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Abstract 

 

Electroless nickel-phosphorous (NiP) coatings were produced on low carbon steel 

substrates for a total plating time of 3 h. Different preparation modalities were pursued. 

Multilayered coatings were produced by stacking three layers of the same composition by 

successive electroless plating with rinsing steps in between. On the other hand, coatings 

termed ‘monolayered’ for the sake of comparison were deposited by one step electroless 

process, with and without undergoing bath replenishment of the electrolyte during plating. All 

the samples were subjected to thermal annealing at 400 ºC for 1 h under argon atmosphere.  
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The results show that the multilayer approach prevents crack propagation in the as-

deposited coatings because the interfaces between layers block the advance of defects. Bath 

replenishment during monolayered coatings production creates pseudo-interfaces similar to 

those of the multilayered case but they are ineffective in terms of corrosion protection. Un-

replenishment of the electrolyte promotes a change in the coating’s microstructure from 

lamellar to columnar which severely worsens their performance. Upon annealing, the 

presence of interfaces, along with the recrystallization of the metallic matrix, promotes an 

upgrading of the corrosion performance of the multi-layered coatings. The corrosion products 

spread laterally at the interface where they stockpile. At a certain point, the accumulation of 

these by-products provokes the exfoliation of the outermost layer exposing the layer 

underneath to the corrosive media, thereby delaying the advancement of the corrosion attack. 

The results of this study highlight the importance of the plating approach selection, as well as 

the need for proper electrolyte maintenance during the production of high-performance 

electroless coatings.  

 

Keywords 
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1. Introduction 

Electroless nickel plating was firstly reported in the seminal paper by Brenner and 

Riddell, published in 1946 [1]. Since then, and based on their excellent mechanical properties 

and corrosion resistance, it has become one of the preferred engineering solutions for high 

demanding applications [2]. Recently, the increasingly stringent environmental regulations on 

the use of hexavalent chromium has pushed, both in academia and plating industries, the need 

for more sustainable alternatives to hexavalent chromium [3,4]. Hexavalent hard chromium 

deposits stand out for their excellent mechanical properties, including hardness and wear, as 

well as their superior corrosion resistance in functional applications [5]. Electroless nickel 

coatings have emerged over the last few years as a realistic alternative to hexavalent 

chromium [6]. 

In electroless processes, the electrons required to reduce the metallic cations (e.g. Ni
2+

) 

are provided by a reducing agent, present in the electrolyte, without the assistance of electrical 

current [7]. The resulting deposit is an alloy because the reducing agent gets incorporated into 

the growing layer (e.g., P), thereby enhancing the properties of the bare metal (e.g. Ni) [8]. 

Among all the metals that can be electrolessly plated, nickel and its alloys represent 95% of 

all the industrial applications, being hypophosphite being the most used reducing agent [9]. 

The properties of nickel-phosphorous (NiP) coatings greatly depend on the phosphorous 

content in the alloy. Accordingly, three main classes of NiP coatings exist. Low phosphorous 

coatings (1-5 wt.% P) exhibit very good mechanical properties at the expense of limited 

corrosion resistance. High phosphorous coatings (10-14 wt.% P) present superior corrosion 

resistance but poor mechanical properties. Medium P content coatings (6-9 wt.% P) offer a 

good compromise over the formers in terms of mechanical properties and corrosion resistance 

[10].  
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This versatility in terms of composition derived properties has broadened the 

application fields of electroless nickel, which is indeed the preferred solution in the 

automotive industry, electronics, petrochemical and aeronautics sectors [2,11–14].  These 

application fields match those in which hard chromium coatings were historically employed 

for the enhancement of properties of base materials commonly employed in engineering 

applications. Additionally, the performance offered for as-deposited electroless NiP coatings 

can be further enhanced by subjecting the coatings to thermal annealing. Generally, annealing 

at 400 ºC during 1 h under inert atmosphere offers the maximum increase in the properties 

due to nickel matrix re-crystallization and Ni3P phase precipitation [15]. Meanwhile, crack 

development during hard chromium plating has a detrimental effect on their corrosion 

resistance, which is even magnified upon annealing [16]. This underpins the role of 

electroless nickel as an alternative to hexavalent chromium plating. 

In traditional one-step electrodeposition, the properties of the NiP coatings are dictated 

by the P content, excluding the possibility to bring together the properties of NiP layers with 

dissimilar P content in the same structure [17]. In recent years, especially in the plating 

industry, multilayered coatings have gained much attention due to the advantages offered by 

these coatings in terms of mechanical and electrochemical behaviour [18]. Narayanan et al. 

reported the production of electroless multilayered coatings and showed that their corrosion 

resistance improved if properly selecting the outer layer [17]. Similar results were found by 

Gu et al. in multilayered systems by incorporating an intermediate electrolytic nickel layer 

[19]. Recently, Vitry et al. showed the beneficial effect of combining NiP and NiB 

monolayers in the same deposit. The resulting coatings showed superior wear resistance while 

maintaining a good corrosion resistance when compared to single layered coatings [20]. As 

can be inferred from the above, the combination of different layers into a coating offers the 

possibility to enhance the performance, and thus broaden the functionalities, over single 
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layered materials. Despite the progress in the field, little attention has been paid to the effect 

of the interfaces present in multilayered systems.  

Therefore, the purpose of this investigation is to deepen into the understanding of the 

impact of the multilayer plating approach, particularly on the role of the interfaces, on the 

properties of electroless NiP coatings. For the study, an optimised electroless low phosphorus 

formulation, combining the best performance in terms of corrosion resistance while 

maintaining its excellent mechanical properties, has been employed (unpublished results). The 

low phosphorous electroless nickel layers were sequentially stacked to give rise to the 

multilayered coating. Their mechanical and corrosion resistance properties were compared to 

those of monolayered deposits of the same thickness grown by one step electroless deposition. 

The effect of bath replenishment during electroless nickel plating of the monolayers was also 

investigated. The impact of the plating approach on the microstructure of the coatings as well 

as on their mechanical properties and corrosion resistance is assessed. 

2. Materials and methods 

2.1. Electroless nickel bath and plating approach 

A proprietary low phosphorous electroless nickel electrolyte was employed in this 

investigation. The volume of the electrolyte was 1 litre in all the cases. The nickel 

concentration in the electrolyte was 6.5 g L
-1

 and sodium hypophosphite was used as reducing 

agent at a concentration of 20 g L
-1

. Nature and concentration range of complexing agents, 

buffers and stabiliser present in the electrolyte remain undisclosed due to confidentiality 

issues. It is worth mentioning that the electrolyte was organically stabilised, thus avoiding the 

use of heavy metals as stabilisers to meet the criteria established in the RoHS and ELV 

directives [21]. The pH of the solution was maintained at 6.5 by NH4OH or 10% H2SO4 

correction. The working temperature was set at 75 ºC by means of a PT-1000 probe attached 

to the magnetic stirrer at ω = 250 rpm (IKA, RTC Basic). All the chemicals used in the 
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preparation of electroless baths were of analytical grade and dissolved in deionized (DI) 

water. The total plating time was 3 h for all coatings.  

Three different plating conditions were considered in this work. The multilayer 

approach involved removing the sample from the electrolyte following the first electroless 

cycle (1 hour), rinsing it in DI water and immersing the coating in H2SO4 10% solution to 

avoid surface oxidation before the second and third electroless steps were attempted. In the 

interim, the exhausted components of the electrolyte were replenished, and the pH readjusted 

to its initial value. Electrolyte´s replenishment consisted in Ni
2+

 and H2PO2
-
 addition to the 

electrolyte from freshly prepared stock solutions. Complexing agents, stabilisers and buffers 

were also added accordingly. Higher stirring rate was used during replenishment events to 

assure proper solution homogenization. On the other hand, electroless plating was done only 

once and the resulting coatings are generically labelled as ‘monolayer’ for the sake of 

comparison with the trilayered coatings fabricated on purpose. Chemistry replenishment of 

the electrolyte while plating was performed hourly in some cases without withdrawing the 

coating from the electrolyte. The resulting coatings are termed ‘rebalanced monolayer (r-

monolayer).’ Alternatively, one step plating was also performed without readjustment of the 

chemistry of the solution; this type of coatings is named ‘un-rebalanced monolayer (ur-

monolayer)’. 

In order to study the effect of the thermal treatment on the properties of the coatings, 

all the samples were subjected to a thermal annealing process. A tubular furnace (Hobersal, 

ST1611580) was employed for the annealing of the samples at  400 ºC for 1 h time at a 

heating rate of 10º min
-1

.The process was carried out under argon atmosphere in order to 

prevent from surface oxidation. The system was properly purged with argon three times 

before starting the heating routine to assure the protective environment inside the SiC tube. 

Once the annealing process was completed, the samples were kept inside so allowing natural 

cooling to room temperature. 
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2.2. Substrate preparation 

 

Low carbon steel (AISI-1010) flat foils (75 x 100x 0.6 mm
3
) were used as working 

electrodes. The surface/volume ratio was fixed to 1.5 dm
2
 L

-1
 for all studied conditions. Prior 

to plating, the substrates were chemically degreased and rinsed thoroughly afterwards. Then, 

electrolytic degreasing was carried out with a cathodic/anodic cycle for 2 and 1 min, 

respectively. After rinsing, the samples were etched in an HCl 40%: H2SO4 5% (v/v) mixture 

for 3 min before electroless nickel plating.  

2.3. Characterization 

Surface topography and cross-section morphology of the specimens were examined by 

field-emission scanning electron microscopy (FESEM) (CARL ZEISS ULTRA PLUS). The 

weight percentage of phosphorous incorporated into the deposit was determined using an 

energy dispersive X-ray (Ametek® EDAX, APOLLO X EDX) detector coupled to the 

electron microscope. For cross-section analysis, representative coated areas of the substrate 

were cut and embedded in hot mounting epoxy resin. Samples were polished with SiC paper 

(120-4000 grit) and diamond paste down to 1 µm to achieve a mirror-like finishing of the 

embedded sample. Chemical etching was carried out in all samples using an 

HNO3:CH3COOH (1/1) mixture for microstructural observation. 

Composition of the coatings was analysed by means of glow discharge optical 

emission spectroscopy (GDOES) using a JY RF-GD PROFILER HR instrument (Horiba 

Jobin-Yvon). During GDOES experiments the samples were sputtered at an Ar pressure of 

650 Pa under an applied power of 35 W. Confocal microscopy (Leica Microsystems, DCM 

3D) was used to evaluate surface roughness of the as-deposited coatings as well as surface 

topography of both as-deposited and annealed coatings. A blue light source (λ= 470 nm) was 

employed for better resolution with objective magnification of 20 x and 50 x for high 

resolution images. The obtained images were analysed with the LeicaMap software (Leica 
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Microsystems). The microstructure was investigated by means of X-ray diffraction (Bruker, 

D8) using CuKα radiation in the Bragg Brentano geometry. Crystallite size was evaluated 

using the Scherrer’s equation which is implemented in the EVA software® (Bruker) of the 

diffractometer.  

The hardness and reduced Young’s modulus of the obtained coatings were evaluated 

using a nanoindenter (Anton-Paar, NHT
2
 model) equipped with a Berkovich pyramidal-

shaped diamond tip operating under load control mode. To determine the variation of 

hardness along the coatings’ thickness, 45 indentations were made on their cross-sections, 

distributed into three separate rows parallel to the substrate surface (i.e., in a region close to 

the substrate, in the middle, and in a region close to the air surface of the coating). L1 (line 1), 

L2 (line 2) and L3 (line 3) were located at ~3.5, ~11 and ~17 µm from the substrate, 

respectively. The maximum applied load was 10 mN with a holding time of 10 s, and a 

loading/unloading rate of 20 mN min
-1

. Prior to nanoindentation, cross-sections of the 

samples were embedded in hot resin and were mechanically polished with 1µm diamond 

suspension as the last step.  

The corrosion resistance of the coatings was evaluated by electrochemical techniques 

by means of a potentiostat/galvanostat (Biologic, VMP3). All measurements were conducted 

in an aerated 3.5 wt.% NaCl solution at room temperature in a typical three electrode cell 

configuration (flat cell; EG&G Princeton Applied Research, Oak Ridge, TN, USA) and with a 

geometrical working area of 1 cm
2
. A Pt mesh and Ag/AgCl/NaCl (3 M) electrode were used 

as counter and reference electrodes, respectively. At immersion, the samples´ corrosion 

potential, Ecorr, was measured and recorded until no further changes were observed (less than 

10 mV h
-1

). In order to obtain the anodic and cathodic Tafel slopes (ba, bc), partial 

potentiodynamic scans (0.1667 mV s
-1

) on different areas of the same sample were performed, 

starting from the open circuit potential in the anodic or cathodic direction. The corrosion 

current density (jcorr) was calculated by means of Stern-Geary relation[22].  
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3. Results and discussion 

3.1. Morphology and composition of obtained coatings 

 

After the plating process, the surface of all the NiP coatings presented a lustrous 

silvery-white appearance for the unaided eye. Surface evaluation by FESEM showed that all 

samples present the typical globular structure topography of electroless coatings before 

(Figure 1 a-c) and after annealing (Figure 2 a-c). In all cases they were dense, homogeneous 

and relatively smooth as can be inferred from the average surface roughness (Sa) values listed 

in Table 1. The smoothness is maintained after annealing. However, a close-up look of the 

surface topography showed that the multilayered and r-monolayered exhibit a very similar 

defect-free surface morphology, whereas small pores and/or defects can be clearly observed 

on the surface of the ur-monoloyered ones. A priori, one would expect to find more defects on 

the ur-monolayered coating produced without electrolyte replenishment because the working 

piece remains in the electrolyte for longer plating time compared to the multilayer case. Long 

plating times can promote the adsorption of hydrogen bubbles on the catalytic surface, thus 

blocking the growth of new nickel crystals and ultimately causing the formation of the defects 

visible on the surface of the sample. In the case of the r-monolayer coatings, the more 

vigorous stirring applied during the chemistry re-balance for faster homogenization of the 

electrolyte, might trigger H2 bubbles desorption, giving rise to a defect free surface. 

Multilayered coatings are removed from the plating bath and rinsed several times between 

replenishment events, so there is a fresh surface free from defects associated to adsorbed 

species ready to be plated each time. 

Multilayer and r-monolayer conditions showed thickness values of 22.7 ± 1.7 and 23.4 

± 0.3 µm and a phosphorous content of 2.0 ± 0.3 and 2.5 ± 0.2 wt. % respectively. In the case 

of the ur-monolayered coatings, the thickness was slightly lower showing a higher standard 

deviation standing at 19.2 ± 3.2 µm and having a phosphorous content of 3.0 ± 0.5 wt. %. 
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Chemically etched cross sections of the coatings were also evaluated as shown in Figure 1d-f 

and Figure 2d-f. Multilayered coatings showed the characteristic lamellar structure in each of 

the three stacks, which is typical of NiP coatings [23]. This lamellar structure is assumed to be 

caused by local fluctuations of the phosphorous content due to pH changes in the diffusion 

layer at the vicinity of the catalytic surface. Apart from the lamellar structure, two interfaces 

can be clearly distinguished as a result of the interruption of the electroless process. As 

depicted in Figure 1-d, the three different layers have similar thickness (about 7 µm each). 

After annealing, the lamellar structure becomes a bit ill-defined due to metallic matrix 

recrystallization (Figure 2-d). The interfaces resulting from the on-off electroless, though, 

remain more distinguishable. GDOES analyses clearly demonstrate the occurrence of these 

interfaces created throughout the coatings’ thickness (estimated from sputtering time), as can 

be seen in Figure 3, in concordance with the phosphorous content profile measured by EDX 

and depicted in Table  1. Interestingly, no phosphorous diffusion occurred during annealing 

since the stepped profile remained the same as in the as-deposited state (Figure 3).  

The cross-section of the NiP monolayered coatings produced from the un-rebalanced 

solution (ur-monolayer) was drastically different from the multilayered coatings, evolving 

from a lamellar to a columnar structure as the deposit builds up (Figure 1-e). This behaviour is 

assumed to be associated with the unbalanced chemistry of non-replenished electrolytes at 

long plating times. The occurrence of defects, some of them being “V” shaped, and promoted 

by substrate’s roughness, are also visible. Annealing of these coatings had a similar effect on 

coating’s microstructure, blurring the original microstructure (Figure 2-e). No apparent 

changes in phosphorous distribution upon annealing can be gleaned from GDOES analysis 

(Figure 3). 

Figure 1-f shows the cross-section microstructure of the as-deposited r-monolayer 

coating obtained from the balanced electrolyte. The characteristic lamellar structure is clearly 

visible as well as two pseudo-interfaces matching the replenishment events performed during 
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plating. Such interfaces are analogous to those observed in the multilayered coating and are 

similar to those reported by Vitry et al. [24]. The occurrence of these interfaces is thought to 

be associated with unbalanced solution chemistry during replenishment, which leads to a 

different grain growth until the equilibrium is reached again. Defects of the coatings related to 

substrate roughness were also clearly identified. Thus, flat areas of the coatings showed defect 

free regions whereas rough areas were more prone to promote defects. “V” shaped defects 

were also detected, which crossed the coating’s thickness almost entirely, reaching the 

substrate in many cases, and indicating a decreased ability for an effective protection of the 

substrate. After annealing the lamellar structure was almost lost but the pseudo-interfaces 

originated from bath replenishment were still visible (Figure 2-f). Similar to the multilayered 

coatings, cracks associated to substrate roughness smoothed and could not be further 

straightforwardly identified. In terms of chemical composition, these coatings showed a 

similar trend as the multilayer coatings. The location of the interfaces can be gleaned from the 

profile and the overall phosphorus content is slightly higher. Again, the distribution of 

phosphorous inside the coating did not change upon annealing (Figure 3).  

3.2. XRD analysis 

Figure 4-a shows the diffractogram of the coatings obtained from the three different 

conditions. The deposits are all nanocrystalline as expected from the relatively low 

phosphorous content in the coatings [7]. Diffraction pattern analysis revealed that the peaks 

can be indexed to the face-centred cubic (fcc) phase of Ni. The strongest reflection observed 

at 2θ=44.5º in all diffractograms corresponds to the (111) plane. Besides, a weaker reflection 

at 2θ=51.8º matching the (220) plane and other characteristic less intense reflections of the fcc 

Ni phase are observed, in agreement with PDF 065-2865. Only as-deposited ur-monolayer 

coatings showed some slight differences in the (200) plane probably due to a different crystal 

growth resulted from unbalanced bath chemistry at long plating times. The crystallite size 

determined from the Scherrer’s equation is around 5-6 nm for all coatings (Table  2).  
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Annealing of the deposits promote the re-crystallization of the nickel matrix as seen 

from the narrowing of the diffraction peaks (Figure 4-b). Again, the (111) reflection is by far 

the most intense. The relative intensity of the (200) plane is lowered for the ur-monolayered 

coating compared to the other two. The precipitation of the tetragonal (BCT) Ni3P phase is 

detected in all cases. Cristal size analysis confirms the re-crystallization of the metallic 

matrix. As a result, the crystal size increased by almost 10 fold (44-51 nm) after annealing for 

all studied conditions except for the ur-monolayer coating, for which the crystal size is 

slightly lower. Yet, the crystal sizes remain in the nano regime. 

3.3. Mechanical properties 

Representative load-unload displacement curves for the different coatings are shown in 

Figure 5, both in the as-prepared and annealed states. Table  3 lists the corresponding 

hardness (H) and reduced Young’s modulus (Er) values. A slight reduction in H and Er along 

the coatings’ thickness (i.e., when moving toward the surface/air side) is observed in the as-

deposited condition regardless of the plating approach undertaken. Considering that the 

indentations were performed at ~3.5 (L1), ~11 (L2) and ~17 (L3) µm from the substrate, 

slight microstructural changes as a function of depth rather than variations in the P content 

(Figure 3) might account for the variations in H in each sample. Recall that the amount of P 

changes by less than 1 wt.% within the whole indented area. Results indicate that The Er and 

H values are very similar among the three samples, in agreement with the similar crystal 

structure and crystallite size measured from XRD diffraction  despite the differences revealed 

by the cross-section FESEM images. These results also indicates that the mechanical 

properties are not sensitive to the change from lamellar to columnar growth revealed by the 

cross-section FESEM images microstructure in the coatings fabricated using the different 

synthetic approaches, likely due to the very local nature of the indentations performed. 

Typically, low P amounts are added to Ni coatings to increase its hardness [25]. The enhanced 

mechanical performance has been attributed to the supersaturated solid solution strengthening 
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and to grain size refinement caused by P addition following the Hall-Petch relationship [25]. 

Upon annealing, an increase in H and Er can be observed for the three different coatings. This 

increase can be mainly attributed to the precipitation of hard Ni3P intermetallic phase 

(detected by XRD, Figure 4-b) leading to precipitation hardening. Commonly, formation of 

Ni3P phase in heat-treated Ni-P coatings has been reported to effectively increase its hardness 

[15,[25]. The monolayered coating prepared from the unadjusted solution shows, on average, 

a slightly higher H. Note that hardness values in excess of 10 GPa are obtained after 

annealing, which is comparable to the hardness of electrodeposited chromium [26] and the 

recently published electrodeposited Fe-25at%W [27]. 

3.4. Corrosion resistance 

Table 4 summarizes the electrochemical corrosion parameters obtained for the as-

deposited and annealed coatings in a chloride-containing electrolyte. As observed in the table, 

the corrosion potential (Ecorr) was very similar for all the as-deposited electroless nickel 

surfaces (-300 ± 25 mV vs. Ag/AgCl), in agreement with their analogous chemical 

composition. Among the as-deposited coatings, multilayered coatings showed a slightly lower 

corrosion current density although no significant differences on polarization resistance neither 

on the Tafel slopes were observed.  

Potentiodynamic behaviour (Figure 6a) of all as-deposited nickel coatings present 

similar characteristics. The anodic potentiodynamic curves show two regions: in the first 

region from the OCP to ca. -150 mV vs Ag/AgCl, the current density shows a pseudo-passive 

corrosion mechanism with an anodic Tafel slope of about 80±5 mV dec
-1

. In the second 

region, at potentials more positive than -200 mV vs Ag/AgCl, the current increases rapidly 

with the applied potential, indicating a breakdown of the passivity and the on-set of localized 

corrosion. No significant differences were observed among the cathodic branches of the 

polarization curves.   
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To further understand the corrosion behaviour of the nickel coatings, both surface and 

cross-section observations were carried out by FESEM after the potentiodynamic 

polarizations. In all cases, surface micrographs of as-deposited coatings (Figure 7 a-c) 

indicate that the corroded areas show intergranular corrosion located at the boundaries of the 

nodules. A closer examination of the ur-monolayer coating reveals the presence of some 

debris on the surface of the coatings, not present on the multilayered and r-monolayered 

coatings. Observation of the surface at higher magnifications (Figure 8) indicated that the 

debris corresponded to NiP fibres that form the columnar microstructure, detached during the 

electrochemical polarization from the matrix by selective dissolution attack at the fibre 

boundaries. As a result, a fray-like effect along the thickness up to 5 µm depth into the 

coating`s was observed. This feature must be directly linked to the columnar microstructure 

shown by the ur-monolayer coating. The Cl
-
 anion preferentially attacks the coating through 

the column boundaries, creating multiple attack paths towards the substrate. This 

phenomenon, not observed on the multi-layered and r-monolayered coatings, points to 

differences in the coating’s performance as a function of the plating mode that were not 

evident from the potentiodynamic tests. 

Cross-section evaluation of chemically etched corroded samples was helpful to 

understand the corrosion mechanisms operating in the different as-deposited electroless nickel 

coatings. As shown in Figure 9-a, the multilayered coating did not fully protect the substrate, 

but the micrograph shows that the interfaces created in the synthetic approach hinder the 

progress of the corrosion attack; thus, some of the cracks promoted by the corrosive media 

become effectively blocked and do not reach the substrate. In the case of the ur-monolayer 

coatings, the corrosive attack consists of a microselective dissolution at the fibre boundaries 

(Figure 9b). Finally, in the r-monolayer coatings, the corrosive attack proceeds along the 

intrinsic defectivity of the coatings. Thus, when the Cl
-
 anions reach a defect, the attack 
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progresses directly to the substrate, indicating that the pseudo-observed-interfaces of the r-

monolayer do not efficiently block the defect advancement.  

Annealing brings about an enhancement of the corrosion resistance regardless the 

followed plating approach (Table 4). Thus, after annealing there is a shift of about 150 mV 

toward more positive values of the Ecorr, an increase of the polarization resistances and anodic 

Tafel slopes and a decrease of corrosion current densities, indicating changes in composition, 

better passivity and a decreased corrosion susceptibility. A possible explanation for the 

generalized improvement of the corrosion resistance upon annealing for all coatings relies on 

the differences in crystallinity before and after thermal annealing. As-deposited coatings are 

nanocrystalline, with crystallite sizes in the range of 4.7-5.6 nm, and therefore characterized 

by a great amount of grain boundaries. These grain boundaries trigger the development of 

microcells which can pave the way for the advancement of the corrosive attack[29]. 

Annealing of the coatings brings about an increase of almost ten-fold in the crystallite size 

which diminishes the density of grain boundaries and, in turn, improves the corrosion 

resistance. This reduction in the grain boundaries due to grain coarsening dominates over the 

effect imparted by Ni3P phase precipitation, which could act in parallel as active sites for 

corrosion attack [30].  

Corrosion performance of annealed coatings was found to be notably different from 

that of the as-deposited coatings (Figure 9). Surface observation revealed a change in the 

corrosion mechanism from localized intergranular corrosion initiated at the nodule boundaries 

for the as-deposited coatings to localized pitting corrosion when annealed coatings were 

tested. Pitting corrosion phenomena was exacerbated in the monolayered coatings (Figure 7 d-

f). Cross-sections analysis of the samples after corrosion tests, also indicated additional 

differences among the coatings. Annealed multilayered coatings were still protecting the 

substrate and no sign of red corrosion was observed. The multilayered coating dissolves layer 

by layer underlining the layer-type morphology of the coatings. It is hypothesized that once 
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the corrosive attack proceeds through the first layer, it stops at the interface where the 

corrosion products spread laterally, leading to exfoliation of the outermost layer and causing 

the exposure of the layer beneath to the corrosive media (Figure 9-d). A similar mechanism 

has been previously proposed for NiP electrodeposited multilayers[31]. Annealing of the ur-

monolayered coatings have a similar behaviour compared to the multilayered case. Figure 9-e 

show a more homogeneous coating in which the lamellar structure is imperceptible due to 

metallic matrix recrystallization. Yet, some defects are still visible across the coating’s 

surface which, when exposed to the corrosive media, facilitates that chloride anions progress 

through these defects ultimately reaching the substrate and leading to a complete detachment 

of V-shaped fragments of the coating. On the other hand, Figure 9-f shows the cross-section 

of an annealed r-monolayer coating after polarization. The image shows that the coating gets 

progressively dissolved by the corrosive media until it finds a weak point which allows the 

attack of the substrate by pit formation. 

These results highlight the importance of chemical solution maintenance at long 

plating times as well as the effect of the plating approach used for the production of high-

quality electroless coatings for demanding applications.  

4. Conclusions 

Electroless nickel multilayered and monolayered coatings were produced from a 

proprietary low phosphorous nickel electrolyte. As-deposited coatings were nano-crystalline, 

dense and homogeneous in all the cases. At higher magnification, though, ur-monolayered 

coatings, showed some defects like small pores. The multilayered coatings were characterized 

by well-defined interfaces stemming from process interruption, which effectively prevent 

crack propagation along the coating thickness, thereby offering better protection ability 

compared with the monolayered coatings. r-monolayered coatings showed interfaces 

analogous to the multilayer case, matching the replenishment events performed during 

plating. Such interfaces do not completely protect the surface and defects are able to traverse 
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the coating´s thickness, reaching more easily the substrate without getting blocked at the 

interfacial region. As result of the unbalanced chemistry of the electrolyte at long plating 

times, the microstructure growth of the ur-monolayered coatings evolved from lamellar to 

columnar type. Annealing of the coatings promotes the recrystallization of the metallic 

matrix, thereby increasing the crystallite size by tenfold and giving rise to coatings with fewer 

defects or weak points. Interfaces were still visible for both multilayer and r-monolayered 

coatings but the fine lamellar microstructure was almost lost.  

Nanoindentation experiments performed on the as-deposited coatings’ cross-sections 

revealed that hardness and reduced Young’s modulus were very similar despite the 

differences observed by FESEM, in agreement with the similar crystalline structure revealed 

by XRD analysis. This indicates that composition rather than microstructural variations along 

the coating thickness is playing a dominant role. Upon annealing, both parameters increased, 

presumably due to precipitation of Ni3P. 

Corrosion analysis of as-deposited coatings indicated intergranular corrosion located 

at the surface nodules boundaries. Microstructural characterization revealed significant 

changes among the coatings. Thus, while the interfaces of the multilayered coatings delay the 

progress of the corrosive attack by blocking the advance of the defects produced by the 

corrosive media, in the monolayered coatings the corrosion progress through the coating 

reaching the substrate, aggravated in the case of ur-monolayered coatings. After annealing, 

corrosion performance of the NiP coatings improved as a result of reduced grain boundary 

due to grain coarsening. Moreover, a change from intergranular to pitting corrosion was 

observed. Cross-section evaluation indicated that the interfaces of the annealed multilayered 

coatings successfully prevent the progress of the corrosive attack, unlike monolayered 

coatings. According to the results, annealed electroless nickel multilayers allows obtaining 

coatings with enhanced corrosion resistance, compared to monolayered  coatings, while 

maintaining their mechanical properties.  
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Table  1. Coating characterization (thickness, P content and average surface roughness) for 

the different electroless nickel coatings in the as-deposited state. 

Condition 
Thickness 

(µm) 

P content 

(%wt.) 

Surface Roughness (Sa) 

(µm) 

Multilayer 22.7 ± 1.7 2.0 ± 0.3 1.8 

r-monolayer 23.4 ± 0.3 2.5 ± 0.2 1.7 

ur-monolayer 19.2 ± 3.2 3.0 ± 0.5 1.6 

 

 

 

Table  2. Crystallite size obtained using the Scherrer’s equation on the (111)  peak width 

 
Crystallite size 

(nm) 

 As-deposited Annealed 

Multilayer 5.6 51.1 

r-monolayer 4.7 44.4 

ur-monolayer 4.9 32.4 
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Table  3. Hardness and Young’s modulues values of the electroless NiP coatings determined 

by nanoindentation 

CONDITION 

As-deposited Annealed 

H 

(GPa) 

Er 

(GPa) 

H 

(GPa) 

Er 

(GPa) 

Multilayer 

L1 9.48±0.17 174.5±2.2 10.42±0.21 214.5±6.4 

L2 9.40±0.15 166.4±2.2 10.36±0.17 213.3±4.9 

L3 9.15±0.32 140.3±8.6 10.15±0.23 197.0±6.4 

r-

monolayer 

L1 9.80±0.15 171.6±2.3 10.98±0.39 220.6±4.8 

L2 9.52±0.23 168.2±2.6 11.11±0.25 218.7±3.8 

L3 9.47±0.09 156.8±3.2 10.40±0.27 201.5±8.3 

ur-

monolayer 

L1 9.57±0.17 168.5±2.3 11.15±0.23 215.3±3.8 

L2 9.54±0.12 166.6±3.0 11.34±0.17 210.9±4.0 

L3 9.44±0.15 151.7±5.2 10.68±0.08 188.6±9.7 
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Table  4. Electrochemical parameters obtained after electrochemical corrosion tests.  

CONDITION 

-Ecorr 

(mV vs. 

Ag/AgCl) 

Rp 

(kΩ cm
2
) 

ba 

(mV dec
-1

) 
-bc 

(mV dec
-1

) 
jcorr 

(µA cm
-2

) 

As-deposited coatings 

Multilayer 282±5 29±1 76±5 92±1 0.63±0.05 

r-monolayer 322±8 23±2 84±9 96±2 0.85±0.11 

ur-monolayer  332±11 16±1 78±9 90±1 1.14±0.15 

Annealed coatings 

Multilayer 154±9 41±4 109±3 65±3 0.43±0.09 

r-monolayer  161±15 31±7 124±9 68±4 0.61±0.15 

ur-monolayer  186±13 25±9 129±6 44±4 0.57±0.19 
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Figure captions 

 

Figure 1. Surface morphology and corresponding etched cross-sections of as-deposited 

electroless NiP coatings, respectively, for (a, d) multilayered, (b, e) ur-monolayered and (c, f) 

r-monolayered cases. 

Figure 2. Surface morphology and related chemically etched cross-section of annealed 

electroless NiP coatings: (a,d) multi-layered, (b, e) ur-monolayered and (c, f) r-monolayered 

cases. 

Figure 3. Compositional profiles obtained by GDOES analysis for a) as-deposited and b) 

annealed NiP coatings where a) multilayer, b) ur-monolayer and c) r-monolayer. 

Figure 4. XRD patterns of a) as-deposited and b) annealed NiP coatings where a) multilayer, 

b) ur-monolayer and c) r-monolayer. 

Figure 5. Load vs depth curves obtained from nanoindentation tests for as-deposited and 

annealed NiP coatings where a) multilayer b) ur-monolayer and c) r-monolayer 

Figure 6. Polarization curves of a) as-deposited and b) annealed NiP electroless coatings 

where a) multilayer, b) ur-monolayer and c) r-monolayer. 

Figure 7. Surface morphology of (a-c) as-deposited and (d-f) annealed electroless NiP 

coatings after polarization studies where (a, d) multilayered, (b, e) ur-monolayered and (c, f) 

r-monolayered coatings. 

Figure 8. Zoomed details of surface morphology of as-deposited ur-monolayered NiP 

coatings after polarization studies. 

Figure 9. Chemically etched cross-section analysis after polarization tests of as-deposited (a-

c) and annealed (d-f) electroless NiP coatings where (a, d) multilayered, (b, e) ur-

monolayered and (c, f) r-monolayered coatings. 
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Highlights 

 

 Monolayered and multilayered NiP electroless coatings were produced from a 

proprietary low phosphorous nickel electrolyte. 

 The multilayered coatings were characterized by well-defined interfaces due to 

process interruption. 

 Interfaces of multi-layered coatings block crack propagation and corrosion progress. 

 Multilayered coatings exhibit enhanced corrosion resistance in comparison to 

monolayered coatings. 
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