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ABSTRACT:

In this paper we deal with the automatic reconstruction of interior walls from point clouds, an active research topic with several
practical applications. We propose an improved version of the method presented in (Magri and Fusiello, 2018), where the overall
structure of the environment is extracted by fitting lines to the main building features, using Min-hashed J-Linkage as a multi-model
fitting technique. Our variation has the merit of producing more accurate results, both in terms of wall reconstruction and room
segmentation, and greatly reducing the need for user-defined thresholds.

1. INTRODUCTION

Nowadays we are witnessing an increasing in the demand of
updated and detailed 3D models of indoor environments, that
find application in several fields such as navigation, emergency
response, building maintenance and monitoring (Zlatanova et
al., 2013). In particular, Building Information Models (BIMs)
require to represent a facility in a semantically rich manner,
combining accurate geometric information with object identi-
fication and adjacency relationships among the elements (Tang
et al., 2010).

While it is easy to retrieve a BIM from a CAD-based model
of a structure’s design, updating this model or constructing it
from scratch according to the as-built conditions of a building
is a challenging task (Volk et al., 2014). On the other hand, the
growing availability of instruments such as terrestrial or mobile
laser scanners allows to obtain high quality 3D data, that repre-
sent the basis for the as-built indoor models reconstruction. For
these reasons, generating 3D indoor models from point clouds
has become an active research topic in recent years, leading to
the development of algorithms that are able to reduce time and
cost of the manual processing (Wang et al., 2017).

Among the methods proposed in the literature, we focus on the
one presented in (Magri and Fusiello, 2018), that is able to au-
tomatically reconstruct the interior wall of a building, relying
on a multi-model fitting technique known as J-Linkage (Toldo
and Fusiello, 2008). More in detail, the method operates on
the 2D floor plane, where 3D points are projected, and extracts
the overall structure of the environment by fitting line segments
to the main building features. The aim of this work is to pro-
pose an improved version of (Magri and Fusiello, 2018), tak-
ing into account also the points distribution along the vertical
axis, avoiding the usage of several manually tuned thresholds
and leveraging on a cell-complex subdivision of the plane to
enhance the topological correctness of the result.

The paper is organized as follows. In the next section, re-
cent algorithms for the automatic generation of indoor mod-
els are reviewed. Section 3 describes in detail the proposed
∗Corresponding author

method, while Sec. 4 shows the results obtained on the dataset
of the ISPRS benchmark on indoor modelling (Khoshelham et
al., 2017, Khoshelham et al., 2018). Finally, Sec. 5 draws the
conclusion.

2. RELATED WORK

In the last years several methods have been proposed for the
automated creation of indoor models from 3D data generated
from terrestrial or mobile laser scanners, RGB-D cameras or
multi-view stereo.

The main task of indoor modelling is the geometric reconstruc-
tion of the primary surfaces of the building, namely floors, ceil-
ings and walls. The core of any method for indoor scene re-
construction is represented by the robust extraction of multi-
ple geometric primitives from noisy and outlier-contaminated
measurements, deriving from the presence of furniture causing
clutter and complex walls arrangements that determine occlu-
sions. In this context, three different classes of algorithms can
be identified, according to the searched primitives (Previtali et
al., 2018): linear, planar or volumetric.

The method presented in (Magri and Fusiello, 2018) falls in the
first category, where the overall structure of the environment
is extracted by fitting lines to the main building features, us-
ing Min-hashed J-Linkage as a multi-model fitting technique.
RANSAC is instead exploited in (Wang et al., 2017) to identify
linear primitives, and the result is refined using a 1D mean shift
clustering algorithm.

Many works makes use of RANSAC to fit multiple planes in
space. Among them, we recall (Previtali et al., 2014) and (Pre-
vitali et al., 2018), that combine a plane fitting step to retrieve
floors, ceilings and walls with a further analysis based on a ray-
tracing labelling that allows to identify and classify openings
and occlusions. The method presented in (Budroni and Böhm,
2010) finds instead the main planar structures by sweeping a
plane along the vertical and the two main horizontal directions.
(Oesau et al., 2016) developed a method that performs planar
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shape detection through region growing, interleaved with a reg-
ularization step that enforces regularities such as parallel, co-
planar and orthogonal relationships among the primitive shapes,
improving in this way robustness against noisy data.

The use of volumetric primitives has not been extensively in-
vestigated yet. We can cite the method by (Xiao and Furukawa,
2014), that proposed a 3D Inverse Constructive Solid Geome-
try, using the results obtained for 2D sections to generate candi-
date primitives. (Khoshelham and Dı́az-Vilariño, 2014) imple-
mented a grammar-based algorithm that generates a 3D para-
metric model by repeatedly placing and merging cuboids into
spaces enclosed by points. The same method is applied in (Tran
et al., 2017) to automatically extract topological relations be-
tween indoor spaces for indoor navigation.

An important step in the generation of indoor 3D models is
room level segmentation. (Bormann et al., 2016) presents a
comprehensive review of methods suited for segmenting 2D
maps into separate entities. The problem is often formulated
in terms of a cell labeling process, where the cells are a sub-
division of the floor plane, and solved using a energy based
algorithm. (Wang et al., 2017) and (Ambruş et al., 2017), e.g.,
minimize the energy function through a graph-cut algorithm.
In (Ikehata et al., 2015) room segmentation is formulated as a
clustering problem and solved using the k-medoids algorithm.

Recently, some algorithms have been proposed in the literature
also to detect and reconstruct doors and windows, usually rely-
ing on both 3D points and RGB images. In (Dı́az-Vilariño et
al., 2015), e.g., the geometry of the walls is used to generate
orthoimages, to which the Generalized Hough Transform is ap-
plied to detect closed doors. The method developed by (Michai-
lidis and Pajarola, 2017), on the contrary, extracts windows and
doors only from point clouds, constructing a cell-complex rep-
resentation for each wall, which is then used for the wall ob-
ject segmentation via a graph-cut method. However, identify-
ing structural wall openings such as windows and doors in point
clouds is still a difficult task and represents a hot research topic.

3. PROPOSED METHOD

In the next sections we will present the proposed method, that
can be divided into three main steps. At first, the 3D point cloud
is reduced to a set of planar points that are subsequently orga-
nized into linear structures (Sec. 3.1). The detected set of lines
is then improved following the procedure described in Sec. 3.2
and the points belonging to the retained lines are arranged into
segments, corresponding to the reconstructed walls. Finally, the
space enclosed by the detected walls is segmented into rooms
(Sec. 3.3).

Please note that, unlike many state-of-the art procedures (e.g.
(Turner and Zakhor, 2014, Previtali et al., 2018)), our method
requires neither the knowledge of the scanner positions nor of
the sensor trajectory. It can be therefore directly applied to
datasets acquired by terrestrial laser scanners or mobile map-
ping systems, as well as to point clouds generated from images
through multi-view stereo algorithms.

3.1 Wall Samples Extraction and Clustering

The first part of the method closely follows the procedure pro-
posed in (Magri and Fusiello, 2018), which aims at reducing
the 3D point cloud to a set of sampled planar points, referred

to as wall samples, enriched with information about their local
orientations.

Similarly to (Turner and Zakhor, 2012), as a preliminary step,
an histogram of point heights is computed and the floor/ceiling
bins are identified as the bottom-most and top-most local max-
ima. Planes are fitted via Iterative Reweighted Least Squares on
the points belonging to these bins, the corresponding inliers are
labeled as floor and ceiling respectively and are then discarded
from subsequent analysis (and the histograms are updated ac-
cordingly). The remaining 3D points are projected onto the
floor plane which is uniformly discretized in a grid of ground-
cells, whose width should be chosen according to the desired
resolution of the final model. In our implementation the cell
size is set to 7.5 cm.

If enough points (default is 20) fall inside a ground-cell, their
median position is taken as a wall sample representative for that
cell and a normal vector is locally estimated using Principal
Component Analysis, together with a confidence measure of the
co-planarity of the corresponding points. Only normals with a
confidence higher than a certain threshold are retained.
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Figure 1. Lines extracted by Min-hashed J-Linkage, depicted
with their inlier band.

The wall samples are then organized into linear structures, tak-
ing into account also their normal vectors, in order to better dis-
tinguish points that lie on the same wall and to gain robustness
against clutter. In particular, wall samples are grouped into lines
exploiting the Min-hashed J-Linkage algorithm, a multi-model
fitting technique that is able to overcome some limitations of
RANSAC and Hough Transform (Toldo and Fusiello, 2008).

At high-level, J-Linkage implements a two steps first-represent-
then-clusterize scheme: at first, data are represented by the pref-
erences they grant to a pool of provisional model hypotheses,
then a greedy bottom-up agglomerative clustering is performed
to obtain a partition of the data merging points with similar pref-
erences according to the Jaccard distance (Jaccard, 1901).

The concept of preferences can be formulated as follows. Let
X be the set of n data points and err : X × H → R an error
function to measure residuals between data and models (in our
case, lines). Moreover, let ε be an inlier threshold provided as
input. The method starts by generating a set of random pro-
visional models H = {h1, . . . , hm} by drawing m subsets of
data points with the minimum cardinality necessary to instanti-
ate a model. Then a n×m binary matrix P is built by defining
its (i, j)-th entry as

P (i, j) =

{
1 if err(xi, hj) ≤ ε
0 otherwise.

(1)

Each row Pi can be easily identified with the preference set
PS(xi) of a given point xi, i.e., the subset of structures in H
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that support that point. The rationale is that points belonging to
the same model will have similar preference sets, and therefore
can be clustered in the conceptual space {0, 1}m to reveal the
structures hidden in the data.

The preference set of a subset Y ⊆ X is composed by the mod-
els that fit all the points in Y :

PS(Y ) =
⋂
x∈Y

PS(x). (2)

The clustering algorithm proceeds in a bottom-up manner. First,
every data is put in its own cluster. The distance between clus-
ters is computed as the Jaccard distance between the respective
preference sets. The Jaccard distance between two sets U, V is
defined as 1− J(U, V ), where

J(U, V ) =
|U ∩ V |
|U ∪ V | , (3)

denotes the Jaccard similarity. Starting from singletons, each
sweep of the algorithm merges the two clusters with the small-
est Jaccard distance, until all the preference sets of clusters are
disjoint. The parameters of the returned structures are then es-
timated by least squares fitting on each cluster of points. Please
note that this preference approach is robust to outliers, that can
be recognized as observations whose preferences deviate signif-
icantly from the rest of the data, and tend to emerge as micro-
clusters, that can be removed a posteriori.

To speed up the computation of the Jaccard distance, (Magri
and Fusiello, 2018) proposed the use of min-Hash, a local sen-
sitive hashing procedure. Min-Hash allows to approximate the
Jaccard similarity between two preference set, greatly boosting
the efficiency, without sacrificing the accuracy and the robust-
ness of J-Linkage.

An example of the result provided by Min-hashed J-Linkage is
illustrated in Fig. 1. As previously mentioned, this stage re-
quires the definition of the inlier threshold ε (set to 15 cm in the
experiments): a point belongs to the supporting set of a fitting
line if its residual is below this threshold.

From this point we depart from (Magri and Fusiello, 2018) and
propose the procedure described in the following.

3.2 Line Refinement and Segment Generation

The lines yielded by Min-hashed J-Linkage are associated to
wall samples that come not necessarily from actual wall, but
also from furniture and clutter, which can negatively affect the
results. For this reason, we exploit the point heights histogram
associated to each wall sample to cluster them into three classes
corresponding to uniform (U), low-thicker (L) and high-thicker
(H) histograms (see Fig. 2), and prune the J-Linkage result.

The histogram is first binarized (empty cell → 0) and cluster-
ing is subsequently performed using Hamming distance and k-
means with three seeds corresponding to the classes archetypes
(result is shown in Fig. 2). Then, we deem as outliers those
lines that are supported by a majority of L or H samples. The
remaining lines are scrutinized for outliers with a inward testing
procedure (Davies and Gather, 1993): samples that are classi-
fied as L or H are removed one at a time and the line is fitted
on the remaining ones. If the residual of the removed sample is

(a)
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0

50
uniform

2 4 6 8 10 12 14 16
0

50
low-thicker

2 4 6 8 10 12 14 16
0

50
high-thicker

(b)

Figure 2. Classification of the wall samples (a) into U/L/H with
examples of histograms (b).

greater that ε, it is considered as an outlier and removed from
the supporting set of that line.

To further reject lines that do not corresponds to actual walls,
we discard the ones that do not conform to the so called Man-
hattan World assumption, according to which walls are posi-
tioned along two main orthogonal directions (Coughlan and
Yuille, 1999). Following (Magri and Fusiello, 2018), lines are
grouped by fitting vanishing points with J-Linkage and retain-
ing only the lines that belong to the two clusters with the larger
cardinality, as shown in Fig. 3. Aligning the dominant direc-
tions with the axes greatly simplifies subsequent computations.

Figure 3. Results of the vanishing point clustering. Lines that do
not conform to the dominant orientations have been discarded.

To finally group wall samples into segments, it is convenient to
exploit the subdivision of the plane induced by the arrangement
of the detected lines (see Fig. 4), formally defined as a 2D cell-
complex and stored in a Doubly Connected Edge List (DCEL), a
structure commonly used in computational geometry that con-
sists of vertices, edges, and faces (Edelsbrunner et al., 1986).
To each edge of the DCEL we assign the wall samples that i)
are included in the supporting set of the line to which the edge
belongs and ii) whose coordinates fall in the interval defined by
the edge’s endpoints. Then we project these wall samples onto
the corresponding edge.

In this stage, in order to fill gaps caused by the presence of fur-
niture and clutter, we consider the outlier lines previously dis-
carded (because mainly supported by H or L samples) that are
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Figure 4. Cell-complex determined by the line arrangement.

aligned with the dominant orientations. Their samples are then
projected onto the closest edge along the direction orthogonal
to the line itself, within a threshold of 60 cm.

Following the linear order along an edge, a new segment is in-
stantiated when the distance between two consecutive points
exceeds a threshold, computed for each line l as follows:

t(l) = d̄+ 3.5 medi|di − d̄|

where di is the distance between consecutive points belonging
to the supporting set of the line l and d̄ = medi(di).

In this way, we constructed a hierarchy: point → segment

→ edge → line where all the maps are injective. As a re-
sult, thanks to the subdivision of the wall segments induced by
the cell-complex, the topological correctness of the segments
is guaranteed, i.e., there are no intersections other that at the
endpoints (like T-junctions or overlaps).

3.3 Space Segmentation

To enrich the obtained model with semantic information use-
ful in subsequent analyses that can, e.g., facilitate the process
of creating as-built BIMs, we propose a space segmentation
method to first distinguish between indoor and outdoor, and
to subsequently clusterize the faces of the cell-complex into
rooms.

More in detail, our procedure computes the connected compo-
nents of the dual graph of the cell-complex, where vertices cor-
respond to faces and edges connect adjacent faces. Adjacency
is defined in two different ways, according to the task.

The first task is to distinguish between internal and external
faces. For every line we identify its first and last segments and
consider as separators all the edges in between. Then we define
two faces as adjacent if they do not share a separator. The con-
nected component of the graph that includes the faces adjacent
to the bounding box is labelled as external. Figure 5 shows the
outcome of this stage for the working example.
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Figure 5. Identification of indoor and outdoor faces.

A different definition of separator is used instead to identify
rooms among the indoor cells. Empirical tests demonstrated
that it is not sufficient to simply label as separators the edges
occupied by a wall segment. In fact, gaps between segments
belonging to the same wall, that have not been filled in the pre-
ceding stages, can negatively influence the room segmentation,
resulting in a low number of connected components and con-
sequently in a under-segmentation. For this reason, we analyze
the gaps between wall segments along a line and create a gap
segment (represented in red in Fig.6) for those that are shorter
than a specified threshold (set to 1.2 m in the experiments). Gap
segments are only used in the face clustering step and will not
appear in the final model. Next, an edge is labeled as separa-
tor if the length of wall and gap segments covering the edge is
greater than 10% of its total length. The adjacency matrix of
the graph is consequently constructed following the previously
described rule and each connected component is considered a
separated room, as shown in Fig.7.

Figure 6. Wall segments (in black) and gap segments (in red)
used in the face clustering step.

fa
ce

 c
lu

st
er

i
+ 

in
d

o
o

r/
o

u
td

o
o

r

Figure 7. Result of the space segmentation algorithm: every
room correspond to a different colour (this figure is best viewed

in colours).

The outcome of the complete workflow presented in these sec-
tions is illustrated in Fig. 8(a).

4. RESULTS AND DISCUSSION

We tested the proposed method on the dataset of the ISPRS
benchmark on indoor modelling (Khoshelham et al., 2017). The
dataset consists of five point clouds acquired by different sen-
sors in various scenarios. It represents therefore a challenging
test that can highlight advantages and limitations of the devel-
oped algorithm.

In Fig. 8(a) we show the floor plan generated with the proposed
workflow for the point cloud TUB1. Comparing the result with
the one obtained by (Magri and Fusiello, 2018), illustrated in
Fig. 8(b), one can notice the higher accuracy and completeness
reached by the novel method. Moreover, the space clustering
algorithm implemented in (Magri and Fusiello, 2018) produced
an over-segmentation, resulting in a incorrect splitting of the
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rooms into several small spaces. This is particularly evident for
the long hallway.

Similar considerations can be applied also to the results ob-
tained for the dataset TUB2, represented in Figs. 9 and 10. The
majority of the walls were reconstructed by our method, and the
room segmentation appears closer to reality than the outcome
of (Magri and Fusiello, 2018). Please note that in this case the
two floors were processed separately, manually specifying the
height of the ceiling and the floor for the first and the second
level, respectively.

The datasets Fire Brigade and UVigo present a high level of
clutter, gaps caused by occlusions and curtain walls. Identify-
ing and reconstructing the walls in these scenarios is a difficult
task and, as shown by Fig. 11 and 12, the obtained results are
not satisfactory. Although an improvement can be noticed in
the floor plan generated with the method proposed in this pa-
per, clutter led to the creation of wall segments that do not cor-
respond to actual walls. Moreover, our method was not able to
reconstruct a curtain wall of the point cloud Fire Brigade (see
Fig. 11(a)). In fact, the samples corresponding to that wall were
labeled as L or H according to the associated height histograms,
as described in Sec. 3.2, and the fitting line was thus discarded
for the subsequent processing steps.

Finally, Fig. 13 shows the results for point cloud UoM. The
presence of several pieces of furniture makes the dataset chal-
lenging. Nevertheless, in this case the proposed method was
able to cope with the significant level of clutter, generating a
more accurate floor plan than the competing algorithm.

Overall, we are aware that the obtained results are far from
being perfect. However, it should be underlined that the pro-
posed algorithm is completely automatic, without user interac-
tion, and independent of the acquiring system. The use of sev-
eral manually-tuned thresholds have been avoided and for the
remaining ones the same values were adopted for all the point
clouds, showing robustness to the change of the data charac-
teristics. The outcome of our method could therefore ease the
expensive and time consuming process of manually generating
indoor models.

5. CONCLUSION AND FUTURE WORK

In this paper we proposed a variation of the method presented
in (Magri and Fusiello, 2018), that has the merit of producing
more accurate results (both in terms of detected walls and room
segmentation), and reducing the need for user-defined thresh-
olds. With respect to this issue we have been following these
principles, in cascade: i) to avoid free parameters at all; ii) to
make them data-dependent; iii) to make user-specified param-
eters intelligible and subject to an educated guess. This guar-
antees the processing to be completely automatic in the major-
ity of cases, as demonstrated by the experiments carried out on
challenging datasets, acquired in different scenarios.

The results produced by our method could serve as a starting
point for more accurate analyses that could improve the archi-
tectural model. Relying on the room segmentation generated
by our algorithm and the detected openings on the walls, as a
future work we are planning to add a more elaborated 3D anal-
ysis to locate doors and windows. Moreover, we would like to
investigate other segmentation algorithms that could refine the
semantic and topological information associated to the model.
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Figure 8. Dataset TUB1: floor plans obtained with (a) the proposed method and (b) the method by (Magri and Fusiello, 2018). This
figure is best viewed in colours.

(a) (b)

Figure 9. Dataset TUB2 (first floor): floor plans obtained with (a) the proposed method and (b) the method by (Magri and Fusiello,
2018). This figure is best viewed in colours.
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Figure 10. Dataset TUB2 (second floor): floor plans obtained with (a) the proposed method and (b) the method by (Magri and
Fusiello, 2018). This figure is best viewed in colours.
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Figure 11. Dataset Fire Brigade: floor plans obtained with (a) the proposed method and (b) the method by (Magri and Fusiello,
2018). This figure is best viewed in colours.
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Figure 12. Dataset UVigo: floor plans obtained with (a) the proposed method and (b) the method by (Magri and Fusiello, 2018). This
figure is best viewed in colours.
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Figure 13. Dataset UoM: floor plans obtained with (a) the proposed method and (b) the method by (Magri and Fusiello, 2018). This
figure is best viewed in colours.
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