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Modeling and control of flexible-link robotic systems

Abstract:

The scientific activity presented in this Ph.D. thesis deals with the modeling and control

of flexible-link robotic systems. Nowadays, the industrial demand for high performances,

high speeds and low energy consume has highlighted the need to develop lightweight

manipulators and robots. However, their design and control result more difficult and

challenging with respect to traditional rigid-link robotic systems mainly due to the flexibility

of the arms.

In the first part of my Ph.D., the research activity has been focused on the modeling

and simulation of flexible-link mechanism, using an Equivalent Rigid-Link System (ERLS)

formulation. In recent years, the ERLS approach, firstly implemented together with a

Finite Element Method (FEM) formulation, has been extended through a modal approach

and, in particular, a Component Mode Synthesis (CMS) technique. This novel formulation

allows a reduced-order system of equations to be maintained even when a fine discretization

is needed. After an analysis of the state of the art about dynamic modeling of flexible-

link mechanisms, a numerical comparison between the ERLS-FEM and the ERLS-CMS

approaches has been conducted. A benchmark manipulator has been implemented and the

results have been compared in terms of accuracy and computational effort under different

input conditions. The discretization of the mechanism and the number of considered

vibrational modes have been as well discussed.

In the CMS approach, a classical Craig-Bampton reduction has been adopted. However,

this is not the only technique capable of reducing the number of degrees of freedom of

flexible-link mechanisms. For this reason, further developments of the work have seen the

implementation and comparison of different Model Order Reduction Techniques, which can

be applied to different benchmark robotic systems in order to highlight their advantages

and disadvantages.

The second part of this thesis is focused on cable-driven parallel robots, which are a

special class of flexible-link mechanisms in which flexible cables, rather than rigid links, are

employed to actuate the end-effector. A particular class of cable-driven robots is given by

cable-suspended parallel robots, which rely on gravity to maintain the cables taut. These

mechanisms are characterized by large workspaces, high velocities and payload-to-weight

ratios and can be employed for several different tasks such as handling and moving loads,

pick-and-place and building tasks.

In collaboration with University of Trieste (Italy), a novel design of cable-suspended

parallel robot based on variable radius drums has been developed and experimentally

validated. A variable radius drum is characterized by the variation of the radius along the

spool. This device is used in the cable-driven manipulator to move the end-effector through

a planar working area, using just two actuated joints. Experimental results demonstrate a

good agreement with the theoretical model.

Another example of cable-driven robot has been studied during the months that I

3



spent at the Wearable Robotic Systems (WRS) Laboratory, Department of Mechanical

Engineering, Stevens Institute of Technology (Hoboken, NJ, USA). The device consists of

a 3-degree-of-freedom, under-actuated, pendulum-like robot. The mechanism is capable

of performing planar point-to-point motions in its dynamic workspace by means of two

actuated joints only, using parametric excitation in a way similar to playground swings.

The control system is based on a feedback linearization that allows the dynamics of the

variable-length pendulum to be decoupled from the dynamics of the rotation of the end-

effector. Adaptive Frequency Oscillators have been introduced to estimate the phase of

the pendulum-robot in real-time and without delay. The device has been experimentally

validated showing the feasibility of the design and good performances of the control

architecture.

Keywords: flexible multibody systems, Equivalent Rigid-Link System, model

order reduction, cable-driven robot, under-actuated robot
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Modellazione e controllo di sistemi robotici a membri flessibili

Riassunto:

L’attività scientifica presentata in questa tesi di Dottorato affronta le tematiche della

modellazione e del controllo di meccanismi a membri flessibili. Al giorno d’oggi, la richiesta

industriale di elevate performances, alte velocità e bassi consumi energetici ha evidenziato la

necessità di sviluppare manipolatori e robot sempre più leggeri. Tuttavia, la progettazione

e il controllo di questo tipo di meccanismi risulta più difficile e complesso rispetto ai sistemi

robotici a link rigidi tradizionali, principalmente a causa della flessibilità dei membri che li

compongono.

Nella prima parte del mio Dottorato, l’attività di ricerca è stata focalizzata sulla model-

lazione dinamica e sulla simulazione di meccanismi flessibili, utilizzando una formulazione

basata su un sistema rigido equivalente (Equivalent Rigid-Link System, ERLS). Recen-

temente, l’approccio ERLS, inizialmente implementato in combinazione con un metodo

agli elementi finiti (FEM), è stato esteso mediante l’utilizzo di una formulazione modale,

la Component Mode Synthesis (CMS). Questo nuovo approccio permette di utilizzare un

sistema di equazioni di ordine ridotto anche nei casi in cui la discretizzazione richiesta è fine.

Dopo un’analisi dello stato dell’arte sulla modellazione dinamica di meccanismi a membri

flessibili, è stata condotta una comparazione numerica tra i due approcci ERLS-FEM ed

ERLS-CMS. I modelli sono stati implementati utilizzando un meccanismo di rifermento e i

risultati numerici sono stati comparati in termini di accuratezza ed onere computazionale

sotto diverse condizioni. La discretizzazione del sistema e il numero di modi di vibrare

considerati sono stati ugualmente discussi.

Nell’approccio CMS è stata adottata la classica riduzione modale di Craig-Bampton.

Tuttavia, questa non è l’unica tecnica capace di ridurre il numero di gradi di libertà di

un meccanismo a link deformabili. Per questo motivo, gli sviluppi successivi del lavoro

hanno visto l’implementazione e il confronto di diverse tecniche di riduzione modale, che

possono essere applicate a diversi sistemi meccanici di riferimento allo scopo di valutare i

loro rispettivi vantaggi e svantaggi.

La seconda parte di questa tesi è stata focalizzata sui robot paralleli a cavi, che

costituiscono una speciale classe di meccanismi a membri deformabili nei quali l’organo

terminale è attuato tramite cavi flessibili, invece che mediante link rigidi. Una classe

particolare di robot a cavi è costituita dai robot paralleli sospesi a cavi, nei quali la tensione

dei cavi è garantita dalla forza di gravità. Questi meccanismi sono caratterizzati da grandi

spazi di lavoro, alte velocità e alti rapporti carico utile / peso proprio e trovano numerose

applicazioni come, ad esempio, in operazioni di movimentazione carichi e costruzione.

In collaborazione con l’Università di Trieste (Italia), è stato sviluppato e validato

sperimentalmente un nuovo design di robot sospeso a cavi, basato su pulegge a raggio

variabile, caratterizzate dalla variazione del raggio lungo la spoletta. Questo tipo di

dispositivo è utilizzato per muovere l’end-effector entro un’area di lavoro planare, utilizzando

solamente due giunti attuati. I risultati sperimentali hanno dimostrato un ottimo accordo
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con il modello teorico.

Un secondo esempio di robot a cavi è stato studiato durante il periodo che ho trascorso

all’estero presso il Wearable Robotic System (WRS) Laboratory, Dipartimento di Ingegneria

Meccanica, allo Steven Institute of Technology (Hoboken, NJ, USA). Il dispositivo consiste

in un robot-pendolo a 3 gradi di libertà, sotto-attuato. Il meccanismo consente di realizzare

un moto punto-a-punto nello spazio di lavoro dinamico utilizzando solamente due giunti

attuati e sfruttando l’eccitazione parametrica, in maniera simile all’altalena. Il sistema di

controllo è basato su una linearizzazione in retroazione che permette di disaccoppiare la

dinamica del pendolo a lunghezza variabile da quella della rotazione dell’end-effector. Per

la stima della fase del pendolo in tempo reale e senza ritardi sono stati introdotti oscillatori

a frequenza adattativa. Il dispositivo è stato validato sperimentalmente dimostrando la

fattibilità del design proposto e ottime performances del sistema di controllo.

Parole chiave:

sistemi a membri flessibili, sistema equivalente a membri rigidi, riduzione

modale, robot a cavi, robot sotto-attuati
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Introduction

Robotic systems and manipulators are becoming more and more pervasive and required

in several industrial fields. Robots are employed in a large number of tasks, including

pick-and-place, assembling, soldering, welding, testing, but also handling loads, spray

painting and coating. Their widespread application arises from the fact that robotic

systems allow to operate with high precision and speed, to remove humans from hazardous

environments, and to produce higher volumes of goods at relative low costs. The constant

increasing of the worldwide annual supply of industrial robots can be seen in the report of

IFR World Robotics 2016, reported in Figure 1, where the trend of number of units per

years is estimated to be +13 % on average in the next years.

In this context, the production cost of manufacturing operations is heavily affected by

the cost of the electric energy that is needed to operate industrial robots and machines,

in particular when high volumes of goods need to be processes at low costs. For this

reason, energy saving and conservation is becoming an important topic in the industry and

economic sectors, as it is testified by the scientific community [6, 7, 8, 9], as well as by

the directions set by the European Union policy, which designs a reduction of the energy

consumption up to 30 % by 2030 [10].

Several strategies can be applied in order to limit and reduce the energy consumption of

robotic systems with both hardware and software solutions. The hardware approach achieves

this objective through the optimal design of new systems as well as by replacing components

of existing system. For example, the selection of more energy-efficient mechatronic and

robotic systems, the substitution of parts with lighter components or the adoption of energy

recovery and storage systems, such as regenerative drives. From the software point of view,

several strategies can be implemented to minimize the required energy, such as optimization

of the trajectories, redesign of the motion planning, rescheduling of operations and task

sequences [8].

This dissertation is focused on the study and analysis of robotic systems composed of

lightweight links and structures, which not only allows to reduce the costs connected to

the power and energy consumption, but are also usually required for high speed operations

and high performances in several industrial applications. To achieve high speed is, indeed,

a recurrent target in the design and operation of an industrial robotic system, for obvious

economic reasons. Furthermore, a lighter structure allows to minimize the inertia load

during the motion and to maximize the payload to weight ratio, with direct benefits on

the manufacturing process.
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Figure 1: Worldwide annual supply of industrial robots, IFR World Robotics 2016.

The light weight and the reduced dimensions of the structure usually introduce high

flexibility in the links of this kind of manipulators, in which, differently from traditional

rigid-link mechanisms and robots (such as the KUKA and the FANUC industrial robots

shown in Figure 2), the elastic deformation plays an important role in their design and

control and, therefore, has to be taken into account. The flexibility of the links, if neglected

or poorly controlled, can lead to errors in the positioning and motion accuracy but also

to mechanical stresses and instability of the system. Therefore, in order to study and

control flexible-link robotic systems, appropriate mathematical descriptions of the dynamics

(dynamic models) have to be investigated and implemented [11].

The dynamic modeling of flexible multibody systems can then be applied for numerical

simulations, in which the dynamic behavior of the system can be predicted by software,

without the requirement of real working prototypes. In the recent years, the development

of numerical simulators has been facilitated by the increasing of computational power,

which allows to simulate the dynamics of mechanical systems in a fast and efficient way.

The numerical models need to require low computational time and, at the same time, to

achieve good accuracy in the description of the dynamic behavior: it yields in the research

of a trade-off between computational effort and precision of the solutions.

This work focuses on the dynamic modeling and control of flexible-link mechanisms.

Examples of flexible-link robotic systems are mechanical systems in which the arms are

constituted by deformable bodies, or robots in which the end-effector is controlled by means

of flexible-cables, rather than by structural elements. While the first group is composed of

traditional serial-link or closed-chain structures that present deformations of the bodies

(an example can be given by the delta robot Adept Quattro reported in Fig. 3(a)), the

second group consists of a special class of flexible robots, in which the traditional links are

substituted by cables, inherently flexible (an example of cable-robot is shown in Fig. 3(b)).

The main advantages of cable-driven robots, over traditional ones, are the possibility

of extending over larger workspace, their modularity and reconfigurability, as well as the

possibility of achieving higher velocities and accelerations due to the lower inertia loads.

The main drawback of this class of manipulators is that cables can be pulled but not
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(a) KUKA KR 1300 titan
PA.

(b) FANUC M-
900iB/700.

Figure 2: Examples of traditional rigid-link industrial robots.

(a) Delta robot Adept Quattro. (b) Cable-driven parallel robot.

Figure 3: Examples of flexible-link manipulators.

pushed and, therefore, only tension forces can be applied on the end-effector, and redundant

solutions have often to be implemented in order to achieve the desired kinematics. Moreover,

interferences between the cables and the environment have to be taken into account.

Nevertheless, the possibility of reducing the required energy and of operating in large

workspaces with high speed and performances have made cable-driven robots an open field

of investigation in both industry and academia. In particular, several designs of cable-based

robots have been studied over the years, especially for control purposes, dynamic modeling

and trajectory planning.

The work presented in this Ph.D. thesis deals with the modeling and control of flexible-

link robotic systems. In the case studies reported in the dissertation, not only theoretical

modeling but also numerical simulations, control, experimental tests and validations have

been carried out. In the following, an overview on the different aspects that are taken into

account in the chapters of this dissertation is presented and the contributions of the author

dealing with the topics described in this thesis are reported as references.
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Contributions and summary of the work

The first four chapters of this dissertation deal with the dynamic modeling and simulation

of flexible multibody systems. The main contribution of this part of the work is the

comparison of different approaches for modeling the dynamics of deformable mechanisms

and of different techniques capable of reducing the computational effort of the numerical

models, by maintaining a good accuracy in the description of the dynamic behavior.

• Chapter 1 reports an introduction about the dynamic modeling of flexible multibody

systems and recalls the Equivalent Rigid-Link System (ERLS) formulation for flexible-

link mechanism, based on the Finite Element Method (FEM) [1];

• Chapter 2 reports the kinematic and dynamic model of the Equivalent Rigid-Link

System (ERLS) formulation for flexible-link mechanism, based on a modal approach

(i.e. the Component Mode Synthesis, CMS) for the simulation of the dynamics of

deformable-link mechanisms, previously published in [12];

• Chapter 3 presents a comparison between the ERLS-FEM and the ERLS-CMS ap-

proaches for flexible-link robots. Numerical simulations on a benchmark mechanisms

are presented and the results analyzed and discussed in terms of computational time

and accuracy in both the time and frequency domains [2];

• Chapter 4 presents a comparison of Model Order Reduction techniques using the ERLS

formulation for flexible-link robots. The results of different numerical simulations

are presented and compared in terms of computational time, accuracy in frequency

domain and modal vector correlation parameters [3].

The second part of the thesis deals with cable-driven robots, which are a special class of

flexible-link robotic systems. The main contribution of this research activity is the design

of novel cable-driven mechanisms and their experimental validation.

• Chapter 5 gives an introduction on cable-driven robots. In particular, the classes of

cable-driven parallel robots and cable-suspended parallel robots are analyzed and

described;

• Chapter 6 presents a novel design of cable-suspended parallel robot based on variable

radius drums, capable of moving the end-effector throughout a planar workspace with

just two degrees of freedom. The kinematic model and an experimental prototype

are presented and validated with interesting results [4];

• Chapter 7 deals with a particular class of cable-suspended parallel robots: pendulum-

like robots. The dynamic modeling and the non-linear control of an under-actuated,

3-DOF pendulum-robot is presented and experimentally validated by means of a

prototype capable of performing point-to-point motion in its dynamic workspace [5];

• Chapter 8 reports the conclusions of this work and some possible future developments.
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The work presented in this Ph.D. thesis includes theoretical modeling, numerical

implementation and simulation, control, experimental tests and validation. This wide range

of research activities has been possible thank to a collaboration with several universities

and international institutes, in particular with:

• Free University of Bolzano-Bozen (Italy): I worked with prof. Renato Vidoni on the

introduction to the ERLS formulation, the understanding of the modal approach

(Chapter 2), the comparison between the ERLS-FEM and ERLS-CMS approached

(Chapter 3) and the comparison of Model Order Reduction techniques (Chapter 4);

• University of Trieste (Italy): I worked with prof. Paolo Gallina and Dr. Stefano

Seriani on the kinematic development of the variable radius drum and the fabrication

of the experimental prototype of cable-suspended robot presented in Chapter 6;

• Stevens Institute of Technology (USA): during my visiting period abroad, I worked

with prof. Damiano Zanotto on the design and experimental validation of the 3-DOF,

under-actuated, pendulum-like, cable-driven robot described in Chapter 7.

21





Chapter 1

Dynamic modeling of flexible

multibody systems

Nowadays, industrial mechanisms and robotic systems are demanded to be lightweight, easy

maneuverable and capable of high speed operations. These features result in multibody

systems in which the flexibility of the links has to be taken into account. Therefore, not

only the kinematics, but also the dynamic modeling and simulation of such systems has

becoming a more and more challenging field of investigation in both industry and academia.

In this chapter, an introduction about the dynamic modeling of flexible multibody

systems is presented. Then, a dynamic model, that have been developed at University of

Udine (Italy) in the last decades, is recalled and described in its evolution [1]. The model

is based on the Equivalent Rigid-Link System (ERLS) approach and it is suitable in the

case of large displacements and small elastic deformations.

1.1 Modeling the vibration of flexible-link robots

In the last decades, high speed operations of robotic and mechatronic systems have become

more and more demanded in industry and, therefore, the study of dynamic models for the

simulation and control of flexible multibody systems has represented a challenging field of

research in applied mechanics for machinery and robotics. In this context, several authors

have been studying single flexible-link mechanisms, then planar robots and machines, and

finally 3D flexible systems. The area is still an open field of research and investigation

[13, 14, 15, 16, 17]; this interest can be evaluated by looking at the increasing trend of

the number of documents by year dealing with flexible multibody systems, as reported in

Figure 1.1 (source Scopus R⃝).

Flexible multibody dynamics emerged as a new field of research and investigation in

the early seventies, as a response to the need to simulate many industrial and technological

systems, in which the deformation can not be neglected. Examples of physical and

mechanical systems that can be modeled as flexible multibody systems are ground and

space vehicles, machines, mechanisms, space structures and components. In particular, in

the last decades, the research activities on flexible multibody have been motivated by the
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Figure 1.1: Documents by year dealing with flexible multibody systems (source Scopus R⃝).

development of new lightweight manipulators and robots, characterized by high operating

speeds and performances.

Flexible multibody dynamics is the subject concerned with the computer modeling and

analysis of constrained deformable bodies that undergo large displacements, including large

rotations [15]. A flexible multibody system usually consists of elastic and rigid components

which are connected by means of joints and/or force elements such as springs, dampers

and actuators (Figure 1.2). Joint constraints force the displacements of the bodies to

be dependent to each other. Furthermore, in addition to large rotations and constraints

problems, the elasticity of the bodies can have a significant effect on the way the large

rotation problem and joint constraints are formulated.

An approach for the modeling of deformable-links mechanisms is based on the rigid-body

model of the robot, to which the deformations due to its elastic properties are added in order

to take the flexibility of the links into account. The dynamic equations of the deformable

bodies that undergo large rigid body displacements are highly non-linear and, therefore,

the number of coordinates required to obtain a reasonable mathematical model for flexible

multibody systems can be very large as compared to the number of coordinates used in

traditional rigid-body systems. This approach yields a coupled set of non-linear partial

differential equations. In order to provide a set of ordinary differential equations from

this system of partial differential equations, two different approaches have been developed

and adopted in the Literature. These two methodologies are the nodal and the modal

formulations [18, 19, 20, 21, 22, 23, 24, 25].

The nodal approach involves the Finite Element Method (FEM), emerged in the early

sixties as a powerful tool for the analysis of deformations. In the FEM, the infinite

dimension problem is discretized by using some FEM models: one of the most popular is

the Euler-Bernoulli beam elements. The use of Timoshenko beams is less frequent, since it

allows to better describe the dynamics of flexible-link manipulators only for the cases with
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Figure 1.2: Graphical example of flexible multibody system.

short links. In the Euler-Bernoulli approach, each element is composed of a fixed number

of nodes, which define the number of degrees of freedom (DOF) of the flexible system. In

this manner, the forces applied to the nodes can be related to the nodal displacements and

accelerations through the mass and stiffness matrices. Because of the non-linearity and

large dimensionality, a drawback of the FEM approach is that the degrees of freedom of

the flexible multibody system have to be kept low, if a low computational time is needed

(i.e. for fast simulations or real-time control applications).

On the other hand, the modal approach, i.e. the Assumed Mode Method (AMM),

is based on the representation by a truncated finite modal series of the link flexibility.

Although very popular, the latter methodology has the disadvantage to yield a system of

coupled differential equations with no separation between the rigid-body motion and the

elastic deformation.

In the case of large displacements (or rotations) and small flexible deformations,

the most famous and adopted formulation is the Floating Frame of Reference (FFR),

introduced by Shabana [15, 26]. The formulation of the FFR was originally presented

in the aerospace literature and it is currently the most widely used method in computer

simulation. In particular, it is implemented in several commercial multibody tools like

SIMPACK, MSC ADAMS
TM

and LMS Virtual Lab. In this formulation the motion of a

flexible body is separated into a usually non-linear motion of the reference frame and a linear

elastic deformation with respect to this reference frame. The small elastic deformations

are described with the linear finite element method and represented by a second order

differential equation [15, 26]. The main difficulties that arise when using the floating

frame of reference formulation are associated with the selection of the reference frame of

the deformable body, the definition of modal shape functions, and the formulation of the

coupled kinetic energy.

Another formulation for flexible-link robots, suitable in the case of large and small

deformations, is the Absolute Nodal Coordinate Formulation (ANCF). In this non-linear

finite element formulation, no infinitesimal or finite rotations are used as nodal coordinates,
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instead absolute displacements and global slopes are used as element coordinates [27, 28].

The locations and deformations of the material points on the finite element are defined in

the global coordinate system using the element shape function and the nodal coordinates.

The Absolute Nodal Coordinate Formulation allows to efficiently describe not only the

large deformations of flexible multibody systems but can also be employed in the analysis

of curved structures and to obtain the mass moment and inertia of complex structures,

since the rigid body inertia can be exactly modeled.

Other approaches to the dynamic modeling of flexible multibody systems, which can be

considered as derivations of the above mentioned basic approaches, are the linear theory of

elastodynamics, and the large rotation vectors formulation [15].

Finally, alternative formulations to the dynamic analysis and characterization of planar

and spatial robotic systems can be found in [29, 30].

In the following, a particular formulation for flexible multibody dynamics based on an

Equivalent Rigid-Link System and suitable for the case of large rigid displacements and

small elastic deformation is described in its evolution.

1.2 A dynamic model based on an Equivalent Rigid-Link

System

In the first part of this dissertation, a novel and alternative approach to model flexible

multibody systems under the condition of large displacements and small elastic deformations

has been adopted. This formulation is based on the concept of Equivalent Rigid-Link

System (ERLS) and it has been investigated and experimentally validated at University of

Udine throughout a period of almost 30 years.

The idea of the ERLS has been firstly introduced by Chang and Hamilton for the

study of the kinematics of robotic manipulators with flexible links [31] and by Turcic et al.

[32, 33, 34] for the dynamic analysis of elastic mechanism systems. The model based on

the ERLS formulation enables the kinematic equations of the equivalent rigid-link system

to be decoupled from the compatibility equations of the displacements at the joints.

The original formulation of the model (in the two-dimensional case) has been developed

by Giovagnoni et al. in the 1980s [35, 36]. The ERLS theoretical formulation has been

experimental validated for a 4-link flexible mechanism by Giovagnoni in 1994 [37].

Further developments have seen the validation of the model for a 5-link flexible me-

chanical system by Gasparetto [38] and its linearization in the state-space form, necessary

for the application to the synthesis of control systems [39].

Subsequently, the linearized ERLS-based model has been applied to different controllers,

such as PID regulators, optimal controllers, model predictive controllers, delayed reference

controlled, as well as hybrid controllers, in order to reduce the vibration of mechanical

systems. Examples can be found in the works of Boscariol et al. [40, 41, 42], Boschetti et

al. [43], Caracciolo et al. [44, 45], Gallina et al. [46] and Trevisani [47].

In more recent years, other examples of control systems for flexible-link mechanisms

can be found in the works of Gasparetto et al. [48], where the vibration reduction in a
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(a) 4-link flexible mechanism. (b) L-shaped flexible system.

Figure 1.3: Examples of flexible-link mechanisms at University of Udine.

flexible-link mechanism through the synthesis of an optimal controller is presented, and of

Zanotto et al. [49], where the model has been employed with the Hardware-in-the-Loop

simulation technique.

Furthermore, the ERLS formulation has been extended by Vidoni et al. to three-

dimensional flexible systems, which better describe the case of industrial machines based

on spatial mechanisms [50, 51]. The extension to the 3D system has been implemented by

collocating several reference frames along the kinematic chain, according to the Denavit-

Hartenberg rules, and by defining the transformation matrices between any two consecutive

frames. The 3D model has been validated by means of experimental tests, by comparing

the measured accelerations and deformations with those provided by numerical simulations

[52].

In more recent years, the Equivalent Rigid-Link System formulation has been extended

through a modal approach, by using the Component Mode Synthesis (CMS) technique, in

order to obtain a more flexible solution based on a reduced-order system of equations [12].

The modal formulation has been validated by comparing the results of the simulator with

those provided by ADAMS-Flex
TM

software for the same benchmark mechanism (a spatial

L-shaped link with one rigid degree of freedom).

The evolution of the ERLS-based dynamic model has been described in [1], whereas

examples of flexible-link benchmark mechanisms for the application of control systems

based on the ERLS model are reported in Figure 1.3, where a 4-link flexible mechanism

and a L-shaped spatial system are shown.

In its recent developments, presented in this dissertation, a comparison between the

ERLS-FEM and the ERLS-CMS formulations has been carried out, in order to evaluate

the advantages and disadvantages in terms of computational time and accuracy in the

description of the dynamic behavior of the two approaches [2].

Furthermore, different Model Order Reduction techniques have been investigated and

compared in [3], choosing a L-shaped manipulator as a benchmark mechanism. These

techniques allow to reduce the computational effort and to open the application of the
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Figure 1.4: Kinematic model of the system and definition of the main vectors [2].

modal formulation to fast numerical simulations and real-time vibration control systems,

as it is explained in the next chapters.

1.3 The ERLS-FEM dynamic formulation

In this section the 3D formulation of the ERLS-FEM dynamic model, extensively described

by Vidoni et al. in [50, 51], is briefly recalled.

The definitions of the main vectors involved in the kinematic analysis can be described

with respect to Figure 1.4, where {x, y, z} indicates a fixed global reference frame. In

particular, ui represents the nodal displacement vector of the i -th link, ei defines the nodal

position vector for the i -th element of the ERLS and pi the absolute nodal position vector

of the generic point inside the i -th finite element, calculated as:

pi = ei + ui (1.1)

The index i spans from 1 to l, where l is the number of links of the robotic system.

{xi, yi, zi} indicates a local reference frame, which follows the motion of the ERLS. This

reference frame can be expressed with respect to the ERLS adopting a set of generalized

coordinates θ, the m rigid degrees of mobility of the mechanism, by exploiting the Denavit-

Hartenberg notation that can be introduced to describe the kinematics of the ERLS. The

i-th components ei can be grouped together into a unique vector e, which describes the

position and orientation of the whole ERLS.

The dynamic equations can be obtained by applying the principle of virtual works and

computing the inertial, elastic, gravity and external generalized forces terms as follows

δW inertia + δW elastic = −δW external∑
i

∫
vi

δpT
i p̈iρidv +

∑
i

∫
vi

δϵTi Diϵidv =
∑
i

∫
vi

δpT
i gρidv + (δuT + δeT )f

(1.2)

28



1.3. The ERLS-FEM dynamic formulation

where ρi, Di and ϵi are the mass density, the stress-strain matrix and the strain vector for

the i -th finite element, respectively. g is the gravitational acceleration vector, and f is the

vector of the concentrated external forces and torques. δu and δe refer to all the nodes of

the model.

The nodal elastic virtual displacements δu and the virtual displacements of the Equiv-

alent Rigid-Link System δe are completely independent. Thus, two set of equilibrium

equations, i.e. local nodal equilibrium and global equilibrium equations, can be obtained

from (1.2) by zeroing alternatively the nodal elastic virtual displacements and the virtual

displacements of the ERLS.

The following system of differential equations can be written

M(ë+ ü) + 2(MG1 +MG2)u̇+ (MC1 + 2MC2 +MC3)u+Ku = fg + f (1.3)

JTM(ë+ ü) + 2JT (MG1 +MG2)u̇+ JT (MC1 + 2MC2 +MC3)u = JT (fg + f)

(1.4)

where M is the mass matrix, MG1 and MG2 are the Coriolis terms, MC1, MC2 and MC3

the centrifugal stiffness terms, K the stiffness matrix, and J the Jacobian matrix. J allows

to express the δe virtual displacements with respect to the δθ independent generalized

coordinates. fg the vector of the equivalent nodal loads due to gravitational force.

After the substitution of the second order differential kinematics equations of the ERLS,

the dynamic equations can be grouped and rearranged in matrix form[
M MJ

JTM JTMJ

][
ü

θ̈

]
=

[
−2MG12 −MJ̇ −MC123 −K

−JT 2MG12 −JTMJ −JTMC123

]⎡⎢⎣ u̇

θ̇

θ

⎤⎥⎦+

[
M I

JTM JT

][
fg

f

] (1.5)

where

MG12 = MG1 +MG2 (1.6)

and

MC123 = MC1 + 2MC2 +MC3 (1.7)

The complete development of the model is reported in [50] and [51].

A Rayleigh damping model can be eventually taken into account and introduced in the

dynamic model to deal with real flexible-link systems.
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Chapter 2

Equivalent Rigid-Link System,

Component Mode Synthesis model

In this chapter, the Equivalent Rigid-Link System approach, extended through a modal

formulation, is presented and described. With respect to the previous approach of the

dynamic model, in which the ERLS has been applied together with a Finite Element Method

(FEM), the formulation here proposed is developed in combination with a Component

Mode Synthesis (CMS) technique. The ERLS-CMS formulation for flexible-link robots

allows to obtain a reduced-order system of equations even when a fine discretization of

the system is needed. The approach is suitable for large displacements and small elastic

deformations and it allows the kinematics equations of motion to be decoupled from the

compatibility equations of the displacements at the joints. After the description of the

kinematics of the ERLS, the equation of motions are derived and, finally, the differences

between the ERLS-CMS and the Floating Frame of Reference (FFR) are highlighted.

The ERLS-CMS model described in this chapter has been previously presented in [12].

2.1 Kinematics of the ERLS-CMS

In this section, the description of the kinematics of the Equivalent Rigid-Link System,

extended through a Component Mode Synthesis formulation, is presented.

With respect to Fig. 1.4, where {x, y, z} is a fixed global reference frame, it can be

useful to recall the kinematic definitions of the main vectors. ui represents the nodal

displacement vector of the i -th link, ei defines the nodal position vector for the i -th element

of the ERLS and pi the absolute nodal position vector of the generic point inside the i -th

finite element, where pi = ei + ui.

In order to rewrite the system with a modal approach, the nodal displacements ui of

the i-th link have to be expressed as functions of a given number of eigenvectors U i and

modal coordinates qi:

ui = U iqi (2.1)

The eigenvectors and eigenvalues can be obtained according to the chosen modal reduction
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2.1. Kinematics of the ERLS-CMS

strategy (Chapter 4). In terms of modal coordinates, the joint displacement belonging to

two subsequent links i and i+1 can be expressed by ûi = SiU iqi and ˆui+1 = Si+1U i+1qi+1

respectively, where the matrices Si and Si+1 are introduced just to extract the proper joint

displacements from all the nodal ones. The compatibility condition at the i -th joint can be

written using the following expression: ˆui+1 = T i+1ûi, where T i+1(θ) is a local-to-local

transformation matrix between two consecutive reference frames associated to the two

subsequent links. The transformation matrices are function of the joint coordinates:

θ = {θ1 θ2 ... θn}T (2.2)

The compatibility equation at the i -th joint can be expressed as

Si+1Ui+1qi+1 = Ti+1,i(θ)SiUiqi (2.3)

or, in matrix form, as:

[
−Ti+1,i(θ)SiUi | Si+1Ui+1

] [ qi

qi+1

]
= 0 (2.4)

By writing the previous equation for all the links and assembling them into a matrix, a

comprehensive compatibility equation can be described by

C(θ)q = 0 (2.5)

where

C(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

SiUi 0 ... ... 0

−T1,2(θ)SiUi S2U2 ... ... 0

0 −T2,3(θ)S2U2 S3U3 ... 0

0 0 ... ... 0

0 0 ... −Tn−1,n(θ)Sn−1Un−1 SnUn

0 0 0 0 −Tn,n+1(θ)SnUn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.6)

The matrix C(θ) only depends on the joint parameters. The vector q comprehends both

the rigid and the elastic modal coordinates

q =
[
qT1 qT2 ... qTn

]T
(2.7)

The total number of degrees of freedom of the mechanical system without the constraints

m is related to the total number of DOF of the Equivalent Rigid-Link System n through

the following expression

m− v = n (2.8)

where v indicates the number of constraints imposed by the joints. It has to be noticed

that the number of raws of matrix C(θ) is equal to v. The number of columns corresponds

to m + d, where m is the number of the rigid-body modal coordinates and d is the
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2.2. Derivative terms

number of elastic modal coordinates. The dimension of matrix C can be calculated as

v × (m+ d) = (m− n)× (m+ d). Therefore, (2.5) represents an under-determined linear

system with a solution in the form of ∞n+d.

The rigid-body modal coordinates and the elastic modal ones can be grouped into two

separate vectors, namely qr and qd. In this manner, (2.5) can be rewritten as:

Crqr +Cdqd = 0 (2.9)

The sub-matrices Cr and Cd have dimensions (v × m) and (v × n) respectively. The

number of unknowns is greater than the number of equations, since (v < m).

Equation (2.9) can be solved with respect to qr, by using the right pseudo-inverse

matrix [53]:

C+
r = CT

r (CrC
T
r )

−1 (2.10)

The elastic modal coordinates qd can be then represented as function of the rigid-body

modal coordinates and joint parameters

qr = D(θ)qd (2.11)

where the matrix D(θ) is defined as:

D(θ) = −C+
r (θ)Cd(θ) (2.12)

The rigid-body modal coordinates are function of θ and qd only. In particular, if all the

links of the mechanism are considered as rigid bodies, the remaining DOF are those of the

ERLS.

2.2 Derivative terms

The velocities and accelerations terms are derived as functions of θ, qd and their derivatives,

in order to implement the dynamic analysis of the complete flexible multibody system.

First, (2.5) is differentiated with respect to time. The following expression is obtained

Ċq +Cq̇ = 0 (2.13)

which can be written as ∑
k

∂C

∂θk
qθ̇k +Cq̇ = 0 (2.14)

By defining

E(θ, q) =

[
∂C

∂θ1
q ...

∂C

∂θn
q

]
(2.15)

it is possible to easily obtain

Eθ̇ +Cq̇ = 0 (2.16)
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2.3. Acceleration terms

By substituting (2.9), it holds

Eθ̇ +Cdq̇d +Crq̇r = 0 (2.17)

By exploiting the pseudo-inverse matrix C+
r , the previous equation can be solved with

respect to q̇r
q̇r = −C+

r Cdq̇d −C+
r Eθ̇ (2.18)

By introducing the matrix

G(θ, q) = −C+
r E(θ, q) (2.19)

the relationship between the velocities of the rigid-body modal coordinates and the velocities

of the independent variables can be found

q̇r = D(θ)q̇d +G(θ, q)θ̇ (2.20)

The previous equation can be rewritten in terms of virtual displacements as well

δqr = D(θ)δqd +G(θ, q)δθ (2.21)

2.3 Acceleration terms

Let differentiate (2.5) with respect to time twice. It can be obtained

C̈q + 2Ċq̇ +Cq̈ (2.22)

The second derivative of the coefficient matrix can be written as

C̈ =
d

dt

∑
k

∂C

∂θk
θ̇k =

∑
j

∑
k

∂2C

∂θj∂θk
θ̇j θ̇k +

∑
k

∂C

∂θk
θ̈k (2.23)

By defining

h(θ, θ̇, q) =

⎛⎝∑
j

∑
k

∂2C

∂θj∂θk
θ̇j θ̇k

⎞⎠ q (2.24)

and

c(θ, θ̇, q) = Ċq̇ =

(∑
k

∂C

∂θk

)
q̇ (2.25)

the following equation can be obtained

C̈q = h(θ, θ̇, q) +E(θ, q)θ̈ (2.26)

(2.22) can be finally rewritten as

h(θ, θ̇, q) +E(θ, q)θ̈ + 2c(θ, θ̇, q) +Cq̈ = 0 (2.27)
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2.4. Virtual work contributions

The acceleration of rigid-body modal coordinates q̈r can be written as function of the

independent coordinates by splitting C according to (2.9)

q̈r = −C+
r (θ)h(θ, θ̇, q)−C+

r (θ)E(θ, q)θ̈ − 2C+
r (θ)c(θ, θ̇, q)−C+

r (θ)Cd(θ)q̈d (2.28)

By defining

n(θ, θ̇, q, q̇) = −C+
r (θ)h(θ, θ̇, q)− 2C+

r (θ)c(θ, θ̇, q) (2.29)

The acceleration of rigid-body modal coordinates can be arranged as

q̈r = G(θ, q)θ̈ +D(θ)q̈d + n(θ, θ̇, q, q̇) (2.30)

2.4 Virtual work contributions

2.4.1 Virtual work of inertial forces for a link

For the sake of simplicity, in the following the index i -th, that spans from 1 to the number

of links, is dropped. According to (1.1), p indicates the vector containing the global

coordinates of all the nodes of the link, e the vector containing the global coordinates of

all the nodes belonging to the Equivalent Rigid-Link System, and u the vector containing

the nodal displacements

p = e+ u (2.31)

The nodal displacements u can be expressed as function of modal coordinates by means of

block-matrix R̄, which is obtained by assembling the local-to-local transformation matrices

T i on the main diagonal

u = R̄Uq (2.32)

The nodal virtual displacements can be written as

δu = δR̄Uq + R̄Uδq (2.33)

In the same manner, the second derivative of nodal displacements is equal to

ü = ¨̄RUq + 2 ˙̄RUq̇ + R̄Uq̈ (2.34)

Before computing the virtual displacements and acceleration related to the ERLS, the

general formulation of velocity and acceleration of a generic point associated to the link of

the ERLS has to be computed.

With respect to point O in the global reference frame, the velocity and acceleration of

a point P are

vp = v0 − (P −O) ∧ ω (2.35)

ap = a0 − (P −O) ∧α+ ω ∧ (vp − v0) (2.36)
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2.4. Virtual work contributions

Let identify three different non-aligned points, with subscripts 0, 1 and 2. v1 = v0 − (P 1 −
O0)∧ω and v2 = v0 − (P 2 −O0)∧ω are the velocities of the last two points with respect

to the first one. In matrix notation ⎡⎢⎣v0

v1

v2

⎤⎥⎦ = B̂

[
v0

ω

]
(2.37)

B̂ is a 9× 6 matrix (see Appendix A.2).

Let split the matrix of the eigenvectors U into two blocks, one related to the rigid-

body mode eigenvectors U r and the other related to the elastic mode eigenvectors Ud:

U =
[
U r|Ud

]
. The sub-matrix Û r is defined as the matrix composed by the rows of U r

that correspond to the nodes 0, 1 and 2. Since U r is composed of the mode vectors related

to the rigid motion, an unknown vector x that satisfies the following equation can be found⎡⎢⎣v0

v1

v2

⎤⎥⎦ = Û rx (2.38)

From (2.37) and (2.38), it can be obtained that

x = B̃

[
v0

ω

]
(2.39)

where the left pseudo-inverse matrix B̃ = (Û
T
r Û r)

−1Û
T
r B̂ has been used. The left

pseudo-inverse matrix allows to obtain the solution that minimizes the norm of the error

[53].

The velocities of the nodes of the ERLS can be expressed, in the links reference frame,

as a function of the velocity of node 0 and the angular velocity vector, as

ė = R̄U rB̃

[
v0

ω

]
(2.40)

B̃ is only defined by the geometry of the link and the eigenvectors. Therefore, it can be

calculated only once prior to starting the simulations.

The accelerations of nodes 0, 1 and 2 can be expressed as the sum of two contributes

a0 = aI
0 + aII

0

a1 = aI
1 + aII

1

a2 = aI
2 + aII

2

(2.41)

where the first terms describe the acceleration for null angular velocity, whereas the second

terms depend on the angular velocity.

By knowing that aI
0 = a0, a

I
1 = a0 − (P 1 − P 0) ∧ α and aI

2 = a0 − (P 2 − P 0) ∧ α,
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2.4. Virtual work contributions

the acceleration of the nodes for null angular velocity are

ëI = R̄U rB̃

[
a0

α

]
(2.42)

whereas the contributes to the nodal acceleration due to angular velocity is

ëII = R̄Ω̄U rB̃

[
0

ω

]
(2.43)

The main diagonal of Ω̄ is composed of the skew-symmetric matrices Ω given by the

components of the angular velocity in the link reference frame. The relationship ω ∧ (vp −
v0) = ω ∧ [(P −O) ∧ ω] has been applied to obtain the centripetal contribution to all the

nodes of the link.

Then, we can obtain:

ë = R̄U rB̃

[
a0

α

]
+ R̄Ω̄U rB̃

[
0

ω

]
(2.44)

where

B =

[
B̃

0

]
(2.45)

It can be noticed that the lower block of B is composed of a number of null rows equal to

the number of elastic modal coordinates of the link that is taken into account.

By rewriting U rB̃ as UB, the following equations can be obtained

ė = R̄UB̃

[
v0

ω

]
(2.46)

ë = R̄UB

[
a0

α

]
+ R̄Ω̄UB

[
0

ω

]
(2.47)

The virtual displacements of the nodes of the Equivalent Rigid-Link System can be written

as

δe = R̄UB

[
δP 0

δφ

]
(2.48)

By considering that δp = δe + δu and p̈ = ë + ü, the virtual displacements and the

absolute accelerations are equal to

δp = R̄UB

[
δP 0

δφ

]
+ δR̄Uq + R̄Uδq (2.49)

p̈ = R̄UB

[
a0

α

]
+ R̄Ω̄UB

[
0

ω

]
+ ¨̄RUq + 2 ˙̄RU ˙̄q + R̄Uq̈ (2.50)
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2.4. Virtual work contributions

By defining as M the mass matrix in the local reference frame, the virtual work related

to inertial forces can be computed as

δWinertia = −δpT R̄MR̄
T
p̈ (2.51)

or, by introducing the expressions for the virtual displacements δp and the absolute

accelerations p̈, as

δWinertia =

⎛⎝δqTUT + qTUT δR̄
T
R̄+

[
δP 0

δφ

]T
BTUT

⎞⎠M

×

(
UB

[
a0

α

]
+ Ω̄UB

[
0

ω

]
+ R̄

T ¨̄RUq + 2R̄
T ˙̄RU ˙̄q +Uq̈

) (2.52)

The terms

δR̄
T
R̄ = δΦ̄

T
(2.53)

R̄
T ˙̄R = Ω̄ (2.54)

R̄
T ¨̄R = Ā− Ω̄

T
Ω̄ (2.55)

are computed as reported in Appendix A.3.

The matrices Ω̄, A and δΦ are calculated as:

Ω̄ =

⎡⎢⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎥⎦ ; A =

⎡⎢⎣ 0 −αz αy

αz 0 −αx

−αy αx 0

⎤⎥⎦ ; δΦ =

⎡⎢⎣ 0 −δφz δφy

δφz 0 −δφx

−δφy δφx 0

⎤⎥⎦
(2.56)

δφx, δφy and δφz are the components of the virtual rotational displacement of the link.

The virtual work of inertial forces can be finally rewritten in the following form

δWinertia = −

⎛⎝δqTUT + qTUT δΦ̄
T
+

[
δP 0

δφ

]T
BTUT

⎞⎠M

(
UB

[
a0

α

]
+ Ω̄UB

[
0

ω

]
+ (Ā− Ω̄

T
Ω̄)Uq + 2Ω̄Uq̇ +Uq̈

) (2.57)

The previous equation can be expanded by computing the products between virtual

displacements and inertial forces

− δWinertia =

= δqTUTMUB

[
a0

α

]
+ qTUT δΦ̄

T
MUB

[
a0

α

]
+

[
δP 0

δφ

]T
BTUTMUB

[
a0

α

]
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2.4. Virtual work contributions

+ δqTUTMΩ̄UB

[
0

ω

]
+ qTUT δΦ̄

T
MΩ̄UB

[
0

ω

]
+

[
δP 0

δφ

]T
BTUTMΩ̄UB

[
0

ω

]
+ δqTUTM(Ā− Ω̄

T
Ω̄)Uq + qTUT δΦ̄

T
M(Ā− Ω̄

T
Ω̄)Uq

+

[
δP 0

δφ

]T
BTUTM(Ā− Ω̄

T
Ω̄)Uq + 2δqTUTMΩ̄Uq̇ + 2qTUT δΦ̄

T
MΩ̄Uq̇

+ 2

[
δP 0

δφ

]T
BTUTMΩ̄Uq̇ + δqTUTMUq̈ + qTUT δΦ̄

T
MUq̈ +

[
δP 0

δφ

]T
BTUTMUq̈

(2.58)

Let now split the virtual work into two contributes

δWinertia = δW I
inertia + δW II

inertia (2.59)

where the first groups together all the terms depending on the second derivative of the

variables, the second all the remaining elements

− δW I
inertia =

= δqTUTMUB

[
a0

α

]
+ qTUT δΦ̄

T
MUB

[
a0

α

]
+

[
δP 0

δφ

]T
BTUTMUB

[
a0

α

]

+ δqTUTMĀUq + qTUT δΦ̄
T
MĀUq

[
δP 0

δφ

]T
BTUTMĀUq

+ δqTUTMUq̈ + qTUT δΦ̄
T
MUq̈ +

[
δP 0

δφ

]T
BTUTMUq̈

(2.60)

− δW II
inertia =

= δqTUTMΩ̄UB

[
0

ω

]
− qTUT δΦ̄

T
MΩ̄UB

[
0

ω

]
−

[
δP 0

δφ

]T
BTUTMΩ̄UB

[
0

ω

]

+ δqTUTMΩ̄
T
Ω̄Uq + qTUT δΦ̄

T
MΩ̄

T
Ω̄Uq +

[
δP 0

δφ

]T
BTUTMΩ̄

T
Ω̄Uq

− 2δqTUTMΩ̄Uq̇ − 2qTUT δΦ̄
T
MΩ̄Uq̇ − 2

[
δP 0

δφ

]T
BTUTMΩ̄Uq̇

(2.61)

The single terms of δW I
inertia and δW II

inertia are computed in Appendix A.4.
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2.4. Virtual work contributions

2.4.2 Variation of elastic energy for a link

Let now consider the elastic energy for a single link

H =
1

2
uTKu (2.62)

The variation of H can be expressed as

δH = δuTKu (2.63)

By substituting u = Uq, it holds

δH = δqTUTKUq = δqTΓq (2.64)

Γ is a diagonal matrix whose components are the squares of the natural frequencies. If we

define Γd the sub-matrix corresponding to the non-null eigenvalues only, the variation of

the elastic energy becomes

δH = δqTdΓdqd (2.65)

2.4.3 Virtual work of gravitational forces for a link

Let now consider the virtual work of gravitational forces for a single link

δWg = δpTfg (2.66)

where gravity is indicated with fg.

The corresponding virtual displacement is equal to

δp = R̄UB

[
δP 0

δφ

]
+ δR̄Uq + R̄Uδq (2.67)

and the gravitational force vector as

fg = R̄Mĝl = R̄M(î1qx + î2qy + î3qz) = R̄MÎgl (2.68)

gl represents the gravitational vector in the reference frame of the link and vectors îi

depend on the nature of nodes, as explained in Appendix A.5.

δWg can be rewritten as

δWg =

⎛⎝[δP 0

δφ

]T
BTUT R̄

T
+ qTUT δR̄

T
+ δqTUT R̄

T

⎞⎠ R̄MÎgl (2.69)

or as

δWg =

[
δP 0

δφ

]T
BTUTMÎgl + qTUT δΦ̄

T
MÎgl + δqTUTMÎgl (2.70)
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2.4. Virtual work contributions

The first term of the previous equation can be expressed as[
δP 0

δφ

]T
BTUTMÎgl =

[
δP 0

δφ

]T
BTQ4gl (2.71)

where

Q4 = UTMÎ (2.72)

A part of the second term is

UT δΦ̄
T
MÎ = UT

(
δφxĀ

T
1 + δφyĀ

T
2 + δφzĀ

T
3

)
MÎ = δφ1Q1 + δφ2Q2 + δφ3Q3 (2.73)

where the following matrices have been defined

Q1 = UT Ā
T
1 MÎ

Q2 = UT Ā
T
2 MÎ

Q3 = UT Ā
T
3 MÎ

(2.74)

Finally, the third term is

δqTUTMÎgl = δqTQ4gl (2.75)

2.4.4 Virtual work of the resultant generalized forces acting on a link

Let now consider the virtual work of the resultant generalized forces (forces or torques) f

acting on a link

δWf = δpTf (2.76)

The virtual displacement is written as

δp = T Û fB

[
δP 0

δφ

]
+ δT Û fq + T Û fδq (2.77)

Û f is a sub-matrix of U whose rows are the rows related to the degrees of freedom the

generalized force is applied to.

If we define f l the generalized force vector whose components are referred to the local

reference frame of the link, we can obtain f = Tf l. The virtual work δWf can be developed

as

δWf =

⎛⎝[δP 0

δφ

]T
BT Û

T
f R

T + qT Û
T
f δR

T + δqT Û
T
f R

T

⎞⎠Tf l (2.78)

or

δWf =

[
δP 0

δφ

]T
BT Û

T
f f l + qT Û

T
f δΦ

Tf l + δqT Û
T
f f l (2.79)
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2.5. Equation of motion

where

qT Û
T
f δΦ

Tf l =

= δφ1q
T Û

T
f

⎡⎢⎣0 0 0

0 0 1

0 −1 0

⎤⎥⎦f l + δφ2q
T Û

T
f

⎡⎢⎣0 0 −1

0 0 0

1 0 0

⎤⎥⎦f l + δφ3q
T Û

T
f

⎡⎢⎣ 0 1 0

−1 0 0

0 0 0

⎤⎥⎦f l

(2.80)

2.5 Equation of motion

Starting from (2.21), the virtual terms of the generic i-th link, i.e. linear δP 0i, angular

δφi and modal δq, can be expressed as⎡⎢⎣δP 0i

δφi

δq

⎤⎥⎦ =

⎡⎢⎣V θi 0 0

0 V qri 0

0 0 V qdi

⎤⎥⎦
⎡⎢⎣ J(θ) 0

G(θ, q) D(θ)

0 I

⎤⎥⎦[ δθ
δqd

]
= V o

iN

[
δθ

δqd

]
(2.81)

V o
i is the selection matrix for the proper elements of the i-th link, (V θi is the selection

block-matrix for the rigid DOF, V qri for the rigid modal coordinates and V qdi for the

elastic modal ones) and J(θ) the Jacobian matrix of the ERLS. The V o
i matrix is block

diagonal and allows to select the correct terms related to both the rigid degrees of freedom

and the independent vibration modal coordinates. Also the acceleration terms (2.30),

i.e. linear a0i, angular αi and modal q̈, can be rewritten as function of the independent

variables: ⎡⎢⎣a0i

αi

q̈

⎤⎥⎦ = V o
iN

[
θ̈

q̈d

]
+ V o

i

⎡⎢⎣ J̇(θ, θ̇)θ̇

n(θ, θ̇, q, q̇)

0

⎤⎥⎦ (2.82)

The second term of the previous equation depends only on the position and velocity of the

independent variables and, thus, it is known. The virtual work done by the inertial forces

δW I
inertia,i and δW II

inertia,i of each link can be written as

−δW I
inertia,i =

[
δP T

0i δφT
i δqT

]
Li

⎡⎢⎣a0i

αi

q̈

⎤⎥⎦ (2.83)

−δW I
inertia,i =

[
δθT δqTd

]
NTV oT

i Li

⎛⎜⎝V o
iN

[
θ̈

q̈d

]
+ V o

i

⎡⎢⎣ J̇(θ, θ̇)θ̇

n(θ, θ̇, q, q̇)

0

⎤⎥⎦
⎞⎟⎠ (2.84)

where the Li matrix contains all the terms not depending on virtual displacements and

accelerations.
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2.6. Differences between ERLS and FFR formulations

The term δW II
inertia,i can be rewritten as

δW II
inertia,i =

[
δP T

0i δφT
i δqT

]
li =

[
δθT δqTd

]
NTV oT

i li (2.85)

All the other terms such as the variation of the elastic energy δH, gravity δW g and the

resultant generalized forces δW f do not depend on accelerations. Then, they can be

gathered into a unique term l̃i. By naming δW i the term with all the contributions not

depending on accelerations, we can obtain

δW i =
[
δP T

0i δφT
i δqT

]
l̃i =

[
δθT δqTd

]
NTV oT

i l̃i (2.86)

All the links contributions can be added to obtain the final formulation:

− δW I
inertia =

N∑
i=1

[
δθT δqTd

]
NTV oT

i Li

⎛⎜⎝V o
iN

[
θ̈

q̈d

]
+ V o

i

⎡⎢⎣ J̇(θ, θ̇)θ̇

n(θ, θ̇, q, q̇)

0

⎤⎥⎦
⎞⎟⎠ =

= δW =

N∑
i=1

[
δθT δqTd

]
NTV oT

i l̃i

By naming L
def
=
∑N

i=1 V
oT
i LiV

o
i and l̃

def
=
∑N

i=1 V
oT
i l̃i, and discarding the virtual dis-

placements, the final dynamic model of the flexible multibody system results:

NTLN

[
θ̈

q̈d

]
= NT

⎛⎜⎝L

⎛⎜⎝−

⎡⎢⎣ J̇(θ, θ̇)θ

n(θ, θ̇, q, q̇)

0

⎤⎥⎦
⎞⎟⎠+ l̃

⎞⎟⎠ (2.87)

2.6 Differences between ERLS and FFR formulations

In this section the differences between the Equivalent Rigid-Link System and the Floating

Frame of Reference formulations are briefly recalled.

• The ERLS approach deals directly with a classical Denavith-Hartenberg [54] for-

mulation as well as coping with the flexible-link robot as if it were a rigid-link

one.

• In the FFR formulation the i -th deformed body does not represent rigid displacements

with respect to the i-th link, in the sense that there are not rigid motions of the

deformed body with respect to the local reference frame. On the other hand, the

rigid displacements are required for the ERLS approach: they are defined by the

values of the rigid-body modal coordinates.

• In the FFR, the joint parameters and deformation modal values are couple in the

kinematic equations. Indeed, the constraint equations depend on both the elastic
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2.6. Differences between ERLS and FFR formulations

deformations and on the reference motion of the elastic bodies.

In the ERLS formulation, the kinematic equations just contain the joint parameters,

since the deformation modal values are present in the compatibility conditions at the

joints. This means that the kinematic equations of the ERLS are decoupled from the

compatibility equations of the displacement at the joints [37] [50] [51].

• As a consequence of the previous point, if a closed-form solution of the kinematic

equations is available, it can be employed without resorting to iterative algorithm

procedures.

• Moreover, for the ERLS approach the choice of independent variables is not problem-

atic as it is, on the other hand, for the FFR formulation, as stated by Shabana in

[26].
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Chapter 3

Comparison between the

ERLS-FEM and the ERLS-CMS

approaches

In this chapter, two different approaches for the modeling of 3D flexible multibody system

using an Equivalent Rigid-Link System are compared through numerical simulations. The

first formulation is based on a Finite Element Method approach (ERLS-FEM), recalled

in Chapter 1, whereas the second deals with the extension of the model through a modal

approach, i.e. the Component Mode Synthesis technique (ERLS-CMS), described in Chapter

2. The two methodologies are compared in terms of accuracy in time and frequency domains

and computational time. A flexible L-shaped manipulator has been chosen as a benchmark

mechanism and its dynamic behavior has been simulated under different input conditions.

The effects of the beam discretization and the number of considered modes have been taken

into account and discussed.

Part of the work described in this chapter has been published in [2].

3.1 Introduction

As described in Chapter 1, the Equivalent Rigid-Link formulation has been firstly developed

in combination with a Finite Element Method approach. The main drawback of this method

is that the discretization of the beam elements (i.e. the number of nodes of the mesh) has

to be kept low if a low computational time is required. In particular, a fast resolution of

the dynamic equations and, therefore, a fast computational time is needed if the model has

to be employed for real-time control systems or simulations.

For these reason, in recent years, a novel formulation based on a modal approach has

been developed (Chapter 2). The modal formulation (ERLS-CMS) allows to keep the

number of degrees of freedom low but, at the same time, to maintain a good accuracy in

the simulated dynamic behavior of the mechanism.

Section 3.2 presents a theoretical comparison between the ERLS-FEM and CMS

approaches, Section 3.3 describes the numerical implementation and simulation, Section
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3.3. Numerical implementation and simulation

3.4 reports the results and Section 3.5 the conclusions of the chapter.

3.2 Theoretical comparison

In the following, the main differences between the theoretical models Equivalent Rigid-Link

System - Finite Element Method and the Component Mode Synthesis are highlighted.

With respect to the ERLS-FEM formulation, the ERLS-CMS:

• takes into account all the terms without simplifications and/or neglecting some,

even if with a small contribution, inertia coupling terms. Indeed, in the virtual

displacement formulation of the ERLS-FEM approach, the terms with lower-order

magnitude are usually neglected [51];

• allows to work with whatsoever flexible or rigid-link shape and finite elements thanks

to the modal representation; the Equivalent Rigid-Link System - Finite Element

Method usually deals with flexible beam type links, in which the node discretization

is easier to apply;

• allows, as already explained, to reduce the complexity of the model and possibly

maintain a number of degrees of freedom that can be handled by a processor when a

fine discretization is needed;

• allows the choice of a specific number of equations, which globally describes the

dynamic behavior of the flexible system;

• allows to avoid ill-conditioned problems that often affect large dimensional models;

• allows to operate with lower computational resources on equal computing time, as it

will be presented in this chapter;

• can be very useful for real-time simulation purposes, control, estimation and opti-

mization algorithms;

• allows to retain only the interior modes of interest (e.g. by using the Craig-Bampton

approach [55] or different Model Order Reduction techniques, as it is explained in

Chapter 4).

3.3 Numerical implementation and simulation

The Equivalent Rigid-Link System - Finite Element Method and Component Mode Synthesis

dynamic models have been implemented in MatlabTM environment to test their accuracy

and computational effort.

In the recent years, different benchmark mechanisms for flexible multibody systems

have been proposed in the Literature, such as single-link, planar, closed loop and spatial

46



3.3. Numerical implementation and simulation
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Figure 3.1: Double pendulum. Figure 3.2: Slider-crank linkage mechanism.
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Figure 3.3: L-shaped manipulator: reference frame and possible node discretization.

manipulators (e.g. [56, 37, 57, 58, 59, 60]). In Figures 3.1 and 3.2 a double-pendulum and

a slider-crank linkage mechanisms are reported as examples.

In this work, looking at a 3-D motion and excitation, a L-shaped mechanism, already

employed in [12], has been chosen. An image of the manipulator and a possible node

discretization is shown in Fig. 3.3. The L-shape mechanism is basically made of two

flexible rods and it allows to induce motion and vibrations in different directions. For the

ERLS-CMS model, the link flexibility has been imported through a special file, i.e. the

modal neutral file, generated in AnsysTM and based on the Craig-Bampton reduction. In

Chapter 4 other different Model Order Reduction techniques are taken into account and

compared.

The L-shaped system has one rigid rotational degree of freedom and, in these tests, it

has been modeled with two and four Euler-Bernoulli beams - Finite Elements - in AnsysTM.

Figure 3.4 reports an image of the Euler-Bernoulli beams of the L-shaped manipulator in

AnsysTM for the case with 4 beam elements. Even if a low number of finite elements is

considered, a good representation of its dynamic behavior can be obtained [12, 39, 57, 61].

Each Euler-Bernoulli beam has two nodes and six degrees of freedom: the two-elements

system has a total of 18 DOF, whereas the four-elements one has a total of 30 DOF.

The geometrical and mechanical parameters of the benchmark mechanism are reported

in Tab. 3.1.
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3.3. Numerical implementation and simulation

Figure 3.4: Euler-Bernoulli beams of the L-shaped manipulator in AnsysTM (case with 4
beam elements).

Table 3.1: Geometrical and mechanical parameters of the L-shaped manipulator.

Rod Material Length Depth Width Density Poisson’s Young’s
ratio module

[m] [m] [m] [kg/m3] [N/m2]

1st Aluminum 0.5 0.008 0.008 2700 0.33 7e10

2nd Aluminum 0.5 0.008 0.008 2700 0.33 7e10

To compare the two formulations, the responses of the mechanism under different

inputs have been evaluated. In particular, as it was done in other works [12, 37, 58, 59],

gravitational force and torque inputs have been considered and the results compared.

Gravity vector is reported in Fig. 3.3, whereas the torque input signal is shown in Fig.

3.5. Gravitational force has been chosen as a natural way to excite the system, whereas

the step torque input allows to properly excite the 3-D mechanism upon a wider range of

frequencies.

The torque input signal allows, from a statically balanced configuration at 135◦, to fast

accelerate and decelerate the L-shaped system. In order to simulate the realistic mechanical

behavior, a motor inertia Im, a shrink disc inertia Ic and an elbow articulation concentrated

mass me have been added to the model. The chosen values are Im = 0.0043 Kg m2,

Ic = 0.001269 Kg m2 and me = 0.017 Kg, respectively.

The number of exported vibrational modes is defined in AnsysTM when creating the .mnf

file for AdamsTM, that exploits the Craig-Bampton modal reduction. In the 2-elements

case, all available modes have been exported, whereas in the 4-elements case two different

files with 18 and 30, over the 30 available modes, have been created. In Table 3.2, the

exported natural frequencies are reported. The first 6 values of modes are not present in
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3.3. Numerical implementation and simulation
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Figure 3.5: Input torque signal.

Table 3.2: Natural frequencies [Hz] obtained by AdamsTM report files.

Mode 2 el. (18 m.) 4 el. (18 m.) 4 el. (30 m.) Mode 4 el. (30 m.)

7 23.33 28.19 28.19 19 5466.76
8 37.56 34.42 34.42 20 6104.64
9 1171.02 103.24 103.25 21 6104.64
10 1273.62 106.16 106.16 22 6483.02
11 2519.98 187.01 186.90 23 7991.92
12 2729.22 234.08 234.08 24 11313.76
13 2729.22 1434.45 1344.65 25 14071.89
14 3241.51 1463.87 1371.12 26 18313.23
15 5427.78 3761.82 3360.82 27 19697.79
16 9207.15 6368.74 3379.20 28 23294.27
17 10398.16 7310.70 3507.58 29 23651.84
18 12610.60 12023.24 3508.01 30 25068.96

the table since they are equal to zero representing rigid-body modes.

Table 3.3: Hardware used for the numerical simulations.

Computer HP Pavillon dv6
Processor Intel R⃝ CoreTM 2 Duo CPU T6400 @ 2.00 GHz 2.00 GHz
Installed memory (RAM) 4.00 GB
System type 64-bit Operating System, x64-based processor
Windows edition Windows 10 Pro

For each subdivision of the L-shaped manipulator in beam elements, different numerical

simulations have been run, by varying the number of considered modes. The dynamics

of the robotic system has been simulated for a time equal to 2 seconds and by adopting

the variable step ode45 solver in Matlab, based on an explicit Runge-Kutta formulation.
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3.4. Results and discussion

For each number of considered modes, three simulations have been run in order to obtain

a correct average value of computational time. The properties of the laptop used for the

numerical simulations are reported in Table 3.3.

3.4 Results and discussion

In this section, the results of the numerical simulations for the L-shaped manipulator

subjected to both gravity (Subsection 3.4.1) and torque inputs (Subsection 3.4.2) are

presented.

The dynamic simulations of the mechanism under gravity are intended to highlight the

L-shaped system frequency response over a large frequency domain, whereas simulations

with torque input highlight the behavior of the system under a forced condition, in a way

more similar to a real application.

Four significant cases have been highlighted:

• the 2- and 4-elements models without reduction equivalent to the ERLS-FEM 2- and

4-beam elements model, i.e. 2 el. 18/18 modes and 4 el. 30/30 modes;

• the 4-elements model exported from AnsysTM with 18 modes, i.e. 4 el. 18/18 modes;

• the model obtained by the full 30/30 reduced choosing only the first 18 modes, i.e. 4

el. 18/30 modes.

For the four cases and for the two input conditions (gravity and step torque), the

position signals of the tip of the mechanism over the x, y and z axis and the z-coordinate

acceleration signal of the L-shaped manipulator in both time and frequency domains

have been analyzed. Moreover, the average computational times have been acquired and

compared. For both the two input conditions, at the beginning of the excitation, the

manipulator is in a static balanced position at 135◦.

3.4.1 Mechanism under gravitational force

To better appreciate the differences between Finite Element Method and Component Mode

Synthesis model results, the x, y and z coordinates position signals are reported in Figures

3.6, 3.7 and 3.8, respectively. The tip z-coordinate acceleration signal of the L-shaped

manipulator under gravity both in the time and frequency domains are reported in Figures

3.9(a) and 3.9(b). For the acceleration comparison, the z-coordinate has been chosen since

it is the one that is heavily excited due to the considered external forces acting on the

L-shaped mechanism and, therefore, allows a better comparison of the results.

By considering the position signals, the 4-elements 18-modes and the 4-elements 30-

modes signals overlap almost perfectly in all x, y and z coordinates, whereas the 2-elements

signal shows a consistent difference.

By considering the acceleration signal, the 4-elements 18-modes and the 4-elements

30-modes signals have a largely overlapping behavior, whereas, as it can be expected, the
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Figure 3.6: Comparison of the tip x-coordinate position of the L-shaped mechanism under
gravity force.
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Figure 3.7: Comparison of the tip y-coordinate position of the L-shaped mechanism under
gravity force.

2-elements signal shows a good agreement only at low frequencies. Small differences can be

observed for the 4 el. 18/30 modes case due to the post reduction in the mode number.

In Tab. 3.4, the resonance peaks, detected on the z-coordinate acceleration signal of

the L-shaped mechanism, are reported. Only the frequencies lower than 10 kHz have been

considered here.

Looking at the values of Tab. 3.4, it can be highlighted that, in both the 4-elements

cases, i.e. 4 el. 18 exported modes and 4 el. 30 modes, 14 vibration modes are sufficient

to obtain a very good agreement of the first 8 resonance peaks with respect to the Finite

Element Method case, i.e. the full model condition. Concerning simulation results with

a considered number of modes lower than 14, a good agreement can be found only with

respect to the first 3 peaks. As expected, by increasing the number of considered modal
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Figure 3.8: Comparison of the tip z-coordinate position of the L-shaped mechanism under
gravity force.

Table 3.4: Resonance peaks [Hz] with respect to beam elements and considered modes,
mechanism subjected to gravity force.

Elements Modes Resonance peaks [Hz]

1 2 3 4 5 6 7 8 9 10 11

2 (18 m.) 18 0.5 7.5 28 31.5 1482

4 (18 m.)

8 0.5 12 28.5
10 0.5 10 26.5 38
12 0.5 8.5 26 37.5 124.5 170
14 0.5 9 11.5 25.5 30.5 111.5 124 172 1464
16 0.5 9 11.5 25.5 30.5 111.5 124 172 2259 6163
18 0.5 8.5 11.5 24 30.5 111.5 117 172 265.5 2260 9334

4 (30 m.)

8 0.5 12 28.5
10 0.5 10 26.5 38
12 0.5 9.5 26 37.5 124 170
14 0.5 9 12 25.5 30.5 112.5 124 172 1371
16 0.5 9 11.5 25.5 30.5 111.5 124 172 3381
18 0.5 9 11.5 25.5 30.5 111.5 124 172 1918 3429
30 0.5 8.5 11.5 24 30.5 111.5 117 172 265.5 1767 5044

coordinates, the resonance peaks shift to lower values of frequency.

In Tab. 3.5 and Fig. 3.10 the computational time for each simulation is reported. In

Tab. 3.6 the average computational time over the three simulations of each case and the

percentage reduction with respect to the computational time of the FEM cases, i.e. the

cases with no modal reduction, are shown.

For the 2-elements 18-modes and 4-elements 30-modes, the percentage reduction of

computational effort is always greater than 50 %. An important computational time

reduction can be appreciated also for the 4-elements 18-modes with respect to both 2 and

4-elements FEM cases.
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Figure 3.9: Comparison of the tip z-coordinate acceleration of the L-shaped mechanism
under gravity force.

By considering the four main cases previously evaluated, it can be seen that the modal

reduction at 18 vibrational modes, i.e. 18 imported modes, allows a time reduction of

about 22 % whereas, if 18 modes are maintained from the 4-elements 30 modes case, the

time saving increases up to about 72 %.

If the 14 modes condition is evaluated, i.e. the one that allows to have an agreement

on the first 8 resonance peaks, it can be appreciated that the reduction in time is always

greater than 88 %, thus allowing to highlight the better performances of the ERLS-CMS

approach with respect to the ERLS-FEM one.

53



3.4. Results and discussion

Table 3.5: Computational time [s], mechanism under gravity.

Elements Modes

6 8 10 12 14 16 18 30

2 (18 m.) 1.31 6.53 226.34 437.91 466.41 1041.23 2160.01
0.99 5.69 196.42 371.03 442.32 1004.10 2120.68
1.61 6.29 220.39 387.06 467.94 1027.24 2114.84

4 (18 m.) 1.24 6.02 6.38 27.69 245.81 1128.18 1667.27
0.99 5.86 6.39 26.40 234.17 1046.00 1608.18
1.12 5.88 6.53 26.69 236.03 1085.86 1636.31

4 (30 m.) 1.21 6.11 6.47 27.62 218.68 583.11 589.64 4969.19
1.47 5.80 6.47 27.07 221.09 614.76 622.72 5024.79
1.45 5.69 6.44 28.47 232.38 623.67 581.73 4974.43
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Figure 3.10: Computational time [s] in logarithmic scale, mechanism under gravity.

Table 3.6: Computational mean time [s] and reduction [%] with respect to the FEM case,
mechanism under gravity.

Elements Modes

10 12 14 16 18 30

2 (18 m.) mean time [s] 214.38 398.67 458.89 1024.19 2098.84*
* [%] 89.79 81.01 78.14 51.20

4 (30 m.) mean time [s] 6.46 27.72 224.05 607.18 598.03 4989.47**
* [%] 99.69 98.68 89.33 71.07 71.94

** [%] 99.87 99.44 95.51 87.83 88.01

4 (18 m.) mean time [s] 6.43 26.93 238.67 1086.68 1637.25
* [%] 99.69 98.72 88.63 48.22 21.99

** [%] 99.87 99.46 95.22 78.22 67.19

Reduction with respect to *
Reduction with respect to **
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3.4. Results and discussion

3.4.2 Mechanism subjected to step torque input

In this section, the results of the simulations of the L-shaped mechanism subjected to a

step torque input signal are provided. The x, y and z coordinates of the position signal

of the mechanism tip (node 5 in Fig. 3.4) are reported in Figures 3.11, 3.12 and 3.13,

respectively. The tip z-coordinate acceleration of the L-shaped beam under torque input is

reported in Figures 3.14(a) and 3.14(b) in time and frequency domain, respectively.
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Figure 3.11: Comparison of the tip x-coordinate position of the L-shaped mechanism
subjected to a step torque input.
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Figure 3.12: Comparison of the tip y-coordinate position of the L-shaped mechanism
subjected to a step torque input.

Similarly to the gravitational force case, in the case of mechanism subjected to a step

torque input, the 4-elements position and acceleration signals match each other very well,

whereas the 2- elements FEM deviates from the other signal. In particular, 2- elements

position coordinates show large discrepancies with respect to the 4- elements ones. By
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Figure 3.13: Comparison of the tip z-coordinate position of the L-shaped mechanism
subjected to a step torque input.

considering the accelerations, the 2- elements captures only the low frequencies in a good

manner.

Table 3.7 reports the resonance peaks of the previous acceleration signals. It can be

seen that, for both 4- elements cases, only 14 modal coordinates in input are enough to

identify the first 4 resonance peaks. The general trend is quite similar to the gravitational

force case, since resonance peaks shift on lower frequency values by increasing the number

of considered vibrational modes. With respect to the gravity case, the step torque input

case shows 6 main excited frequencies.

Table 3.7: Resonance peaks [Hz] with respect to beam elements and considered modes,
mechanism subjected to torque input.

Elements Modes Resonance peaks [Hz]

1 2 3 4 5 6

2 (18 m.) 18 9.5 32.5 1491 11720

4 (18 m.)

8 28.5
10 26.5 38
12 26.5 37.5 170
14 11.5 30.5 111.5 172
16 11 30.5 111.5 172 2271 6163
18 11 30.5 111.5 172 2272 9345

4 (30 m.)

8 28.5
10 26.5 38
12 26.5 37.5 170
14 12 30.5 113 172
16 11 30.5 111.5 172
18 11 30.5 111.5 172 1929 3440
30 11 30.5 111.5 172 1755 1778
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Figure 3.14: Comparison of the tip z-coordinate acceleration of the L-shaped mechanism
under torque input.

In Table 3.8 and in Figure 3.15 the computational time of the different simulations is

reported. The values of computational time decrease by increasing the number of beam

elements and the exported modes, for each number of considered modes. By increasing

the beam elements and choosing the same number of modes, lower natural frequencies are

considered, as it can be appreciate from Tab. 3.2. Thus, the solver is able to extend the

time integration step and, therefore, the total required computational time decreases.

By considering the four main cases previously evaluated, it can be appreciated that the

modal reduction at 18 modes, i.e. 18 imported modes, allows a time saving of about 20 %,

whereas, if 18 modes are maintained from the 4 el. 30 modes case, the percentage time

reduction increases up to about 71 %.

If the 14 modes condition is evaluated, i.e. the one that allows to have an agreement
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3.4. Results and discussion

Table 3.8: Computational time [s], mechanism subjected to torque input.

Elements Modes

6 8 10 12 14 16 18 30

2 (18 m.) 1.02 5.85 203.64 387.05 454.47 1002.56 2091.69
1.37 6.35 213.72 374.69 445.70 1021.75 2105.60
1.42 5.62 198.73 378.21 448.13 986.64 2055.80

4 (18 m.) 1.09 5.38 5.85 30.23 255.47 1070.51 1678.88
1.06 5.15 5.81 29.13 244.35 1053.85 1625.22
1.19 5.32 6.13 31.08 259.08 1087.85 1721.40

4 (30 m.) 1.23 5.41 6.18 29.31 219.46 578.43 591.33 5137.08
1.33 5.31 6.16 30.27 219.47 573.86 591.82 5127.65
1.41 5.56 6.51 30.44 229.45 590.09 635.96 5087.46
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Figure 3.15: Computational time [s] in logarithmic scale, mechanism subjected to torque
input.

on the first 4 resonance peaks, the time reduction is again always greater than 88 %, thus

allowing to highlight the better performances of the modal approach (ERLS-CMS) with

respect to the ERLS-FEM one.

Similarly to the gravitational force case, in the simulations of the mechanism subjected

to a torque input it can be affirmed that the ERLS-CMS model with a number of modes

lower than the maximum one allows a reduction of computational effort of great significance.

It has to be noticed that the results presented in this chapter have been obtained with a

model suitable for small displacements and small elastic deformations. By considering longer

rods or by increasing the stiffness of the material, a more flexibility would be introduced.

This fact could lead to large elastic deformations. In such a condition, the Equivalent

Rigid-Link System formulation could not be adopted any more being the approach not

suitable to cope with large elastic deformations of the system.
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Table 3.9: Computational mean time [s] and reduction [%] with respect to the FEM case,
mechanism subjected to torque input.

Elements Modes

10 12 14 16 18 30

2 (18 m.) mean time [s] 205.36 379.98 449.43 1003.65 2084.36*
* [%] 90.15 81.77 78.44 51.85

4 (30 m.) mean time [s] 6.28 30.01 222.79 580.79 606.37 5117.40**
* [%] 99.70 98.56 89.31 72.14 70.91

** [%] 99.88 99.41 95.65 88.65 88.15

4 (18 m.) mean time [s] 5.93 30.15 252.97 1070.74 1675.17
* [%] 99.72 98.55 87.86 48.63 19.63

** [%] 99.88 99.41 95.06 79.08 67.27

Reduction with respect to *
Reduction with respect to **

3.5 Conclusions

In this chapter, a comparison between the Finite Element Method and the Component

Mode Synthesis approaches, based on an Equivalent Rigid-Link System 3-D dynamic

formulation, have been presented.

With respect to the kinematics and dynamics equations recalled in Chapters 1 and 2, a

theoretical comparison between the two approaches has been discussed. The two models

have been numerically implemented in MatlabTM environment, by choosing a L-shape

manipulator as a benchmark system. Different numerical simulations have been run by

varying the discretization of the beams and the number of considered modes, adopting

the gravitational force and a step torque as input signals. The performance of the models

have been evaluated by comparing the position and acceleration signals in both time and

frequency domain, as well as the average computational time and percentage time reduction

with respect to the complete models.

Results show that, with respect to the Equivalent Rigid-Link System - Finite Element

Method implementation, given the fact that the modal formulation allows to reduce the

number of degrees of freedom of the system, the computational time required for the

simulations decreases.

As demonstrated, the Equivalent Rigid-Link System - Component Mode Synthesis

approach allows to keep both the gross and the fine motion of the robotic system. Since

the choice of the selected modes could be made in different manners, in the next Chapter,

different Model Order Reduction strategies are applied and evaluated to increase the

performance of the ERLS-CMS approach.
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Chapter 4

Comparison of Model Order

Reduction Techniques

In this chapter, a comparison of different Model Order Reduction techniques for flexible

multibody dynamics is presented. In particular, the modal formulation based on the

Equivalent Rigid-Link System presented in Chapter 2 is adopted and implemented in

combination with different reduction techniques, i.e. Craig-Bampton, Interior Mode

Ranking (IMR), Guyan, Least Square Model Reduction (LSMR) and Mode Displacement

Method (MDM). These techniques allow to reduce the computational time required by the

dynamic model to be simulated, while maintaining a good accuracy in the description of

the dynamic behavior of the system.

In order to assess the advantages and disadvantages of the different methodologies,

these techniques are applied to a L-shaped benchmark mechanism under two different input

conditions: gravitational force and a step torque. The accuracy of each reduced model is

numerically estimated by means of vector correlation methods, i.e. the Modal Assurance

Criterion (MAC), the Cross-Orthogonality (CO) and the Normalized Cross-Orthogonality

(NCO), the behavior in frequency domain and through the comparison of computational

time.

Part of the work described in this chapter has been previously published in [3].

4.1 Introduction

In multibody dynamics, the classical approach to take the flexibility of elastic robotic

systems into account is based on the rigid-body dynamic model of the system and then

the elastic deformations are introduced. The elastic deformations of the bodies affect

the rigid motion and vice versa. It results in a highly non-linear dynamic formulation

described by a coupled set of partial differential equations. As mentioned in Chapter

1, two main methodologies can be found in the Literature to derive a set of ordinary

differential equations: the nodal approach (i.e. the Finite Element Method, FEM) and

the modal one [15]. However, since a high number of degrees of freedom is introduced by

the discretization of the flexible bodies, proper reduction methods should be applied in
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4.2. Model Order Reduction Techniques

order to allow an efficient numerical simulation of the multibody system, while keeping an

accurate description of the predominant dynamic behavior.

Model Order Reduction techniques can be classified in physical coordinates techniques,

generalized coordinates (i.e. modal coordinates) and hybrid methods, such as the Compo-

nent Mode Synthesis (CMS). A review of Model Order Reduction techniques for structural

dynamics, numerical mathematics and system and control is proposed in [62], whereas in

[63], [64] and [65] reduced order modeling strategies are applied in dynamics sub-structuring.

An example of model reduction can be found in [66], in which an elastic rod is considered.

Furthermore, in the field of multibody systems, an overview of the basic approaches to

model elastic multibody systems using the Floating Frame of Reference formulation in

given by [67]. Recently, a novel ranking method (Interior Mode Ranking, IMR), that

allows the selection of interior normal modes in the Craig-Bampton technique [68], has

been proposed in [69].

In this Chapter, the Equivalent Rigid-Link System formulation for modeling the

dynamics of flexible multibody systems is considered in its recent extension to a modal

approach, i.e. the Component Mode Synthesis, presented in Chapter 2. As described in

Chapter 3, this formulation, compared to the original ERLS-FEM, allows to achieve a more

flexible solution based on a reduced-order system of equations. In particular, the classical

Craig-Bampton approach has been adopted to select the internal vibrational modes of

interest [12]. However, this reduction is not the only technique capable of reducing the

number of degrees of freedom of a flexible multibody system.

For this reason, in this chapter different Model Order Reduction techniques are imple-

mented and the results compared. In particular, the advantages and disadvantages of the

different techniques are evaluated by simulating the dynamics of a L-shaped benchmark

mechanism under different input conditions: the effects of gravity only and a certain torque

signal. The FEM models of the benchmark mechanism are developed in Ansys R⃝ with

different refinements of discretization, whereas dynamics and post-processing are evaluated

in MatlabTM. The reduced model accuracy is evaluated through the comparison of the

computational time, the accuracy in frequency domain and by means of modal vector cor-

relation parameters: the Modal Assurance Criterion [70] [71] [65], the Cross-Orthogonality

[70] and the Normalized Cross-Orthogonality [72] [69] [73].

The remaining of the chapter is organized as follows: in Section 4.2 the Model Order

Reduction techniques that have been implemented and tested on the ERLS dynamic model

are briefly recalled; Section 4.3 shows the numerical implementation of the model on a

benchmark mechanism, whereas in Section 4.4 the numerical results are presented and

discussed. Finally, Section 4.5 highlights the conclusions of this work.

4.2 Model Order Reduction Techniques

In this section, the techniques that have been implemented for the Model Order Reduction

(MOR) of the ERLS dynamic model are briefly recalled.
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The generic equation of the dynamic equilibrium is considered

MẌ(t) +CẊ(t) +KX(t) = F (t) (4.1)

where M , C, K ∈ Rn×n are the mass, dumping and stiffness matrices of the complete

model, respectively, X ∈ Rn is the independent coordinates vector, F ∈ Rn is the force

vector acting on the system, and n the number of DOF of the complete model. Starting

from (4.1), several Model Order Reduction techniques assume the form of a coordinate

transformation such as

X(t) = TZ(t) (4.2)

where T ∈ Rn×m is the transformation matrix that transforms the reduced model co-

ordinates Z ∈ Rm in the complete model ones X, being m the number of DOF of the

reduced model. Since the transformation matrix is generally time-dependent, the following

equations can be written

Ẋ(t) = T Ż(t)

Ẍ(t) = T Z̈(t)
(4.3)

By substituting the previous expressions into (4.1) and by multiplying by matrix T T , the

final dynamic equilibrium equation for the reduced model can be obtained

M rZ̈(t) +CrŻ(t) +KrZ(t) = F r(t) (4.4)

where M r, Cr, Kr ∈ Rm×m are the mass, dumping and stiffness matrices of the reduced

model, whereas F r ∈ Rm represents the force vector acting on the system. The reduced

model matrices have been obtained as

M r = T TMT , Cr = T TCT , Kr = T TKT , F r = T TF (4.5)

In the following of this section, the Model Order Reduction techniques for flexible

multibody dynamics that have been implemented together with the ERLS-CMS formulation

are briefly recalled and described. In particular, Craig-Bampton, Interior Mode Ranking,

Guyan’s reduction, Least Square Model Reduction and Mode Displacement Method have

been considered.

4.2.1 Craig-Bampton

Craig-Bampton is the classical modal reduction technique in flexible multibody dynamics

[68] [65]. It is a hybrid fixed-interface method that belongs to the Component Mode

Synthesis techniques. The formulation of the method assumes the form reported in (4.2).

The degrees of freedom are divided into two sets:

• the boundary DOF, indicated with B, where the reduced link is connected with other

components of the mechanical structure;
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• the interior DOF, indicated with I.

The dynamic equation for a link of the system, without considering the contribution of the

damping, can be written as[
MBB MBI

M IB M II

]{
ẌB

ẌI

}
+

[
KBB KBI

KIB KII

]{
XB

XI

}
=

{
FB

F I

}
(4.6)

The transformation matrix TCB, between physical and Craig-Bampton coordinates, assumes

the following form

X =

{
XB

XI

}
=

[
I 0

ϕC ϕN

]{
qC
qN

}
= TCB

{
qC
qN

}
(4.7)

In the transformation matrix the first column partition is related to the constraint modes,

which describe the motion of the system when each boundary degree of freedom undergoes

a unit displacement, while holding the other boundary degrees of freedom fixed. The

second column partition is related to the fixed-boundary modes, that can be described as

the interior DOF motion when the interface is fixed. The number of fixed-interface modes

can be reduced in order to decrease the total number of DOF. Finally, qC and qN are

the reduced model coordinates corresponding to the constraint and to the fixed-boundary

normal modes, respectively.

4.2.2 Interior Mode Ranking

The Interior Mode Ranking (IMR) [69] technique was developed for the selection of the

interior normal modes in the Craig-Bampton reduction. The IMR method allows an

analytical ranking of the interior modes by comparing their single contributions to the

dynamics of interest of the complete system, given the actual boundary conditions. In the

IMR method (see [69] for the complete formulation) a weighted participation coefficient γ

is defined for each considered interior mode ζ

γΛ,ζ =
∑
i∈Λ

|γi,ζ |
||γi||

αi ζ = 1, ..., s (4.8)

where Λ represents the set of the full system vibrational modes to be represented and γi is

the vector whose entries are the coefficients γi,ζ .

Furthermore, αi is a normalized weighting coefficient referring to the i-th mode,

employed to define the level of importance of each mode with respect to the reduced

model. The αi have to be designed in such a way that∑
i∈Λ

αi = 1 (4.9)

The larger the value of the coefficients γΛ,ζ , the more the dynamics of the ζ-th interior

mode affects the full system. The retained modes are those with the largest values of the
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weighted participation coefficients. In the IMR reduction here adopted, the number of

interior modes to be retained is defined in advance and an equal weighting coefficient is

assigned to all of them.

4.2.3 Guyan’s reduction

Another Model Order Reduction technique that has been taken into account is Guyan’s

reduction. It is a physical-type technique which is based on the assumption that the effect

of inertial forces on the eliminated physical coordinates is negligible [74] [75].

The degrees of freedom corresponding to master (denoted by subscript m) and slave

(subscript s) are divided into two groups and, then, the equation of motion can be expressed

as follows [
Mmm Mms

M sm M ss

]{
Ẍm

Ẍs

}
+

[
Kmm Kms

Ksm Kss

]{
Xm

Xs

}
=

{
Fm

0

}
(4.10)

Neglecting the inertia associated with the slave degrees of freedom, the following expression

can be obtained

Xs = −K−1
ss KsmXm (4.11)

Finally, eliminating Xs from (4.10), the transformation matrix TG can be written as

TG =

[
I

−K−1
ss Ksm

]
(4.12)

4.2.4 Least Square Model Reduction

The Least Square Model Reduction (LSMR) [76] is a physical coordinates reduction

technique. It is based on the subdivision of the eigenvectors into master m and slave s

components, depending on their reference to master or slave degrees of freedom. Starting

from (4.1), the displacement vector X(t) can be expressed as

X(t) = Φ q(t) (4.13)

where Φ is the complete eigenvector matrix of the full model, whereas q is the modal

coordinates vector. If a modal truncation is applied in order to reduce the computation

of the complete eigenvector matrix and only p eigenvectors of the full model are retained,

(4.13) assumes the following form

X(t) = Φp qp(t) (4.14)

Furthermore, the previous matrix equation can be partitioned as

X(t) =

{
Xm(t)

Xs(t)

}
=

{
Φmp

Φsp

}
qp(t) (4.15)

65



4.3. Simulations on a benchmark mechanism

Finally, the transformation matrix T LSMR for the LSMR technique is given by

T LSMR =

[
I

ΦspΦ
+
mp

]
(4.16)

4.2.5 Mode Displacement Method

The Mode Displacement Method (MDM) [62] is a modal coordinates reduction technique,

that consists in a truncation of high frequency vibrational modes.

In the case of maintaining m modes among the n of the full model, it holds

X =
m∑
j=1

Φjqj +
n∑

jr=m+1

Φjrqjr (4.17)

where the second contribution of the right side of the equation corresponds to the deleted

vibration modes. The final coordinate transformation is given by

X = Φm qm (4.18)

where the subscript m indicates, in this case, the order of the reduced model.

4.3 Simulations on a benchmark mechanism

The Equivalent Rigid-Link System modal formulation, in combination with the Model

Order Reduction techniques presented in Sect. 4.2, have been implemented in MatlabTM

environment, using a L-shaped mechanism as a benchmark [12]. An image of the mechanism,

described in Chapter 3, is reported in Fig. 3.3 and its geometrical and mechanical parameters

in Tab. 3.1.

The 1-DOF system has been modeled in Ansys R⃝ Mechanical ADPL with 4, 8 and

16 beam188 finite elements, i.e. 2, 4 and 8 elements for each of the two flexible rods

that compose the L-shaped system. It results a number of degrees of freedom for each

subdivision equal to 30, 54 and 102, respectively. The mass M and stiffness K matrices

of the complete models have been exported from Ansys R⃝ for each discretization in Euler-

Bernoulli beam elements and imported in MatlabTM, where the reduction techniques have

been applied. Then, the dynamics of the robotic system has been numerically evaluated

under two different input conditions: gravitational force and step torque signal (reported

in Fig. 3.5), in a way similar to Chapter 3. Figure 4.1 reports a graphical overview on the

numerical simulations.

For each subdivision of the mechanism in beam elements and for each model order

reduction technique, different simulations have been run, by varying the number of consid-

ered vibrational modes. In this way, the influence of the beam discretization, the reduction

strategy and the number of modal variables can be evaluated.

The numerical simulations provided the dynamics of the system for a time equal to 2

seconds. The ode45 variable-step solver, based on a Runge-Kutta integration scheme, has
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Figure 4.1: Graphical overview on the numerical simulations.

been adopted. Each simulation has been run three times in order to obtain an average

value of computational time. For the numerical simulations, a laptop running Windows 10

64 bit with an Intel R⃝ CoreTM i7-4710HQ CPU @2.50 GHz and a 8 GB DDR3 installed

RAM has been adopted.

4.4 Results and discussion

In this section, the results of the numerical simulations presented in Section 4.2 are reported

and discussed. Firstly, the different Model Order Reduction techniques have been compared

through the Modal Vector Correlation Parameters (Subsection 4.4.1), then the dynamic

behavior has been evaluated in the cases of mechanism subjected to gravitational force

(Subsection 4.4.2) and step torque input (Subsection 4.4.3).

4.4.1 Modal Vector Correlation Parameters

In order to evaluate the accuracy of the reduced models in matching the mode frequencies

and shapes of the full order models, three modal vector correlation parameters have

been adopted: the Modal Assurance Criterion (MAC) [70] [71] [65], the Normal Cross-

Orthogonality (NCO) [72] [69] [73] and the Cross-Orthogonality (CO) [70]. The three

modal vector correlation parameters are defined as follows

MACi,j =
(φT

i φr,j)
2

(φT
i φi)(φT

r,jφr,j)
NCOi,j =

(φT
i Mφr,j)

2

(φT
i Mφi)(φT

r,jMφr,j)
COi,j = φT

i Mφr,j

(4.19)

67



4.4. Results and discussion

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(a) MAC: Craig-
Bampton.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(b) MAC: IMR.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(c) MAC: Guyan.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(d) MAC: LSMR.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(e) MAC: MDM.

0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(g) NCO: Craig-
Bampton.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(h) NCO: IMR.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(i) NCO: Guyan.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(j) NCO: LSMR.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(k) NCO: MDM.

0

0.2

0.4

0.6

0.8

1

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(m) CO: Craig-
Bampton.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(n) CO: IMR.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(o) CO: Guyan.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(p) CO: LSMR.

2

4

6

8

10

12

14

16

18
2 4 6 8 10 12 14 16 18

(q) CO: MDM.

0

0.2

0.4

0.6

0.8

1

Figure 4.2: MAC, NCO and CO for the different methods, case with 16 elements and 18
considered modes.
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where φi is the i-th eigenvector of the complete model, φr,j is the j -th eigenvector of the

reduced model and M is the mass matrix of the reduced model. By varying the indexes

i and j, the modal vector parameters constitute a matrix, that assumes values close to

a identity matrix if the reduction is well-designed. In particular, the reduction can be

considered well-performed if the diagonal and extra diagonal elements assume the following

values [70]:

• diagonal elements > 0.9

• extra diagonal elements < 0.1

Table 4.1: Modal vector correlation parameter MAC, case with 16 el. and 18 retained
modes.

MAC
diagonal extra diagonal

min mean < 0.9 max mean

CB 0 .6952 12◦ .9989 .0792
IMR 0 .6340 9◦ .8609 .0643
Guyan 0 .7511 11◦ .8136 .0784
LSMR 1 1 - .6672 .0667
MDM 1 1 - .8540 .0701

Table 4.2: Modal vector correlation parameters NCO and CO, case with 16 el. and 18
retained modes.

NCO CO
diagonal extra diagonal diagonal extra diagonal

min mean < 0.9 max mean min mean < 0.9 max mean

CB 0 .7057 12◦ .9996 .0111 0 .7136 12◦ .9998 .0148
IMR 0 .6449 12◦ .6790 .0030 0 .6694 12◦ .8240 .0094
Guyan 0 .7685 15◦ .1656 .0014 0 .7731 15◦ .4069 .0063
LSMR 1 1 - 0 0 1 1 - 0 0
MDM 1 1 - 0 0 1 1 - 0 0

In Figure 4.2, the graphical representations of the resultant matrices for the three

parameters and the different reduction methods, in the case with 16 elements and 18

retained modes, are reported. In particular, in the techniques here implemented, the

internal modes that have been chosen are those neither corresponding to the constrained

end nor to the tip of the mechanism.

Tables 4.1 and 4.2 reports the values of MAC, NCO and CO for diagonal and off

diagonal elements, in the different reduction strategies, in the case with 16 elements and

18 considered modes. In particular, for the diagonal elements the minimum, the mean and

the index of the first element greater than 0.9 are considered; for the extra-diagonal the

maximum and the mean values. As it can be seen from Figure 4.2 and from Tables 4.1 and

4.2, in the Craig-Bampton, IMR and Guyan the choice of internal and secondary modes is
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Figure 4.3: Comparison of the tip z-coordinate acceleration, case with 16 el. and 18
considered modes, mechanism under gravity.

fundamental for a good reduction, whereas the LSMR and MDM methods show a higher

correspondence (i.e. values closer to an identity matrix) since they are based on a modal

truncation approach.

4.4.2 Mechanism under gravitational force

In the following, the results of the different Modal Order Reduction techniques for the

mechanism subjected to gravitational force are described. In particular, the accuracy in

the frequency domain and the computational time are taken into account and compared

between the different techniques.

Accuracy

Figure 4.3 reports the tip z-coordinate acceleration of the L-shaped mechanism subjected

to gravitational force in the frequency domain, whereas in Table 4.3 the resonance peaks

for the case with 16 elements and 18 retained modes are reported. Only the frequencies

lower than 300 Hz have been reported. In particular, the case with 16 elements and 18

retained modes is considered.

A good agreement between the different reduction techniques and the complete model

in the first resonance peaks can be found. By considering the second, third and fourth

peaks, only Craig-Bampton, IMR and Guyan are capable of tracking the complete model

signal in with good accuracy. Moreover, with respect to the model with 16 elements (blue

line), Craig-Bampton (dotted-dashed yellow line) tracks also the last three peaks with

adequate precision.

Computational time

In Tables 4.4 and 4.5 the average computational times for the mechanism under gravity

force are reported for the complete and reduced models, respectively. Figure 4.4 reports
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4.4. Results and discussion

Table 4.3: Resonance peaks [Hz] of the tip z-coordinate acceleration, case with 16 el. and
18 retained modes, mechanism under gravity.

Peaks 1 2 3 4 5 6 7 8

Complete 4 el. 0.5 8.5 14.5 25.5 116.5 168 196
Complete 8 el. 0.5 8.5 14.5 24 93 169 202.5
Complete 16 el. 0.5 8.5 14.5 24.5 88 158.5 180

CB 0.5 8.5 14.5 24.5 88 159.5 180
IMR 0.5 8.5 14.5 24.5 111 201.5 241.5
Guyan 0.5 8.5 14.5 24.5 97.5 186.5
LSMR 0.5 10 29 39.5 89 134 242
MDM 0.5 10 26 31 88 130 194.5 213

a 3D representation of the computational times for the different techniques, by varying

the number of retained vibrational modes and the number of elements considered in the

discretization. As expected, the computational time steeply increases by increasing the

number of retained modes. On the other hand, the number of elements seems to have the

opposite trend with respect to computational time: by increasing the number of elements at

constant number of retained modes, lower frequencies are taken into account and, therefore,

the variable-step solver can increase the time-step used in the simulation.

Table 4.4: Average computational time [s], complete models, mechanism under gravity.

4 el. (30 m.) 8 el. (54 m.) 16 el. (102 m.)

1602,14 4046,99 16102,97

Table 4.5: Average computational time [s], reduced models, mechanism under gravity.

Method Elements Modes

8 10 12 14 16 18

4 2,58 5,96 9,02 169,23 571,00 902,21
Craig-Bampton 8 3,12 5,13 13,49 32,38 51,20 89,75

16 3,20 4,70 11,55 26,71 46,74 79,76

4 2,58 6,10 9,05 453,90 469,97 1079,11
IMR 8 3,15 5,30 21,44 63,87 76,50 189,87

16 1,85 5,82 13,60 176,38 322,75 502,47

4 3,64 6,34 9,63 173,44 417,39 459,74
Guyan 8 2,55 5,74 18,87 28,04 94,64 297,22

16 3,40 5,42 18,48 23,31 100,36 305,73

4 2,59 6,04 9,18 181,77 255,96 421,53
LSMR 8 3,17 5,14 16,28 23,16 474,67 517,33

16 3,22 4,80 15,02 19,77 629,20 1158,22

4 2,60 5,84 9,60 178,36 251,26 515,40
MDM 8 3,08 5,02 16,26 23,50 28,45 74,06

16 3,20 4,78 14,18 18,33 37,01 48,60
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Figure 4.4: Average computational time [s], mechanism under gravity.

Table 4.6: Time reduction with respect to complete model, case 18 retained modes,
mechanism under gravity.

4 el. (30 m.) 8 el. (54 m.) 16 el. (102 m.)

Complete model 1602,14 s 4046,99 s 16102,97 s

CB 43.69 % 97.78 % 99.50 %
IMR 32.65 % 95.31 % 96.88 %
Guyan 71.30 % 92.66 % 98.10 %
LSMR 73.69 % 87.22 % 92.81 %
MDM 67.83 % 98.17 % 99.70 %

CB IMR

Complete Model (16 el.)

Guyan LSMR MDM

Figure 4.5: Pie charts of time reduction with respect to complete model, case with 16 el.
and 18 retained modes, mechanism under gravity.

In Table 4.6, the time reduction with respect to the complete models, in the cases with

18 maintained modes, are described. For the 4 elements case, LSMR and Guyan are the

techniques that allows the highest percentage of time reduction. For the 8 elements case,

MDM and Craig-Bampton allows the best reduction rate; the same trend can be found for

the 16 elements case (with 103 DOF in total).

To better visualize the percentage of time reduction with respect to the complete model,
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4.4. Results and discussion

the pie charts related to the 16 elements cases are shown in Figure 4.5. As it can be

seen, MDM and Craig-Bampton are the ones that allows higher values of percentage time

reduction, followed by Guyan, IMR and, finally, LSMR.

4.4.3 Mechanism subjected to step torque input

Accuracy

Figure 4.6 shows the Fast Fourier Transform of the z-coordinate of the mechanism tip

for the different reduction techniques in the case of step torque input, whereas Table 4.7

reports the values of the resonance peaks for the frequencies lower than 300 Hz.

From the graph and the table it can be seen that a good agreement between the

complete model signal and the reduced ones can be appreciated in the first two resonance

peaks, whereas Craig-Bampton seems to be the method that best matches the behavior of

the full model (16 elements). As expected, the two techniques based on a modal vector

truncation, LSMR and MDM, are the ones that present the less accurate results in the

description of the dynamic behavior of the L-shaped mechanism.
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Figure 4.6: Comparison of the tip z-coordinate acceleration, case with 16 el. and 18
considered modes, mechanism subjected to a torque input.

Table 4.7: Resonance peaks [Hz] of the tip z-coordinate acceleration, case with 16 el. and
18 retained modes, mechanism subjected to a torque input.

Peaks 1 2 3

Complete 4 el. 14.5 116.5 196
Complete 8 el. 14.5 93 169
Complete 16 el. 14.5 88 159

CB 14.5 88 159.5
IMR 14.5 111 241.5
Guyan 14.5 97.5 186.5
LSMR 39.5 89 242
MDM 31 88.5 194.5
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Computational time

Computational times are reported in Tables 4.8 and 4.9 for the complete and the reduced

models respectively. Figure 4.7 depicts a 3D representation of computational times for the

different numerical simulations that have been run. As expected, a time reduction can be

noticed by increasing the number of model elements at constant number of retained modes,

since lower frequencies are, in general, taken into account and the variable-step solver can

adopt larger intervals for the numerical integration.

Table 4.8: Average computational time [s], complete models, mechanism subjected to a
torque input.

4 el. (30 m.) 8 el. (54 m.) 16 el. (102 m.)

1703,26 4110,21 17754,19

Table 4.9: Average computational time [s], reduced models, mechanism subjected to a
torque input.

Method Elements Modes

8 10 12 14 16 18

4 3,40 6,10 11,34 167,59 574,99 919,16
Craig-Bampton 8 3,30 4,39 13,00 33,73 50,71 89,66

16 3,34 4,49 11,66 28,89 47,63 80,72

4 3,41 6,08 10,97 459,32 482,43 1092,52
IMR 8 3,30 4,87 24,74 66,13 107,50 184,80

16 2,69 5,83 15,14 171,01 316,48 510,80

4 3,64 6,11 11,23 172,24 436,26 465,36
Guyan 8 3,41 5,16 20,70 30,67 98,44 292,73

16 3,40 5,40 21,42 29,57 110,34 301,42

4 3,33 6,10 11,33 184,68 229,75 408,88
LSMR 8 3,45 4,57 18,61 22,43 498,42 555,91

16 3,44 4,43 16,56 20,03 637,77 1176,80

4 3,33 6,02 11,31 180,71 230,76 554,30
MDM 8 3,39 4,60 18,89 24,11 31,09 80,87

16 3,45 4,24 16,43 19,59 39,99 47,31

By considering the values reported in Table 4.10, it can be notice that LSMR and

Guyan are the fastest methods for the case with 4 elements. By considering the 8 elements

case, the fastest technique is Craig-Bampton, followed by MDM and IMR. In the 16

elements case, Craig-Bampton and MDM appear to be the methods that reduce at best

the computational time.
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Figure 4.7: Average computational time [s], mechanism subjected to a torque input.

Table 4.10: Time reduction with respect to complete model (case 18 retained modes),
mechanism subjected to a torque input.

4 el. (30 m.) 8 el. (54 m.) 16 el. (102 m.)

Complete model 1703,26 s 4110,21 s 17754,19 s

CB 46.04 % 98.82 % 99.55 %
IMR 35.86 % 95.50 % 97.12 %
Guyan 72.68 % 92.88 % 98.30 %
LSMR 75.99 % 86.47 % 93.37 %
MDM 67.46 % 98.03 % 99.73 %

CB IMR

Complete Model (16 el.)

Guyan LSMR MDM

Figure 4.8: Pie charts of time reduction with respect to complete model, case with 16 el.
and 18 retained modes, mechanism subjected to a torque input.
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Table 4.11: Comparison of Model Order Reduction techniques.

Modal Vector Parameters Dynamics Comp. Time

CB ✗ ✓ ✓ ✓ ✓ ✓ ✓
IMR ✗ ✓ ✓ ✓
Guyan ✓ ✓ ✓ ✓
LSMR ✓ ✓ ✓ ✗ ✗
MDM ✓ ✓ ✓ ✗ ✓ ✓ ✓

4.5 Conclusions

In this chapter, a first comparison of different model order reduction techniques using the

ERLS modal formulation has been presented. Several Model Order Reduction techniques

for flexible multibody dynamics (i.e. Craig-Bampton, Interior Mode Ranking, Guyan’s

reduction, Least Square Model Reduction and Mode Displacement Method) have been

implemented in Matlab using a L-shape deformable system with one rigid degree of freedom

as a benchmark mechanism.

Several numerical simulations have been performed in order to evaluate the accuracy of

the different methodologies in the frequency domain and their performances in computa-

tional time. In particular, two different conditions have been used to excite the mechanical

system: the natural gravitational force and an input torque signal, which represent a case

closer to a possible real application. Furthermore, the model order reduction techniques

have been compared by using three vector correlation parameters: the Modal Assurance

Criterion, the Normal Cross-Orthogonality and the Cross-Orthogonality.

Table 4.11 reports a comprehensive and general overview on the techniques discussed

in this chapter. In particular, Craig-Bampton, IMR and Guyan show good performances in

the description of the dynamic behavior and in the percentage reduction of computational

time, but not good results in the evaluation of modal vector correlation parameters. This

is because in these techniques the choice of internal vibrational modes is fundamental for a

good modal reduction. On the other hand, LSMR and MDM show a high correspondence

in the modal vector parameters but a lower accuracy in the dynamic behavior and, in

particular, in matching the resonance peaks of the complete models.

In further developments of this work, the model order reduction techniques here

presented will be applied to other flexible multibody systems with two (or more) degrees

of freedom and different subdivisions in finite element. Furthermore, more techniques will

be considered and a deeper analysis of the choice of internal modes will be performed and

analyzed.
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Chapter 5

Cable-Driven Robotic Systems

Cable-driven robots are a special class of flexible-link systems in which flexible cables,

rather than rigid links, are used to actuate the end-effector. Cables can find applications in

both rigid-link structures, where they are employed to drive serial and parallel kinematic

chains, and in the control of suspended mobile manipulators.

This chapter presents an introduction on cable-driven robotic systems. First, a brief

overview on traditional designs of robots that employ tendon-based elements is presented,

highlighting the advantages and disadvantages of this class of manipulators with respect

to their rigid-link counterparts. Then, the concepts of cable-based parallel robots and of

cable-suspended parallel robots are recalled and described by introducing an analysis of

the state of the art with the last developments and applications in this field.

5.1 Cable-driven robots

In the last decades, several researchers have studied and analyzed cable-based systems,

which are an open field of investigation in both industry and academia. Advantages of

this class of manipulators over conventional ones are that cable-based robots can have

a larger workspace [77], they can easily be made to be reconfigurable [78] and modular

[79], they are lighter than their rigid-links counterparts, they can be easily transported

and their end-effector can achieve high accelerations and velocities. Disadvantages of

cable-based robotic system include redundancy (as cables can carry load in tension but not

in compression) and interference between the cables and the environment. For these reasons,

cable-driven systems have received attention, different kind or cable-based robots have

been investigated and several researches have been conducted over the years, especially for

control purposes, dynamic modeling, trajectory planning and tracking [80, 81, 82, 83, 84].

Some of the most common requirements that designers has to take into account when

designing new robotic systems are: cost-effectiveness, force capability, dimensions of the

workspace, dynamic performances, repeatability and safety [85]. In the following part of

this section, these requirements are analyzed and a comparison between cable-robots and

traditional manipulators is carried out.

The main contribution to the cost of a robotic device is given by actuators and
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5.1. Cable-driven robots

(a) (b)

(c)

Figure 5.1: Crane devices: mobile crane (a), tower crane (b) and gantry cranes (c).

manufacturing. Therefore, a cost-effective design can be obtained by adopting a structure

composed of few components, to be realized with simple mechanical processes. On the other

hand, the requirements of a more complex control architecture has usually limited impact

on the design costs, since, in the recent years, powerful control systems are made available in

the market at relatively low prices. In the next future, a trend towards mechanically simple

but computationally demanding systems may be expected. By considering cable-driven

devices, their mechanical architecture is usually simpler and more cost-effective with respect

to traditional robots, even if the controller architecture could be more sophisticated and

complex.

Payload-to-weight ratio is another feature that has to be taken into account while

designing novel robotic devices. Moving large loads is, indeed, a common task in several

production and industrial environments. Unfortunately, traditional robots with serial

architecture, often characterized by cumbersome and heavy structures, do not allow to

carry high payloads. This is due to the fact that each motor has to carry the weight and

the inertial forces produced by the following links and by the load. Moreover, link cross

sections are usually determined by the low stiffness of the serial structures. In this context,
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5.1. Cable-driven robots

cable-robots usually show high values of the payload-to-weight ratio, since their structure

is lighter and the overall force can be split between several actuators.

One of the most important advantage of cable-driven robots with respect to conventional

ones is the capability of working over a larger workspace. The concept of workspace of a

cable-driven system can be defined as the set of end-effector poses in which the system is

manipulable [86]. A cable-robot can be defined as manipulable at a given configuration if

any wrench can be exerted with only positive tensions of the cables [85].

The feature of having a large workspace is typical of crane-type structures. For example,

mobile cranes (Fig. 5.1(a)) and tower cranes (Fig. 5.1(b)) are employed in construction

sites, whereas gantry cranes (Fig. 5.1(c)) are typical of the shipbuilding industry and

for the loading and unloading of containers and supplies from trains and ships. Mobile

and tower cranes are composed of a serial structure, whereas gantry cranes use parallel

rigid-link design. In all these cases, the rigid structure provides further degrees of freedom

to the cables carrying the load. Since cranes are under-constrained systems, it is hard

to implement a completely automatic control system; in the majority of the cases such

devices are operated in quasi-static conditions, to avoid the sway motion of the load. On

the contrary, cable-robots (Fig. 5.2) allow the implementation of automatic controllers

even when they need to operate in large or huge workspaces.

Since cables are low-weight elements, these devices are usually characterized by low

inertia loads and their end-effector could reach higher velocities and accelerations. Therefore,

cable-based devices can be employed for several different tasks where a high speed is

demanded, such as pick-and-place.

Repeatability indicates the positional deviation of the system from the average of

displacements, as measured in different trials having the same target and conducted in the

same conditions. It is a fundamental feature in several robotic tasks, where either the goal

pose or target continuous trajectories have to be reached with high accuracy. Cable-driven

devices can hardly achieve high levels of accuracy and repeatability, because of the elasticity

and flexibility of cables, which are usually hard to compensate by control. A solution to

compute good estimates of the end-effector pose is to adopt kinematic redundancy.

Final, but not less important, safety is a main concern in machine design, especially

when human operators can be present in the robot workspace. By considering cable-robots,

cable redundancy can be implemented and safety systems can be installed, as well as

strategies to recover the end-effector in case of cable failure [87].

The main drawback of cable-robots is the unilateral actuation, since cables can only

carry tension forces but not compression ones [88, 89]. This feature has some important

implications, in particular in the choice of the number of actuators and their locations

in the kinematic structure of the mechanism. Indeed, the unilateral actuation forces the

majority of cable-driven robots to have a number of actuators greater than the number

of degrees of freedom and, therefore, a feasible tension distribution for any given wrench

has to be found. Moreover, unlike traditional rigid-link manipulators, the extension of

the workspace not only depends on the geometrical constraints but also on the cables

configuration and on the feasible range of cable tensions.

79



5.1. Cable-driven robots

Figure 5.2: Example of fully-constrained parallel robot [90].

In the past years, several designs of cable-based manipulators have been developed in

robotics. Two main families of cable-based devices can be found: the first is represented

by robots in which cables work in conjunction with a rigid-link structure to actuate the

kinematic chain, the second is composed of robots in which flexible cables substitute

traditional rigid-link structures, by directly acting on the moving platform or end-effector.

In both these two families of cable-based manipulators, the actuators (i.e. the electric

motors) may be mounted on the base of the manipulator, in order to reduce the loads on

the frame of the systems.

Examples of cable-driven manipulators with a rigid-link structure can be found in [91],

where a 2-DOF cable-driven planar mechanism is studied, and in [92], where the design of

a mobile, inexpensive cable-driven device for upper extremity rehabilitation is presented.

Examples of cable-direct-driven robots with passive serial-link support can be found in

[93, 94, 95]. Prototypes of this class of robotic systems have been employed especially in

the field of rehabilitation [96]. An example of parallel rigid-link chain driven by cables can

be found in [97], where a two-DOF planar haptic interface based on a closed 5-bar linkage

mechanism is presented.

Another application of cable-based devices with a serial-link support is surgery. Indeed,

in recent years, flexible cables have also been employed in surgical robots to reduce surgeon

fatigue and facilitate supervised tele-surgery. An interesting example is given by [98],

where an autonomous multilateral system using the Raven, an open-architecture surgical

robot with two cable-driven 7-DOF arms, is described. Real-time control and enhancing

of tracking performances in cable-driven surgical robots can be found in [99] and in [100],

whereas in [101] a tendon sheath analysis for estimation of force and elongation in surgical

cable-driven robots is presented.

The following part of this thesis is focused in cable-driven parallel robots, i.e. devices

where the moving platform or end.effector is directly supported by cables, as it is described

in the next section.
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(a) (b)

Figure 5.3: The Skycam [110] (a) and the NIST Robocrane [111] (b).

5.2 Cable-driven parallel robots

Cable-Driven Parallel Robots (CDPRs) consist of a moving platform supported in-parallel

by cables that are actuated by tensioning motors [85, 102]. An example of cable-driven

manipulator is reported in Fig. 5.2. Usually, each cable of the robot is reeled on a pulley

that is mounted on the robot frame and is actuated by an electric motor. The other

extremity of the cable is fixed to an attaching point of the common moving platform. Idle

pulleys could also be interposed between the extremities of each cable, to measure cable

tensions (see Chapters 6 and 7), or to achieve particular kinematic designs.

As it can be seen in the following, applications of cable-driven parallel robots can be

found in several different fields, spanning from heavy load and large scale manipulation [90,

103, 104], building tasks [105, 106], to rescue operations [107] and upper limbs rehabilitation

[108, 109].

One of the first example of cable-driven parallel robot is given by the Skycam, an

aerial robotic camera system used in large areas, such as a stadium or an arena [110].

An image of the system is reported in Fig. 5.3(a). Another classical example of CDPR

is given by the NIST Robocrane, a 6-DOF suspended manipulator designed to improve

the stability of crane loads and to control position, velocity and force of machinery for

cutting or excavating tasks (Fig. 5.3(b)). CDPRs can also be employed for very large

applications, such as the Arecibo Radio Telescope in Puerto Rico [112] (Fig. 5.4(a)) and

the Five-hundred meter Aperture Spherical Radio Telescope in the Pingtang County, China

[113] (Fig. 5.4(b)).

Several prototypes of CDPRs have been investigated in the last decades. In [114],

Holland and Cannon first patented a cable-driven suspended system for manipulating and

handling materials over large workspaces. An interesting example of large-scale cable-driven

parallel robot is the CableRobot simulator, developed by the Max Planck Institute for

Biological Cybernetics in cooperation with the Fraunhofer Institute for Manufacturing

Engineering and Automation IPA [115, 116]. The system, shown in Fig. 5.6(a), represents

the first cable-driven simulator capable of transporting humans for studies in the field of
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(a) (b)

Figure 5.4: The Arecibo Radio Telescope (a) and the Chinese Five-hundred meter Aperture
Spherical Radio Telescope, FAST (b).

(a) (b)

Figure 5.5: Examples of under-constrained cable-driven parallel robots [90].

human perception research and virtual reality applications. Moreover, a large-dimension

reconfigurable suspended cable-driven parallel robots to carry workers in an airplane

maintenance workshop was presented in [117].

Applications of cable-driven robot are in the field of rehabilitation, especially for upper

limbs neuro-rehabilitation of post-stroke patients. An example is given by Feriba3, a

4-cables planar mechanism composed of a circular end-effector that can be moved on a

square workspace [86]. The cables can generate 3 generalized forces on the end-effector,

that can be used to perceive feedback from real or virtual environments as an haptic device.

In [118], the authors presented PiRoGa5, a cable-driven haptic system for robotic assisted

spine surgery, in which six cables are attached to a pen-like shaped end-effector that allows

the surgeon to be guided by haptic feedback.

A wire-based robot for neuro-rehabilitation (NeReBot) was described in [119, 120]. The

robot, shown in Fig. 5.7(a), consists of a set of 3 cables connected to the patient upper

limb by means of a splint and independently controlled by 3 motors. By controlling wire

length, the rehabilitation treatment, based on the passive or active-assistive spatial motion

of the limb, can be delivered over a wide workspace. MariBot, shown in Fig. 5.7(b), is

the evolution of NeReBot and consists of a 5-DOF cable-robot for rehabilitation [108].

Its working space is much larger with respect to the NeReBot and covers nearly every
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(a) (b)

Figure 5.6: The CableRobot simulator [116] (a), CDPR for airplane maintenance [117] (b).

movement of the upper limb.

Another example of cable-driven parallel robot for rehabilitation is given by CAREX, a

Cable-Driven Arm Exoskeleton in which rigid links of the exoskeleton are replaced with

lightweight cuffs fixed to the moving limb segments of the human arm. Cables are routed

through these cuffs, which are driven by motors, to move the limb segments relative to

each other in order to achieve desired forces on the hand, i.e., both pull and push, in any

direction as required in neural training [121].

Cable-driven parallel robots can be classified as fully constrained or under-constrained,

based on the degree to which the cables determine the pose of the manipulator [122, 123].

In fully constrained manipulators (Fig. 5.2), the pose of the end-effector is completely

determined given the current length of the cables. On the other hand, under-constrained

systems (Fig. 5.5) rely on the presence of gravity to determine the resulting position and

orientation of the common moving platform.

In the following section, we will focus on cable-suspended parallel robots, which are a

typical example of under-constrained systems.

5.3 Cable-suspended parallel robots

Cable-Suspended Parallel Robots (CSPRs) are under-constrained system, which rely on

gravity to maintain the cables taut. Several cable-suspended parallel robots have been

studied and implemented in the recent years. Examples can be found in [124, 125, 126].

Dealing with cable-suspended parallel robots, one topic of interest that has been

investigated in recent years is the planning of feasible trajectories that extend beyond the

static workspace, thus enabling novel applications for this class of flexible-link mechanisms.

By dynamically controlling the moving platform, the workspace of these robots can be

extended. The dynamic workspace [127] was first defined by G. Barrette and C. Gosselin

as the set of poses that the end-effector can reach with at least one kinematic state.

Controlling a cable-suspended parallel robot in its dynamic workspace can be very

challenging. In [128], C. Gosselin et al. presented a dynamic trajectory planning approach
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(a) (b)

Figure 5.7: Examples of cable-driven robots for rehabilitation: NeReBot [119] (a) and
MariBot [108] (b).

for a 2-DOF CSPR with point-mass end-effector. The work was then extended to a spatial

robot in [129]. The approach is based on parametric Cartesian trajectories and guarantees

that all cables remain in tension throughout the trajectory. The dynamic trajectory

planning of CSPRs was applied to the point-to-point motion of a 2-DOF mechanism [130]

and a 3-DOF robot [131].

A spatial robot with point-mass end-effector was studied in [132], whereas the static

to dynamic transitions for a planar and a spatial cable-suspended point-mass mechanism

were presented in [133]. The trajectory connects an initial point at rest to a final point in

the dynamic workspace to be reached with zero velocity but non-zero acceleration.

In [134], the authors investigated elliptical trajectories for a point-mass end-effector

suspended by means of three cables. Furthermore, in [135], a novel method to perform

static to dynamic transitions for fully constrained 3-DOF CSPRs from an initial state of

rest to an elliptical trajectory was presented. In [136], the periodic trajectory planning

beyond the static workspace was extended to a 6-DOF CSPRs, whereas in [137], a dynamic

point-to-point trajectory planning technique that ensures zero translational and rotational

velocity at the end-points of each trajectory segment was proposed. Recently, in [138], P.

Dion-Gauvin and C. Gosselin studied the dynamic point-to-point trajectories of a 3-DOF

cable-suspended robot based on a hypo-cycloid curve.

Other examples of trajectory planning for under-actuated cable-suspended robots

can be found in [139], where spatial point-to-point motions were defined for a 3-DOF

cable-suspended parallel robot, and in [140], where a randomized kino-dynamic planning

technique was adopted to design dynamic motions. In [141], the authors investigated

the optimal control of an under-actuated cable-driven micro-macro robot, by applying

the differential flatness framework to make the system controllable for point-to-point

movements.

Moreover, in [142] and [143] dynamic recovery trajectories after a cable failure were an-

alyzed, whereas in [144] a robust trajectory planning method for under-actuated non-linear
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systems in point-to-point motions was presented and experimentally evaluated through a

double-pendulum system.

In the next chapters, two examples of cable-suspended parallel robots are presented

and analyzed. In Chapter 6, a novel design of CSPRs based on variable radius drums

is investigated. The device, named Cable-Based Robotic Crane, is capable of moving a

load through a planar working area using just two actuated degrees of freedom, in a way

similar to a traveling crane. An experimental prototype is presented and validated showing

good performances and accuracy. The design of robotic crane can find applications in the

loading and unloading of materials in large workspaces, such as in industrial of naval fields.

Chapter 7 presents a particular class of cable-suspended parallel robots, which is given

by pendulum-like robots [145, 146, 147, 5]. These kind of manipulators consists of a

cable-suspended passive robotic arm, whose oscillation in its dynamic workspace can be

modulated by actively controlled the length of the cables or the orientation of the end-

effector. The device studied in Chapter 7 is capable of performing point-to-point motion

beyond its static workspace, using two actuated joints only and employing parametric

excitation to pump to or subtract energy from the systems akin to playground swings. The

device find applications for pick-and-place repetitive tasks.
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Chapter 6

Cable-Driven Robotic Cranes

based on Variable Radius Drums

In this chapter, the modeling and validation of a novel design of Cable-Suspended Parallel

Robot (CSPR) based on variable radius drums, is presented. A Variable Radius Drum

(VRD) is characterized by the variation of the spool radius along its profile. This kind of

device is used, in this context, for the development of a cable-driven mechanism, which can

support and move a load through a planar working area with just two actuated degrees of

freedom, similar to overhead traveling cranes. The device is named Cable-Based Robotic

Crane (CBRC). Instead of using several actuators to wind or unwind each cable connecting

the end-effector to the frame of the robot, the proposed design is based on the coupling of

the winding/unwinding of several cables, allowing to use only one actuator for this task.

After a brief introduction about devices based on variable radius drums, the kinematic

analysis and the synthesis of the geometry of the VRD profile are developed. Then, the

schema of a bi-dimensional horizontal moving mechanism, based on the VRD theory, and

an experimental prototype of a three-dimensional CBRC, are presented. The features of

this cable-based overhead traveling crane and an analysis of cables tensions are discussed.

Finally, the performances of this robotic system are evaluated, showing a deviation between

the end-effector and the nominal planar surface of less than 1% throughout the whole

working area. The prototype presented in this chapter has been developed at the Robotics

Laboratory of the Department of Engineering and Architecture, University of Trieste (Italy).

Part of the work described in this chapter has been previously published in [4].

6.1 Introduction

One of the most common application of cable-suspended parallel robots is the manipulation

of loads in large workspaces. In the majority of the cases, especially in industrial plants,

shipyards and production sites in general, this task is performed using traditional overhead

cranes, which consist of parallel runways with a traveling bridge spanning the gap. A

hoist, the lifting component of a crane, travels along the bridge. An image on a traditional

overhead crane is reported in Fig. 6.1(a).

87



6.1. Introduction

(a) (b)

Figure 6.1: A traditional overhead traveling crane (a) and a Cartesian robot.

The structure of a traditional overhead traveling crane is usually heavy, it requires linear

guides along the whole work area and it can not be easily disassembled or re-positioned.

Nowadays, the main research area of traditional overhead cranes is the dynamical modeling

and control, in order to eliminate swing effects and ensure system stability. Examples can

be found in [103, 148, 149, 150, 151].

With respect to traditionally overhead cranes, the design of the cable-suspended parallel

robot presented here, called Cable-Based Robotic Crane, do not require rails or linear

guides along the whole span of the system since they are essentially composed of a series

of pulleys, drums and cables. For this reason, their frame is lighter and can be easily

disassembled. Furthermore, they are modular and their accuracy only depends on the

positioning of the pulleys supports in the set-up phase.

A comparison between Cartesian robots and the device presented here can also be

introduced. Cartesian robots (Fig. 6.1(b)) are characterized by a high stiffness and are

employed in the handling of small workspaces, where they are extremely accurate for high

precision pick-and-place tasks. On the contrary, the device described in this chapter is

meant for the handling of large amount of materials in very large workspaces, where the

weight of the structure can be an issue. One possible application could be the loading and

unloading of materials and supplies for general tasks in the naval field, where the workspace

is large, the infrastructures have to be light and the accuracy is much less demanding.

Furthermore, the proposed mechanism could also be deployed as a 2D aerial overhear

conveyor for industrial or even mining application, where vertical motion is not required.

On the other hand, it has to be noticed that, in the cases in which a movement of the

load in the vertical direction is needed (such as for pick-and-place tasks), a winch could be

mounted on the end-effector of the robotic crane.

Since cables are used in power transmissions, drive systems and load handling, drums

and pulleys have been used in different kind of applications. A drum, or spool, consists

of a spindle with flanges, around which a cable is wrapped (Figures 6.2(a), 6.2(b)). The

cylindrical surface of an ordinary drum has a constant radius [152]. A typical device, in
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(a) (b)

(c)

Figure 6.2: Traditional constant radius drum (a), sailboat winch (b), winch with ratchet
and pawl (c).

which an ordinary drum is employed, is a winch [153]. It essentially consists of a movable

drum around which a cable is wrapped, so that the rotation of the drum produces a drawing

force at the end of the cable. Winches are usually equipped with a ratchet wheel and a

pawl to prevent slippage of the load [154] (Fig. 6.2(c)). Examples of research studies in

cable-drum systems can be found in [155], where a cable mechanism is used as a linear

motion sensor, in [156], where a study on the prediction of slip in cable-drum system is

proposed, and in [152], where the transmission backlash of a precise cable drive system is

analyzed and experimentally measured.

While traditionally drums and winches are characterized by a constant radius, in this

chapter the use of variable radius drum (VRD), a mechanical device consisting in a drum

with a radius that changes along its profile, is proposed. The concept of variable radius

drum has been firstly presented by Seriani and Gallina in [157]. As the VRD is rotated

by an angle α, a correspondent length of cable is released or wound. This length can be

expressed by a non-linear function g = g(α), which depends on the VRD profile and on

the angular position.

With respect to constant radius drums (CRDs) with radius r, in which the length of

the released cable is given by the linear function g = α r, VRDs present the following

advantages:
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• in a VRD it is possible to synthesize a specific profile shape in order to obtain the

desired relationship g = g(α);

• in a VRD, a specific profile shape can be defined in order to modify the value of the

torque generated by the cable on the VRD itself [158].

A Variable Radius Drum Mechanism (VRDM) is a mechanism (i.e. a linkage mechanism,

or a cable-driven robot) which contains at least one VRD.

Several examples of VRD can be found in the present Literature. Endo et al. proposed a

new weight compensation mechanical system with a non-circular pulley and a springs [159].

Kilic et al. used a wrapping cams mechanism in the synthesis of non-linear torsional spring

[160], whereas a similar methodology has been used by Schmit and Okada to develop a non-

linear rotational spring [161]. Furthermore, a non-constant radius pulley for antagonistic

springs was proposed by Kim and Deshpande [162]. Shin et al. developed a methodology

to synthesize variable radius pulleys to improve joint torque capacity in pneumatic artificial

muscles, used as actuators for the Stanford Human-Friendly Robot [163]. An application

of VRD in locomotion is given by Kljuno et al., who developed the quadruped cable-driven

robot RoboCat [164]. From a kinematic point of view, the synthesis of a variable radius

drum was approached by Gallina on a particular case of rocker-belt mechanisms [165].

In recent years, another example of mechanisms based on variable radius drums can be

found in [166], where the convexity of the VRD is taken into account as a condition for the

design of the VRD. This approach was verified through its use in the static balancing of a

one-degree-of-freedom robot arm and of a one-degree-of-freedom cable-driven parallel robot.

In [167], the authors proposed a mechanism consisting of a pair of non-circular pulleys with

a constant-length cable that allows to generate non-monotonic motions. This property was

illustrated through two examples, namely trajectory guiding and static balancing. Finally,

a low-cost variable stiffness joint design using translational variable radius pulleys was

presented in [168].

The remaining of this chapter is organized as follows: Section 6.2 gives a general

description of a Cable-Based Robotic Crane, Section 6.3 presents the direct kinematic

analysis as well as the synthesis of a variable radius drum, whereas in Section 6.4 a bi-

dimensional horizontal moving mechanism, based on a VRD, is proposed. Section 6.5

reports the inverse kinematic and dynamics of the CBRC, whereas Section 6.6 an analysis

of cable tensions. The experimental prototype of the three-dimensional CBRC, developed

at the Robotics Laboratory of the Department of Engineering and Architecture, University

of Trieste (Italy) is presented in Section 6.7. Section 6.8 reports an analysis of the error

sources in the experimental prototype. In Section 6.9, the experimental results and the

performance of this mechanism in moving the end-effector through a planar workspace

with high accuracy are presented, whereas Section 6.10 concludes the chapter and outlines

some possible future developments of this work.
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6.3. Kinematic analysis and synthesis

6.2 Description of the CBRC

In this section, the description of a Cable-Based Robotic Crane is presented. A graphic

representation of this three-dimensional overhead traveling crane based on variable radius

drums is reported in Fig. 6.3.

working
area

load

VRD 2 VRD 1
motor 1

motor 2

VRD 3

transmission shaft

idle bearing

gear wheels

cable

x

yz

support

constant
radius
drum

pulley

frame

Figure 6.3: Graphic representation of a Cable-Based Robotic Crane.

The cable-suspended robot is composed of three Horizontal Moving Cable-Mechanisms

(HMCMs) identical in size, that allow the motion of a load within a planar working area.

The two upper mechanisms, identified by VRD 1 and 2, are located at the same vertical

height in a parallel position. The end-effector of each of this two upper systems is then

connected to one edge of the frame of the third HMCM. Thereby, the lower frame, identified

by VRD 3, can be shifted horizontally through y axis. HMCMs 1 and 2 are connected by

means of a rigid transmission shaft, which guarantees that they have the same angular

position α. The third HMCM is located on the lower frame and allows the motion of the

load through x axis. In this way, the 2-DOF CBRC allows the motion of a load through

the rectangular working area indicated in yellow in Figure 6.3.

The cable-based robotic crane is actuated by two motors: the first is directly connected

to the upper transmission shaft and ensures the motion through y axis, whereas the second,

which ensures the motion along x axis, is located on the shifting frame and transmits the

torque to the VRD 3 by means of two gear wheels.

6.3 Kinematic analysis and synthesis

In this section, the kinematic analysis of a variable radius drum for each HMCM is briefly

summarize. In Figure 6.4 a graphical representation of the VRD is reported. On the left,
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6.3. Kinematic analysis and synthesis

the VRD is constrained in point O by means of a rotational joint, whereas, on the right,

an idle pulley is fixed in point P b with another joint of the same type. The cable is fixed

at one end of the VRD in point F , it is wound around the drum profile and, initially, it is

separated from the VRD in the tangent point P t. At initial conditions, this tangent point

fixed at the VRD is defined A, as shown in Fig. 6.4(a). The cable is then wrapped around

the idle pulley and it is tangent to its surface in points E and C0. A marker is located

on the VRD in order to easily identify the angular rotation of the drum with respect to

the reference frame, given by angle α, which is assumed to be positive in the clockwise

direction.

In order to describe the parameters that characterize the kinematic analysis of the

VRD, two different configurations of the drum are taken into account: the case with α = 0

and the one with α > 0, reported in Fig.s 6.4(a) and 6.4(b), respectively.

(a)

F
O

A

Pb

C0

(b) F

OA Pb

C

Pt

P0

P

E

E

α

Figure 6.4: Kinematic Analysis of a Variable Radius Drum.

Case α = 0

In this configuration, the system is assumed to be in a stable equilibrium point. A proper

torque acts on the VRD along the counter-clockwise direction and a force pulls the cable

to balance the torque action.

When α = 0, the total length of the free cable, not wound around the drum, from point

P 0 to the tangent point A is defined l0. The length of l0 is given by

l0 = ||AC0||+ Ĉ0E + ||EP 0|| (6.1)

The symbol ∗̂ indicates arcs as well as curved segments on the variable radius drum.
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Case α > 0

In this configuration, the drum is rotated in clockwise direction of an angle α > 0 and a

segment of cable length ÂP t is wound around the variable radius drum. The length of the

segment PE is now changed with respect to the previous configuration: in particular, the

length of PE is a function of α and of the shape of the VRD.

It can be easily obtained that

||P tC||+ ĈE + ||EP || = l0 − ÂP t (6.2)

The length of cable wound by the VRD during its rotation is a function of angular position.

This function is defined g(α)

g(α) := ||EP 0|| − ||EP || (6.3)

By replacing (7.1) and (7.2) into (7.3), g(α) can be written as

g(α) = (||P tC|| − ||AC0||) + (ĈE − Ĉ0E) + ÂP t (6.4)

Three addends contribute in (7.4):

• (||P tC|| − ||AC0||) is the difference between the length of the cable tangent to the

variable radius drum and the idle pulley in case α = 0 and α > 0;

• (ĈE − Ĉ0E) is the difference between arcs on the idle pulley when α = 0 and α > 0;

• ÂP t is the curved profile of the VRD on which the cable is wound.

6.3.1 Direct kinematic analysis

The Direct Kinematic Analysis of the VRD calculates the relationship between the function

of wound cable g(α) and the angular position of the variable radius drum α, by knowing

the geometry of the VRD profile. In order to do this, the angle of the tangent point Pt with

respect to horizontal line is defined as φ = φ(α) and it is considered positive in clockwise

direction (see Fig. 6.5). The profile of the VRD geometry in polar coordinates can be

expressed as ρ = ρ(βr). The angle βr is assumed to be positive in the counter-clockwise

direction with respect to the relative reference frame fixed to the VRD. Then, the direct

kinematic analysis can be developed by solving the integral of the VRD curve

g(α) = (||P tC|| − ||AC0||) + (ĈE − Ĉ0E) +

∫ α−φ(α)

−φ(0))

√
ρ2 + (dρ/dβr)2 dβr (6.5)

In (7.5), both the addends (||P tC|| − ||AC0||) and (ĈE − Ĉ0E) are non-linear functions

of the angular position α. Their calculation depends on the function ρ(βr) and it has to be

analyzed case by case.
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6.3.2 Variable Radius Drum synthesis

O

Pb

Pt

x

X

yY

g(α)

cd

α

γla

lt

φ(α)

ρ

βr

Figure 6.5: Variable radius drum parameters in case of point-like idle pulley and neglected
cable thickness.

In Fig. 6.5, it can be seen that, as the VDR rotates in clockwise direction, an observer

on the drum notes the idle pulley rotating in the counter-clockwise direction of the same

angle. The unit vectors x and y define the reference frame of the VRD, whereas the unit

vectors X and Y define the inertial reference frame, with respect to the VRD, fixed to the

idle pulley center P b. In this initial approach to the problem, the idle pulley is assumed to

be point-like, with a radius equal to zero. In this configuration, the distance between the

idle pulley and the center of the VRD can be defined as cd, the distance between tangent

point P t and the idle pulley center as lt, the angle between the segment OP b and the

minimum distance between the cable and the center O of the VRD as γ. The synthesis

aims at calculating the profile of the VRD by knowing the wound cable length function

g(α).

In local coordinates, the tangent point P t can be written as a sum of two vectors: the

first from O and P b, {cd 0}T , the second from P b and P t, {lt 0}T

P t = T (α)

{
cd

0

}
+ T (α)T (−γ)T

(
−π

2

){lt
0

}
(6.6)

where the operator T (x) is the rotation matrix between two reference frames rotated by

an angle x. The whole mathematical derivations to obtain the VRD profile synthesis are

reported in Appendix B.1.

Finally, the geometry of VRD profile, in Cartesian coordinates, is given by the following

equation (Eq. (B.5) in Appendix B.1)

cd sin(−γ) +

(
1− dγ

dα

)
lt = 0 (6.7)
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where lt is equal to

lt =
cdsinγ

1 +
d2g

dα2√
c2d−(

dg
dα)

2

(6.8)

and γ can be written as

γ = cos−1

(
1

cd

dg

dα

)
(6.9)

The necessary conditions for the existence of a solution for the VRD synthesis problem

is the continuity of g(α) and its derivative. Furthermore, from (6.8) it has to be noticed

that it is necessary that dg/dα < cd. This fact suggests that the idle pulley has to be

located at a proper distance from the variable radius drum.

In Appendix B.2, the extended synthesis of the variable radius drum by considering

the radius of the idle pulley and the cable thickness is reported.

6.4 Horizontal Moving Cable-Mechanism

Before presenting the prototype of a Cable-Based Robotic Crane, which is illustrated

in Section 6.7, the schema of a bi-dimensional HMCM based on a variable radius drum,

developed by applying the theory developed in Section 6.3, is proposed.

A horizontal moving cable-mechanism (Fig. 6.6), which is a module of the crane, is

capable of moving a load along a linear path, parallel to the x axis. For the development

of the cable-based device only pulling cables, revolute joints, a regular drum and a variable

radius drum are needed. It has to be noticed that, differently from traditional overhead

cranes, no prismatic joints are required in this type of mechanisms.

Conventional planar cable-based robots or mechanisms, which operate in the vertical

plane and are subjected to gravitational force, are, in general, 2 degree-of-freedom systems.

The most common configuration of this kind of mechanisms is in the form of a triangle

and a load is suspended through two (or more) cables between the related motor-drums.

The actuators need to be correctly controlled, if, for example, the load has to be carried

through a linear path and a trajectory parallel to the ground has to be followed. Hence,

the control architecture of such systems has to cope with a 2 (or more)-DOF system. On

the contrary, the cable-driven robot presented here is capable of reaching the same target

using just one degree of freedom, by coupling the winding and unwinding of two cables

and allowing the use of a single actuator for this task.

The HMCM, proposed in Fig. 6.6, is composed of a VRD, a constant radius pulley

(which radius is r1 and it is represented in grey), two idle pulleys (that rotate around points

P b1 and P b2 and have each one radius equal to r), and the load. The latter, represented

by a little grey rectangle, is assumed to have mass m at point L. m is the third HMCM

load for the first two modules, whereas the load of the end-effector for the third horizontal

moving cable mechanism. The system operates in the vertical plane and, therefore, gravity

force is acting on the mass, which is connected by two cables at point L. In this context,

cables are modeled with null thickness and infinite stiffness. The left cable goes around the
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r r
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Figure 6.6: Graphical representation of a horizontal moving cable-mechanism based on a
variable radius pulley.

idle pulley, constrained in P b1, and it is then wound around the variable radius pulley. On

the contrary, the right cable goes around the idle pulley, fixed in P b2, and then it is wound

around the constant radius pulley. It has to be noticed that the VRD and the CRD are

connected to the same shaft and, therefore, they have the same angular position α.

In Fig. 6.6, cd indicates the distance between the centers of the lateral pulleys and

the center of the variable and constant radius drums, whereas dL is the distance between

the horizontal linear path of the load and the x axis. Finally, lL indicates the horizontal

distance between point L of the load and the vertical segment intersecting the center of

the right idle pulley P b2. The angular position α of the VRD is considered positive in the

clockwise direction and it is assumed to be null when the load is on the right.

In order to apply the theory developed in Section 6.3, the horizontal moving mechanism

is considered in its initial position (α = 0, lL = 0). In this configuration, the point L of

the load has coordinates {cd,−dL}T . When the shaft of the VRD and CRD rotates in

clockwise direction, a segment of the left cable is wound around the variable radius profile

whereas, simultaneously, the right cable is released.

By indicating with D1 and D2 the tangency points on the idle pulleys, the synthesis of

the variable radius drum profile can be obtained by the following relationship

g(α) = ˆD1(0)D1(α) + (||L(0)−D1(0)|| − ||L(α)−D1(α)||) (6.10)

where

||L(0)−D1(0)|| =
√
||L(0)− P b||2 − r2 =

√
(2cd)2 + d2L − r2 (6.11)

and

||L(α)−D1(α)|| =
√
(2cd − ll(α))2 + d2L − r2 (6.12)
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The function lL(α) formulates the correlation between the VRD angular position and the

horizontal translation of the load L. It can be written in the following form

lL(α) =
√
||L(α)− P b||2 − d2L =

√
||L(α)−D2(α)||2 + r2 − d2L (6.13)

where ||L(α)−D2(α)|| can be expressed by

||L(α)−D2(α)|| = ||L(0)−D2(0)||+ r1α+ ˆD2(0)D2(α)

=
√

d2L − r2 + r1α− ˆD2(0)D2(α)
(6.14)

For the sake of simplicity, the arcs ˆD1(0)D1(α) as well as ˆD2(0)D2(α) can be considered

equal to zero in the numeric implementation. Finally, the analytical function for the

synthesis of the VRD profile can be obtained by backward replacing (6.14), (6.13), (6.12)

and (6.11) into (6.10).

A 3D model of the variable radius drums was realized in SolidWorks R⃝ by implementing

the analytical profile. An image of the model is reported in Fig. 6.7(a), whereas an image

of a 3D printed prototype is shown in Fig. 6.7(b).

(a) (b)

Figure 6.7: Variable radius drum: 3D model (a) and 3D printed plastic prototype (b).

6.5 Inverse kinematics and dynamics

The inverse kinematic analysis and the reduced inertia of the CBRC are here presented.

With reference to Fig. 6.8, the function lL(α) can be expressed as lL(α) = cd − x, where

x is the position of the end-effector in the Cartesian space. With simple trigonometric

considerations and by knowing that LP b2 =
√
lL

2 + dL
2, it is possible to find the values

of angles ε1, ε2 and ε3 as follows

ε1 = atan

(
lL
dL

)
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ε2 =
π

2
− asin

(
r

LP b2

)
− ε1

ε3 =
π

2
− asin

(
r

dL

)
− ε2 (6.15)

For a given value of the free coordinate α, the length of an unrolled segment of cable can

be easily calculated with the following equation

α r1 = ||L(α)−D2(α)||+ ˆD2(α)D2(0)− ||L(0)−D2(0)||

=

√
lL

2 + dL
2 − r2 + ε3 r −

√
dL

2 − r2
(6.16)

The equation of inverse kinematic α = f̃(x) is straightforward

α =
1

r

(√
lL

2 + dL
2 − r2 −

√
dL

2 − r2 + ε3 r

)
(6.17)
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Figure 6.8: Inverse kinematic analysis of the HMCM.

As far as dynamics is concerned, the reduced inertia I related to the shaft of the variable

radius drum can be calculated as

I = IV RD + IP τα,θ2
2 + IP τα,θ1

2 +mτα,x
2 (6.18)

where IV RD is the inertia of the variable radius drum, IP the inertia of the idle pulley and

m the mass of the load. Furthermore, τα,θ2 , τα,θ1 and τα,x indicate the transmission ratios

between the VRD shaft (which rotates of an angle α) and the pulley on the right (θ2),

the pulley on the left (θ1) and the end-effector (x), respectively. The contributions of the

different transmission ratios can be expressed as

τα,θ2 =
θ̇2
α̇

=
r1
r
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τα,x =
ẋ

α̇
=

d f̃−1(α)

dα

τα,θ1 =
θ̇1
α̇

(6.19)

By taking into account that

θ2 =
r1
r
α =

r1
r
f̃(x) (6.20)

for symmetry the expression of θ1 in function of angle α can be obtained and written as

θ1 = −r1
r
f̃(−x) = −r1

r
f̃(−f̃−1(α)) (6.21)

where the direct kinematic equation x = f̃−1(α) has been taken into account.

Finally, by calculating the derivative function with respect to α, the expression of the

transmission ratio between the VRD and the idle pulley 1 can be obtained

τα,θ1 =
θ̇1
α̇

=
r1
r

f̃ ′(−x)

f̃ ′(x)
=

r1
r

f̃ ′(−f̃−1(α))

f̃ ′(f̃−1(α))
(6.22)

6.6 Cable tension analysis

In this section, an analysis of cable tensions in the CBRC is presented. For the sake of

simplicity, the bi-dimensional horizontal moving mechanism presented in Section 6.2 is

considered. In Fig. 6.9, a graphical representation of cable tensions T 1 and T 2 in the

robotic crane is shown. L is the weight force, whereas θ1 and θ2 are the angles between the

cables and the vertical plane. It has to be noticed that, in this analysis, the idle pulleys,

the VRD and the CRD are considered to be point-like.

L

T1

T2

θ1
θ2

x

y

O

Pb1 Pb2

VRD/CRD

cable

load

cd cd

dL

Figure 6.9: Graphical representation of cable tensions in the HMCM.

By solving the horizontal and vertical equilibrium equations system, the two tensions
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Figure 6.10: Tension T 1 over the x axis, for different values of parameter d.

T 1 and T 2 can be easily obtained

T 2 =
L

sin(θ2)
cos(θ1)
sin(θ1)

+ cos(θ2)

T 1 = T 2
sin(θ2)

sin(θ1)

(6.23)

In order to make the examination independent from distance dL and from inter-axle

spacing cd, the parameter d, defined as d := dL/2 cd, is introduced. Moreover, the tensions

T 1 and T 2 are divided by the weight force mg, and the x coordinate by the distance 2 cd.

In Fig. 6.10, the trend of tension T 1 over the x axis, for different values of the parameter

d, is reported. It has to be noticed that only tension T 1 has been reported, since the

two tensions are symmetric with respect to the central vertical axis of the mechanism,

corresponding to a value of x = 0.5.
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Figure 6.11: Maximum tension T 1 and its position on x axis with respect to d.

In Fig. 6.11, the maximum tension T 1 and its position on the x axis with respect to

parameter d are reported. For d = 0.3 a discontinuity point occurs in the position of the x
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VRD 2 VRD 1

VRD 3

transmission
shaft

end-effector
cable

Figure 6.12: Experimental prototype of the Cable-Based Robotic Crane.

coordinate and, for values of d greater than this, the maximum tension in the cable equals

the weight force. This analysis can be applied in the first stage of the design of a real

CBRC, when the vertical distance of the end-effector with respect to the pulleys horizontal

height has to be designed. Additionally, it has to be underlined that the torque required to

maintain the load in an equilibrium point is null. This is because the potential energy is

constant since the load moves along a linear horizontal path.

6.7 Prototype of the Cable-Based Robotic Crane

Figure 6.13: Specifications of Stepper Motor Nema 17.

An experimental prototype of the Cable-Based Robotic Crane was fabricated at the

Robotics Laboratory of the Department of Engineering and Architecture, University of
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(a) (b)

Figure 6.14: Phidgets load cell (a), SparkFun OpenScale board (b).

(a) (b)

Figure 6.15: Actuator system of the VRD 1 and 2 (a), gear wheels and VRD 3 (b).

Trieste (Italy). A general overview of the experimental device is reported in Fig. 6.12.

Before describing the features of the experimental system, it is necessary to underline

that the fabrication of a variable radius drum is a critical aspect, since its shape can not

be easily obtained by means of traditional manufacturing processes. To obtain a working

prototype, the 3D printing fused deposition modeling (FDM) technology has been used.

This technique allows the creation of free-form shapes by means of a 3D modeling software.

Not only the variable radius drums, but also the constant radius drums, the idle pulleys

and the supports for the bearings have been produced with 3D printing technology in PLA,

using an Ultimaker 2+ 3D printer. The upper and lower frames of the CBRC have been

realized with aluminum profile shapes, whereas the transmission shaft has been built in

carbon, in order to ensure a light weight but also a proper torque resistance.

With reference to Fig. 6.6, the geometrical parameters for each of the three single HMCM

that composes the experimental CBRC are: cd = 500 mm, dL = 500 mm, r = 15 mm

and r1 = 10 mm. In this prototype, a load with a mass equal to m = 0.550 Kg has been

chosen. As actuators, two 12 V powered NEMA 17 stepper motors (Fig. 6.13) have been
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load cell

Figure 6.16: Cable tension measurement system.

adopted. Those electric motors have been chosen for the compact shape, lightweight and

output torque properties. The motors are driven by two L293D drivers directly controlled

by an Arduino R⃝ UNO rev.3 micro-controller board, equipped with the ATmega 328P.

Figures 6.15(a) and (b) show the actuator system for the two upper mechanisms, and for

the variable radius drum 3, respectively.

In order to measure the cable tensions, a proper measurement system, reported in

Figure 6.16, has been designed and implemented. It consists in three 3D printed idle

pulleys and a Phidgets micro load cell (Fig. 6.14(a)), that allows to measure the cable

tension in the vertical direction. The load cell has been calibrated and the data have been

acquired by means of a SparkFun OpenScale board (Fig. 6.14(b)).

6.8 Error sources in the experimental prototype

From Figures 6.12 and 6.15 it can be noticed that the variable radius drums and the

constant radius drums are not planar, but they are in the form of a helical cone and a

cylinder, respectively. Indeed, except in the cases when the spiral angle is less then 360

degrees, purely planar VRDs and CRDs are impossible to build. This fact introduces an

error with respect to the mathematical model developed in Section 6.2 and 6.3, which is

inherent to purely planar mechanisms.

Furthermore, the idle pulleys and the drums are not coplanar. In fact, as the bearings

supports (printed in green plastic) for both idle pulleys and drums shafts are mounted

on the same plane, a small offset between the tangent point of the cable on the drums

and the tangent point of the cable on the pulleys is present. This deviation produces an

error source with respect to the nominal behavior of the mechanism but, for the sake of

simplicity, it has been neglected in this context.

The most important error sources that affect the CBRC can be summarized in the
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following list:

• manufacturing errors;

• mathematical approximation in the VRD synthesis (6.14), namely

ˆD1(0)D1(α) ≃ 0 (6.24)

as well as
ˆD2(0)D2(α) ≃ 0 (6.25)

• non-planarity of the idle pulleys and drums;

• geometrical errors;

• misalignment of the pulleys and drums axis;

• cables elongation and elasticity [103, 101, 169];

Cables elongation ∆x with respect to the nominal length x0 can be calculated with

the following equation

∆x =
T (x)

AE
x0 (6.26)

where T (x) is the cable tension, A is the cross-sectional area of the cable, whereas E

the Young’s modulus. In the plastic cable employed in our prototype EA ≃ 13 kN .

In particular, with respect to Fig. 6.9, the accuracy errors Λx and Λy in x and y

directions, due the cable elasticity and relative to the payload, can be evaluated as

follows

Λx =
|xE − xL|

mg
Λy =

|yE − yL|
mg

(6.27)

where (xL, yL) and (xE , yE) are the end-effector coordinates in nominal position and

the ones affected by cable elongations, calculated with (6.23) and (6.26). Figure 6.17

reports the trend of these errors along the x axis.

• scale errors;

The scale error ex for a single horizontal moving cable mechanism (Fig. 6.9) affects

the measure on the end-effector position along the x axis, resulting in the following

error

ex =
(K2

1 − 1)l21(α)− (K2
2 − 1)l22(α)

2L2
(6.28)

where K1 and K2 are the scale factors on idle pulleys 1 and 2 respectively, l1(α) and

l2(α) are the length of the free-cables 1 and 2 in function of the free-coordinate α

and L = 2 cd.
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Figure 6.17: Accuracy errors Λx and Λy, relative to the payload, over the x axis (d = 0.5).

6.9 Experimental results

The performance of the Cable-Based Robotic Crane presented in this chapter can be

evaluated by measuring the deviation of the end-effector from a nominal planar surface.

A grid has been marked out on the working area of the overhead traveling crane and

the height of the load has been measured, in static conditions, by means of a vertical

caliper through the surface in both x and y directions. On the working area a sampling

interval of ∆x = 50 mm and ∆y = 50 mm, starting from (x = 0, y = 0) till (x = 700 mm,

y = 700 mm), has been chosen.
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Figure 6.18: Absolute experimental error with reference to nominal planar surface.

In Fig. 6.18, the experimental results are shown. The red dots indicate the measure

points, whereas the blue planar surface is the nominal plane. The maximum deviation from

the theoretic path is actually really small and equal to 5.8 mm. At this value corresponds a

maximum relative error of 0.83% to the total length of the path in one direction (700 mm).

The relative error is very small and lower than 1% throughout the whole planar workspace.
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Figure 6.19: Histogram of the absolute experimental errors with respect to the nominal
planar surface.

In Fig. 6.19 an histogram of the absolute experimental errors with respect to the nominal

planar surface is reported.

Furthermore, the errors along x and y axis have been evaluated in order to provide the

positional accuracy of the upper and lower HMCMs separately. In particular, errors in the

x direction have been evaluated by fixing the upper HMCMs and moving only the lower

HMCM. In the same manner, y errors refer to the center of the frame of the lower HMCM,

when only the two upper mechanisms are activated. Measures in x and y directions have

been acquired in static conditions, with the same approach used for the evaluation of

vertical accuracy. In fact, measurements have been taken after the dynamic oscillations

became negligible. In Figures 6.20 and 6.21, the absolute experimental errors in x and y

directions are reported. Table 6.1 summarizes the statistical analysis of the absolute errors

in the three directions. The Kolmogorov-Smirnov test has been applied to the distribution

of the errors in order to verify the normality of data.
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Figure 6.20: Absolute experimental error in x axis.

These results show that the experimental prototype, even in this early stages of
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Figure 6.21: Absolute experimental error in y axis.

Table 6.1: Statistical analysis of absolute errors [%].

Axis Max Mean St. Dev. p-value (K.-S. test)

x 0.4254 0.1352 0.0938 < 0.05
y 0.6880 0.1895 0.1626 < 0.05
z 0.8326 1.6858 1.1992 < 0.05

development, can achieve its task with acceptable accuracy and precision. Moreover,

the offset of the drums does not produce a worrying effect on the performance of the

global mechanism. The deviation error could be further reduced by using more accurate

manufacturing technologies for the VRD and the pulleys, with respect to 3D printing

technique, e.g. milling machine manufacturing.

Table 6.2: Experimental cable tension errors in function of x position with respect to
theoretical data (d = 0.5).

x-coord. [mm] Max Mean St. Dev.

150 0.0556 0.0336 0.0181
250 0.0427 0.0237 0.0173
350 0.0402 0.0237 0.0172
450 0.0421 0.0231 0.0183
550 0.0415 0.0189 0.0191
650 0.0334 0.0159 0.0131
750 0.0224 0.0130 0.0058
850 0.0268 0.0130 0.0095

Finally, the cable tensions of the presented prototype have been measured in order to

compare them with those previously computed in Section 6.6 (case d = 0.5 in Fig. 6.10).

The results are reported in Fig. 6.22. For each point, 6 different measures have been

acquired and the statistical analysis of the data is reported in Tab. 6.2. The results have

been divided by mg, where m is the mass of the load used in the measures, in order to
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Figure 6.22: Tension T1 over the x axis, comparison between theoretical and experimental
data (d = 0.5).

compare them with the predicted data. A good agreement between the theoretical curve

and the experimental results can be found.

6.10 Conclusions

Cable-suspended parallel robots can be guided through a predefined trajectory using

non-circular pulleys or drums. In this chapter, after a brief introduction about devices

based on non circular pulleys and drums, a novel design of overhead traveling crane, based

on variable drums and named Cable-Based Robotic Crane, was presented. The direct

kinematic analysis and the synthesis of the geometry of a variable radius drum were

proposed. The VRD theory was applied firstly on a bi-dimensional horizontal moving

mechanism and, then, to a three-dimensional overhead crane. An experimental prototype of

a CBRC, produced using 3D printing technology, was developed at the Robotics Laboratory

of the Department of Engineering and Architecture, University of Trieste, Italy.

The performance of the mechanism were evaluated and a deviation of the end-effector

from the nominal position of less than 1%, throughout the whole working area in both x,

y and z directions, was found. Furthermore, the cable tensions have been measured and

compared with the theoretical values.

The presented prototype of Cable-Based Robotic Crane highlights the advantages of

using variable radius drums with respect to traditional constant radius drums, the first and

foremost being the simplicity in the required actuation system. In fact, it is well known

that it would need several constant radius drums with a coupled actuation system to drive

them in a synchronous manner in order to make the end-effector moving along a linear

path on a planar surface. The device presented in this chapter is based on the coupling

of the winding and unwinding of the cable and it allows the motion of the end-effector

through a planar workspace by using 2-DOF only. Additionally, the VRD requires only to

compensate the variation of the radius in order to produce a demanded speed or torque

output.
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Moreover, the cable-driven robot described in this chapter is characterized by a lighter

weight with respect to traditional overhead traveling cranes, it is reconfigurable and modular.

In this preliminary prototype, the effects of oscillations and vibrations might occur during

the end-effector motion. Even if this problem arises also in traditional overhead traveling

cranes, in the presented experimental system the cables flexibility as well as the pendulum

phenomena might introduce negative issues during the movement of the load. From a

practical perspective, where stiffness might be required by several applications, this aspect

need to be further investigate, e.g. by implementing anti-swing as well vibration-suppression

control strategies [83]. Furthermore, the maximum speed of the system depends on the

size of the cables and their tensions, as well as its acceleration is limited by the cables

stability, since they support traction forces but no compression ones. Such problems have

been addressed in other cable robots, where gravity forces are involved [95].

In future developments of this work, several improvements could be introduced in the

manufacturing of the complex shapes of VRDs profiles. Furthermore, a complete sensitivity

analysis of CBRC kinematics would be useful to evaluate potential issues before providing

interesting real applications. Finally, the safety of the system in the case of cable failure

[87] can be analyzed and the elongation of the cables [101] can be examined.

109





Chapter 7

Under-Actuated, Pendulum-Like,

Cable-Driven Robots

In this chapter, the design and experimental validation of a 3-degree-of-freedom, under-

actuated, pendulum-like, cable-driven robot is presented. The end-effector of the mechanism

is capable of performing point-to-point motions, from a starting pose to a goal one in the

dynamic workspace of the robot, to be reached with zero angular and linear speed, by means

of two actuators only. The device uses parametric excitation to control the oscillations of

a variable-length pendulum, akin to a playground swing. Feedback linearization allows

the dynamics of the variable-length pendulum to be decoupled from the orientation of the

end-effector. A pool of Adaptive Frequency Oscillators provides smooth estimations of the

current phase of the oscillation in real-time and without delay to inform the parametric

excitation controller. Experimental results demonstrate feasibility of the proposed design

and control approach.

The work presented in this chapter has been developed at the Wearable Robotic Systems

(Lab), Department of Mechanical Engineering, Stevens Institute of Technology (Hoboken,

NJ, USA) during the visiting period that I spent abroad in the first part of the third year

of my Ph.D.

Part of the work described in this chapter has been presented in [5] (paper under

review).

7.1 Introduction

Pendulum-like cable-driven robots are a special class of cable-suspended parallel robots.

These flexible-link manipulators consist of a cable-suspended passive robotic arm, whose

oscillations can be modulated by actively controlling the lengths of the cables or the

orientation of the end-effector. If the end-effector is regarded as a lumped mass, the

system can be modeled as a variable-length pendulum (Lorentz’s pendulum [170]), whose

swing-up motion can be assimilated to the one provided by children on playground swings

[171, 172, 173]. Several theoretical studies deal with the process of pumping and subtracting

energy in the variable-length pendulum. In 1970, J. A. Burns proved that lengthening the
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(a) (b)

Figure 7.1: The 3-DOF under-actuated cable-driven robot presented in [145]: kinematic
diagram (a) and experimental prototype (b).

cable when the pendulum reaches the maximum angular amplitude and shortening it when

the amplitude is zero increases the energy of the system [174]. Furthermore, the dynamic

modeling of the playground swing was studied by J. Case in [175, 176], by approximating

the swing to a linear harmonic oscillator with driving and parametric terms.

An example of robotic system that uses parametric self-excitation is given by the Winch-

Bot [177], a 2-DOF under-actuated robot capable of moving a point-mass end-effector

over arbitrary paths using parametric self-excitation. Other authors have studied 3-DOF

pendulum-like robots, capable of performing point-to-point motions using two actuated

joints only. In particular, not only the position but also the orientation of the end-effector of

these systems can be controlled during a motion that extends beyond the static workspace.

A 3-DOF pendulum-like under-actuated cable-driven robot was presented in [145]: the

robot consists of an end-effector with an actuated arm suspended on a cable wound on a

reel. The kinematic diagram and an image of the experimental prototype are reported in

Fig. 7.1. A novel design for a 3-DOF under-actuated, pendulum-like robot was proposed

by D. Zanotto et al. in [146]. Figure 7.2 reports the kinematic diagram of the flexible-

link manipulator. The control system is based on feedback linearization to decouple the

dynamics of the system into two simple single-input single-output systems. The robot

enables point-to-point trajectories using two actuators only. However, no experimental

validation was presented in that work.

In [147], another example of 3-degree-of-freedom cable-suspended robot was presented.

The system (Fig. 7.3) is similar to the one described in [146] and does not require an

actuator to be mounted on the end-effector. However, its dynamics are more complex and

the control system is based on heuristic characterization.

In [178], the dynamic behavior of a pendulum with periodical variable-length was

analyzed by comparing analytical results obtained with an approximate model to the ones
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Figure 7.2: The 3-DOF under-actuated cable-driven robot presented in [146].

(a) (b)

Figure 7.3: The 3-DOF under-actuated cable-driven robot presented in [147]: kinematic
diagram (a) and experimental prototype (b).

derived by means of non-approximate equations solved numerically. In [179], the control of

angular oscillations of a variable-length pendulum using mass reconfiguration was proposed,

whereas a time optimal control of a swing was presented in [180].

In this chapter, the modeling and non-linear control of a 3-DOF, under-actuated,

pendulum-like, cable-driven robot is presented. The end-effector of the mechanism is

capable of completing planar point-to-point motions from a starting pose [xS , yS , θS ]
T to

a goal one [xG, yG, θG]
T , reached with zero angular and linear speed, by means of two

actuated winches only. Not only the position but also the orientation of the end-effector is

controlled during a motion that extends beyond the static workspace. Similar to [146], the

proposed controller uses feedback linearization to turn the complex coupled dynamics of the

system into those of two decoupled subsystems: a variable-length pendulum and a linear
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Figure 7.4: Kinematic diagram of the pendulum-like manipulator.

controllable system. A pool of oscillators (Adaptive Frequency Oscillators, AFO) estimate

the phase of the pendulum-robot in real-time and phase-locked parametric excitation is

employed to modulate the amplitude of the oscillations.

The novel contributions of this work can be summarized as follows:

1. the development of a novel design for a pendulum-robot, which is functionally

equivalent but structurally simpler than the one described in [146];

2. the introduction of Adaptive Frequency Oscillators to provide smooth estimates of

the pendulum phase, which inform the parametric excitation controller;

3. the experimental validation of the pendulum-like robot.

The remaining of the chapter is organized as follows: in Section 7.2 the kinematic and

dynamic models of the pendulum robot are presented, in Section 7.3 the trajectory planning

and control system are analyzed, whereas in Section 7.4 the experimental prototype is

described. Section 7.5 reports the experimental results. Finally, the conclusions and some

possible future developments of this work are discussed in Section 7.6.

7.2 Kinematic and dynamic modeling

The kinematic diagram of the cable-driven robot presented in this chapter is shown in Fig.

7.4. It is composed of two actuated revolute joints, namely q1 and q2, that allow to control

the length of the pendulum l and the absolute orientation of the end-effector θ. The robotic

arm, whose center of mass is indicated as D, is suspended by means of two cables that are

connected to the same point C ′ of the end-effector pulley. The two cables are wrapped

around two co-axial, independent idle pulleys, whose axis is indicated by point O, and

then fixed to the motor pulleys 1 and 2. The third degree of freedom of the flexible-link

manipulator is the passive angle of oscillation q3. By means of the two actuated joints,
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Figure 7.5: Dynamic motion beyond the static workspace.

the end-effector can reach a desired pose [xG, yG, θG]
T with zero angular and linear speed.

Since the configurations of the robot with q3 ̸= 0 are not included in the static workspace

of the manipulator, they do not correspond to stable equilibrium points and the system

cannot be indefinitely steady for those values of the passive degree of freedom. In Fig. 7.5

a representation of the dynamic motion of the manipulator beyond its static workspace is

reported.

The inputs to the forward kinematics are the actuated joint variables q1 and q2 and

the passive swing angle of the pendulum q3. While the first two variables are derived from

the encoders mounted on the motors, the swing angle can be estimated using a custom

follower (see Sec. 7.4).

With reference to the kinematic diagram reported in Fig. 7.4, the total cable lengths

L1 and L2 can be expressed as functions of the joint variables

L1 =
(π
2
+ q1

)
r + l1 +

(π
2
− q3

)
r + l +

(π
2
− θ + q3

)
r =

=
3π

2
r + q1r + l1 + l − θr

L2 =
(π
2
− q2

)
r + l2 +

(π
2
+ q3

)
r + l +

(π
2
+ θ − q3

)
r =

=
3π

2
r − q2r + l2 + l + θr

(7.1)

where r indicates the radius of the actuated pulleys, of the idle pulleys and of the end-

effector pulley. From (7.1) it can be seen that the total length of the pendulum l only

depends on the actuated joint variables

l = L0 +

(
q2 − q1

2

)
r (7.2)

where L0 is a known constant parameter. The pose of the end-effector [x y θ]T can be
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computed as: ⎡⎢⎣xy
θ

⎤⎥⎦ =

⎡⎢⎣ l sin(q3) + l3 sin( q1+q2
2 )

−l cos(q3)− l3 cos( q1+q2
2 )

q1+q2
2

⎤⎥⎦ (7.3)

Given the Cartesian pose of the end-effector, the corresponding joint variables can be

computed as ⎡⎢⎣q1q2
q3

⎤⎥⎦ =

⎡⎢⎣θ +
√
x̄2 + ȳ2

θ −
√

x̄2 + ȳ2

arctan(−x̄/ȳ)

⎤⎥⎦ (7.4)

where [
x̄

ȳ

]
=

[
x

y

]
− l3

[
sin θ

− cos θ

]
(7.5)

It should be noticed that the absolute orientation of the end-effector θ is constrained

between ±π/2.

The dynamics equations can be derived by applying the Newton-Euler approach to the

free body diagram shown in Fig. 7.6. In the following, both friction forces and aerodynamics

effects are neglected and the cables are modeled as massless bodies with infinite stiffness.

Under these assumptions, the equations of motion are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

l̈ =
d2 sinβ(rτ2 − d2τ1 sinβ)

JEE
+ d2θ̇

2 cosβ + g cos q3 + lq̇3
2 − τ1

mEE

q̈3 =
d2

2τ1 sinβ cosβ − d2rτ2 cosβ

JEEl
+

d2θ̇
2 sinβ − g sin q3 − 2l̇q̇3

l

θ̈ =
rτ2 − d2τ1 sinβ

JEE

(7.6)

where
τ1 = T1 + T2

τ2 = T1 − T2

β = θ − q3

(7.7)

T1 and T2 are the tensions measured on the cables; mEE and JEE are the mass and the

θ

C C’

(x, y)

D

l3T2

T1

q3
mEEg

d2

Figure 7.6: Free body diagram for the end-effector.
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barycentric moment of inertia of the end-effector, respectively.

By means of the following input-space transformation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τ1 =mEE

(
−v1 + g cos q3 + d2v2 sinβ + d2θ̇

2 cosβ + lq̇3
2
)

τ2 =
1

r
(JEEv2 + d2mEE sinβ(−v1 + g cos q3 + d2v2 sinβ)+

+ d2mEE sinβ(d2θ̇
2 cosβ + lq̇3

2))

(7.8)

the equations of motion (7.6) can be rewritten as⎧⎪⎪⎪⎨⎪⎪⎪⎩
l̈ = v1 (7.9a)

q̈3 = −d2v2 cosβ

l
− g sin q3 − d2θ̇

2 sinβ + 2l̇q̇3
l

(7.9b)

θ̈ = v2 (7.9c)

where v1 and v2 are the new control variables. In (7.9b), the first term represents the

driving excitation, whereas the second term controls the parametric excitation of the

pendulum-robot.

The state-space form of the dynamic system can be obtained by introducing this change

of variables: x1 = l, x2 = q3, x3 = θ, x4 = l̇, x5 = q̇3, x6 = θ̇, which yields the following

expression

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4

x5

x6

0

− g sin(x2)−d2x
2
6 sin(x3−x2)+2x4x5

x1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 −d2 cos(x3−x2)
x1

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
v1
v2

]
(7.10)

This system can be decoupled into two independent single-input subsystems:

• a variable-length pendulum (x1, x2, x4, x5), which is not linearizable (see Appendix

C.1);

• a linear controllable system (x3, x6), which corresponds to the absolute rotation of

the end-effector.

This decoupling holds if (i) the end-effector is balanced (i.e., d2 = 0) or (ii) the absolute

orientation of the end-effector is fixed (i.e., θ̈ = 0 and θ̇ = 0, which also implies v2 = 0). In

the following, it is assumed that d2 = 0.

7.3 Control system

In this section, the control system that allows to steer the robot from a starting pose

[lS , q3S , θS ]
T to a goal pose [lG, q3G, θG]

T is described. It is assumed that both the starting

and the goal pose are reached with zero velocity (but non-zero acceleration) in the dynamic
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workspace of the pendulum-robot. The decoupling of the system allows to develop two

independent planners, one for the pendulum length and one for the end-effector orientation.

7.3.1 Adaptive Frequency Oscillators

The pendulum length planner relies on the real-time estimation of the pendulum phase. To

obtain smooth, lag-free estimates of the phase of the pendulum-robot a pool of Adaptive

Frequency Oscillators (AFO) has been implemented. The Adaptive Frequency Oscillators

were first introduced by L. Righetti et al. [181, 182] and have later been applied to the

estimation of human cyclical movements, e.g. in elbow and gait assistance [183, 184, 185].

The AFO estimates a quasi-periodic signal q3(t) as a combination of M oscillators. The

estimation q̂3(t) is given by

q̂3(t) = q30 +
M∑
1

ai sin(ϕ̃i(t)) (7.11)

where ϕ̃i and ai are the phase and the amplitude of the i -th harmonic component, respec-

tively, and q30 is a constant term. The dynamics of the M oscillators are described, for

i = 1, ...,M , by the following equations

˙̃ϕi(t) = iω + εF (t) cos(ϕ̃i(t)) (7.12a)

ω̇(t) = εF (t) cos(ϕ̃1(t)) (7.12b)

ȧi(t) = νF (t) sin(ϕ̃i(t)) (7.12c)

˙q30(t) = νF (t) (7.12d)

where ω is the fundamental frequency and the estimation error can be calculated as

F (t) = q3(t)− q̂3(t) (7.13)

The phase of the fundamental harmonic is stored in ϕ̃1. The gains ε and ν are the coupling

strength and the learning factor, respectively, and can be tuned to adjust the learning

rate of the phase and amplitude. To estimate the phase of the pendulum-robot M = 4

oscillators have been chosen, whereas the coupling strength and the gain factor have been

set to ε = 12 and ν = 0.5, respectively.

A smooth phase correction term similar to [185] was introduced to lock the phase

estimate to a particular event of the pendulum motion, such that the beginning of each

semi-oscillation corresponds to a null phase. Let indicate with tk the time instant at which

the k-th semi-oscillation is completed, and with Pe(tk) the phase error at the end of the

k-th semi-oscillation. An additional state variable ϕe(t) is introduced to gradually learn

Pe(tk):

ϕ̇e(t) = ϵϕ(tk)ω(t)e
−ω(t)(t−tk) (7.14)

In the previous equation, ϵϕ(tk) = kϵ[Pe(tk) − ϕe(tk)] and kϵ is a proportional gain.

Assuming ω(t) constant over one semi-oscillation, ϕ̇e(t) is a first-order system filtering a
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Figure 7.7: Oscillation q3 of the pendulum and phase ϕ estimated in real-time with the
Adaptive Frequency Oscillators.

fraction of Pe(tk) at each semi-oscillation. The corrected phase ϕ is obtained by summing

ϕe(t) to the original AFO phase ϕ̃1(t) and by applying a modulo operation to bound the

estimated phase between 0 and π:

ϕ = mod(ϕ̃1 + ϕe, π) (7.15)

An example of the oscillation q3 of the pendulum (with increasing energy) and of the phase

ϕ estimated in real-time with the Adaptive Frequency Oscillators is reported in Figure 7.7.

7.3.2 Pendulum length planner

The dynamics of the variable-length pendulum are described by (7.9a) and (7.9b), in

which the input force is applied by the two motors acting on the cables. In this work,

it has been considered that d2 = 0, therefore the model is a pure parametric oscillator

capable of pumping and subtracting energy by appropriately modulating the length of

the pendulum-robot [176, 146]. To pump energy into the system, the end-effector is lifted

as it passes through the lowest point of the oscillation (q3 = 0), whereas it is lowered as

the bob reaches the highest point (q̇3 = 0). The opposite method is applied to subtract

energy from the pendulum. The theoretical time-optimal trajectory for the length l(t) is a

square-wave whose frequency is twice that of the pendulum [180]. A representation of this

ideal trajectory for pumping and subtracting energy is reported in Fig. 7.8.

In a real pendulum, the cable length cannot be varied instantaneously. Therefore, a
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q3(t)
l(t)

subtracting energy

pumping energy

Figure 7.8: Theoretical trajectories of the pendulum length to pump and subtract energy.

sinusoidal law is chosen for the cable length planner instead of a square wave:

ld(ϕ) = A sin(2ϕ) (7.16)

In (7.16), ld(ϕ) is the desired length of the pendulum, ϕ ∈ [0;π) is the phase and A is

a constant parameter controlling the rate of change of the pendulum amplitude during

energy pumping (A < 0) or subtracting (A > 0). To control both the amplitude of the

oscillation and the length of the pendulum, (7.16) is modified as follows:

ld(ϕ) =

[
li +

(lf − li)ϕ

π

]
+A sin(2ϕ) (7.17)

Thus, the desired trajectory is composed of a linear term, driving the system from the

length at the beginning of the current semi-oscillation li to the final length for the current

semi-oscillation lf , and a periodic term designed to increase or decrease the energy of the

system. The periodic term is the truncated Fourier series expansion of an odd periodic

function with zero mean value. The desired trajectory satisfies the boundary constraints

on the position: l(0) = li and l(π) = lf .

The free parameter A, which is constant within each semi-oscillation, must be optimized

at every semi-oscillation to bring the pendulum as close as possible to the desired amplitude

q3f , as detailed in the following subsection.

The length li and the velocity l̇i are derived from the encoder readings (7.2), whereas
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lf and l̇f are chosen as follows

lf = li +∆l, ∆l =

⎧⎨⎩(lG − li) if |lG − li| < ∆lmax

sgn(lG − li)∆lmax otherwise
(7.18)

l̇f =

⎧⎨⎩0 if (|lG − li| < ∆lmax) ∧ (q3P = q3G)

2ϕ̇A otherwise
(7.19)

where ∆lmax is the maximum variation of the length within a semi-oscillation, which is a

constant parameter that depends on the maximum performance of the system (see Tab.

7.1). q3P is the estimate of q3(π), i.e., the oscillation amplitude at the end of the current

semi-oscillation. This value is predicted on-line using numerical integration, as described

in the next subsection. If the system reaches the goal amplitude at the end of the current

semi-period, l̇f is set to zero for a soft landing, otherwise, the value 2ϕ̇A is imposed to

obtain a smoother trajectory.

7.3.3 Optimization

The free parameter A is optimized at every semi-oscillation in order to drive the angle

from its current value q3 to the desired one q3f at the end of the current semi-oscillation.

This optimization is aimed at minimizing the error function |q3f − q3P |.
Two alternative approaches are proposed to choose the value of q3f for the current

semi-oscillation:

1. The first one is based on the maximum variation of the amplitude ∆q3max within the

semi-oscillation and, similarly to ∆lmax, is related to the maximum performance of

the system (see Tab. 7.1). By following this approach, the amplitude of the oscillation

is modified (increased or decreased) using the following law

q3f = −q3f,prev +∆q3,

∆q3 =

⎧⎨⎩(q3G − q3) if |q3G − q3| < ∆q3max

sgn(q3G − q3)∆q3max otherwise

(7.20)

where q3f,prev is the value of q3f at the previous semi-oscillation.

2. The second approach, firstly proposed in [146], is based on the specific energy e of

the pendulum sub-system:

e =
1

2

(
l̇2 + l2q̇3

2
)
− gl cos q3 (7.21)

The variation of the specific energy is imposed to be proportional to the variation

of the pendulum length, which leads to the following expression for the desired
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amplitude [146]

|q3f | = arccos

[
c0
l̇f
lf

+ c1 +
c2
lf

]
(7.22)

where c0, c1 and c2 are constant parameters that depend on li, l̇i and on the overall

variations of energy ∆e = eG − eS and length of the pendulum ∆L = lG − lS :

c0 =
1

2g
, c1 = − ∆e

g∆L
, c2 = − l̇i

2g
+

∆eli
g∆L

+ li cos q3S (7.23)

A suitable value for A can be estimated on-line using numerical optimization. For this

purpose, the bisection method was selected because it inherently accounts for constraints

in the optimization variable, it does not require explicit knowledge of the function to be

optimized and has relatively low computational cost. First, (7.9b) is rewritten in terms

of phase ϕ by using the variable transformation ϕ = ωt. Then, at each iteration of the

bisection method, numerical integration is performed with the Runge-Kutta method, using

the states at the beginning of the current semi-oscillation (i.e., ϕ = 0) as initial conditions,

and imposing the stopping condition ϕ = π. A diagram of the real-time optimization is

reported in Fig. 7.9.

The number of integration steps is limited to N = 20 (∆ϕ = π/N), which yields a good

trade-off between accuracy and computational time. The cost function is defined as the

deviation err = q3f − q3P . The maximum number of iterations for the bisection method is

limited to M = 50 and the estimates of A are continuously fed to the planner (7.17) after

the 4-th bisection operation, in order to smoothly change the parameter A between one

semi-oscillation and the next one.

7.3.4 End-effector orientation planner

A minimum-jerk trajectory is designed for the orientation of the end-effector θd(t)

θd(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0 (7.24)

where the coefficients of the fifth-order polynomial assume the following values

a0 = θS , a1 = 0, a2 = 0,

a3 =
6(θG − θS)

t5θ,max

, a4 =
15(θS − θG)

t4θ,max

, a5 =
10(θG − θS)

t3θ,max

(7.25)

and they are chosen to satisfy the boundary conditions on the orientation at the beginning

and at the end of each trajectory: θ̇S = 0, θ̈S = 0, θ̇G = 0, θ̈G = 0. The maximum time

tθ,max was manually tuned in order to respect the physical limitations of the prototype

(see Tab. 7.1).
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if (ϕ = 0)

compute q3f

if (err ≤ TOL)
or (iter < M )

compute A
using bisection algorithm

integrate q̈3

ϕk+1 = ϕk + ∆ϕ

if (ϕk+1 ≥ π)

update Aerr = q3f − q3P
iter++

else if (iter ≥ 4 )

Figure 7.9: Real-time optimization of A.

7.3.5 Controller architecture

The architecture of the control system is illustrated in Fig. 7.10. The trajectory planning

relies on the phase of the oscillation, which is estimated by the AFO and corrected based

on the measured q3. The corrected phase ϕ is fed into the planner, where the desired length

ld and orientation θd (and their time derivatives) are computed. The following control laws

(linear PD block) are implemented to track the desired trajectory{
v1 = l̈d − kl1ėl − kl0el

v2 = θ̈d − kθ1ėθ − kθ0eθ
(7.26)

where el(t) = l(t)− ld(t), eθ(t) = θ(t)− θd(t) and the coefficients k∗1 and k∗0 are defined

such that the corresponding Hurwitz polynomials have both the roots in the stable half

plane.

The input-space transformation (7.8) is then applied to compute τ1 and τ2, from which

the corresponding cable tensions T1fl and T2fl are derived using (7.7). Since in a real

prototype unmodeled dynamics, noise and disturbances may draw the robotic system away

from its ideal behavior, the contributes of a simple PID controller (PIDL block) are added
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Figure 7.10: Architecture of the control system.

to the ideal cable tensions T1fl and T2fl. For example, the tension for cable 1 is

T1ff = T1fl + kl,P el + kl,I

∫ t

t̂
eldt+ kl,Dėl (7.27)

where t̂ is the time instant when the current trajectory started. The gains of the length

PID controller have been manually tuned and set to the following values: kl,P = 291.0,

kl,I = 0.08, kl,D = 0.08.

The desired lengths l1d and l2d are computed using (7.2) and (7.3):

l1d = ld − rθd

l2d = ld + rθd
(7.28)

Furthermore, a low-level PID controller for the cable tensions (PIDT block) is implemented

to reduce disturbances. As a result, the commanded tension for cable 1, which is fed to the

motor driver, takes the following form

T1d = T1ff + T1fm + kt,P et + kt,I

∫ t

t̂
etdt+ kt,Dėt (7.29)

where T1fm is the contribution given by the motor friction model and T1ff is the contribution

(7.27). A similar control law is implemented for cable 2. The gains for the tension PID

control system have been manually tuned in order to ensure a good overlap between the

desired signal and the values measured from the load cells (Section 7.4). The following

values have been adopted: kt,P = 0.70, kt,I = 0.04 and kt,D = 0.00.

7.4 Experimental prototype

An experimental prototype of the 3-DOF pendulum-like manipulator has been developed at

the Wearable Robotic System (WRS) Laboratory, Department of Mechanical Engineering,

Stevens Institute of Technology (Hoboken, NJ, USA). In the following of this section, the

mechanical and the electronic hardware are described.
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(a) (b)

(c)

Figure 7.11: Prototype of pendulum-like cable-driven robot developed in the WRS Labora-
tory at Stevens Institute of Technology (a) and (b); close-up on the custom pulley system
and 3D-printed follower (b).

7.4.1 Mechanical hardware

The experimental setup is shown in Fig. 7.11. It is composed of an aluminum frame on

which the two actuators are mounted. The motors are brushed 24 V Pittman gear-motors,

model GM9236S0 15-R1-SP. Each motor is powered by an Advanced Motion Control

12A8-QDI analog driver and can retract or release the cable by means of a custom spool.

Figures 7.12 and 7.13 report an image of a motor connected to a custom spool and of

the drivers, respectively. The analog drivers have been manually calibrated in order to
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Figure 7.12: Brushed DC gear-motor (Pittman GM9236S0 15-R1-SP) and custom spool.

Figure 7.13: AMC-12A8 analog drivers.

limit the maximum output current and to employ the whole voltage range provided by the

DAC (±10 V ) that converts the digital signal of the micro-controller in an analogue one

from the driver (Subsection 7.4.2). Furthermore, in the early stage of development of the

prototype, the motor friction has been characterized, in order to obtain the relationship

between current I and angular speed ω, that is used as feed-forward contribution in the

control system (Figure 7.10).

Motor encoders are used to measure cable lengths, while the oscillations of the pendulum-

robot are tracked by means of a custom-designed PTA 3D printed follower connected to a

rotary potentiometer (Bourns), shown in Fig. 7.11(b). Prior to start the tests, its range has

been characterized by connecting an encoder to its shaft in order to derive the relationship

between Volt and radiants.

The end-effector of the pendulum-like robot consists of a custom pulley mounted

between four metal disks that ensure the balancing of the bob; two screws on each side
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(a) Circuit for the 12-bit ADC (right), Teensy 3.2 (left). (b) Dual Encoder Breakout board (top),
circuit for the 12-bit DAC (bottom).

Figure 7.14: Electronic boards for data acquisition and control.

(a) (b)

Figure 7.15: Load cell amplifiers (a), close-up on one load cell TAL220 (b).

are used to indicate the orientation. A system of idle pulleys, shown in Fig. 7.11(c), was

designed to route the cables from the spools to the end-effector, following the kinematic

diagram in Fig. 7.4 and to allow the measurement of cable tensions by means of two

cantilever-type load cells (TAL220). The load cells have been adequately calibrated with

known weights in the set-up phase of the work. The cable adopted in the experimental

prototype is a 0.032” diameter stainless steel wire with a nylon coating.

7.4.2 Electronic hardware

The control architecture of the pendulum-robot was designed to ensure reliable performance

at relatively low cost. Data acquisition was implemented on a Teensy 3.2 micro-controller,

equipped with a 32 bit, 72 MHz ARM Cortex-M4 microprocessor. An image of the

micro-controller is reported in Fig. 7.14(a).

The signal acquired from the load cells is amplified with a custom board (Fig. 7.15)

and, together with the signal of the potentiometer, sampled at 5 kHz using a multichannel
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Figure 7.16: Teensy 3.5 (left) and Teensy 3.6 with microSD card (right).

Figure 7.17: 12-bit DAC (MAX532) functional diagram and pin configuration.

Figure 7.18: DAC MAX532 bipolar operation configuration and power supply grounding.

12-bit ADC, model AD7890. The signal from the encoders is acquired in SPI by means of

a Dual Encoder Breakout board (Fig. 7.14(b)) at 2 kHz. Then, the signal from load cells

and potentiometer is low-pass filtered with a Butterworth, 2nd order, 12 Hz passband filter,

in Teensy 3.2, and sent to the main controller, along with encoders data, at a rate of 1
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Figure 7.19: Overview on the electronic hardware and connections: data acquisition (green),
dynamic model and control system (red), data logging (yellow).

kHz. The custom circuit that has been designed, built and tested for the ADC is reported

in Fig. 7.14(a).

The dynamic model and the control system have been implemented on a Teensy 3.5

micro-controller (32 bit, 120 MHz ARM Cortex-M4), which runs both the high and the

low-level algorithms described in Section 7.3 and directly controls the motor drivers by

means of a 12-bit DAC (MAX 532). The frequency of the control loop is 1 kHz. A custom

board has been designed and developed for the DAC MAX532. An image of the board is

reported in Fig. 7.14(b), whereas the functional diagram and pin configuration of the chip

are shown in Fig. 7.17. The DAC has been integrated in the circuit in bipolar operation

configuration (Fig. 7.18), using a 2-channels operational amplifier TL072CP. A DC/DC

converter CUI INC, series PYB30 has been adopted for the 5V digital power supply.

An auxiliary Teensy 3.6 micro-controller (32 bit, 180 MHz ARM Cortex-M4) logs all

data to a microSD card at 1 kHz for the post-processing in Matlab. Furthermore, to better

handle the computational power of the micro-controllers, the optimization of parameter A

is also run on the Teensy 3.6 and the optimized data is sent back to the main controller at

1 kHz. Figure 7.16 reports an image of Teensy 3.5 and Teensy 3.6.

In Figure 7.19, an overview on the electronic hardware connections and signals is

reported: data acquisition is represented in green, the controller in red and the data logging

in yellow. For the software implementation the open-source Arduino IDE has been adopted,

on a laptop running Windows 10 64 bit with an Intel R⃝ CoreTM i5 CPU M480 @2.67 GHz

and 4.00 GB installed RAM.

7.5 Experimental results

In this section, the experimental validation of the under-actuated, pendulum-like, cable-

driven robot is presented. Firstly, a preliminary amplitude controller is proposed, then

experimental tests on the point-to-point motion are illustrated. The nominal parameters

of the prototype, including geometrical characteristics, robot limits and tolerances for the

point-to-point motion, are reported in Tab. 7.1.
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Table 7.1: Parameters of the experimental prototype.

Geometrical Parameters Prototype Limits Tolerances

L0 1.420 m ∆Lmax 0.020 m L 0.005 m
r 0.019 m ∆q3max 0.60◦ q3 2.00◦

mEE 1.037 Kg tθ,max 5.00 s θ 4.00◦

JEE 6.410 · 10−4 Kg/m2 θmax ±90◦

d2 0.000 m Tmax 15.00 N
l3 0.000 m

7.5.1 Amplitude control

Figure 7.20 reports the coordinate q3 and the specific energy in the case of free oscillation

of the pendulum-robot, with the motors blocked and, therefore, a constant length of the

pendulum. Figure 7.21 shows an energy pumping/subtracting test, performed using the

planner described in (7.16). In this case, A is constant and its sign determines whether

energy is added to or subtracted from the pendulum. In the test of Fig. 7.21 the constant

value of A is equal to 0.125. The same test is reported in Fig. 7.22, with A = 0.250. It can

be sees that, by increasing the parameter A, the time needed to pump and subtract energy

decreases.
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Figure 7.20: Free oscillation of the pendulum-robot.

With respect to Fig. 7.20, it can be appreciated that in both tests of Figures 7.21 and

7.22, the rate of decreasing amplitude is higher than in the free-oscillation case.

An amplitude control test was also conducted in which the parameter A in (7.16) was

optimized at each semi-oscillation to linearly increase (or decrease) the oscillation angle q3

of the pendulum-robot, as shown in Fig. 7.23.
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Figure 7.21: Pumping and subtracting energy with A = 0.125.
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Figure 7.22: Pumping and subtracting energy with A = 0.250.
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Figure 7.23: Linear amplitude control with A optimized at each semi-oscillation.

7.5.2 Point-to-point motion

In order to evaluate the performances of the point-to-point trajectory planning and of

the control system, a sequence of target Cartesian poses [x, y, θ]T for the end-effector was

tested. This sequence, reported in Table 7.2, was chosen to include variations in length,

amplitude and orientation.

Table 7.2: Sequence of target points [lG, q3G, θG]
T .

Position variable Unit 1 2 3 4 5

lG [m] 1.00 0.50 0.50 1.00 1.00
q3G [◦] 20 20 47 34 20
θG [◦] 0 40 17 −11 0

Figure 7.24 illustrates an example of point-to-point motion using the linear approach

for increasing and decreasing the amplitude q3 described in (B.7). The four plots represent

the length, amplitude, orientation and specific energy of the pendulum-robot over time. In

the graph of q3 the green segments are the predicted values q3P . It can be noticed that

both the measured length and the oscillation angle track the desired values very well. The

differences between the desired and predicted values of q3 are due to the tolerance set for

the numerical optimization, whereas the differences between measured and predicted q3

are due to modeling errors (e.g., friction, aerodynamics effects, noise, and vibrations).

Figure 7.25 shows another point-to-point motion test during which the end-effector is

driven through the same sequence of via-points, this time using the energy approach (B.9)

to determine the desired amplitude of the current semi-oscillation. As it can be seen, when
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the length of the pendulum is increased or decreased, the angle q3 is modulated to force

the variation of specific energy to be proportional to the variation of the length. As in the

previous case, the system tracks the desired length and oscillation angle very well.

In both tests, however, the tracking performance for the orientation θ were less desirable.

This was probably due to the friction forces generated by the cable wrapping and unwrapping

around the end-effector pulley, and to unmodeled off-plane oscillations originating from

small vibrations in the robot frame.
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Figure 7.24: Position variables (length l, amplitude q3, orientation of the end-effector θ)
and specific energy e for a point-to-point motion test with linear variations of q3. Vertical
solid lines indicate target achievements.

7.6 Conclusions

In this chapter, a novel design of a 3-DOF under-actuated, pendulum-like, cable driven

robot was presented and experimentally validated. The end-effector of the mechanism

is capable of performing point-to-point motions in the dynamic workspace of the robot,

from a starting pose to a goal one, reached with zero angular and linear speed, using

two actuated joints only. Feedback linearization allows to decouple the dynamics of the

variable-length pendulum from the dynamics of the rotation of the end-effector. The device

leverages parametric excitation to control the oscillation of the variable-length pendulum,

similar to a playground swing.

With respect to previous works published in the Literature, in this chapter a novel

design of pendulum-like robot was described and a pool of Adaptive Frequency Oscillators

was introduced, to obtain lag-free, smooth estimations of the current phase of the oscillation

in real-time. These smooth estimates allow the on-line trajectory planner to integrate the
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Figure 7.25: Position variables (length l, amplitude q3, orientation of the end-effector θ)
and specific energy e for a point-to-point motion test with energy method variation for q3.
Vertical solid lines indicate target achievements.

equation of motion of the variable-length pendulum directly in the phase domain, without

the discontinuities that would result from using other techniques that are based on event

detection [145, 146]. The proposed control approach is not computationally demanding

and therefore can be implemented on micro-controllers. Furthermore, this approach is

based on the real-time optimization of only one parameter during each semi-oscillation.

The optimization is not approximated and it is not based on heuristic relationships based

on previous experimental data [147].

The ability of the pendulum-robot to modulate the amplitude of the oscillations

using parametric self-excitation was experimentally validated with good results. Further,

two alternative criteria to select the target oscillation amplitude at each semi-oscillation

during arbitrary point-to-point motions were presented and experimentally tested, yielding

satisfactory performance.

The tracking performance were less desirable for the pendulum orientation than they

were for its length and oscillation angle. To reduce off-plane oscillations that might have

contributed to this effect, a future version of the end-effector will feature an on-board

spinning mass, which will stabilize the oscillation plane using the gyroscopic effect.

Future work will also include extending the proposed controller to the case of non-

balanced end-effector (that is, d2 ̸= 0). In this case, the end-effector of the current prototype

will be equipped with a non-centered additional mass that could be used to excite the

system with a driving term, in a way similar to children moving their legs on a playground

swing [175, 176]. A systematic comparison between the effectiveness of the driving and

parametric terms (and combination thereof) will then be conducted.
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Chapter 8

Conclusions

The research activity presented in this Ph.D. thesis has been focused on the kinematic

and dynamic modeling, simulation and control of flexible-link robotic systems. Flexible

multibody dynamics is an open field of investigation in both industry and academia, since

the industrial demand of high performance operation with high speed and precision has

highlighted the need to study and develop lightweight manipulators, in which the effects

of elasticity arise. Therefore, while modeling and control this particular class of robotic

systems, the dynamics effects of structural flexibility has to be taken into account.

In Chapter 1, an overview on flexible multibody dynamics has been presented. In

particular, a formulation based on an Equivalent Rigid-Link System has been recalled

and described in its evolution through the last two decades [1]. The ERLS concept,

firstly proposed in combination with a Finite Element Method approach, allows the

kinematic equations of motion of the equivalent rigid-link system to be decoupled from the

compatibility equations of the displacements at the joints.

Chapter 2 recalled a recent formulation of the ERLS concept through a modal approach,

in particular a Component Mode Synthesis technique [12]. This novel approach allows

to obtain a more flexible solution based upon a reduced-order system of equations. The

kinematic equations have been recalled and the equation of motion derived for a generic

flexible-link mechanism.

In Chapter 3, a comparison between the ERLS-FEM and the ERLS-CMS approaches

have been presented and described. A L-shaped benchmark mechanism has been imple-

mented in Matlab and numerically simulated through different input conditions: grav-

itational force and a torque input. Results have been compared in terms of accuracy

in the time and frequency domains, and by means of the computational time required

by the simulations. Using the modal approach (ERLS-CMS) an important reduction of

computational time has been highlighted, while maintaining a good accuracy in simulating

both the fine and gross motion of the benchmark system [2].

In the CMS approach, a classical Craig-Bampton reduction technique has been initially

employed. However, this is not the only Model Order Reduction strategy capable of

selecting the vibrational modes to be retained to keep the model dimension at a minimum

while preserving the accuracy of the system response. For this reason, in Chapter 4,
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different Model Order Reduction techniques (i.e. Craig-Bampton, Interior Mode Ranking

(IMR), Guyan, Least Square Model Reduction (LSMR) and Mode Displacement Method

(MDM)) have been applied, in combination with the ERLS modal approach, to a benchmark

mechanism under different input conditions. The accuracy of each reduced model has

been numerically evaluated through the comparison of computational time, the behavior in

frequency domain and by means of vector correlation methods, i.e. the Modal Assurance

Criterion (MAC), the Cross-Orthogonality (CO) and the Normalized Cross-Orthogonality

(NCO) [3].

In the second part of my Ph.D. thesis, I have studied cable-driven robots, which are a

special class of flexible-link manipulators, in which flexible cables, rather than rigid links,

are used to drive the end-effector.

Advantages of this class of manipulators are the possibility of operating in large

workspaces, their reconfigurability and modularity. With respect to manipulators composed

of rigid links, cable-driven robotic systems can be easily transported, present a higher

payload-to-weight ratio and their end-effector can usually achieve higher velocities and

accelerations. Disadvantages include redundancy (as cables can be used in tension but not

in compression) and the interference between the cables and the surrounding environment.

Cable-driven robots have been adopted to several different tasks, including loading and

large-scale manipulation, construction systems, pick-and-place, building tasks as well in

rehabilitation and surgery.

In Chapter 5, an introduction about cable-robots has been presented. In Chapters 6

and 7, a special class of cable-robots has been analyzed: cable-suspended parallel robots.

These manipulators are typical examples of under-constrained systems, which rely on

gravitational force to determine the resulting pose of the end-effector.

In Chapter 6, a novel design of a 2-DOF cable-suspended parallel robot based on

variable radius drums has been presented. This kind of manipulator can be used as an

overhead traveling crane and, therefore, it has been called Cable-Based Robotic Crane.

A variable radius drum is a device characterized by the variation of the spool radius

along its profile, allowing highly flexible input-output relationship with respect to more

conventional mechanisms. In particular, the device that has been proposed allows to

move the end-effector through a planar working area, with just two actuated joints. The

kinematic analysis and the synthesis of the profile of the variable radius drum has been

presented. Then, the design of an horizontal moving cable-mechanism, which constitutes a

module of the CBRC, has been described and analyzed.

A working prototype of a three-dimensional cable-based overhead traveling crane has

been developed at the Robotics Laboratory, Department of Engineering and Architecture,

University of Trieste (Italy). The experimental device has been validated, demonstrating

the feasibility of the proposed approach in moving the end-effector through a planar surface

with high accuracy. Furthermore, the cable tensions have been analyzed and compared

with the ones predicted by the theoretical model [4].

Chapter 7 dealt with another class of cable-suspended robots: pendulum-like manipu-

lators. These mechanisms rely on gravity to maintain the cables taut and, due to their
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specific design, constantly operate outside their static workspace. They are composed of a

cable-suspended robotic arm, whose oscillation can be modulated by actively controlling

the lengths of the cables or the orientation of the robotic arm. A novel design of a 3-DOF

pendulum-like, cable-driven robot has been presented and experimentally validated. The

robot can steer the end-effector through a point-to-point motion from a start pose to

a goal one, to be reached with zero angular and linear speed. The device is based on

parametric excitation and it relies on two actuated degrees of freedom only. The control

system is based on a feedback linearization that allows to decouple the dynamics of the

variable-length pendulum, to the dynamics of the rotation of the end-effector. Adaptive

Frequency Oscillators have been introduced to estimate the phase of the pendulum in

real-time and without delay. A prototype of the pendulum-robot has been fabricated at

the Wearable Robotic System (WRS) Laboratory, Department of Mechanical Engineering,

Stevens Institute of Technology (Hoboken, NJ, USA). The prototype and the control

system have been designed to ensure reliable performance using open-source software and

relatively low-cost hardware. The experimental device has been validated, showing the

feasibility of the proposed approach for steering the robot through a point-to-point motion

in its dynamic workspace [5].

The dynamic modeling and control of flexible-link robotic systems is still an open area

of investigation. By considering the work presented in the first part of this thesis, future

works will be devoted to further investigate Model Order Reduction techniques through

the implementation of other benchmark mechanisms with at least two degrees of freedom.

Closed-chain mechanical systems could be also taken into account. In future developments,

the reduced order models obtained with the modal reduction could be adopted in control

system for the suppression of vibrations in robotic systems with deformable links.

The field of cable-driven robots, and in particular of cable-suspended parallel robots,

can as well offer several possible interesting and challenging developments. With reference

to the work presented in this thesis, the prototype described in Chapter 6 and fabricated

at University of Trieste (Italy) could be further enhanced, by improving the mechanical

hardware and implementing a sway-suppression control system. The 2-DOF cable-based

robotic crane could in future be applied in a real environment, e.g. in the naval or

construction fields. Furthermore, different applications of variable-radius drums in the field

of cable-suspended robots could be investigated.

By considering the prototype of pendulum-robot developed at Stevens Institute of

Technology, further development of the work could include a future version of the end-

effector, to reduce off-plane oscillation using the gyroscopic effect by means of an on-board

spinning mass. Furthermore, the control architecture could be extended to the case

with a non-balanced end-effector, which will introduce a non-null driving term, that can

be used for the self-excitation of the pendulum in addition to the parametric one. A

comparison between the two approaches of excitation (parametric and driving) could as

well be investigated.
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Appendix A

A.1 Nomenclature

α angular acceleration vector

Ω̄ matrix of angular speeds for the whole

mechanism

R̄ local-to-global rotation matrix for the

whole mechanism

ϵ strain vector

Γ diagonal matrix of the squares of nat-

ural frequencies of each link

B̂ matrix of relationships between the

linear velocities of three non-aligned

nodes with respect to the velocity of

the first one

Î matrix of î components

Ω skew-symmetric matrix of absolute

angular velocities

ω absolute angular velocity

Φ matrix of absolute rotational displace-

ments

φ angular virtual terms vector

φ vector of virtual rotational displace-

ments

θ independent generalized coordinates

vector

l̃ sub-matrix of l elements independent

from accelerations for the whole mech-

anism

A Skew-symmetric matrix of absolute

angular accelerations

a linear acceleration vector

C compatibility matrix

Cd elastic terms compatibility matrix

Cr rigid terms compatibility matrix

D matrix of relationships between vibra-

tional modal coordinates and rigid-

body modal coordinates

E vector containing the partial

derivaties matrices of C with respect

to the rigid degrees of freedom

e nodal position vector

f concentrated external forces and

torques vector acting on each link

fg equivalent nodal loads due to gravity
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A.1. Nomenclature

G matrix that contains the coefficients

of the independent generalized coor-

dinate acceleration

g gravity acceleration vector

H elastic energy matrix of each link

J Jacobian matrix of the ERLS

K stiffness matrix of each link

L matrix that contains all terms not de-

pending on virtual displacements and

accelerations

L selection matrix for the elements in-

dependent from virtual displacements

and accelerations for the whole mech-

anism

l matrix that contains all terms not

depending on virtual displacements

M mass matrix

MC centrifugal stiffness terms matrix

MG Coriolis terms matrix

N matrix that relates the vector of inde-

pendent degrees of freedom with the

overhall system degrees of freedom

n matrix that contains all terms not

depending on both independent ger-

eralized coordinate and modal coor-

dinates accelerations

P linear virtual terms vector

p absolute nodal position vector

q modal coordinates vector

qd elastic modal coordinates vector

qr rigid modal coordinates vector

S joint displacements selector matrix

T local-to-local transformation matrix

U eigenvector

u nodal displacement vector

Ud elastic mode eigenvectors

U r rigid-body mode eigenvectors

V θi selection block-matrix for the rigid

degrees of freedom

V o
i selection matrix for the proper ele-

ments of the ith link

V qdi selection block-matrix for the elastic

modal coordinates

V qri selection block-matrix for the rigid

modal coordinates

W virtual work matrix

W f generalized force work matrix

W g gravitational force work matrix

ρ mass density

el. number of beam elements

Ic shrink disk inertia

Im motor inertia

m. number of modes

me elbow articulation concentrated mass

AMM Assumed Mode Method

CMS Component Mode Synthesis

DOF Degree of Freedom

ERLS Equivalent Rigid-Link System

FEM Finite Element Method
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A.3. Development of the terms involving rotational matrices

A.2 The matrix B̂

Using the skew-symmetric matrix definition

[
{a b c}T

]
X

=

⎡⎢⎣ 0 −c b

c 0 −a

−b a 0

⎤⎥⎦ (A.1)

employed for the cross-product operation

B̂ =

⎡⎢⎢⎣
I 0

I
[
−(P 1 − P 0)

]
X

I
[
−(P 2 − P 0)

]
X

⎤⎥⎥⎦ (A.2)

A.3 Development of the terms involving rotational matrices

In the following a new formulation for the terms containing the rotational matrix, namely

δR̄
T
R̄, R̄

T
Ṙ

T
and R̄

T
R̈

T
, is developed. Let start from the following equation

RTT = I, RT Ṙ = Ω and RT R̈+ Ṙ
T
Ṙ = A (A.3)

where

Ω =

⎡⎢⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤⎥⎦ ; A =

⎡⎢⎣ 0 −αz αy

αz 0 −αx

−αy αx 0

⎤⎥⎦ (A.4)

are the skew-symmetric matrices referring to the absolute angular velocity and absolute

angular acceleration of the link, respectively. Since Ṙ
T
Ṙ = ΩTT TTΩ = ΩTΩ, it yields

RT R̈ = A−ΩTΩ. Moreover, Ṙ
T
= TΩ and, δT = T δΦ, where

δΦ =

⎡⎢⎣ 0 −δφz δφy

δφz 0 −δφx

−δφy δφx 0

⎤⎥⎦ (A.5)

δΦ is a skew-symmetric matrix and its components are the virtual rotational displacements

expressed with respect to the local frame of the link. By pre-multiplying the previous

equation by δT T , we can obtain

δT TT = δΦTT TT = δΦT (A.6)

Finally, extending the results to the matrix R̄, which contains on its main diagonal the

single rotational matrices referred to each link, we obtain

δR̄
T
R̄ = δΦ̄

T
, R̄

T ˙̄R = Ω and R̄
T ¨̄R = Ā− Ω̄

T
Ω̄ (A.7)
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A.4 Development of the constant inertial matrices related

to a link

The terms related to the inertial matrix of equations (2.60) and (2.61) can be rewritten as

UTMĀU = UTM(αxĀ1 + αyĀ2 + αzĀ3)U (A.8)

where

Ā1 =

⎡⎢⎣0 0 0

0 0 −1

0 1 0

⎤⎥⎦ ; Ā2 =

⎡⎢⎣ 0 0 1

0 0 0

−1 0 0

⎤⎥⎦ ; Ā3 =

⎡⎢⎣0 −1 0

1 0 0

0 0 0

⎤⎥⎦ (A.9)

By introducing the notation X1 = UTMĀ1U , X2 = UTMĀ2U and X3 = UTMĀ3U ,

it can be obtained

UTMĀU = αxX1 + αyX2 + αzX3 (A.10)

In the same manner, the term UTMΩ̄U of (2.61) can be rewritten as

UTMΩ̄U = ωxX1 + ωyX2 + ωzX3 (A.11)

Furthermore, since UT δΦ̄
T
MU = (UTMδΦ̄U)T , we obtain

UT δΦ̄
T
MU = δφxX

T
1 + φyX

T
2 + φzX

T
3 (A.12)

The product ΩTΩ is

ΩTΩ =

⎡⎢⎣(ω2
y + ω2

z) −ωxωy −ωxωz

−ωxωy (ω2
x + ω2

z) −ωyωz

−ωxωz −ωyωz (ω2
x + ω2

y)

⎤⎥⎦ (A.13)

Thus, it can be rewritten as

ΩTΩ = (ω2
y +ω2

z)S1 + (ω2
x +ω2

z)S2 + (ω2
x +ω2

y)S3 +ωxωyS4 +ωxωzS5 +ωyωzS6 (A.14)

where

S1 =

⎡⎢⎣1 0 0

0 0 0

0 0 0

⎤⎥⎦ ; S2 =

⎡⎢⎣0 0 0

0 1 0

0 0 0

⎤⎥⎦ ; S3 =

⎡⎢⎣0 0 0

0 0 0

0 0 1

⎤⎥⎦
S4 =

⎡⎢⎣ 0 −1 0

−1 0 0

0 0 0

⎤⎥⎦ ; S5 =

⎡⎢⎣ 0 0 −1

0 0 0

−1 0 0

⎤⎥⎦ ; S6 =

⎡⎢⎣0 0 0

0 0 −1

0 −1 0

⎤⎥⎦
(A.15)
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A.4. Development of the constant inertial matrices related to a link

Introducing the variables Y 1 = UTMS̄1U , Y 2 = UTMS̄2U , Y 3 = UTMS̄3U , Y 4 =

UTMS̄4U , Y 5 = UTMS̄5U and Y 6 = UTMS̄6U , we can write

UTMΩTΩU = (ω2
y+ω2

z)Y 1+(ω2
x+ω2

z)Y 2+(ω2
x+ω2

y)Y 3+ωxωyY 4+ωxωzY 5+ωyωzY 6

(A.16)

With the introduction of Ā1, Ā2 and Ā3, the previous equation can be rewritten as

UT δΦ̄
T
MĀU = UT (δφxĀ

T
1 + δφyĀ

T
2 + δφzĀ

T
3 )M(αxĀ

T
1 + αyĀ

T
2 + αzĀ

T
3 )U (A.17)

and, after multiplications

UT δΦ̄
T
MĀU = δφx(αxZ11 + αyZ12 + αzZ13) + δφy(αxZ21 + αyZ22 + αzZ23)+

δφz(αxZ31 + αyZ32 + αzZ33)

(A.18)

in which

Zrd = UT Ā
T
r MĀdU for r = 1, 2, 3 and d = 1, 2, 3 (A.19)

At the same time

UT δΦ̄
T
MΩ̄U = δφx(ωxZ11 + ωyZ12 + ωzZ13) + δφy(ωxZ21 + ωyZ22 + ωzZ23)+

δφz(ωxZ31 + ωyZ32 + ωzZ33)

(A.20)

The term

UT δUδΦ̄
T
MΩ̄

T
Ω̄U = UT (δφxĀ

T
1 + δφyĀ

T
2 + δφzĀ

T
3 )

×M
(
(ω2

y + ω2
z)S̄1 + (ω2

x + ω2
z)S̄2 + (ω2

x + ω2
y)S̄3 + ωxωyS̄4 + ωxωzS̄5 + ωyωzS̄6

)
U

(A.21)

can be written as

UT δΦ̄
T
MΩ̄

T
Ω̄U =

δφx

(
(ω2

y + ω2
z)W 11 + (ω2

x + ω2
z)W 12 + (ω2

x + ω2
y)W 13 + ωxωyW 14 + ωxωzW 15 + ωyωzW 16

)
+

δφy

(
(ω2

y + ω2
z)W 21 + (ω2

x + ω2
z)W 22 + (ω2

x + ω2
y)W 23 + ωxωyW 24 + ωxωzW 25 + ωyωzW 26

)
+

δφz

(
(ω2

y + ω2
z)W 31 + (ω2

x + ω2
z)W 32 + (ω2

x + ω2
y)W 33 + ωxωyW 34 + ωxωzW 35 + ωyωzW 36

)
(A.22)

where

W rt = UT Ā
T
r MSrU for r = 1, 2, 3, and t = 1, ..., 6 (A.23)
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A.5 Development of vectors îi

If the nodes do not have rotational degree of freedom, only gravity force (not torques) are

applied to them. In this case

î1 =
[
1 0 0 1 0 0 1 0 0 1 0 0 ...

]T
î2 =

[
0 1 0 0 1 0 0 1 0 0 1 0 ...

]T
î3 =

[
0 0 1 0 0 1 0 0 1 0 0 1 ...

]T (A.24)

It is worth to introduce the notation Î =
[
I I I I ... I

]T
where I are 3 × 3

identity matrices. Conversely, if nodes have rotational degrees of freedom, î are defined as

î1 =
[
1 0 0 0 0 0 1 0 0 0 0 0 ...

]T
î2 =

[
0 1 0 0 0 0 0 1 0 0 0 0 ...

]T
î3 =

[
0 0 1 0 0 0 0 0 1 0 0 0 ...

]T (A.25)

In this case, the matrix Î is Î =
[
I 0 I 0 ... 0

]T
where I and 0 are 3 × 3 unit

and zero matrices.

The matrix I has been defined for the case where all the nodes have rotational degrees

of freedom or for the opposite case, where none of them has rotational degrees of freedom.

In the case where nodes with rotational degrees of freedom and nodes without are present

in the same link, the development of the definition of I is straightforward.
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Appendix B

B.1 Mathematical derivations of the Variable Radius Drum

synthesis

In this appendix, the mathematical derivations of the VRD profile synthesis are reported.

For the further calculations, it is to be noticed that

dT (x)

dx
= T

(
x+

π

2

)
(B.1)

In particular, by differentiating (7.6) with respect to angle α, it can be obtained

dP t

dα
=
dT (α)

dα

{
cd

0

}
+

dT (α)

dα
T (−γ)T

(
−π

2

){lt
0

}

−dγ

dα
(α)

dT (−γ)

d(−γ)
T (α)T

(
−π

2

){lt
0

}

=T
(
α+

π

2

){cd
0

}
+ T (α)T (−γ)

(
1− dγ

dα

){
lt

0

} (B.2)

The unit vector normal to the VRD profile in tangent point P t is

n = T (α)T (−γ)

{
1

0

}
(B.3)

Since dP t/dα points at any time along the tangent line P tP b, it is normal to unit vector

n. This orthogonality relationship can be written as

nT dP t

dα
= 0 (B.4)

By substituting (B.2) and (B.3) into (B.4) and by using the property of orthogonal matrices
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B.2. Extended synthesis of the Variable Radius Drum
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Figure B.1: Variable radius drum parameters by considering the radius of the idle pulley
and the cable thickness.

T TT = I, it follows

{
1 0

}
T T (−γ)T

(
pi

2

){
cd

0

}
+

(
1− dγ

dα

){
1 0

}{lt
0

}
= 0

cd sin(−γ) +

(
1− dγ

dα

)
lt = 0

(B.5)

The relationship between the lever arm la, the unrolled cable length and the VRD rotation

angle α is la = dg/dα. In particular, from Fig. 6.5 it can be easily seen that cdcos(γ) = la.

By combining the two previous equations, it can be seen that cdcos(γ) = dg/dα. At this

stage, the previous relationship can be differentiated and, by considering that cd sin(γ) =√
c2d + l2a, it can be obtained:

dγ

dα
= −

d2g
dα2√

c2d −
(

dg
dα

)2 (B.6)

B.2 Extended synthesis of the Variable Radius Drum

In this appendix, the synthesis of the variable radius drum, by considering the radius r

of the idle pulley and the thickness of the cable 2f , is reported. The radius r includes

the radius of the idle pulley and half of the cable thickness. In Fig. B.1 a graphical

representation of this configuration is reported. Similarly to (7.6), the geometry of the
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VRD can be now expressed as

P t = T (α)

{
cd

0

}
+ T (α)T (−γ)T

(
−π

2

){lt
0

}
+ χ(α) (B.7)

where the function χ(α) is equal to

χ(α) = T (α− γ)

{
r

0

}
− T (γ + α)

{
f

0

}
(B.8)

The vector tangent to the profile in P t can be written as
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since

dχ(α)

dα
=
dT (α− γ)

dα

(
1− dγ

dα

){
r

0

}
− dT (α− γ)

dα

(
1− dγ

dα
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f

0
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=T
(
α− γ +

π

2

)(
1− dγ

dα
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r

0

}
+ T

(
α− γ +

π

2

)(
1− dγ
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f
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} (B.10)

It has to be noticed that (B.9) is equal to (B.2). Consequently, the orthogonality condition

of (B.4) leads to the same results of (6.8) and (6.9). In fact

nT dχ(α)

dα
= 0 (B.11)

Finally, we obtain that the geometry of the VRD profile, in Cartesian coordinates, is given

by (B.7), associated with (6.8), (6.9), and (B.8).
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Appendix C

C.1 Variable-length pendulum subsystem

C.1.1 Internal dynamics

In this Appendix the internal dynamics of the variable-length pendulum is analyzed.

Let us consider the varying length pendulum subsystem, whose dynamics are described

by the first two equations (7.6), reported here

l̈ =
d2 sinβ(rτ2 − d2τ1 sinβ)

JEE
+ d2θ̇

2 cosβ + g cos q3 + lq̇3
2 − τ1

mEE

q̈3 =
d2

2τ1 sinβ cosβ − d2rτ2 cosβ

JEEl
+

d2θ̇
2 sinβ − g sin q3 − 2l̇q̇3

l

(C.1)

By means of the change of variables: x1 = l, x2 = q3, x4 = l̇, x5 = q̇3, and with d2 = 0, the

system can be rewritten in the usual state-space form, as follows⎡⎢⎢⎢⎣
ẋ1

ẋ2

ẋ4

ẋ5

⎤⎥⎥⎥⎦
  

ẋ

=

⎡⎢⎢⎢⎣
x4

x5

g cosx2 + x1x
2
5

−2x4x5
x1

− g sinx2

x1

⎤⎥⎥⎥⎦
  

f(x)

+

⎡⎢⎢⎢⎣
0

0

− 1
mEE

0

⎤⎥⎥⎥⎦
  

g

τ1 (C.2)

It can be easily proved that the distribution D = span
{
g, adfg ad2fg

}
is not involutive.

Therefore the system is not linearizable by static or dynamic feedback [186].

A partial feedback linearization is then applied. Let inspect the internal behavior of the

system [187]. First, it can be noticed that the second equation in (7.6) may be rewritten

in such a way that the normalized angular momentum is exploited

x21ẋ5 + 2x1x4x5 =
d
(
x21x5

)
dt

= −gx1 sinx2 (C.3)

then, the normalized angular momentum y = x21x5 is chosen as the output. It is straight-

forward to verify that its relative degree is r = 3. Therefore, by applying the following
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diffeomorphism (which is invertible for x2 ̸= 0)

z1 = x21x5

z2 = −g x1 sinx2

z3 = −g (x1x5 cosx2 + x4 sinx2)

z4 = x2

(C.4)

the system in (C.2) reduces to the following one⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = z2

ż2 = z3

ż3 =
g sin z4
mEE

τ1

ż4 = z1

(
g sin z4

z2

)2

(C.5)

where z1, z2 and z3 represent the controlled dynamics, and z4 is the internal dynamics.

Therefore, as suggested by intuition, the angle q3 represents the uncontrollable state of the

system.

C.1.2 Stability of the starting and goal trajectories

Let us consider the specific energy of the pendulum subsystem, as described in (7.21). After

computing its time derivative, and substituting l̈ and q̈3 with the corresponding expressions

in (7.6), the following expression can be obtained

de

dt
= l̇ l̈ + l l̇ q̇23 + l2q̇3 q̈3 − gl̇ cos q3 + gl sin q3 q̇3 = − l̇

mEE
τ1 (C.6)

Therefore, by considering (C.6) as a Lyapunov function, we conclude that all the trajectories

wherein the cable length is kept constant are bounded. Specifically, the starting and goal

trajectories are bounded trajectories.
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[6] M. Chemnitz, G. Schreck, and J. Krüger, “Analyzing energy consumption of industrial

robots,” in Emerging Technologies & Factory Automation (ETFA), 2011 IEEE 16th

Conference on. IEEE, 2011, pp. 1–4.

[7] M. Brossog, M. Bornschlegl, J. Franke et al., “Reducing the energy consumption of

industrial robots in manufacturing systems,”The International Journal of Advanced

Manufacturing Technology, vol. 78, no. 5-8, pp. 1315–1328, 2015.

[8] G. Carabin, E. Wehrle, and R. Vidoni, “A review on energy-saving optimization

methods for robotic and automatic systems,”Robotics, vol. 6, no. 4, p. 39, 2017.

151



Bibliography

[9] P. Boscariol and D. Richiedei, “Energy saving in redundant robotic cells: Optimal

trajectory planning,” in IFToMM Symposium on Mechanism Design for Robotics.

Springer, 2018, pp. 268–275.

[10] “European union 2030 energy strategy,” https://ec.europa.eu/energy/en/topics/

energy-strategy-and-energy-union/2030-energy-strategy, 2014.

[11] P. Boscariol, “Dynamics and control of flexible-link mechanisms,” Ph.D. Thesis, 2012.

[12] R. Vidoni, P. Gallina, P. Boscariol, A. Gasparetto, and M. Giovagnoni, “Modeling the

vibration of spatial flexible mechanisms through an Equivalent Rigid-Link System/-

Component Mode Synthesis approach,” Journal of Vibration and Control,, vol. 23,

no. 12, pp. 1890–1907, 2017.

[13] O. A. Bauchau, Flexible Multibody Dynamics. Springer, 2011.

[14] M. Benosman, F. Boyer, G. Vey, and D. Primautt, “Flexible links manipulators: from

modelling to control,” Journal of Intelligent and Robotic Systems, vol. 34, no. 4, pp.

381–414, August 2002.

[15] A. Shabana, “Flexible multibody dynamics: Review of past and recent developments,”

Multibody System Dynamics, vol. 1, pp. 189–222, 1997.

[16] M. Tokhi and A. Azad, Flexible Robot Manipulators: Modeling, Simulation and

Control. Control Engineering Series, The Institution of Engineering and Technology

(IET), 2008.

[17] T. M. Wasfy and A. K. Noor, “Computational strategies for flexible multibody

systems,”Applied Mechanics Reviews, vol. 56, no. 6, pp. 553–613, 2003.

[18] S. Dietz, O. Wallrapp, and S. Wiedemann, “Nodal vs. modal representation in

flexible multibody system dynamics,” in Proceeding of Multibody Dynamics 2003,

IDMEC/IST 2003, Lisbon, Portugal, 2003, pp. 1–4.

[19] S. Ge, T. Lee, and G. Zhu, “Nonlinear feedback controller for a single-link flexible

manipulator based on finite element model,” J. Robotic Systems, vol. 14, no. 3, pp.

165–178, 1997.

[20] P. Kalra and A. Sharan, “Accurate modeling of flexible manipulators using finite

element analysis,”Mechanism and Machine Theory, vol. 26, pp. 299–313, 1991.

[21] J. Martins, Z. Mohamed, M. Tokhi, J. S. da Costa, and M. Botto, “Approaches

for dynamic modelling of flexible manipulator systems,” in Proceedings of the IEEE

Conference on Control Theory Appl., vol. 150, July 2003.

[22] G. Naganathan and A. Soni, “Nonlinear modeling of kinematic and flexibility effects in

manipulator design,”ASME Journal of Mechanisms, Transmission and Automation

in Design, vol. 110, pp. 243–254, 1988.

152

https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy
https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2030-energy-strategy


Bibliography

[23] S. Nagarajan and D. Turcic, “Lagrangian formulation of the equations of motion for

elastic mechanisms with mutual dependence between rigid body and elastic motions.

part i: element level equations,”ASME Journal of Dynamic Systems, Measurements,

and Control, vol. 112, pp. 203–214, 1990.

[24] R. Theodore and A. Ghosal, “Comparison of the assumed modes method and finite

element models for flexible multilink manipulators,” Int. J. Robotics Res., vol. 14,

no. 2, pp. 91–111, 1995.

[25] D. Wang, Y. Lu, Y. Liu, and X. Li, “Dynamic model and tip trajectory tracking

control for a two-link flexible robotic manipulator,” in Proceedings of the IEEE

Conference on System, Man and Cybernetics, Beijing, 1996, pp. 1020–1024.

[26] A. Shabana, Dynamics of Multibody systems, 3rd ed. Cambridge University press,

2005.

[27] A. A. Shabana, “An absolute nodal coordinate formulation for the large rotation and

deformation analysis of flexible bodies,”Technical Report, Department of Mechanical

Engineering, University of Illinois at Chicago, 1996.

[28] ——, “Computer implementation of the absolute nodal coordinate formulation for

flexible multibody dynamics,”Nonlinear Dynamics, vol. 16, no. 3, pp. 293–306, 1998.

[29] H. A. Attia, “Dynamic analysis of spatial linkages: a recursive approach,”Meccanica,

vol. 40, no. 1, pp. 1–18, 2005.

[30] R. D. Gregorio and V. Parenti-Castelli, “On the characterization of the dynamic

performances of planar manipulators,”Meccanica, vol. 40, no. 3, pp. 267–279, 2005.

[31] L.-W. Chang and J. Hamilton, “The kinematics of robotic manipulators with flexible

links using an equivalent rigid link system (erls) model,” Journal of dynamic systems,

measurement, and control, vol. 113, no. 1, pp. 48–53, 1991.

[32] D. A. Turcic and A. Midha, “Dynamic analysis of elastic mechanism systems. part

i: Applications,” Journal of Dynamic Systems, Measurement, and Control, vol. 106,

no. 4, pp. 249–254, 1984.

[33] D. A. Turcic, A. Midha, and J. Bosnik, “Dynamic analysis of elastic mechanism

systems. part ii: Experimental results,” Journal of dynamic systems, measurement,

and control, vol. 106, no. 4, pp. 255–260, 1984.

[34] D. A. Turcic and A. Midha, “Generalized equations of motion for the dynamic

analysis of elastic mechanism systems,” Journal of Dynamic Systems, Measurement,

and Control, vol. 106, no. 4, pp. 243–248, 1984.

[35] M. Giovagnoni, H. Piccoli, and A. Rossi, “Finite elements and sensitivity coefficients

in flexible planar linkage analysis,”Meccanica, vol. 22, no. 3, pp. 157–162, 1987.

153



Bibliography

[36] M. Giovagnoni and A. Rossi, “Transient analysis of a flexible crank,”Mechanism and

Machine Theory, vol. 24, no. 4, pp. 231–243, 1989.

[37] M. Giovagnoni, “A numerical and experimental analysis of a chain of flexible bodies,”

ASME Journal of Dynamic Systems, Measurement and Control, vol. 116, pp. 73–80,

1994.

[38] A. Gasparetto, “On the modeling of flexible-link planar mechanisms: experimental

validation of an accurate dynamic model,” Journal of dynamic systems, measurement,

and control, vol. 126, no. 2, pp. 365–375, 2004.

[39] ——,“Accurate modelling of a flexible-link planar mechanism by means of a linearized

model in the state-space form for design of a vibration controller,” Journal of Sound

and Vibration, vol. 240, no. 2, pp. 241–262, 2001.

[40] P. Boscariol, A. Gasparetto, and V. Zanotto, “Active position and vibration control

of a flexible links mechanism using model-based predictive control,”ASME Journal

of Dynamic Systems, Measurement, and Control, vol. 132, January 2010.

[41] ——, “Model predictive control of a flexible links mechanism,” Journal of Intelligent

and Robotic Systems, vol. 58, no. 2, pp. 125–147, 2010.

[42] ——, “Simultaneous position and vibration control system for flexible link mecha-

nisms,”Meccanica, vol. 46, no. 4, pp. 723–737, 2011.

[43] G. Boschetti, D. Richiedei, and A. Trevisani, “Delayed reference control applied

to flexible link mechanisms: A scheme for effective and stable control,” Journal of

dynamic systems, measurement, and control, vol. 134, no. 1, p. 011003, 2012.

[44] R. Caracciolo, A. Gasparetto, and A. Trevisani, “Experimental validation of a dynamic

model for flexible link mechanisms,” Proc. of the ASME DETC 2001, 2001.

[45] R. Caracciolo, D. Richiedei, A. Trevisani, and V. Zanotto, “Robust mixed-norm

position and vibration control of flexible link mechanisms,”Mechatronics, vol. 15,

no. 7, pp. 767–791, 2005.

[46] P. Gallina, A. Gasparetto, G. Rosati, and A. Rossi, “Design of a pid controller for a

flexible five-bar closed-chain planar manipulator,” in Romansy 14. Springer, 2002,

pp. 141–150.

[47] A. Trevisani, “Feedback control of flexible four-bar linkages: a numerical and experi-

mental investigation,” Journal of sound and vibration, vol. 268, no. 5, pp. 947–970,

2003.

[48] A. Gasparetto and V. Zanotto, “Vibration reduction in a flexible-link mechanism

through synthesis of an optimal controller,”Meccanica, vol. 41, no. 6, pp. 611–622,

2006.

154



Bibliography

[49] V. Zanotto, A. Gasparetto, A. Lanzutti, P. Boscariol, and R. Vidoni, “Experimen-

tal validation of minimum time-jerk algorithms for industrial robots,” Journal of

Intelligent & Robotic Systems, vol. 64, no. 2, pp. 197–219, 2011.

[50] R. Vidoni, A. Gasparetto, and M. Giovagnoni, “Design and implementation of an

erls-based 3-d dynamic formulation for flexible-link robots,”Robot. Comput.-Integr.

Manuf., vol. 29, no. 2, pp. 273–282, 2013.

[51] ——, “A method for modeling three-dimensional flexible mechanisms based on an

equivalent rigid-link system,” Journal of Vibration and Control, vol. 20, no. 4, pp.

483–500, 2014.

[52] A. Gasparetto, A. K. Moosavi, P. Boscariol, and M. Giovagnoni, “Experimental

validation of a dynamic model for lightweight robots,” International Journal of

Advanced Robotic Systems, vol. 10, no. 3, p. 182, 2013.

[53] A. Ben-Israel and T. N. Greville, Generalized inverses: theory and applications.

Springer Science & Business Media, 2003, vol. 15.

[54] J. Denavit, “A kinematic notation for low pair mechanisms based on matrices,”ASME

J. Appl. Mech., vol. 22, pp. 215–221, 1955.

[55] R. Craig and M. Bampton, “Coupling of substructures for dynamics analyses,”AIAA

Journal, vol. 6, no. 7, pp. 1313–1319, 1968.

[56] S. Dwivedy and P. Eberhard, “Dynamic analysis of flexible manipulators, a literature

review,”Mechanism and Machine Theory, vol. 41, pp. 749–777, 2006.

[57] R. Caracciolo, D. Richiedei, A. Trevisani, and V. Zanotto, “Robust mixed-norm

position and vibration control of flexible link mechanisms,”Mechatronics, vol. 15,

no. 7, pp. 767–791, September 2005.

[58] C. L. Q. T. Kai Luo, Haiyan Hu, “Model order reduction of flexible multibody

systems described by the ANCF,” in ECCOMAS Thematic Conference on Multibody

Dynamics, 2017.
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[116] P. Miermeister, M. Lächele, R. Boss, C. Masone, C. Schenk, J. Tesch, M. Kerger,

H. Teufel, A. Pott, and H. H. Bülthoff, “The cablerobot simulator large scale motion

platform based on cable robot technology,” in Intelligent Robots and Systems (IROS),

2016 IEEE/RSJ International Conference on. IEEE, 2016, pp. 3024–3029.

[117] D. Q. Nguyen and M. Gouttefarde, “Study of reconfigurable suspended cable-driven

parallel robots for airplane maintenance,” in Intelligent Robots and Systems (IROS

2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014, pp. 1682–1689.

[118] G. Boschetti, G. Rosati, and A. Rossi, “A haptic system for robotic assisted spine

surgery,” in Control Applications, 2005. CCA 2005. Proceedings of 2005 IEEE

Conference on. IEEE, 2005, pp. 19–24.

[119] C. Fanin, P. Gallina, A. Rossi, U. Zanatta, and S. Masiero, “Nerebot: a wire-based

robot for neurorehabilitation,” in ICORR’03. HWRS-ERC, 2003, pp. 23–27.

[120] G. Rosati, P. Gallina, and S. Masiero, “Design, implementation and clinical tests of a

wire-based robot for neurorehabilitation,” IEEE Transactions on Neural Systems and

Rehabilitation Engineering, vol. 15, no. 4, pp. 560–569, 2007.

[121] Y. Mao and S. K. Agrawal, “Design of a cable-driven arm exoskeleton (carex) for

neural rehabilitation,” IEEE Transactions on Robotics, vol. 28, no. 4, pp. 922–931,

2012.

[122] C. Gosselin, “Cable-driven parallel mechanisms: state of the art and perspectives,”

Mechanical Engineering Reviews, vol. 1, no. 1, pp. DSM0004–DSM0004, 2014.

[123] L. Barbazza, “Functional Design of Mechatronic Systems for Human-Robot Collabo-

ration,” Ph.D Thesis, 2017.

160



Bibliography

[124] M. Hiller, S. Fang, S. Mielczarek, R. Verhoeven, and D. Franitza, “Design, analysis

and realization of tendon-based parallel manipulators,” Mechanism and Machine

Theory, vol. 40, no. 4, pp. 429–445, 2005.

[125] J. Pusey, A. Fattah, S. Agrawal, and E. Messina, “Design and workspace analysis of

a 6–6 cable-suspended parallel robot,”Mechanism and machine theory, vol. 39, no. 7,

pp. 761–778, 2004.

[126] S.-R. Oh, K. K. Mankala, S. K. Agrawal, and J. S. Albus, “Dynamic modeling

and robust controller design of a two-stage parallel cable robot,”Multibody System

Dynamics, vol. 13, no. 4, pp. 385–399, 2005.

[127] G. Barrette and C. M. Gosselin, “Determination of the dynamic workspace of cable-

driven planar parallel mechanisms,” Journal of mechanical design, vol. 127, no. 2, pp.

242–248, 2005.

[128] C. Gosselin, P. Ren, and S. Foucault, “Dynamic trajectory planning of a two-dof

cable-suspended parallel robot,” in Robotics and Automation (ICRA), 2012 IEEE

International Conference on. IEEE, 2012, pp. 1476–1481.

[129] C. Gosselin, “Global planning of dynamically feasible trajectories for three-dof spatial

cable-suspended parallel robots,” in Cable-Driven Parallel Robots. Springer, 2013,

pp. 3–22.

[130] C. Gosselin and S. Foucault, “Dynamic point-to-point trajectory planning of a two-dof

cable-suspended parallel robot,” IEEE Transactions on Robotics, vol. 30, no. 3, pp.

728–736, 2014.

[131] X. Jiang and C. Gosselin, “Dynamically feasible trajectories for three-dof planar

cable-suspended parallel robots,” in ASME 2014 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference.

American Society of Mechanical Engineers, 2014, pp. V05AT08A085–V05AT08A085.

[132] ——, “Dynamic point-to-point trajectory planning of a three-dof cable-suspended

parallel robot,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1550–1557, 2016.

[133] P. Dion-Gauvin and C. Gosselin, “Trajectory planning for the static to dynamic

transition of point-mass cable-suspended parallel mechanisms,” Mechanism and

Machine Theory, vol. 113, pp. 158–178, 2017.

[134] G. Mottola, C. Gosselin, and M. Carricato, “Dynamically feasible periodic trajectories

for generic spatial three-degree-of-freedom cable-suspended parallel robots,” Journal

of Mechanisms and Robotics, vol. 10, no. 3, p. 031004, 2018.

[135] ——, “Dynamically-feasible elliptical trajectories for fully constrained 3-dof cable-

suspended parallel robots,” in Cable-Driven Parallel Robots. Springer, 2018, pp.

219–230.

161



Bibliography

[136] X. Jiang, E. Barnett, and C. Gosselin, “Periodic trajectory planning beyond the

static workspace for 6-dof cable-suspended parallel robots,” IEEE Transactions on

Robotics, 2018.

[137] ——, “Dynamic point-to-point trajectory planning beyond the static workspace for

six-dof cable-suspended parallel robots,” IEEE Transactions on Robotics, 2018.

[138] P. Dion-Gauvin and C. Gosselin, “Dynamic point-to-point trajectory planning of a

three-dof cable-suspended mechanism using the hypocycloid curve,” IEEE/ASME

Transactions on Mechatronics, 2018.

[139] N. Zhang, W. Shang, and S. Cong, “Geometry-based trajectory planning of a 3-3

cable-suspended parallel robot,” IEEE Transactions on Robotics, vol. 33, no. 2, pp.

484–491, 2017.

[140] R. Bordalba, J. M. Porta, and L. Ros, “Randomized kinodynamic planning for

cable-suspended parallel robots,” in Cable-Driven Parallel Robots. Springer, 2018,

pp. 195–206.

[141] L. Barbazza, D. Zanotto, G. Rosati, and S. K. Agrawal, “Design and optimal control of

an underactuated cable-driven micro–macro robot,” IEEE Robotics and Automation

Letters, vol. 2, no. 2, pp. 896–903, 2017.

[142] A. Berti, M. Gouttefarde, and M. Carricato, “Dynamic recovery of cable-suspended

parallel robots after a cable failure,” in Advances in Robot Kinematics 2016. Springer,

2018, pp. 331–339.

[143] C. Passarini, D. Zanotto, and G. Boschetti, “Dynamic trajectory planning for failure

recovery in cable-suspended camera systems,”ASME Journal of Mechanisms and

Robotics (under review), 2018.

[144] P. Boscariol and D. Richiedei, “Robust point-to-point trajectory planning for non-

linear underactuated systems: Theory and experimental assessment,”Robotics and

Computer-Integrated Manufacturing, vol. 50, pp. 256–265, 2018.

[145] S. Lefrançois and C. Gosselin, “Point-to-point motion control of a pendulum-like

3-dof underactuated cable-driven robot,” in Robotics and Automation (ICRA), 2010

IEEE International Conference on. IEEE, 2010, pp. 5187–5193.

[146] D. Zanotto, G. Rosati, and S. K. Agrawal, “Modeling and control of a 3-dof pendulum-

like manipulator,” in Robotics and Automation (ICRA), 2011 IEEE International

Conference on. IEEE, 2011, pp. 3964–3969.

[147] N. Zoso and C. Gosselin, “Point-to-point motion planning of a parallel 3-dof under-

actuated cable-suspended robot,” in Robotics and Automation (ICRA), 2012 IEEE

International Conference on. IEEE, 2012, pp. 2325–2330.

162



Bibliography

[148] H.-H. Lee, “Modeling and control of a three-dimensional overhead crane,” Journal of

Dynamic Systems, Measurement, and Control, vol. 120, no. 4, pp. 471–476, 1998.

[149] Y. Fang, W. Dixon, D. Dawson, and E. Zergeroglu, “Nonlinear coupling control

laws for an underactuated overhead crane system,” IEEE/ASME transactions on

mechatronics, vol. 8, no. 3, pp. 418–423, 2003.

[150] J. Yi, N. Yubazaki, and K. Hirota, “Anti-swing and positioning control of overhead

traveling crane,” Information Sciences, vol. 155, no. 1, pp. 19–42, 2003.

[151] S.-G. Lee, V.-H. Dang, S. Moon, B. Kim et al., “Partial feedback linearization control

of a three-dimensional overhead crane,” International Journal of Control, Automation

and Systems, vol. 11, no. 4, pp. 718–727, 2013.

[152] Y. Lu and D. Fan, “Transmission backlash of precise cable drive system,”Proceedings

of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering

Science, vol. 227, no. 10, pp. 2256–2267, 2013.

[153] S.-W. Ji, S.-J. Kim, and Y.-B. Kim, “Experimental approach for mooring winch

control system design,” in Control, Automation and Systems (ICCAS), 2013 13th

International Conference on. IEEE, 2013, pp. 1025–1028.

[154] J. M. Lincoln, D. L. Lucas, R. W. McKibbin, C. C. Woodward, and J. E. Bevan,

“Reducing commercial fishing deck hazards with engineering solutions for winch

design,” Journal of safety research, vol. 39, no. 2, pp. 231–235, 2008.

[155] E. Kilic, M. Dolen, and A. B. Koku, “Experimental evaluation of cable-drum systems

as linear motion sensors,” in 2011 IEEE International Conference on Mechatronics,

2011.

[156] E. Kilic and M. Dolen, “Prediction of slip in cable-drum systems using structured

neural networks,” Proceedings of the Institution of Mechanical Engineers, Part C:

Journal of Mechanical Engineering Science, vol. 228, no. 3, pp. 441–456, 2014.

[157] S. Seriani and P. Gallina, “Variable radius drum mechanisms,” Journal of Mechanisms

and Robotics, vol. 8, no. 2, p. 021016, 2016.

[158] D. Shin, X. Yeh, and O. Khatib, “Circular pulley versus variable radius pulley: Opti-

mal design methodologies and dynamic characteristics analysis,” IEEE Transactions

on Robotics, vol. 29, no. 3, pp. 766–774, 2013.

[159] G. Endo, H. Yamada, A. Yajima, M. Ogata, and S. Hirose, “A passive weight

compensation mechanism with a non-circular pulley and a spring,” in Robotics and

Automation (ICRA), 2010 IEEE International Conference on. IEEE, 2010, pp.

3843–3848.

163



Bibliography

[160] M. Kilic, Y. Yazicioglu, and D. F. Kurtulus, “Synthesis of a torsional spring mechanism

with mechanically adjustable stiffness using wrapping cams,”Mechanism and Machine

Theory, vol. 57, pp. 27–39, 2012.

[161] N. Schmit and M. Okada, “Synthesis of a non-circular cable spool to realize a nonlinear

rotational spring,” in 2011 IEEE/RSJ International Conference on Intelligent Robots

and Systems. IEEE, 2011, pp. 762–767.

[162] B. Kim and A. D. Deshpande, “Design of nonlinear rotational stiffness using a

noncircular pulley-spring mechanism,” Journal of Mechanisms and Robotics, vol. 6,

no. 4, p. 041009, 2014.

[163] D. Shin, X. Yeh, and O. Khatib, “Variable radius pulley design methodology for

pneumatic artificial muscle-based antagonistic actuation systems,” in 2011 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE, 2011, pp. 1830–

1835.

[164] E. Kljuno, J. J. Zhu, R. L. Williams, and S. M. Reilly, “A biomimetic elastic cable

driven quadruped robot: The robocat,” in ASME 2011 International Mechanical

Engineering Congress and Exposition. American Society of Mechanical Engineers,

2011, pp. 759–769.

[165] P. Gallina, “A new class of rocker-belt mechanisms,”Mechanism and machine theory,

vol. 40, no. 8, pp. 963–976, 2005.

[166] M. Arsenault, “Design of convex variable radius drum mechanisms,”Mechanism and

Machine Theory, vol. 129, pp. 175–190, 2018.

[167] D. Fedorov and L. Birglen, “Differential noncircular pulleys for cable robots and

static balancing,” Journal of Mechanisms and Robotics, vol. 10, no. 6, p. 061001,

2018.

[168] C. B. Yigit, E. Bayraktar, and P. Boyraz, “Low-cost variable stiffness joint design

using translational variable radius pulleys,”Mechanism and Machine Theory, vol.

130, pp. 203–219, 2018.

[169] Y. B. Bedoustani, H. D. Taghirad, and M. M. Aref, “Dynamics analysis of a redundant

parallel manipulator driven by elastic cables,” in Control, Automation, Robotics and

Vision, 2008. ICARCV 2008. 10th International Conference on. IEEE, 2008, pp.

536–542.

[170] J. Littlewood, “Lorentz’s pendulum problem,”Wisconsin Univ. Madison Mathematics

Research Center, Tech. Rep., 1962.

[171] S. M. Curry, “How children swing,”American Journal of Physics, vol. 44, no. 10, pp.

924–926, 1976.

164



Bibliography

[172] M. Pinsky and A. Zevin, “Oscillations of a pendulum with a periodically varying

length and a model of swing,” International journal of non-linear mechanics, vol. 34,

no. 1, pp. 105–109, 1999.

[173] B. Piccoli and J. Kulkarni, “Pumping a swing by standing and squatting: do children

pump time optimally?” IEEE Control Systems, vol. 25, no. 4, pp. 48–56, 2005.

[174] J. A. Burns, “More on pumping a swing,”American Journal of Physics, vol. 38, no. 7,

pp. 920–922, 1970.

[175] W. B. Case and M. A. Swanson, “The pumping of a swing from the seated position,”

American Journal of Physics, vol. 58, no. 5, pp. 463–467, 1990.

[176] W. B. Case, “The pumping of a swing from the standing position,”American Journal

of Physics, vol. 64, no. 3, pp. 215–220, 1996.

[177] D. Cunningham and H. H. Asada, “The winch-bot: A cable-suspended, under-

actuated robot utilizing parametric self-excitation,” in Robotics and Automation,

2009. ICRA’09. IEEE International Conference on. IEEE, 2009, pp. 1844–1850.

[178] A. O. Belyakov, A. P. Seyranian, and A. Luongo, “Dynamics of the pendulum with

periodically varying length,” Physica D: Nonlinear Phenomena, vol. 238, no. 16, pp.

1589–1597, 2009.

[179] D. S. Stilling and W. Szyszkowski, “Controlling angular oscillations through mass

reconfiguration: a variable length pendulum case,” International Journal of Non-

Linear Mechanics, vol. 37, no. 1, pp. 89–99, 2002.

[180] J. E. Kulkarni, “Time-optimal control of a swing,” in Decision and Control, 2003.

Proceedings. 42nd IEEE Conference on, vol. 2. IEEE, 2003, pp. 1729–1733.

[181] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic Hebbian learning in adaptive

frequency oscillators,”Physica D: Nonlinear Phenomena, vol. 216, no. 2, pp. 269–281,

2006.

[182] ——, “Adaptive frequency oscillators and applications,”The Open Cybernetics and

Systemics Journal, vol. 3, pp. 64–69, 2009.

[183] R. Ronsse, N. Vitiello, T. Lenzi, J. van den Kieboom, M. C. Carrozza, and A. J.

Ijspeert, “Human–robot synchrony: flexible assistance using adaptive oscillators,”

IEEE Transactions on Biomedical Engineering, vol. 58, no. 4, pp. 1001–1012, 2011.

[184] D. Zanotto, P. Stegall, and S. K. Agrawal, “Adaptive assist-as-needed controller to

improve gait symmetry in robot-assisted gait training,” in Robotics and Automation

(ICRA), 2014 IEEE International Conference on. IEEE, 2014, pp. 724–729.

[185] T. Yan, A. Parri, V. R. Garate, M. Cempini, R. Ronsse, and N. Vitiello, “An oscillator-

based smooth real-time estimate of gait phase for wearable robotics,”Autonomous

Robots, vol. 41, no. 3, pp. 759–774, 2017.

165



Bibliography

[186] B. Charlet, J. Levine, and R. Marino, “On dynamic feedback linearization,” Systems

& Control Letters, vol. 13, no. 2, pp. 143 – 151, 1989.

[187] A. Isidori, Nonlinear Control Systems. Third edition. Communications and Control

Engineering Series, M. Thoma, E. D. Sontag, B. W. Dickinson, A. Fettweis, and

J. L. M. J. W. Modestino, Eds. Springer-Verlag New York, Inc. Secaucus, NJ, USA,

1995.

166



Acknowledgments

These three years of Ph.D. program have been a challenging and life-changing experience

for me, which would not have been possible without the help, the support and the guidance

I received from many people.

The wide range of research activities presented in this thesis have been carried out at

the Polytechnic Department of Engineering and Architecture (DPIA), University of Udine

(Italy), partially, at the Department of Engineering and Architecture (DIA), University of

Trieste (Italy), and at the Wearable Robotic Systems (WRS) Laboratory, Department of

Mechanical Engineering, Stevens Institute of Technology (Hoboken, NJ, USA).

First and foremost, I would like to express my gratitude to my supervisor, Prof.

Alessandro Gasparetto, for his constant and stimulating presence and for his confidence

in me. It was thanks to him that I could start this growth and learning path with good

prospects for the future. I also had the chance to experiment a wide range of scientific

experiences, to participate at international conferences and to spend a visiting period

abroad.

I am deeply grateful to Prof. Paolo Gallina, who has been a reference point with his

suggestions and support. It was thanks to him that I decided to start doing research.

I would like to thank Prof. Renato Vidoni for his help to develop the results presented

in the first part of this thesis and for his constructive comments and valuable stimuli he

gave me during my Ph.D.

I would like to acknowledge Prof. Damiano Zanotto for his hospitality at the Wearable

Robotic Systems Laboratory and for the help he provided in the design and validation of

the pendulum-robot. I am also thankful for the example he has provided as a researcher.

I would like to thank Stefano Seriani, for his contagious curiosity, for his help and ideas,

and Paolo Boscariol for his precious suggestions and the motivation he gave me.

I gratefully acknowledge the support from the Industrial and Information Engineering

Ph.D. Program (IIE-Ph.D.) of University of Udine, who partially funded my research period

in the US.

Furthermore, I would like to thank all the Ph.D. candidates at the DPIA department,

in particular Tommaso, Roberto, Giovanni and Andrea. Special thanks to my colleagues

and friends at University of Trieste, in particular Gabriele, Thomas, Riccardo and Martino.

I would like to thank Edi Zanzaro for his contribution in the comparison of model order

reduction techniques.

My time in Hoboken and New York was made enjoyable in large part due to many

167



Acknowledgments

colleagues and friends that have been my reference frame, in particular to Yufeng, Ton,

Jennifer, Arun, Sierra, Valentina, Corey and Aaron.

A special thank to Alessandro and Martina for all the great moments spent together.

Finally, I would like to thank my mum Nadia, Paolo, my grandma Mercedes, my uncle

Tarcisio and Alessandro for their constant encouragement and support.

168


	Introduction
	Contributions and summary of the work

	Dynamic modeling of flexible multibody systems
	Modeling the vibration of flexible-link robots
	A dynamic model based on an Equivalent Rigid-Link System
	The ERLS-FEM dynamic formulation

	Equivalent Rigid-Link System, Component Mode Synthesis model
	Kinematics of the ERLS-CMS
	Derivative terms
	Acceleration terms
	Virtual work contributions
	Virtual work of inertial forces for a link
	Variation of elastic energy for a link
	Virtual work of gravitational forces for a link
	Virtual work of the resultant generalized forces acting on a link

	Equation of motion
	Differences between ERLS and FFR formulations

	Comparison between the ERLS-FEM and the ERLS-CMS approaches
	Introduction
	Theoretical comparison
	Numerical implementation and simulation
	Results and discussion
	Mechanism under gravitational force
	Mechanism subjected to step torque input

	Conclusions

	Comparison of Model Order Reduction Techniques
	Introduction
	Model Order Reduction Techniques
	Craig-Bampton
	Interior Mode Ranking
	Guyan's reduction
	Least Square Model Reduction
	Mode Displacement Method

	Simulations on a benchmark mechanism
	Results and discussion
	Modal Vector Correlation Parameters
	Mechanism under gravitational force
	Mechanism subjected to step torque input

	Conclusions

	Cable-Driven Robotic Systems
	Cable-driven robots
	Cable-driven parallel robots
	Cable-suspended parallel robots

	Cable-Driven Robotic Cranes based on Variable Radius Drums
	Introduction
	Description of the CBRC
	Kinematic analysis and synthesis
	Direct kinematic analysis
	Variable Radius Drum synthesis

	Horizontal Moving Cable-Mechanism
	Inverse kinematics and dynamics
	Cable tension analysis
	Prototype of the Cable-Based Robotic Crane
	Error sources in the experimental prototype
	Experimental results
	Conclusions

	Under-Actuated, Pendulum-Like, Cable-Driven Robots
	Introduction
	Kinematic and dynamic modeling
	Control system
	Adaptive Frequency Oscillators
	Pendulum length planner
	Optimization
	End-effector orientation planner
	Controller architecture

	Experimental prototype
	Mechanical hardware
	Electronic hardware

	Experimental results
	Amplitude control
	Point-to-point motion

	Conclusions

	Conclusions
	Appendix 
	Nomenclature
	The matrix 
	Development of the terms involving rotational matrices
	Development of the constant inertial matrices related to a link
	Development of vectors i

	Appendix 
	Mathematical derivations of the Variable Radius Drum synthesis
	Extended synthesis of the Variable Radius Drum

	Appendix 
	Variable-length pendulum subsystem
	Internal dynamics
	Stability of the starting and goal trajectories


	Bibliography
	Acknowledgments

