

for D. suzukii following its introduction to Italy. Defining the population structure of a species, in particular 

of an invasive species, it is necessary to improve our knowledge of its genetic architecture and evolution. 

Furthermore, understanding the current genetic structure of D. suzukii has significant implications in 

relation to geographical and economic impact. The evaluation of the genetic status of the D. suzukii 

populations in newly invaded areas and their expansion or reduction phases during defined periods of the 

year may provide valuable information for predicting population spread, outbreaks, and thus improve 

integrated pest management programmes. Proper genetic management practices for D. suzukii and 

constant monitoring are critical for maintaining populations under control. The information obtained can 

be applied in particular to the management of coastal areas; one important action could be to increase 

monitoring control with the use of traps and other early warning tools in order to limit either multiple 

reintroductions of the same species or new introductions of exotic organisms.  

Chapter 3 Large-scale spatial dynamics of Drosophila suzukii in Trentino, Italy 

Once defined the large-scale distribution patterns taking Italy as a model area, we decided to focus on a 

smaller scale movement, with the aim to investigate D. suzukii dispersal ability during different times of 

the seasons, and along an elevational gradient in a mountain valley in Trentino Province, Italy. The findings 

of this study add to the scientific understanding of D. suzukii seasonal migration patterns, suggesting that 

this species moves and selects environmentally suitable sites. Overall, we provided new information on 

the magnitude of seasonal long-distance movement of D. suzukii. Our data are the first to document D. 
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suzukii dispersal over distances of up to 9 km and further suggest that during spring and summer, flies 

move from low to higher elevations. The difference in temperature between these elevations may play a 

role in the migration of D. suzukii populations toward more suitable temperature regimes. Migration 

towards higher elevations in spring might be exploratory movement to search for additional oviposition 

sites and food resources in favorable environments (Mitsui et al., 2010; Tochen et al., 2014; Tochen et al., 

2016; Wiman et al., 2014; Evans et al., 2017). Summer migration may additionally be a strategy to avoid 

suboptimal high temperatures at lower elevations. Conversely, it is possible that migration in autumn 

towards lower elevations might be driven by suitable climatic conditions during the latter portion of the 

season here (Evans et al., 2017). We suggest that the dispersal of D. suzukii from a low to a high elevation 

during spring and summer could be facilitated by diurnal mass movement of air due to fluctuations in 

temperature from the day to the night. Genetic analysis provided additional data to support our 

hypothesis. As a fact, they revealed that insects sampled along the valley and across the season belonged 

to the same population. This small-scale genetic homogeneity is not only attributable to transport 

mediated by human activities, but it is likely due to the recorded natural migration towards different 

elevations during different times of the year (Mitsui et al., 2010). Strategies to control this destructive 

species must hence take into account its high dispersal potential and patterns. For example, our results 

suggest that D. suzukii populations are present at lower altitudes during the early portion of the season. 

No D. suzukii are found at high altitudes during the early season. Factors contributing to this finding 

include suboptimal winter conditions and the lack of wild fruits (Tonina et al., 2016). Considering these 

observations, a valid approach could be to plant early-producing berry varieties in high-elevation sites. 

Such crops might benefit from temporal escape from the onset of seasonal migration. Knowledge 

concerning the capacity of D. suzukii dispersal is crucial to better-forecast development of pest 

populations, to validate and optimize population models, and to more effectively design management 

strategies.  
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Chapter 4: Drosophila suzukii daily dispersal between crop and surrounding vegetation 

The third project of my thesis reports the studies of the dispersal capacity of D. suzukii at a significantly 

shorter range, from the crop to the surrounding vegetation in strictly relation of the change of abiotic 

factors like temperature and humidity, which are the most important parameters that influence the 

survival of D. suzukii species. Our data, together with earlier studies, suggest that temperature and 

humidity influenced the migration between these distinct habitats. Temperature and humidity values 

were respectively higher and lower within the crop compared to the surrounding wood. This was likely 

due to the nylon coverings of the crop tunnels, that trap the heat in the crop. In contrast, the trees of the 

vegetation area provide shade to traps deployed in it. In both the experimental trials (11 to 14 July; 31 

July to 3 August 2017), the daily temperatures of the wood were closer to 20 °C (the optimal D. suzukii 

temperature) compared to the cultivated areas. In the same daylight periods, the average humidity values 

recorded in the wood were the highest for three out of eight days and the middle value for two out of 

eight days (high humidity condition are the optimal ones for D. suzukii in warm climates). These 

temperature and humidity values suggest that the wood itself is an optimal shelter for the fly (Tochen et 

al., 2014; Tochen et al., 2016; Enriquez & Colinet, 2017). Particularly remarkable is the ability of the wood 

to maintain level of humidity higher than that of the crop while temperature values were still well under 

30 °C. We were not expecting this condition, given the fact that the nylon coverings of the crop should 

trap humidity inside the tunnels. An additional factor contributing to environmental suitability of 

surroundings vegetation is the presence of alternative host plants, on which D. suzukii can feed and 

oviposit before reaching the crop. Previous works have explained how such non-crop hosts may provide 

appropriate ovipositional media as well as energy in the form of nectar (Lee et al., 2016; Klick et al., 2016). 

In the studied surrounding area, two known D. suzukii non-crop hosts were found: Cornus sanguinea, one 

of the most European common shrub, and Taxus baccata, a host tree also found in other surveyed areas 

(Lee et al., 2015; Kenis et al., 2016; Poyet et al., 2016). In particular, Kenis et al. (2016) reported that these 
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two species were frequently found infected from D. suzukii. Two other plants found in the area, 

sometimes reported as D. suzukii hosts, have not been considered in this analysis, because their presence 

was infrequent and because the literature on their relations with the pest is not clear i.e., Rosa canina and 

Viburnum lantana. Finally, Rubus idaeus, red raspberry, was reported in the surveyed area: this plant is 

one of the main hosts of D. suzukii, and it may have increased the fitness of the forest area, even if it was 

found only sparsely. The presence of vegetation surrounding cultivated crop fields can therefore 

undoubtedly increase the number of D. suzukii flies infesting nearby crops (Klick et al., 2016). Our results 

indicate that the insects move from the crop to the wood; this information could lead to more optimized 

IPM approaches (Kenis et al., 2016; Diepenbrock et al., 2016a; Diependbrock et al., 2016b), possibly 

making this vegetation area a key factor in control strategy (Rossi Stacconi et al., 2017). The information 

in this study underlines the important role played by the combined abiotic and biotic landscape to provide 

ideal conditions for D. suzukii. On this final topic there are some considerations to make: first of all, given 

the fact that D. suzukii move back and forth between the wood and the crop, there could be the possibility 

to apply insecticides in specifically times and days of the year. Applying pesticides or attractants in 

climatically more moderate environments in specific times of the year, may also enhance their 

persistence, partially mitigating the negative effect that direct rainfall has on it (Van Timmeren and Isaacs, 

2013). Other types of controls could also be used in the wood area nearby crops, like “attract and kill” 

traps, in order to kill a higher number of flies. In conclusion, these distribution and spatial analysis could 

help in different ways to guide management investments concerning the spread of D. suzukii, as well as 

to identify areas where coordinate actions should be focused to reduce the infestation and the damage 

caused by this threatening pest. Future studies should be aimed at verifying if applying control strategies 

within the vegetation area could increase their efficiency in decreasing the number of D. suzukii flies 

infesting nearby crops.  

Chapter 5: Oviposition behavior of Drosophila suzukii with evidence of an oviposition marking pheromone 
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This project is the first study that evidences the presence of aggregation pheromone in D. suzukii. The 

research permitted us to demonstrate that D. suzukii female after oviposition release an aggregation 

marking pheromone easily distinguable from other signs on the surface of the fruit. Results of choice and 

no-choice test consistently showed that highly infested and artificially pierced fruit were the preferred 

treatments, resulting in higher oviposition rates by D. suzukii females. Some hypothesis may be outlined 

as: 1) the loss of sugary liquids from the egg holes over the fruit surface may provide an easy food source 

for egg-laying females, which may be attracted at a relatively long range by the release of volatile 

substances from the wounded fruit surface (Abraham et al., 2015; Revadi et al., 2015; Mazzetto et al., 

2016); 2) start of potential alcoholic fermentations may occur on the wounded fruits, thus leading to 

bacteria and fungi development, which would stand as additional food sources, and attract conspecifics 

(Fountain et al., 2018); 3) a role of the liquid released by females as a marking pheromone can by 

hypothesized. This substance would likely attract other females and stimulate them to lay eggs. In support 

of this, video recordings and pictures analysis showed a peculiar behavior of egg-laying females with a 

release of a liquid from the abdomen tip over the fruit surface after oviposition. GC-MS anaylsis allowed 

us to characterize the peculiar compounds emitted in the liquid. Most of these peaks (14) were absent in 

the surface washing of the artificially pierced fruit (control), hence they are indicative of compounds 

originated from the insects rather than from the fruit. In particular, we found some carboxylic acids, which 

were described as aggregation pheromone by Keesey et al. (2016) in D. melanogaster frass. EAG tests 

revealed that the female antennal responses to the six compounds at all the four concentrations were not 

statistically different, while males showed significantly higher EAG responses to the highest and lowest 

concentrations of palmitic and palmitoleic acid. It has been demonstrated that these two acids together 

with myristic acid strongly activate olfactory receptor Or47b, which is a specific pheromone detector in D. 

melanogaster (Dweck et al., 2015). The last experiment performed spraying the synthetic blend of the six 

major compounds resembling the ratio found in the extract over intact blueberry surface, gave us the final 
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determining proof about the role of the released anal liquid as an attractive marking pheromone. Results 

indeed indicate that marked fruits attract more flies, which lay more eggs on it. In future, our findings may 

give important contribution in the development of environmentally friendly control methods by 

interfering with D. suzukii communication during the phase of oviposition. 

Chapter 6:  A food-grade gum as a management tool for Drosophila suzukii 

The last chapter (6) of this thesis is focused on the development of a new food-grade matrix (patent 

pending) able to manipulate the behavior of D. suzukii and therefore to reduce egg-infestation on berries. 

We demonstrated that using the new gum matrix developed at the Oregon State University, there is 

significant reductions of egg-laying on blueberries, cherries, strawberries, raspberries and blackberries 

under controlled laboratory and field conditions. The fact that the matrix preparation consistently 

resulted in significant reductions of D. suzukii damage on fruit provides a strong impetus of future 

commercial implementation. Data collected this current year (Rossi-Stacconi et al., unpublished data) 

demonstrate how this approach is significant valid in strawberry, blueberry and cherry field trials. 

Research on the control of D. suzukii has predominantly focused on attractants (Landolt et al., 2012; Cha 

et al., 2017; Frewin et al., 2017; Tonina et al., 2018). In the current study, the the attraction is towards the 

gum matrices which shows comparatively favorable results, where treatments using the substrate lead to 

significant reductions of fruit infestation over relatively extended periods. These data indicate a strong, 

consistent and competitive attraction of the substrate when presented together with berries. The 

compound as tested contains no conventional insecticides and provides an alternative and 

environmentally friendly management tool for D. suzukii. Our findings support the use of the matrices as 

a biologically-based product to handle problematic D. suzukii infestations in an environmentally friendly 

way (Alnajjar et al., 2017; Lanouette et al., 2017; Woltz and Lee 2017). One of the characteristics of the 

gum is that it is water-soluble on account of its organic composition and can be applied without limitations 

of time or quantity. Moreover, larvae do not survive because of the dehydrating effect of the paste (Tait 
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unpubl. data), providing a constant reduction of the population. Despite this, it must be considered that 

trials show between 50% and 76% reduction in eggs laid in fruit that received the treatments, suggesting 

a pairing of this method with additional approaches available in an IPM program (Frewin et al., 2017). 

Considering the work of Tochen et al. (2014), (2016a) and Grassi et al. (2017), a consistent application of 

the substrate could be particularly useful during the late dormant period, and when fly activity increases. 

This is because during these two key bottleneck periods of the year, few ovipositional sites and limited 

food sources are available, with the exception of berries on secondary plant species including Hedera helix 

and Viscum album L. during winter/early spring (Briem et al., 2016; Grassi et al., 2017), and Sarcococca 

species (Lee et al., 2015; Kenis et al., 2016). Providing flies with an alternative substrate for oviposition 

could possibly reduce the chances of infestation of early-ripening susceptible commercial fruits at the 

beginning of the growing season (Little et al., 2017). The matrix provides an alternative to conventional 

control techniques and is not directly applied onto fruit, potentially resulting in the opportunity of 

reductions of pesticide residues. The product can also be applied during any time of year, including in the 

border areas where the surrounding vegetation offers refuge to the pest (Ometto et al., 2013; Kenis et 

al., 2016; Enriquez and Colinet 2017, Tait et al., unpublished). Specifically, this lure is able to attract both 

females and males of D. suzukii and induces females to lay eggs on the substrate. 

In conclusion, we can say that all together the information collected during three years of PhD program, 

definitely increase the knowledge about this destructive species, which is the fundamental prerequisite 

for any applied future investigation. Furthermore, my research leads to valid and concrete indications 

about the development of new alternative and environmentally-friendly methods against D. suzukii.  
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