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Abstract

This thesis addresses several modern problems in the framework of dynami-
cal systems by means of different topological techniques. We obtain original
results of qualitative type in each field of application, which we supply with rig-
orous proofs, comments, possible future developments and in some cases with
a localised numerical or quantitative analysis.

Three main research topic are explored: the search of periodic solutions for
planar ordinary differential equations systems, the existence and characterisation
of parabolic solutions for the planar N-centre problem, and the uniform persis-
tence in eco-epidemiological models together with its consequences in terms of
coexistence states.

In the first part of the thesis we provide two different existence and mul-
tiplicity results for periodic solutions to a general class of planar systems with
sign-changing nonlinearity under a one-sided condition of sublinear type. The
first result is obtained via the Poincaré-Birkhoff theorem while the second arises
from the theory of bend-twist maps and topological horseshoes. The case of
subharmonic solutions is investigated too as well as the presence of symbolic
dynamics.

In the second part we take into account the planar generalised N-centre
problem. A suitable variational approach lays the groundwork for a topological
characterisation of the solutions that describes their interaction with the set of
centres, allowing for admissible self-intersections in some admissible sense. The
existence of scattering and semibounded solutions is proved.

In the third and last part of the dissertation we move in the field of epidemi-
ology and ecological models in general. A common framework is introduced

vii



viii Abstract

and the tools already present in literature are first employed in an original strat-
egy in order to provide theoretical support to the numerical-only evidence of
persistence in a predator-prey model with one diseased population. Later on,
persistence is shown to be a sufficient condition for the existence of a periodic
solution in a general class of models, and applications are provided.



Introduction

The theory of dynamical systems can claim two gigantic fathers: Henry Poin-
caré (1854-1912) and Aleksandr Mikhailovich Lyapunov (1857-1918). Both of
them were exceptionally prolific mathematicians, who achieved results whose
influence reached well beyond their time, and their interests embraced many a
field, so that their names can be found in a wide variety of disciplines to this
day.

Poincaré introduced the systematic use of topological methods in the study of
differential systems, which at his time mainly arose from celestial mechanics and
other natural science fields. His abstract results are of such strength that most
part of the literature dealing with fixed points and periodic solutions problems
still heavily relies on them. We recall among the others the Poincaré-Miranda
and the Poincaré-Birkhoff fixed point Theorems, since we will discuss their con-
sequences on a general class of planar differential systems. Poincaré must also
be remembered for his emphasis on the importance of studying periodic solu-
tions, which are nowadays a broadly covered topic with countless applications
on the side of nonlinear analysis: for our discussion sake we just point out how
crucial this concept becomes in ecology, where seasonality is described through
periodic functions.

On the other side, Lyapunov is unanimously recognised as the founder of the
modern theory of stability, thanks to his famous local results of stability by
first approximation. He also introduced some special functionals, decreasing
along the trajectories, that are known today as Lyapunov functions. After
more than a century Lyapunov functions are still one of the main tools of
physicists and engineers in analysing the stability from a global point of view.
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Under the influence of Lyapunov, the idea of using suitably chosen real valued
functions to “guide” the behaviour of the solutions has found several successful
developments, such as Krasnosel'ski's theory of guiding functions [Kra68| or
Mawhin's theory of bounding functions and bounding sets [Maw74]. Among
the applications of the concept of Lyapunov functions, their use in showing the
attractivity or repulsiveness of some compact sets finds some important place in
view of the study of asymptotic dynamics. Moreover, some pointwise estimates
have been extended to integral ones, coming to the handy notion of “averaged
Lyapunov functions”.

Last but not least, one should recall that Poincaré and Lyapunov themselves
are the ancestors of the nowaday very popular and pervasive concept of chaos,
which, according to some authors, should be regarded as one of the three major
achievements of the last century, togeteher with Einstein's relativity and quan-
tum physics (see [Maw94, [ADDO02]). Indeed, thanks to a “fortunate mistake”
Poincaré discovered the chaotic dynamics associated with transversal homoclinic
or heteroclinic points. On the other hand, Lyapunov gave rise to the widespread
theory of Lyapunov exponents, the principal (and as such sometimes abused)
technique for chaos detecting in many practical situations.

In our work we discuss some modern aspects of the theory of dynamical systems
which are strongly connected with the studies of Poincaré and Lyapunov. More
in detail, we benefit from two categories of tools their work provide: fixed
point theorems on one side, generalised Lyapunov functions methods on the
other. Quite remarkably, these long-aged techniques offer many answers to
recent challenges (see Chapters and , while recent challenges can originate
from very old problems, well-known also at the time of Poincaré and Lyapunov
(see Chapter [2). If needed, another proof of the timelessness of mathematical
issues.

Part 1

In the first part of the thesis (Chapter [1]) we pursue a general result of existence
and multiplicity of periodic solutions for the following class of sign-indefinite
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nonlinear first order planar systems:

{X'(t) = h(y(t))
y'(t) = —ax u(t)g(x(1)).

The functions h, g : R — R are locally Lipschitz continuous, satisfy some linear
growth conditions in 0 and at least one among these four conditions holds true:

his bounded on R¥, g is bounded on RT .

The peculiar aspect of this framework resides in asking for a single one-sided
condition. This case has seldom been addressed in previous literature (see
[Bos11, [BZ13] and only some specific results are available, hence the interest
in studying such broad class of problems. With no additional assumptions,
some fixed point theorems can be applied to the Poincaré map ¢ associated to
the system in order to obtain periodic solutions. Of course, the sign-changing
periodic weight function ay , plays a crucial role through its parameters X\ and
i, which rule the magnitude of the positive and negative part of the function,
respectively.

A first result is reached through the already mentioned Poincaré-Birkhoff The-
orem, originally conjectured by Poincaré in 1912. The annular version of the
theorem (refer to [Fonl16] for a convenient formulation) can be applied to our
system to return two distinct fixed points for the Poincaré map &, which corre-
spond to two different periodic solutions. The intrinsic structure of the theorem
is such that in these situations periodic solutions are provided in couples. How-
ever, an important assumption that cannot be removed is that ® must be
well-defined on the whole plane, and this is in general not guaranteed.

If instead we rely on a “bend-twist maps" approach [Din07] which has its core in
the Poincaré-Miranda theorem, under some additional conditions on the weight
function ay , we are able to attain four periodic solutions, which as in the Poin-
caré-Birkhoff case are topologically different. Still, the global continuability of
the solutions is required. Eventually, the Stretching Along the Paths (SAP)
technique, based on topological horseshoes (see [KY01l, [PZ02]), provides four
periodic solutions in the same framework, without asking the Poincaré map
to be globally defined. This can be viewed as a refinement of the previous



xii Introduction

approaches since it also supplies more informations on the solutions, namely
the distribution of the zeros along the period.

We treat also the case of subharmonic solutions and we briefly discuss how
to prove symbolic dynamics from our theorems. The results obtained in this
Chapter have been collected in a recently submitted article [DZ19].

Part 2

In the second part of the thesis (Chapters |2 and [3) we analyse two important
applications that fit into the legacy of Poincaré and Lyapunov.

The first one (Chapter [2)) is inspired by a classic of celestial mechanics, the
N-centre problem, strongly related to the N-body problem for which Poin-
caré himself proved the non integrability in the case N = 3. We take into
account the planar generalised N-centre problem, which has been object of
recent studies [BDP17] regarding the multiplicity and qualitative description of
parabolic (zero-energy) solutions.

Our contribution to the topic is aimed at the enrichment of the solutions classes.
Indeed, the previous approaches didn’t allow self-intersections of the parabolic
orbits, thus obtaining solutions that have a restricted interaction with the set
of centres, separating it in two disjoint subsets before leaving with prescribed
asymptotic directions (scattering solutions). With a notion of admissible self-
intersection adopted first in [Cas17] we are able to find and topologically charac-
terise a wider class of scattering parabolic solutions. Our approach also extend
to different types of solutions such as semibounded, periodic and chaotic ones,
in the spirit of [FT0Q].

The achievements of this Chapter are incorporated in the work [DP19], which
is undergoing the last refinements.

The second application (Chapter [3)) is on the ecological side and deals with
the concept of persistence, an important notion in cohabitation models and in
epidemiology, when evaluating the “invasion condition” for an infectious disease.
For an extensive introduction to persistence and the basic reproduction number
Ro we refer to the beginning of the Chapter itself.

After an overview of some known results in literature concerning semidynamical
systems and their asymptotic properties we take into account two predator-
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prey epidemiological models, studied before only by numerical means [BH13b].
We prove rigorously the uniform persistence of the associated flows on the
positive cone, thus entailing the non extinction of all species. Although the
models are described by a three-dimensional ODEs system for which the stability
analysis doesn’t require any approximation tool, it is nonetheless interesting to
see how sometimes theory can justify quantitative evidence and also add some
informations thanks to a fitting approach. Indeed, in this case the key tool
for persistence checking is an “average Lyapunov functions” theorem stated in
[Hut84l [Fon88] and slightly adapted from the version proposed in [RMB14].
The theorem returns a more general result which is also able to predict a one-
dimensional stable manifold, hard to detect by numerical means. A quantitative
counterexample to persistence is provided, and a neat stability analysis is carried
on in the Appendixes. These results are partly contained in a paper under
revision [Don18].

In the second part of the Chapter we link uniform persistence and existence of
periodic solutions via some dissipativity arguments and applying the standard
Brouwer fixed point Theorem, which however must be coupled with a topological
degree result, the mod p Theorem [ZK71], [Ste72], in order to non-trivially link
fixed points of iterates of the Poincaré map ® and fixed points of the map
itself. We provide a few applications coming from the literature for which we
prove uniform persistence and, accordingly, the existence of a periodic solution.
A survey paper on fixed points via uniform persistence is in advance state of
preparation [Don19)].

Related scientific production

[Don18] T. Dondé. Uniform persistence in a prey-predator model with a diseased
predator, submitted (2018)

[Don19] T. Dondé. Periodic solutions of ecological models via uniform persistence, in
preparation (2019)

[DP19] T. Dondé and D. Papini. A rich family of parabolic solutions for the planar
N-centre problem, in preparation (2019)

[DZ19] T. Dondé and F. Zanolin. Multiple periodic solutions for one-sided sublinear
systems: A refinement of the Poincaré-Birkhoff approach, submitted (2019)
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Chapter 1

Existence, multiplicity and
chaos for a class of ODEs
with sign-changing
nonlinearity

The Poincaré-Birkhoff fixed point Theorem deals with a planar homeomorphism
V defined on an annular region A, such that W is area-preserving, leaves the
boundary of A invariant and rotates the two components of A in opposite
directions (twist condition). Under these assumptions, in 1912 Poincaré con-
jectured (and proved in some particular cases) the existence of at least two
fixed points for W, a result known as “Poincaré’s last geometric Theorem”. A
proof for the existence of at least one fixed point (and actually two in a non-
degenerate situation) was obtained by Birkhoff in 1913 [Bir13]. In the subse-
quent years Birkhoff reconsidered the theorem as well as its possible extensions
to a more general setting, for instance, removing the assumption of boundary
invariance, or proposing some hypotheses of topological nature instead of the
area-preserving condition, thus opening a line of research that is still active
today (see for example [Car82) [Bonl2] and references therein). The skepti-
cism of some mathematicians about the correctness of the proof of the second
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fixed point motivated Brown and Neumann to present in [BN77] a full detailed
proof, adapted from Birkhoff's 1913 paper, in order to eliminate previous pos-
sible controversial aspects. Another approach for the proof of the second fixed
point has been proposed in [Sla93], coupling [Birl3] with a result for removing
fixed points of zero index.

In order to express the twist condition in a more precise manner, the state-
ment of the Poincaré-Birkhoff Theorem is usually presented in terms of the
lifted map W. Let us first introduce some notation. Let D(R) and D[R]
be, respectively, the open and the closed disc of center the origin and radius
R > 0 in R? endowed with the Euclidean norm || - ||. Let also Cg := dD(R).
Given 0 < r < R, we denote by A or A[r, R] the closed annulus A[r, R] :=
D[R]\ D(r). Hence the area-preserving (and orientation-preserving) homeomor-
phism W : A — W(A) = Ais lifted toamap U : A — A where A := Rx[r, R] is
the covering space of A via the covering projection TT : (6, p) — (pcos#, psin 6)
and

V:(0,p)— (0+21 _7(6,p),Z(0,p)), (1.0.1)

with the functions ¢ and Z being 2m-periodic in the f-variable. Then, the
classical (1912-1913) Poincaré-Birkhoff fixed point Theorem can be stated as
follows (see [BN77]).

Theorem 1.0.1. Let W : A — W(A) = A be an area preserving homeomor-
phism such that the following two conditions are satisfied:

(PB1) %(0,r)=r, %6, R)=R, VcRk
(PB2) 3jeZ: (F(0.r)— ) F(B.R)—j)<0, VOeR.

Then V has at least two fixed points z1, z in the interior of A and _7 (0, p) = j
for TI(0, p) = z; .

We refer to condition (PB1) as to the “boundary invariance” and we call
(PB2) the “twist condition”. The function # can be regarded as a rotation
number associated with the points (8, p). In the original formulation of the
theorem it is j = 0, however any integer j can be considered.

The Poincaré-Birkhoff Theorem is a crucial result in the fields of fixed point
theory and dynamical systems, as well as in their applications to differential
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equations. General presentations can be found in [MZ05, MH92, [LC11]. There
is a large literature on the subject and certain subtle and delicate points related
to some controversial extensions of the theorem have been settled only in re-
cent years (see [Reb97, IMUnQ7, [LCW10]). In the applications to the study of
periodic non-autonomous planar Hamiltonian systems, the map W is often the
Poincaré map (or one of its iterates). In this situation the condition of boundary
invariance is usually not satisfied, or very difficult to prove: as a consequence,
variants of the Poincaré-Birkhoff Theorem in which the hypothesis (PB1) is
not required turn out to be quite useful for the applications (see [DR02] for a
general discussion on this topic). As a step in this direction we present the next
result, following from W.Y. Ding in [Din82].

Theorem 1.0.2. Let W : D[R] — V(D[R]) C R? be an area preserving homeo-
morphism with W(0) = 0 and such that the twist condition (PB2) holds. Then

WV has at least two fixed points zi, zy in the interior of A and # (0, p) = j for
1T(9, p) =Z.

The proof in [Din82] (see also [DZ92, Appendix]) relies on the Jacobowitz
version of the Poincaré-Birkhoff Theorem for a pointed topological disk [Jac76],
Jac77] which was corrected in [LCW10], since the result is true for strictly star-
shaped pointed disks and not valid in general, as shown by a counterexample in
the same article. Another (independent) proof of theorem[1.0.2) was obtained by
Rebelo in [Reb97]: the Author brought the proof back to that of theorem [1.0.]]
and thus to the “safe” version of Brown and Neumann [BN77]. Other versions
of the Poincaré-Birkhoff Theorem giving theorem as a corollary can be
found in [Fra88| [Fra06l |QTO05, Mar13] (see also [FSZ12, Introduction] for a
general discussion about these delicate aspects). For Poincaré maps associated
with Hamiltonian systems there is a much more general version of the theorem
due to Fonda and Urefia in [FUn16) [FUn17], which will be recalled later in the
dissertation with some more details.

In [Din07, Dini2], T.R. Ding proposed a variant of the Poincaré-Birkhoff
Theorem by introducing the concept of “bend-twist map”. Given a continuous
map W : A — W(A) C R?\ {0}, which admits a lifting ¥ as in (L.0.1), we
define

T(6.p) == %#(6.p) — p.
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We call W a bend-twist map if it U satisfies the twist condition and T changes
its sign on a non-contractible Jordan closed curve ' contained in the set of
points in the interior of A where ¢ = j. The original treatment was given
in [Din07] for analytic maps, but there are extensions to continuous maps as
well [PZ11, [PZ13]. Clearly, the bend-twist map condition is difficult to check
in practice, due to the lack of information about the curve I' (which, in the
non-analytic case, may not even be a curve). For this reason, one can rely
on the following corollary [Din07, Corollary 7.3] which follows itself from the
Poincaré-Miranda Theorem (as observed in [PZ11]).

Theorem 1.0.3. Let W : A — W(A) C R?\ {0} be a continuous map such that
the twist condition (PB2) holds. Suppose that there are two disjoint arcs o, B
contained in A, connecting the inner with the outer boundary of the annulus
and such that

(BT1) T>0onaand T <0 on§B.

Then W has at least two fixed points z1, z; in the interior of A and 7 (0, p) = j
for T1(0, p) = z; .

A simple variant of the above theorem considers 2n pairwise disjoint simple
arcs aj and B (for i = 1,...,n) contained in A and connecting the inner
with the outer boundary. We label these arcs in cyclic order so that each B;
is between a; and a1 and each a; is between ;1 and B; (with ap11 = o
and By = B,) and suppose that

(BTn) T>0onajand T<O0on B, foralli=1,...,n

Then W has at least 2n fixed points z; in the interior of A and #(0,p) = j
for TI(6, p) = z;. These results also apply in the case of a topological annulus
(namely, a compact planar set homeomorphic to A) and do not require that
V is area-preserving and also the assumption of W being a homeomorphism
is not required, as continuity is enough. Moreover, since the fixed points are
obtained in regions with index +1, the results are robust with respect to small
(continuous) perturbations of the map V.

A special case in which condition (BT1) holds is when V(&) € D(r) and
W(B) € R?\ D[R], namely, the annulus A, under the action of the map W, is
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not only twisted, but also strongly stretched, in the sense that there is a portion
of the annulus around the curve o which is pulled inward near the origin inside
the disc D(r), while there is a portion of the annulus around the curve 8 which
is pushed outside the disc D[R]. This special situation where a strong bend
and twist occur is reminiscent of the geometry of the Smale horseshoe maps
[Smab67, [Mos73| and, indeed, we will show how to enter in a variant of the theory
of “topological horseshoes” in the sense of Kennedy and Yorke [KYO01]. To this
aim, we recall a few definitions which are useful for the present setting. By a
topological rectangle we mean a subset R of the plane which is homeomorphic
to the unit square. Given an arbitrary topological rectangle R we can define an
orientation, by selecting two disjoint compact arcs on its boundary. The union
of these arcs is denoted by R~ and the pair R := (R, R™) is called an oriented
rectangle. Usually the two components of R~ are labelled as the left and the
right sides of R. Given two oriented rectangles A, B, a continuous map W and
a compact set H C dom(W) N A, the notation

(HV): A= B

means that the following “stretching along the paths” (SAP) property is satis-
fied: any path «y, contained in A and joining the opposite sides of A~, contains
a sub-path o in H such that the image of o through V is a path contained
in B which connects the opposite sides of B~. We also write W : A= B
when H = A. By a path 4 we mean a continuous map defined on a compact
interval. When, loosely speaking, we say that a path is contained in a given
set we actually refer to its image 4. Sometimes it will be useful to consider a
relation of the form
U A\%k g,

for k > 2 a positive integer, which means that there are at least kK compact
subsets H1, ..., Hi of A such that (H;, V) : A=s Bforalli=1,..., k. From
the results in [PZ04al [PZ04b] we have that W has a fixed point in H whenever
(H, W) : R—==> R. If for a rectangle R we have that W : A=<=+k B, for k > 2,
then W has at least k fixed points in R. In this latter situation, one can also
prove the presence of chaotic-like dynamics of coin-tossing type (this will be
briefly discussed later).
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The aim of this Chapter is to analyse, under these premises, a class of planar
system with periodic coefficients of the form

{X' = h(y)

which includes the second order scalar equation of Duffing type
x" + q(t)g(x) = 0.

The prototypical nonlinearity we consider is a function which changes sign at
zero and is bounded only on one-side, such as g(x) = e¥ — 1. We do not
assume that the weight function g(t) is of constant sign, but, for simplicity, we
suppose that g(+) has a positive hump followed by a negative one. We prove the
presence of periodic solutions coming in pairs (Theorem in Section ,
following the Poincaré-Birkhoff Theorem) or coming in quadruplets (Theorem
in Section , following bend-twist maps and SAP techniques), the latter
depending on the intensity of the negative part of g(-). To this purpose, we
shall express the weight function as

a(t) = anu(t) = Aat(8) —pa (1), Au>0,

being a(-) a periodic sign changing function.

The discussion unwinds as follows. In Section [1.1] we present our main re-
sults (Theorem and Theorem for the existence and multiplicity of
periodic solutions. In Section we provide simplified proofs in the special
case of a stepwise weight function: this allows us to highlight the geometric
structure underlying the theorems, providing numerical examples and visual in-
terpretations of the tools used. Furthermore, the regions in which fixed points
occur via the bend-twist maps and topological horseshoes approaches are explic-
itly described, while in the general proof of Section[L.3| we are able to determine
only the quadrant in which the (chaotic) invariant sets are located. Another ad-
vantage of considering this particular framework lies on the fact that a stepwise
weight produces a switched system made by two autonomous equations and
therefore, in this case, some threshold constants for A and u can be explicitly
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computed. In Section [1.4] we show how to extend our main results to the case
of subharmonic solutions. Section concludes the paper with a list of some
possible applications.

1.1 Framework and results

This Chapter deals with the existence and multiplicity of periodic solutions of
sign-indefinite nonlinear first order planar systems of the form

{XI = hly) (1.1.1)
y'=—axu(t)g(x).

Throughout the discussion we suppose that h, g : R — R are locally Lipschitz
continuous functions satisfying the following assumptions:

h(0) =0, h(y)y >0 forall y #0
g(0) =0, g(x)x >0 for all x #0
h
hg :=lim infﬁ >0, go:=Iliminf g(x)
ly[—=0 ¥y Ix|=0 X

(Co)

> 0.

We will also suppose that at least one of the following conditions holds:

(h—) his bounded on R, (hy) his bounded on RT,
(g-) gis bounded on R™, (g+) gis bounded on RT.
We also set

900 = [ e©)d #) = [ he)de

Concerning the weight function ay ,(t), it is defined starting from a T-periodic
sign-changing map a: R — R by setting

anu(t) = xat(t) — pa (t), A\ p>0.

As usual, a™ := (a+|a])/2 is the positive part of a(-) and a~ := a* — a. Given
an interval I, by a > 0 on I we mean that a(t) > 0 for almost every t € I with



8 Periodic solutions of sign-changing ODEs

a > 0 on a subset of I of positive measure. Similarly, a < 0 on I means that
—a > 0 on I. For sake of simplicity, we suppose that in a period the weight
function a(t) has one positive hump followed by one negative hump. The case
in which a(t) has several (but finite) changes of sign in a period could be dealt
with as well, but will be not treated here.

We hereby note that there is a good amount of recent literature for existence
and multiplicity of solutions for “sign-indefinite weight” problems. In hypothesis
of sublinearity at oo in [BFZ18| existence and multiplicity of positive solutions
are proven via the coincidence degree theory; in [BF18] positive subharmonic so-
lutions are found through the Poincaré-Birkhoff approach; [FS18] treats instead
a Neumann problem (which however is naturally related to periodic solutions)
finding nodal solutions with a shooting technique.

Therefore, we suppose that there are ty and T; €]0, T[ such that

(a*) a>0 on [to,to+T1] and a<0 on [to+ T, to+T]

Actually, due to the T-periodicity of the weight function, it will be not restrictive
to take to = 0 and we will assume it for the rest of the paper. Concerning
the regularity of the weight function, we suppose that a(-) is continuous (or
piecewise-continuous), although from the proofs it will be clear that all the
results are still valid for a* € L*>°([0, T1]) and a~ € L}([Ty, T)).

The assumptions on h and g allow to consider a broad class of planar
systems. We will provide a list of specific applications in Section [L.5] For the
reader’s convenience, we observe that, for the results to come, we have in mind
the model given by the scalar second order equation

x" 4+ ayu(t)(eX —1) =0, (1.1.2)

which can be equivalently written as system ([1.1.1]) with h(y) = y and g(x) =
eX — 1 (see Section [L.2)).

We denote by ® the Poincaré map associated with system ([1.1.1]). Recall
that
®(z) = ®{(2) = (x(T;0,2),y(T:0,2)),

where (x(-;s,z),y(-;s,z)) is the solution of (1.1.1)) satisfying the initial con-
dition z = (x(s), y(s)). Since system (1.1.1)) has a Hamiltonian structure of
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the form oH
x'=——(t,x,y)
Oy
y' = —aj(t X, y)
ox '

for H(t, x,y) = ax u(t)¥(x) + S (y), the associated Poincaré map is an area-
preserving homeomorphism, defined on a open set Q := dom® C R?, with
(0,0) € Q. Thus a possible method to prove the existence (and multiplicity) of
T-periodic solutions can be based on the Poincaré-Birkhoff “twist” fixed point
Theorem (refer to [Fonl6, Theorem 10.6.1] for a suitable statement in this
framework). A standard way to apply this result is to find a suitable annulus
around the origin with radii 0 < rg < Rg such that for some a < b the twist
condition

(TC) {rotz(T) >b, Vzwith ||z|]|=r

rot,(T) <a, Vzwith ||z|| = R

holds, where rot,(T) is the rotation number on the interval [0, T] associated
with the initial point z € R2\ {(0,0)}. We recall a possible definition of rot,

for equation (1.1.1]), given by the integral formula

rot,(t1, tp) 1= % : y(t)h()’(t?zz:)«ajr,u)fztgf)(t)g(x(t))d

where (x(t), y(t)) is the solution of with (x(t1), y(t1)) = z # (0, 0).

For simplicity in the notation, we set

t, (1.1.3)

rot,(T) := rot,(0, T).

Notice that, due to the assumptions h(s)s > 0 and g(s)s > 0 for s # 0, it
is convenient to use a formula like in which the angular displacement
is positive when the rotations around the origin are performed in the clockwise
sense.

Under these assumptions, the Poincaré-Birkhoff Theorem in the version of
[Reb97, Corollary 2] guarantees that for each integer j € [a, b] there exist at
least two T-periodic solutions of system (1.1.1]), having j as associated rotation
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number. In virtue of the first condition in (Cp), it turns out that these solutions
have precisely 2/ simple transversal crossings with the y-axis in the interval [0, T
(see, for instance, [BZ13, Theorem 5.1], [MRZ02, Theorem A]). Equivalently,
for such periodic solution (x(t), y(t)) the x component has precisely 2/ simple
zeros in the interval [0, TT.

If we look for mT-periodic solutions, we just consider the m-th iterate of
the Poincaré map

oM = oo

and assume the twist condition

(TC) {rotz(mT) >b, Vzwith ||z|]| =r

rot,(mT) <a, Vzwith [|z||=Rg.

From this point of view, the Poincaré-Birkhoff is a powerful tool to prove the
existence of subharmonic solutions having mT as minimal period. Indeed, if
(TCp) is satisfied with a < j < b, then what we find are mT-periodic solutions
(x(t), y(t)) with x having exactly 2j simple zeros in [0, mT[. In addition, if
Jj and m are relatively prime integers, these solutions cannot be £T-periodic
for some £ = 1,...,m— 1. In particular, if (x,y) is one of these mT-periodic
solutions, j = 1 or j > 2 is relatively prime with m and T is the minimal period
of the weight function ay ,(t), then mT will be the minimal period of (x, y).
Clearly, in order to apply this approach the Poincaré map must be defined
on the closed disc D[Ry] of center the origin and radius Ry, that is D[Ry] C Q.
Unfortunately, in general the (forward) global existence of solutions for the initial
value problems is not guaranteed. A classical counterexample can be found in
[CU67] for the superlinear equation x” + q(t)x?>"™1 = 0 with n > 1 where,
even for a positive weight g(t), the global existence of the solutions may fail.
A typical feature of this class of counterexamples is that solutions presenting
a blow-up at some time B~ will make infinitely many winds around the origin
as t — B7. It is possible to overcome these difficulties by prescribing the
rotation number for large solutions and using some truncation argument on the
nonlinearity, as shown in [Har77,[ES16]. In our case the boundedness assumption
at infinity given by one among (g¥), ((h™), prevents such highly oscillatory
phenomenon and guarantees the continuability on [0, T1]. The situation is even
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more complicated in the time intervals where the weight function is negative
([BGT1) But76]): unless we impose some growth restrictions on the vector field
in (1.1.1]), for example that it has at most linear growth at infinity, in general we
cannot prevent blow-up phenomena. Another possibility to avoid blow-up is to
assume that both (h_) and (hy) hold (or, alternatively, both (g_) and (g3)):
in fact, in this case x’ will be bounded, which implies that x(t) is bounded in
any compact time-interval and thus, from the second equation in (L.1.1)), y' is
bounded on compact intervals, too.
With these premises, the following result holds.

Theorem 1.1.1. Let g, h : R — R be locally Lipschitz continuous functions
satisfying (Co) and at least one between the four conditions (hy) and (g4 ).
Assume, moreover, the global continuability for the solutions of . Then,
for each positive integer k there exists N, > 0 such that for each A > Ay
and j = 1,..., k, the system has at least two T-periodic solutions
(x(t), y(t)) with x(t) having exactly 2j-zeros in the interval [0, TT.

Notice that in the above result we do not require any condition on the parameter
1 > 0. On the other hand, we have to assume the global continuability of the
solutions, which in general is not guaranteed. Alternatively, we can exploit the
fact that the solutions are globally defined in the interval [0, T1] where a > 0
and, instead of asking for the global continuability on [0, T], assume that p is
small enough. Quite the opposite, for the next result we do not require the
Poincaré map to be defined on the whole plane, although now the parameter p
plays a crucial role and must be large instead.

Theorem 1.1.2. Let g, h : R — R be locally Lipschitz continuous functions
satisfying (Co) and at least one between the four conditions (hy) and (g<).
Then, for each positive integer k there exists N > 0 such that for each A > Ny
there exists u* = p*(\) such that for each p > p* and j = 1,... k, the
system has at least four T-periodic solutions (x(t),y(t)) with x(t)
having exactly 2j-zeros in the interval [0, T]|.

The proofs of Theorem and Theorem[L.1.2] are given in Section[1.3] In the
case of Theorem we will also show how the 2 zeros of x(t) are distributed
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between the intervals ]0, T1[ and | Ty, T[. Furthermore, we detect the presence
of “complex dynamics”, in the sense that we can prove the existence of four
compact invariant sets where the Poincaré map ® is semi-conjugate to the
Bernoulli shift automorphism on £ = £, > 2 symbols. A particular feature of
Theorem lies in the fact that such result is robust with respect to small
perturbations. In particular, it applies to a perturbed Hamiltonian system of

the form oH
x'=—(t,x,y)+ Fi(t,x,y,€)
%H
y' = —a(t,x,y) + F(t, x,y,€)

(1.1.4)

with Fi, F, — 0 as € — 0, uniformly in t, and for (x,y) on compact sets.
Observe that system has not necessarily a Hamiltonian structure and
therefore it is no more guaranteed that the associated Poincaré map is area-
preserving.

In Section versions of Theorem and Theorem for subhar-
monic solutions are given. Moreover, in the setting of Theorem [1.1.2] we show
that any m-periodic sequence on £ symbols can be obtained by a m-periodic
point of ® in each of such compact invariant sets (see Theorem [1.4.2). Figure
[1.1] gives evidence of an abundance of subharmonic solutions to a system in the

class .
1.2 The stepwise weight case

We focus on the particular case in which h(y) =y and g : R — R is a locally
Lipschitz continuous function such that

g(0)=0< g0, g(x)x>0 Vx#0, with g bounded on R™,

so that (Cp) is satisfied along with (g_). A possible choice could be g(x) =
eX — 1, but we stress that we do not ask for g to be unbounded on R*.
The second order ordinary differential equation originating from (1.1.1]) reads

X + axu(t)g(x) = 0. (1.2.1)
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Figure 1.1: A numerical simulation for system . The example is obtained for
h(y) =y, g(x) = € —1 and the weight function ay ,, where a(t) = sin(27t), A =10
and p = 2. The phase-plane portrait is shown for the initial points (0.4,0), (0.1,0.2)
and (0.5, 0).

In order to illustrate quantitatively the main ideas of the proof we choose a
stepwise T-periodic function a(-) which takes value a(t) = 1 on an interval of
length T; and value a(t) = —1 on a subsequent interval of length T, = T —Tj,
so that ay , is defined as

Ti+T,=T. (1.2.2)

o) = { A for te€]0,Tq]

—W for tE[Tl,Tl—i-TQ[

With this particular choice of a(t), the planar system associated with
turns out to be a periodic switched system [Bacl4]. Such kind of systems are
widely studied in control theory.

For our analysis we first take into account the interval of positivity, where



14 Periodic solutions of sign-changing ODEs

(1.1.1)) becomes

x'=y
i a2

For this system the origin is a local center, which is global if ¥(x) — +o0
as x — £00, where ¥(x) is the primitive of g(x) such that ¢(0) = 0. The
associated energy function is given by

1
Ei(x,y) = §y2 + A9 (x).

For any constant ¢ with 0 < ¢ < min{¥(—),¥4(+00)}, the level line of
(1.2.3)) of positive energy Ac is a closed orbit I' which intersects the x-axis in
the phase-plane at two points (x_, 0) and (x4, 0) such that

x- <0<x4, and c=¥9(x_)=%9(x4) > 0.
We call 7(c) the period of ', which is given by
T(c) =77(c) + 7 (¢),

where

O f/m d¢ (6) — \/E/O d¢
VAo Ve-9(9) - VA V(e =9(9)

The maps ¢ +— T(c) are continuous. To proceed with our discussion, we
suppose that ¥(—o00) < ¥(+0o0) (the other case can be treated symmetrically).
Then 77 (¢) = +00 as ¢ — ¥(—00), following from the fact that g(x)/x goes
to zero as x — —oo, see [Opi61]. We can couple this result with an estimate
near the origin

limsup7(c) < 27/+/Ago

c—0t

which follows from classical and elementary arguments.

Proposition 1.2.1. Foreach A > 0, the time-mapping T associated with system
(1.2.3)) is continuous and its range includes the interval |27 /+/Ago, +00] .
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Showing the monotonicity of the whole time-map 7(c) is in general a difficult
task. However, for the exponential case g(x) = ¥ — 1 this has been proved in
[CW86] (see also [Chi87]).

On the interval of negativity of ay ,(t), system becomes

{X’ — (1.2.4)

y' = pg(x),

with g(x) as above. For this system the origin is a global saddle with unbounded
stable and unstable manifolds, contained in the zero level set of the energy

Ex(x,y) = %y2 — p9(x).

In the following, given a point P € R?, we denote by 4= (P) and «(P) respec-
tively the positive/negative semiorbit and the orbit for the point P with respect
to the (local) dynamical system associated with (1.2.4)).

If we start from a point (0, yp) with yo > 0 we can explicitly evaluate the
blow-up time as follows. First of all we compute the time needed to reach the
level x = k > 0 along the trajectory of (1.2.4]), which is the curve of fixed
energy Ex(x,y) = E2(0, yo) with y > 0. We have

y:X’: 1/yg—|—2;1,g(x)

from which we deduce

t—/K dx
0 \/¥§ +2u9(x)

Therefore, the blow-up time is given by

T = [~
0 /¥ +2u9(x)

Standard theory guarantees that if the Keller - Osserman condition
too  dx

7?(@ < +00

(1.2.5)
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holds, then the blow-up time is always finite and T(yo) N\, 0 for yo ,* +0c0. On
the other hand, T(yo) ,/* 400 for yo \, 0". Hence there exists y > 0 such
that T(yo) > T> for yp €]0, y[ and hence for such points there is no blow-up
in [Tl, T]

If we start with null derivative, i.e. from a point (xp, 0), similar calculations

return
k dx

" e V2@ - 900)
and, since ¥(x) —¥(x0) ~ g(x0)(x —xo) for [x —xg| < 1, the improper integral
at xg is finite. Therefore, the blow-up time is given by
+oo dx
o V2u(F(x) =9 (x0))
If is satisfied, then the blow-up time is always finite. Moreover, T(xp) —

+00 as xp — 0T. A similar but more refined result can be found in [PZ00,

Lemma 3].
Now we describe how to obtain Theorem and Theorem for system

x' =y
{y' o (0e) (1:25)

in the special case of a T-periodic stepwise function as in ([1.2.2). As we
already observed, equation ((1.2.6)) is a periodic switched system and therefore
its associated Poincaré map ® on the interval [0, T] splits as

®=dyo0d;

T(x0) =

where ®; is the Poincaré map on the interval [0, T1] associated with system
(1.2.3) and &, is the Poincaré map on the interval [0, T2] associated with
system (|1.2.4)).

(I) Proof of Theorem for a stepwise weight. We start by selecting a closed
orbit % of (1.2.3)) near the origin, at a level energy Acp, and fix A sufficiently
large, say A > Ak, so that in view of Proposition
Ty

: 1.2.7
k+1 ( )

'T(Co) <
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Next, for the given (fixed) A, we consider a second energy level Ac; with ¢; > ¢
such that
(a1) > 2T, (1.2.8)

and denote by ! the corresponding closed orbit. Let also
A:={(x,y) : 2xco < E1(x,y) < 2Xc1}

be the planar annular region enclosed between % and I'?. If we assume that the
Poincaré map 5 is defined on A, then the complete Poincaré map ¢ associated
with system is a well defined area-preserving homeomorphism of the
annulus A onto its image ®(A) = ®,(A): in fact the annulus is invariant
under the action of ®;.

During the time interval [0, T1], each point z € I'? performs |T1/7(co)]
complete turns around the origin in the clockwise sense. This implies that

T
rot,(0, T- 2{ J Vzell.
O = | 2a)

On the other hand, from [BZ13| Lemma 3.1] we know that
1
rot,(T1, T) = rot,(0, T2) > 5 Vz #(0,0).

We conclude that
rot,(T) >k, VzeTl.

During the time interval [0, T1], each point z € 'l is unable to complete a full
revolution around the origin, because the time needed to cross either the second
or the third quadrant is larger than T;. Using this information in connection to
the fact that the first and the third quadrants are positively invariant for the
flow associated with (1.2.4)), we find that

rot,(T) <1, Vzell,

The application of the Poincaré-Birkhoff fixed point Theorem guarantees for
each j = 1,..., k the existence of at least two fixed points u; = (u, uy),
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vi = (v, vw) of the Poincaré map, with uj, v; in the interior of A and such
that rot,,(T) = rot,;(T) = j. This in turns implies the existence of at least two
T-periodic solutions of equation with x(-) having exactly 2j-zeros in the
interval [0, T]. O

In this manner, we have proved Theorem for system in the
special case of a stepwise weight function ay, as in (1.2.2). Notice that no
assumption on u > 0 is required. On the other hand, we have to suppose that
®, is globally defined on A.

Remark 1.2.1. From ([1.2.7)) and the formulas for the period 7 it is clear that
assuming Ty fixed and X large is equivalent to suppose A fixed and T; large.
This also follows from general considerations concerning the fact that equation
x" 4+ Ag(x) = 0 is equivalent to u” + 2 g(u) = 0 for u(¢) := x(£&).

(II) An intermediate step. We show how to improve the previous result if
we add the condition that u is sufficiently large. First of all, we take I and
' as before and A > Ay in order to produce the desired twist for ® at the
boundary of A. Then we observe that the derivative of the energy E; along the
trajectories of system ([1.2.4)) is given by (XA + u)yg(x), so it increases on the
first and the third quadrant and decreases on the second and the fourth. Hence,
if u is sufficiently large we can find four arcs ¢; C A, each one in the open i-th
quadrant, joining ® and I'! and such that ®(y;) is outside the region bounded
by ' for i = 1,3 and ®5(y;) is inside the region bounded by I'° for i = 2, 4.
The corresponding position of A and ®5(A) is illustrated in Figure [1.2]

At this point we enter in the setting of bend-twist maps. The arcs Cbl_l((p,-)
divide A into four regions, homeomorphic to rectangles. The boundary of each
of these regions can be split into two opposite sides contained in I and I'!
and two other opposite sides given by ®1%(¢;) and ®;*(p;11) (mod4). On I°
and I'" we have the previously proved twist condition on the rotation numbers,
while on the other two sides we have E1(®(P)) > E1(P) for P € &7 (y;) with
i =1,3 and E;(®(P)) < E1(P) for P € &7 (y;) with i = 2,4. Thus, using
the Poincaré-Miranda Theorem, we obtain the existence of at least one fixed
point of the global Poincaré map @ in the interior of each of these regions.
In this manner, under an additional hypothesis of the form p > p*(X\), we

improve Theorem (for system ([1.2.6)) and again in the special case of a
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A

Figure 1.2: A possible configuration of A and ®,(.A). The example is obtained for
g(x) =e*—1,\=pu=0.1and T, = 1. The inner and outer boundary ® and I'! of the
annulus A are the energy level lines Eq(x,y) = E1(2,0) and Ei(x,y) = E1(2.1,0). To
produce this geometry the value of T; is not relevant because the annulus is invariant
for system (1.2.3). Since T(cp) < T(c1), to have the desired twist condition we need
to assume T; large enough.
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stepwise weight), finding at least four solutions with a given rotation number
for j=1,..., k. On the other hand, we still suppose that ®; is globally defined
on A. The version of the bend-twist map theorem that we apply here is robust
for small perturbations of the Poincaré map, therefore the result holds also for
some non-Hamiltonian systems whose vector field is close to that of (1.2.1)).

(III) Proof of Theorem for a stepwise weight. We repeat the same
construction of (I) and choose ', X\ > Ay according to (1.2.7) and I'! so that

(1.2.8)) is satisfied. Consistently with the previously introduced notation, we
take

xt<x® <0<x® <xt, with9(x)=9(x)=c¢, i=01.
Notice that the closed curves I intersect the coordinate axes at the points
(x},0) and (0, £4/2Xc;). Next we choose x% and yo with
x° <X'L_L<0<X1<X_?_, and 0 < yg < vV2X\q
and define the orbits
Xy =04, 0), Vi :=(0, £y0).
Setting

1
X d
T(Xy) —j:2/ CTO) = /1+ : X
V268 () — () LR+ 2ug ()
we tune the values x¥, yp and u so that

max{7T(Xy), TV} < Tz.

Clearly, given the other parameters, we can always choose u sufficiently large,
say u > p*, so that the above condition is satisfied.

Finally, we introduce the stable and unstable manifolds, W* and WY, for
the origin as saddle point of system (1.2.4). More precisely, we define the sets

WY = {(x,y): Ex(x,y) =0,x >0,y > 0},
W? = {(x,y): Ea(x,y) =0,x <0,y > 0},
WY = {(x,y): Ea(x,y) =0,x <0,y <0},
W3 ={(x,y): Ea(x,y) =0,x >0,y <0},
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so that W = W?® UWS and WY = WY UWY{. The resulting configuration is
illustrated in Figure[1.3

Figure 1.3: The present figure shows the appropriate overlapping of the phase-portraits
of systems ((1.2.3)) and ((1.2.4).

The closed trajectories %, ' together with X1, V1, W$ and W/ determine
eight regions that we denote by A; and B for i =1,..., 4, as in Figure[1.4]

Each of the regions A; and B; is homeomorphic to the unit square and
thus is a topological rectangle. In this setting, we give an orientation to A; by
choosing A; := A; N (TP UT?). We take as B; the closure of 8B; \ (TP UT?).

We can now apply a result in the framework of the theory of topological
horseshoes as presented in [PPZ08] and [MRZ10]. Indeed, by the previous
choice of A > A we obtain that

O Ak B, Vi=1,...,4,
On the other hand, from u > p* it follows that
Oy B A, Vi=1,... 4

Then [PPZ08, Theorem 3.1] (see also [MRZ10, Theorem 2.1]) ensures the
existence of at least k fixed points for ® = ®, o ®; in each of the regions
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4 A

As

Figure 1.4: The present figure shows the regions A; and B;. We have labelled the
regions following a clockwise order, which is useful from the point of view of the
dynamics.

A;. This, in turns, implies the existence of 4k T-periodic solutions for system

(1.2.6).
Such solutions are topologically different and can be classified as follows:
for each j =1, ..., k there is a solution (x, y) with
o (x(0),y(0)) € Az with x(t) having 2j zeros in ]0, T1[ and strictly positive
in [T1,TJ;
o (x(0),y(0)) € Ay with x(t) having 2j — 1 zeros in ]0, T1[ and one zero
in |T1, TT;
o (x(0),y(0)) € Az with x(t) having 2j zeros in |0, T1[ and strictly negative
in [T1,T];
o (x(0),y(0)) € As with x(t) having 2j — 1 zeros in |0, T1[ and one zero
in ]Tl, T[
In conclusion, for each j = 1,..., k we find at least four T-periodic solutions

having precisely 2j-zeros in [0, T. O
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Remark 1.2.2. Having assumed that g is bounded on R™, we can also prove
the existence of a T-periodic solution with (x(0), y(0)) € A3 and such that
x(t) < 0 for all t € [0, T] while y(t) = x/(t) has two zeros in [0, T[. Moreover,
the results from [MRZ10, [PPZ08] guarantee also that each of the regions A;
contains a compact invariant set where ® is chaotic in the sense of Block and
Coppel (see [AKOI]).

We further observe that, for equation ([1.2.1)) the same results hold if con-
dition (g_) is relaxed to
im EX) _g (1.2.9)

Xx——00 X

In this manner we get the same number of four T-periodic solutions as obtained
in [BZ13]. However, we stress that, even if the conditions at infinity here
and in that work are the same, nevertheless, the assumptions at the origin are
completely different. Indeed, in [BZ13] a one-sided superlinear condition in zero,
of the form g’(0%) = 0 or g’(0~) = 0 was required. As a consequence, for X
large, one could prove the existence of four T-periodic solutions with prescribed
nodal properties which come in pair, namely two “small” and two “large”. In
our case, if in place of gg > 0 we assume g’(07) = 0 or g’(07) = 0, with the
same approach we could prove the existence of eight T-periodic solutions, four
“small” and four “large”.

We conclude this section by observing that if we want to produce the same
results for system ([1.1.1)), then we cannot replace (h+) or (g+) with a weaker
condition of the form of (1.2.9). Indeed, a crucial step in our proof is to have
a twist condition, that is, a gap in the period between a fast orbit (like FO) and
slow one (like ). This is no more guaranteed for an autonomous system of

the form
{X’ = h(y)
y'=—g(x)
if g(x) satisfies a sublinear condition at infinity as ((1.2.9)). Indeed, the slow
decay of g at infinity could be compensated by a fast growth of h at infinity.
In [CGMnO0Q] the Authors provide examples of isochronous centers for planar

Hamiltonian systems even in the case when one of the two components is
sublinear at infinity.
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1.3 The general case and proofs

Throughout the section and consistently with Section [I.1], for each s € R and

z € R? we denote by (x(,s,2),y(:;s, z)) the solution of (L.1.1) satisfying
(x(s), y(s)) = z and, for t > s, we set

oL(z) := (x(t,s,2), y(t; s, 2)),
if the solution is defined on [s, t].

We prove both Theorem (Theorem and Theorem (Theo-
rem assuming (g_). The proofs can be easily modified in order to take
into account all the other cases, namely (g), (h—) or (hy). Concerning the T-
periodic weight function we suppose for simplicity that a : R — R is continuous

and satisfies (a*). More general regularity conditions on a(-) can be considered
as well.

Theorem 1.3.1. Let g, h be locally Lipschitz continuous functions. Assume
(Co), (g-) and the global continuability of the solutions. For each positive
integer k there exists Ay > 0 such that for every X > Ny and j = 1,..., k,
there are at least two T-periodic solutions for system (1.1.1)) with x having
exactly 2j-zeros in the interval [0, T].

Proof. We split the proof into steps in order to reuse some of them for the
proof of Theorem [1.3.2]

Step 1. Evaluating the rotation number along the interval [0, T1] for small
solutions.

Let € > 0 be sufficiently small such that gy — € > 0 and hg — € > 0 and take
r® > 0 such that, by virtue of (Cp),

h(&)€ > (ho — €)€%,  g(8)¢ > (g0 —€)¢*, V¢ <r°.

Let u(t) := (x(t), y(t)) be a solution of such that 0 < ||u(t)|| < r® for
all t € [0, T1]. We consider the modified clockwise rotation number associated
with the solution u(-) in the interval [0, T1] (which is the interval where a > 0),
defined as

Py _ VP [T h(y(0)y(t) + Aa" (t)g(x(1))x(t)
Rot?(;0,Ty) = X7 [ ) ) d

t,
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where p > 0 is a fixed number that will be specified later. The modified rotation
number can be traced back to the classical Priifer transformation and it was
successfully applied in [FH93| (see also [Zan96] and the references therein). A
systematic use of the modified rotation number in the context of the Poincaré-
Birkhoff Theorem, with all the needed technical details, is exhaustively described
by Boscaggin in [Bos11]. Here we follow the same approach. The key property
of the number Rot”(u) is that, when for some p it assumes an integer value, that
same value is independent on the choice of p. Moreover, as a consequence of
h(y)y > 0 for y # 0, we have that if 71 < 72 are two consecutive zeros of x(-),
then Rot?(u; 11, 72) = 1/2 (independently on p). Hence, we can choose suitably
the constant p in order to estimate in a simpler way the rotation number. In

our case, if we take
1 ho — &
pi=x :

A (g0 — €)[aT[Lo(0,m)
and recall that we are evaluating the rotation number on a “small” solution u

so that h(y(t))y(t) > (ho — €)y?(t) and g(x(t))x(t) > (go — €)x3(t), we find

Py VP [T (ho — €)y?(t) + Xa* (t)(go — €)x*(t)
Rot?(u;0,T1) > - /0 oy2(0) 1 2(2) dt

_ Meo - S)\/E/Tl |a™ | eo(o, )Py 2 () + @t (£)x3(t) di
27 0 py?(t) + x?(t)
Meo—€)yp [T VA
>80 TVE =’z
> SOOI [Tt () de = 3ox(e),
where 1/2
hg — — I
k() = <( 0 <)leo 5)) / at(t)dt > 0.
|a |L°°(O,T1) 0
Hence, given any positive integer k, we can take
21 \2
A= (—=) (k+1) 1.3.1
o= () (13.)

so that, for each A > A, we obtain that RotP(u;0,T1) > k + 1 and therefore,
by [Bosl1ll Proposition 2.2], rot,(0, T1) > k + 1, for z = u(0) and rot, defined
in (T.1.3).
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Step 2. Evaluating the rotation number along the interval [0, T]| for small
solutions.

Consider now the interval [T1, T] where a(t) < 0. In this case, we are in the
same situation as in [BZ13, Lemma 3.1] and the corresponding result implies
that rot,, (71, T) > —1/2, for z = u(T1). As a consequence we conclude that

if u(t) := (x(t),y(t)) is a solution of such that 0 < ||u(t)|| < r® for all
t €0, T1] and A > Ay, then rot,(T) := rot,(0,T) > k for z = u(0).

Step 3. Consequences of the global continuability.

The global continuability of the solutions implies the fulfillment of the so-called
“elastic property” (cf. [Kra68, [CMZ90]). In our case, recalling also that non
trivial solutions never hit the origin, we obtain

(1) for each r; > 0 there exists ry €]0, [ such that ||z|| < ry implies 0 <
|®5(2)| <, YEE[O,T);

() for each Ry > 0 there exists R» > Rj such that ||z|| > Ry implies
196(2)I| = Ry, Vi€ [0,T]

(see [Zan96] Lemma 2]).

Step 4. Rotation numbers for small initial points.

Suppose now that € > 0 and A > Ay are chosen as in Step 1 and let u > 0
be fixed. Using (i1) in Step 3 we determine a small radius rp = ro(e, A, ) > 0
such that for each initial point z € R? with ||z|| = ro it follows that the solution
u(t) = (x(t), y(t)) of with u(0) = z satisfies 0 < ||u(t)|| < r® for all

t € [0, T1]. Hence, by Step 2 we conclude that

rot,(T) > k, Vzwith ||z|| = ro. (1.3.2)

Step 5. Evaluating the rotation number along the interval [0, T] for large solu-
tions.

Suppose, from now on, that A and p are fixed as in Step 4. Let u(t) =
(x(t), y(t)) be any non trivial solution of which crosses the third quad-
rant in the phase-plane. If this happens, we can assume that there is an interval
[, B] C [0, T] such that x(t) < 0 for all t € [a, B] with x(ar) = 0 = y(B)
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and x(t) < 0 for all t €]a, B] as well as y(t) < 0 for all t € [a, B[. Note that
from the first equation in when y(t) = 0 also x'(t) = 0. Assumption
(g-) implies there is a bound for g(x) when x < 0, namely M > 0 such that
lg(x)| < M for all x < 0. Thus, integrating the second equation in system
(1.1.1)) we get that, for all t € [, B], the following estimate holds:

|y(r)=\ +/ o (5)g(x(5)) ds

< I\/I/ ayu(s)ds< M (A/OTl a’t(t) dt—l—u/TT a‘(t)dt) = M.

Now, integrating the first equation of the same system we obtain for all t €
[, B] the estimate below:

/h )) ds

With a similar argument, it is easy to check that the same bounds for |y(t)| and
|x(t)| hold if the solution crosses the second quadrant instead of the third one.
Hence, any solution that in a time-interval [a, B] crosses the third quadrant,
or the second quadrant, is such that |y(t)] < M and |x(t)] < M for all
t € la, Bl

In view of the above estimates and arguing by contradiction, we can then
conclude that if the solution u satisfies

[x(t)

< My = (B — ) max{[h(y)[; ly| < Mi}.

u(t)]| > M3 =1+ (My + Mo)Y2, vtelo,T],

then for u(-) is impossible to cross the third quadrant and it is also impossible
to cross the second one.

Step 6. Rotation numbers for large initial points.

Using (i2) in Step 3 we determine a large radius Ry = Ro(X, 1) > 0 such
that for each initial point z € R? with ||z|| = Ry it follows that the solution
u(t) = (x(t),y(t)) of with u(0) = z satisfies ||u(t)|| > M3 for all
t € [0, T]. Hence, by Step 5 we conclude that

rot,(T) <1, Vzwith ||z||=Rp. (1.3.3)
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Indeed, if by contradiction rot,(T) > 1, then the solution u(t) of with
u(0) = z must cross at least once one between the third and the second
quadrant and this fact is forbidden by the choice of Ry, which implies that
[lu(t)|| > M3 for all t € [0, T].

Step 7. Applying Poincaré-Birkhoff fixed point Theorem.

At this point we can to conclude the proof. From (1.3.2)) and (1.3.3) we have
the twist condition (TC) satisfied for b = k and a = 1 and the thesis follows
as explained in the introductory discussion preceding the statement of Theorem

L1idl O

Remark 1.3.1. In view of the above proof, a few observations are in order.

1. We think that the choice of Ay in , although reasonably good, is
not the optimal one. One could slightly improve it, by using some comparison
argument with the rotation numbers associated with the limiting linear equation

x'=hoy, y' = —Agoa(t)x.

We do not discuss further this topic in order to avoid too much technical details.

2. In the statement of Theorem[1.3.1]we have explicitly recalled the assump-
tions on g and h to be locally Lipschitz continuous functions so to have a well
defined (single-valued) Poincaré map. With this respect, we should mention
that there is a recent version of the Poincaré-Birkhoff Theorem due to Fonda
and Urefia [FUn16, [FUn17] which, for Hamiltonian systems like (1.1.1]), does
not require the uniqueness of the solutions for the initial value problems and just
the continuability of the solutions on [0, T] is needed. The theorems in [FUn17]
apply to higher dimensional Hamiltonian systems as well. For another recent
application of such results to planar systems, in which the uniqueness of the
solutions of the Cauchy problems is not required, see also [COZ16]. In our case,
even if we apply the Fonda-Urefia Theorem, we still need to assume at least an
upper bound on g(x)/x and h(y)/y near zero, so to avoid the possibility that
a (nontrivial) solution u(-) of with u(0) # (0,0) may hit the origin at
some time t €10, T], thus preventing the rotation number to be well defined.
See [But78, Section 4] for a detailed discussion of these aspects.
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Now we are in position to give the proof of Theorem (which is pre-
sented as Theorem below). For the next result we do not assume the
global continuability of the solutions. Accordingly, both h (at +00) and g (at
~+00) may have a superlinear growth.

For the foregoing proof we recall that we denote by D(R) and D[R] the
open and the closed disc in R? of center the origin and radius R > 0. Given
0 < r < R, we denote by A[r, R] the closed annulus A[r, R] := D[R]\ D(r). Let
also Q; for i = 1,2,3,4 be the usual quadrants of R? counted in the natural
counterclockwise sense starting from

Q1:={(x,y): x>0,y >0}.

Theorem 1.3.2. Let g, h be locally Lipschitz continuous functions satisfying
(Co). Suppose also that (g_) holds. For each positive integer k there exists
Ak > 0, such that for every X > Ay there exists u* = u*(\) such that for each
w>p*andj=1,..., k, there are at least four T -periodic solutions for system
(1.1.1) with x having exactly 2j-zeros in the interval [0, T|.

Proof. For our proof, we will take advantage of some steps already settled in
the proof of Theorem [1.3.1]

First of all, we consider system ([1.1.1) on the interval [0, T1], so that the
system can be written as

X'=h(y), y'=-2a"(t)g(x) (1.3.4)

and observe that all the solutions of are globally defined on [0, T;]. To
prove this fact, we observe that the sign assumptions on h and g in (Cp) and
(g-) guarantee that belongs to the class of equations for which the
global continuability of the solutions was proved in [DZ96]. Hence our claim is
proved.

Now, we repeat the same computations as in the Steps 1-3-4-5-6 of the
preceding proof (with only minor modifications, since now we work on [0, T1]
instead of [0, T]) and, having fixed A > Ay (with the same constants Ay as in
(1.3.1))), we are in the following setting:
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(TCx) There are constants ry = ro(e, A) and Ry = Ro(X), with 0 < rp < Ryp,
such that
rot,(T1) > k+1,Vz: ||z|| =r; rot,(T1) <1,Vz: ||z|]|=Ro.

By a classical compactness argument following by the global continuabil-
ity of the solutions of (1.3.4) we can determine two positive constants sg =
50()\, o, Ro) and G = 60(%, o, Ro) with

0<so<rn<Ry<6S,
such that
50 < ||9§(2)]| < Gg, Vte[0,T1], Vz: rn<||z]| £ Ro. (1.3.5)

We introduce now the following sets, which are all annular sectors and hence
topological rectangles according to the terminology of the Introduction.

P1:=Alr, Ro]NQ1, P2 :=Aln, Ro]NQ3,

My = A[ﬁo, 60] NQs, My:= A[So, 60] NQ2.

To each of these sets we give an orientation, by selecting a set [-]~ which is the
union of two disjoint arcs of its boundary, as follows.

P =P;NdA[r, R, P;:=(Pi,P7), i=12,

M7 = Min{(xy):xy =0}, M;:=(M; M), i=12.

To conclude the proof, we show that for each integer j = 1,..., k and
i = 1,2 there is a pair of compact disjoint sets H} ;, H{'; C P; such that

(H®): Pres P, i=1,2, (1.3.6)

where H stands for H; ; or H; and & := ®[. Along the proof we will also check
that the 4k sets H; ; and H fori=1,2and j=1,..., k are pairwise disjoint.
A fixed point theorem introduced in [PZ02] and recalled at the beginning of the
Chapter (see [PZ04a, Theorem 3.9] for the precise formulation which is needed
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in the present situation) ensures the existence of at least a fixed point for the
Poincaré map @ in each of the 4k sets H; ; and H};.

To prove (|1.3.6]) we proceed with two steps. Flrst we show that, for any
fixed j € {1, ...k} there is a compact set H; ; C Py such that

(Hyj, &f1) : Pres My (1.3.7)
and another compact set H” C P1 such that
(HY;, &f1) : Pres M. (1.3.8)

In the same manner we also prove that there are disjoint compact sets Héj,
Hé”j C P, such that

(Hbj, ©") : P M (1.3.9)
and . .
(Hy,, ®§') : Poss My . (1.3.10)
Next, we prove that
oL My Py, Vi=12VL=12 (1.3.11)

Clearly, once all the above relations have been verified, we obtain (1.3.6)), us-
ing the composition ® = dﬁl o <1>0T1 and counting correctly all the possible
combinations.

Proof of ([1.3.7). We choose a system of polar coordinates (6, p) starting at
the positive y-axis and counting the positive rotations in the clockwise sense, so
that, for z # 0 and t € [0, T1], 6(t, z) denotes the angular coordinate associated
with the solution u = (x, y) of with u(0) = z. For z € P; we already
know that u(t) € Alsg, o] for all t € [0, T1]. For any fixed j € {1,..., k} we
define

1 ={ze€P1:0(T1 2) €[(n/2) + 2jm, 7 + 2jn]}.

Note that an initial point z € Py belongs to Hj ; if and only if g (z) € My
with x(-) having precisely 2j zeros in the interval |0, T1[. Then it is clear that

HiﬂﬂHllﬂ—(DfOI’h#jg.
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Let 7 : [a9, a1] — Pi1 be a continuous map such that ||y(ao)|| = ro and
[l7(a1)|| = Ro, that is <y is a path contained in (with values in) P; and meeting
the opposite sides of P; . For simplicity in the notation, we set

3(t, §) := 6(t.7(£))-

As we have previously observed ®§(y(§)) € A[so, So] for all t € [0, T;1] and
¢ € [ao, a1]. From property (TC,) we have that

B(T1, a0) > 9(0, ag) + 2(k + 1)m > 2(k + 1)7 > 2(j + 1),

while x
W(T1,a1) < 9(0,a0) + 27 < 3 + 2.

The continuity of the map ¢ : [ag, a1] 3 £ — ¥(T1, &) implies that the range of
¢ covers the interval [(7/2) + 2jm, m 4 2jm]. Therefore there exist by, by with
ag < by < b1 < aj such that 9(Ty, bo) = 7 + 2jm, ¥(T1, b1) = (7/2) + 2jm
and

8(T1,§) € g+2j7r,7r+2j7r . V&€ [bo by.

If we denote by o the restriction of the path <y to the subinterval [by, b1], we
have that o has values in Hj ; and, moreover the path ®g! o o has values in
M and connects the two components of M; . Thus the validity of (1.3.7)) is
checked.

Proof of ([1.3.8]). This is only a minor variant of the preceding proof and, with
the same setting and notation as above, we just define

1 ={z€P1:6(Th,2) €[(3n/2) + 2( — )m, 2j]}.

An initial point z € Py belongs to Hy; if and only if ®'(z) € My with
x(+) having exactly 2j — 1 zeros in the interval |0, T;[. Then it is clear that
H:’l’d-1 N H’l’J2 = 0 for j1 # jo. Moreover, it is also evident that all the sets H’
and H” are pairwise disjoint. The rest of the proof follows the same steps as
the previous one, with minor modifications and using again the crucial property

(TC).
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Proof of ([1.3.9) and (1.3.10]). Here we follow a symmetric argument by defining
a family of pairwise disjoint compact subsets of P, as

Hy;:={z € P2 : 6(T1,2) € [(3n/2) + 2jm, 2(j + 1)7]}

and
Hg’j ={zePy:0(T1,2z) €[(7/2) + 2jm, 7+ 2jm]},

respectively. Note that we consider an initial point z € P> with an associated
angle 6(0,z) € [, (3/2)7]. The rest of the proof is a mere repetition of the
arguments presented above.

Proof of (1.3.11]). We have four conditions to check, but it is clear that it will
be sufficient to prove

dﬁl : Mi—== P; and dﬁl M= Ps,

the other case being symmetric. In this situation, we have only to repeat step
by step the argument described in [PZ04b, pp. 85-86] where a similar situation
is taken into account. There is however a substantial difference between the
equation considered in [PZ04b] and our equation, that in the interval [T7, T]
can be written as
X'=hly), ¥y =upa (t)g(x).

Indeed, in our case we cannot exclude that some solutions are not globally de-
fined on [Ty, T], due to the possibility of blow-up phenomena in some quadrants.
To overcome this difficulty, we follow an usual truncation argument. More pre-
cisely, recalling the “large” constant &g introduced in , we define the
truncated functions

g(—@o), V x S *60
8(x) =4 &(x), Vx € [-6p, &
g(@o), V x Z 60

and
h(—Go) +y+ &g, Vy < -6

h(y) :== 1 h(y), Vy € [-6o, o]
h(&o)+y —6o, Vy>6g
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which are locally Lipschitz continuous with g bounded and h having a linear
growth. Now the uniqueness and the global existence of the solutions in the
interval [T7, T] for the solutions of the truncated system

K =hy) ¥ =na (D) (13.12)

is guaranteed. Apart for few minor details we can closely follow the proof of
[PZ04b, Theorem 3.1] for the interval when the weight function is negative. Of

course, now the result will be valid for the Poincaré map &% associated with
system ((1.3.12)) for the time-interval [T1, T]. If we treat with such technique the
Poincaré map dﬁ1 , we can prove that any path « in M joining the two sides

of M7 contains a sub-path o with & C M7 such that &J-t,-l(&) C DJ0, &y] for
all t € [Ty, T] and such that &Jrl o o is a path in P; joining the opposite sides
of P; . This in turn implies

¢£ M= Py.

On the other hand, the condition 595-1(6) C D[0, &] for all t € [T1, T] implies
that &JtTl(c'r) = % () for all t € [Ty, T] and therefore we have that

CD;I . M1%> 7)1.

All the other instances of (1.3.11]) can be verified in the same manner. This
completes the proof of the theorem. O

As a byproduct of the method of proof we have adopted, we are able to
classify the nodal properties of the four T-periodic solutions as follows.

Proposition 1.3.1. Let g, h be locally Lipschitz continuous functions satisfying
(Co) and at least one between the four conditions (hy) and (g+). For each
positive integer k there exists A > 0, such that for every A > Ay there exists
p* = u*(X) such that foreachp > p* andj =1, ..., k, there are at least four
T -periodic solutions for system ((1.1.1)) which can be classified as follows:

o one solution with x(0) > 0,x'(0) > 0 and with x(-) having exactly 2j
zeros in |0, T1[ and no zeros in [T1, T|;
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o one solution with x(0) > 0, x'(0) > 0 and with x(-) having exactly 2j — 1
zeros in |0, T1[ and one zero in [T, T};

o one solution with x(0) < 0,x'(0) < 0 and with x(-) having exactly 2j-
zeros in |0, T1[ and no zeros in [T1, T|;

o one solution with x(0) < 0, x'(0) < 0 and with x(-) having exactly 2j — 1
zeros in |0, T1[ and one zero in [T, T].

Remark 1.3.2. We present some observations related to the proof of Theorem
1.3.2

1. In view of the results in [PZ04b| and the notation recalled in the Intro-
duction, our proof implies that

O Pk P i=1,2.

As a consequence, there are two compact invariant sets contained in P; and
Pa, respectively, where ® induces chaotic dynamics on 2k symbols. Also, for
any periodic sequence of symbols subharmonic solutions associated with that
periodic sequence do exist (see [MPZ09]).

2. In principle, our approach could be extended to differential systems in
which the weight function displays a finite number of positive humps separated
by negative ones. Although the feasibility of this study is quite clear, we have
not pursued this line of research for sake of conciseness.

3. A comparison between Theorem and Theorem [1.3.2] suggests that
it could be interesting to present examples of differential systems in which
there are exactly two (respectively four) T-periodic solutions with given nodal
properties and then discuss the change in the number of solutions using u as a
bifurcation parameter.

1.4 Subharmonic solutions

In this Section we briefly discuss how to adapt the proofs of Theorem and
Theorem to obtain subharmonic solutions. Throughout the Section we
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suppose that a: R — R is a continuous T-periodic weight function satisfying
(a*). As before, more general regularity conditions on a(-) can be considered.

Speaking of subharmonic solutions we must observe that if v = (x, y) is a
mT -periodic solution of (L.1.1]), then also uj(-) := u(- — iT) is a mT-periodic
solution forall i =1, ..., m—1. Such solutions, although distinct, are considered
to belong to the same periodicity class.

First of all, we look at the proof of Theorem [1.3.1] and give estimates on
the rotation numbers on the interval [0, mT] for some integer m > 2. Iterating
the argument in Step 1-4 and taking a smaller ry if necessary, we can prove that

for A > Ay as in (1.3.1)), we obtain
rot,(mT) > mk, Vzwith ||z|]|=r.

Repeating the computation in Step 5-6 for the interval [0, mT] and taking a
larger Ry if necessary, we get

rot,(mT) <1, Vzwith ||z]|=Ro.

In this manner we have condition (T Cy,) satisfied for b = mk and a = 1. Now,
if we fix an integer j € {1, ..., mk} which is relatively prime with m, we obtain
at least two mT-periodic solutions of system (1.1.1)) with x(-) having exactly
2j simple zeros in the interval [0, mT[. As m and j are coprime numbers, these
solutions cannot be £T-periodic for some £ € {1,..., m — 1}. Since, by (a*),
T is the minimal period of a(-), we conclude that mT is the minimal period
of the solution (x, y) of (see [DZ93| [DZ96] for previous related results
and how to prove the minimality of the period via the information about the
rotation number). In this manner, the following result is proved.

Theorem 1.4.1. Let g, h : R — R be locally Lipschitz continuous functions
satisfying (Co) and at least one between the four conditions (hy) and (g).
Assume, moreover, the global continuability for the solutions of . Let
m > 2 be a fixed integer. Then, for each positive integer k there exists N > 0
such that for each A > N, and j = 1, ..., mk, with j relatively prime with m,
the system has at least two periodic solutions (x(t), y(t)) of minimal
period mT, not belonging to the same periodicity class.
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Also for Theorem the same observation as in Remark [1.3.1)2 applies,
namely, using Fonda-Urefia version of the Poincaré-Birkhoff Theorem, we can
remove the local Lipschitz condition outside the origin.

Looking for an extension of Theorem to the case of subharmonic
solutions, in view of Remark|1.3.2/1 and [PZ04bl IMPZ09], the condition

O] Pk P i=1,2

implies the following property with respect to periodic solutions. Let P = P;
for i = 1,2. There exists 2k pairwise disjoint compact sets Si,...S C P
such that for each m-periodic two-sided sequence & := (&,)necz, with &, €
{1,..., 2k} for all n € Z, there exists a fixed point z* of ®F'T such that
8T (z*) € Sg,,V n € Z. In this case we say that the trajectory associated with
the initial point z* follows the periodic itinerary (..., Sg. ..., S¢,0 ).

From this observation, the following result holds.

Theorem 1.4.2. Let g,h: R — R be locally Lipschitz continuous functions
satisfying (Co) and at least one between the four conditions (hy) and (g4). Let
m > 2 be a fixed integer. Then, for each positive integer k there exists Ny > 0
such that for each A\ > Ay there exists u* = p*(\) such that for each p > p*
the following property holds: given any periodic two-sided sequence (¢p)necz,
with §, € {1,..., 2k} for all n € Z and with minimal period m, the system
has at least two periodic solutions (x(t), y(t)) of minimal period mT,
following an itinerary of sets associated with (¢,)nez and not belonging to the
same periodicity class.

A simple comparison of the two theorems shows that when m grows, the number
of different subhamonics found by Theorem largely exceeds the number
of those obtained by Theorem[1.4.1] The number of m-order subharmonics can
be precisely determined by a combinatorial formula coming from the study of
“aperiodic necklaces” [Fel18].

1.5 Some examples

We propose a few examples of equations, coming from the literature, which fit
into the framework of our theorems.
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As a first case, we consider the following Duffing type equation with rela-
tivistic acceleration

(p(u")) + axu(t)g(u) =0, (1.5.1)
where s
o(s) = Wi

A variant of in the form of (¢(u’))' +g(t, u) = 0 is considered in [BG13]
where pairs of periodic solutions with prescribed nodal properties are found by
means of the Poincaré-Birkhoff Theorem for a function g(t, u) having at most
linear growth in u at infinity. Equation can be equivalently written as

{X’ =9 '(y)

y'=—au(t)g(x)

which is the same as system with h = ¢~ 1. In this case, since ¢!
is bounded, both (h_) and (hy) are satisfied and the global existence of the
solutions is guaranteed. Moreover all the other assumptions required for h in
(Co) are satisfied with hg = 1. Hence all the previous results apply to
once we assume that (Cp) holds for g. Notice that we do not need any growth
assumption on g.

Our second example is inspired by the work of Le and Schmitt [LS95] where
the authors proved the existence of T-periodic solutions for the second order
equation

u" + k(t)e" = p(t), (1.5.2)

with k, p T-periodic functions, with k changing sign, p with zero mean value
and such that

.
/ k(t)e®dt < 0,
0

where ug(t) denotes a T-periodic solution of u” = p(t). If we call i(t) the
T-periodic solution of ([1.5.2]) whose existence is guaranteed by [LS95, Remark
6.4], and set

u(t) = x(t) + a(t),
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then (1.5.2)) is transformed to the equivalent equation
x"+q(t)(e*—=1)=0

with )
a(t) = k(t)e™

which changes sign if and only if k(t) changes sign. Thus we enter in the
setting of and Theorem can be applied. Note that in general,
in an interval where k < 0 we may have blow-up of the solutions in the first
quadrant of the phase-plane and thus the Poincaré map cannot be defined on
a whole (large) annulus surrounding the origin. Clearly, in order to apply our
theorem, we will just need to adapt our conditions on the weight ay ,(t) to the
coefficients k(t) and p(t).

As a last example, we consider a model adapted from the classical Lotka-
Volterra predator-prey system. We take into account the system

P' = P(—ci(t) + d(t)N)
N' = N(cs(t) — b(t)P)

which represents the dynamics of a prey population N(t) > 0 under the effect
of a predator population P(t) > 0. Notice that the order in which the two
equations appear in the above system is not the usual one but it is convenient
so to enter the setting of system ([1.1.1)). All the coefficients b, ¢1, ¢, d are
continuous and T-periodic functions. In [DZ96] the existence of infinitely many
subharmonic solutions was proved under the assumption that c;(t) and c(t)
have positive average and b(t) > 0, d(t) > 0 in [0, T]. Extensions to higher
dimensional systems have been recently obtained in [FT] under similar sign
conditions on the coefficients. Some results about the stability of the solutions
for this model are obtained as a special case in [LGOT96|. For the main Lotka-
Volterra model thereby proposed the search of subharmonics solutions has been
recently addressed [LGMH18| under some specific assumptions on the averages
of b(t) and d(t), in a framework that can be regarded as a counterpart to ours.

Our aim now is to discuss the case in which b(t) may be negative on some
subinterval. We perform a change of variables setting u = log P and v = log N
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and obtain the new system

{u’ = —ci(t) + d(t)e”

Suppose now a T-periodic solution ((t), V(t)) is given. With a further change
of variables we can write the generic solutions as

and by substitution in the previous system we arrive at

x' = d(t)e"()(er — 1)
y' = —b(t)e¥ (X —1).

At this point, we can adapt the coefficients in order to enter in the frame of
system (T.1.1). More precisely, we suppose that d(t)e"(!) = constant = D > 0,
so that h(y) := D(e¥ — 1), g(x) := e* — 1 and set

q(t) == b(t)e"®),

which changes sign if and only if b(t) changes sign. Thus we enter in the setting

of (1.1.2]) and Theorem can be applied. The same remark of the previous
case holds. In particular, in order to apply our theorem, we need to translate

our conditions on the weight ay ,(t) to the coefficients b(t).



Chapter 2

Rich families of parabolic
solutions for the planar
N-centre problem

The N-centre problem is an old and well-known problem in Celestial Mechan-
ics. It addresses the motion of a null-mass particle which is subjected to the
attractive field generated by N fixed heavy bodies. The problem is a first step
approximation of the more complex N-body problem, in which the relative mo-
tion of N moving bodies is studied: in fact, a circular N + 1 body problem
in a rotating coordinate system can be reduced to the N-centre problem by
neglecting some of the acting forces. However, the N-centre problem displays
many interesting features on its own and has recently raised a good number of
works on which this Chapter is inspired, [ST13| BDT17, BDP17, [Cas17].
We take into account the planar generalised N-centre problem

X=VU(x), x€eR2\X (2.0.1)
where ¥ = {c1, ..., cn} is the discrete set of the centres ¢; with mass m; > 0
fori=1,..., N. The potential U is of the following form:
N m-
=y — 4 W 1,2
U0 =Y M W), aelL2),

i=1

41
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where W(x) is a sufficiently regular function that will be characterised later.
When o = 1 and W(x) = 0 we fall into the classical Newtonian case. When
N = 1 the famous Keplerian problem arises, which itself generates quite com-
plicated dynamics and has been extensively studied also recently by means of
perturbation theory, [FG17, [FG18]. For N < 2 the problem is fully integrable,
while for N > 3 it has been proven to be not integrable [Bol34].

The case we consider, a € [1,2), is commonly addressed as weak forces
case (often contemplating also o € [0, 2)), opposite to the strong forces case
where o > 2. The main reason under this choice is of topological nature and
will be cleared in the following, when we also point out some differences in the
methods dealing with one case or the other.

We are interested in parabolic solutions of (2.0.1)), i.e. solutions which
satisfy the zero energy condition

—U(x(t)) VteR. (2.0.2)

In [BDP17] the authors proved the existence of parabolic scattering solutions
for the planar generalised N-centre problem. By scattering solution we mean a
solution with prescribed asymptotic directions and prescribed behaviour around
the centres. Some technical assumptions are required on the potential, which
however include the standard case

Z|x—c|°‘+2' x € R\ {c1,...,cn}

with m; > 0 fori=1,...,N and a € [1,2). The interaction with the centres
is prescribed in the sense that, for all non trivial partitions of the centres set
Y ={c,...,cn} in two subsets, a scattering solution exists which separates

Y according to the chosen partition and is self-intersection free. This approach
however does not allow for self-intersections of the solution orbits.

Aim of this Chapter is, starting from the same setting, to prove existence of
a richer family of scattering solutions which may display self-intersections in a
sense inspired by the recent work [Cas17], which deals with positive energies so-
lutions. We explicitly characterise the solutions by means of their topologically-
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prescribed interaction with the centres, while in other works ([BK17]) no qual-
itative descriptions of the solutions is pursued. To complete the discussion it is
proven in the spirit of [FT00] (where instead the two-centres strong forces case is
taken into account) the existence of multiple solutions which are semibounded.

2.1 Variational framework

Let X ={c,....en} C R? for N > 2. Without loss of generality from now on
we suppose

We are interested in finding solutions of (2.0.1]) with the potential U : R\ ¥ —
R satisfying the following conditions, coming from the setting in [BDP17]:

a) U € C®(R?\ X)and U(x) >0 for all x € R?\ X;
b) Jo € [1,2) such that close to X it holds

Ux)= —"" L U(x)  i=1...,N (2.1.1)

alx — gl
with m; > 0 and U; € C®(R2\ (Z\ {c});

c) for |x| large enough it holds

V) = S + W) (2.1.2)
with m > 0 and
W(x) =0 <|X1’B> . VW(x)=0 <!x\}*‘+1> for [x| = +00
(2.1.3)

for some B > a/2 + 1.
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Potential estimates and the virial identity From (2.1.2)) we can deduce
that there exist K > sup;|cj| and some constants C_, C; > 0 such that the
following estimates hold for |x| > K:

2—a)m 1

W (x)| + [VW(x) - x| < PR (2.1.4)
‘i‘a < U(x) < !it‘ (2.1.5)

For a parabolic solution of ([2.0.1)) it also holds the so-called “virial identity:

d? t)|2
el (’Xg ) ) = 2U(x(t)) + VU(x(t)) - x(t). (2.1.6)
Now, it follows from (2.1.4]) that j—;]x(t)\z is strictly positive for |x| > K and,
henceforth, that if a solution leaves either forward or backward in time the ball
of radius K it cannot enter the ball again.

Homotopy classes Let now K > 0 be the one for which the estimates
and hold true. In particular £ C Bk(0).
Let now H'(—1,1) = HY([-1, 1]; R?) be the usual Sobolev space and con-
sider also its subspace H;(—l, 1) ={uve H(-1,1): u(-1)=u(1)}.
Referring to [FT00| define

A={ueHY(-1,1): u(t) ¢ X Vte (-1,1)}
T(p1, p2) ={u e H(-1,1): u(t) ¢ TVt e (-1,1), u(-1) = p1, u(1) = p2}.

We equip A and F(pl,pz) with the fixed endpoints homotopy relation,
namely for vy, up € F(pl,pg) we say that u; is homotopic to up and write
u1 ~ uo if and only if there exists a continuous function H : [~1,1]x[0, 1] — R?
such that

H(t,0) = ui(t), H(t,1) = un(t), H(0,s) = p1, H(1,s)=p> Vsel0,1]

and if t € (—1,1) then H(t,s) € R2\ X for all s € [0, 1]. In the case uy, up € A
we consider instead the usual loops homotopy in R? \ ¥.
From now on we restrict A taking into account only non null-homotopic loops.
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Maupertuis functional and properties The Maupertuis functional is defined
on either A or I'(py, p2) as

AA(u):~[iUU)th/T;UOAtht. (2.1.7)

M is always nonnegative. We recall some of the properties of M giving refer-
ences or a sketch of their proof.

Lemma 2.1.1. The Maupertuis functional M is lower semicontinuous and
coercive.

Proof. The lower semicontinuity follows from standard arguments, whereas co-
ercivity is not trivial due to the assumption (2.1.2]).
Let u, be a sequence such that

[unll it — +o0. (2.1.8)

For the case u, € F(pl, p2) we drive a simiIaL argument as in [BDP17], which
with some modifications works also for u, € A and

[ t) < .
RUMEC R

We set ourselves in the first case, assuming that u, € F(pl, p2), that
holds and reasoning by contradiction, by imposing that M(uj,,) is bounded. The
condition on the norm easily implies that f_ll |n(t)|dt — +o0, from which it
follows that the sequence

1
%:/uwmm

-1
is infinitesimal and that there exists a sequence {t,} € [—1, 1] such that

4

U(un(ts)) < -
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Since U attains a positive minimum on every compact set, it must also be
|un(tn)| — +00. The estimate (2.1.5)) allows us to write

2C_
on > 2U(up(ts)) > m

for n large enough. Some calculations lead to

1 2/a
[ Joae= (5
-1 5n

which allow us to conclude

2/a
TS L.
n

obtaining a contradiction.

As for the case u, € A, if mingec[—1,1] |Un(t)| is bounded then the previous

argument can be adjusted to prove coercivity. For u, € F(pl,p2) the above
condition on the norm implies that

/11 lin(£)|dt — +o0 (2.1.9)

and this can easily be seen using Hélder's inequality

t 1
an = prl =| [ inls)ds| < [ in(e)lde < V2o

evaluating
1
lun = palfe = [ Jua(t) = puPdt < 4]
so to obtain
lunll 2 < 2|ldnll2 + V2|1l

and finally getting
[tnll 2 < 3ldinll 2 + V2] pa -
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From (2.1.9) it follows

1
5 ;:/ U(un(t))dt — OF.
-1
Following the proof of the first part of Lemma 4.2 in [BDT17] there exists a
sequence {t,} € [—1, 1] such that

dn

U(un(ts)) < -

Since U attains a positive minimum on every compact set, it must also be
|un(tn)] — +00. The estimate allows us to write

2C_
on > 2U(un(ts)) > m

for n large enough: hence

1 . 2 tn . 2 1 tn . 2
[ tane)2de = [Tan(ePde = 5 ([ o))
-1 -1 -1
1| to 2
2‘/ un(t)dt
21/

1
Sllun(t)l = [pall*

1
= Slun(ta) = pif?

Y

Since |up(tn)| — +oo for any ¢ > 0 there is n large enough so that c|u,(t,)| —

|p1| > 0: then
1/a
) —|p1l =
1/a

) () () )
)"

lun(ta)| — |p1] > (

(
G

[V
on‘ﬁ oﬂ‘ﬁ
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which gives

1 2/a
[ Jinode> ()
-1 5n

2/a
M(Un) > <§_> 5n = Cz/a6%_2/a — +00

n

and lead us to conclude

which is a contradiction.
Additional problems arise if u, € A but instead

i t)| — ,
ity (0] = o0

i.e. we consider orbits that do not interact with the centres but simply turn
around X (possibly many times). The estimate (2.1.5)) gives for n large enough

U(un) > — 0.

|un|®
Since u, is not null-homotopic in R? \ X there exist sy, t, such that —1 <'s, <
ty <1,

—m <argup(t) <m Vt € (sp, tn)

and

arg up(sh) = —m, argun(t, )= or viceversa.
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We define then v, := up|[s, ¢,]-

1 1
M(u,,):/ \un(t)\2dt/ U(un(t))dt
-1 —1
1 1 C

> In(t 2dt/ —dt
_/_lwu()\ TR
e ([ o)
_1|un|0‘/2
v (o lan(®)] )
> cY / 2 dt
sn ‘un‘a/Q
2
_ 12 1
=e2([, o)

1 2
/vn ~af2 dz

using Holder inequality and curvilinear complex integral notation, where we
define

> /2

2%/2 .= expe {Z Log z} for z € C\ {0}
with the principal logarithm given by
Log z = log |z| + i arg(z) arg(z) €] — m, 7).

Going on with the estimates above
1/2 1 2
M(Un) Z Cf/ // mdz

2
> Ci/z f(un(tn)1fot/2 . un(sn)lfa/z)
1/2
> (;C)2 [[un(ta)[F=0/2emA=/2) |y (5,)| 1= e/2e=m(1=e/2) g
—Q

Here we need the following geometric result, which comes from the simple fact
that the longest side in a obtuse triangle is the one opposite to the obtuse angle.
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Lemma 2.1.2. For0 < 6 < 7/2 and Ry, Ry > 0 it holds
|Rle’.‘9 — Rgef"el > 2min(R1, R2)sin6.
The proof is contained in the following Figure. Define
wy = min(Ry, Rg)eie, wy = max(R1, Rz)eie :

then
‘Wl — VI_/2’ = ‘V\_/l — W2’ Z |W1 — VI_/1’ = 2min(R1, Rg)sin 0.

In our case 6; = 0, = (1 — a/2) and
min(R1, R2) = min(|un(t)|* %2, [un(s,)[*~%/?) > min |up|*~%/2

and so we obtain

16C/?
M(up) > m sin(7(1 — a/2))(min |u,|)>~
but letting
lun||gr — +o0
it is clear that M(u,) — oo as well, hence we conclude. O

The main feature of the Maupertuis functional is the link between its min-

imisers and the solutions of (2.0.1)).

Lemma 2.1.3. For each critical point u of M we have that

_(t (P laoPde 2
x(B) =u (w) ©= (2ﬁ1 U(u(t))dt)

is a smooth zero energy solution of ([2.0.1)) on the interval [—w, +w].

Proof. Refer to [ST13, Theorem B.1]. O
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We will make use of the connection between M and another functional, the
action functional, given by

1 1 .
A = [ (Gla0]+ Uu(e)) de (2.1.10)
It can be shown that for any u € T(p1, p2) or u € A it holds

2M(u) = inf Ai_g e)(u(-/9©))

©>0

and in particular for every minimiser of M it holds

2M( U) = A[—w,w] (X)

where u and x are linked as in the previous Lemma.

Minimisers and properties We recall some variational and topological prop-
erties of the Maupertuis minimisers that will be used later on.

Lemma 2.1.4. a) M admits a minimiser in the weak H' closure of any
homotopy class inside T'(p1, p2) or A.

b) M is independent of linear time rescaling, hence linear riparametrisations
of minimisers are still minimisers.

c) Let u be a minimiser of M in some homotopy class inside either A or
[(p1, p2). Suppose u is collision-free and let [a, b] C [—1,1] and ¢q1 =
u(a), g2 = u(b). Then the restriction

1
i(t) = u (2((1 et (14 t)b)>
minimises M in the homotopy class [uj[, 5] C F(ql, Q).

d) If u and v are collision-free minimisers of M respectively in F(pl, p2) and

~

[(p2, p3) then the concatenation

_Jou(@t+1) te[-1,0)
uFv(t) = { v(et —1) tel0,1]
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is a minimiser of M in its homotopy class inside F(pl, p3).

Proof. For a) we give below a simple example on how a minimiser can be built
thanks to the choice of a. b) follows from the definition of M. For ¢) and d)
we refer to [Casl?, Lemma 3.2].
Let A = [u] be a homotopy class contained in T(py, p2). Let A be its weak
H* closure and call
A={veA: M(v)< +oo}.
We build an explicit element in A. We note that blow up problems may arise

only in the proximity of X, so we choose p; = ¢; and define

14+ t\°

V(t) =i+ <2> (o — 1),

Setting M = |p2 — c1] and n = (p2 — c1)/|p2 — a1, it holds

o(t) = % <1J2”>01

and v belongs to L2([—1,1]) if and only if o > 1/2. Recalling (2.1.1)) we
compute

202

I\/Ia 14+t

2

+/ Ui(x(t))d

M 1 20—2—a0
<y Mom (H) y
200 _1 2

my
at /1 Maler + (L + /27 (o2 — a1)°

M(v) = dt

which is bounded if and only if o < 1/(2—c). Hence choosing o €]1/2,1/(2—
a)[ we have M(v) < +o0. A similar example can built when [u] C A. O

Remark 2.1.1. We point out that for a > 2 the existence of a minimiser in each
homotopy class is not guaranteed. On the other side, in that case there cannot
be collision minimisers, hence each minimiser gives rise to an entire classical
solution.
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On the topological side we can immediately exclude some self-intersection
behaviours of minimisers.

Lemma 2.1.5. Let u be a minimiser of M in any homotopy class off(pl, p2)
or \. Then

1. it cannot exist a null-homotopic subloop of u (1-gon), i.e. [a, b] C [-1,1]
such that u(a) = u(b) and u|[, ] is null-homotopic;

2. it cannot exist a null-homotopic double self-intersection of u (2-gon), i.e.
I, I, C [-1,1] such that Iy N I, = 0, u identifies the endpoints of I;
and I and ujp, #u1, is null-homotopic.

Proof. We refer to [Casl?, Proposition 4.6]. In general we rule out tangential
self-intersections thanks to Lemma and the uniqueness of the solution of
the Cauchy problem associated to . For transversal self-intersections,
here the main argument is the possibility to build a non-smooth minimiser: in
the first case it is uj[_1 57 U|[p,1) While in the second case it can be

-1
U\[—l,az]#“\[bl,al]#ullm,ll

where we supposed I1 = [a1, b1], [ = [az, b2], — 1 <ai < b <ax<b <1
and u(a1) = u(b2), u(by) = u(az). We briefly wrote u=1(t) = u(—t). O

Lemma 2.1.6. Let {up}, be a sequence of minimisers of M and suppose it
converges uniformly on compact sets to a limit us. Then ue inherits the
minimising properties of the previous Lemmas on any compact set on which it
is collision-free.

Proof. Refer to [FT00, Lemma 1.5]. O

2.2 Topological characterisation

Let
¢1,6& e S §&1#&
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be two given angles. For each fixed R > K let 45 € F(cl,Ril) be a self-
intersection free path and be ugr a minimiser of M in the weak H! closure
of the homotopy class [yg]. The existence of ug is granted by Lemma [2.1.4]
Call xg the parabolic solution of obtained after a time rescaling of ug
(Lemma [2.1.3), which is collision-free thanks to [ST13, Theorem 4.12]. In
passing to the limit for R — +o0o0 we must check that

1. the (weak) limit TTy exists and corresponds to a generalised solution of
(2.0.1)

2. Ty preserves the asymptotic direction &1, i.e.

m no(t)
=40 Mo ()]

=&

3. Ty is collision-free.

The arguments for 1-3 follow the ones in [BDP17] and we will detail them more
in the proof of Theorem 2.3.1]

We have thus built a branch TTy that joins ¢; to infinity without crossing
Y. With a iterative procedure we now build TT{, TT5, ..., TTy_1 as the parabolic
solutions associated with minimisers of M in the homotopy classes of self-
intersection free paths belonging to

r;:{UGF(Ci,CHl) u(] -1, 1)N UHJ_Q)} i=12...,N=2
respectively. Note that [; is never empty as

i—1
R\ |J

Jj=0

is path-connected: moreover, it holds

i—1
mnym={a}, i=12..N-1
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Eventually, we build TTy in the same fashion as Ty but taking into account
R i—1
YREJuET(en, RE) : u(l-L1)Nn YT =0
j=0

and we call

Letters and words

Definition 2.2.1. A word is a sequence of letters
Z:(/,'),'ej, /,'E{O,].,...,N}VI'EIQZ.

z is finite if |I| < +o00, semi-infinite if I = N\ {0} or I = Z \ N and infinite
if I = 7. A word is non redundant if for each i,j € I such that |i —j| =1 it
holds /; # I;, i.e. it does not contain consecutive identical letters.

In the following, for a finite word z we denote by z” the juxtaposition of n
copies of z and by z* the limit of z" for n — co. z~! denotes the reverse word
of z, which in the case of finite and infinite words simply means the specular
word while in the case of semi-infinite words it also changes the unbounded
side: if z is unbounded on the right (I = N) then z=! is unbounded on the left
(I =Z\N) and they read

z=hh...dy..., zl=..l,... ]2l

Definition 2.2.2. A smooth path 7 in R? \  is said to realise the word z if
{t :y(t) € M} = {t;i}icr is such that t; < t; for i < j and

y(t;)em, Vi=1,..., n
with transversal intersection.

Note that non redundant words identify the homotopy class of y in R?\ .
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Remark 2.2.1. The definition features a discrete set of intersection instants be-
cause in the following «y will be a minimiser of the Maupertuis functional in some
homotopy class and as such the intersections with TT will always be transver-
sal. We will prove that the intersection instants with any TT; with 1 </ < N
cannot accumulate thanks to the uniqueness of the solution for the Cauchy
problem associated to our problem, while outside a large ball containing X, say
for x| > K, the gravitational field is bounded and so the orbits cannot rotate
fast enough to generate an accumulation point for the intersection instants.

The next definition is crucial.

Definition 2.2.3. A non redundant word z is admissible if either
i — 1] >2 Vi,j € I such that |i —j| =1
or, fora,b,b+1,c€{0,1,...,N},
1. if z contains the string ab(b + 1)c then

c<a<b or a<b<b+1l<c or b+1l<c<a (221)

2. if z is a finite or semi-infinite word and begins with b(b + 1)c then

b+1l<c

3. if z is a finite or semi-infinite word and ends with ab(b + 1) then

a<hb

4. z71 satisfies 1 — 3.

Remark 2.2.2. Note that 2-3 can be viewed as particular cases of 1 choosing
respectively a = —1 and ¢ = —1 in (2.2.1). 4 means that admissible words can
be read also in the opposite sense.
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The admissibility of words and hence of homotopy classes find motivation in
the work of Castelli [Cas17], in which paths that display a subloop around one
single centre are not allowed. As we will see, when 1 < a < 2 the restriction
to admissible classes is unavoidable in order to obtain collision-free solutions,
which can be easily ruled out in the case a > 2 (strong-forces case) as done in
[ETQQ].

Our statement is more articulate being given directly on the symbols with
which we characterise the solutions. The following Lemma clarifies the connec-
tion between the two definitions.

Lemma 2.2.1. Let u be a collision-free minimiser of M in some homotopy
class in T(p1, p2) or A which realises an admissible word z. Then any subloop
of u must enclose at least two centres.

Proof. We argue by contradiction. If u turns around a single centre then z
must contain a string of the type b(b+ 1) or (b + 1)b. We then check point
1-3 of the admissible word definition. If we fall in the case of point 2, i.e. z
begins with b(b + 1)c, it is clear that to close the loop it must be ¢ < b,
but this contradicts the admissibility of z (note that ¢ # b+ 1 because z is
non redundant and there are no other cases as 1-gons and 2-gons cannot occur
thank to Lemma[2.1.5)). If instead we are in the case of point 3, i.e. z ends with
ab(b + 1), then the loop closes only if a > b+ 1, which again is not allowed.
Finally, if the string is of the type of point 1, ab(b + 1)c, then we have two
ways to close the loop around a single center:

e if a < b then it must be a < ¢ < b but the first and second of ([2.2.1])
rule out this possibility;

e if a > b+ 1 then either ¢ < b or ¢ > a, not allowed respectively by the

second and third of ((2.2.1]).

We are finished as z cannot be admissible if v admits a subloop enclosing only
one centre. 0
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2.3 Main results and proofs

By scattering solutions we mean solutions with prescribed asymptotic directions
and following a prescribed path around the centers.

Theorem 2.3.1. Given
ggiesl, Al

and a finite admissible word z of odd length such that 0 < I[; < N for at least
one letter, there exists a zero energy solution x of (2.0.1)) which realises z and

satisfies
t
lim |x(t)] = +o0, lim x(t)
t—+oo t—+o0 ‘x(t)‘

=& (2.3.1)

We ask for at least one letter belonging to {1,2,..., N —1} to avoid trivial
parabolic solutions such as the keplerian ones in the case N = 1.

Remark 2.3.1. This theorem can be viewed as a generalisation of the result ob-
tained in [BDP17]. There, no self-intersections were allowed and the scattering
solutions were separating ¥ in two given subsets.

Once the partition P C £, P # 0, X and the asymptotic directions §_ # £
are given, it is always possible to build TT such that the centres contained in
P, say, {c1,...,ck}, are joined first and the centres not contained in P, say,
{ck+1,.-.,¢cn}, come after. Then the word realised by the desired scattering
solution is simply z = k.

Remark 2.3.2. TI can be viewed as a singular scattering solution with asymptotic
directions &1, &».

Proof. The proof follows closely the scheme proposed in [BDP17, Sections 3.2—-
4]: scattering solutions are obtained via a limiting procedure of fixed endpoints
problems (Bolza problems). To pass to the limit we must first prove that there
is convergence in a suitable sense; subsequently we must check that the limit
is a classical parabolic solution that preserves the asymptotic directions §_, &
and realises z.
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Given &_ # &, we can write
gr = e

with, say, 0 < 0_ < 6, < 27. Now fix 8; € (6—,0,) and 6> € [0,27)\ [6_, 6]
and build TT as in Section [2.2] with asymptotic directions

61 — ei91 52 — ei92'

Let now R > K be fixed and g € F(Rf_, R¢.) be any path that realises
z. Call ug a minimiser for M in the homotopy class of yg and let xg :
[~wr, +wr] — R? be the parabolic solution obtained after a time rescaling of
ugr. xg is collision-free thanks to [ST13, Theorem 4.12] (note that is
crucial). We need to prove that the action functional

Al 1ay(u) = /11 (3101 + Uu()) dt (23.2)

evaluated on xg inside the ball of radius R is uniformly bounded with respect
to R, namely
limsup A

R—+o00

[t;,tj;](XR) < +o00 (2.3.3)
where tm < t} are the unique instants for which |xg(t5)| = K. This is done
exactly as in [BDP17, Section 3.2], the only difference being in an arbitrary path
v € F(KE_, K¢.4) which in our case may display self-intersections but surely
preserves the boundedness of its action. From (2.3.3) we deduce after brief
calculations that HXHH}OC is uniformly bounded: hence, xg converges weakly in

H} .(R) and uniformly on compact sets to a generalised parabolic solution xgo
of (2.0.1).

The proof that x. inherits the asymptotic directions &1 is carried on in
[BDP17, Section 3.3]. To show that x is collision-free the usual Levi-Civita
regularisation works for the case o = 1, whereas if o € (1,2) the argument of
[BDP17,, Section 3.4] can be adapted as well because of our choice of admissible
classes: we recall it briefly. If

26 ;= min|¢ — ¢;
rggjr.licf Gl
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then each xg cannot self-intersect inside Bs(c;) for all i, otherwise it would
contradict either the admissibility of z (loop around a centre), the regularity of
minimisers (empty loop with transversal intersection) or the uniqueness of solu-
tions for the Cauchy problem associated to (empty loop with tangential
intersection). O

The result on semibounded solutions is given in the case of a semi-infinite
word z unbounded on the right (I = N\ {0}). A symmetrical result holds if z
is unbounded on the left (I = Z \ N) and the proof can be carried on similarly.

Theorem 2.3.2. Given §_ € S' and a semi-infinite admissible word z such
that 0 < I[; < N for at least one letter, there exists a zero energy solution x of
(2.0.1)) which realises z and satisfies

x(t)

tﬂ@()o Ix(t)| = +o0, |L$il;([)) |x(t)] < +o0, JTOO x(0) =¢_.
(2.3.4)
Proof. Let
zZ = /1/2/3 L. = (/l),oil

be a semi-infinite admissible word and fix §+ € S, é_ # &.. Let &,&> be
two “intermediate” directions and build TT as in the scattering case. Now for
all fixed n € N and R > K let x, g denote a parabolic solutions related to the
homotopy class of 4 € F(Rﬁ_, R¢.) where «y realises [z],, i.e. the truncation
of z up to the first 2n + 1 letters. Suppose for simplicity sake that

0< h, /2n+1 < N,

otherwise take into account the greatest odd length string of [z],, such that the
first and last letter belong to {1,2,..., N —1}.
We fix R and for now we drop the label. After a suitable time rescaling let

Xa(0)] = K = [xa(Th)|

and
O0<ty <ty <...<ty1<Th
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be the intersection instants with TT, namely
Xn(t,n) € ]T/i.

Since TT;, is compact for all i =1,2,..., N — 1 there exists p; such that up to
a subsequence
xp(t]') = pi € T, for n — 4o0.

Consider now two consecutive letters, for simplicity sake /; and h. If | —
| > 2 then, called

5*:min{|x—y\: x €Ty, y ey, \/;—IJ-\ZZ},

it clearly holds
|p1 — p2| > 6™

In passing to the limit for n — 400 it must be
Xn|[t7,e5] —7 X[t1,te]

with x(t1) = p1, x(t2) = p2. Indeed, if after suitable time rescaling x|, 1] is a
minimiser of M, then it holds

th—t1 >u>0

where p depends possibly on 6* and M(x) but is independent of n. This follows
from

A9 2 [ U(O)de < (12— 1) sup U

If instead [ — | = 1 then it may happen that p1 = p2 = Cnax{s,5}- In this
case however we can be sure that p3 # p; because of the admissibility of [z],.
More generally, for all 2 < i < 2n it cannot happen

Pi-1 = Pi = Pi+1
and henceforth it must be

max{t; —ti—1, tiv1 — t,'} >uw>0.
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It easily follows that, upon proving the limit x(t) is a local minimiser for

M,

Th > Z(t{’H —t{) = 400 for n — 400
and hence x remains trapped inside the ball Byk.

We devote the rest of the proof to show that x, g — x weakly in H% _ and
uniformly on compact sets by means of a uniform bound on the action (2.1.10))
inside the ball Bk with respect to both n and R.

Since 0Bk we call pg the limit of x, g(0) for n — +o00. We fix 7 € N and
a path 4 such that

¥(=1)=po,  F(+1) = p2s

and 4 realises [z]5—1. For any n > i we define on [—1,1]

m(©) = Rexp (arg(,0(0) + 5 (arg(po) — arglxn(0) )
m(e) = Moy (3+ 57 (0 2))
where T, (a) = poi and T, (b) = x, r(t5). We then call
m(t+2) -3<t<-1
¢(t) = A(t) -1<t<1
7]2(t—2) 1<t<3
and by {(t) = ¢(t/3).

We can now proceed to evaluate the action for x, g over the fixed time
interval [0, tJ-]. First, by the zero energy equation we have

Afo,¢5,1(xn,r) = 1/2M(un,r)

where up, g is a [—1, 1] time rescale of Xn,R|[0,¢5.]- By minimality

2M(upR) < \/2M(C) = gg’;A[—e,e](f(t/G))
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and taking advantage of the linearity of the action functional and its indepen-
dence of time translations

521; A,01(8(t/6)) < Al_33(¢) = A_11y(m) + A_1,1(F) + A11(m2)-
Recalling the definition of n, it is easy to infer
A—1,1(12) < Apa 5] (Thgffa,61) < A(TT;) = Mo

which is constant and bounded being TT,, a parabolic solution of (2.0.1). As
for 4, being smooth and bounded away from X\ {cp,, ¢p,;,, } it must be

Ai-11)(%) £ Mo
and finally, since n; is as well smooth and bounded away from X it also holds
Ai-1,(m) < My
Therefore, for all n > n it holds
Ap,ip1(xn,R) < Mo + My + Mz < 400

from which we deduce that ||x,g|| is bounded in H}_ and hence we have
uniform convergence on compact sets. O
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Chapter 3

Persistence in ecological
systems and periodic
solutions

The concept of persistence has undergone a huge increase of popularity through-
out biomathematics in the last two or three decades. From epidemiological
models to competing-cooperative species ones, the coexistence of all popula-
tions is a key property often investigated, and the conditions for its validity or
its failure are increasingly refined in order to apply to more and more models,
both of theoretical or applied origin, and described by differential equations of
all kinds.

In this Chapter we focus our attention to the mathematical interpretation
of time-persistence in the context of models described via ordinary differential
equations, thus evaluating the asymptotic behaviour of the models and in do-
ing so entering the vast framework of semidynamical systems. Though other
types of persistence have recently arisen much interest (e.g. spatial persistence
and pattern formation) our discussion is nonetheless actual as a large part of
literature deals with such problems, with many numerical studies that have still
to find rigorous explanations on the mathematical side. We point out that
persistence comes to be a weak assumption when looking at the asymptotic

65
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dynamics: for such it is commonly taken into account its stronger counterpart,
uniform persistence, which asks for extinction to be avoided also asymptotically.

Historically speaking there have been two main mathematical approaches to
persistence, with a peak of works at the end of the 80s, also if the basis of the
discussion were laid before [FW77| [FW84]. Usually addressed as “flow on the
boundary” and “Lyapunov-like function” ones, they both share the focus on the
behaviour of the model near the boundary of the domain, which usually embod-
ies the concept of extinction. The “flow on the boundary” approach, which finds
its core result in the well-known work [BFW86], analyses the flow restricted on
the boundary and by a suitable decomposition generates conditions to check on
the flow that assure the global persistence: see [Hof89] and references therein
for a concise but effective presentation of this approach. The ‘Lyapunov-like
function” key feature is in displaying a generalised Lyapunov function that in-
creases along the orbits, thus guaranteeing the repulsiveness of the boundary:
the first result on this side is given [Hut84] and improved on the point of view of
applicability in [Fon88], but many more generalisations have been proposed also
in recent times, and we recall especially [RMB14] as it will be our main source
in Section 3.2l The two approaches find some sort of unification in [Hof89],
being combined through the notion of Morse decomposition of the boundary:
hypotheses of one approach or the other can be checked as needed on each set
of the decomposition, allowing a greater feasibility. For a thorough account on
these two approaches we suggest the survey [Wal91].

A feature that has granted persistence such exposure is its connection with
a very important quantity in ecoepidemiology, the basic reproduction number
Ro, a crucial tool in studying biological and ecological models and especially
epidemics. Introduced in the well-known Kermack-McKendrick model, it has
found many applications and has been generalised in many ways, one for all
[DHM90]. For a complete historical account we refer to the interesting book
[Bacll]. A first interpretation sees Ry as the number of secondary cases pro-
duced by an infectious individual in a completely susceptible population. When
the model displays periodic coefficients or delays, the meaning of Ry is less
immediate and can enclose more specific informations on the model, see for
example [BAD12]. Even in the case of autonomous models Ry can be deceiving
if we follow the simplistic definition given above: a striking example is given in
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[BH13b], which will be discussed in detail in Section [3.2]

Many works have highlighted the connection between persistence and Ry:
the role of Ry as an invasion marker motivates its natural appearances in survival
or extinction conditions such as persistence. Without claiming to be complete
we enumerate some general results on the side of biology and epidemics which
are close to our framework and which we will recall afterwards in our discussion:
[MR03, RMB12, [GR16).

Another connection can be found between persistence and the existence of
periodic solutions when the model features periodic coefficients. Many tech-
niques have been applied, mainly based on the topological degree theory and
fixed point theorems, to obtain some general existence results. Our dissertation
focuses on [Fer90], in which these results are given in the context of periodic
processes, which include semidynamical systems. We stress that in general con-
ditions like uniform persistence and permanence do not necessarily imply the
existence of periodic solutions, and we provide a counterexample in Section[3.3]
Other works [Zan92, [BZ98] underline the association between fixed points of
the Poincaré map and persistence, and both properties have extensively stud-
ied: we recall three papers that are near in spirit to the discussion and deal with
predator-prey systems [Kir89, [LGOT96, [Tin01].

The aim of this Chapter is double. We introduce some definitions and tools
in the framework of semidynamical systems and locally compact metric spaces,
although we point out that concepts like uniform persistence or permanence can
be defined in much more general frameworks, as done in [FG15]. We choose to
present them in such fashion for the applications’ sake. In Section[3.2]we analyse
two autonomous models which have been studied numerically, providing a neat
theoretical result of uniform persistence: we complete the discussion in the
Appendixes where a full stability analysis is performed. In Section we start
from uniform persistence to provide a general existence theorem for periodic
solutions in the more general context of periodic processes, following the line of
[Fer90] and applying standard fixed point results as well as some degree theory.
Our approach is close to the one exposed in [Zha95]. The theorem and the
persistence tools are then applied to three different models coming from the
biological area to obtain a periodic solution as well as uniform persistence.
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3.1 Theoretical framework

Let Ry = [0, +o00[ denote from now on the non negative half line and (X, d)
be a generic locally compact metric space. Given a closed subset X C X let 7
be a semidynamical system defined on X, meaning a continuous map

mT: X xRy = X

such that

i) 7(x,0)=x

> 0.
i) w(n(x,t)8)=m(xt4s) NS0

We introduce concepts and results in the framework of continuous semidynam-
ical systems as it is the most natural when dealing with applications coming
from ecology: a clear example is given in Section [3.2, All of the following
can be extended smoothly to dynamical systems, even in the case of local
(semi)dynamical systems, taking advantage of the metric space setting and re-
sults such as Vinograd's Theorem (see [Car72]). Section will be developed
in the framework of w-periodic processes, which better describe flows coming
from periodic coefficients ODEs: although we will provide extensions of defini-
tions and results note that a discrete semidynamical system can be associated
with each w-periodic process, hence again we can extend the following contents,
provided some care in treating objects no more continuous.

We fix some notation that will be used throughout the chapter. The w-limit
of a point x € X is defined as

w(x) ={y e X: 30 < t, 7 +oo such that 7(x, t,) — y}.

We will assume that 7 is dissipative, i.e. for each x € X it holds w(x) # 0 and

the set
U w(x)

xeX

is precompact in X (i.e. has compact closure in X).
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Remark 3.1.1. We hereby note that a w-limit set does not need to be closed,
even in the case of a dissipative semidynamical system. Consider the Duffing

equation in the phase-plane:
X=y
y =x—2x3.

The energy is given by E(x,y) = y?/2 — x?/2 + x*/2, so that for each ¢ > 0
the energy level set E. := {(x,y) € R?: E(x,y) = c} corresponds to a closed
orbit. If we the define 7 as the flow of the system on

X :={(x,y) eR?: E(x,y) < c}
for some ¢ > 0 then being X compact 7 is dissipative but it is easy to see that

w(X) =X\ (Eo \{(0,0)}),

which is not closed. O
The stable manifold of a subset Y C X is given by

WA (Y) ={xe X: w(x)CY}.
Some other concepts are introduced in order to better unfold the discussion.

Definition 3.1.1. Let Y C X. Y'is

o forward invariant with respect to = if and only if

(Y, t)CY Vt>0;

o isolated in the sense of [Con78] if it is forward invariant and there exists a
neighbourhood N(Y) of Y such that Y is the maximal forward invariant
set in N(Y);

o a uniform repeller with respect to 7 if Y is compact and if it exists n > 0
such that
liminf d(Y, m(x,t)) >n VxeX\Y.

t—-o00
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The semidynamical systems 7 is called
o uniformly persistent if X is a uniform repeller;
o permanent if 7 is dissipative and uniformly persistent.
]

Permanence implies the existence of a compact forward invariant attractor
K C intX such that d(K,0X) > 0 (see [Con78, Chapter I1.5] or [Hut84,
Theorem 2.2], recapped later in Theorem .

In this preliminary Section we give some criteria for the global uniform persis-
tence of 7. All the following results come from the two approaches to persistence
illustrated before, the “flow on the boundary” and the “Lyapunov-like function”
ones. In enunciating them we provide here and there some slight extensions
but the main goal of our work is to apply them in an original way, combining
these criteria and checking them on suitable partitions of the boundary and in
a carefully chosen order.

On the “flow on the boundary” side, the key feature of [Hof89] is splitting
the repulsive set into a Morse decomposition, allowing to check some necessary
and sufficient conditions for uniform repulsiveness on each Morse set instead of
the whole repeller.

Definition 3.1.2. Let ¥ be a closed subset of X. A Morse decomposition for
Y is a finite collection {My, My, ..., M,} of pairwise disjoint, compact, forward
invariant sets such that for each x € ¥ either x € M; or w(x) C M; for some
i=1,2,...,n.

Our first repelling condition, illustrated in [BEW86], is stated in [Hof89] as
follows.

Theorem 3.1.1. Let X be a closed forward invariant subset of X. Given a
Morse decomposition {M1, Mz, ..., M.} of ¥ such that each M; is isolated in
X, a necessary and sufficient condition for X being a uniform repeller is that

WS (M) CY Vi=12...,n
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This quite powerful result allows to check the repelling conditions not on
the whole X but on the Morse sets instead, which by definition are the w-limits.
In the case of an ODEs system these usually coincide with the equilibria on the
boundary of the domain and are quite easy to compute: the difficult task is to
evaluate the stable manifolds of such equilibria, which in general may be quite
complicated objects.

On the “Lyapunov-like function” side, [Fon88] provides many useful criteria
to determine whether a set is a uniform repeller or not. One sufficient condition
is given when the set X is not forward invariant.

Theorem 3.1.2. Let ¥ C X be compact and X \ ¥ be forward invariant. If
for any x € ¥ there exists t, > 0 such that

m(x, t) € X\ X
then X is a uniform repeller.

We note immediately that if ¥ = 0X then a straightforward consequence
of the theorem is that when the flow computed against the normal outward
vector to the boundary returns a negative quantity then the system is uniformly
persistent.

The main result of this second approach to persistence was first enunciated
in [Hut84] and later successfully improven in [Fon88] on the side of applicability.

Theorem 3.1.3. Let ¥ C X be compact and such that X \ X is forward
invariant: suppose moreover that it exists a continuous function A : X — R
satisfying

i) N(x) =0 ifand only if x € ¥;

ii) there exists a lower semicontinuous and bounded below function  : X —
R and o € [0, 1] such that

a) A(x) > A*(x)9(x) Vxe X\ X
b) sup/0 P(m(x,s))ds >0 Vx € w(X).

t>0
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Then ¥ is a uniform repeller.

The derivative that appears in a) denotes differentiation along the orbits or
Dini derivative (see for instance [LaS76]). In the following applications, when
A is differentiable on a open subset of RV containing X and the semidynamical
system 7 is the flow of an ODE of the type x' = f(x), we can write

A(x) = (DA(x), f(x)).

Note that this result is derived from a more general abstract theorem in [Fon88],
in which the differentiabily of A along the orbits is not required and the state-
ment gives necessary and sufficient conditions for uniform repulsiveness. We
point out that some useful discussions on this work and a minor correction of
the proof are carried on in [Tel07].

Theorem can bump into some issues when dealing with models of
various genesis due to the assumption of X being compact. Many versions of
this result have been proposed: in [Hof89] a similar result is given for ¥ closed
and forward invariant, which again can cause some problems as in general the
boundary is not wholly forward invariant. In Section we give a very useful
generalisation that is illustrated in [RMB14], where the hypotheses are weakened
with a payback in terms of dissipativity of the semidynamical system =: this
result is based on [Fon88, Theorem 1] and we add a characterisation close in
spirit to Theorem [3.1.3]

We conclude this brief introductory Section by pointing out that all these
three sufficient conditions for uniform persistence (along with many others that
we do not recall here because not needed) can be combined in some clever way
when dealing with models coming from the literature, as in general each of them
fail on the whole boundary. This is our aim in Section [3.2 where an iterative
procedure is applied, and Section [3.3] where instead a juxtaposing scheme is
used in the applications.
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3.2 An unusual autonomous prey-predator model
with a diseased species

In [BH13b] the Authors illustrate two models displaying some interesting asymp-
totic behaviours with peculiar consequences on the basic reproduction number
and its reliability in predicting the evolution of the systems. Among others two
models are studied, featuring a prey and a predator population with an infec-
tious disease affecting one or the other. It is shown by numerical means that
under some choices of the parameters the basic reproduction number R asso-
ciated with the non trivial disease-free stationary equilibrium fails in its role as
a marker for the spread of the disease. Indeed, as under those hypotheses the
equilibrium is not stable, it seems quite a natural assumption that an analysis
focused on such point may not reflect the asymptotic dynamics of the system.
Instead, the stable limit cycle bifurcating from the unstable equilibrium may be
the right place to investigate for the long-term behaviour. To the best of our
knowledge no formal explanation for this insight has been proposed yet, and
that is the aim of this Section.

The interesting feature of the systems we take into account is that although
they are autonomous the disease-free dynamics is ruled by a limit cycle, which
acts much like a periodic perturbation of the systems themselves. Under this
point of view the newly defined Ry, an average quantity evaluated over the
period of the limit cycle, is close to the one introduced in [BG06] and [WZO08].

We make use of the mathematical theory of persistence introduced before
to reach a result that includes and justifies some of the numerical evidence in
[BH13b], pointing out also some differences and counterexamples as well as
some open problems. After a theoretical preamble we analyse the model and
its flow on the boundary and test the conditions for uniform persistence mainly
given in [RMB14]. We discuss the results and their connections with the original
work. In Appendix [A| we deal with the analysis of the disease-free model, for
which existence and stability of the equilibria are illustrated, while in Appendix
a full stability analysis is carried on for the two models taken into account.

We fit in the framework illustrated in the previous Section, thus having a
semidynamical system 7 defined on a closed subset X of a locally compact
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metric space. As anticipated, we provide a handy version of Theorem as
exposed in [RMB14], adding a slight modification in order to derive suitable
conditions for the models we take into account.

Theorem 3.2.1. Let ¥ be a closed subset of X such that X \ ¥ is forward
invariant. Suppose X admits a compact global attractor K in its interior and

that there exist a closed neighbourhood V' of ¥ and a continuous function
A: X — Ry such that

i) N(x) =0 ifand only if x € X ;
i) VxeV\E Ft>0: A(7(x, t)) > N(x).

Then X is a uniform repeller. If moreover ¥ is forward invariant then condition
i) can be replaced with

ii’) it exists a continuous function 9 : X — R, bounded below and such that
a) A(x) > Ax)P(x) VxeV\I;
b) supesg fo ¥(m(x,5))ds >0 Vx € w(X).

Proof. The only thing that needs proof is that ii’) implies ii) when X is forward
invariant: the result is otherwise proven in [RMB14] in the same framework.
We use the proof scheme illustrated in [Hut84] and [Fon88].

The first step is to prove that given b) the average condition holds true for
all x € ¥. Since 9 is continuous, the map y + sup;~q fo ¥(7(y, s))ds is lower
semicontinuous. Being closed and contained in the compact global attractor

K the set w(X) is compact, thus condition ii’) and the permanence of sign
guarantee that there exist § > 0 and an open neighbourhood Wj; of w(X) such
that .

sup | Y(m(y,s))ds >4 VyeWs.

t>0J0

Fixed x € X, by definition of w(X) there exists ty such that 7(x, t) € Ws for
all t > to, so let us call x; := 7(x,ty). By definition x; € W;s and by the
previous inequality there exists t; such that [;* ¥(m(x1,s))ds > §. If we call
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xp := m(x1, t1) = 7(x, to + t1) we can iterate the procedure and come at last
to

t>0 tk—1

t to n t—1+tk
sup / Y(m(x,s))ds > / Y(n(xs))ds+ S / Y(m(x, s))ds
0 0 Pt
to n ti
> /0 Y(m(x,s))ds + Z/O P(m(x, 5))ds
k=1
to
> P(m(x,s))ds + né.
0
By choosing n large enough we get that b) holds for any x € .
Now, condition b) and the continuity of ¢ implies that there exists an open
neighbourhood U of ¥ such that

[2%
VxeU Tt >0: / W(n(x,s))ds > 0.
0

Applying condition a) on a closed neighbourhood V' of ¥ contained in V N U
returns

tx B AN(m(x,s)) , N(x, t))
0< 0 'lp(ﬂ'(X, S))dS S 0 mds = IOg 7/\()()
for all x € V/'\ X, which of course implies if). O

We remark the fact that the second of the last chain of inequalities follows
from hypothesis a) even in the case of a general Dini derivative, thanks to some
general differential inequalities for which we refer to [LL69].
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3.2.1 Models and boundary flow analysis

The model proposed in [BH13b] for the case of a prey-predator population with
a diseased predator is described by the following non linear autonomous system:

N(e) = rN(e)(1 - N(2)) - N(t)ﬁsfl)v(t;(t))
(1) = ()ﬁsfl)v;)f(t))— S(t) — BS(DI(2) (32.1)

I(t) = BS(t)I(t) — (m+ pw)I(t).

N(t) denotes the prey population at time t > 0 while the total predator popu-
lation P(t) is split between susceptible individuals S(t) and infected individuals
I(t). The constants that appear in the model are positive and denote:

r the logistic growth rate of the prey in absence of predator;

h the half-saturation constant of the Holling type Il functional response for
the predator;

m the exponential decay rate of the predator in absence of prey;
1 the mortality increase due to the disease;
B the disease transmissibility.

Likewise, we introduce the model accounting for the case of a diseased prey.

5(6) = f(S(0) + I3 = () ~ 500y sy — B
Fe) = BS(I(e) ~ gy ooy = (1 + r(S(0) + HEI(E)
Ly (S0 I()P(D)

PO = s i P

(3.2.2)

The coefficients have the same meaning as before but now is the total prey
population N(t) to be split between susceptible prey S(t) and infected prey
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I(t), while the predator P(t) is as a whole. Note that the logistic term for the
prey is split between the first and the second equation, which put together read

_d
dt

= r(S(t) + I(£))(1 — (S(t) + I(¢)))

N(t) (S + I)(¢)
(S(t) + I(t))P(t)

Ch+(S() +I(t)

where indeed we spot the global logistic term, the Holling-type Il functional
response for the whole prey population and an additional mortality due to the
disease. This particular splitting choice may reflect certain intraspecific dy-
namics within the prey, for example the diseased population may not enter in
competition for resources with the susceptible one (a possible cause could be
segregation).

From now on we will drop the time dependence when no confusion arises.
We immediately note that the models share a common disease-free predator-
prey system, given by

pl(t),

N=rN(1—N)— %
NS . + (3.2.3)
“hen T

whose analysis is carried on in details in Appendix [Al
To fit both models within the theoretical framework exposed before we set
X =3 and
X ={(xy,z)€X: x,y,z>0}=R3

is the positive cone, which is closed with respect to X. With some abuse
of notation let 7(§,t) : X x Ry — X denote the flow, i.e. the solution of

(3.2.1)) or (3.2.2)) at time t with initial conditions given by £ = (xo, yo, 20). The

semidynamical system 7 is dissipative in both cases as we can prove that for
k > 0 large enough the compact set

Xk ={(x,y,2) ERY : x+y+z<k}

is forward invariant with respect to 7 and the points in Xy := {(x, y,z) € X :
X+y+z = k} are sent by 7 into Xy \ £x. We perform the calculations for the
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diseased predator model but the lower bound that we reach for k holds also for
the dissipativity of the diseased prey model. We compute the flow against the
outward normal vector to X, and simple calculations return

(N,S,I)-(1,1,1) = rN(1 — N) — (mS + (m + p)I)

which is always negative if N > 1 and for 0 < N < 1 it is straightforward to
see that

rN(L—=N)—(mS+(m+p)I) <-—mk+m,

which is negative if k satisfies

.
k>1+ —. 3.2.4
>1+ am ( )

This lower bound ensures the forward invariance of X}, the uniform repulsiveness
of Xx C X for each k thanks to Theorem(3.1.2} and thus the global dissipativity
of .

Diseased predator boundary flow Fixed k as in (3.2.4)) we now restrict our
analysis to X, and move to the study of the flow on its boundary 0Xy. For
convenience sake we split the boundary in three faces (note that in regards of
persistence the face X is of no interest any more):

O Xk ={(x,y,z) € Xy : x=0}
O, Xk ={(x,y,z) € Xx: y=0}
0. Xk ={(x,y,z) € Xk: z=0}

The axes are forward invariant. The predator-only axes follow the dynamics
of the predator-only face 9 Xy, which is forward invariant as well and is ruled
by an exponential decay of rate m, as it is easy to see when taking into account
S+1I:

d(S+1)
dt

Thus the whole face (axes included) is exponentially attracted to the origin.

— —m(S+1)—pI < —m(S+1).
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In the absence of predators the prey has a logistic growth of rate r,

N = rN(1 - N),

so the origin and (1,0, 0) are fixed points of 7 on the prey-only axis, the first
unstable and the second stable with respect to the axis direction.

For the detailed study of the flow on 8,Xy (disease-free case) we refer to
Appendix [Al

When there are no susceptible predators (9, Xy) we have S = (NI)/(h +
N) > 0, hence the face (axes excluded) is mapped through 7 into X \ 0, Xk.
A scheme of the global boundary flow is shown in Figure 3.1}

@

V)]

Infected predator

o
o

Figure 3.1: The diseased predator model boundary flow. We used the parameters
values of [BH13b], namely u = 0.5,r = 2,h = m = 0.3 and § = 1.3. Orbits are
displayed for the forward invariant faces 6,X; and 8,X; while for 8, X; we plotted the
flow vectors. Equilibria are highlighted in red.

The equilibria lying on the boundary are the origin, the prey-only logistic
equilibrium (1,0,0) and the disease-free non trivial equilibrium (N*, P*,0).
Under the crucial hypothesis
1—~h

’ 3-2.5
1+h ( )

m <
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a limit cycle y* arises in the disease-free face 9, Xy (see Appendix[A]). Appendix
is appointed to the stability analysis of such points and orbit.

Diseased prey boundary flow Again, let k be fixed as in (3.2.4) and let us
focus our attention on Xj. Here also we split the boundary into three faces,

O Xk ={(x,y,2z) € Xk : x=0}
O, Xk ={(x,y,z) e Xk : y=0}
0. Xk ={(x,y,z) € Xk : z=0},

but note that here the disease-free face is 8, Xx. The face is forward invariant
and the system reduces to , which is analysed in Appendix .

The infected prey axis {(x,y,z) € X : x =z = 0} is not forward invariant
as S = rI > 0, hence points on this axis are sent by the flow 7 into the prey-
only face 9,Xx. This behaviour extends to the whole face 0, Xy, which is sent
by 7 into Xk \ OxX«k-

The main difference from the diseased predator model is to be found on the
forward invariant prey-only face 8,X. Here the leading equations are

{ S=r(S+I)(1-S)-BSI (3.26)

I=(B8S—(u+r(S+D))I,

which under the condition p < B — r give rise to a non trivial equilibrium point
(S#,I7,0), stable within the face. A schematic boundary flow for the system
is illustrated in Figure [3.2]

The equilibria on the boundary are the origin, the prey-only logistic equi-
librium (1,0, 0), the same disease-free non trivial equilibrium (N*,0, P*), the
new equilibrium on the prey-face (5%, I, 0) and again the limit cycle 4* in the
disease-free face 8, X when holds.

3.2.2 Persistence results

In this paragraph we reach the conditions needed for the global uniform persis-

tence of systems ([3.2.1)) and (3.2.2)) by proving repeatedly the repulsiveness of
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prey
o

Infected
o
>
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Figure 3.2: The diseased prey model boundary flow. Parametersare u =r =1, h =

m = 0.3 and B = 10. The equilibria are highlighted in red.

elements of a suitable decomposition of X, removing them one by one and
restricting the analysis to the remaining part of the boundary. The need for this
iterative procedure will be explained in subsequent discussion.

Theorem 3.2.2. Let system (3.2.1)) be defined on the positive cone R3 with

associated flow w and let the following hold:

1+h

b) BP* > m+pu
c) for all (Ng, Sp,0) € v*

t>0

. . . 3
Then = is uniformly persistent on RY. .

sup/t(ﬁS(s) —(m+p))ds>0 for 5(0) = So.
0

(3.2.7)
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Regarding the diseased prey model, the theorem reads as follows.

Theorem 3.2.3. Let ([3:2.2)) be defined on the positive cone R3. with associated
flow  and let the following hold:

b) BN* > r+p
c) for all (So,0, Ry) € v*

sup/t(ﬁS(s) —(r+mup))ds>0 for 5(0) = So .
0

t>0

h

d) S* +1# > 1”’

. . . 3
Then = is uniformly persistent on RY .

Proof of Theorem[3.2.2 By the previous calculations 7 is dissipative, hence for
a fixed ky satisfying (3.2.4]) each orbit 7(¢, t) enters definitively the compact
set

X1 ={(x,y,2) €R3: x+y+2z<k},

so for now we restrict our analysis to this set. Hypothesis a) of Theorem
guarantees the instability of the stationary equilibrium (N*, P*,0) as well as the
existence and stability of a limit cycle 4* in 3,X; (note that the computation
of the lower bound on k guarantees v* C Xj).

Let us now call

Y ={(x,y,z) € X1: x=0}.

Y1 is a closed and invariant subset of X;. The origin M; = {(0,0,0)} forms a
Morse decomposition for Y1 being compact, forward invariant and attracting the
whole face so that w(X1) = My. Now, W$(M;) N X1 = X1 (refer to Appendix
[B] for the stability analysis): the saddle behaviour of the origin guarantees that it
is isolated in X1 and we can hence apply Theorem to obtain the uniform
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repulsiveness of X7 in X;. Coupling this with the dissipativity proven before
returns the permanence of ™ on Xj \ X, that is the existence of a compact
invariant attractor K1 C X1\ X1 such that d(K1, £1) > 0 (see [Hut84, Theorem
2.2] or [Con78, Chapter I1.5]).

We can now analyse our flow 7 on

X2 = X1 \ Zl
which is an open subset of X7, hence a locally compact metric space. Setting
Yo ={(x,y,2) €Xp: y=2z=0}

we see that Y, is forward invariant and closed with respect to X,. M, =
{(1,0,0)} attracts all the points in X5 and is indeed a Morse decomposition
for such set. Again, by the stability analysis W*(M,) N X, = X, and hence
Theorem [3.1.1]holds, giving uniform repulsiveness of ¥, and a compact invariant
attractor Kj inside X, \ ¥ such that d(K3, X3) > 0.
Now set
X3 := X2\ X2,

which is again a locally compact metric space. We define
3= {(x,y.2) € Xs: y =0}

Y3 is closed in X3 and X3 \ X3 is forward invariant. Note that X3 itself is
not forward invariant, thus some classical results such as Theorem do not

apply. Recall that by the previous step X3 contains a compact global attractor
K>. The set

Vo= {(x,y,Z)EX3: y< (h+x))(<;l+,32)}

is a closed neighbourhood of X3 and on V we define the real-valued function

ANx,y,z):=y.
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By definition A(x,y,z) = 0 if and only if (x,y,z) € X3 and if (x0, y0,20) €
V \ X3 then

; X020 X0

N(xo, y0, 20) = Wt + v <h+xo — m—ﬁzo>
X020
h yo(m + Bzo)
X020 X020

“h+x (h+xo)(m+ﬁzo)(m+ﬁzo):0

since we are in V. Hence, A increases along orbits that have starting points in
V' \ X3, which means

VEEV\Ts Tt >0: A(n(E 1)) > A).

We are under the hypotheses i) and ii) of Theorem[3.2.1]and we obtain that X3
is a uniform repeller in X3. As before, this leads to the existence of a compact
global attractor K3 C Kj inside X3 \ X3 such that d(K3, X3) > 0.
Eventually, call
X4 = X3 \ 23

and
Y4 :={(x,y.z) € X4: z=0}.

Y4 C Xy is closed and globally invariant thanks to the Kolmogorov structure
of the third equation of (3.2.I)): by the uniqueness of the Cauchy problem
associated with this implies that X4 \ X4 is forward invariant. By the
previous step X4 contains a compact global attractor K3. On X4 we define the
non negative function

Nx,y,z) =z

and we note that A(x, y,z) = 0 if and only if (x,y, z) € X4. Setting V = X4
it holds

A(x.y z) =1 =1I(BS — (m+p)) = Nx,y,2)¥(x.y.2)
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with ¥(x,y,z) = By — (m+ ). In order to satisfy hypothesis /i) of Theorem
[3.2.1] we need to check that

sup ti/)('rr(i, s))ds >0 VE € w(Xa).
t>0J0

The set w(X4) is the union of M3 = {(N*, P*,0)}, the non trivial stationary
equilibrium, and M, = «*, the stable limit cycle arising from the disease-free
model. In the first case the above integral condition reads SP* — m+u > 0
which is exactly hypothesis b) of Theorem and is equivalent to

Ry >1
where
pP*
m+u

*
0-—

As for My, the integral condition is equivalent to hypothesis ¢) of the Theorem.
We hence proved the uniform persistence of 7 in Xj.

To end the proof it suffices to remember that for all k; satisfying the lower
bound any orbit entering X is thereby trapped, and that the argument
is irrespective of the choice of k;. We are done. O

Proof of Theorem[3.2.2 This proof follows the scheme of the previous one, so
let us skip some formal details such as the dissipativity argument and focus on
the dynamics inside

Xp={(xy.2) ERY: x+y+z<h},
with ky satisfying (3.2.4). We set
Y ={(xy,z) € Xy : x=y=0}.

Y, is closed, forward invariant and M; = {(0,0,0)} is a Morse decomposition
for 1. From the stability analysis we get W*(M;) N X1 = ¥; and so Theorem
3.1.1) applies and returns a compact global attractor K1 C Xj \ X; such that
d(K1,Z1) > 0.
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Now, as before
Xy = X1\ 11

and we choose
Yo ={(x,y.z) € Xo: x=0}.

Xs is a locally compact metric space and X, is closed with respect to X but
not forward invariant. In order to apply Theorem we recall the attractor
K1 inside X5 and choose as the generalised Lyapunov function

Nx,y, z):=x,

which is non negative and identically zero only on X5. We can identify a closed
neighbourhood of ¥, on which the function A increases along the orbits, namely

ry
Vi=<(x,y,2z) € Xo: x< > :
{( ) I’k1+y+1+ﬁ}/}

it holds indeed for any (xo, yo, 20) € V' \ X2

A(x0, Y0, 20) = r(x0 + Y0) — X0 (f(Xo +y0) + oS + /3)/o>
Z(
> ryo — xo <rk1 + =2 +/3yo> > 0.
y+1

As shown before this implies condition ii) of Theorem [3.2.1] which delivers
another attractor Ky C Xz \ X such that d(K>, X3) > 0.
For the third step we take X3 := X3 \ X5 and

Y3:={(x,y,z) € X3: z=0}.

Y3 C Xz is closed and forward invariant. We are in condition to apply both
Theorem and Theorem In the first case we must evaluate the stable
manifolds of the two equilibria contained in X3, My = {(1,0,0)} and Ms =
{(S§%, I*#,0)}, whose union gives the w-limit of the face: w(X3) = My U Ms.
From the stability analysis (see Appendix [B)

WS(M2) N X3 = {(x,y,z) eEX3:y= 0} C X3
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while the computation for Ms is more involved but the third eigenvalue is known
and is positive if and only if hypothesis d) of Theorem is satisfied. If we
want to apply Theorem instead we choose

Nx,y,z):=z
and the whole X3 as the closed neighbourhood of X3. It holds

S+1

A(x,y,z):P:P<h+S+I—m

) =A(x,y, 2)¥(x,y, 2)
with ¥(x,y,z) = (x + y)/(h+ x + y) — m. Condition ii") is satisfied if
P(Mz), ¥(Ms) > 0, and the first descends from hypothesis a) while the second
coincides with hypothesis d). We gain a compact attractor K3 in C X3\ X3.

The last step is similar to the one in the diseased predator case as the last
face that remains to analyse is the disease-free one, that is writing X5 = X3\ X3
and choosing

Yo :={(x,y,z) € Xa: y=0}.

Here we apply Theorem with the incidence of infected individuals as the
generalised Lyapunov function:

Ax,y, z):= Xty

Recalling N = S + I and evaluating the time derivative of A

/\_d<1>_f_(f>’\"
“dt\n) TN \N) N

Some calculations lead to

d /1 I I
at () = (85w rvugy).
hence Y(x,y,z) = Bx —p —r+py/(x+y). Now, w(Xs) = M3 U M, with
Mz = {(N*,0, P*)} and My = «*, thus the condition ii") of Theorem [3.2.]]
reads in the first case
BN* —(n+r) >0,
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which is equivalent to
pN*

bt

Ry = >1,
while on the limit cycle it becomes exactly hypothesis ¢). Global uniform per-
sistence is proven. O

3.2.3 Discussion

Condition causes a shift of stability in the disease-free plane, from the
non trivial stationary equilibrium (N*, P*) to the limit cycle 4v*. The natural
thought would be that, since the dynamics approaches the limit cycle instead
of the equilibrium point, a repelling condition should be given on «4*. This
heuristic hypothesis proves indeed true: condition is the key assumption
for uniform persistence, and is given on the points of the limit cycle itself. A
further evidence that the focus should be adjusted on the limit cycle instead of
the unstable equilibrium comes from the flow on the boundary point of view,
where the equilibria form in both models a Morse decomposition of X; which
is acyclic and ends precisely with the limit cycle:

My — My — My +— Ms.

The additional equilibrium point Ms in the diseased prey model does not enter
this chain: actually, it is an independent (trivial) chain itself.

These observations may lead to the conclusion that no condition is needed
on (N*, P*). This proves indeed wrong: in both theorems we still require R} > 1
and this hypothesisE] cannot be avoided in view of the last step of the iterative
scheme illustrated above and the stability analysis carried on in the Appendixes.
In fact, R§—1 is concordant with the third eigenvalue of the Jacobian evaluated
in the non trivial equilibrium point (see Appendix [B): if negative, a one dimen-
sional stable manifold arises that has non empty intersection with the interior
of X1, thus meaning that initialising system ([3.2.1)) - respectively, (3.2.2)) - with

!Note that the definition of R} changes between the models: hypotheses c) of Theorems
and are quite different, both in the use of P* and N* respectively and in the
parameters involved, m for the predator and r for the prey.
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points in int X1 NW*({(N*, P*,0)}) - respectively, int X1 nW*({(N*, 0, P*)})
- results in the asymptotic extinction of the disease.
An example of this phenomenon is provided by the system

. x3
X=y—¢ (3 - x)
_ (3.2.8)

with £,8 > 0 and ¢(s) = max{min{s — 2,0.5}, —1}. A van der Pol equation
in the Liénard plane (x, y) is coupled with a radius-dependent height z which
takes into account the two well-known w-limits of the equation, the unstable
origin and a stable limit cycle on the plane that for 0 < ¢ < 1 is close to the
circumference x> + y? = 4. The result is shown in Figure . The z-axis is
the stable one dimensional manifold of the origin: starting arbitrarily close but
not on it leads the orbit to approach the (x, y)-plane so that the effect of the
instability of the origin pushes the orbit towards the limit cycle. The choice of
@ causes the z-component to increase near the limit cycle, so that condition
holds but uniform persistence fails due to the z-axis being exponentially
attracted to the origin.

In analysing numerically the systems and the Authors provide
in [BH13b] an elegant notion of average basic reproduction number Ry, based
on the limit cycle and similar in structure to Rj: for the diseased predator it

reads o
Ry = 3.2.9
0= T ( )

with P = [ P(t)dt where T is the period of the limit cycle and P(0) =
P(T) € 4*. Similarly, for the diseased prey we have

BN

r+u

Ro =

Their condition for the persistence of the disease becomes Ry > 1, which of
course implies hypotheses ¢) of both our theorems. We can thus say that
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Figure 3.3: An orbit of system starting close to the z-axis, moving away from
the unstable origin in proximity of the (x, y)-plane and approaching the limit cycle,
which is repulsive in the z-direction. Parameters: ¢ = § = 0.1, xo = yp = 0.1 and
79 = 15. The time span is [0, 150]

Theorem and Theorem are rigorous theoretical results that support
the numerical evidence provided thereby. We also reach some more degree of
generality due to our specific condition on the limit cycle, which is independent
of its period.

The definition of Ry is reminescent of the studies on the meaning and the
computation of the basic reproduction number in seasonal models as found in
Bacaér (see [BGO6, BAD12]). In [BGO6, Section 5] a quantity is derived that
generalises the notion of Ry to the periodic coefficients case and indeed, as we
pointed out at the beginning of the Section, the stable limit cycle asymptot-
ically drives the autonomous system as a sort of periodic perturbation. The
link between formula (14) of Bacaér's work and hypothesis ¢) of our theorems
however remains subtle, as the former deals with averages of the periodic co-
efficients while the latter gives conditions on the points of the limit cycle: a
further investigation in this sense could reveal interesting connections.
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It is important to stress that although R§ > 1 alone does not guarantee
uniform persistence, as shown in [BH13b] where the disease extinguishes in
some situations where Ry < 1 < R}, it is still a necessary condition in order
to avoid the presence of an internal one dimensional stable manifold for the
stationary equilibrium. This assumption is not required by [BH13b|: of course,
in that case persistence holds almost everywhere as only a one dimensional set
of initial values leads the systems to the asymptotic extinction of the disease;
moreover, such set is known theoretically from its tangent line but is hard to
compute precisely or to spot by numerical means. Nevertheless it is interesting
to note how the necessary condition R > 1 arises both from the stability
analysis and hypothesis ii") of Theorem .

Quite remarkably, hypothesis d) of Theorem is nowhere to be found
in [BH13b]. This can be explained with the fact that the Authors focus on the
persistence of the disease but not necessarily of all populations. The equilib-
rium (S#,I%,0) can cause the extinction of the predator if not prevented by
the mentioned condition, which can be derived either from the stability analysis
(imposing the positivity of the third eigenvalue, see Appendix[B]) or from Theo-
rem [3.2.1} as we did in the main dissertation. In principle one could argue that
hypothesis d) may be implied by the other hypotheses as it does not clearly
display the dependence on the parameters. We show by a numerical example
that this is not the case. Changing slightly the coefficients given in [BH13b]
we can fit in a situation where and Rg > 1 hold but hypothesis d) fails
and the predator reach extinction approaching the equilibrium (S, I, 0). The
chosen parameters are

h=01 m=08l, B=10, u=r=1,

coupling a strong disease transmissibility with a high predator mortality. Eval-
uating numerically the eigenvalues of J(S*, I, 0) we find

S* 4+ I#

A2 = —1.03586 +0.64794i, A3 =y —
t2 ’ BT hrSELIF

m = —0.02270

and Figure shows a numerical evidence of extinction in the predator-free
equilibrium (S7,I7,0). If we alter the value of m the behaviour can change
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Figure 3.4: A grid of point close to the (5%, I, 0) equilibrium is attracted towards it,
resulting in the extinction of the predator.

dramatically: from some point on the orbits move upwards and this is a conse-
quence of the repulsiveness of the boundary, see Figure [3.5]

An interesting optimality question arises from the comparison between the
hypotheses c) of the theorems and Ry > 1, that is which is the first time 7 > 0
to realise

/OT W(r(x,s)ds >0  Vxeq

For large values of B there is numerical evidence that 7 < T, as we would
expect being the limit cycle independent of B and being easier for the disease
to survive with a high infection rate. However, the dependence on the other
parameters is not trivial and may display some interesting behaviours which are
difficult to investigate theoretically, as little is known about the limit cycle and
its properties.

The proof of Theorems [3.2.2] and is original in its iterative application
of Theorems [3.1.1] and [3.2.1] to some carefully chosen decomposition of the
boundary, progressively removing those sets for which uniform repulsiveness
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Figure 3.5: The same simulation with m = 0.75. The threshold value for the sign-
change of the third eigenvalue is around m = 0.7873.

has been proven. This approach is not redundant, in the sense that standard
techniques does not apply to such a heterogeneous boundary, which is neither
globally forward invariant nor all weakly repulsive. In this setting, the results in
[Hut84] and [Fon88] cannot be used on the whole boundary. Even the powerful
unifying tool [Hof89| Corollary 4] fails on the disease-free face as all the equilibria
(Morse sets) are involved but A(x,y,z) = z does not satisfy the hypotheses
of the Corollary in the origin and in the prey-only equilibrium. To avoid these
points we should restrict A to a subset of the disease-free face which is disjoint
from the x-axis, but then we lose either the forward invariance or the closure of
such subset. It is not clear if a different generalised Lyapunov function could be
defined: it should take into account how each equilibrium has its own instability
direction, as shown in Appendix [B] This is also the reason why Theorem
itself cannot be applied on the whole Xj.

We draw the attention on the abstract problem of generalising such an iter-
ative technique. One issue is intrinsic and lies in the choice of the partition and
in which order to remove its sets from the boundary. We speculate that this
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process could follow the acyclic chain of Morse sets, as it is in our case: there
are however non trivial issues that could arise, especially when the chain is more
involved than the one we showed at the beginning of this paragraph. Another
question is if Theorem could be derived following other approaches. Sys-
tem falls under the class of models (23) of [GR16]: we speculate that
some of the arguments could be adapted in order to prove the persistence of
the disease even if the results therein are given for interactions of competitive
or cooperative type, which is not our case.

Another open question of theoretical nature is to find the reverse of The-
orems [3.2.2] and [3.2.3] A hint is given by the fact that Theorem is a
sufficient condition for uniform repulsiveness but it comes from a more general
result, which also include the necessary condition.

We conclude by pointing out some possible further extensions of this work.
We dealt with the two main models proposed in [BH13b|] but some extensions
are also thereby analysed, for example the case when both populations share the
disease (cross-infection) or when the disease influences the density dependence
of the infected population. It may be interesting to investigate if the techniques
we adopted here can also apply to those models so to reach similar persistence
results. Another interesting possibility is to allow the disease transmissibility 8
to vary in time, for example choosing a periodic function describing seasonality:
this may link again to the previously cited works [RMB12, [GR16] and to the
next Section, in which we discuss the existence of periodic solutions in persistent
models.

3.3 Periodic solutions of ecological models via uni-
form persistence

The aim of this Section is to prove the existence of periodic solutions once uni-
form persistence is given. Such a result allows to deploy the conditions for uni-
form persistence described before in order to obtain not only persistence or per-
manence but also at least one periodic solution. This is done in the framework
of w-periodic processes, which we are going to illustrate thoroughly. We follow
the line of [Fer90], in which the Author extended to w-periodic processes the
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persistence results of the “Lyapunov-like function” approach ([Hut84, [Fon88]),
obtaining some existence results for periodic solutions which however are briefly
justified: we plan to clarify and investigate some of the blind spots. A simi-
lar approach is carried on in [Zha95]: the same Author extended the “flow on
the boundary” approach to persistence ([BFW86, [Hof89]) some years later in
[ZhaO1].

Some fixed point theorems are used as well as results on the side of degree
theory. dissipativity is crucial in order to obtain a compact global attractor on
which apply such tools. The theoretical result is exploited to prove uniform
persistence and existence of a periodic solution in three different applications
coming from the ecological area: a simple Kolmogorov equation, the SIR model
for infectious diseases (achieving here a stronger result than the one in [Kat14])
and a model describing the seasonal phytoplankton blooming [HBOSO05].

3.3.1 A general fixed point theorem

Let again fit in the theoretical framework of the beginning: (X, d) is a locally
compact metric space and X is a closed subset. We denote by u a process
defined on X, i.e. a continuous map

U RxX xRy = X

such that

i) u(o,x,0)=x

> 0.
i) u(o,x,s+t)=u(c+s,u(o,x,s),t) VxeX, VoeR, Vs 120

A process is autonomous if it is independent of the first variable 0. We dealt with
autonomous processes in the previous Sections as they coincide with continuous
semidynamical systems by setting

m(x, t) := u(0, x, t).

Here we are interested in non trivial dependence from the first variable and in
particular in w-periodic processes, i.e. processes that are periodic of period w
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with respect to o. In this case it remains defined a discrete dynamical system
{®k}yen associated with u,

K (x) := u(0, x, kw). (3.3.1)

We immediately note that when u is the flow of a periodic coefficients ODE
system ®! = & is the Poincaré map associated with the system.

We enunciate some concepts already given in Definition in the case of
processes and add some more. Refer to [Hal77] and [Fer90] for these definitions.

Definition 3.3.1. Let Y be a subset of X.

o Y is forward invariant with respect to v if and only if

u(o,Y, t)CY VoeR,Vt>0;

o Y attracts points of X if

VxeX, Vo eR Ft,>0: ulo,x,t)eY Vit>ty;

o Y attracts compact sets of X if for each compact subset H of X there
exists a neighbourhood N'(H) of H such that

Jty =t(N(H))>0: u(0O,N(H),t)CY Vt>ty.

o Y is a uniform repeller with respect to u if it exists n > 0 such that

liminf d(Y, u(o, x,t)) >n VoeR, Vxe X\Y.

t—400

The process u is called

o dissipative if for all x € X w(x) # 0 and the set |J,cx w(x) has compact
closure with respect to X;

o point [compact]| dissipative if it exists a proper subset Y C X which
attracts points [compact sets] of X
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o uniformly persistent if 0X is a uniform repeller;
o permanent if u is dissipative and uniformly persistent.

From now on let u be a w-periodic process defined on X. We formulate a
result that combines Theorem and Theorem in the case of processes.

Proposition 3.3.1. Let ¥ be a compact subset of X such that X \ ¥ is forward
invariant. Suppose that ¥ can be written as

Y=3Y1UX
with X1, Y5 closed subsets of X such that for X1 it holds
Vx € Xy Jte >0 such that wu(0,x,tyx) € X\ X1 (3.3.2)

while ¥, is forward invariant and there exists a continuous function A : X — R,
such that

i) N(x) =0 ifand only if x € X3;

ii) there exists a lower semicontinuous and bounded below function i : X —
R and a € [0, 1] such that

a) Ax)>A¥(x)P(x)  Vxe X\ I,

b) sup/tlp(u(o,x, $)ds>0  Voel[0w), Vx e w(Ta).
t>0J0

Then X is a uniform repeller.

Remark 3.3.1. The Proposition can be easily generalised to the case

where, say, X1, ..., X satisfy the first hypothesis while ¥,.1,..., X, are for-
ward invariant and satisfy condition i) and ii). O
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We now move to a less general framework, asking X to be a compact
metric space. This assumption is quite natural in ecological models and in light
of the dissipativity requested before. The set [J,cx w(x) eventually contains
the dynamics so nothing is lost of the asymptotic behaviour if the analysis is
focused on such set. We can now state the key instrument for the theorem to
come, contained in [Hut84].

Theorem 3.3.1. Let ¥ be a compact subset of X such that ¥ and X \ X are
forward invariant with respect to u. If ¥ is a uniform repeller then it exists
K' C X \ ¥ compact, forward invariant which attracts points of X \ .

The result of Hutson relates repulsiveness and point-dissipativity. We can
show that in our case we gain a stronger property, the compact-dissipativity,
via a Lemma by Hale (ibidem, Lemma 3.3). Note that in the following we will
deal with the discrete dynamical system {®*}, associated with the w-periodic
process u as defined in (3.3.1)): however, at least the following Lemma can be
stated for the continuous case, see [Hal77) Section 4.6].

Lemma 3.3.1. In the hypotheses of Theorem there exists K C X \ X
compact and forward invariant which attracts via {®*}, compact sets of X \ ¥.

Proof. Let K C X \ X be the compact, forward invariant attractor given by
Theorem [3.3.1L Of course, K’ is a (point) attractor also for {®*},. Because
K’ is compact in X \ X, which is open,

J£>0 such that B(K', &) C B(K',&) C X\ ¥

where B(K', &) = {x € X : d(x,K') < &}.
From now on let then € € (0, £) be fixed. Call

K* = ®(B(K &) C X\ X:

this set is of course compact being ¢ continuous. If K’ attracts points of X \
then

Vxo € X\ X 3dng = n(xp,€) suchthat "(xo) € B(K',e) Vn> ng:
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then by continuity of ®" there is a neighbourhood N(xp) of xo such that
P™(N(x)) C B(K' e) C K*.

Let now H C X \ S be an arbitrary non-empty compact set. Then {N(x) :
x € H} is an open cover of H, from which we can extract a finite subcover

{N(x1),N(x2),...,.N(x)}.

Call

/
Ho = U N(xi), ny = max{ny, n, ..., m}+1
i=1

where n; is the index related to NV(x;): it holds
®™(Ho) C K*.

We noted before that K* is compact as well and so it can be assigned a similar
index nk+. We can therefore define

K:=K*U®(K*)U®(K*)U...Ud" (K*)
which is compact. By construction it is
®"(K*) C K VneN.
Thus we have that for the neighbourhood Hy of H it holds
®"(Hp) CK VYn>ny
which shows that K attracts compact sets of X \ ¥. O

Remark 3.3.2. The framework of [Hal77] in which the original is carried on
is quite different as X is a Banach space. The proof does not rely on this
assumption and thus the result holds true also in our context. O
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For the last step we require a normed space structure in order to give sense
to the concept of convexity. Let then X, ¥ be compact subsets of RV: although
strong this assumption is needed but, being the arguments of topological nature,
the results extend to any set homeomorphic to RV. We can now state our main
result of existence.

Theorem 3.3.2. Let ¥ C X C RN be compact sets such that X \ X is open
and convex. If X is a uniform repeller and X\ X is forward invariant with respect
to {®¥} then there exists a fixed point of ® inside X \ .

For the proof of the theorem we use the previous results plus one coming
from the degree theory and known as mod p Theorem, stated independently in
[ZK71) and [Ste72] (for good surveys on these topics see [Nus85] and [Stel5]).

Theorem 3.3.3. In the framework of Theorem[3.3.2letY C X\ X be an open
set and call
F:={xeY: ®P(x)=x}

for some prime p € N. If p is such that F is compact (the case F = () being
included), that ®(F) C F and that ® is compact on some neighbourhood of
F, then

ix\z(q)p, Y) = ix\):((b, Y) mod p

where ix\y denotes the fixed point index on X \ .

The original theorem is far more general and contemplates the case when
the ambient space (in our case, X \ X) is an absolute neighbourhood retract
(ANR) and F is the set of fixed points of ®™, m being a power of a prime.

Let us now prove our main theorem.

Proof of Theorem([3.3.2 For our goal let us consider instead of K its closed
convex hull K := c6(K), for which it holds K € K C X\ X being X\ © convex
and open. K is compact, hence there exists an open neighbourhood N(K ) and
fi = ng such that

P"(N(K) C K ¥n>h.

Let p be the first prime number greater or equal than A. The restriction ®P :
K — K is a continuous map defined on a convex compact set of RV: Brouwer’s
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fixed point Theorem holds and thus we gain a fixed point for ®P, which of course
belongs to the attractor K.

At this point we deploy Steinlein’s result. We choose Y = N(K) and note
that F is not empty thanks to the previous step. The second condition required
by the theorem is easily verified:

OP(0(x)) = ®(¢P(x)) = ®(x)  VxeF

so that ®(F) C F. The third condition is trivial as ® is a continuous map, thus
necessarily compact everywhere. It remains to show that F itself is compact.
Being a subset of X it is bounded: let us show it is also closed. By contradiction
suppose that exists x* € OF \ F. Then we can find {xx}x C F such that
xxk — x* for k — oo in the topology of Y. By continuity of ®P we have

xk — x*, xx = OP(xx) = OP(x¥) for k — o0
and thus by uniqueness of the limit
x* = OP(x*)

so that x* € ¥, reaching the contradiction. Thus ¥ is compact.
Theorem [3.3.3 applies and so we obtain

1= ix\z(q)p, Y) = iX\z(q),Y) mod 1%

which tells us ® admits at least one fixed point in Y = N'(K) D K. In particular
the fixed point shall belong to the attractor K. O

An immediate remark for applications is that if u is the flow generated by
one or more differential equations the theorem returns the existence of a w-
periodic solution of the equation(s), i.e. a fixed point of the Poincaré map
.

Remark 3.3.3. Theorem can be compared with [Fer90, Theorem 3.4]. The
key Lemma for the proof of that theorem was not explicitly proven: we used

Theorem [3.3.1, Lemma and Theorem in order to rigorously justify

that result. We point out that a similar approach has been illustrated in [Zha95,
see Theorem 2.3], in the setting of semidynamical systems on Banach spaces.
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Remark 3.3.4. We stress the importance of the convexity of X \ X, which
can however be weakened to topological convexity. Without it Brouwer's fixed
point Theorem fails. It is easy to build a counterexample when such hypothesis
is removed. Take for instance

X:=B(0,2) cR? ¥ :=0XU{(0,0)}.

X \ X is open but not convex. Let the flow be of the form

dk(z) = <1+pk1> elk® for z = pe®® € X.
The attractor is K = 0B(0,1) but no fixed point exists being K rotated by
the flow. We point out that in [BFW86] the authors do not ask for convexity:
their result holds true if such condition is added to the forward invariant set
X\ X O
Remark 3.3.5. From [BS02, Lemma 3.7] it easily follows that for autonomous
systems Theorem reduces to the existence of an equilibrium point.

In the following we illustrate three examples of biological relevance on which
the theoretical approach of this Section applies. The first application is a one-
dimensional example based on the so called Kolmogorov equation. It is a good
preamble that deploys Proposition in its simplest form. The second ap-
plication is the well-known SIR model for infectious diseases as described in
[GP97] and with a bit less generality in [Katl4]: the assumption of no loss of
biomass reduces the system’s degrees of freedom and it becomes planar. Here
we prove the existence of a periodic solution as in [Kat14] but we reach also per-
manence. The third and last application is a model of seasonal phytoplankton
blooms we encountered in [HBOS05]: a bidimensional example of competing
species. Though similar in settings (3.3.4) and (3.3.7)) need different choices
of the ambient space X’ which raise the need of a further sophistication for the
latter case.

3.3.2 Kolmogorov equation

We are interested in studying the T-periodic solutions of

x(t) = x(t)h(t, x(t)) t>0 (3.3.3)
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with h : [0, +00) X R — R. Such sort of equations are known as Kolmogorov-
type equations and are defined on the positive cone (in our case x(t) > 0). The
derivative is expressed as a product of the function itself and a vector field which
is T-periodic in the first variable. This kind of equations is frequently used to
describe models of competitive species and has been extensively studied in light
of persistence (also known as coexistence of the species): for some references
see [Zan92, [BZ98, ZC17].

To fit this example into our framework we call u(0, xp, t) the solution at
time t of the initial value problem

{ x'(t) = x(t)h(t, x(t)) on [0,T]
x(0) = xp

with h(t, s) a T-periodic function with respect to the first variable, which returns
the periodicity of u as a process as well. Recall that the associated discrete
dynamical system is defined as

®(x) = u(0, x, kT).

The result we are going to prove is the following (note that it can also be
deduced straightforwardly from [RMB12, Theorem 2]).

Theorem 3.3.4. Let h: [0, +00) x R — R be lower semicontinuous, bounded
below, T -periodic with respect to the first variable and such that

i) there exists M > 0 such that
Vy>=M h(ty)<B(t)
where B € L1(0,T) is such that fOT B(t)dt <0;

-
i) / h(s,0)ds > 0.
0
Then {®*} is uniformly persistent on the set X := [0, M'] with

M' > MelPlior
Moreover, (3.3.3) admits a T-periodic solution inside X.
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Proof. We first prove that {®k} is dissipative. Let M’ be a fixed positive

constant satisfying the hypothesis of the theorem and let x(t) be a generic
solution of (3.3.3) such that x(0) = M’. We claim that x(T) < M'. By
contradiction suppose this is not the case. Two situations could happen:

a) x(t)>M Vtel|0,T];
b) 3 t* €]0, T[ such that x(t*) < M.

If we fall under a) then by hypothesis 2) on h it holds

x(t)
D) <B(t) Vtelo,T]

from which it easily follows

n (’;((g))) < /OT,B(t)dt <0

and a contradiction is reached as x(T) < x(0) = M'. In case b), by continuity
of the solution we can find [t1, t2] C (t*, T) such that

x(t1) =M, x(t)=M, M<<x(t)<M forte |ty t)]

and [t1, tp] is maximal. Retracing step by step the calculations in the previous
case, evaluating this time the integral over [ti, t2], we reach

(e

and taking the exponential on both sides we come to

t2
) < / B(t)dt < [|Bllirom)

M’ < Me||I3HL1(0,T) on [tly tg]

which is a contradiction thanks to the cunning choice of M’. This proves the
dissipativity of % on {M'}.

To prove the global existence of solutions of let t' € (0, T) be such
that x(t') = M'. There is t” > t' such that [t/, t"] is the maximal interval of
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existence of the solution x. If it holds x(t) < M’ for all t > t' we are done, so
let £ € (t/,t") be such that

x(f) =M, x(t)>MVe>t

On [t, t] the above steps lead to

t t
In (iEE;) g/{ B(s)ds < [|Blli2(0,)
so that

x(t) < M/eHISHLl(o,T)

which is a bound independent of t. We conclude that t/ = T.
Now we deploy Proposition on the boundary of the compact set X,
Y = 0X = {0, M'}. First we note that {0} is forward invariant: we then choose

A(x) == x

and see that
x(t) = x(t)h(t, x(t)) = A(x(t))h(t, x(t))

with A satisfying the hypotheses i) and /i) of Proposition [3.3.1} with h playing
the role of ¥ and satisfying the hypotheses as well thanks to the choices of
Theorem [3.3.4] For the above calculations, {M'} satisfies the first hypothesis
of the Proposition with respect to the discrete dynamical system &K, but a
similar result can be obtained for the continuous process u provided that a
second constant M” > M’ is chosen (see the global existence calculations).
Proposition holds, granting the uniform repulsiveness of persistence of
0X, hence the uniform persistence of equation ((3.3.3)).

As a last step we apply Theorem [3.3.2] being X \ £ =]0, M'[ convex, open
and forward invariant with respect to ®*: we get a T-periodic solution of
inside X. O

Remark 3.3.6. It may be possible to build higher dimensional examples by “glu-
ing" together some Kolmogorov models as the one we illustrated here, requiring
forward invariant faces and dissipativy on the positive cone. In [Zan92] a dis-
cussion of this type is unfolded.
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3.3.3 SIR epidemic model

We consider the model

S(t) = w(1 - 5(2)) — B(B)S(HI(1)
() = BB)S(OI(t) — (v + w)I(1) (3.3.4)
R(t) = YI(t) - uR(2).

S(t), I(t), R(t) are non negative functions of time and denote the normalised
populations of susceptible, infected and recovered individuals. It holds

S(t)+I(t)+ R(t) =1  Vte]0,+o0) (3.3.5)

as no loss of biomass is allowed. p > 0 is the birth and death rate and is
considered here to be constant; v > 0 is the recovering rate; B(t) is a T-
periodic coefficient which usually identifies the transmission rate of the disease.
The SIR model hereby displayed is studied in [Kat14] where the existence of a
periodic solution is proven via Leray-Schauder degree theory. A similar model
that considers a dependence B = B(t, I(t)) is given in [GP97] in order to study
complex dynamics and bifurcations.

We are interested in periodic solutions of without admitting the
extinction of the disease, not even asymptotically. As we will see this is linked
to the well-known basic reproduction number
Ry—= P

v+ u
where B 1= fOT B(t)dt/T denotes the average of B over one period.

Let us fit into our framework. First of all, thanks to (3.3.5) we
can reduce the degrees of freedom of the system by analysing only the pairs
(S(t), I(t)): thus our ambient space shall be X = R?. Looking again at
we can also set

X={(xy)eR?: x+y<1}

and as in the previous Section X = 0X. For convenience sake we split X into

Y.={(x,y)eX: x=0}, Y, ={(x,y)eX: y=0}
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and show that the closed sets >, and ¥ satisfy respectively the first and the
second hypotheses of Proposition [3.3.1l The result is the following.

Theorem 3.3.5. Let system (3.3.4)) be defined on
X={(xy) €RY: x+y<1}.

If it holds

wp/%ﬂﬂ—&%ﬂﬁws>0 (3.3.6)
t>0J0

then the flow of (3.3.4) is uniformly persistent and it admits a non trivial
T -periodic solution inside X.

Proof. Let us first prove that (3.3.4)) is point dissipative on X. If we evaluate the
gradient of (S5(t), I(t)) against the outward normal vector to ¥, = {(x,y) €
R3 : x4+ y = 1} we obtain

(S$.D)-(L1)=pl-5) - (v+u)I=-—I<0

as S(t) + I(t) =1 on X,,. The direction of the flow is thus opposite to the
outward normal vector, i.e. points of ¥, are sent by the flow into X \ ¥,,,

with the exception of the trivial susceptible-only equilibrium (1, 0).
Now, let us take into account X, on which (3.3.4) reduces to

L
I=—(y+p)l;

being S > 0, the points of ¥, are sent into X \ X, fitting hypothesis (|3.3.2))
of Proposition [3.3.1]
We focus on X, : on it (3.3.4) reads

S=u(l-9)
I=0

so X, is forward invariant and exponentially attracted to (1, 0), which means
w(X,) ={(1,0)}. Now choose

Ax,y):=y.



108 Persistence and periodic solutions in ecological models

A : X — Ry is non negative, continuous, A(x,y) = 0 if and only if (x,y) € X,
and

A=T=1(BS—(v+u) =N

with P(x,y) := Bx — (v + 1). To show that ii) of Proposition holds we
need to evaluate the integral of this function on w(X,):

t t
sup [ $(1,0)ds = sup [ (B(s) ~ (v + ))ds
>0 J0 >0 J0
and as this quantity needs to be positive we ask for (3.3.6)). Under this hypoth-
esis Proposition returns the uniform persistence of the flow on X.

To end the proof we deploy Theorem[3.3.2/on X'\ £, which is again convex,
open and forward invariant thanks to the previous calculations and the global
dissipativity. We gain a T-periodic solution which is bounded in X. O

Remark 3.3.7. Our fixed point result is in line with the one of Katriel ([Kat14,
Theorem 1]) with respect to the existence of a periodic solution. However, we
recover also uniform persistence for on the positive cone. As for the
proof, our approach is substantially different and relies on the degree theory
only for the last step (the mod p Theorem). As in Section is implied
by the standard assumption

B

Ro =
v+ u

>1

which is required in [Kat14], by prescribing that the average integral is positive
over the period T

L[ B0 - eyt =6+ w)

Remark 3.3.8. System ((3.3.4)) can be defined only on X because of ([3.3.5)) but

it can be extended on the whole positive cone allowing the biomass to change
in time. If we restrict to the bidimensional system without recovered individuals
it is easy to prove the global dissipativity on the set Xx = {(x,y) € R% :
x+y < k} in the same way as in the previous proof. Thanks to the very same
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argument uniform persistence can be proven for each Xy with k > 1, obtaining
the uniform persistence on the whole positive cone, pretty much as done with
the model in the previous Section.

We note that other approaches such as [GR16] apply flawlessly to this and
the following model, being the functional response among those listed thereby.
The procedure of the previous Section, based on [RMB14], works as well.

3.3.4 Seasonal phytoplankton blooms

The proposed model in [HBOS05] to describe the seasonal blooming of phyto-
plankton is, after some rearrangements,

{ N(t) = I —qN(t) - B(t)N(t)P(t)

. (3.3.7)
P(t) = B(t)N(t)P(t) — P(t),

where N(t) denotes the nutrients level and P(t) is the phytoplankton biomass,
thus positive quantities. I,q > 0 are constants depending on the income of
nutrients, the rate of uptaking of the phytoplankton and its mortality. B(t) is a
periodic coefficient describing seasonality. In [HBOS05|] an interesting numeri-
cal analysis is carried on, showing complex dynamics and bifurcation cascades
arising from the model under suitable choices in the coefficients. It is inter-
esting to compare this work with the previously cited [GP97], in which chaotic
dynamics are discovered for a particular SIR model.

System ([3.3.7)) is close in structure to but has no fixed total biomass,
so in this case we analyse our model on the whole positive cone ]R%r. It is easy to
show that (I/q, 0) is an equilibrium point: we choose X so that such equilibrium
is contained,

X:={(x,y) eRY: x+y <k}

where k > 0 is large enough in order to have global dissipativity (cfr. Remark
3.3.8). As before ¥ := 0X, of which we highlight two closed components:

Y, ={(x,y) e X: x=0}, Y, ={(x,y)exX: y=0}

We enunciate immediately the result.
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Theorem 3.3.6. Under the hypothesis
trI
sup/ ( B(s) - 1) ds>0 (3.3.8)
t>0J/0 \q
the flow generated by ({3.3.7)) is uniformly persistent on the whole positive cone
R2 . For any k > 0 such that
HI
. (g+1)
q
there exists a non trivial periodic solution of (3.3.7)) inside X.

k

Proof. As before, global dissipativity is proven by computing the flow against
the normal outward vector to £ = {(x,y) € R2 : x+y = k}, for any k large
enough: o

(N,P)-(1,1)=1—qN—P.
We claim this quantity is always negative thanks to the choice of k. While in
the case N > I/q this is trivial, if N < I/q we rely on the fact that N+ P = k
to get

I 1
I—qN—P<I—qN—<k—>:q+_I—k—qN<—qN
q q

which is always non positive. As before these entails that the flow sends points
of i into X \ X for all k satisfying the prescribed lower bound.
We now move to the analysis of the flow on the boundary. On X, (3.3.7))

becomes
N=1I
P=—P

which in analogy with the previous model grants that hypothesis (3.3.2) of
Proposition holds. On X, instead the system assumes the form

N=1I-gN
P=0
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and as before this implies the forward invariance of ¥, and the attractivity on
the axis of the trivial nutrient-only equilibrium (I/q,0). As our generalised
Lyapunov function we choose

Nx.y) =y

which is of course non negative, continuous, identically zero only on X, and it
holds _ _
AN=P=PBN-1)=Ay¢

with 9(x) = Bx — 1, of which we need to evaluate the integral over w(X,) =
{(1/0.0)% t t
sup/ ¥(I/q,0)ds :sup/ (B(s)I/q — 1)ds

0 >0 J0

t>0

and hypothesis ensures this quantity is positive, as requested by /i) of
Proposition [3.3.1] Uniform persistence is given on X. Now, the argument can
be iterated for any k > 0 sufficiently large, so the uniform persistence extends
to the whole positive cone R%r.

To conclude, as before we apply Theorem to X \ X, which is open,
convex and forward invariant. We gain a T-periodic solution of inside
X, for any admissible k. O

Remark 3.3.9. The basic reproduction number in this case reads

-
Ro == —, ﬁ:/o B(t)dt,

and the condition Ry > 1 is equivalent to hypothesis (3.3.8) as in Theorem
3.3.51

3.3.5 Further perspectives

To end this Section we point out some further extensions to our approach.
As a pure theoretical exercise Theorem [3.3.2] can be generalised to its most
weak hypotheses possible for this framework, i.e. the set X \ X is an absolute
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neighbourhood retract (ANR) which is open and precompact in a compact
normed space X.

On the application side, Proposition [3.3.1] can be applied to many models
coming from literature. In a future survey work we plan to incorporate some of
them, for example the already cited [BZ98] in which only existence of periodic
solutions is proven but not permanence. Many models can be found in the
works of Colucci [CCH16, [Col13, [CNn13|, where Kolmogorov-like structures are
investigated, and Silva [Sil17, IMS17], where more applied eco-epidemiological
models are displayed. Especially these last works have interesting analogies
with the models we studied in Section 3.2, and this lead us to the idea of
investigating the periodic coefficients versions of and (3:2.2), where g
is no more a positive constant but a periodic function of time. Since complex
dynamics are shown for these models even in the autonomous case [BH13a|,
an utopian question could be if techniques as Stretching Along the Paths (see
Chapter (1)) apply in order to prove rigorously chaotic dynamics as we did with
persistence. Another model which could contemplate this questions as well is
given in [Kir89].

The comparison between our method and the one exposed in the works of
Margheri, Rebelo and Garrione [MR03, RMB12,(GR16] is another open question.
Since the methods share a common core which are the results contained in
[Fon88] it may be expected that the outcomes could be similar. The problem
is more subtle than expected and we hope to address it in the above mentioned
survey paper in preparation.



Appendix A

Analysis of a Kolmogorov
predator-prey model

The underlying prey-predator model to systems ((3.2.1)) and (3.2.2)) is (3.2.3),

which we copy for the reader’s convenience:

NP p

N=rNI1-N)— — —N(r(1=N)— ——

rN(P )W N N (r( ) h+N>
p- " _pp—p(L
hen <h+N

We highlight the Kolmogorov structure of this system. Three equilibrium points
can be easily found: the origin (0, 0), the prey-only equilibrium (1, 0) and a non
trivial one (N*, P*) which is given by

mh

N'=17—  PT=r(1-N)(h+ ).
—m

The Jacobian with respect to ([3.2.3)) is
hy X
r(l1—2x) — -
h + x)? h+
(h+ x)? h+ x
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and evaluation in the equilibrium points reads

J(0,0)—<6 0 ) o= hl

—m

and

The origin is always a saddle. To avoid the stability of the trivial equilibrium it
must be

which also ensures
det J(N*, P*) = mr(1 —m(1+ h)) >0
so that the nontrivial equilibrium is unstable if

1—m
14+ m

1
trJ(N*,P*):rm<1—1+mh>>o — h<

-m
which is equivalent to condition (3.2.5]), namely

<l—h
m —_—.
1+h

Three cases are hence given:
o m>1/(1+ h): the logistic equilibrium is stable

o (1—=h)/(1+h) <m< 1/(1+ h): (1,0) is unstable and (N*, P*) is
stable

o m < (1—h)/(1+ h): both equilibrium points are unstable.
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We choose the third hypothesis and prove that a stable and unique limit cycle
bifurcates from the unstable equilibrium (N*, P*).

For the sake of completeness and coherence we now show that the system
(3.2.3) is uniformly persistent on the positive cone Ri by means of Theorem
[3.1.3] also if we notice that this comes directly from [GR16, Theorem 3.2(b)].
Once persistence is given assumption leads to the existence of a unique
stable limit cycle.

Persistence of (3.2.3) We first prove that the system is dissipative. On the
sets {(x,y) € R : x+y = k} for k > 0 it holds

(N,P)-(1,1) = rN(1 = N) — mP = —rN?> + (r + m)N — mk
which is negative if and only if
rN? — (r + m)N + mk > 0

and by choosing
K> (r + m)?
4rm

this is always true. As seen in the main dissertation this entails global dissipa-
tivity.
Now, fix k large enough and let

X :={(x,y) €R%: x+y < k}.
The set
X ={(xy)e X: y=0}
is forward invariant and w(8,X) = {(1,0)}, thus we apply Theorem
setting
ANx y)=y.
Then, if 7 is the semidynamical system associated with (3.2.3)),

Ar(x ) = PLe) = P(O) [ otz — ] = At )bt )
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with P(x,y) = ﬁ — m and condition b) of the theorem reads
1/t 1
;/0 Y(LO)ds = = —m

which is positive thanks to the choice of m. Thus 8, X is a repeller by Theorem

B.13 As for
X ={(x,y) eR%: x =0}

we reason the same way but now the only attractive point is the origin. Set
then
A(x,y) =x

and get

A ) = B(0) = M(e) [0 = (0D — s | = At )bt )

with ¥(x,y) = r(1 —x) — y/(h+ x) and because 9(0,0) = r > 0 we conclude
by the same argument that 8, X is a repeller as well. By dissipativity we obtain
uniform persistence on the whole positive cone.

Existence and uniqueness of the limit cycle The existence of the limit cycle
comes in a standard way from the Poincaré-Bendixson annular region Theorem:
refer to [Lef63| for the following formulation.

Theorem A.0.1. Suppose R is a bounded region of the plane enclosed by two
simple closed curves v, and v», and 7 is a semidynamical system defined on
the plane. If

i) at each point of 1 and <y, the flow T points towards the interior of R
i) R contains no critical points

then the system has a closed trajectory (i.e. a limit cycle) lying inside R.
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Proof. In our case let us choose 43 = 0X and 4o = OI* where I* C X
is a (sufficiently small) neighbourhood of the unstable nontrivial equilibrium
(N*, P*). Let then R =int(X \ I*). Because of the dissipativity and uniform
persistence proven before the flow on 4 is always pointing inside R and because
of the instability of the equilibrium on 4, the flow is pointing outside I*, thus
inside R. We then get the existence of a limit cycle. O

To show that the limit cycle is unique we make use of a result proven in
[Che81] although already conjectured in [HHW?78b]. The system hereby taken

into account is
N:rN<1—N>—’" NS
ya+N

. mN
= - D
> 5<a+N 0>

which is indeed the same system as (3.2.3)) with some adjustments in the coef-
ficients. The requested hypotheses therein are

m a
— >1 K 2—
D0> , >a+ b1

which referring to (3.2.3) come to be

m<1, 1>h+2N*<:>m<ﬂ,

1+h
indeed satisfied by our choice of m. The result in [HHW78a] states that under
these hypotheses there exists at least one limit cycle and if it is unique then
it is stable (see also the more classical [Lef63]). In [Che81] the uniqueness of
the limit cycle is proven. For a general result on the limit cycles of Kolmogorov

systems like ([3.2.3)) see [YCDY12].
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Appendix B

Stability analysis of
predator-prey models

B.1 Diseased predator model

The equilibria on the boundary displayed by system are the origin, the
trivial logistic equilibrium (1,0, 0) and the disease-free equilibrium (N*, P*,0).
If we choose m as in a limit cycle 4* appears in the disease-free plane
and on that plane all critical points are unstable and the limit cycle is stable.
We now want to study the stable manifolds of the equilibrium points.

Recall that X1 = {(x,y,z) € R} : x+y+z < ki}. Let us write the
linearised matrix for the system ([3.2.1)):

h(y+z) X X
r(1_2)z)_(/;+x)2 Ch4x Ch+x
J(x,y, z) = h(y + z x x
(h+ x)? xR Ry
0 Bz By — (m+p)
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Evaluating in the equilibrium points:

r 0 0
J(0,0,0) = 0 —m 0
—(m+u«)
1
h+1
J(1,0,0) = m 1
h+1
—(m+p)
( 1+m
rm(1— m —m —m
J(N*, P*,0) = r(1— m(1+h 0 m — BP*
0 0 BP*—(m+np)

It is easy to see that
W*({(0,0,0}) N X1 = 0xX1 ={(x,y,z) € X1 : x=0}.
As for (1,0, 0), the tangent plane to its stable manifold is given by

p 1
ki(1,0,0)+k2 ((1+M(h+1))(m+p,—r)'_1+ﬂ(h+1

which lies strictly outside the positive cone except for the points in {(x,y, z) €
X1 : y =z =0}, all belonging to the stable manifold of (1,0, 0) except for the
origin. It holds W*({(1,0,0)}) Nint X; = @ because no bidimensional manifold
could approach (1,0, 0) tangentially with respect to the above plane from the
inside of X as its boundary is either forward invariant (9, X1, 0xX1) or repulsive
(ayXl). Thus

W({(1,0,0)) N X1 ={(x,y,z) e X1: x>0, y=2z=0}.

),1>, ki, ko € R

The first two eigenvalues A1, Ay for the non trivial equilibrium (N*, P*,0)
are strictly positive as illustrated in Appendix [Al being

det J(N*, P*,0) = rm(1 — m(1 + h))(BP* — (m + 1))

tr J(N*, P*,0) = rm (1 — 1+fnh> + BP* — (m+ ).
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The third eigenvalue, A3 = BP* — (m + ), can in principle possess a one
dimensional stable manifold if

BP*
m+

The tangent line in (N*, P*,0) to this manifold is

(N*,S*,0)+k< pm_ pa At de — )

, 1], keR
f()\l, )\2, >\3) f(>\1, >\2. )\3) >

where f(A1, A2, A3) = ()\1+)\2))\3—(>\1>\2+A§). Having non zero z-component
the line cuts through the disease-free face, hence the stable manifold passes
through the interior of X7 and can potentially lead to the extinction of the
disease. To avoid this chance we ask for

Ry > 1.

B.2 Diseased prey model

The diseased prey model exhibits one more equilibrium point on the prey-only
face, given by the positive intersection of the curves

_ (B B . S51-9)
I_<r 1)5 =3 I_(E+1)51

which are obtained after rearrangement of (3.2.6)). The intersection occurs only
if the first equation describe a line pointing upwards (8 > r) and

B>u+r

holds, which is indeed true for the parameters chosen in [BH13b]. Some calcu-
lations lead to

5#:;8<C+\/C2—4p,r>, C:%L—F;L—i-r
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and I can be obtained by substitution (note that for the other intersection
point of the curves I is always negative and hence excluded).
The Jacobian J(x, y, z) for the system ([3.2.2)) is

z(h+y) xz X
r(1—y—2x)—T (hr—(i_l—)x)—kz 5
z z x
<ﬁ+H2—r>y ﬁx—T—(u+rx+2ry) —%
he e xhy
H? H? Hoo T

where we put H = h+ x + y for sake of brevity. Evaluating in the equilibrium
points:

ror 0
J0,0,00=| 0 —u 0
0 0 —m
1
N
J1,000=| 0 B—(u+r) 0
1
O
rm(l—wh> r— mh (rmth+1)—B) —m
J(N,0, P*) = Lom Lom
g 0 BN* — (r + ) 0
r(1 — m(h+ 1)) r(1 — m(h+ 1)) 0
#
r—2rS%* —(B+nI* r—(B+r)S* —%
#
J(S*,I#,0) = (B — r)I* T _%
0 0 S# + I
TgE oM

with H# = h 4 S# + I#.

As in the predator case the origin is always a saddle: its stable manifold is
tangent in the origin to the plane

r
ki | — ,1,0 | + k»(0,0,1), ki, ko € R
(o) rmean. s
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which lays outside the positive cone and intersects it only in the predator-only
axis, which is exponentially attracted to the origin. We conclude that

We({(0,0,0)})n Xy ={(x,y,z) € X1: x=y =0}.

Thanks to the trivial susceptible prey-only equilibrium (1,0,0) is
unstable. Under the hypothesis for the existence of the (5#, I#, 0) equilibrium,
B > u + r, the only negative eigenvalue is the first, which gives rise to a one
dimensional stable manifold tangential in (1,0, 0) to the susceptible prey-only
axis. Since because of the logistic dynamics the whole axis (origin excluded) is
attracted to the equilibrium we conclude that

W({(1,0,0)H) N X1 ={(x,y,z) € X1: y=2z=0, x > 0}.

As for the non trivial disease-free equilibrium we get the same conclusions
as before: while two eigenvalues are always positive thanks to (3.2.5)) the third
one, namely BN* — (r+ ), could be negative and hence a stable manifold may

arise when
BN*

r+u
(note that the parameter m of the predator mortality has been replaced with
the logistic parameter r of the prey).
Eventually, for the new equilibrium (S7, I, 0) we get that for the Jacobian
restricted to the prey-only face Jf it holds

det Jff = I# ((r* + Br)I* + (r* + B7)S* — Br)
trJzé’é =r—2rS* — (2r + B)I*

<1

Ry =

and it can be shown through some calculations that the corresponding eigen-
values have always negative real part. The third eigenvalue is

S*+I# .
h+ S# 4 I#
and is positive if and only if hypothesis d) of Theorem holds. The same

condition comes from the persistence approach with the generalised Lyapunov
function A(x, y, z) = z, refer to the proof of Theorem [3.2.3
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