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1.  Abstract 

One of the hallmarks of cancer is the loss of telomere stability. Unprotected telomeres are 

prone to aberrant end-joining reactions that lead to chromosomal fusions and 

translocations. Human telomeres are formed by the repeated TTAGGG sequence, in 

which the 3’ exposed strand may adopt a G-quadruplex (G4) structure. The guanine-rich 

regions of telomeres are hotspots for oxidation forming 8-oxoguanine, a lesion that is 

handled by the base excision repair (BER) pathway. One key player of this pathway is 

Ape1, the main human endonuclease processing abasic sites. Recent evidences showed 

an important role for Ape1 in telomeric physiology, but the molecular details regulating 

Ape1 enzymatic activities on G4 telomeric sequences are lacking. Through a combination 

of in vitro assays, we demonstrate that Ape1 can bind and process different G4 structures 

containing an abasic site analog (THF) in two different locations and that the interaction 

involves specific acetylatable lysine residues (i.e. K27/K31/K32/K35) present in the 

unstructured N-terminal domain of the protein. The cleavage of the abasic site located in 

a G4 structure by Ape1 depends on the DNA conformation or the position of the lesion 

and on electrostatic interactions between the protein and the nucleic acids. Moreover, 

Ape1 mutants mimicking the acetylated protein display increased cleavage activity for 

abasic sites. We found that nucleophosmin (NPM1), which binds the N-terminal domain 

of Ape1, plays a role in modulating telomere length and Ape1 activity at abasic G4 

structures. Thus, the Ape1 N-domain is an important relay site for regulating the enzyme’s 

activity on G4-telomeric sequences, and specific acetylatable lysine residues constitute 

key regulatory sites of Ape1 enzymatic activity dynamics at telomeres. 
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2.  Abbreviations 

 

ALT  Alternative Lengthening of Telomeres 

AP  Apurinic/apyrimidinic site 

Ape1  AP endonuclease 1 

BER  Base Excision Repair  

F   Tetrahydrofuran 

G4  G-quadruplex 

OG  8-oxo-7,8-dihydroGuanine 

Lys  Lysine 

nCaRE  negative Calcium Responsive Element 

NPM1  Nucleophosmin 1 

PTM  Post-Translational Modification 

ROS  Reactive Oxygen Species 

TERC  Telomere RNA Component 

TERT  Telomere Reverse Transcriptase 

TERRA Telomeric Repeat-containing RNA 

TRF  Telomeric Repeat binding Factor 
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4.  Introduction 

 

4.1. Cancer cells features 

Cancer cells are characterized by several hallmarks, which distinguish them from healthy 

cells. Tumor cells are able to avoid immune recognition, to favor tumor-promoting 

inflammation, to escape apoptosis and sustain proliferative signaling and also to 

overcome genomic instability (Hanahan and Weinberg 2011). Characterized by point 

mutations and chromosomal rearrangements, genome instability is one of the key 

elements that lead to cancer development through oncogene activation, or inactivation of 

tumor-suppressor genes (Figure 1) (Grandér 1998). Also, the majority of tumors are 

characterized by loss of checkpoint functions, compromised DNA repair activities and 

immortalization to reach a limitless replication (Ciccia and Elledge 2010; Hanahan and 

Weinberg 2011). 

Furthermore, to achieve immortalization and to maintain telomere length, the activity of 

telomerase enzyme is fundamental (Olovnikov 1996). When damaged, telomeres can 

participate in aberrant end-joining reactions leading to chromosome fusions, 

Figure 1 The hallmarks of cancer 

The illustration lists the main hallmark capabilities of tumor cells, whose underlying 

mechanisms are still widely investigated. (Hanahan and Weinberg, 2011). 
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translocations or breakage (Bailey 2006). Eukaryotic cells are continuously exposed, 

during their life-span, to several environmental stimuli (i.e. tobacco, UV light, smog, 

infections), both endogenous and exogenous, which represent damaging agents because 

they can impair macromolecules (Hoeijmakers 2001). DNA retains an intrinsic reactivity 

which gets the molecule a susceptible target for damages from various sources. To avoid 

harmful consequences that could lead to lethal outcomes for the cells, they adopt several 

mechanisms to ensure DNA integrity (Figure 2). Unrepaired DNA damages could result 

in cell death, limitless proliferation and cancer (Wilson and Bohr 2007).  

 

To counteract these outcomes, several mechanisms are employed by the cells to maintain 

genome stability, including DNA repair, cell cycle checkpoints and apoptosis pathways 

(Bauer, Corbett, and Doetsch 2015). DNA damage response pathways include several 

systems to repair specific DNA lesions. DDR mechanisms include the base excision 

repair, the nucleotide excision repair, the mismatch repair, the homologous recombination 

and the non-homologous end joining pathways (Blanpain et al. 2011) (Figure 2). All these 

Figure 2 Overview of different damaging agents, DNA effects and relative DNA repair 

pathways 

The figure recapitulates for each DNA damaging agent, the lesion induced on DNA and finally 

DNA repair pathways acting on the lesions (Blanpain et al. 2011). 
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pathways are finely tuned and coordinated thanks to a crosstalk that ensures the proper 

repair of the occurring lesion. 

Most of the endogenous burden, associated with oxidative stress, is handled by the Base 

Excision DNA Repair (BER) pathway (Demple and Sung 2005; P. Liu and Demple 

2010). 

4.2. Base Excision Repair (BER) pathway  

Base excision repair pathway is one of the most important pathways involved in the repair 

of DNA lesions and in the maintenance of genomic integrity, and it is essential to ensure 

viability of mammalian cells (Markkanen 2017). In fact, if key players of BER pathway 

are not expressed, this leads to embryonic lethality (Iyama and Wilson 2013). 

BER is involved in the removal of damaged bases, for example, by oxidation, alkylation 

or deamination. Several enzymes are recruited to complete the process (Figure 3), which 

is composed of five essential steps (Akbari et al. 2015).  

Figure 3 Graphical representation of the main BER steps 

After the cleavage of the N-glycosyl bond by specific DNA glycosylases, AP endonuclease (Ape1) 

cuts the phosphodiester bond. The resulting gap is then filled by DNA polymerases and ligases 

(Akbari et al. 2015). 
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As a first step, this pathway identifies the abnormality in the DNA sequence through the 

intervention of a glycosylase, which specifically recognize the modified base. This is 

flipped out and cleaved, giving rise to an abasic site through the hydrolysis of the N-

glycosyl bond (Wallace 2013). The abasic site is then processed by Ape1 

(Apurinic/apyrimidinic endonuclease 1, Bauer, Corbett, and Doetsch 2015) that cuts the 

phosphodiester backbone 5’ to the AP site generating a 3’ OH and 5’-deoxyribose-5-

phosphate (Demple and Sung 2005). The nick is then handled by Pol β that replaces only 

the nucleotide containing the removed base (Howard and Wilson 2017), or alternatively 

by Pol δ/ε, which replace 2-12 nucleotides. In dependence of the involvement of the 

different polymerases, the pathway is called short patch or long patch respectively. In the 

short patch BER, ligase III is involved to seal the nick left after Pol β action (Sobol et al. 

1996). In the long patch after Pol δ/ε intervention, FEN-1, PCNA and ligase I are recruited 

to remove the excess flap bases and complete the repair process (Sung, DeMott, and 

Demple 2005). 

  

4.3. Apurinic/apyrimidinic endonuclease 1 (Ape1) 

Ape1 is the major AP endonuclease in mammals (Hadi et al. 2002). Besides its role in 

BER pathway, it was recently discovered that Ape1 has several other activities (Antoniali 

et al. 2017). Ape1 presence is important for the DNA repair process, so it is considered a 

key player in BER (Tell et al. 2009). Ape1 is an abundant protein, with a density of ~104 

- 105 copies/cell, and with a relatively long half-life of almost 8 hours (Tell et al. 2009; 

Vascotto et al. 2009). The APE1 gene is located on chromosome 14q11.2-q12 and it is 

2.6 kbp long, composed of five exons and four introns (Robson et al. 1992). Multiple 

transcription start sites (TSSs) are present on the gene, to control both the constitutive and 

the inducible expression of the protein. In the proximal promoter region the consensus 

sequence for Sp1 transcription factor is located, which binds the promoter (Zaky et al. 

2008). Sp1 is responsible for both constitutive transcription and for the increase during 

S-phase of the cell-cycle (Rivkees and Kelley 1994; Zaky et al. 2008). 

Ape1 is a 35.55 kDa protein, composed of 318 amino acids. It is a monomeric protein 

with a globular structure containing α/β sandwiches and an unstructured N-terminal 

domain of 48 amino acids (Gorman et al. 1997). 

Three functional domains of Ape1 can be defined: 
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• The N-terminal domain (aa 1-35) involved in protein-protein interaction and in 

interactions with nucleic acids (Poletto et al. 2013),  

• The intermediate domain (aa 35-127), dedicated to transcription factors regulation 

through redox activity (Fantini et al. 2010; Lirussi et al., 2012), 

• The C-terminal domain (aa 127-318) which conducts endonuclease activity (Tell 

et al. 2009). 

Ape1 is subjected to several post-translational modifications, especially at its first 35 

residues (Figure 4).  

A very well described in vivo post-translational modification is the truncation of the 

protein occurring at its first 33 amino acids (Bhakat et al. 2016; Timofeyeva et al. 2009). 

The cleavage reaction is carried on by a still not identified granzyme-like enzyme 

(Yoshida et al. 2003). The deletion mutant lacks the nucleolar localization signal located 

in the N-terminus domain, so this protein displays a cytoplasmic localization (Jackson et 

al. 2005), and its ability to interact with canonical protein partners is hampered (Vascotto 

et al. 2009). Phosphorylation of the N-terminal domain inhibits Ape1 endonuclease 

activity while enhancing its redox activity (Busso, Lake, and Izumi 2010; Huang et al. 

2010). Acetylation involves lysine residues K6, K7, K27, K31, K32 and K35 with the effect 

of decreasing the interactions with other protein partners, such NPM1, inhibiting the 

accumulation of Ape1 in the nucleoli (Lirussi et al. 2012; Busso, Lake, and Izumi 2010). 

Figure 4 Structural organization of Ape1 protein 

Each domain of Ape1 has a specific function. N-terminus is engaged in nucleolar localization, 

protein-protein interaction and nucleic acid binding. Redox domain interacts with transcription 

factors to regulate their action and C-terminal domain is the responsible for the endonuclease 

activity of the protein. The listed amino acids are involved in the specified post-translational 

modifications or activity. 
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Moreover, acetylation also affects the affinity of Ape1 toward nucleic acids, due to the 

neutralization of the positive charges of residues K27, K31, K32 and K35. Furthermore, the 

neutralization of the N-terminal arm of Ape1 induces a conformational change that 

increases the endonuclease activity of the protein (Roychoudhury et al. 2016; Fantini et 

al. 2010). Moreover, acetylated Ape1 results in a more enzymatically active form, so the 

protein can process DNA lesions faster (Fantini et al. 2008; Lirussi et al. 2012; Fantini et 

al. 2010; Roychoudhury et al. 2016). 

The endonuclease activity incises in correspondence of the AP site, at its 5’ on the 

phosphodiester backbone. After the cleavage, the single strand break is flanked by the 3’-

hydroxyl (OH) and at the 5’-deoxyribose phosphate. Ape1 recognizes the abasic site, and 

subsequently excludes the dNTP, distorting the DNA backbone of about 35° (Figure 5). 

 

The active site is defined by several residues. Phe226 is implicated in AP site recognition, 

Asp210 and Asn212 play a critical role in hydrolyzing the phosphodiester bond and 

Tyr171 with His309 direct the proper disposition of the AP substrate (Freudenthal et al. 

2015; Mundle et al. 2009). Moreover, Asp283 and Asp308 are involved in maintaining 

the active site conformation (Evans, Limp-Foster, and Kelley 2000). The enzymatic 

reaction goes on upon a further rearrangement between Ape1 and DNA, which is 

Figure 5 Cartoon representation of the Ape1-DNA complex 

The protein is shown in yellow and the arrow indicates the cleavage. The abasic site is 

represented by the THF (Freudenthal et al., 2015). 
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dependent on the presence of Mg++ acting as enzymatic co-factor, positioned at the active 

site (Glu 96 and Asp70), to promote the spatial reorganization (Erzberger and Wilson 

1999; Tell, Wilson, and Lee 2010). A water molecule is also needed to carry on the 

cleavage reaction, which requires the presence of a nucleophile (Freudenthal et al. 2015; 

Manvilla et al. 2013). Quite recently, it has been demonstrated that Ape1 is also involved 

in RNA metabolism (Tell, Wilson, and Lee 2010; Antoniali et al. 2017). Furthermore, 

Arg177 and Met270 participate in DNA binding to maintain Ape1 locked on the substrate 

(Kaur et al. 2014).  

Another fundamental function of Ape1 consists in its ability of working as co-activator 

of transcription factors through a redox mechanism, which allows to regulate gene 

expression. The key residues are Cys65 and Cys93 (Walker et al. 1993) and Cys99 (Luo 

et al. 2012), through which Ape1 keeps reduced critical Cys residues of some 

transcription factors. In particular, the crucial residue is represented by the Cys65, 

considered as the nucleophilic residue in the reduction of disulphide bonds in TFs. All 

the three cysteines are buried in a hydrophobic pocket, so it has been suggested that a 

conformational change is required to allow the contribution of these residues (Luo et al. 

2012; Su et al. 2011). 

Ape1 is also involved in nucleotide incision repair (NIR) by incising in a DNA 

glycosylase-independent manner substrates carrying a 3’ OH (Gros et al. 2004). This 

pathway is activated to support BER pathway when glycosylases are absent or unable to 

process the lesion, usually resulting from oxidative stress (Timofeyeva et al. 2011). In the 

NIR context, Ape1 cuts at the 5’ of the oxidized base without the intervention of a 

glycosylase, producing a 3’ OH extremity that is then processed by FEN1. The repair is 

then completed by the action of polymerases (Ischenko and Saparbaev 2002). Ape1 NIR 

activity is exerted at pH values of 6.4- 6.8 and KCl concentration of 50 mM. NIR is highly 

exerted by Ape1 at 100-fold lower MgCl2 concentration, compared to AP-endonuclease 

activity (Gros et al. 2004). The N-terminal domain of the protein, fundamental for the 

protein-protein and protein-nucleic acid interaction, is not fundamental for the AP-

endonuclease activity but is indispensable for the NIR activity (Izumi et al. 2005). 

Ape1 is able to in vitro process single-stranded RNA containing abasic sites (Berquist, 

McNeill, and Wilson III 2008), to interact with ribosomal RNA to assist its processing 

(Vascotto et al. 2009), and to interact with several proteins implicated in RNA processing, 

i.e. NPM1. The interaction between Ape1 and NPM1 could compete with the contact of 
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each protein with RNA binding. The use of inhibitors of Ape1-NPM1 interactions in 

tumor cells, where both Ape1 and NPM1 are overexpressed and their interaction is 

functional for cancer cell proliferation, results in improvement of the contacts of each 

protein with rRNAs (Poletto et al. 2016). A recently published work highlights the action 

of Ape1 on abasic and oxidized ribonucleotides embedded in DNA (Malfatti et al. 2017). 

The protein can process ribonucleotide abasic sites incorporated in DNA with the same 

efficiency as deoxy-abasic sites (Malfatti et al. 2017). This evidence is interesting as it 

confirms the role of Ape1 in processing RNA substrates and it highlights the importance 

of the protein in the maintenance of genome integrity, as oxidative damage is a very 

common lesion involving ribonucleotides incorporated in DNA that is handled by BER. 

4.3.1. Ape1 as regulator of gene expression  

Besides its canonical role as fundamental enzyme in the BER pathway that is well 

characterized, Ape1 could be also considered a regulator of gene expression through 

different and yet not completely unveiled mechanisms. Indeed, Ape1 plays a role in the 

regulation of expression of human genes during oxidative stress conditions both through 

direct and indirect mechanisms, being therefore important for cancer biology (Tell, 

Wilson, and Lee 2010; Li and Wilson 2014; Antoniali et al. 2017).  

Ape1 direct role in transcriptional regulation 

Recent findings highlighted that epigenetic mechanisms seem to crosstalk with DNA 

damage. In detail, oxidative DNA lesions appear to act as epigenetic-like marks through 

the recruitment of the DNA repair machinery, thus modulating gene expression in cells 

exposed to oxidative stress (Fleming and Burrows 2017; Fleming, Ding, and Burrows 

2017; Perillo et al. 2008). Oxidation of the guanine is a frequent event leading to 8-oxo-

7,8-dihydroguanine (OG) formation, which is a highly mutagenic modification (Figure 

6). If RNA polymerases face an OG during transcription, this could cause the stalling of 

the enzyme, leading to the repression of transcription. It was recently demonstrated that 

if OG is present at the promoter level of some genes, the transcription can be increased 

via the BER pathway (Fleming and Burrows 2017; Fleming, Ding, and Burrows 2017). 

The glycosylase OGG1 removes the OG, generating an AP site that unmasks the G-

quadruplex structure and is bound but not efficiently cleaved by Ape1 (Fleming, Ding, 
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and Burrows 2017). So Ape1 may, in coordination with other BER partners, bridge other 

transcription factor regulators, intertwining DNA repair with transcription activation. 

 

It was observed that Ape1 is able to regulate transcription through the binding via its N-

terminal domain to bind specific DNA regulatory sequences, known as nCaRE, which are 

widely present among the genome (Antoniali, Lirussi, D’Ambrosio, et al. 2014, 1). These 

elements are found in the context of promoters of many genes. They are present also in 

the promoter of Ape1 gene, and Ape1 protein can bind it thanks to the involvement of a 

protein complex, including also hnRNPL, Ku70/80 and PARP-1, participating in a 

negative regulation of its own gene (Izumi, Henner, and Mitra 1996; Antoniali, Lirussi, 

D’Ambrosio, et al. 2014). On the contrary, when Ape1 binds the nCaRE sequences 

present on the SIRT1 promoter, this stimulates the transcription in case of oxidative 

stress. That is because, upon the AP endonuclease activity of Ape1, the promoter gains 

in flexibility and consequently the chromatin is locally relaxed, thus easing there the 

assembly of the transcription complex (Pastukh et al. 2015; Antoniali, Lirussi, 

D’Ambrosio, et al. 2014). 

Ape1 indirect role in transcriptional regulation 

Redox regulation is achieved through the modulation of TFs activity, especially targeting 

specific cysteine (Cys) residues located in their DNA-binding domains or regulatory sites, 

as pointed out by several studies (Evans, Limp-Foster, and Kelley 2000; Tell et al. 2005). 

Actually, these critical cysteines need to be in their reduced state to allow TFs proper 

binding to the target DNA sequences (Tell et al. 2005). So far, Ape1 is the only known 

DNA repair protein that also possesses nuclear transcriptional regulatory activity in 

mammals (Georgiadis et al. 2008). Through its intervention, Ape1 maintains several TFs 

Figure 6 Representation of the product of guanine oxidation 

8-oxo-7,8-dihydroguanine is one of the most common oxidative DNA lesions, formed under 

various oxidative conditions. 
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in their reduced and active state, influencing gene expression and maintaining genomic 

stability within the cells (Kelley, Georgiadis, and Fishel 2012). Ape1 modulates the redox 

status of both ubiquitous and tissue-specific transcription factors, such as AP-1, Egr-1, 

NF-κB and p53 (Tell et al. 2005; Li and Wilson 2014; Kelley, Georgiadis, and Fishel 

2012). These and others TFs are involved in the regulation of many different cellular 

mechanisms, ranging from cell proliferation and growth to apoptosis, included cancer 

promotion (Kelley, Georgiadis, and Fishel 2012; Kaur et al. 2014; Fantini et al. 2008). 

Ape1 role as a redox factor is exerted by its N-terminal domain, through a mechanism not 

yet fully understood. It was described that, after a partial structural rearrangement of the 

protein, Cys65 acts as the nucleophile residue for the reduction of the disulphide bond 

between two cysteines on the oxidized target TF, which is then reduced (Luo et al. 2012). 

Meanwhile, Cys65 establishes a new disulphide bond with Cys93 or 99 upon Ape1 

oxidation process. In this way, Ape1 protein may contribute to preserve the cell from the 

genotoxic insults due to increased ROS concentration and unbalanced redox regulation. 

Recent findings highlighted a novel role for Ape1 in RNA biology. As RNA is a single-

stranded molecule, it is much more susceptible to oxidation compared to DNA. RNA 

damage is as a frequently observed feature in several human cancer types (Simms and 

Zaher 2016). Thus, RNA quality control mechanisms are crucial to avoid catastrophic 

effects such as ribosomal impairment, error-prone translation and, consequently, failed 

protein synthesis and altered gene expression (Vohhodina, Harkin, and Savage 2016). 

Ape1 was recently identified as a directly involved player in RNA control process, as 

through its N-terminal domain it interacts with RNA molecules and with other protein 

partners participating in RNA processing (Vascotto et al. 2009; Poletto et al. 2013). In 

particular, Ape1 interacts with the nucleolar ribosome biogenesis-related protein 

nucleophosmin 1 (NPM1) and with rRNA molecules in nucleoli. Moreover, Ape1 can 

process also RNA molecules, exerting an RNase H-like endoribonuclease activity 

(Berquist, McNeill, and Wilson III 2008; Tell, Wilson, and Lee 2010; Malfatti et al. 

2017). Under oxidative stress conditions Ape1-NPM1 interaction is interrupted and Ape1 

moves to nucleoplasm to exert its endonuclease function (Vascotto et al. 2009; Antoniali, 

Lirussi, Poletto, et al. 2014; Vohhodina, Harkin, and Savage 2016). Also acetylation of 

the lysine residues located in the N-terminus of the protein modulates Ape1 interaction 

with NPM1 and its cellular localization, suggesting that also PTMs play a role in 

regulating Ape1 functions (Lirussi et al. 2012). In this scenario, Ape1 serves as a 

scavenger of oxidatively damaged RNA molecules in order to maintain a functional 
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RNome (Tell, Wilson, and Lee 2010). Next, Ape1 can cleave c-myc RNA, controlling its 

half-life and tuning its turnover. These evidences support a role of Ape1 in RNA decay 

and quality control. 

It was recently demonstrated that Ape1 is able to bind miRNA molecules too, so the 

protein is involved in gene expression regulation also through this mechanism (Kim, 

King, and Lee 2010; Antoniali et al. 2017). Micro RNAs are short non-coding RNA 

molecules able to regulate a variety of pathways, controlling the translation of RNA 

transcripts. These molecules are translated by RNA pol II and the product is called pri-

miRNA because this primary transcript needs to be then modified to obtain a hairpin 

structure named pre-miRNA. Pre-miRNAs are exported in the cytoplasm and there 

processed to obtain the mature double-stranded RNA sequence that is 22 nucleotides 

long. Only one filament of the duplex constitutes the active effector on the target RNA, 

which is involved in transcription repression by pairing with the complementary RNA. 

Ape1 seems to be also involved in miRNA maturation as, when silenced, a different 

miRNA expression profile was detected (Antoniali et al. 2017). Upon depletion of Ape1, 

the oxidation of miRNAs increased, and an accumulation of pri-miRNAs was observed, 

coupled with a decrease of mature miRNAs. Probably Ape1 is involved in editing the 

precursors, consequently exerting a post-transcriptional key role in gene expression 

(Antoniali et al. 2017).  

Furthermore, other evidences pointed out how Ape1 may be involved in epigenetic 

regulation (Fleming, Ding, and Burrows 2017; Chen et al. 2017). 

Ape1 interactome 

Ape1 takes active part in a plethora of pathways, thus when its functionality is 

compromised, the repercussions could be wide and severe (Tell, Wilson, and Lee 2010). 

The functions and interactions of Ape1 are modulated by PTMs, which control also the 

subcellular localization of the protein. Recently, a number of interactor proteins were 

identified, who belong to five major areas (Figure 7) (Antoniali et al. 2017).  
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The recognized pathways are grouped in the regulation of transcription, apoptosis, DNA 

repair, double strand break repair and RNA processing fields. Of course, the DNA repair 

interactors mainly belong to the BER pathway, as Ape1 works as a coordinator of 

downstream enzymes (Limpose, Corbett, and Doetsch 2017). Within the RNA processing 

area, are listed proteins involved in RNA metabolism and also RNA molecules, both 

coding and non-coding, as Ape1 is also able to interact with these cellular components 

(Antoniali et al. 2017). Among the transcription regulation, several transcription factors 

Figure 7 Ape1 protein network 

Top five biological pathways to which Ape1 interactors are related: repair of DNA, apoptosis, 

double strand breaks repair, regulation of transcription and processing of RNA (Antoniali et al., 

2017). 
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are listed, which are regulated by Ape1 through its redox function. Finally, apoptosis-

regulating components include a lot of enzymes implicated in carrying post-translational 

modifications that act as signals influencing Ape1 interactions and localization (Fantini 

et al. 2010; Poletto et al. 2013; Lirussi et al. 2012).  

Ape1 in cancer 

Dysregulation of Ape1 is found in several human pathologies, including 

neurodegenerative disorders, cardiovascular diseases and carcinogenesis (Thakur et al. 

2015). Overexpression of Ape1 is observed in a few cancer types, in which an altered 

intracellular distribution is also observed (Tell et al. 2009, 2005). In particular, 

cytoplasmic localization is correlated with poor prognosis and more aggressive tumours, 

as observed in lung, ovarian, thyroid, breast cancer and hepatocellular carcinoma (Tell et 

al. 2009). These features may be responsible for further cell resistance toward 

chemotherapy since it may reflect an adaptive response to chronic oxidative stress 

(Wilson and Simeonov 2010; Poletto et al. 2016; Rai et al. 2012), which is the main cause 

of hepatic carcinogenesis and its progression, so enhancing both Ape1 DNA repair and 

redox activities (Di Maso et al. 2015). Moreover, Ape1 is implicated in chemoresistance 

thanks to its ability to induce the expression of the multi-drug resistance gene (MDR1), 

through its interaction with YB-1 (Sengupta et al. 2011), and thanks to its regulatory 

action against the expression of the tumor suppressor PTEN (Fantini et al. 2008). The 

protein could be considered as a potential target to sensitize the cells to chemotherapy, 

thus its altered expression levels could be employed as a predictive biomarker to evaluate 

the sensitivity of the tumour (Thakur et al. 2014, 1). As lysine residues (i.e. K27, K31, K32 

and K35) were found acetylated in cancer cells (Fantini et al. 2010; Poletto et al. 2012), 

this PTM might be employed as a mechanism to regulate the protein function. Base 

excision repair, and Ape1 action, are fundamental also at the telomeric level, as the 

disruption of the physiology of these regions play a role in tumor development, being 

involved in the raise of telomeric aberrations (Madlener et al. 2013). 

 

4.4. Telomeres organization 

Human telomeres extend for 10-15 kbp and are composed by the non-coding repeated 

sequence TTAGGG (Blasco 2003). Chromosome extremities end with a single-stranded 

overhang that is bound by the shelterin complex (de Lange 2005). This complex is 

composed by a group of proteins (Figure 8) that are required to maintain DNA integrity 
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and to mediate interactions with other protein partners (Oganesian and Karlseder 2009). 

The shelterin complex proteins are: TRF1, TRF2 (Telomeric repeat binding factor 1 and 

2), POT1 (Protection of telomeres 1), TIN2 (TRF-interacting protein), TPP1 (TIN2 and 

Figure 8 Representation of the chromosome ends protected by members of the shelterin 

complex 

(A) Linear (top) and folded T-loop (bottom) structural states of the telomere are depicted. (B) An 

anti-parallel intramolecular G-quadruplex either alone (top) or in the context of a T-loop 

(bottom) might cap the chromosome terminus to avoid their degradation or extension (Oganesian 

and Karlseder 2009). 
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POT-interacting protein) and RAP1 (Repressor/activator protein 1), whose presence is 

fundamental to ensure protection to telomeres (Liu et al. 2004). In particular, this complex 

also contributes to the folding of telomere into a structure called telomeric loop (T-loop), 

which guarantees the protection of the single-stranded filament, thanks to the pairing with 

the upstream complementary strand, creating a displacement loop (D-loop) (Doksani et 

al. 2013). The structure assumed by the protruding strand is functional to avoid the 

activation of the DNA damage machinery which would detect the unpaired filament as a 

site to be repaired (de Lange 2004). A feature of telomeres is the guanine-rich 

composition of the protruding strand, which is called G-overhang. The G-overhang is 

bound by a specific single-strand binding protein, POT1, Protection of telomeres 

(Baumann and Cech 2001). POT1 is essential in the formation of the T-loop, stabilizing 

the D-loop by binding the displaced filament (Oganesian and Karlseder 2009). The other 

proteins which establish a direct contact with the telomeres are TRF1 and TRF2, which 

specifically recognize the double-stranded tract of telomeric DNA. The presence of these 

two protein partners is essential: the homozygous deletion of either gene results in early 

embryonic lethality in mice (Celli and de Lange 2005). TRF2 contains a basic domain 

and a DNA-binding domain; if these two domains are deleted from TRF2 gene, that leads 

to the activation of DNA-damage response, marked by the presence of γH2AX, 53BP1, 

the loss of G-overhang and by end-to-end fusions (Agata Smogorzewska et al. 2002). 

Thus, TRF2 is involved in the inhibition of NHEJ pathway (Ribes-Zamora et al. 2013). 

Moreover, TRF2 is also involved in the suppression of illegitimate homologous 

recombination events at the telomeres. This is a fundamental role, as the D-loop resembles 

a Holliday junction recombination intermediate, so the HR pathway must be blocked in 

this context. The expression of a mutant TRF2 deprived of the basic domain results in 

loss of the T-loop, that leads to the formation of extrachromosomal telomeric circles, 

which provoked the activation of the DNA damage response and the induction of 

senescence (Wang, Smogorzewska, and de Lange 2004). It was demonstrated that TRF2 

also associates with the NER endonuclease complex XPF-ERCC1, which represses 

telomere recombination. This complex is also involved in promoting overhang removal, 

resulting in chromosome fusions in case of TRF2 deletion (Zhu et al. 2003). TRF1 and 

TRF2 are both involved in DNA remodeling. Through its homodimerization domain, 

TRF1 is able to loop, bend and induce synapsis of telomeric DNA (Griffith, Bianchi, and 

de Lange 1998). TRF2 can also induce strand invasions stimulating topological changes 

at the telomeres (Griffith et al. 1999; Verdun and Karlseder 2006). TRF2 is involved in 
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the stabilization of the T-loop invasion site by the overhang (Fouché et al. 2006). RAP1 

was demonstrated to be essential to protect telomeres from homology-directed repair of 

telomeres as it cooperates with the basic domain of TRF2 to repress PARP1 and SLX4 

localization to telomeres. Without RAP1 and TRF2B, PARP1 and SLX4 HR factors 

promote rapid telomere resection, resulting in telomere loss and in generation of 

chromosome fusions in human cells (Rai et al. 2016, 1).  

As DNA polymerase works only toward the 3’ direction, the leading strand is duplicated 

until the end, while the duplication of the lagging strand leaves out about 200 nucleotides 

at each cell cycle (d’Adda di Fagagna et al. 2003). Consequently, telomeres are 

progressively shortened by each cell replication (Harley, Futcher, and Greider 1990), until 

they reach a threshold length, which determines the exit from the cell cycle and the start 

of the senescence phase. The threshold at which the cell stops proliferating and enters in 

the senescent phase is called Hayflick limit (Hayflick and Moorhead 1961). Some cell 

types, such as germline cells, stem cells and cancer cells, are not subjected to telomere 

shortening because they activate some mechanisms to avoid senescence (Flores and 

Blasco 2010).  

4.4.1. G-quadruplex structures and their functions 

Telomeric sequences, which are guanine-rich, are characterized by the assumption of a 

G-quadruplex (G4) folding (Bugaut and Alberti 2015). The acquirement of this folding is 

supported by TRF2 protein (Pedroso, Hayward, and Fletcher 2009). G-quadruplex (G4) 

structures derive from the stacking of at least three planar tetrads which are established 

thanks to the formation of Hoogsten hydrogen bonds between the guanines interspersed 

in the sequence (Figure 9).  
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They form in the presence of monovalent cations, such as Na+ or K+ which are coordinated 

between the stacked tetrads. Several quadruplex conformations exist: they are defined as 

parallel, antiparallel or hybrid in dependence of the direction in which the filament runs 

at each “corner” of the tetrad. The different conformation assumed depends on the type 

of cation, and on the length of the loops, which are the tracts interspersed between the 

guanine runs (Figure 10).  

 

Figure 10 Possible G-quadruplex structure conformations 

The representation shows the different G-quadruplex structures that can be assumed by a single 

stranded DNA sequence containing guanines. Guanine bases are represented by parallelepipeds 

and non-G residues located in the loops were omitted for clarity. Parallel (left), antiparallel 

(center) and hybrid (right) G4 are indicated and the arrows show the direction in which each 

strand runs. 

 

Figure 9 Representation of a planar tetrad 

The tetrad is established thanks to the hydrogen bonds, here dotted, between the hydroxyl and 

aminic groups of each guanine and to the coordination of a cation, indicated by M+ (Huppert et 

al 2008). 
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The parallel G4 is characterized by strands running all in the same direction, linked by 

double-chain reversal loops; the antiparallel G4 contains two strands running in one 

direction and the other two in the opposite and lateral or diagonal loops. The hybrid 

quadruplex is also called “3+1” as it results from three strands running in the same 

direction and one in the other; the loops are also mixed (Dai et al. 2007). Several G4 types 

can be formed in vitro and these structures are thermodynamically characterized by a 

higher stability than double-stranded DNA and DNA or RNA hairpins (Lane et al. 2008). 

The formation of G-quadruplex structures in vivo plays an important role in regulating 

DNA replication (Bochman, Paeschke, and Zakian 2012), indeed these secondary 

structures are unfolded by helicases (RecQ protein-like 4) which are cell-cycle dependent 

(Postberg et al. 2012). Rif1 also was demonstrated to participate in temporal and spatial 

regulation of DNA replication (Yamazaki, Hayano, and Masai 2013; Kanoh et al. 2015). 

Rif1 (Rap1 interacting factor) is a protein able to bind G4-structured binding sequences 

containing a consensus sequence (Masai et al. 2018). Rif1 preferentially binds to target 

sequences containing multiple G-tracts, suggesting that higher-order G4 structures allow 

a more efficient recognition by the protein. G4 structures are present at the promoter 

region of many genes (i.e. c-Myc, VEGF, SIRT1, TNFα), thus controlling the 

transcription through the unfolding of the region (Balasubramanian, Hurley, and Neidle 

2011).  

4.4.2. Telomere maintenance pathways  

Two telomere maintenance mechanisms are known: the telomerase-mediated telomere 

elongation and the ALT (alternative lengthening of telomere) pathway (Figure 11).  
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Telomerase is a special enzyme, which works as a reverse transcriptase (RT) from an 

RNA template. These two components are respectively called TERT and TERC (Feng et 

al. 1995; Harrington et al. 1997). The other key factor of the human telomerase complex, 

with TERT and TERC, is dyskerin that is involved in binding and stabilizing TERC 

(Cohen et al. 2007). While TERC and dyskerin are constitutively expressed, TERT 

constitutes the limiting factor in telomerase activity (Li et al. 2003). TERC is localized in 

Cajal bodies, small nuclear organelles implicated in RNA biogenesis and maturation. It 

was demonstrated that telomerase Cajal body protein1 (TCAB1) mediates the passage of 

Figure 11 Mechanisms of telomerase-driven (A) and HR-driven (B) synthesis of telomeric 

DNA 

(A.I) DNA synthesis is initiated with the alignment of the 3′ telomeric G-overhang (in blue) with 

the RNA template (in red). (A.II) Telomerase catalyzes nucleotide addition to the overhang until 

the 5′ end of the template is reached. (A.III) The enzyme translocates and realigns with the newly 

synthesized 3′ end of the overhang. (A.IV) A second round of nucleotide addition starts. (B) Both 

inter- and intratelomeric recombination events have been hypothesized to promote telomere 

maintenance in ALT. In both types of recombination, the 3′ overhang of the telomere initiates 

invasion and uses its host DNA as a template for DNA copying. (B.I) Intermolecular 

recombination might involve telomeres from two adjacent chromosomes or chromatids. (B.II) 

The telomere could also use itself as a template and synthesize DNA via rolling circle replication 

(Oganesian and Karlseder 2009). 
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telomerase RNA through Cajal bodies and assists the fully assembled complex in 

reaching the telomeres (Venteicher et al. 2009). The telomerase complex is highly 

expressed during embryonic development and its expression levels decrease after birth. 

In tumor cells the complex is often re-expressed to allow telomere elongation and ensure 

immortalization. TERT is, in somatic cells, under strict transcriptional control, while in 

cancer cells this regulation is lost. It was demonstrated that the expression of hTERT is 

influenced by epigenetic modifications on the promoter of the gene. Methylation of the 

promoter of hTERT heads to transcriptional inactivation, but it was stated that when CpG 

islands in the only proximal promoter region are methylated, this prevents the binding of 

transcriptional repressors such as CTCF (Renaud et al. 2007), thus leading to transcription 

activation. Also, acetylation of histone H3 and H4 activates the transcription of TERT 

gene, as it was demonstrated that after treatment with TSA, a histone deacetylase 

inhibitor, the methylation levels decrease, thus allowing CTCF binding and consequently 

suppressing TERT expression (Choi et al. 2010). TRF1 is involved in the negative 

regulation of telomerase-dependent maintenance of telomere length. This regulation is 

possible thanks to the crosstalk of TRF1 with POT1-TPP1 complex which controls the 

access of telomerase to the G-overhang. Telomere length is correlated to TRF1 

occupancy, as longer telomeres carry more TRF1 on them. The information is transmitted 

by TPP1 to POT1, which rends the G-overhang inaccessible to telomerase thanks to a 

stronger association with it (Loayza and De Lange 2003; Xin et al. 2007; Ye et al. 2004). 

This is supported by the fact that if TRF1 levels are altered through overexpression or 

downregulation, this results in telomere shortening or lengthening respectively (Loayza 

and De Lange 2003; Smogorzewska et al. 2000; Ancelin et al. 2002). The 85-90% of the 

tumors exploit telomerase re-expression to maintain telomere length, while the remaining 

10-15% of the cancer types use ALT. ALT pathway consists of homologous 

recombination, mainly post-replication, that can occur inter-molecularly using the 

telomere of the sister chromatid as template, or can be intramolecular, exploiting the T-

loop structure (De Vitis, Berardinelli, and Sgura 2018). As the ALT pathway is less 

strictly regulated, cells that exploit this system show heterogeneous telomere length. For 

example, if the alignment is asymmetric, this leads to unequal telomere elongation 

between the two chromatids. Asymmetric chromatid alignment could also give rise to 

uneven telomere-sister chromatid events (Oganesian and Karlseder 2009). The outcome 

would show a telomere-less chromosome and its sister with a proliferative advantage 

(Muntoni et al. 2009). In case of intramolecular recombination, T-loop junction resolution 
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can occur, generating truncated telomeres and T-circles that represent extra-chromosomal 

telomeric repeats (Cesare and Reddel 2008). In some cases, telomeres are not allowed to 

form T-loops due to their insufficient length. If so, TRF2 surveillance might be 

compromised. 

Telomeres were considered transcriptionally inactive, due to the high methylation levels 

of the subtelomeric regions and to the density of heterochromatic marks (trimethylation 

of histone H3 and H4 at lysine 9 and 20 respectively) at the telomeric level (Blasco 2007). 

Surprisingly, it was demonstrated that the transcription at the telomeric level occurs and 

it gives an RNA consisting of the repeated sequence UUAGGG, which was called 

TERRA (telomeric repeat-containing RNA) (Azzalin et al. 2007). This long non-coding 

RNA transcript derives from the activity of RNA polymerase II on the C-rich strand 

toward the chromosome end. TERRA molecules can range between 100 bp and 9 kb, but 

the most of them are approximately 200 bp long (Cusanelli and Chartrand 2015). The 

promoter is localized at the subtelomeric portion, in correspondence of the CpG islands 

(Luke and Lingner 2009). These islands are maintained non-methylated from the 

intervention of the insulator proteins CTCF and cohesin, to allow the transcription of 

TERRA (Ng et al. 2009). TERRA exerts several protective functions towards telomeres. 

When telomeres shorten, the heterochromatin histone marks are lost as well as the DNA 

methylation. In this context, TERRA molecules expression is induced. TERRA clusters 

on shortened telomeres (Yu, Kao, and Lin 2014) from which it was originated, acting as 

a signaling molecule with multiple functions. One effect is the recruitment, on that site,  

of the telomerase during S phase (Cusanelli, Romero, and Chartrand 2013), so that 

telomerase can elongate short telomeres and consequently TERRA levels decrease at 

these sites (Porro et al. 2010). 

An additional effect of TERRA is the stabilization of the telomeric complex and the 

maintenance of the heterochromatin (Deng et al. 2009). TERRA interacts with TRF1 and 

TRF2 with a stabilizing effect, moreover, TERRA also binds to methylated histone 

H3K9me3 and participates in heterochromatin formation (Deng et al. 2009). Thus, 

TERRA acts as a scaffold molecule that promotes the recruitment of various proteins at 

the telomeric level. Moreover, the presence of TERRA is required to properly cap the 

telomeres. TERRA is able to bind hnRNPA1, a ribonucleoprotein that in S phase is 

brought in proximity of telomeres (López de Silanes, Stagno d’Alcontres, and Blasco 

2010) and here displaces RPA, a ssDNA binding protein which is required to activate 

ATR checkpoint. POT1 substitutes RPA on the G-overhang, repressing ATR-mediated 
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DDR at telomeres (Flynn et al. 2011). Due to its complementarity with the C-rich strand, 

TERRA is able to form DNA-RNA hybrids, called R-loops (Arora et al. 2014), involved 

in transcription termination and regulation of gene expression (Ginno et al. 2012). 

Formation of R-loops is strictly controlled and these hybrids are resolved by RNaseH1 

and 2, or unwound by helicases such as Pif1 (Paeschke et al. 2013). R-loops stimulate 

homologous recombination in ALT-positive cells and recruit there the telomerase 

complex in telomerase-positive cells (Arora et al. 2014).  

4.4.3. Telomere interactome and its involvement in 

telomeric DNA repair 

Telomeres are preserved by the shelterin proteins, which ensure protection to the 

chromosome termini. However, the telomeric G-quadruplex represent a vulnerable target 

for oxidation (Fleming and Burrows 2013) and the presence of OG could displace the 

shelterin complex (Opresko et al. 2005). One of the key players responsible for the 

removal of OG is NEIL3, which preferentially processes lesions located in single-

stranded or quadruplex DNA (Zhou et al. 2013). NEIL3 participates in telomere integrity 

maintenance, thanks to the interaction with TRF1 during late S-phase and its absence 

leads to telomeric aberrations (Zhou et al. 2017). It was demonstrated that Ape1 is also 

localized at the telomeric level, where it interacts with TRF2, and this interaction ensures 

the integrity of telomeric DNA (Madlener et al. 2013). In the absence of TRF2, the 

binding of POT1 is increased, to stimulate the endonuclease activity in case of DNA 

damage (Lee et al. 2011; Miller et al. 2012).  

RPA (replication protein A) is another fundamental protein that binds to single stranded 

DNA in eukaryotic cells. Its partial depletion by RNA interference dramatically reduces 

cell proliferation, diminishes DNA synthesis, causes genomic instability, and decreases 

DNA repair (Hass, Lam, and Wold 2012). RPA dynamically interacts with helicases 

belonging to the RecQ family, such as RECQL1, WRN, BLM and FANCJ. Moreover, 

RPA recruits to the site of action also DNA translocases, such as SMARCAL1 that 

indirectly interacts with the helicases to solve the stalling of replication forks (Awate and 

Brosh, Jr. 2017). Furthermore, an important protein involved in telomere homeostasis is 

Rif1 (Rap1-interacting factor 1), which interacts with a component of the shelterin 

complex. In mammals Rif1 is not associated with intact telomeres: the interaction takes 

place in case of telomere shortening or DSB at the telomeric level (de Lange 2005). Rif1 

acts as a mediator of DSB repair pathway choice: the protein is involved in determining 
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the activation of HR or NHEJ (Fontana et al. 2018). As HR requires the commitment of 

the end resection, which is dependent on the cell cycle and CDK activity (Hustedt and 

Durocher 2016), a counterbalance is established between CtIP, which promotes resection 

together with BRCA1, and Rif1 that pairs with 53BP1 (Yun and Hiom 2009). 53BP1 acts 

as a reader of histone marks such as H4K20me2 and H2AK15ub, so it promotes NHEJ 

during G1 and early S phase (Zimmermann and de Lange 2014) together with Rif1 that 

attenuates end resection, though in mammalian cells the mechanism of action has still to 

be elucidated. H/ACA ribonucleoproteins also contribute to the assembly and 

stabilization of telomerase complex and to post transcriptional processing of nascent 

ribosomal RNA and pre-mRNA splicing (Meier 2005). Within these RNPs, NOP10 and 

DKC1 are listed as key telomerase components that handle the effects of oxidative stress 

at the telomeric level. When DKC1 or NOP10 are silenced, the cells produce much lower 

levels of TERC and show a decreased telomerase activity (Lin et al. 2015). Another effect 

of the silencing of these components is the increase of oxidative stress, that reflects on 

the levels of oxidized peroxiredoxin and glutathione. Moreover, cells silenced for NOP10 

or DKC1 are more susceptible to DNA damage. So, the depletion of these RNPs affects 

RNA maturation process and generates oxidative stress, which is a significant factor 

determining telomere shortening (Ibáñez-Cabellos et al. 2018). 

4.4.4. Oxidation damage repair at telomeric structures 

Oxidative damage is quite common at the telomeric level (Park et al. 1992), originating a 

considerable amount of OG. As base oxidation can cause a substantial loss of 

thermostability to the DNA sequence and, possibly, disrupt sheltering protein contacts 

with the telomeres (Opresko et al. 2005), several proteins are involved in the repair of 

such type of lesion. When located in a G-quadruplex structure, oxidation damage is 

handled by NEIL1 and NEIL3 glycosylases (Zhou et al. 2013). It was demonstrated that 

NEIL1 and NEIL3 are able to remove, beyond OG, also hydantoin lesions deriving from 

further oxidation within a Na+-coordinated antiparallel quadruplex (Zhou et al. 2015). In 

the same work the processing of several sequences was investigated, in particular, the 

teamwork of Wallace examined the processing of both telomeric sequences containing 

lesions in different positions, and sequences that are found within the promoter of many 

genes, such as VEGF and c-Myc. In this study, the authors state that OGG1 can process 

OG only when they are located in a duplex substrate, and that Ape1 is able to process 

furan in quadruplex DNA Na+-coordinated (Zhou et al. 2015). The authors conclude 
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hypothesizing a possible involvement of NEIL glycosylases in both telomere 

maintenance and gene regulation. Additionally, NEIL3 interacts also with TRF1, and 

appears to be an essential player ensuring telomere integrity by coordinating the repair of 

oxidation damages, as in the absence of this glycosylase the cells display telomere 

dysfunctions (Zhou et al. 2017). NEIL3 cleaves the damaged base and then recruits the 

LP-BER machinery, included Ape1, to facilitate the repair at telomeric loci (Zhou et al. 

2017). Anyway, the mechanism of action and regulation of Ape1 on telomeric G-

quadruplex structures needs to be further elucidated. 

4.4.5. Role of G-quadruplex in transcription regulation 

Oxidation damage at the level of gene promoters organized as G4 could be taken as a 

transcription activating signal  (Fleming, Ding, and Burrows 2017). When a purine in a 

duplex sequence is oxidized, the repair of this modification creates an AP site that 

decreases the thermostability of the double strand, driving to the formation of a more 

stable quadruplex structure (Fleming, Ding, and Burrows 2017). It was suggested that the 

oxidized guanine-containing tract within the promoter of VEGF gene can be looped out 

from the quadruplex structure so to maintain the G4 folding and to facilitate the repair 

proteins in their activity (Fleming, Ding, and Burrows 2017). Consequently, the presence 

of an oxidized guanine leads to the recruitment of the BER components, but the 

quadruplex folding reduces the processivity of the repair process. As a result, transcription 

machinery is engaged, thus oxidation could be considered an epigenetic-like modification 

driving DNA repair-coupled transcription initiation (Zhou et al. 2015; Fleming, Ding, and 

Burrows 2017). It was confirmed that, when Ape1 idles on the abasic site within a G4, 

the protein activates some transcription factors through its redox domain (Fleming and 

Burrows 2017). The group of Burrows employed a luciferase assay to report the 

transcription of VEGF gene to determine whether the localization of OG on the template 

or the coding strand influences the outcome (Fleming et al. 2017). Depending on the 

strand on which the OG is formed, the effect is activation or repression of translation. In 

particular, if the lesion is located on the coding strand, this reflects on transcriptional 

activation, while if it is positioned on the template strand, transcription is switched off 

(Fleming et al. 2017). The oxidation of guanines seems not to be randomly distributed 

throughout the genome: these events appear to be more frequent at the promoters of 

actively transcribed genes (Zarakowska et al. 2014), and this can regulate their 

transcription. The Burrows teamwork demonstrated that the folding of quadruplexes at 
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the promoter level is the responsible for gene expression depending on the localization of 

the potential quadruplex sequence on the coding versus template strand (Fleming et al. 

2018). They highlighted that the frequency of potential quadruplex-forming sequences 

was 1.8-fold higher in promoters of DNA repair genes, compared to other random genes 

of the human genome, so these secondary structures play a very important role in 

regulating gene transcription (Hänsel-Hertsch et al. 2016; Fleming et al. 2018). 

Employing the luciferase reporter assay, the authors used G4-specific ligands to stabilize 

G-quadruplex structures at the promoter level of NEIL1, NEIL3 and BLM genes. They 

observed that activation of transcription occurred when the quadruplex was formed on 

the coding strand, while G4 structures folded on the template strand interfere with 

transcription, which was down-regulated (Fleming et al. 2018). In this context, the 

oxidation of guanine is defined as a friend and foe signal: when solid tumors grow they 

become hypoxic, inducing oxidative stress. This lead to VEGF activation and 

vascularization to permit tumor expansion (Fleming and Burrows 2017). Thus, OG 

behaves both as an epigenetic-like regulator and an initiator of mutagenesis in this 

scenario. Intertwining between DNA repair and transcription activation is starting to earn 

increasing interest. 

4.5. Ape1 role at the telomeres  

Figure 12 shows the network of proteins that interact with both the telomeric regions and 

Ape1 protein. It includes, besides TRF1, TRF2 and RAP1, components of the shelterin 

complex, some players involved the DNA repair processes like XRCC1, XRCC5, 

XRCC6, FEN1, PCNA, DNA-PK and DDB1 and regulation factors such as MCM4, 

MCM7 and HP1γ, which respectively allow DNA replication initiation and contributes 

to the maintenance of transcriptional silencing recognizing heterochromatin histone 

marks. 
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It was demonstrated that depletion of Ape1 leads to telomere shortening and losses and 

to a higher rate of chromosome fusions (Madlener et al. 2013) and that Ape1 deficiency 

promotes cell senescence and premature aging features (Li et al. 2018). It was proved that 

a mutant form of Ape1, carrying lysine residues 6 and 7 substituted with alanines, 

mimicking the acetylation of these amino acids, display an in vivo increase in the rate of 

telomeric aberrations, despite maintaining its DNA repair activity (Madlener et al. 2013). 

Within the amino-terminus of the protein, several other residues exist which can be 

acetylated, in particular the lysines in position 27, 31, 32 and 35. Moreover, the 

acetylation status of these lysine residues may be modulated by lysines 6 and 7 (Lirussi 

et al. 2012). It was previously found in our lab that a mutant of Ape1 which carries the 

four cited lysine residues substituted with alanines displays enhanced endonuclease 

activity on double-stranded DNA containing an abasic site (Fantini et al. 2010), but 

reduced ability of recognition and processing of the abasic site on a single-stranded 

substrate (Fantini et al. 2010; Poletto et al. 2013). Moreover, cancer cells that express the 

Figure 12 Protein interactome network of telomeric partners 

The figure shows the cross-talk of proteins that are associated to the telomeric region and that 

belong also to Ape1 interactome. 
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Ape1 mutant, bearing Lys/Ala substitution in the four specified positions (i.e. 

Ape1K4pleA), display a reduced proliferation rate (Lirussi et al. 2012). The role of Lys 27-

35 in the processing of telomeric sequences has not been elucidated yet, so we 

hypothesize that the post-translational modification status of the specified lysines may be 

a mechanism to regulate the enzymatic activity of the protein at the telomeric level. 

As the guanine is the base with the lowest redox potential (Steenken and Jovanovic 1997), 

it is a susceptible target of oxidation. Consequently, the telomeric sequences are 

vulnerable regions and, under oxidative stress conditions, the formation of oxidized and 

abasic sites is frequent. The structure of the quadruplex is highly destabilized by the 

presence of an apurinic site which disrupts the tetrad (Virgilio et al. 2012; Esposito et al. 

2010; Babinský et al. 2014). Ape1 can exert its endonuclease activity in vitro on abasic 

sites located in telomeric repeats-containing double strands (Broxson et al. 2014; Li et al. 

2014; Theruvathu et al. 2014), and also on the quadruplex structure of the c-Myc 

promoter, though with an attenuated cleavage rate (Broxson et al. 2014). It seems that 

Ape1 activity on G-quadruplex structures containing an abasic site is influenced by the 

coordinated cation, which may induce a different folding (Zhou et al. 2015). As 

mentioned before, Ape1 stalling on a G4 while processing the abasic site here located 

may induce partial unfolding of the DNA secondary structure to extrude the lesion. 

However, nowadays, little is known about the ability of Ape1 to process abasic sites 

located in structured telomeric sequences.  
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5. Aim of this study  

Cancer cells are frequently characterized by the dysregulation of telomere homeostasis. 

In particular, tumors display aberrations at the telomeric level due to shortened telomeres 

that are illicitly elongated to ensure the maintenance of a required length which allows 

unlimited cellular replication (Hanahan and Weinberg 2011). Moreover, cancer cells 

often exhibit telomeric fusions, bridges, telomeric translocations and breakages. Human 

telomeres are composed of the repeated sequence TTAGGG and are characterized by the 

protrusion of the 3’ extremity (de Lange 2005). The single stranded filament assumes a 

secondary structure called G-quadruplex (G4), thanks to the hydrogen bonds established 

between the guanines. As the guanine is the most susceptible base toward oxidative 

damage (Steenken and Jovanovic 1997), these regions are a hotspot for oxidation. When 

a guanine is oxidized, the modification leads to a lower stability of the G-quadruplex 

(Babinský et al. 2014). Base excision repair is active also at the telomeric level, where 

ensuring the maintenance of integrity is crucial for cellular proliferation. A key player of 

the BER is Ape1, the major human endonuclease (Hadi et al. 2002). Recently it was 

shown that Ape1 presence is fundamental in the maintenance of telomere physiology 

(Madlener et al. 2013), however the details regarding the molecular regulation of its 

enzymatic activity have not been elucidated yet. 

We already investigated the Ape1 ability to process single-stranded nucleic acids that 

resulted strictly dependent on the propensity of the substrate to adopt secondary structures 

and is modulated by the N-terminal basic unstructured portion of the protein (Poletto et 

al. 2013). Here, we want to shed light on the role of the N-terminal arm of Ape1 for the 

stable recognition and enzymatic processing of telomeric substrates. We particularly 

focused on the function of lysine residues, which can be modulated through acetylation, 

that represents a mechanism to regulate the affinity of the protein toward nucleic acids. 

We employed several substrates mimicking the telomeric structure and containing an 

abasic site analog located in different positions to perform endonuclease activity assays 

in two different saline conditions with several Ape1 protein mutants mimicking 

acetylation of crucial lysine residues within N-terminal domain.  

Understanding the inherent need for Ape1 at telomeres is critical to define the precise 

mechanism that underlies cancer progression. 
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6. Results 

6.1. Structural analysis of G4 sequences by circular dichroism 

(CD) spectroscopy 

Previous studies, performed on dsDNA, demonstrated that Ape1 exhibits a substrate-

dependent endonuclease activity (Berquist, McNeill, and Wilson III 2008; Marenstein, 

Wilson III, and Teebor 2004) and may play a role in telomere maintenance (Madlener et 

al. 2013). The potential of Ape1 to process telomeric G-quadruplex structures containing 

abasic sites has been barely investigated (Madlener et al. 2013; M. Li et al. 2018; Zhou 

et al. 2015; Fleming, Ding, and Burrows 2017). In order to fill in this gap, we used three 

labelled oligonucleotides (ODN) (Table 1), including telomeric sequences already known 

to fold into G4 structures (Virgilio et al. 2012), some bearing abasic sites in different 

positions. Specifically, the ODN, indicated as S4 and S8 contain a tetrahydrofuran (F) 

residue resembling an abasic site (Takeshita et al. 1987), replacing the 4th or the 8th 

guanosine, respectively, while Nat represents the natural telomeric sequence containing 

undamaged DNA. In order to obtain structural insights, we first analyzed the ODN by CD 

spectroscopy, under several buffer conditions including those required for the enzymatic 

assays. The profile of the labeled Nat sequence (Figure 13 A) (annealed at 70 mM KCl) 

appears almost superimposable on that of its unlabeled counterpart (Virgilio et al. 2012), 

thus indicating that the presence of the IRDye moiety does not influence G-quadruplex 

conformation. This profile is characteristic of the hybrid 3+1 strand arrangement (Dai, 

Carver, and Yang 2008). On the other hand, the CD spectrum of sequence S4 (Figure 13 

B) shows a positive band around 265 nm, typical of parallel G-quadruplexes, and a further 

positive band at 295 nm. In turn, S8 exhibits a negative band at 243 nm and a positive 

band at 265 nm (Figure 13 C), that are characteristic of parallel G-quadruplex structures 

adopted by telomeric sequences in molecular crowding conditions (Heddi and Phan 

2011). These data would suggest the coexistence of parallel and other types of G-

quadruplex conformations for S4 and S8, with a clear prevalence of the parallel 

conformation in the case of S8 (Virgilio et al. 2012). Overall, the CD profiles of the three 

labeled ODN in the conditions tested appear very similar to those obtained in KCl 70 mM 

solution alone, thus indicating that the changes of buffer composition, due to addition of 

Tris and MgCl2, and KCl, do not affect the G-quadruplex folding topology adopted 

following the annealing procedure. Schematic representations of the hybrid 3+1 
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conformation, adopted by Nat, and that of the parallel G-quadruplex are reported in Figure 

14.   

 

 

 

 

Figure 13 CD spectroscopy of the oligonucleotides used in this study 

Overlay of CD spectra of telomeric oligonucleotides Nat (A), S4 (B) and S8 (C) acquired at 

indicated buffer conditions. 
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Figure 14 Schematic representations of G-quadruplex structures assumed by the 

oligonucleotides used in this work 

Hybrid G-quadruplex (left, Nat, and center) formed by the original sequence and the parallel G4 

(right) adopted in molecular crowding conditions. Guanosines adopting anti and syn glycosidic 

conformations are indicated in blue and orange, respectively. S4 and S8 indicate the positions in 

which abasic sites have been introduced. For clarity, the loop residues have been omitted. 

 

CD-melting experiments were also carried out to investigate the thermal stability of the 

G-quadruplex structures adopted by the labeled ODN at the lowest salt concentration, 

namely the least favorable conditions for the G-quadruplex stability. The CD-melting 

profiles (Figure 15) showed that all the G-quadruplex structures start to melt at around 

45-50°C and thus the three ODN were completely folded at 37°C. These data clearly 

indicate the presence of suitable amount of G-quadruplex structures in all the conditions 

used for the following assays. 

 

Figure 15 Circular dichroism (CD) analysis for the G4 oligonucleotides used in this study 

CD melting profiles of each telomeric oligonucleotide acquired at the maximum CD λ values for 

each sample in a buffer containing KCl 5 mM, Tris 5 mM and MgCl2 1 mM. 
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6.2. The 33-residue Ape1 N-terminus is required to stably 

bind telomeric G4 structures  

The 33 N-terminal residues of Ape1 play a role in the recognition of single stranded 

nucleic acids (Poletto et al. 2013). Therefore, we analyzed the functional role of this 

domain of Ape1 for interaction with telomeric sequences. The recombinant proteins used 

here (unmodified Ape1 or Ape1WT, and a derivative lacking the first 33 N-terminal 

residues called Ape1N∆33) were expressed and purified in E. coli as previously described 

(Fantini et al. 2010) and verified by SDS-PAGE analysis (Figure 16). 

 

The binding ability of purified recombinant Ape1 proteins to the ODN was tested through 

electrophoretic mobility shift assay (EMSA) analyses (Figure 17). These assays were 

performed by incubating the proteins with the telomeric substrates (i.e. Nat, S4 and S8) 

and the unstructured Poly dT-F, a poly dT oligonucleotide containing an abasic site, as a 

control. The analysis of native gels (Figure 17, left) revealed that Ape1WT bound the 

telomeric sequences whereas this ability was lost when the N-terminal domain was 

missing. Specifically, three different shifted bands (indicated by asterisks in the figure) 

are clearly visible that correspond to protein-DNA complex formation between Ape1WT 

and the telomeric sequences (lanes 2, 4, 6). Lower bands, with weaker intensities, may 

have increased mobility due to conformational differences (Kladova et al. 2018). As 

Figure 16 Gel analysis of purified human recombinant proteins used in this study 

Proteins were separated onto 10% SDS-PAGE followed by Coomassie brilliant blue staining. 5 

µg loaded of each bacterial lysate (“NI” means not IPTG-induced bacteria and “Ind” means I 

means IPTG-Induced bacteria); 0.5 µg Loaded of each purified protein. The molecular weight 

(MW) is expressed in kilodaltons (kDa). 
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expected, there was no indication of complex formation between Ape1 and the 

unstructured Poly dT-F (lane 8), confirming the importance of ODN secondary structure 

for stable binding (Poletto et al. 2013). Furthermore, the band pattern among the three 

ODN demonstrated that Ape1WT is proficient in binding the G-quadruplex sequences with 

no significant differences among the G4 substrates used. In addition, EMSA experiments 

with the Ape1N∆33 (Figure 17, right) highlight the requirement of the 33 N-terminal 

domain residues for binding to each G4 substrate (lanes 3-5-7). Again, no detectable 

complex was observed for the unstructured Poly dT-F (lane 9) incubated with Ape1N∆33.  

Notably, UV-crosslink experiments (Figure 18) showed that the more stable complex 

between Ape1 and the substrate has relative mobility corresponding to ~44 kDa in the 

case of the Ape1WT protein, and of about 42 kDa in the case of the Ape1N∆33 deletion 

mutant, consistent with a 1:1 stoichiometry in the complex. Moreover, the presence of a 

UV-crosslinked complex between Ape1N∆33 and the ODN (Figure 18) suggests that the 

 

Figure 17 Ape1 stably binds the G4 oligonucleotides 

Representative native EMSA polyacrylamide gel of recombinant Ape1WT (left) and Ape1NΔ33 

(right). Binding on the indicated ODN substrates (25 nM) is shown. Poly dT-F was used as 

negative control whereas Nat was used as positive control. The difference between this signal 

and the corresponding sample in the left panel relies only the intensity. *, ** and *** indicate 

the signals derived from metastable complexes that display different migration. Reactions were 

performed as explained in Materials and methods section. 
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absence of the 33 N-terminal domain does not hamper the ability of the protein to interact 

with the DNA substrate, at least transiently. 

 

 

 

Altogether, these results demonstrated that: i) the molar ratio between the protein and the 

substrate is close to 1:1 as detected by the calculated molecular weight of the Protein-

DNA complexes through UV-crosslink experiments; ii) the different mobility of the 

complexes and the weak signals of the retarded complexes, as seen from EMSA 

experiments, is possibly due to metastable complexes formation during the 

electrophoretic run (Kladova et al. 2018) and iii) the absence of the 33 N-terminal domain 

may probably affect the binding equilibrium of Ape1 with the substrate, possibly 

accelerating the dissociation step.  

Figure 18 Cross-linking analysis performed with Nat oligonucleotide 

The substrate was challenged with Ape1WT (lane 3) or Ape1NΔ33 (lane 4) as described in Materials 

and methods section. Reactions were resolved onto SDS-PAGE 10%. Lane 1 and 2: non-

crosslinked or crosslinked Nat ODN respectively. Lane 5 and 6: Ape1WT and Ape1NΔ33 respectively 

crosslinked without Nat. 
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In order to quantitatively evaluate the affinity of both Ape1WT and Ape1N33 for the 

telomeric Nat sequence, we used surface plasmon resonance (SPR) analyses. The 

overlays of the binding profiles are shown in Figure 19 (and in Figure 20). Both proteins 

exhibited concentration-dependent binding: whereas Ape1WT exhibited a low nanomolar 

value for its dissociation constant with the Nat sequence (Figure 19, left), the binding of 

Ape1NΔ33 to the Nat sequence (Figure 19, right), exhibited a 9-fold reduced affinity (KD) 

compared to Ape1WT (Table 2).  

 

Protein ODN k
on 

(M
-1

s
-1

 x 10
4

) k
off 

(s
-1

 x10
-3

) K
D 

(nM) 

Ape1
WT

 

Nat 8.23 2.6 31.6 

Poly dT 2.82 4.79 170 

NPM1 

Nat 2.022.042.04 2. 2.9999 11477 

Poly dT 0.696 1.78 255 

Ape1
NΔ33

 

Nat 3.04 8.67 285 

Poly dT Not valuable 

Table 1 SPR based equilibrium dissociation constants (KD) and kinetic parameters for the 

interaction of Ape1WT and Ape1NΔ33 and NPM1 with Nat and Poly dT ODN using the 

BIAevaluation v.4.1 software. Data reported were obtained through SPR analyses using proteins 

as analyte on the indicated biotinylated ODN ligands. 

Figure 19 SPR sensorgrams for Ape1WT and Ape1NΔ33 with Nat oligonucleotide 

Overlay of sensorgrams relative to SPR experiments for the binding to immobilized Biot- Nat of 

Ape1WT (left) and Ape1NΔ33 (right), respectively. 
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This was further corroborated by the SPR analysis of Poly dT/Ape1NΔ33 interaction, that, 

in the range of concentrations tested, does not allow the evaluation of the KD value (Figure 

20); while Ape1WT shows an affinity toward this unstructured ligand five-fold reduced 

with respect to the G-quadruplex sequence (Table 2). The absence of a visible signal 

arising from the interaction between Ape1NΔ33 and Nat substrate in EMSA assay, despite 

a five-fold difference in KD with respect to Ape1WT, may be due to the shifting of the 

equilibrium during the electrophoretic run toward the dissociated form of the complex. 

These data further confirm the crucial role exerted by the N-terminal region of Ape1 in 

the recognition of the G4 ODN, reflected in both dissociation and association phases 

shown by Ape1NΔ33 with respect to full-length (Table 2).  

 

6.3. The enzymatic activity of Ape1 on G4 telomeric 

structures is influenced by ionic strength and the N-

terminus 

In order to test the endonuclease activity of Ape1 on telomeric substrates, we performed 

AP-site incision assays under different salt concentrations including, as substrate, a 

conventional dsDNA oligonucleotide containing an abasic site in the middle, named ds-

F (Sanderson et al. 1989). 

Cleavage assays were performed by incubating the indicated amounts of Ape1WT with a 

fixed amount of each G4 substrate in a high ionic strength solution (50 mM KCl). As 

Figure 21 shows, Ape1WT exhibited different endonuclease activities on the three 

substrates: it did not significantly cleave the S4 ODN, generating a maximum of only 

about 4% of product. In contrast, Ape1 cleaved about one third of the S8 ODN substrate 

at the highest protein concentration (Figure 21).  

Figure 20 SPR sensorgrams for Ape1WT and Ape1NΔ33 with Poly dT oligonucleotide 

Overlay of sensorgrams relative to SPR experiments for the binding to immobilized Biot- Poly dT 

of Ape1WT (left) and Ape1NΔ33 (right), respectively. 



45 
 

 

Figure 21 The position of the abasic site on the G4 influences Ape1WT endonuclease activity 

Representative denaturing polyacrylamide gels of AP site incision by Ape1WT on S4 and S8 

incubated with the indicated amount of protein in a solution containing 50 mM KCl as described 

in Materials and methods section (left). Graph describes the percentage of conversion of substrate 

(S) into product (P) as a function of the dose of Ape1 protein on the specified substrate (right). 

ds-F ODN was used as positive control. S denotes the substrate position; the length of the 

generated products is 1 nt different between S8 (P) and ds-F (P’). Average values are plotted with 

standard deviations of three loadings of the same experiment as a function of protein dosage. 

Standard deviation values were always less than 10% of the mean of experimental points. 

Asterisks indicate a statistically significant difference between the indicated substrate and Poly 

dT-F oligonucleotide processing. 

 

As expected, the Poly dT-F was cut less efficiently than S8, as it does not adopt secondary 

structures, and the Nat sequence was not processed (Figure 22). Moreover, as expected, 

the ds-F ODN was the best substrate, with a 1000-fold higher rate of cleavage by Ape1 

than found for the G4 structures (Figure 22).  
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Prompted by the importance of the Ape1 N-terminal domain in binding G4 structures 

(Figures 13 and 17), we analyzed the endonuclease activity of the Ape1NΔ33 on the same 

telomeric substrates (Figure 23). At high ionic strength (i.e. 50 mM KCl), Ape1NΔ33 

cleaved the G-quadruplex structures much less efficiently than Ape1WT protein. Cleavage 

of the S8 substrate reached a maximum of nearly 15%, while both the S4 and Poly dT-F 

ODN gave maxima of only about 1% product (Figure 23).  

Figure 22 Ape1WT endonuclease activity on control substrates 

Representative denaturing polyacrylamide gels of AP site incision by Ape1WT on the indicated 

oligonucleotides incubated with the specified amount of protein in a solution containing 50 mM 

KCl as described in Materials and methods section (left). Graph describes the percentage of 

conversion of substrate (S) into product (P) as a function of the dose of protein on the specified 

substrate (right). ds-F or S8 oligonucleotides were used as positive controls. S denotes the 

substrate position, P denotes the product position. Average values are plotted with standard 

deviations of three loadings of the same experiment. Standard deviation values were always less 

than 10% of the mean of experimental points. 
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Figure 23 The position of the abasic site on the G4 influences Ape1N∆33 endonuclease activity 

Representative denaturing polyacrylamide gels of AP site incision by Ape1N∆33 on S4 and S8 

incubated with the indicated amount of protein in a solution containing 50 mM KCl as described 

in Materials and methods section (left). Graph describes the percentage of conversion of substrate 

(S) into product (P) as a function of the dose of Ape1 protein on the specified substrate (right). 

ds-F ODN was used as positive control. S denotes the substrate position; the length of the 

generated products is 1 nt different between S8 (P) and ds-F (P’). Average values are plotted with 

standard deviations of three loadings of the same experiment as a function of protein dosage. 

Standard deviation values were always less than 10% of the mean of experimental points. 

Asterisks indicate a statistically significant difference between the indicated substrate and Poly 

dT-F oligonucleotide processing. 

 

The activity of Ape1NΔ33 on ds-F, was weaker than that of the full-length protein but, at 

the highest concentration, Ape1NΔ33 was able to process nearly all the substrate, with no 

activity on the Nat or the Poly dT-F ODN (Figure 24). 
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At low ionic strength, the Ape1 N-terminus affects the catalytic activity of the protein, 

via the product-release step of the reaction (Fantini et al. 2010). We therefore tested the 

effects of reduced salt concentration on Ape1-cleavage activity, by performing enzymatic 

experiments in 5 mM KCl (vs. 50 mM in the previous experiments). Under these 

conditions, Ape1WT displayed increased endonuclease activity on G4 structures (Figure 

25), then seen at higher KCl (Figure 21).  

Figure 24 Ape1N∆33 endonuclease activity on control substrates 

Representative denaturing polyacrylamide gels of AP site incision by Ape1N∆33 on the indicated 

oligonucleotides incubated with the specified amount of protein in a solution containing 50 mM 

KCl as described in Materials and methods section (left). Graph describes the percentage of 

conversion of substrate (S) into product (P) as a function of the dose of protein on the specified 

substrate (right). ds-F or S8 oligonucleotides were used as positive controls. S denotes the 

substrate position and P denotes the product position. Average values are plotted with standard 

deviations of three loadings of the same experiment. Standard deviation values were always less 

than 10% of the mean of experimental points. 

Figure 24 Ape1N∆33 endonuclease activity on control substrates 

Representative denaturing polyacrylamide gels of AP site incision by Ape1N∆33 on the indicated 

oligonucleotides incubated with the specified amount of protein in a solution containing 50 mM 

KCl as described in Materials and methods section (left). Graph describes the percentage of 

conversion of substrate (S) into product (P) as a function of the dose of protein on the specified 

substrate (right). ds-F or S8 oligonucleotides were used as positive controls. S denotes the 

substrate position and P denotes the product position. Average values are plotted with standard 

deviations of three loadings of the same experiment. Standard deviation values were always less 

than 10% of the mean of experimental points. 
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In detail, the S4 resulted to be better processed under low ionic strength conditions (Figure 

25) by Ape1WT, with an increase of about ten-fold with respect to high salt concentration 

(50 mM KCl). Similarly, the S8 appeared more efficiently processed at low ionic strength 

Figure 25 Ape1WT cleaves AP sites in G4 substrates more efficiently at lower ionic strength 

Representative denaturing polyacrylamide gels of AP site incision by Ape1WT on the indicated 

substrates with the indicated amount of protein in a solution containing 5 mM KCl as described 

in Materials and methods section; ds-F or S8 were used as positive control (left). Graph depicting 

AP site incision activity of Ape1WT on the specified substrate in a solution containing 5 mM KCl. 

Graph describes the percentage of conversion of substrate (S) into product (P) as a function of 

the dose of protein on the specified substrate. Average values are plotted with standard deviations 

of three loadings of the same experiment as a function of protein dosage. Standard deviation 

values were always less than 10% of the mean of experimental points. Asterisks indicate a 

statistically significant difference between the indicated substrate and Poly dT-F oligonucleotide 

processing. 

Figure 26 Ape1WT cleaves AP sites in ds substrates more efficiently at lower ionic strength 

Representative denaturing polyacrylamide gel of AP site incision by Ape1WT on ds-F substrate 

(left). The substrate was incubated with the indicated amount of Ape1 in a solution containing 5 

mM KCl as described in Materials and methods section. S denotes the substrate position and P 

denotes the product position. Graph describes the percentage of conversion of substrate (S) into 

product (P) as a function of the dose of protein on ds-F (right). Average values are plotted with 

standard deviations of three loadings of the same experiment. Standard deviation values were 

always less than 10% of the mean of experimental points. 
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with a more than two-fold increase in product formation. Notably, also the Poly dT-F was 

processed under these conditions, with an efficiency similar to that displayed on the S8 

(Figure 25). As expected for ds-F, the efficiency was significantly higher (about 100-

fold), compared to the two G4 structures (Figure 26), and 4-fold higher with respect to 

the activity measured at 50 mM KCl. Therefore, the Ape1 enzymatic activity was 

significantly affected by the KCl concentration and it was modulated by an electrostatic 

effect possibly involving the contribution of the basic amino acids of the N-terminal arm 

(Fantini et al. 2010; Poletto et al. 2013).  

Then, also the activity of Ape1N∆33 was tested under low ionic strength conditions. Both 

S4 and S8 substrates were processed more actively than the previous condition (Figure 

27).  

 

 

 

Figure 27 Ape1N∆33 cleaves AP sites in G4 substrates more efficiently at lower ionic strength 

Representative denaturing polyacrylamide gels of AP site incision by Ape1N∆33 on the indicated 

substrates with the indicated amount of protein in a solution containing 5 mM KCl as described 

in Materials and methods section; ds-F or S8 were used as positive control (left). Graph depicting 

AP site incision activity of Ape1N∆33 on the specified substrate in a solution containing 5 mM KCl. 

Graphs describe the percentage of conversion of substrate (S) into product (P) as a function of 

the dose of protein on the specified substrate. Average values are plotted with standard deviations 

of three loadings of the same experiment as a function of protein dosage. Standard deviation 

values were always less than 10% of the mean of experimental points. Asterisks indicate a 

statistically significant difference between the indicated substrate and Poly dT-F oligonucleotide 

processing. 
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Moreover, the activity of Ape1NΔ33 on ds-F was even higher than the one displayed by 

Ape1WT protein (Figures 28), since the maximum product formation is reached at 1.5 fmol 

of Ape1NΔ33. These data are in agreement with previous results and are due to an increase 

of the koff in the catalytic reaction (Fantini et al. 2010).  

 

In order to evaluate the dependence of the Ape1 activity on ionic strength, we analyzed 

the variation of enzyme products formation by Ape1WT and Ape1NΔ33 on the S8 substrate, 

as a function of KCl concentrations (Figure 29). Data obtained clearly indicated a linear 

dependence of the Ape1 endonuclease activity on KCl concentrations even though to a 

different extent for the two proteins since the trend line of Ape1NΔ33 showed a greater 

steepness (m= -1.574) with respect to that of Ape1WT (m= -1.136).  

Figure 28 Ape1N∆33 cleaves AP sites in ds substrates more efficiently at lower ionic strength 

Representative denaturing polyacrylamide gel of AP site incision by Ape1N∆33 on ds-F substrate 

(left). The substrate was incubated with the indicated amount of Ape1 in a solution containing 5 

mM KCl as described in Materials and methods section. S denotes the substrate position and P 

denotes the product position. Graph describes the percentage of conversion of substrate (S) into 

product (P) as a function of the dose of Ape1N∆33 on ds-F (right). Average values are plotted with 

standard deviations of three loadings of the same experiment. Standard deviation values were 

always less than 10% of the mean of experimental points. 
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In Figure 30, the quantifications of the amount of products obtained under the different 

salt concentration conditions, as above, are summarized showing that the dependence of 

the enzymatic activities of Ape1WT and Ape1NΔ33 proteins on salt concentrations appeared 

more pronounced for S4 and the S8 ODN with respect to the ds-F substrate.  

 

Overall, these data demonstrated that the enzymatic activity of Ape1 on G4 telomeric 

structures strongly depends on the ionic strength and on the presence of the N-terminal 

unstructured domain. Therefore, these findings suggest that the charged residues present 

in the N-terminus of Ape1 may modulate its enzymatic activity on G4 structures. 

 

Figure 29 Ionic strength influences Ape1 endonuclease activity 

Representative denaturing polyacrylamide gels of AP site incision by Ape1WT or Ape1NΔ33 on S8 

substrate. The substrate was incubated with the indicated amount of Ape1 in a solution 

containing the indicated concentrations of KCl. S denotes the substrate position and P denotes 

the product position (left). AP site incision activity on S8 ODN decreases in raising ionic 

strength. Graph depicting endonuclease activity experiments performed with Ape1WT or Ape1NΔ33 

as described in Materials and methods section. Average values are plotted with standard 

deviations of three loadings of the same experiment as a function of KCl concentration used 

(right). Standard deviation values were always less than 10% of the mean of experimental points. 
Asterisks indicate a statistically significant difference between the endonuclease activity displayed by 

Ape1WT with respect to Ape1NΔ33. 

Figure 30 Summary of AP site incision activity of Ape1 protein on the different substrates 

Histograms summarizing the different endonuclease activities of Ape1WT (left) and Ape1NΔ33 

(right) on the specified substrates at the indicated doses (fmol) of the enzyme in the stated KCl 

concentrations on the different substrates. Each bar was compared with the activity of the 

protein on ds-F in the corresponding saline condition. 
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6.4. Acetylatable lysine residues in the Ape1 N-terminus 

are required for binding and enzymatic activity on G4 

telomeric structures 

In order to investigate whether the positive charges (i.e. acetylatable lysine residues) in 

the Ape1 N-terminal domain might affect the processing of damaged telomeric substrates, 

we evaluated the endonuclease activity on the S4 and S8 substrates of Ape1K4pleA, in 

which replacement of the lysine by alanine residues mimics acetylation by neutralizing 

the positive charges of the side chains (Fantini et al. 2010; Lirussi et al. 2012). 

 

Purified Ape1K4pleA (Figure 31) displayed an altered mobility with respect to Ape1WT, 

which was likely due to the alteration of the overall charge, as we previously observed 

(Fantini et al. 2010). First, we evaluated the ability of Ape1K4pleA to interact with the 

telomeric sequences. UV-crosslinking experiments (Figure 32) demonstrated that all the 

proteins form complexes with both S4 and S8, and that the complexes had the same 

relative mobility as the proteins.  

Figure 31 Purified recombinant Ape1 mutant proteins check 

Gel analysis of human purified recombinant proteins used in this study. 0.5 µg of each protein 

were loaded and separated onto 10% SDS-PAGE followed by Coomassie brilliant blue staining. 
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The enzymatic activities were assessed under different salt concentration conditions. At 

50 mM KCl, none of the proteins had strong activity on S4 (<3% product formation). All 

the proteins had some activity on S8 at 50 mM KCl, with Ape1WT having a 2- to 3-fold 

higher rate of cleavage than Ape1N∆33 and Ape1K4pleA (Figures 33 and 34). In contrast, the 

activity of Ape1K4pleA on ds-F at 50 mM KCl resembled that of the Ape1WT, while 

Ape1K4pleA activity was somewhat lower (Figures 33 and 34).  

 

Figure 32 Ape1 interacts with G4 oligonucleotides in a stoichiometric ratio 

Interaction between recombinant wild type and mutant Ape1 with S4 (left) and S8 (right) was 

evaluated through crosslinking analysis. The substrates were challenged with Ape1WT (lane 3), 

Ape1NΔ33 (lane 4) or Ape1K4pleA (lane 5) as described in Materials and methods section. Reactions 

were resolved onto SDS-PAGE 10%. Lane 1 and 2: non-crosslinked or crosslinked ODN 

respectively.  

Figure 33 AP site incision activity graphs summarizing endonuclease activity of Ape1 protein 

and its mutants on the different substrates in a solution containing 50 mM KCl. 
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At 5 mM KCl, the lower salt concentration strongly increased the activity of all the 

proteins on both the S4 and the S8 substrates (Figure 35 and 36). On the S4 substrate, 

Ape1K4pleA was more active (~44% product) than Ape1WT (Figure 35 and 36). Notably, 

the activity of both modified Ape1 proteins on ds-F was similar and higher than that of 

Ape1WT (Figure 35 and 36). 

 

Figure 34 Endonuclease activity of Ape1K4pleA on telomeric oligonucleotides and control 

substrate at high ionic strength 

Representative denaturing polyacrylamide gels of AP site incision by Ape1K4pleA on the indicated 

substrates with the specified amount of protein in a solution containing 50 mM KCl as described 

in Materials and methods section. 



56 
 

Overall, these data clearly demonstrate that lysine 27-35 of Ape1 contribute strongly to 

the binding and cleavage activity of the enzyme for a DNA lesion in telomeric sequences; 

acetylation to neutralize these residues in vivo may modulate Ape1 function at telomeres. 

 

6.5. Activity of Ape1 protein variants from U2OS cells 

The Ape1 enzymatic activity could be dynamically modulated by interacting proteins in 

cells (Vascotto et al. 2014; Moor et al. 2015). With the aim to evaluate the contribution 

of such partners on the enzymatic activity of Ape1, we carried out enzymatic assays 

employing Ape1-protein complexes isolated from human cell lines. In these assays, in 

addition to the K-to-A protein, we introduced the alternative K-to-R protein (a non-

acetylatable form - Ape1K4pleR) and the K-to-Q protein (mimicking a constitutive 

acetylated Ape1 form retaining the side chain with the charge neutralized - Ape1K4pleQ) 

substitutions (Lirussi et al. 2016). We measured the activity of the Ape1 proteins on 

telomeric substrates using immunocaptured Ape1-protein complexes obtained from 

U2OS human cells (Figure 37 and 38). These complexes were affinity purified following 

transfection of vectors expressing the FLAG-tagged mutant proteins (Lirussi et al. 2016) 

Figure 356 AP site incision activity graphs summarizing endonuclease activity of Ape1 protein 

and its mutants on the different substrates in a solution containing 5 mM KCl 

Figure 365 Endonuclease activity of Ape1K4pleA on telomeric oligonucleotides and control 

substrate at low ionic strength 

Representative denaturing polyacrylamide gels of AP site incision by Ape1K4pleA on the indicated 

substrates with the indicated amount of protein in a solution containing 5 mM KCl as described 

in Materials and methods section. 
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and checked for the presence of Ape1’s partners such as nucleophosmin (NPM1) (Figure 

38 and Antoniali et al. 2017).  

The Ape1K4pleA and Ape1K4pleQ proteins obtained from U2OS cells had different 

electrophoretic mobility than Ape1WT (Figure 37), consistent with the recombinant 

proteins obtained from E. coli (Figure 31). The separation of these IP samples on a urea-

gel demonstrated that the altered migration obtained in SDS-PAGE gels was not due to a 

different apparent molecular weight of the mutants Ape1K4pleA and Ape1K4pleQ, but 

Figure 387 Immunocaptured Ape1WT and mutant proteins check 

Western blot analysis of Ape1 IP samples used in this study. Co-IP proteins were separated onto 

10% SDS-PAGE and immunoprobed with anti Ape1 antibody. rApe1 was included for 

comparison. 

Figure 378 Analysis of the interaction between Ape1 mutants and NPM1 

Evaluation of Ape1 IP from U2OS cells overexpressing Ape1 mutants resolved on 10% SDS-

PAGE analyzed through Western blot. Total cell extracts were immunoprobed with anti Ape1 

and anti NPM1 antibodies (First and second panel respectively); each lane of the first panel 

displays a lower band corresponding to the endogenous Ape1 and an upper band corresponds to 

the exogenous flagged protein. Co-IP proteins were immunoprobed with anti NPM1 antibody 

(Third panel) and Ape1 was detected through Ponceau red staining (Fourth panel). 
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presumably to the change of the overall charge (Figure 39), as previously shown (Fantini 

et al. 2010). 

We then conducted UV-crosslinking experiments with these different Ape1 variants and 

Ape1WT, (Figure 40). The ability of each mutant protein to stably interact with the 

substrates was at least comparable to that of the immunocaptured Ape1WT. Interestingly, 

the Ape1K4pleR protein displayed an enhanced binding ability, relative to Ape1WT, with all 

the substrates used in the UV-crosslinking assay (Figure 40, lanes 7).  

 

We performed cleavage experiments, at low KCl concentration (5 mM), to compare with 

Ape1WT the activity of the two acetylation-mimicking proteins (Ape1K4pleA and 

Ape1K4pleQ) and the protein that mimicks non-acetylatable Ape1 (Ape1K4pleR). 

Figure 39 Analysis of gel mobility of Ape1 mutants from IP 

Samples were separated on a 10% SDS-PAGE containing 7 M urea and immunoprobed with 

anti-Ape1 antibody. The altered electrophoretic mobility observed for the Ape1K4pleA and 

Ape1K4pleQ mutant is due to an alteration of the overall charge. 

Figure 40 Eukaryotic mutants of Ape1 are able to bind the telomeric substrates 

Crosslinking analysis of Immunoprecipitated (IP) samples were performed as described in 

Materials and methods section and run onto an SDS-PAGE 10%. Recombinant protein, rApe1WT 

was used as control. 
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Endonuclease assays (Figure 41 and 42) demonstrated that, particularly with the S8 

substrate, the acetylation-mimicking mutants displayed a higher endonuclease activity 

than did the Ape1WT and Ape1K4pleR proteins, suggesting that the loss of positive charges 

of several Lys residues confers on the enzyme an increased ability to release the product 

upon cleavage, as we previously hypothesized (Fantini et al. 2010).  

The S4 substrate was significantly less processed by all the tested proteins, similarly to 

previous data obtained with recombinant proteins from E. coli with the activities of 

acetylation-mimicking proteins higher than those of the Ape1WT and Ape1K4pleR proteins. 

Similar experiments, performed at 50 mM KCl, indicated that the enzymatic activity of 

the tested proteins was significantly lower under those conditions, as found for the 

purified proteins (data not shown). 

Figure 41 AP site incision activity graphs summarizing endonuclease activity of eukaryotic 

Ape1 protein and its mutants on the telomeric substrates 

Graphs depicting AP site incision activity of IP for Ape1WT, Ape1NΔ33, Ape1K4pleA, Ape1K4pleQ and 

Ape1K4pleR on the specified substrate in a solution containing 5 mM KCl. Graphs describe the 

percentage of conversion of substrate into product as a function of the dose of protein on the 

indicated substrate. Average values are plotted with standard deviations of three loadings of the 

same experiment as a function of protein dosage. 
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Overall, our data clearly indicate that the acetylation of lysine residues K27-35 is important 

for controlling the overall enzymatic activity of Ape1 on telomeric sequences, as in the 

case for ordinary abasic dsDNA substrates (Fantini et al. 2010).  

 

Figure 42 Endonuclease activity of eukaryotic immunocaptured Ape1 protein and its mutants 

on telomeric oligonucleotides 

Representative denaturing polyacrylamide gels of AP site incision by co-IP samples of Ape1WT 

or the indicated mutants on the specified G4-structured substrates. The substrate was incubated 

with the indicated amount of Ape1-IP in a solution containing 5 mM KCl as described in 

Materials and methods section. S denotes the substrate position and P denotes the product 

position. 
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6.6. The telomeric-binding ability of Ape1 depends on K27, 

K31, K32 and K35 residues 

Next, we checked the ability of Ape1 wild-type and mutated proteins to physiologically 

interact with telomeres by using Telomeric-Chromatin Immuno-Precipitation analysis 

(Telo-ChIP) analyses (see Materials and methods). Telo-ChIP analysis was performed on 

HeLa cells stably expressing FLAG-tagged Ape1 mutant proteins in place of the 

endogenous wild-type (which was down-regulated through a specific siRNA (Lirussi et 

al. 2012; Vascotto et al. 2009; Antoniali et al. 2017)). The expression levels of the ectopic 

forms of Ape1 in these cells was similar to that of the endogenous protein (Antoniali et 

al. 2017), which should minimize off-target and other confounding effects of 

overexpression. The DNA recovered from the ChIP assay was then analysed by 

quantitative PCR (Q-PCR). As shown in Figure 43, the telomeric binding ability of 

Ape1NΔ33 was considerably reduced, compared to Ape1WT protein. In contrast, Ape1K4pleA 

showed a binding ability comparable to that of Ape1WT while Ape1K4pleR bound telomeric 

DNA with an activity 9-fold higher than that of Ape1WT. These data are consistent with 

the binding detected using UV-crosslinking (Figure 32). 

 

Figure 43 Analysis of binding of Ape1 protein and its mutants on telomeric sequences 

U2O2 cells were transfected with pCMV plasmids for the expression of Flag-tagged Ape1 

mutants as indicated in Materials and methods section. Empty vector used as control. Histogram 

shows the amount of telomeric sequences by each mutant of Ape1 resulting from ChIP 

experiments as percentage of input DNA. Error bars correspond to SDs of qPCR from one ChIP 

experiment. 
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6.7. Interaction of NPM1 with Ape1 modulates its 

endonuclease activity on telomeric sequences 

Since the N-terminal domain of Ape1 is involved in modulating protein-protein 

interactions (Poletto et al. 2013), we next checked whether the interaction with a known 

Ape1 partner NPM1 (Vascotto et al. 2009) may affect Ape1 enzymatic activity on 

telomeric DNA. We previously demonstrated that stable interaction between Ape1 and 

NPM1 requires charged K27-35 residue on Ape1 (Lirussi et al. 2012), and that this 

interaction modulates Ape1 endonuclease activity in vitro and in cancer cells (Vascotto 

et al. 2014). Interestingly, NPM1 can bind G-quadruplex structures in the c-Myc promoter 

(Federici et al. 2010). 

First, we checked whether NPM1 affects telomere physiology by testing whether 

telomere length is affected in the OCI/AML3 cell line, which stably expresses the aberrant 

NPM1c+ protein, which is localized to the cytoplasm, compared to OCI/AML2 cells 

expressing wild-type NPM1 localized to the nucleus (Tiacci et al. 2012). Telomere-length 

assays clearly demonstrated an evident shortening of telomeres in OCI/AML3 cells with 

respect to control OCI/AML2 cells, confirming a role for nuclear NPM1 in telomere 

maintenance (Figure 44, left). To verify the importance of Ape1 role in the maintenance 

of telomere integrity, we inhibited the Ape1 endonuclease activity treating OCI/AML2 

cells with sublethal doses of compound #3 for one week (Rai et al. 2010). Upon the 

inhibition of Ape1 activity, we could detect a shortening of the telomeric signal, as the 

mean telomere length was 3.12 kbp compared with 3.28 kbp of the control sample 

(DMSO). This evidence suggests that the protein exerts its endonuclease activity at the 

telomeric level and its inhibition indeed affects telomere dimension. In order to confirm 

a role for Ape1 in telomere maintenance, we performed the telomere length analysis in 

CH12F3 cells, a mouse lymphoma cell line devoid of Ape1 (∆∆∆) or retaining one copy 

of Ape1 gene (∆++) (Masani, Han, and Yu 2013). The Ape1-proficient line had a 

telomere length averaging ~18 kbp, as expected for mouse telomeres. The Ape1 deficient 

cells showed a significantly shorter telomeres averaging 14 kbp (Figure 44, right). These 

results show a role for Ape1 in telomere maintenance in murine lymphocytes, consistent 

with a previous study on human cell lines (Madlener et al. 2013). 
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We then investigated the effects of NPM1 on Ape1 binding of the telomeric Nat substrate 

by EMSA assays. NPM1 did not form detectable complexes with the Nat, while there 

clearly was binding by Ape1 (Figure 45, lanes 2 and 3). When increasing amounts of 

NPM1 were added to reactions with a constant amount of Ape1, the extent of the protein-

telomeric DNA complex was progressively decreased (Figure 45, lanes 4-7). As expected, 

Ape1NΔ33 did not form detectable complexes with the Nat sequence, independently of 

NPM1 presence (Figure 45, lanes 8-12). GST-pulldown experiments (Figure 46) 

Figure 44 Ape1 presence is fundamental to maintain telomere integrity in vivo 

Telomeric length assay as a function of NPM1 localization (left). Telomere length assay was 

performed as described in Materials and methods section on acute myeloid leukemia (AML) cells 

showing the different length of telomeres in cell types characterized by different NPM1 

localization. AML2 cells were untreated (UNT) or treated with compound #3 or DMSO. 
Telomeric length assay as a function of Ape1 expression level (right). Telomere length was 

assayed on mouse CH12F3 cells expressing (∆++) or depleted for Ape1 (∆∆∆) protein. Ctrl 

refers to a DNA control with a mean length of 7.4 kbp provided by the kit. The molecular weight 

marker (m) is provided by the kit; the weight of each band is indicated as kbp. 
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confirmed the interaction of Ape1 with NPM1 recombinant proteins under these 

conditions.  

 

The reported ability of NPM1 to bind G-quadruplex structures (Gallo et al. 2012; Federici 

et al. 2010; Scognamiglio et al. 2014) prompted us to investigate telomere binding using 

SPR. As shown in Figure 47, NPM1 does interact with the Nat, although with a 4.6-fold 

lower affinity than Ape1WT (Table 2), consistent with the EMSA results (Figure 45). 

 

Figure 45 NPM1 inhibits Ape1 endonuclease activity competing with the substrate for the 

interaction with the N-terminal domain of the endonuclease 

Representative native EMSA polyacrylamide gel of recombinant Ape1WT and Ape1NΔ33 pre-

incubated with increasing concentrations of NPM1. Binding on Nat substrate (25 nM) is 

shown. Reactions were performed as explained in Materials and methods section. 
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We then analysed the effect of the interaction with NPM1 on the Ape1-AP endonuclease 

activity. When NPM1 was present in a sub-stoichiometric ratio with respect to Ape1, the 

endonuclease activity was modestly enhanced; in contrast when NPM1 was present in a 

supra-stoichiometric ratio with Ape1, the endonuclease activity was inhibited ~2-fold 

(Figure 48). Frome these data, we can conclude that interaction of NPM1 with Ape1 

modulates its endonuclease activity on telomeric sequences, at least in vitro. 

 

Figura 47 GST pull-down experiment showing that NPM1 is able to interact with Ape1 under 

physiologic conditions 

GST pull-down assay was performed as described in Materials and methods section using 

GST or GST-tagged recombinant Ape1WT as the bait and NPM1 as the prey. After the 

incubation, the samples were loaded on a 10% SDS-PAGE and subsequently 

immunoprobed with anti-GST and anti-NPM1 antibodies. 

Figura 46 NPM1 shows only a weak affinity toward Nat substrate 

Overlay of sensorgrams relative to SPR experiments for the binding to immobilized Biot- Nat of 

NPM1 
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Figura 48 NPM1, when present in a supra-stoichiometric ratio with Ape1, inhibits its 

endonuclease activity 

Representative denaturing polyacrylamide gel of AP site incision by Ape1WT on S8 substrate in 

the presence of increasing amounts of NPM1 (left). The proteins were incubated in a solution 

containing 50 mM KCl as described in Materials and methods section. S denotes the substrate 

position and P denotes the product position. Histogram showing the level of substrate processing 

upon the increasing ratio between NPM1 and Ape1WT (right). Average values with standard 

deviations of three loadings of the same experiment are presented. 
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7. Discussion 

This work was aimed at characterizing the ability of Ape1 to recognize and process 

telomeric DNA substrates containing abasic sites in different positions. Moreover, we 

wanted to evaluate the role of the unstructured N-terminal domain and, in particular, that 

of the acetylatable Lys residues we previously identified (Fantini et al. 2010; Lirussi et 

al. 2012). To this end, we analyzed the ability of the wild type and several mutant forms 

of Ape1 to recognize and process different oligonucleotides that are able to fold into 

different G-quadruplex structures. 

We found that Ape1WT was able to bind each G4 structured ODN, independently of the 

presence of the abasic site (Table 1 and Figures 17 and 19). KD values obtained through 

SPR assays showed that the affinity of the protein toward the G4 structured substrates 

was considerably higher than that for an unstructured substrate, highlighting the 

importance of DNA secondary structure for recognition by Ape1, as we previously 

suggested (Poletto et al. 2013). 

While the G-quartet structure appears to be an important determinant, a possible effect of 

the abasic site position on Ape1 activity cannot be ruled out. In fact, the enzymatic activity 

on S4 was significantly lower than that on the S8 substrate, and the CD data indicate that 

the solution composition of G4 structures for S4 and S8 is different. There was a clear 

preference of Ape1 for a parallel G4 structure for S8, with this conformation the one 

preferred under molecular crowding conditions. Consistent with our results, other studies 

report a dependence of Ape1 activity on the type of G4 structure in telomeric sequences 

containing abasic sites (Zhou et al. 2015). Since the variation of ionic strength plays a 

crucial role in similar enzymes (Correa et al. 2013; Abeldenov et al. 2015), we evaluated 

the enzymatic activity of Ape1WT under KCl concentrations of 5-50 mM. There was only 

a small effect of KCl for Ape1 acting on canonical abasic dsDNA (Figures 33 and 35), as 

previously shown (Fantini et al. 2010); the KCl concentration does not affect the 

secondary structure of the G4-substrates (Figure 13). Remarkably, Ape1N∆33 was not able 

to form any stable complexes with the substrates (Figures 17 and 19) and exhibited a 

significantly lower efficiency in processing the abasic lesions in both the S4 and S8 

structures (Figure 23), despite active Ape1 binding as demonstrated by UV-crosslinking 

experiments (Figure 18). These findings further indicate that the unstructured N-terminal 

tail of Ape1, though not directly participating in the enzymatic activity of the protein, can 
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modulate stable DNA binding by Ape1, as we previously hypothesized (Poletto et al. 

2013) and as recently corroborated by other studies (Kladova et al. 2018). 

The Ape1 N-terminal domain is rich in positively charged amino acids (8 Lys and 2 Arg 

residues); several of these lysine residues (K27, K31, K32, K35) can undergo acetylation in 

cells under genotoxic stress conditions (Fantini et al. 2010; Lirussi et al. 2012). Similarly 

to Ape1N∆33, the mutant Ape1K4pleA, which mimics the acetylated status by replacing all 

four Lys with Ala residues, displayed an endonuclease activity on S4 and S8 that was 

significantly lower than that of Ape1WT. Despite this difference, the Ape1K4pleA did not 

show a reduced ability to bind to G4-DNA (Figure 32). Interestingly, at lower ionic 

strength, the activity of the Ape1K4pleA and Ape1NΔ33 mutants was higher than that of 

Ape1WT protein. This result indicates that additional charged amino acids outside the N-

terminus may contribute to the catalytic activities of Ape1. In addition, the increased 

enzymatic activities at low ionic strength of Ape1K4pleA and Ape1K4pleQ on S4 and S8, 

relative to Ape1WT and Ape1K4pleR (Figures 41 and 42), suggest that charged K residues 

in the Ape1 N-terminus may regulate the product-release step, as we previously 

hypothesized (Fantini et al. 2010). These findings are in line with previous observations 

showing that release of the incision product may represent the limiting step in Ape1 

turnover, particularly for dsDNA and structures such as the telomere G-quadruplex 

(Marenstein, Wilson III, and Teebor 2004; Poletto et al. 2013; Mol, Hosfield, and Tainer 

2000; Masuda, Bennett, and Demple 1998). 

The observation that the Ape1K4pleR protein has increased telomere binding ability 

(Figures 40, 41 and 43), also supports the conclusion that the charged residues in the N-

domain significantly contribute to the stability of Ape1-telomeric substrates complexes. 

Recent studies pointed to the unstructured Ape1 N-terminus as a relay for regulating the 

different functions of the protein through modulation of the Ape1-protein interactome 

(Fantini et al. 2010; Vascotto et al. 2014; Antoniali, Lirussi, Poletto, et al. 2014; Antoniali 

et al. 2017). We previously demonstrated that NPM1 stimulates Ape1 endonuclease 

activity on abasic dsDNA in vitro and in cells through interaction with the unstructured 

Ape1 N-terminus (Fantini et al. 2010; Vascotto et al. 2014). Moreover, NPM1 by itself 

interacts with G-quadruplex-forming DNA (Federici et al. 2010), and mouse cells lacking 

NPM1 display general signs of genetic instability and activation of DNA damage 

responses (Colombo et al. 2005). In addition, Acute Myeloid Leukemia (AML)-

associated mutations in the NPM1 gene, cause the re-localization of part of the protein to 
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the cytoplasm (NPM1c+). This mis-localization hampers DNA binding of non-telomeric 

G4 structures by NPM1 (Bañuelos et al. 2013; Chiarella et al. 2013) and may affect Ape1 

nuclear BER function in cancer cells (Vascotto et al. 2014). Therefore, the investigation 

of a potential effect of NPM1 in modulating the activity of Ape1 on G4-structures may 

represent an important model for understanding the role of mutual interactions between 

Ape1 and its interacting partners in the processing of damaged DNA. Using AML cell 

lines, we demonstrated that functional NPM1 is required for maintenance of appropriate 

telomeric length. Depending on the NPM1/Ape1 ratio, recombinant NPM1 may modulate 

the enzymatic activity of Ape1 on abasic telomeric substrates by having a stimulatory 

function under sub-stoichiometric ratio, and an inhibitory effect at supra-stoichiometric 

ratio. It must be noted that functional NPM1 may act as a pentameric molecule (Mitrea et 

al. 2014), so it is possible that, in vivo, a supra-stoichiometric ratio between NPM1 and 

Ape1 may represent a more physiologic condition, though further experiments are needed 

to better circumstantiate these findings in the telomeric context. Overall, the data show 

that, depending on the relative stoichiometric ratio between NPM1 and Ape1, the 

enzymatic activity of Ape1 on telomeric substrates may be strictly modulated by Ape1 

protein interacting partners. Moreover, these findings suggest that an effort should be 

made to directly determine whether telomere maintenance is compromised, as a result of 

disrupting the normal Ape1-NPM1 interaction. 

Since the interaction between NPM1 and Ape1 is also modulated by acetylation of the 

Lys residues at positions 27/31/32/35 (Lirussi et al. 2012), we may also infer that their 

acetylation may significantly affect the Ape1 role on telomere maintenance, not only 

through a direct effect on Ape1 binding on these substrates (Figure 46), but also by means 

of protein-protein mediated effects. Interaction of NPM1 with Ape1 involves mainly the 

N-terminal portion of Ape1 (Poletto et al. 2013) and positive charges on Lys residues at 

positions 27/31/32/35 (Lirussi et al. 2012). Thus, these data support the hypothesis that 

the Ape1 positively charged N-terminus is an important player in regulating the kinetics 

of the interaction of Ape1 with the telomeric substrates. Moreover, the endonuclease 

activity data support the conclusion that, depending on the relative stoichiometric ratio 

between NPM1 and Ape1, the enzymatic activity of Ape1 over telomeric substrates may 

be strictly modulated by Ape1 protein interacting partners. Therefore, these findings 

require an effort to directly determine whether telomere maintenance is compromised, as 

a result of disrupting the functional normal Ape1-NPM1 interaction. 
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Madlener et al. (Madlener et al. 2013) showed that cells expressing an Ape1 mutant 

bearing substitution of K6/K7 with Ala residues underwent severe chromosomal 

instability. Though we did not evaluate the role of these residues in modulating the 

enzymatic activity and binding properties of Ape1 on telomeric G-quadruplex, we may 

speculate that our data might provide the molecular basis for those unexplained findings. 

In fact, we previously found that deacetylation of K6/K7 by Sirtuin 1 (SIRT1) is dependent 

on the charged status of the K27-35 residues (Lirussi et al. 2012). Only when K27-35 are 

positively charged, K6/K7 may be de-acetylated by SIRT1, providing the positive charges 

essential for the normal function of Ape1 at telomeres. These observations support the 

hypothesis that dynamic cross-talk between the Lys residues in the Ape1 N-terminus may 

fine-tune the enzymatic activity of the protein and we speculate that there is a general role 

for acetylation of these residues in regulating Ape1 function at telomeres (Figure 49). 

In another recent work (Kladova et al. 2018), stimulation of the OGG1, MBD4 and ANPG 

glycosylases activities by Ape1 strictly depended on the presence of an intact Ape1 N-

terminus. Through oligomerization of Ape1 along the DNA duplex, which depends on its 

N-terminus, the protein was able to promote DNA-bridges formation and DNA 

aggregation, which, in turn, may cause structural deformation in the DNA double helix 

responsible for increasing the enzymatic rate of the glycosylases themselves. This new 

biochemical property of Ape1 may be particularly interesting in the context of the highly 

repetitive telomeric sequences, in which the secondary and tertiary structures of DNA 

play a fundamental regulatory function that influences genome stability.  

Further studies along these lines are warranted and will deserve particular attention. A 

crystal structure of full-length Ape1 protein with its cognate substrate would provide 

physical evidence to our biochemical observations. To date, all the available crystal 

structures of Ape1 employed an N-terminal truncated form of the protein (Mol et al. 2000; 

Freudenthal et al. 2015), thus limiting definitive conclusions on this unusual DNA repair 

enzyme. 

An altered acetylation status of Ape1 K27-35 has been demonstrated in human cancers 

(Poletto et al. 2012; Bhakat et al. 2016). We may thus hypothesize that chromosomal 

instability in cancer development may result from defective coordination of Ape1 

function at telomeres due to post-translational modifications on its N-terminal Lys 

residues. Specific experiments are needed to corroborate this hypothesis. 
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Figura 49 A model for the regulation of Ape1 activity during the repair of abasic sites in G4 

DNA 

Upon genotoxic damage, the generated damaged base is removed by a BER glycosylase, then the 

abasic site is handled by Ape1. After the intervention of acetyl-transferases, the lysine residues 

located in the N-terminal domain of Ape1 are acetylated. Consequently, this post-translational 

modification induces an increase of the release rate of the product upon the endonucleolytic 

cleavage. Consequently, acetylation may represent an efficient mechanism to regulate the activity 

of the protein also at the telomeric level. 
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8. Future perspectives 

Ape1 N-terminus was defined as an essential domain for the interaction of the protein 

with nucleic acids, modulating the overall affinity of the protein. A recent work showed 

that Ape1, through its N-domain, can polymerize on DNA and that this induces a 

structural deformation of the double strand that could favor the activity of glycosylases 

thus increasing their cleavage rate (Kladova et al. 2018). This new highlighted property 

may be interesting to be further explored when considered in the context of telomeric 

repeats, which are characterized by the presence of secondary structures that influence 

their stability. Therefore, it would be interesting to obtain a crystal structure of the full 

length protein complexed with its substrate, as up to now the crystals were acquired using 

an N-terminal truncated form of the protein (Mol et al. 2000; Freudenthal et al. 2015), so 

partially excluding the contribution of an important functional domain for the enzyme. 

As human cancer cells display an altered acetylation status for lysine residues K27, K31, 

K32 and K35, a correlation between chromosome instability and post translational 

modification dysregulation may exist (Poletto et al. 2012; Bhakat et al. 2016). So further 

investigation of this aspect could allow us to better define the precise association between 

acetylation and Ape1 function at the telomeres with specific in vivo experiments. 

Experiments are underway to better describe the functional role of the N-terminus and for 

the Lysine residues here located in telomere physiology. We are interested in analyzing 

whether telomeres show significant variations in cells expressing these mutant forms of 

Ape1 in place of the wild type protein in term of length, integrity and chromosomal 

aberrations such as translocations or fusions. 

It was demonstrated that Ape1 interacts with TRF2 and that this interaction at the 

telomeric level allows the correct positioning of the shelterin component on the interested 

site (Madlener et al. 2013). Next, it would be useful to assess the interaction between 

Ape1 acetylation mutants and the remaining sheltering proteins to define the interplay 

between the endonuclease and the other components responsible for telomere protection 

and stability.  

Finally, based on the discovery that Ape1 may process abasic RNA, defining the 

interaction between Ape1 and TERRA RNA would be useful to enrich the 

characterization of the interaction of the telomeric transcript and the proteins implied in 

telomeric maintenance. TERRA interacts with TRF1 and TRF2 (Deng et al. 2009), folds 
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in a parallel G4 structure, participates in 3’ telomeric overhang erosion  (Cusanelli and 

Chartrand 2015) and can form hybrid quadruplexes pairing with complementary DNA 

(Xu and Komiyama 2012). So, this RNA molecule takes active part in several processes 

related with telomere maintenance, heterochromatinization, transcription activation and 

acts as a multiple protein partner and a scaffold that proteins employ to recruit other 

interactors. For these reasons it may have a key role in fundamental cellular processes in 

which also Ape1 takes part. Consequently, the interplay between the endonuclease and 

the telomeric transcript could represent a worthy crosstalk to be studied to better detail 

the scenario involving Ape1 in the context of transcription and RNA processing. 
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9. Materials and Methods 

9.1. Protein expression and FPLC purification 

BL21 cells were transformed with the proper pGEX-3X (GST tag) or pET-15b (His tag) 

plasmid following the manufacturer’s instructions. In order to produce the protein, the 

culture was harvested at 37°C at 230 rpm until the reaching of OD600 ~0,7. Finally, the 

culture was induced with 1 mM of IPTG (Sigma) for 4 hours and then was collected upon 

centrifugation. The pellet was lysed in the presence of Protease inhibitor 2.1 mg/ml 

(Sigma) and Lysozyme 0.3 mg/ml (Sigma) through sonication and the sample was 

centrifuged at 23,000 g for 20 minutes at 4° C, then the supernatants were purified through 

the appropriate column for affinity purification. 

GST-tagged proteins (Ape1 WT and mutants) were purified through a GSTrap column 

(GE Healthcare) and they were eluted through at increasing range of GSH (Sigma) 

concentration following the manufacturer’s instructions. Then the proteins were 

incubated with Factor X (Amersham) to remove the tag; the enzyme was separated from 

the protein through a benzamidine column (GE Healthcare) and finally a cation exchange 

purification was performed.  

His-tagged NPM1 protein were purified through a His-Trap column (GE Healthcare) and 

they were eluted through 3 steps at increasing imidazole (Sigma) concentrations. The 

protein was dialyzed and then purified through a cation exchange purification column.  

All protein fractions were stored in a buffer containing 25 mM Tris pH 7.5, 100 mM 

NaCl, 1 mM DTT, 10% glycerol. 

 

9.2. Oligonucleotides synthesis, purification and annealing 

Oligonucleotides (ODN) reported in Table 1 were synthesized on a Millipore Cyclone 

Plus DNA synthesizer using standard solid phase β-cyanoethyl phosphoramidite 

chemistry at 1 µmol scale. The synthesis were performed by using  Fast Deprotection 

DNA 3'-phosphoramidites, a 5'-dimethoxytrityl-3'-phosphoramidite-1',2'-dideoxyribose 

(dSpacer, dS, Link Technologies) for the insertion of an abasic site mimic moiety and 

IRDye 800 phosphoramidite (LI-COR Biosciences) for the introduction of a Near IR 

fluorescent dye at the 5'-end of each ODN sequence. The oligomers were detached from 

the support and deprotected by treatment with concentrated aqueous ammonia in the dark 

for 1.5 hour at room temperature. The oligomers were purified by HPLC (Nucleosil C18 

http://www.sigmaaldrich.com/etc/controller/controller-page.html?TablePage=16040632
http://www.sigmaaldrich.com/etc/controller/controller-page.html?TablePage=16040632
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column Macherey–Nagel, 100-5; EC250/4.6) using standard methods. The fractions of 

the oligomers were collected and successively desalted by Sep-pak cartridges (C-18). The 

isolated oligomers proved to be >98% pure by HPLC. To perform in vitro experiments, 

some selected ODN sequences used previously (Virgilio et al., 2012) were employed and 

produced homemade as explained in the previous paragraph. A poly dT ODN of 23 bases, 

holding an abasic site (F) in 16th position (Poly dT-F) and an IRDye 800 at the 5’ was 

synthesized by Metabion, purified through HPLC and checked in Mass Check. This probe 

was used as negative control as it is unable to acquire secondary structures. All the ODN 

were resuspended in DNase-free water at 100 µM and annealing was performed at a final 

concentration of 5 µM in a solution containing 70 mM KCl, 20 mM KH2PO4 and 0.2 mM 

EDTA, at pH 7.0, heated at 70°C and cooling down over night. A double-stranded ODN, 

named ds-F, which is composed of 26 bases and it holds a tetrahydrofuran mimicking the 

abasic site in position 15, was also synthesized by Metabion, purified through HPLC and 

checked in Mass Check. This latter ODN was annealed in 10 mM Tris, 10 mM MgCl2, 1 

mM EDTA pH 7.5, heated at 95°C and let to cool down. All ODN sequences are listed in 

Table 1. 

ODN 

name 
Sequences 

Length of 

the product 

Nat 5’-TAG GGT TAGG GTT AGG GTT AGG G-3’     - 

S4 5’-TAG GGT TAFG GTT AGG GTT AGG G -3’ 8 nt 

S8 5’-TAG GGT TAGG GTT AGF GTT AGG G-3’ 15 nt 

Poly dT-F 5’-TTT TTT TTTT TTT TTF TTT TTT T-3’ 15 nt 

ds-F 
5’-AAT TCA CCG GTA CCF TCT AGA ATT CG-3’ 

3’-TTA AGT GGA CAT GGG AGA TCT TAA GC-5’ 
14 nt 

Poly dT 5’-TTT TTT TTTT TTT TTT TTT TTT T-3’ - 

Table 2: Sequences of the ODN used in this study 

F: tetrahydrofuran abasic site analog. Nat, S4 and S8 substrates are single strand DNA 

folded in a G-quadruplex. Poly dT-F is an unstructured DNA single strand. ds-F is the 

only duplex DNA sequence. All the ODN are labeled with IRDye 800 at the 5’ end. 

 

9.3. Circular dichroism (CD) spectroscopy 

CD samples of the IRDye-labelled oligonucleotides reported in Table 1 were prepared at 

an ODN concentration of 25 µM by using a potassium phosphate buffer (20 mM 

KH2PO4/K2HPO4, 70 mM KCl, pH 7.0) and submitted to the annealing procedure 

(heating at 70°C and slowly cooling at RT). CD samples at 50 mM KCl were prepared 
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by diluting the samples at 70 mM KCl and adding the suitable amounts of Tris and MgCl2 

to final concentrations of 50 mM and 10 mM, respectively. CD samples at 5 mM KCl 

were prepared by dialyzing CD samples at 70 mM against a solution KCl 5 mM, Tris 5 

mM and MgCl2 1 mM. CD spectra of all G-quadruplexes and CD melting curves were 

registered on a Jasco 715 CD spectrophotometer. For the CD spectra, the wavelength was 

varied from 220 to 320 nm at 100 nm min-1 scan rate, and the spectra recorded with a 

response of 4 s, at 1.0 nm bandwidth and normalized by subtraction of the background 

scan with buffer. The temperature was kept constant at 20°C with a thermoelectrically-

controlled cell holder (Jasco PTC-348). CD melting curves were registered as a function 

of temperature from 20°C to 70°C for all G-quadruplexes at their maximum Cotton effect 

wavelengths. The CD data were recorded in a 0.1 cm pathlength cuvette with a scan rate 

of 0.5°C/min. 

 

9.4. SDS-PAGE and Western blotting 

All recombinant proteins were loaded onto a 10% (w/v) sodium dodecyl sulphate-

polyacrylamide (SDS-PAGE; acr:bis= 37.5:1) electrophoresis gel, which was 

subsequently stained using Coomassie Brilliant Blue stain (ThermoFisher). Each band, 

corresponding to the protein of interest, was quantified and normalized with BSA (bovine 

serum albumin) standardization curve. The image was finally developed by using NIR 

Fluorescence technology with an Odissey CLx scanner (LI-COR GmbH). Bands were 

quantified and analyzed using the ImageStudio software (LI-COR GmbH).  

Cell extracts samples were loaded onto a 12 (w/v) % SDS-PAGE electrophoresis gel. 

Proteins were then transferred onto nitrocellulose membranes (Schleicher & Schuell). 

Monoclonal α-Ape1 was from Novus Biologicals (1:5,000 dilution). Membranes were 

incubated with secondary antibodies labeled with IRDye (1:10,000 dilution) in 5% milk, 

PBS and Tween 0.1% and finally developed by using NIR Fluorescence technology with 

an Odissey CLx scanner (LI-COR GmbH). Bands were quantified and analyzed using the 

ImageStudio software (LI-COR). 
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9.5. Electrophoretic mobility shift assay (EMSA) 

EMSA assays were performed incubating 20 pmol of Ape1 protein (2 µM) with 250 fmol 

of the substrate (0.025 µM) for 1 hour at RT in 25 mM Tris, 100 mM KCl, 2 mM DTT, 

10% glycerol, pH 7.5. Alternatively, EMSA assays were done with 3.5 pmol of NPM1 or 

with 7 pmol of Ape1WT or Ape1N∆33, co-incubated for 1 h at RT with increasing 

concentrations of NPM1 (varying between 3.5 and 17.5 pmol); 350 fmol of Nat substrate 

were added and left to incubate for 1 h at RT during the binding reactions. The mixtures 

were loaded on a native gel 6% polyacrylamide (acr: bis= 37.5: 1) then run in the cold 

apparatus (at 4°C) at 130 V for 4 hours using 0.5x TBE as buffer. Gels were scanned and 

band intensities were quantified using the Image Studio software (Odyssey CLx, LI-COR 

GmbH). 

 

9.6. UV-crosslinking experiments 

UV-crosslinking analysis were performed co-incubating 20 pmol of recombinant purified 

protein (Ape1WT, of Ape1NΔ33 or Ape1K4pleA) for 1.5 h at 4°C with 250 fmol of S4 or S8 

ODN. Alternatively, UV-crosslinking analysis were performed with Immunoprecipitated 

(IP) samples obtained from transfected U2OS cells employing 2 pmol of Ape1, co-

incubated for 40 min at RT with 250 fmol of the G4-structured ODN in AP buffer 

containing 5 mM KCl and 1 mM MgCl2. 

The mixtures were UV-crosslinked using a Vilber Lourmat UV-crosslinker BLX-254 at 

0.2 J/cm2 and run onto SDS-PAGE 10% acrylamide. 

 

9.7. Cell cultures, transfection and Co-

immunoprecipitation 

U2OS cells were grown in DMEM (EuroClone) medium supplemented with 10% fetal 

bovine serum (FBS, EuroClone), L-glutamine (2mM), penicillin (100 U/ml) and 

streptomycin (100 mg/ml) and cultured in a humidified incubator at 5% CO2 at 37°C. 

HeLa stable clones were grown as indicated in (Vascotto et al. 2009) and harvested 10 

days after the addition of doxycycline in the medium (Vascotto et al. 2009). OCI/AML2 

and OCI/AML3 cells were grown in MEM-α (EuroClone) supplemented with 20% heat-

inactivated FBS, L-glutamine (2mM), penicillin (100 U/ml) and streptomycin (100 
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mg/ml) and cultured in a humidified incubator at 5% CO2 at 37°C. CH12F3 cells were 

grown in RPMI 1640 (EuroClone) supplemented with non-essential amino acids, Na 

pyruvate, 10% FBS, Hepes (25 mM), β-mercaptoethanol (50 µM), L-glutamine (2mM), 

penicillin (100 U/ml) and streptomycin (100 mg/ml) and cultured in a humidified 

incubator at 5% CO2 at 37°C (Masani, Han, and Yu 2013). 

Co-immunoprecipitation studies were carried out with whole cell extracts from U2OS 

cells transfected with FLAG-tagged Ape1 mutants (Ape1WT-Flag, Ape1NΔ33-Flag, 

Ape1K4pleA-Flag, Ape1K4pleQ-Flag and Ape1K4pleR-Flag). The cells were transiently 

transfected using 12 µg of DNA and 36 µL of Lipofectamine 3000 (Invitrogen). Cells 

were harvested 24 hours upon transfection, washed twice with PBS and re-suspended in 

lysis buffer (50 mM Tris HCl pH 7.4, 150 mM NaCl, 1 mM EDTA and 1 % Triton X-

100) containing proteases inhibitor cocktail. After incubation for 20 minutes at 4°C under 

rotation, cell lysates were clarified by centrifugation at 12,000 × g for 10 minutes at 4°C 

and co-immunoprecipitation was performed with anti-FLAG M2 affinity gel (Sigma-

Aldrich) at 4°C with gentle rocking for 3 hours. After washing three times with Tris-

buffered saline (TBS), immunoprecipitates (IP) were then eluted by incubation with 0.15 

mg/ml FLAG peptide in TBS and analyzed as indicated. Samples were then loaded onto 

a 12 w/vol % SDS-PAGE electrophoresis gel. Proteins were then transferred to 

nitrocellulose membranes (Schleicher & Schuell). Monoclonal α-Ape1 was from Novus 

Biologicals (1:5,000 dilution). Membranes were incubated with secondary antibodies 

labeled with IRDye (1:10,000 dilution) in 5% milk, PBS and Tween 0.1%. All gel images 

were captured with an Odissey CLx scanner (LI-COR GmbH) and analyzed using the 

ImageStudio software (LI-COR GmbH). 

 

9.8. Chromatin immunoprecipitation and quantitative PCR 

Chromatin immunoprecipitation (ChIP) was performed using the Diagenode High cell 

number ChIP kit, according to the manual. After colturing HeLa cells stably carrying 

p3XFLAG-CMV vectors in doxycycline 1 µg/ml, as previously described (Vascotto et 

al. 2009), the cells were crosslinked with 1% formaldehyde for 10 minutes at RT, and 

sonicated with the Diagenode bioruptor. Samples were immunoprecipitated overnight 

with anti-FLAG (Sigma-Aldrich). Telomeric DNA sequences were amplified by PCR 

using SensiFAST SYBR No-ROX Kit (Bioline). 
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The primer sequences were telomere forward primer (Tel 1) 5’-GGTTTTTGAGGG- 

TGAGGGTGAGGGTGAGGGTGAGGGT-3’; telomere reverse primer (Tel 2), 5’-

TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA-3’; 36B4 forward 

primer, 5’-CAGCAAGTGGGAAGGTGTAATCC-3’; 36B4 reverse primer, 5’-

CCCATTCTATCATCAACGGGTACAA-3’ (Gil and Coetzer 2004; O’Callaghan et al. 

2008). Samples were run on a C1000 Thermal Cycler CFX96 Real-Time System 

(BIORAD). Each sample was analyzed in triplicate. 36B4, a single-copy gene that 

encodes the acidic ribosomal phosphoprotein P0, was used as a reference (O’Callaghan 

et al. 2008). PCR reactions (15 μL) were set up as follows: 1 μL of recovered ChIP DNA, 

2× SYBR Green master mix (Bioline), and the forward and reverse primers each at 100 

nM final concentration. The thermal cycling conditions were as follows: 10 min at 95 °C, 

followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min for both telomere and 36B4 

amplification. 

 

9.9. AP site incision assays 

Cleavage assays were performed either at high ionic strength (Tris 50 mM, KCl 50 mM, 

MgCl2 10 mM, BSA 1 µg/µl, triton X-100 0.05%) or at low ionic strength (Tris 5 mM, 

KCl 5 mM, MgCl2 1 mM, BSA 0.1 µg/µl, triton X-100 0.005%). A fixed amount of 

substrate (250 fmol) was incubated with an increasing amount of Ape1 proteins for 40 

minutes at 37°C. Alternatively, 10 pmol of Ape1WT were incubated for 1h at RT with 

increasing amounts of NPM1, varying between 5 and 200 pmol. Then the substrate S8 

was added for the reaction for 40 min at 37°C in a solution containing 50 mM KCl (final 

volume 10 µl). The reactions were in any case stopped by adding an equal volume of stop 

solution containing formamide (10 mM EDTA, 0.5 % bromophenol blue, 80 % 

formamide), followed by heating for 5 minutes at 95°C. The mixtures were loaded on a 

7 M urea 20% acrylamide gel and run in 0.5x TBE at 130 V for 50 minutes. The intensity 

of the obtained bands was determined using a fluorescence scanner (Odyssey CLx, LI-

COR GmbH) and the quantification was obtained calculating the ratio between the 

product intensity over the sum between the intensities of the product and the substrate. 

The signals of the non-incised substrate (S) and the incision product (P) bands were 

quantified using Image Studio software. 
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9.10. Surface Plasmon Resonance (SPR) experiments 

Real-time binding assays were performed at 25 °C on a Biacore 3000 Surface Plasmon 

Resonance (SPR) instrument (GE Healthcare). For immobilization, 5'-biotinylated Nat 

and Poly dT ODN were injected at a concentration of 20 µM on a SA Biacore sensor chip 

until the desired level of immobilization was achieved (averaged value of 700 RU) in an 

injection time of 7 min. Binding assays were carried out by injecting 90 µL of analyte, at 

20 µL x min-1. Experiments were carried out at pH 7.4 using HBS (10 mM Hepes, 150 

mM NaCl, 3 mM EDTA, pH 7.4). The association phase (kon) was followed for 270 s, 

whereas the dissociation phase (koff) was followed for 300 s. The reference chip 

sensorgrams were properly subtracted to sample sensorgrams. After each cycle, the 

sensor chip surface was regenerated with a 1.0 M NaCl solution for 30 s followed by 

multiple buffer injections to yield a stable baseline for the following cycles. Analyte 

concentrations were in the range 50-1000 nM, for all proteins. Experiments were carried 

out in duplicates. Kinetic parameters were estimated assuming a 1:1 binding model and 

using version 4.1 Evaluation Software (GE Healthcare). 

 

9.11. Telomeric length assay 

Telomere length analysis was performed employing TeloTAGGG Telomere Length 

Assay Kit (Roche). Genomic DNA was isolated form OCI/AML2, OCI/AML3, CH12F3 

cells using the Blood & Cell Culture DNA Midi kit (Qiagen). OCI/AML2 were treated 

with #3 500 nM (G. Rai et al. 2010), or with DMSO as control, for 7 days. After digestion 

with Hinf I and Rsa I, DNA was separated on 0.8% agarose gel. Following denaturation, 

the DNA was transferred to a HybondN+ membrane (Boehringer Mannheim) and 

hybridized with a digoxigenin-labeled telomeric probe included in the kit. Non-

radioactive telomeric signal intensity was scanned with high resolution 

chemiluminescence settings using a Molecular Imager Chemidoc XRS scanner (Bio Rad) 

with Image Lab™ Software (Bio Rad). The length of the fragments was quantified using 

the TeloTool software version 1.3 (Matlab) (Göhring et al. 2014). 

9.12. GST pull-down assay 

300 pmol of NPM1 were added, together with 100 pmol of GST or Ape1-GST, to 15 µl 

of glutathione-sepharose 4B beads (GE healthcare). Binding was performed in AP buffer 
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1x at 4°C for 2h, under rotation. The beads were washed three times with PBS 1x 

supplemented with 0.1% w/v Igepal (CA-630 Sigma). Elution was performed with GSH 

10 mM and the obtained samples were analyzed through western blot. Anti-GST (Sigma 

H9658) and anti-NPM1 (Invitrogen 32-5200) antibodies were employed. 

 

9.13. Statistical analysis 

Statistical analyses were performed by using the Student’s t test. P <0.05 was considered 

as statistically significant. 
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