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ABSTRACT 

 

 

 

The continuous increase in air traffic is leading to a growing interest in the development of 

new engine concepts for fuel saving and noise reduction. The Contra-Rotating Open Rotor 

(CROR) engine architecture has shown the potential for a significant fuel burn reduction. 

Unfortunately, CRORs exhibit very high noise emissions that have a significant environmental 

impact, especially during aircraft take-off and landing. Therefore, the noise reduction must be 

considered in the earliest stages of a multidisciplinary design strategy. 

The interaction noise (IN) emitted by CRORs, which is generated by the aerodynamic 

interaction between the counter-rotating blade rows, is particularly intense at take-off. To 

compute accurately this interaction noise, Unsteady Reynolds Averaged Navier-Stokes (URANS) 

simulations coupled with the Ffowcs Williams-Hawkings (FWH) acoustic analogy would be 

necessary. However, the very large computational burden of such a numerical approach is not 

compatible with a multidisciplinary design procedure. 

Jaron et al. (2014) proposed a model for the fast prediction of the noise emitted by CRORs, 

based on data extracted from steady-RANS simulations coupled with the mixing plane concept. 

However, this RANS-informed model is based on the 2D flow assumption, and hence it is not 

able to consider properly the impact of three-dimensional flow structures on the interaction noise. 

Among the different sources of aerodynamic interaction, the strongly 3D tip vortices released by 

the front blades and impacting the rear blades are major drivers of IN. Therefore, their influence 

must be properly taken into account for an accurate noise prediction. 

The present thesis focuses on the development of an improved RANS-informed model for the 

fast prediction of the IN emitted by CRORs including the effect of the tip vortices. A genuinely 

3D semi-analytical model of the tip vortex (TV) has been developed. The model is calibrated 

using data extracted from steady-RANS solutions and is employed to reconstruct the velocity 

perturbations due to the front rotor tip vortices at the inlet of the rear rotor. A specially developed 

procedure, based on the RANS vorticity fitting, is adopted for the calibration of the TV model. 

The TV model has been coupled with the model of Jaron et al., which accounts for the 2D 

flow perturbations due to the viscous wake and potential field generated by the front rotor, in 

order to provide a more general and accurate RANS-informed procedure for the reconstruction 

of the flow unsteadiness at the CROR rear rotor. 

The reconstructed velocity perturbations are used to compute the unsteady aerodynamic loads 

on the rear blades by means of an analytical blade response model (Goldstein, 1976). Then, the 
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IN is computed through an analytical noise propagation model in the frequency domain (Hanson, 

1985). 

The flow simulations and the IN computations performed in the present thesis refer to CROR 

UDF F7/A7, a 8 x 8 blade count configuration for which sufficient geometrical and experimental 

data are available in the literature. 

Comparisons with data extracted from a URANS simulation show that the TV model 

improves significantly the reconstruction of the velocity perturbations at the rear rotor leading 

edge. 

The noise emissions computed from the flow perturbations reconstructed by the RANS-

informed model are compared with those resulting from the URANS perturbations, using the 

analytical acoustic model in both cases. It is found that these results agree much better when the 

contribution of the tip vortices is taken into account. 

A comparison with the results of the FWH acoustic analogy shows some inaccuracies of the 

proposed approach. These are mainly ascribed to inherent limitations of the blade response model 

adopted in the present work. However, the general trend of the noise levels along a sideline 

parallel to the CROR axis is predicted reasonably well. 

The proposed RANS-informed model shows the potential to be successfully embedded in a 

multidisciplinary optimization strategy of CROR engines. 
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NOMENCLATURE 

 

 

𝐵  Blade number 

𝐵𝑃𝐹  Blade passing frequency 

𝐶𝐷  Drag coefficient 

𝐶𝐿  Lift coefficient 

𝑐  Chord length 

(𝒆𝑥, 𝒆𝑟, 𝒆𝜗)  Local cylindrical reference frame of the vortex 

(𝒆𝑋, 𝒆𝑅 , 𝒆Ψ)  Cylindrical reference frame of the front rotor 

(𝒆𝑥 , 𝒆𝑦, 𝒆𝑧)  Local cartesian reference frame of the vortex 

(𝒆𝑋, 𝒆𝑌, 𝒆𝑍)  Cartesian reference frame of the front rotor 

FR Front rotor 

𝑓  Frequency 

ℎ  Harmonic order 

IN Interaction noise 

𝑘  Wavenumber 

LE Leading edge 

MP Mixing plane 

𝑟𝑐  Viscous core radius 

RR Rear rotor 

SPL Sound pressure level 

TE Trailing edge 

TV Tip vortex 

𝒖  Model absolute velocity 

𝒗  Absolute velocity 

𝑽  Uniform absolute velocity 

𝑉𝑥,𝑑𝑒𝑓  Peak of the vortex axial velocity deficit 

𝒘  Relative velocity 

𝑾  Uniform relative velocity 

(𝑥, 𝑟, 𝜗)  Local cylindrical coordinate system of the vortex 

(𝑋, 𝑅,Ψ)  Cylindrical coordinate system of the front rotor 

(𝑋𝑎 , 𝑅𝑎 , Ψ𝑎)  Absolute cylindrical coordinate system 

(𝑋, 𝑌, 𝑍)  Coordinate system of the front rotor 



 

 
x 

(𝑋𝑎 , 𝑌𝑎 , 𝑍𝑎)  Absolute cartesian coordinate system 

 

 

Γ  Circulation 

𝜌  Density 

𝜎  Reduced frequency 

Ω  Rotational speed 

𝝎  Absolute vorticity 

 

 

 

 

SUBSCRIPTS 

 

 

0 Freestream 

1 Front rotor 

2 Rear rotor 

𝑐  Tip vortex centre 

𝑑𝑒𝑓  Tip vortex velocity deficit 

𝑖𝑛𝑑  Induced velocity 

T Rotor tip 

uw Ultimate wake 
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1 INTRODUCTION 
 

 

 

1.1 Architecture of CROR engines 
 

In the context of civil aviation, the concerns about fuel prices and environmental impact are 

pushing the development of new engine concepts for fuel saving and noise reduction. As a fuel 

saving solution, the Contra-Rotating Open Rotor (CROR) engine architecture, which was initially 

developed during 80’s and early 90’s [1,2], has received renewed interest for the propulsion of 

short-medium range aircraft [1,3,4]. CRORs consist of two rows of unshrouded blades rotating 

in opposite directions, powered by a core turbine. As an example, Figure 1.1 illustrates the UDF 

(acronym of UnDucted Fan) open rotor engine, developed by General Electric during 80’s, 

installed on a McDonnel-Douglas MD-80 to perform flight tests [5]. The contra-rotating rear 

blades recover the swirl kinetic energy produced by the front blades, which would be wasted in a 

single blade row configuration, providing an increase in the propulsive efficiency of about 8% 

[6,7]. The absence of an external nacelle allows obtaining very high bypass ratios and reducing 

aircraft drag and weight [8]. In light of these features, CRORs exhibit a very high propulsive 

efficiency and they have the potential for a fuel burn reduction up to 30% compared to high bypass 

turbofans. Unfortunately, the absence of a shroud limits the possibility of dampening the noise 

emitted by the engine. This causes open rotors to exhibit a very high noise emission that has a 

significant environmental impact, especially at take-off and approach. 

Figure 1.1 – Contra-rotating Open Rotor in pusher configuration. 
General Electric UDF® (UnDucted Fan) mounted on a McDonnel-Douglas MD-80. 
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In recent years, many experimental campaigns have been undertaken in the USA [1,9–12] 

and in Europe [4,13,14] to assess the aerodynamic and acoustic features of CRORs, along with 

several numerical studies aimed at developing appropriate computational strategies and gaining 

a better understanding of the noise generation mechanisms [12,15–20]. Although the modern 

computational capabilities have enabled progress in CROR aeroacoustic design, further 

developments are needed to achieve the stringent noise targets imposed by the International Civil 

Aviation Organization (ICAO) [21,22]. 

 

1.2 Noise generation mechanisms in CRORs 
 

In order to identify effective strategies for noise reduction, it is necessary to understand the 

mechanisms involved in the noise generation. The noise emitted by the blades is recognized as 

the main contribution to the overall acoustic signature of a CROR engine, and it can be classified 

into tonal noise and broadband noise. The former is due to periodic phenomena and emerges at 

discrete frequencies, while the latter is random in nature and contains components at all 

frequencies. A comprehensive description of the noise generation mechanisms in single-rotating 

and contra-rotating blades is given by Magliozzi et al. [23]. In general, the noise sources can be 

divided into two categories: 

• Steady sources: they appear constant in time for an observer in the reference frame 

rotating with the blade. 

• Unsteady sources: they are time dependent in the reference frame rotating with the 

blade. 

The steady sources and the unsteady sources that are periodic in time are responsible for the 

emission of the tonal noise components, while the unsteady sources that exhibit a random 

behaviour give rise to the broadband noise. 

 

1.2.1 Tonal noise generated by steady sources 

Although the steady sources are constant in time in the reference frame relative to the blades, 

they produce tonal noise due to the periodical perturbation of the medium during the blade 

rotation. They can be divided into thickness, loading and volume (nonlinear) sources [24–26], 

and the related noise generation mechanisms are as follows: 

• Thickness sources: generated by the periodic displacement of the air by the volume 

of a rotating blade. They can be represented by a distribution of acoustic monopole 

sources. 
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• Loading sources: correspond to the forces acting on the fluid due to the viscous stress 

and pressure distributions on the blade surface. Since the blade rotates, these forces 

cause periodical flow perturbations and hence tonal noise generation. Loading 

sources can be represented by a distribution of acoustic dipoles. 

• Volume (nonlinear) sources: are due to nonlinear effects occurring in the flow field 

around the blades. They represent the shear stress in the fluid [26]. Since the volume 

sources can be described by acoustic quadrupoles distributed in the volume 

surrounding the blade, their contribution is usually called quadrupole noise. 

In a CROR engine, the tonal noise due to the steady sources is emitted by each blade row at 

frequencies that are multiples of the Blade Passing Frequency (𝐵𝑃𝐹 = No. blades × (𝑟𝑝𝑚 60⁄ ) 

[Hz]), i.e., 𝑓1 = ℎ1 × 𝐵𝑃𝐹1 and 𝑓2 = ℎ2 × 𝐵𝑃𝐹2, with ℎ1,ℎ2  ∈  ℕ. This kind of tonal noise is 

usually called rotor self-noise. 

 

1.2.2 Tonal noise generated by unsteady sources 

The loading sources that are periodic in the reference frame rotating with the blade generate 

tonal noise components. For example, periodic blade loads occur when the rotor axis is tilted 

relative to the inflow direction. In this operating condition, the blades experience a cyclic variation 

of flow incidence and, consequently, the loading undergoes periodic variation [17]. 

In a CROR, the aerodynamic interactions between front rotor (FR) and rear rotor (RR) cause 

significant fluctuations of the blade loading. These interactions are due to the following 

phenomena: 

• Impingement of the front rotor wakes on the rear rotor blades. 

• Mutual effects of the potential flow fields generated by the two rotors. 

Each blade of the front rotor sheds a wake that is convected into the rear rotor. These wakes 

include velocity deficits ascribed to the viscous wakes, secondary vortices developing in the hub 

region, and tip vortices (TVs). Since these flow structures are periodic in the circumferential 

direction of the front rotor, they generate periodic load fluctuations on the rear blades. 

Also the bound potential fields of the two rotors contribute to their aerodynamic interaction. 

The potential field of each rotor induces velocity disturbances at the position of the other rotor, 

which are periodic in the circumferential direction. Due to the relative rotation, these disturbances 

generate a periodic fluctuation of the blade loading of both rotors. 
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The tonal noise arising from the aerodynamic interaction between the rotors is called 

interaction noise (IN). It is emitted at frequencies that are linear combinations of the blade passing 

frequencies of the two rotors, that is, 𝑓 = ℎ1 × 𝐵𝑃𝐹1 + ℎ2 × 𝐵𝑃𝐹2, with ℎ1,ℎ2  ∈  ℕ. 

 

1.2.3 Broadband noise 

The broadband noise is generated by unsteady sources characterized by a random behaviour. 

In open rotors, there are two mechanisms that produce significant levels of broadband noise 

[23,27,28]. The first one is the interaction of the flow turbulence with the leading edge (LE) of 

the blades. This interaction is due to the impingement of the inflow turbulence on both rotors and 

to the impact of the turbulent wakes shed by the front blades on the LE of the rear blades. In the 

second mechanism, the broadband noise is scattered by the trailing edge (TE) of the blades. In 

fact, CRORs typically develop a turbulent boundary layer over the blade surfaces, resulting in 

fluctuating blade loading at the trailing edge. 

 

1.2.4 Contribution of the different noise sources to the total noise emission 

Experimental and numerical studies have shown that different noise sources prevail over the 

others depending on the CROR operating conditions (see, e.g. [9,23,26,29]). 

At cruise, the self-noise tones dominate the noise spectrum. In fact, although the radial 

sections of CROR blades are thin, the thickness noise is very intense due to the high relative 

speed. Moreover, Hanson and Fink [26] showed that the quadrupole sources have a significant 

impact when the blades operate in transonic regime, which is the case of CROR blades at cruise 

condition. On the other hand, the contribution of the loading sources to the rotor self-noise is 

comparatively weak since the blades are lightly loaded. 

In general, the environmental impact of the acoustic emission is not a major issue during 

cruise flight. However, the engine noise causes annoyance to passengers and has to be duly 

considered in the design stage to limit the in-cabin noise. 

At take-off and approach, the noise emitted by the CROR blades represents a critical issue for 

the communities living close to airports. Due to the high thrust required, the blades are heavily 

loaded during take-off. Consequently, the wakes of the front blades and the bound potential fields 

of the two rotors are very intense and generate high levels of periodic unsteady loading. Therefore, 

in this operating condition, the interaction noise tones due to the aeroacoustic interference of the 

two rotors are very strong if not dominant over the self-noise tones [9,23,29]. The mitigation of 

the IN at take-off is of primary importance in reducing the environmental impact of contra-

rotating open rotors. 
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The broadband noise exhibits appreciable levels in all operating conditions. However, it has 

been demonstrated that the tonal noise components are significantly more intense than the 

broadband noise, especially at the lower frequencies [9,23]. Therefore, the contribution of the 

broadband noise is not considered in the present work. 

 

1.3 Contribution of the front rotor tip vortices to the interaction noise 
 

Among the flow structures responsible for the aerodynamic interaction of the two rotors, the 

tip vortices released by the front blades and impinging the rear blades are recognized as major 

drivers of IN at take-off condition [4,29,30]. They generate intense velocity disturbances in the 

circumferential direction that periodically impact the rear blades in the tip region, inducing high 

amplitude loading fluctuations. Moreover, the rotor tip is a very efficient noise radiator due to its 

high speed. 

Peters and Spakovszky [29] showed numerically that the contribution of the rear blade tip to 

the interaction noise emission, due to the impingement of the tip vortices, can be as large as the 

contribution of the viscous wakes. Therefore, in a design strategy aimed at reducing the acoustic 

impact of CRORs, it is essential to account for the influence of the TVs. 

 

1.4 Technologies for noise reduction 
 

Effective technical solutions for noise reduction have already been identified during the 

development of the first generation of open rotors in the 80’s and early 90’s (see, e.g. [23,30]). 

Nevertheless, the progress in computational fluid dynamics (CFD) and computational 

aeroacoustics (CAA) methods, together with recent experimental efforts, has allowed assessing 

the effect of modern technologies for the reduction of the noise emitted by CRORs. A 

comprehensive overview of possible solutions for noise mitigation and their impact on rotor 

aerodynamics and structural issues is given by Negulescu [4] and Van Zante et al. [12]. 

 

1.4.1 Rotor self-noise reduction 

The technical solutions for the abatement of the rotor self-noise emitted by each blade row 

can be summarized as follows: 

• Swept blades: a spanwise shift between acoustic sources located at different blade 

stations is introduced by adopting blades with swept planforms. Thus, the acoustic 

signals emitted by different blade strips arrive out of phase at the observer position, 

resulting in partial self-interference and reduction in net noise. Moreover, the sweep 
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reduces the effective Mach number at which the airfoils operate, thus reducing the 

quadrupole noise [31]. However, the maximum sweep angle is limited by structural 

constraints. 

• High blade count: it is desirable to maximize the blade counts in order to reduce the 

loading per blade, thus reducing the contribution of the loading noise. Also the 

induced losses diminish, resulting in a higher propulsive efficiency. Nevertheless, the 

maximum blade number is limited by constraints regarding the pitch change 

mechanism, blade solidity for reverse thrust, and engine weight. Future CRORs may 

have up to 12 blades per row. 

• Large rotor diameter: the higher is the rotor diameter the lower is the disk loading 

(power per unit propeller annulus area) necessary to provide the required thrust. The 

local blade load is reduced, thus reducing the tonal loading noise. Also the efficiency 

benefits from a low disk loading since the losses are reduced. However, a large rotor 

diameter has a negative impact on the engine weight and requires a reinforced and 

heavier engine mount. 

• Rotational speed: when increasing the blade rotational speed at constant propeller 

thrust, the projection of the blade lift force on the propeller axis increases, while its 

projection in the propeller plane decreases, thus enhancing the propeller efficiency. 

Nevertheless, when the blade tip approaches the transonic regime, thickness and 

quadrupole noise increase rapidly. Therefore, the propeller rotational speed must be 

chosen as a compromise between noise and efficiency requirements. 

• Rear mounted pusher configuration: CROR engines can be installed on the wing or 

on the rear part of the fuselage in pusher configuration (see Figure 1.1). The latter is 

preferable to reduce the in-cabin noise perceived by the passengers at cruise. Indeed, 

thickness and quadrupole noise, which are dominant at cruise, exhibit the maximum 

amplitude close to the propeller rotation plane. Therefore, by mounting the engine in 

the aft part of the fuselage avoids exposing the cabin to the maximum intensity of the 

acoustic emission. 

 

1.4.2 Interaction noise reduction 

Technologies for the mitigation of the IN tones, which are particularly intense at take-off, 

have been explored and they are as follows: 

• Rear rotor cropping: an effective mean to reduce the IN consists in avoiding the 

impingement of the FR tip vortices on the rear blades [30]. This can be achieved, at 
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least partially, by reducing the diameter of the RR (rotor cropping), so that the 

trajectory of the tip vortices lies outward the tip of the rear blades. At take-off, the 

stream-tube contraction is considerable due to the high thrust required. Therefore, 

limiting the impingement of the TVs on the rear blades requires a significant 

reduction in the rear rotor diameter. However, the vena contracta effect is slight at 

cruise. Therefore, the smaller is the RR diameter the larger is the amount of swirl 

kinetic energy not recovered by the rear rotor. Consequently, the radial extension of 

the rear blades must be tailored to achieve a compromise between cruise efficiency 

and noise mitigation. 

• Increased axial spacing: the IN is sensitive to the axial distance between the two 

rotors. In fact, the intensity of the perturbations due to the FR wakes and the potential 

field of the two rotors decay moving away from the blades. Therefore, the unsteady 

loads decrease by increasing the spacing between the rotors. Even though the axial 

spacing has a minor influence on the propulsive efficiency, it has a large impact on 

the weight of the CROR. 

• Unequal blade number: the front/rear self-rotor tones are emitted at integer multiples 

of the two separate 𝐵𝑃𝐹𝑠, while interaction noise occurs at their linear combinations. 

For equal blade numbers and rotational speeds of the front and rear rotors, the self-

noise tones of the RR, as well as the IN tones, are emitted at the same frequencies as 

those of the FR. For equal rotor speeds, unequal blade numbers with no common 

multiple factors should be adopted to spread the noise over different frequencies, thus 

reducing the overall acoustic emission. A difference of 2-3 blades for a total of 14-20 

blades is suggested [4]. A difference of more than 3 blades would have a negative 

impact on the CROR efficiency. 

 

1.4.3 The need for a multidisciplinary design approach 

Research and development activities on CRORs have shown that adopting the best solutions 

for noise reduction leads to deterioration of CROR efficiency and also to structural issues. Thus, 

the geometrical features of the rotors, as well as their operating parameters, must be chosen 

properly to obtain the best compromise among acoustic, aerodynamic and structural requirements. 

Therefore, it is essential to consider the noise reduction in the earliest stages of a multidisciplinary 

design approach [29,32]. 

In a multidisciplinary design optimization, many CROR geometries and operating conditions 

have to be assessed, and hence a fast method to predict the noise emission is required. 
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1.5 Numerical methods for accurate noise predictions 
 

To predict accurately the noise emitted by open rotors it is necessary to rely on CFD 

simulations for the computation of the unsteady flow field around the rotors and thus the acoustic 

sources. Then, accurate CAA methods have to be used to compute the acoustic pressure at any 

observer position. 

The unsteady flow field around the CROR blades can be computed accurately by means of 

3D Unsteady Reynolds Averaged Navier-Stokes (URANS) simulations. This numerical 

technique is based on the Reynolds averaging of the Navier-Stokes equations, which eliminates 

the turbulent fluctuations in the linear terms, while maintaining the time dependence of the 

averaged quantities. However, the turbulent fluctuations remain in the non-linear terms of the 

URANS equations, that is the Reynolds stresses, and a turbulence model needs to be introduced 

for the problem closure. 

By means of URANS simulations, the steady (in the relative reference frame) and unsteady 

noise sources can be computed. These sources are used as an input to CAA models based on the 

acoustic analogy of Ffowcs Williams and Hawkings (FWH) [24], which is a generalization of the 

Lighthill equation accounting for the noise radiated by moving bodies [33,34]. Thus, the CAA 

models allow computing the time history of the acoustic pressure at the desired receiver positions. 

The approach based on URANS simulations coupled with the FWH acoustic analogy provides 

accurate estimations of the noise emission. However, it requires very large computational times 

(some months on modern multi-processor computers). In fact, the URANS simulation must be 

advanced over a very large number of time steps, corresponding to several revolutions of the 

rotors, in order to obtain sufficient data for a spectral analysis of the computed signal, i.e., 

information on the noise tones. Therefore, due to its large computational burden, this approach is 

not compatible with a multidisciplinary optimization strategy. 

 

1.6 Steady RANS simulations and mixing plane approach 
 

3D steady Reynolds Averaged Navier-Stokes (RANS) simulations require considerably less 

computing time compared to URANS. To compute the approximate steady flow field past the 

CROR, the front and rear rotors are coupled using the mixing plane (MP) approach. 

 

1.6.1 Mixing plane approach 

Because of the aerodynamic interaction of the two blade rows in relative rotation, the flow 

field is inherently unsteady. Therefore, a mixing plane is introduced between FR and RR to 
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compute the approximate steady flow field in the rotating reference frame of each blade row (see 

Denton [35]). The flow quantities are azimuthally averaged at both sides of the MP interface, thus 

providing a uniform boundary condition in the circumferential direction for both rotors, which 

allows performing a steady state simulation. 

RANS simulations conducted introducing the mixing plane concept give a very good estimate 

of the CROR aerodynamic performance (thrust, torque, efficiency, etc.) [4,15]. Moreover, they 

are rather fast, taking only few hours per simulation on a multi-processor computer. Therefore, 

the RANS mixing plane approach is suited to computations for the optimized design of open 

rotors. 

 

1.6.2 Limitations regarding the noise computation 

Steady RANS simulations are very attractive for the purpose of a multidisciplinary design 

strategy. However, only a partial assessment of the noise emission can be obtained. Indeed, the 

unsteadiness is completely suppressed at the MP and only the steady acoustic sources can be 

computed. This enables a fast estimation of the rotor self-noise tones only, whereas the IN cannot 

be evaluated. Therefore, in the context of a multidisciplinary optimization involving the acoustics 

of CRORs, the main issue to be addressed concerns the fast estimation of the unsteady loadings 

and the interaction noise tones. 

 

1.7 Hybrid CFD/analytical methods for the fast prediction of the 

interaction noise tones 
 

A relatively fast prediction of the IN tones can be obtained by means of hybrid CFD/analytical 

methods [36]. The basic concept behind hybrid methods is to exploit data extracted from a CFD 

simulation to calibrate analytical models of the velocity perturbations in space, i.e. the azimuthal 

perturbations, responsible for the unsteady aerodynamic interaction of the rotors (front blade 

wakes and rotor bound potential fields). The models assume that the azimuthal perturbations 

generated by each rotor are steady relative to it. However, due to the rotation, they are perceived 

by the other rotor as periodic velocity gusts that induce fluctuating aerodynamic loads. 

The harmonics of the velocity gusts computed at the leading edge of the rotors are used as 

input to an analytical blade response model which gives the discrete spectrum of the unsteady 

blade loads (see Goldstein [37]). 

After computing the harmonics of the unsteady loading, the acoustic emission is evaluated by 

means of an analytical noise propagation model in the frequency domain. A widely used model 

was proposed by Hanson, who initially developed a theory for the noise radiated by single-
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rotating propellers [38], and then extended it to the contra-rotating configuration by including the 

contribution of the unsteady sources [39]. Hanson’s model is a simplification of the FWH acoustic 

analogy, expressed in the frequency domain via Fourier transform, and it allows obtaining a very 

fast estimation of the tonal noise emitted by CRORs. 

To summarize, the key steps of a hybrid CFD/analytical method for the prediction of the 

interaction noise are as follows: 

1) conducting a CFD simulation; 

2) using CFD data to calibrate analytical models of the azimuthal perturbations of 

velocity generated by the rotors; 

3) computing the harmonics of the velocity perturbations at the leading edge of the 

rotors; 

4) evaluating the harmonics of the unsteady loading by means of analytical blade 

response models; 

5) calculating the radiated noise tones by means of an analytical noise propagation 

model in the frequency domain. 

 

1.7.1 Literature review on hybrid methods 

Hybrid CFD/analytical methods for the prediction of the IN from CRORs have been recently 

proposed by Ekoule et al. [40] and Carazo et al. [41]. Ekoule et al. developed analytical models 

of the azimuthal velocity perturbations generated by each rotor. The parameters of the models are 

calibrated exploiting flow velocity data extracted from URANS simulations and the harmonics of 

the velocity gusts are computed at the inlet of the two rotors. Carazo et al. single out the gusts due 

to the FR directly from the URANS solution and calculate their harmonics at the leading edge of 

the RR using the Fourier transform. Then, a blade response model and a modified version of 

Hanson’s propagation model are used to compute the unsteady blade loads and the interaction 

noise, respectively. 

Since the methods by Ekoule et al. and Carazo et al. are based on analytical models for the 

calculation of the unsteady loading and the noise radiation, they are considerably less time 

demanding compared to CAA models based on the FWH analogy. However, these methods 

circumvent only partially the issues related to the computational burden, since they rely on 

URANS simulations to obtain the necessary aerodynamic input. 

Jaron et al. [42,43] proposed a method based on the RANS mixing plane approach for the fast 

computation of the IN. The velocity perturbations in space generated by each rotor are suppressed 

at the mixing plane. The concept behind the RANS-informed method of Jaron et al. is to 

extrapolate the perturbations through the MP to compute an approximate unsteady flow field 
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around the CROR. They developed analytical models describing the velocity perturbations 

generated by the front rotor viscous wakes and rotor bound potential fields. The parameters of the 

models are calibrated by fitting the azimuthal perturbations extracted from the RANS solution. 

Then, the perturbations are extrapolated through the MP, up to the LE of the two rotors. Finally, 

the harmonics of the extrapolated perturbations are used to compute the unsteady loading. 

Grasso et al. [44] have recently presented the multidisciplinary optimization of the blade 

shape of a contra-rotating ducted fan, conducted using the extrapolation models of Jaron et al. to 

compute the IN tones. The RANS-informed method of Jaron et al. shows the potential to be 

successfully used for the fast prediction of noise in the context of a multidisciplinary optimization 

of CROR engines. However, this model relies on a 2D flow assumption, and a poor extrapolation 

is achieved in the region of the rear blade tip, thus affecting the prediction of the interaction noise 

tones. In fact, this region is influenced by the front rotor tip vortices, which are strongly three-

dimensional flow structures. As already discussed, the TVs are major drivers of interaction noise 

at take-off and their influence must be assessed properly to obtain an effective noise mitigation. 

Analytical models of the velocity perturbations ascribed to the FR tip vortices have already 

been developed by Kingan and Self [45] and Quaglia et al. [46]. These models can be calibrated 

using the solution of RANS simulations. Kingan and Self assume that the tip vortices follow a 

path of constant radius, thus neglecting the strong stream-tube contraction typical of take-off. 

This 3D effect is taken into account by Quaglia et al., who introduced a radially contracting helical 

path for the vortex centre. However, their TV model is defined in a coordinate system unwrapped 

on the radius of the blade-vortex impingement locus, leading to a distortion of the actual three-

dimensional velocity field. 

In view of the limitations of the models from literature, the need arises to develop a RANS-

informed model capable of considering properly the contribution of the FR tip vortices to the 

aerodynamic interaction of the two rotors, as well as the contribution of the other flow structures 

(viscous wake and potential field). 

 

1.8 Original contributions of this thesis 
 

The objective of the present work is the development of an improved RANS-informed model 

for the fast prediction of CROR noise which properly accounts for the contribution of the FR tip 

vortices to the IN tones. 

The background models considered for further improvements are the following ones: 
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1) RANS-informed model of Jaron et al. [42] for the extrapolation of the velocity 

perturbations generated by the FR beyond the mixing plane and the reconstruction of 

the unsteadiness at the inlet of the RR; 

2) analytical blade response model proposed by Goldstein [37] for the calculation of the 

unsteady loading; 

3) analytical noise propagation model by Hanson [39] for the computation of the 

acoustic emission. 

The original contribution of the present thesis is supplementing the above models with a 

genuinely 3D semi-analytical model of the tip vortex (TV) flow field, with the aim of accounting 

for its contribution to the rotor interaction noise. The model, calibrated using data from steady 

RANS solutions, allows extrapolating the velocity perturbations due to the FR tip vortices beyond 

the mixing plane. 

The trajectory of the TV centre is modelled by a helix that extends from the FR trailing edge 

(TE) to infinity downstream. Within an initial axial distance, the helix is allowed to radially 

contract and to have a variable pitch to account for stream-tube contraction and flow acceleration. 

After defining the TV trajectory, the velocity induced by the vortex is computed numerically 

by means of the Biot-Savart law, modified to take into account the presence of a viscous core of 

finite radial extent [47]. Also, a velocity deficit locally tangent to the vortex trajectory is 

considered, being a typical occurrence in CROR blade tip vortices [18,46]. 

The TV model is calibrated using data from a steady RANS solution extracted from the FR 

trailing edge to the MP. The calibration procedure is divided into two steps. First, the unknown 

parameters of the analytical trajectory are balanced by fitting the TV centre path extracted from 

RANS. In the second step, the velocity parameters (vortex circulation, viscous core radius, and 

peak of velocity deficit) are identified. To make the identification of these parameters affordable 

in terms of computational burden, a specially developed calibration procedure based on the RANS 

vorticity fitting is proposed. 

After calibrating the model parameters, the velocity ascribed to a single TV is evaluated at 

any point of the space. Thus, the velocity field due to the vortices released by all the FR blades is 

computed as the superposition of the contributions of the single blades. Therefore, the velocity 

perturbations in space due to the tip vortices, which are steady in the reference frame of the FR, 

are used for a dual purpose: 

1) The TV perturbations are subtracted from the RANS velocity field between the FR 

trailing edge and the MP, thus removing the contribution of the tip vortices. Then, the 

2D model of Jaron et al. is calibrated by fitting the resulting perturbations. This allows 
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improving the extrapolation of the flow structures described according to a 2D model 

(FR viscous wakes and potential field). 

2) The TV perturbations are computed at the LE of the rear rotor, where they are added 

to the perturbations extrapolated by means of the 2D model. 

Adopting this procedure, the contribution of both tip vortices and 2D flow structures to the 

unsteady loading on the rear blades is properly accounted for. 

After reconstructing the perturbations beyond the mixing plane, the unsteady loading and the 

interaction noise emitted by the RR are evaluated using the aforementioned blade response and 

noise propagation models. 

The CROR geometry considered in this work is the UDF F7/A7 with 8 x 8 blade count 

configuration (the numbering refers to the number of blades of the FR and the RR). Data found 

in literature [48,49] allowed reproducing the blade shape and the geometry of the nacelle. 

The simulated operating condition is representative of take-off. The numerical simulations 

were conducted by means of the commercial software ANSYS Fluent. A RANS and a URANS 

simulation were performed. The former is employed to calibrate the analytical models, while the 

latter is used to validate the results of the proposed RANS-informed approach. 

 

1.9 Structure of the thesis 
 

This thesis is focused on the development of a RANS-informed model for the computation of 

the IN of CRORs that includes the effects of the FR tip vortices. The role of the data extracted 

from the RANS simulations is essential for the description of such a hybrid model. Therefore, the 

adopted CROR geometry and the setup of the numerical simulations are introduced first. Then, 

the background analytical models and the proposed tip vortex model are described. 

Chapter 2 reports the procedure adopted to define the geometry of UDF F7/A7, based on data 

from literature, while Chapter 3 describes the setup of the RANS and URANS simulations. 

The background models that represent the basis of the present work are illustrated in Chapter 

4. First, the 2D extrapolation model of Jaron et al. is described. Then, the adopted blade response 

and noise propagation models are outlined. 

The original contributions of the present thesis are presented in Chapter 5, which describes 

the tip vortex model and its interaction with the 2D extrapolation model from literature. After a 

general introduction, the modelling of the vortex trajectory and vortex velocity field is described. 

Then, the calibration procedure based on data extracted from RANS solutions is illustrated, 

together with preliminary results showing the velocity field ascribed to the tip vortices. Finally, 
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the procedure used to couple the tip vortex model with the 2D extrapolation model, based on the 

removal of the TV velocity perturbations from the RANS flow field, is illustrated. 

The results of the present work are given in Chapter 6. First, the results of the numerical 

simulations are reported. Then, the results of the analytical models are illustrated, showing the 

outcomes of both improved model and purely 2D model, in order to assess the benefits achieved 

by considering the effect of the tip vortices. These results are organized as follows: 

1) The extrapolated velocity perturbations, computed at the leading edge of the RR, are 

compared with URANS results to assess the reconstruction of the flow unsteadiness. 

2) A comparison between the unsteady loading given by the blade response model and 

computed from the URANS blade pressure is presented. 

3) The interaction noise tones emitted by the RR is evaluated and compared with high 

fidelity results obtained from the URANS simulation coupled with FWH. A 

comparison between the predicted noise emission and wind tunnel noise 

measurements found in the literature is also presented. 

Finally, the conclusions of the present work are drawn in Chapter 7. 
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2 CROR GEOMETRY 
 

 

 

The CROR geometry considered in this work is the historical UDF F7/A7, developed by 

General Electric (GE) during late 80’s [48]. Acronym UDF denotes “UnDucted Fan”, while F7 

and A7 refer to the blades of the front rotor and rear (aft) rotor, respectively. The 8 x 8 blade 

count configuration was considered. A realistic shape of the nacelle and of the F7 and A7 blades 

has been reproduced, based on data found in literature [48,49]. 

 

2.1 Reproduction of the blade shape 
 

The full scale UDF engine has rotor blade tip radii of 𝑅𝑇,1 = 1.778 𝑚 and 𝑅𝑇,2 = 1.730 𝑚 

for the front rotor and rear rotor, respectively. The hub to tip ratio of the two rotors is 𝑅𝐻 𝑅𝑇⁄ =

0.425. The engine was designed to operate at a cruise flight speed of Mach 0.72 and 35000 𝑓𝑡 

altitude [48]. Data found in literature, and reported in Figures 2.1-2.3, allowed reproducing the 

main geometrical features of the front and rear blades [48,49]. 

Figure 2.1 refers to the F7 blade and shows the spanwise distributions of the normalized airfoil 

chord, 𝑐1 𝑅𝑇,1⁄ , and maximum airfoil thickness 𝑡𝑚,1 𝑐1⁄ . The distributions of the lift coefficient, 

𝐶𝐿,1, and stagger angle, 𝛾1, at design cruise condition are also depicted. The stagger angle is 

measured from the axial direction and allows the blade twist to be defined. Analogous 

distributions for the A7 blade are given in Figure 2.2. 

Figure 2.1 – Spanwise distributions of lift coefficient (𝐶𝐿), chord-to-𝑅𝑇 ratio (𝑐 𝑅𝑇⁄ ), 
thickness-to-chord ratio (𝑡𝑚 𝑐⁄ ) and stagger angle (𝛾) for the F7 blade (from [48,49]). 
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In Ref. [48] the profile stacking line is provided in terms of axial and tangential displacements 

of the airfoil centroid with respect to the pitch change axis (PCA). The spanwise distributions of 

the airfoil displacements, normalized with respect to the rotor tip radius, are shown in Figure 2.3 

for both front and rear blades. Note that these displacements refer to the cruise setting. In fact, at 

a different operating condition (e.g. take-off) the pitch angle of the blades is changed by the pitch 

change mechanism, thus varying the axial and tangential displacements of the airfoil centroid. 

Since the actual airfoil geometry is not provided in the literature, the assumption has been 

made of using NACA 65-series profiles from the hub to 17.11 % of the blade height and NACA 

16-series from 38.16 % to the blade tip (see Figure 2.1 and Figure 2.2). The intermediate blade 

region is filled with profiles obtained by a CAD interpolation procedure. This distribution of 

airfoil families is the same as that of the advanced propeller NASA SR-3 (see Rohrbach et al. 

Figure 2.2 – Spanwise distributions of lift coefficient (𝐶𝐿), chord-to- ratio (𝑐 𝑅𝑇⁄ ), 
thickness-to-chord ratio (𝑡𝑚 𝑐⁄ ) and stagger angle (𝛾) for the A7 blade (from [48,49]). 

Figure 2.3 – Axial and tangential displacements defining the blade 
profile stacking line (from [48]). a) F7 blade, b) A7 blade. 
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[31]). In fact, NASA SR-3 and UDF F7/A7 have been designed in the same period, and it is 

assumed they have similar geometric characteristics. 

The aforementioned information allowed reproducing a realistic shape of the F7 and A7 

blades. First, the spanwise distributions of lift coefficient, chord length and maximum thickness 

are used to define the airfoil shape at different radii along the blade span. Then, the airfoils are 

twisted according to the distribution of the stagger angle. Finally, they are stacked following the 

spanwise distributions of axial and tangential displacements of the centroids. The blade shape is 

then obtained by means of a CAD interpolation of the airfoils. 

Both front and rear blades were obtained by stacking 22 airfoils along the blade height. The 

spanwise coordinates and the properties of these airfoils are identified by solid circles in Figures 

2.1-2.3. 

 

2.2 Reproduction of the nacelle shape 
 

The geometry of the nacelle was reproduced using data found in Refs. [48] and [49]. The 

nacelle profile was extracted from Figure 2.4 [48] and is indicated by the solid line in Figure 2.6, 

where 𝑋𝑎 and 𝑅𝑎 are the axial and radial coordinates, respectively (axis 𝑋𝑎 coincides with the 

CROR rotation axis and points in the downstream direction). 

The axial coordinates of the pitch change axes of the two rotors, which define the location of 

the blades with respect to the nacelle, were extracted from Figure 2.5 ([49]). In this figure, the 

axial spacing between FR and RR (that is, the axial distance between the pitch change axes) refers 

to the baseline configuration of the UDF F7/A7 and corresponds to ∆𝑋𝑎 𝑅𝑇,1⁄ = 0.359. The dash-

dotted lines in Figure 2.6 show the axial positions of the pitch change axes for the baseline 

geometry. Axial coordinate 𝑋𝑎 = 0 has been assigned to the position of the front rotor PCA.  

 

2.3 Geometrical configuration considered 
 

The CROR operating conditions considered in this work are representative of take-off. The 

benchmark for the simulated test case is an experiment conducted in the 9- by 15- Anechoic Wind 

Tunnel at NASA Lewis Research Center [50]. In that experiment, the pitch angle of the blades, 

i.e. the angle between the chord and the tangential direction at 𝑅 𝑅𝑇⁄ = 0.75, was set to 𝛽1 =

36.2° and 𝛽2 = 38.4° for FR and RR, respectively. Moreover, an increased axial spacing of 

∆𝑋𝑎 𝑅𝑇,1⁄ = 0.482  was considered (the RR was shifted downstream). Therefore, the blade 

configuration considered in the present work has been modified with respect to the baseline one 

to match the NASA geometrical setting. 
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 Figure 2.7 shows an overview of the reproduced CROR geometry, while views of the FR and 

RR in the rotation plane are depicted in Figure 2.8 a) and Figure 2.8 b), respectively. The absolute 

reference frame in cartesian coordinates, (𝑋𝑎 , 𝑌𝑎 , 𝑍𝑎), and cylindrical coordinates, (𝑋𝑎 , 𝑅𝑎, Ψ𝑎), 

is also shown, together with the directions of the angular velocities of front rotor, Ω1, and rear 

rotor, Ω2. 

Figure 2.9 and Figure 2.10 provide detailed pictures of the front and rear blades, respectively. 

In these figures, the PCA (indicated by a dash-dotted line) is aligned with the axis 𝑍𝑎. 

 

 

 

 

Figure 2.4 – Picture taken from Ref. [48], which includes the nacelle profile. 

 

 

 

Figure 2.5 – Picture taken from Ref. [49], which includes a detail of the nacelle profile 
and the axial locations of the pitch change axes of FR and RR. 
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Figure 2.6 – Curve defining the nacelle profile (solid line) and axial positions of 
 the pitch change axes of FR and RR (dash-dotted lines) for the UDF F7/A7 baseline configuration. 

 

 

 

Figure 2.7 – Overview of the reproduced CROR geometry. 

 

 

 

 

Figure 2.8 – View of the rotors in the rotation plane. a) front rotor, b) rear rotor. 
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Figure 2.9 – Shape of the F7 blade. a) projection on (𝑋𝑎, 𝑌𝑎) plane, 
b) projection on (𝑋𝑎, 𝑍𝑎) plane, c) projection on (𝑌𝑎 , 𝑍𝑎) plane. 

 

 

 

Figure 2.10 – Shape of the A7 blade. a) projection on (𝑋𝑎 , 𝑌𝑎) plane, 
b) projection on (𝑋𝑎, 𝑍𝑎) plane, c) projection on (𝑌𝑎 , 𝑍𝑎) plane. 
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3 NUMERICAL MODELS 
 

 

 

The RANS and URANS numerical simulations have been performed using commercial 

software ANSYS Fluent [51]. A second-order accurate pressure-based coupled solver and the 

𝜅 − 𝜔 SST turbulence model were used. In the URANS simulation, the time integration relied 

on a full implicit, second-order accurate, numerical scheme with constant time-step size. 

The computational domain includes a single blade passage for each rotor and periodic 

boundary conditions are applied at the lateral faces of the domain. The sketch in Figure 3.1 shows 

the axial and radial extension of the domain. The inlet and outlet boundaries are located at axial 

distances of 12 and 24 FR tip radii from the FR pitch change axis, respectively, while the far field 

boundary is located at 13 FR tip radii from the rotation axis. The boundary conditions applied to 

the inlet, outlet and far field surfaces are of “pressure-far-field” type, where the freestream Mach 

number and static conditions are specified, and the Riemann invariants are used to determine the 

flow variables at the boundary. The no-slip condition is enforced on the blade surfaces, while the 

nacelle surface is modelled as a zero-shear wall. It was decided to neglect the boundary layer of 

the nacelle to avoid a grid refinement at its surface, thus significantly reducing the computational 

burden of the simulations. Considering that the noise emission depends on the square of the Mach 

number of the sources relative to the observer [39], and since the nacelle boundary layer and the 

secondary flows would impinge the blades at the hub region, where the rotational speed is low, it 

is believed that treating the nacelle as a zero-shear wall has negligible effects on the noise 

prediction. 

The computational grid was built so as to be used to perform both the RANS and URANS 

simulations. The URANS simulation is conducted by means of the sliding mesh approach, in 

which the two portions of the computational grid enclosing the front and rear blades are allowed 

to rotate relative to each other. To prevent numerical instability, the rotating grids are not extended 

radially up to the far field boundary, but they are divided into two regions of limited radial extent, 

surrounded by a non-rotating region that extends up to the domain external boundaries. However, 

when the computational domain includes a single blade passage, ANSYS Fluent is not capable of 

performing a sliding mesh simulation involving three adjacent computational grids with different 

rotational speeds (two contra-rotating grids and a fixed grid). Therefore, the two rotating grids 

cannot be adjacent, but they must be separated by a portion of the fixed grid. The RANS 
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simulation requires that the computational grid is divided into two portions, one for each rotor, 

separated by a mixing plane. 

To satisfy all the aforementioned requirements, thus allowing the use of the same 

computational grid for both RANS and URANS simulations, the computational domain is divided 

into four cell volumes, as shown in Figure 3.1. The volumes identified by A and B (short-dashed 

lines in Figure 3.1) enclose the FR blade and the RR blade, respectively, and their radial and axial 

lengths are 1,5 and 0,73 FR tip radii. The surrounding volumes C and D extend up to the domain 

boundaries and their interface (long-dashed line) is placed at the mixing plane (MP) location. 

Figure 3.2 shows a three-dimensional view of the domain, and the blue surfaces in the detailed 

view represent the interfaces between internal and external cell volumes. All the pairs of adjacent 

surfaces at the interfaces are conformal, that is, the coordinates of the nodes on the two sides are 

coincident when the lateral faces of the cell volumes are aligned (as shown in Figure 3.2). 

In the RANS simulation, the node pairs at the interfaces between internal (A,B) and external 

(C,D) volumes are merged into single nodes. Therefore, no interpolation is necessary, and each 

of couples A-C and B-D is treated as a single computational volume. The surfaces at the interface 

between C and D, named FR outlet and RR inlet, are kept separated and they are coupled via the 

mixing plane technique. The azimuthal averaging of the flow quantities is performed along 2200 

circumferences on both sides of the MP interface. The averaged profiles at the FR outlet are used 

as boundary conditions for the RR inlet and vice-versa. In this way, the fluxes of the azimuthally 

averaged flow variables are conserved through the MP, while any flow unsteadiness due to 

circumferential variations is removed, allowing a steady flow computation. The computational 

Figure 3.1 – Extent of the computational domain and cell volumes. 
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meshes are fixed to the blades and their rotational speeds are specified assigning a rotating frame 

to each rotor. 

To perform the URANS simulation, external volumes C and D are treated as a single 

computational grid by merging the nodes at their interface. The sliding mesh approach is used 

and the computational grids of the volumes enclosing the two rotors (A and B) are put into 

rotation, while the external volume C+D is kept fixed in the absolute reference frame. Since 

during the rotation the coordinates of the nodes at the sliding surfaces do not match, the flow 

variables are interpolated at the interfaces between fixed (C+D) and rotating (A,B) volumes. 

The volumetric mesh is unstructured and consists of polyhedral cells, with the blade surfaces 

surrounded by 20 polyhedral prism layers. The first layer has a constant height, while the offset 

of the last layer is set to 12% of the base mesh size. The offset of the intermediate layers is defined 

by a geometric progression. By means of the prism layers, a better refinement of the grid can be 

obtained at the blade surfaces. Moreover, depending on the computed local value of 𝑦+, the 

numerical solver switches automatically from a low-Reynolds (𝑦+ < 1)  to a wall function 

treatment of the near-wall regions. In Figure 3.3, a portion of the prism layers on the FR blade 

has been removed to visualize the height of the layers and the shape of the prism cells, indicated 

by red lines. The values of 𝑦+ on the blade surface resulting from the simulations vary from a 

minimum of 0.1 to a maximum of 8. 

A preliminary mesh-dependence analysis of the numerical solution allowed an appropriate 

grid refinement to be selected, resulting in an overall cell count of approximately 11 million. As 

shown in Figure 3.4, the computational grids are properly refined in the region between the two 

Figure 3.2 – Overview of the computational domain and detail of the internal cell volumes. 
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rotors in order to minimize the numerical diffusion and to obtain a good resolution of the wake 

flow from the front rotor. 

In the URANS simulation, the time step size was set so that the mutual blade passage takes 

place within 60 time steps. It is short enough to minimize the numerical diffusion, so ensuring an 

accurate wake convection through the domain interfaces. 

 

 

Figure 3.4 – Mesh between the rotors on cylindrical surface 𝑅𝑎 = 0.75𝑅𝑇,1. 

Figure 3.3 – Section of the prism layers surrounding the FR blade. 
The cutting surfaces are 𝑋𝑎 = 0 and 𝑅𝑎 = 0.75𝑅𝑇,1. 
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4 BACKGROUND ANALYTICAL MODELS 
 

 

 

The background analytical models considered for the development of the present RANS-

informed model are outlined in this chapter. The detailed derivations of these models are reported 

in Appendices A, B and C. 

 

4.1 2D extrapolation model 
 

The RANS-informed 2D model of Jaron et al. [42], balanced on data extracted from RANS 

solutions, allows extrapolating the azimuthal perturbations of flow velocity generated by the FR 

through the mixing plane. Then, the harmonics of the perturbations computed at the leading edge 

of the RR can be used as an input to blade response models, and a fast prediction of the IN tones 

emitted by the rear rotor can be obtained. 

At any given radius, the velocity field around the CROR blades can be decomposed into its 

azimuthal average, �̅�, and circumferential perturbations 𝒗′. The assumption of Jaron et al. [42] is 

that 𝒗′ in the region between the FR trailing edge and the MP can be described as a superposition 

of the viscous wake and potential flow perturbations generated by the front rotor. The model 

represents the azimuthal perturbations in a reference frame rotating with the FR (see Figure 4.1), 

where they are steady. The origins of the relative reference frame (𝑋, 𝑌, 𝑍) and absolute reference 

frame (𝑋𝑎 , 𝑌𝑎 , 𝑍𝑎) are coincident and the Z axis is aligned with the PCA of one of the front blades. 

The circumferential profile of the velocity perturbations is decomposed into harmonics using 

different velocity distributions for the wake and potential flow contributions. The viscous wake 

is represented by a Gaussian distribution and the related harmonic superposition is given by 

 

 

𝑢𝑤
′ (𝑋,Ψ) = 2 ∙ ∑−𝑢𝑤0𝑒

−𝜋ℎ2[𝑊0
2+𝐾(𝑋−𝑋𝑇𝐸,1)]

𝑁

ℎ=1

                                   

                       ∙ cos [ℎ𝐵1 (Ψ −
tan𝛽𝑟𝑒𝑙
𝑅

(𝑋 − 𝑋𝑇𝐸,1)) + 𝜑𝑤(ℎ)] , 

(4.1) 

 

where 𝑋  and Ψ are the axial and azimuthal coordinates, respectively, of the reference frame 

attached to the FR (see Figure 4.1). 𝑋 is measured in the downstream direction, and 𝑋𝑇𝐸,1 is the 

axial coordinate of the FR trailing edge. Term 𝑢𝑤0  determines the amplitude of the velocity 
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deficit at the TE, 𝑊0 is the non-dimensional wake width at TE, and 𝐾 is a coefficient that accounts 

for the wake expansion in the downstream direction. Since the viscous wake generated by a lifting 

airfoil exhibits an asymmetric distribution of the velocity deficit between the pressure and suction 

side [52], the zero-phase property of the harmonics of a classic Gaussian distribution is relaxed 

and a different phase, 𝜑𝑤(ℎ), is introduced for each harmonic. The exponential term in Eq. (4.1) 

provides the decay of the wake amplitude moving away from the rotor. 𝛽𝑟𝑒𝑙 is the outflow angle 

in the reference frame of the front rotor and term tan𝛽𝑟𝑒𝑙 (𝑋 − 𝑋𝑇𝐸,1) 𝑅⁄  accounts for the 

convection of the wake due to the swirl of the flow. 

The contribution of the potential flow perturbations is derived from the theory of waves in 

ducted swirling flows [53] and is given by 

 

 

𝑢𝑝
′ (𝑋,Ψ) = 2 ∙ ∑𝑢𝑝0(ℎ)𝑒

−ℎ𝐵1

√1−𝑀𝑟𝑒𝑙
2

1−𝑀𝑋
2  

|𝑋−𝑋𝑇𝐸,1|
𝑅

𝑁

ℎ=1

                                        

                           ∙ cos [ℎ𝐵1 (Ψ −
𝑀𝑋
2

1 −𝑀𝑋
2

tan𝛽𝑟𝑒𝑙
𝑅

(𝑋 − 𝑋𝑇𝐸,1)) + 𝜑𝑝(ℎ)] . 

(4.2) 

 

Terms 𝑢𝑝0(ℎ) and 𝜑𝑝(ℎ) are the amplitude at the TE and the phase of the harmonic of order ℎ, 

respectively. The presence of term 𝑀𝑋
2 (1 − 𝑀𝑋

2)⁄  shows that the potential field rotates with a 

different swirl compared to the viscous wake. Furthermore, the exponential term shows that the 

amplitude decay depends also on the number of blades, 𝐵1. The application of this model to an 

unducted fan is an acceptable approximation as long as the radial velocity components are small 

compared to the other ones, which is not the case in the tip vortex region. The detailed derivation 

of Eqs. (4.1) and (4.2) is reported in Appendix A. 

Figure 4.1 – Cartesian coordinates (𝑋, 𝑌, 𝑍) and cylindrical coordinates 
(𝑋, 𝑅, 𝛹) in the relative reference frame of the front rotor. 
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The total velocity perturbation is the superposition of the two contributions in Eqs. (4.1) and 

(4.2), i.e., 𝑢′(𝑋,Ψ) = 𝑢𝑤
′ (𝑋,Ψ) + 𝑢𝑝

′ (𝑋,Ψ), and the parameters that have to be balanced using 

the RANS solution are 𝑢𝑤0, 𝑊0, 𝐾, 𝜑𝑤(ℎ), 𝑢𝑝0(ℎ) and 𝜑𝑝(ℎ). The sum of 𝑁 = 40 harmonics 

was considered. Therefore, the numbers of parameters to be calibrated for the viscous wake and 

potential field models are 𝑁𝑝𝑎𝑟,𝑤 = 3 + 𝑁 = 43 and 𝑁𝑝𝑎𝑟,𝑝 = 2𝑁 = 80, respectively. 

To account for the effect of the stream-tube contraction, the extrapolation paths are defined 

by streamlines computed from the azimuthally averaged flow field [42]. 55 streamlines were 

considered (see Figure 4.2) and a set of unknown coefficients had to be determined for each of 

them. To do so, velocity profiles 𝑣(𝑋𝑖, Ψ)  were extracted along the streamlines at 8 axial 

locations, 𝑋𝑖 , from the TE of the front rotor to the MP, and the perturbations 𝑣′(𝑋𝑖, Ψ) =

𝑣(𝑋𝑖, Ψ) − �̅�(𝑋𝑖) were calculated. The black circles in Figure 4.2 give an example of extraction 

locations along one of the streamlines. Then, the unknown coefficients for each streamline were 

computed by fitting the model velocity 𝑢′ with 𝑣′, that is by solving the following non-linear least 

squares problem: 

 

 

∑[𝑢′(𝑋𝑖, Ψ) − 𝑣′(𝑋𝑖, Ψ)]
2 = min

8

𝑖=1

 . (4.3) 

 

The solution of the minimization problem (4.3) was performed using the Trust-Region-Reflective 

(TRR) algorithm available in MATLAB, due to its efficiency and robustness in solving large-

scale minimization problems. For each streamline, the TRR algorithm was initialized with 120 

different values of each variable to increase the chances of finding the global minimum. 

Figure 4.2 – Streamlines defining the extrapolation paths. The black circles represent 
the (𝑋, 𝑅) locations of the velocity extraction points along one of the streamlines. 

The red square indicates the point where the velocity perturbations are extrapolated. 
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Once the unknown parameters have been balanced, it is possible to compute 𝑢′(𝑋𝐿𝐸,2, Ψ), at 

the LE of the rear rotor. The red square in Figure 4.2 represents an example of extrapolation 

location along one of the streamlines. 

Since Eqs. (4.1) and (4.2) are valid for any velocity component, the identification of the 

parameters and the extrapolation of the perturbations were performed separately for the axial, 

tangential and radial velocity components. 

Due to the stream-tube contraction, the streamlines that reach the LE of the rear rotor in the 

tip region, i.e., streamlines 51 to 55, do not cross the TE of the front rotor and, consequently, the 

influence of the viscous wake should not be considered. Therefore, in the present implementation 

only the potential field contribution, 𝑢𝑝
′ , is fitted along these streamlines. Thus, the total number 

of model parameters to be balanced for each velocity component is 𝑁𝑝𝑎𝑟,𝑡𝑜𝑡 = 50(𝑁𝑝𝑎𝑟,𝑤 +

𝑁𝑝𝑎𝑟,𝑝) + 5𝑁𝑝𝑎𝑟,𝑝 = 6550. 

In order to add the contribution of the front rotor to the IN, Jaron et al. [43] developed their 

model further to extrapolate also the perturbations generated by the rear rotor in the upstream 

direction. In this case, only the potential field contribution is considered. However, the potential 

field has a limited effect on the IN. This is especially true for modern CRORs, characterised by 

large axial spacings. In fact, the amplitude of the velocity perturbations ascribed to the bound 

potential field decay rapidly moving away from the rotor. Therefore, the upstream extrapolation 

is not considered in this work and the focus is on the modelling of the perturbations generated by 

the FR. 

Due to the essentially 2D nature of the models described by Eqs. (4.1) and (4.2), the quality 

of the fitting, and consequently of the extrapolation, is poor at the outer portion of the blade. In 

fact, in this region the influence of the tip vortex, which is a strongly three-dimensional flow 

structure, becomes important. Moreover, a correct modelling of the harmonics of the velocity at 

the outer radii, where the peripherical rotor speeds are high, is particularly important to obtain a 

correct noise prediction. Therefore, a tip vortex model has been developed to integrate the 

extrapolation model of Jaron et al.. The objective is to single out the flow field generated by the 

TV, so that the related velocity perturbations can be directly computed. Furthermore, the TV 

velocity can be subtracted from the RANS solution, thus removing the three-dimensional effects 

and improving the extrapolation of the 2D model. 

 

4.2 Blade response model 
 

The azimuthal perturbations of flow velocity generated by the front rotor, 𝒗′𝐹𝑅(𝑋, 𝑅,Ψ), are 

detected as time perturbations in the reference frame of the rear rotor. They affect the rear blades 
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causing the fluctuating blade loads responsible for the emission of the IN tones from the RR. The 

extrapolation model allow computing 𝒗′𝐹𝑅  beyond the mixing plane, thus reconstructing the 

unsteadiness at the leading edge of the rear blades. Then, the fluctuating loads on the RR blades 

can be computed by means of two-dimensional unsteady airfoil theories [36,37,40].  

In this work, a blade response model proposed by Goldstein [37] is adopted to compute the 

unsteady lift due to the impingement of the velocity perturbations on the RR blades. The model 

allows computing the unsteady lift acting on an isolated airfoil due to the impingement of a 

velocity perturbation. It is assumed that the perturbation, usually called a gust, is convected by a 

uniform 2D flow relative to the airfoil. The amplitude of the gust is considered small with respect 

to the uniform mean flow velocity. Moreover, the gust is frozen, i.e., it is spatially non-uniform 

but steady in a reference frame moving with the mean flow. The blade response model relies on 

the assumption of thin airfoil, having a small camber and a small angle of attack with respect to 

the mean flow. This implies that the gust is not modified by the presence of the airfoil and the 

flow field can be considered linear. It is further assumed that the upwash component of the 

velocity gust, that is, the component perpendicular to the mean flow direction, is responsible for 

the loading fluctuation on the airfoil. The model considers the effects of compressibility, that 

become significant for high frequency gusts, which is usually the case of the perturbations 

impinging the CROR blades. 

In view of the 2D assumptions of the blade response model, the rear blade is divided into 

radial sections, which are treated as isolated thin airfoils. 55 blade sections are considered along 

the blade span at the radial positions where the averaged streamlines, used to extrapolate the front 

rotor perturbations, approach the RR leading edge. The model is applied separately to each blade 

section, starting from the evaluation of the uniform mean flow and the frozen gust of upwash 

velocity at the leading edge of the RR. The mean flow is computed from the RANS solution, 

while the extrapolated velocity perturbations are considered as the frozen gust convected by the 

mean flow. 

Consider a blade section at radius 𝑅 in the unwrapped cylindrical section of the RR shown in 

Figure 4.3. It is assumed that a uniform flow 𝑾1 relative to the FR, computed as: 

 

 𝑾1 = �̅�𝑅𝐴𝑁𝑆,𝑋(𝑋𝐿𝐸,2, 𝑅)𝒆𝑋 + [�̅�𝑅𝐴𝑁𝑆,Ψ(𝑋𝐿𝐸,2, 𝑅) − Ω1𝑅]𝒆Ψ , (4.4) 

 

is convecting the frozen perturbations 𝒗′𝐹𝑅(𝑋𝐿𝐸,2, Ψ) computed at the LE of the airfoil (see the 

contours in Figure 4.3). Due to the relative rotation of the two rotors, the perturbations impact the 

RR airfoil with relative velocity 
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 𝑾2 = 𝑾1 −𝛀𝑟𝑒𝑙 × 𝑹 = 𝑾1 − (−𝛀1 +𝛀2) × 𝑹 . (4.5) 

 

The reference frame (𝑥2, 𝑦2), attached to the RR airfoil, is aligned with the direction of 𝑾2 

and centred at the midchord. The upwash component 𝑣′𝑦2(𝑋𝐿𝐸,2, Ψ) of the velocity perturbations 

is simply obtained by projecting 𝒗′𝐹𝑅 along direction 𝑦2. 

The blade response model is linear and gives the harmonic components of the lift induced by 

sinusoidal gusts of the upwash velocity. Therefore, the circumferential profile of 𝑣′𝑦2 is processed 

by DFT (Discrete Fourier Transform) to obtain its harmonic content: 

 

 

𝑣′𝑦2(𝑋𝐿𝐸,2, Ψ
∗) = ∑ |𝑣𝑦2(ℎ)|𝑒

𝑖[ℎ𝐵1Ψ
∗+Ψ∗(ℎ)]

𝐻

ℎ=−𝐻

 , (4.6) 

 

where |𝑣𝑦2(ℎ)| and Ψ∗(ℎ) are the amplitude and phase of the harmonic of order ℎ, respectively. 

Note that the harmonics must be defined in the azimuthal coordinate Ψ∗, which is measured in 

the direction of rotation of the FR (see Figure 4.3). The Fourier coefficients of the lift force per 

unit span are then computed according to the formula [37]: 

 

 
𝐿2(ℎ) = 𝜋𝜌0𝑐2|𝑣𝑦2(ℎ)||𝑾2|𝑆𝑐(𝜎𝑥2 ,𝑀𝑟𝑒𝑙,2)𝑒

𝑖(𝑘𝑥2
𝑐2
2
+𝜙)

 , (4.7) 

 

the complete derivation of which is reported in Appendix B. In Eq. (4.7), 𝑆𝑐(𝜎𝑥2 ,𝑀𝑟𝑒𝑙,2) is the 

high-frequency approximation of the compressible Sears function [37], 

Figure 4.3 – Blade section of the rear rotor in the unwrapped reference frame. 
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𝑆𝑐(𝜎𝑥2 ,𝑀𝑟𝑒𝑙,2) =
𝑒−𝑖𝜎𝑥2

𝜎𝑥2𝜋
√

2𝑖

𝑀𝑟𝑒𝑙,2
𝐹 (√

4𝜎𝑥2𝑀𝑟𝑒𝑙,2

𝜋(1 +𝑀𝑟𝑒𝑙,2)
) , (4.8) 

 

which depends on the relative Mach number, 𝑀𝑟𝑒𝑙,2 = |𝑾2| 𝑎0⁄ , and the reduced frequency, 

𝜎𝑥2 = ℎ𝐵1(|Ω1| + |Ω2|)𝑐2 2⁄ |𝑾2| . Function 𝐹  is the complex Fresnel integral. The validity 

condition of this approximation, 𝑀𝑟𝑒𝑙,2|𝜎𝑥2| (1 −𝑀𝑟𝑒𝑙,2
2 )⁄ > 1 , is satisfied at all the blade 

sections considered. 

In the blade response model, the phases of the upwash gusts are relative to the midchord point. 

In view of this, the exponential term in Eq. (4.7) is introduced to account for the actual phase of 

each harmonic of the lift (see Appendix B). This term includes two shifts, 𝜙 and 𝑘𝑥2𝑐2 2⁄ . The 

former represents the phase of the upwash harmonic at the leading edge of the airfoil: 

  

 𝜙(ℎ) =  ℎ𝐵1Ψ𝐿𝐸,2
∗ +Ψ∗(ℎ) , (4.9) 

 

while the latter accounts for the phase shift between the leading edge and the midchord through 

the chordwise wavenumber, 𝑘𝑥2(ℎ) = 2𝜎𝑥2(ℎ) 𝑐2⁄ . 

Finally, the total unsteady lift per unit area is computed by means of the following inverse 

DFT: 

 

 

𝐿′2(𝑡) = ∑ 𝐿2(ℎ)𝑒
−𝑖𝑘𝑥2|𝑾2|𝑡

𝐻

ℎ=−𝐻

= ∑ 𝐿2(ℎ)𝑒
−𝑖ℎ𝐵1(|Ω1|+|Ω2|)𝑡

𝐻

ℎ=−𝐻

 . (4.10) 

 

Equation (4.10) shows that the frequencies of the unsteady lift depend on the number of blades 

of the FR, which generates the velocity perturbations, and on the relative angular velocity of the 

two rotors, as expected. It should be noted that reconstruction 𝐿′2(𝑡) in the time domain is not a 

necessary information for the fast noise computation. In fact, the noise propagation model is 

formulated in the frequency domain, and it requires the knowledge of only the Fourier 

coefficients, 𝐿2(ℎ), of the blade loading [39]. 

Although Eq. (4.7) was derived under the assumptions of 2D flow, slightly cambered thin 

airfoil and small angle of attack, it was considered acceptable for the present application, where 

the blade profiles have small thickness and camber, and the angles of attack are moderate. 

Concerning the 2D approximation, Adamczyk [54] shows that the lift response is a weak function 

of the encounter angle in the case of an oblique gust impacting an infinite swept wing. 
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4.3 Noise propagation model 
 

In the present work, the analytical model in the frequency domain proposed by Hanson [39] 

is used for the estimation of the far field noise emitted by the rear rotor. The unsteady loading 

given by the blade response are used as an input to the noise propagation model, which allows 

computing the IN tones at frequencies that are linear combinations of the 𝐵𝑃𝐹𝑠 of the two rotors. 

The Hanson’s model is a simplification of the Ffowcs Williams-Hawkings equation [24,38], 

which gives the pressure disturbances generated by acoustic sources distributed on rigid surfaces 

in arbitrary motion. Hanson assumes that the rotor blades are thin and thus considers the acoustic 

sources as distributed on the helicoidal surface swept by the blade PCA in forward motion with 

speed 𝑣0 and rotating with angular speed Ω2 [38] (see Figure 4.4). Then, the blade of the RR is 

divided into radial sections and the useful geometrical quantities and acoustic sources are defined 

in a helicoidal coordinate system (𝛾, 𝜉), having the origin along the PCA and locally aligned with 

the advancing speed of the blade section, 𝑽𝑎𝑑𝑣,2(𝑅), as depicted in Figure 4.5 b). 𝛾 and 𝜉 are arc 

lengths measured on a cylindrical surface of radius 𝑅 . Notice that 𝜉 = 0 corresponds to the 

helicoidal surface. The noise sources are represented in the frequency domain via Fourier 

transform in space, along direction 𝛾, and time. The computation of the noise emission relies on 

the spanwise integration of the geometrical quantities and the acoustic sources represented in the 

frequency domain. 

The acoustic pressure is computed at points with polar coordinates (𝜚, 𝜑), where angle 𝜑 is 

equal to 90° in the plane of rotation of the RR (see Figure 4.5 a)). The coordinate system (𝜚, 𝜑) 

is in forward motion with the rotor with speed 𝑣0. In the original formulation of the model, which 

is derived in Appendix C, the time signal of the acoustic pressure is given by the superposition of 

the harmonics at frequencies 𝑓 = ℎ1𝐵𝑃𝐹1 + ℎ2𝐵𝑃𝐹2 , for ℎ1 , ℎ2  ∈ ℤ (see equation (C.16) in 

Appendix C) [39]. The Fourier coefficient, 𝑃ℎ1,ℎ2(𝜚, 𝜑), of the harmonic of orders ℎ1, ℎ2 is given 

by the following equation: 

 

 
𝑃ℎ1,ℎ2(𝜚, 𝜑) =

−𝑖𝜌0𝑎0
2𝐵2𝐷2

8𝜋𝜚(1 −𝑀0 cos𝜑)
                                                                             

  × ∫ 𝑀𝑎𝑑𝑣,2
2 𝑒𝑖(𝜙𝑙+𝜙𝑠)

𝑡𝑖𝑝

ℎ𝑢𝑏

𝒥ℎ2𝐵2−ℎ1𝐵1(𝑞) [𝑘𝛾
𝐶𝐷ℎ1
2

Ψ𝐷ℎ1 + 𝑘𝜉
𝐶𝐿ℎ1
2
Ψ𝐿ℎ1] 𝑑 (

𝑅

𝑅𝑇,2
) , 

(4.11) 

 

 

and the pressure amplitude of the IN tone at frequency 𝑓 = |ℎ1𝐵𝑃𝐹1 + ℎ2𝐵𝑃𝐹2|, for ℎ1, ℎ2  ∈

 {… ,−2,−1,1,2,… }, is computed as: 
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 𝐴𝑝(𝜚, 𝜑, 𝑓) = 2|𝑃ℎ1,ℎ2(𝜚, 𝜑)| . (4.12) 

 

In Eq. (4.11), 𝑀0 = 𝑣0 𝑎0⁄  is the Mach number of the freestream axial flow relative to the 

rotor in forward flight, while 𝑀𝑎𝑑𝑣,2 = 𝑉𝑎𝑑𝑣,2 𝑎0⁄  is the blade section Mach number. The 

argument of the Bessel function 𝒥ℎ2𝐵2−ℎ1𝐵1 is: 

 

 

𝑞 =

(ℎ2𝐵2 − ℎ1𝐵1
|Ω1|
|Ω2|

)
𝑅
𝑅𝑇,2

𝑀𝑇,2 sin𝜑

1 −𝑀0 cos𝜑
 . 

(4.13) 

 

Terms 𝜙𝑠 and 𝜙𝑙 are introduced in Eq. (4.11) to take into account the phase shift due to the blade 

sweep and lean. They depend on the midchord alignment (MCA), i.e., the local sweep, and the 

face alignment (FA), i.e., the local lean, respectively (see Figure 4.5 b)). Terms 𝑘𝛾 and 𝑘𝜉 are 

wavenumbers (for more details see Appendix C). 

The IN component provided by Eq. (4.11) arises from the unsteady loading induced on the 

rear rotor by the harmonic of order ℎ1 of the velocity perturbation generated by the front rotor 

Figure 4.4 – Helicoidal surface swept out by the PCA of the blade 
in forward motion and rotating with angular speed 𝛺2 
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(see Eq. (4.6)). Complex parameters 𝐶𝐷ℎ1 and 𝐶𝐿ℎ1 represent amplitude and phase of the unsteady 

drag and lift coefficients, respectively, due to this flow perturbation. In the present noise 

propagation model, drag and lift are intended as the forces in the directions 𝛾 and 𝜉, respectively 

[38,39]. Therefore, the Fourier coefficients of the lift force per unit span, 𝐿2(ℎ1), given by the 

blade response model are projected onto axes 𝜉  and 𝛾  of the helicoidal coordinate system, 

obtaining the 𝐿𝜉,2(ℎ1) and 𝐷𝛾,2(ℎ1) components of the unsteady loads, as shown in Figure 4.5 b). 

Note that 𝐿𝜉,2 and 𝐷𝛾,2 are not the lift and drag in a strict sense (they are not normal and parallel 

to 𝑾2, respectively), but they actually represent the components of 𝐿2, which is the lift force 

given by the blade response model. The lift and drag coefficients are calculated by means of the 

following equations: 

 

 
𝐶𝐿ℎ1 =

𝐿𝜉,2(ℎ1)

1
2 𝜌0𝑉𝑎𝑑𝑣,2

2
  (4.14) 

 

and 

 

 
𝐶𝐷ℎ1 =

𝐷𝛾,2(ℎ1)

1
2 𝜌0𝑉𝑎𝑑𝑣,2

2
 . (4.15) 

 

Figure 4.5 – Reference frames for the noise propagation model. 
a) emission coordinates (𝜌, 𝜑) and observer coordinates (𝜌𝑜𝑏𝑠 , 𝜑𝑜𝑏𝑠), 

b) blade section helicoidal coordinates (𝛾, 𝜉) and blade load. 
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Note that this approach yields the same phase for 𝐶𝐿ℎ1 and 𝐶𝐷ℎ1, that is, ∠{𝐶𝐿ℎ1} = ∠{𝐶𝐷ℎ1} =

∠{𝐿2(ℎ1)}. Indeed, coefficients 𝐶𝐿ℎ1 and 𝐶𝐷ℎ1 computed from the pressure distribution extracted 

from URANS show that the lift and drag harmonics have almost the same phase. Moreover, the 

mean angle between 𝑾2 and 𝑽𝑎𝑑𝑣,2 along the blade span is about 7.9°, resulting in a preferential 

projection of 𝐿2(ℎ1) along 𝜉, and indicating that 𝐶𝐿ℎ1 contributes mostly to the computed noise 

emission. Consequently, the fact that 𝐶𝐿ℎ1  and 𝐶𝐷ℎ1  have the same phase should not affect 

significantly the noise estimation. 

Complex coefficients Ψ𝐷ℎ1(𝑘𝛾)  and Ψ𝐿ℎ1(𝑘𝛾)  in Eq. (4.11) are dimensionless non-

compactness factors that are used to take into account the actual distribution of the loading sources 

along the chord of the blade sections [39]. These coefficients are computed under the assumption 

that the source distributions are real functions of the chordwise coordinate 𝛾 (see Appendix C). 

Therefore, in the present implementation, the distributions of the steady lift and drag sources, 

extracted from the RANS blade pressure, were used for all harmonic orders ℎ1. 

Due to the convective effects perceived in a reference frame attached to the aircraft, the signal 

calculated at (𝜚, 𝜑) is detected by an observer located at the coordinates (𝜚𝑜𝑏𝑠, 𝜑𝑜𝑏𝑠), as shown 

in Figure 4.5 a), Therefore, the convective effects (equivalent to the retarded aircraft position 

perceived by a fixed observer) are taken into account by assigning the acoustic pressure computed 

at point (𝜚, 𝜑) to observer location (𝜚𝑜𝑏𝑠, 𝜑𝑜𝑏𝑠), the relationship between these two points being 

 

 

{
 

 cos𝜑 = 𝑀0 sin
2𝜑𝑜𝑏𝑠 + cos𝜑𝑜𝑏𝑠√1−𝑀0

2 sin2 𝜑𝑜𝑏𝑠

𝜚 = 𝜚𝑜𝑏𝑠
sin𝜑𝑜𝑏𝑠
sin𝜑

 . (4.16) 
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5 TIP VORTEX MODEL 
 

 

 

This chapter presents a novel model of the FR tip vortices developed to account for the 

contribution of these important three-dimensional flow structures to the CROR interaction noise. 

The introduction of an appropriate TV model leads to a more realistic description of the flow 

perturbations released by the front rotor and allows a more accurate extrapolation of these 

perturbations beyond the mixing plane. In fact, the velocity perturbations due to the FR tip 

vortices are misinterpreted by the 2D extrapolation model [42,55], leading to a poor extrapolation 

to the outward radii of the rear rotor, and hence to an inaccurate prediction of the interaction noise. 

The present semi-analytical TV model is calibrated using data extracted from RANS solutions 

and allows accounting for the influence of the FR tip vortices on the velocity perturbations 

reconstructed along the entire span of the rear rotor blades. Therefore, an improved RANS-

informed extrapolation model is obtained for the fast prediction of CROR noise. 

 

5.1 General description of the tip vortex model 
 

Accepting the assumption of linearity, the velocity field past a CROR can be thought as the 

superposition of the free stream velocity 𝒗0, velocity perturbations 𝒗𝑇𝑉 generated by the front 

rotor TVs, and perturbations 𝒗𝑒 generated by sources other than front rotor TVs (viscous wakes, 

rotor bound potential field, rear rotor TVs, etc.). Considering also the splitting into azimuthal 

average �̅� and azimuthal perturbations 𝒗′, the absolute velocity field can be expressed as: 

 

 𝒗 = 𝒗0 + 𝒗𝑇𝑉 + 𝒗𝑒 = �̅� + 𝒗
′ = �̅�0 + �̅�𝑇𝑉 + �̅�𝑒 + 𝒗′𝑇𝑉 + 𝒗′𝑒 . (5.1) 

 

Note that 𝒗′0 = 0 (𝒗0 = �̅�0), since we consider a uniform freestream, aligned with the CROR 

rotation axis. It is further assumed that 𝒗′ can be divided into the perturbations generated by the 

front rotor, 𝒗′𝐹𝑅, and the rear rotor, 𝒗′𝑅𝑅: 

 

 𝒗 = �̅� + 𝒗′𝐹𝑅 + 𝒗′𝑅𝑅 . (5.2) 
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The azimuthal perturbations 𝒗′𝐹𝑅 and 𝒗′𝑅𝑅, which are velocity disturbances in space, are steady 

in the reference frames of the FR and RR, respectively. Due to the rotation, the perturbations 

generated by one rotor are perceived as velocity fluctuations in time by the other rotor. 

The contribution to 𝒗′𝐹𝑅 of sources other than front rotor TVs is ascribed to the viscous wakes 

and rotor potential field, which behave as approximately 2D flow structures. 𝒗′𝐹𝑅 can thus be 

expressed as: 

 

 𝒗′𝐹𝑅 = 𝒗′𝑒,𝐹𝑅 + 𝒗′𝑇𝑉 = 𝒗′2𝐷 + 𝒗′𝑇𝑉 . (5.3) 

 

The azimuthal perturbations 𝒗′2𝐷, due to viscous wake and potential field, can be reconstructed 

beyond the MP by means of the 2D extrapolation model. Therefore, the objective is to extrapolate 

𝒗′𝑇𝑉. 

The proposed TV model is genuinely 3D and allows computing the absolute velocity field 

𝒖𝑇𝑉 due to the front rotor TVs in the coordinate system (𝑋, 𝑌, 𝑍) (see Figure 4.1) of the FR. Then, 

the azimuthal perturbations due to the TVs can be computed in the cylindrical coordinate system 

as 𝒖′𝑇𝑉(𝑋, 𝑅,Ψ ) = 𝒖𝑇𝑉(𝑋, 𝑅,Ψ ) − �̅�𝑇𝑉(𝑋, 𝑅). 

To compute the model velocity 𝒖𝑇𝑉 at any point (𝑋, 𝑌, Z ) the trajectory of the tip vortices 

must be defined. The trajectory of the TV centre is modelled by a helix which extends from the 

FR trailing edge to infinity downstream. The helix has variable radius and pitch in order to 

account for the effect of stream-tube contraction and flow acceleration. The 3D curve representing 

the helix is defined in the relative reference frame (𝑋, 𝑌, 𝑍) and its unknown parameters are 

calibrated by fitting the TV trajectory extracted from the RANS solution. 

After defining the TV trajectory, the velocity induced by the vortices, 𝒖𝑖𝑛𝑑 , is computed 

numerically by means of the Biot-Savart law, modified to take into account the effect of  a viscous 

core with finite radial extent [47]. Moreover, the tip vortices emitted by CROR blades are 

characterized by a wake-like velocity deficit locally tangent to the TV trajectory [18,46]. The 

contribution of this deficit, 𝒖𝑑𝑒𝑓, to the velocity field is also modelled and is added to the induced 

velocity: 

 

 𝒖𝑇𝑉 = 𝒖𝑖𝑛𝑑 + 𝒖𝑑𝑒𝑓 . (5.4) 

 

The parameters of the TV model to be calibrated with data extracted from RANS are the vortex 

circulation, Γ, the viscous core radius, 𝑟𝑐, and the peak of the velocity deficit, 𝑉𝑥,𝑑𝑒𝑓. 

In principle, the parameters of the modelled 2D perturbations, 𝒖′, and TV flow field, 𝒖𝑇𝑉, 

should be balanced by fitting the azimuthal perturbations 𝒗′𝐹𝑅 = 𝒗′2𝐷 + 𝒗′𝑇𝑉 extracted from the 
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RANS solution with the superposition 𝒖′ + 𝒖′𝑇𝑉 . However, this calibration procedure is 

prohibitive for two reasons: 

• 𝒖𝑇𝑉 is evaluated numerically. Therefore, 𝒖′𝑇𝑉 does not have an analytical form. 

• Due to the three-dimensionality of the TV model, a cumulative calibration of 𝒖′ and 

𝒖𝑇𝑉 would involve the simultaneous identification of the 2D model parameters for 

all the averaged streamlines. Consequently, the number of parameters to be balanced 

would be very large, leading to an unsustainable increase in the computational time 

required for the solution of the least squares problem. 

This issue can be overcome by singling out the contribution of the tip vortex from the RANS flow 

field in order to calibrate the parameters of the TV model separately. After the calibration, the 

velocity field 𝒖𝑇𝑉 , and hence the perturbations in space 𝒖′𝑇𝑉 , can be computed at any point 

(𝑋, 𝑌, 𝑍). Then, 𝒖′𝑇𝑉 can be used to perform the following steps: 

1) 𝒖′𝑇𝑉 is subtracted from the RANS velocity perturbations in the region between the 

FR trailing edge and the MP. The influence of the TVs is thus removed in the 

calibration region of the 2D flow model, and the identification of the parameters of 

𝒖′ can be performed separately. 

2) The azimuthal perturbations 𝒖′𝑇𝑉 are computed beyond the MP, at the LE of the rear 

rotor, where they are added to 𝒖′, extrapolated by means of the 2D flow model. This 

allows reconstructing the flow unsteadiness at the rear blades accounting for the 

contributions of FR viscous wakes, potential field, and tip vortices. 

 

However, identifying the contribution of a single TV to the RANS velocity field is a very difficult 

task, since the velocity is influenced by different flow structures (viscous wakes, potential field, 

tip vortices released by the other blades). 

On the other hand, singling out the TV contribution to the overall flow field can be 

considerably simplified by exploiting the vorticity. Most vorticity is generated at the blade surface 

and is convected downstream, giving rise to the rotor wakes. Anyhow, it is possible to identify a 

limited region around the vortex trajectory where the vorticity can essentially be ascribed to the 

TV, thus excluding the contribution of the blade viscous wakes. 

Consider the local reference frame (𝑥, 𝑦, 𝑧) of the tip vortex and depicted in Figure 5.1. The 

𝑥 axis is locally tangent to the vortex trajectory and the 𝑦 axis lies in the plane defined by the 𝑥 

axis and radial direction 𝑅 . The corresponding cylindrical coordinate system (𝑥, 𝑟, 𝜗) is also 

shown in Figure 5.1. Figure 5.2 shows contours of the absolute vorticity components (𝜔𝑥 , 𝜔𝑟, 𝜔𝜗) 
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extracted from the RANS solution in a polar grid locally normal to the TV centre trajectory, i.e., 

to the local 𝑥 direction. The grid is centred on the vortex trajectory and its location and orientation 

are indicated by the blue disc in Figure 5.3. After interpolating the vorticity on the local grid, the 

local components (𝜔𝑥 , 𝜔𝑦, 𝜔𝑧) are computed and their counterparts in the cylindrical coordinate 

system (𝜔𝑥 , 𝜔𝑟, 𝜔𝜗) are obtained.  The vorticity contours in Figure 5.2 clearly show the trace of 

the viscous wake in the region 𝑦 < 0 (radially inward with respect to the tip vortex centre). This 

trace extends up to the centre of the circular domain where a small circular region of high 𝜔𝑥 

clearly identifies the viscous core of the tip vortex. Since its inception at the TE of the front blade, 

the tip vortex quickly rolls up [56,57] generating an almost axisymmetric distribution of 𝜔𝑥 and 

𝜔𝜗 around the vortex centre. Due to the rollup process, the centre of the TV moves away from 

the vorticity sheet ascribed to the viscous wake released by the FR blade. When the TV is 

completely developed, the vorticity sheet of the blade wake lies entirely in the half plane 𝑧 < 0. 

In view of this, it is assumed that the vorticity contained in the region 𝑧 > 0 (enclosed by a dashed 

line in Figures 5.2 a) and b)) can be ascribed solely to the tip vortex. 

A novel procedure based on the fitting of the vorticity in the region 𝑧 > 0 is proposed to 

single out the contribution of the TV. To do so, a model describing the axisymmetric vorticity 

Figure 5.1 – Local reference frame of the tip vortex. 
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distribution around the TV centre has been developed by enforcing local velocity distributions of 

the induced velocity, 𝒖𝑖𝑛𝑑, and velocity deficit, 𝒖𝑑𝑒𝑓. 

Quaglia et al. [46] showed that locally the TV tangential (swirl) velocity is well represented 

by the Lamb-Oseen vortex distribution: 

 

 
𝑢𝜗,𝐿𝑂(𝑟) =

Γ

2𝜋𝑟
[1 − 𝑒

−𝛼2(
𝑟
𝑟𝑐
)
2

] , (5.5) 

  

where 𝑟𝑐  denotes the viscous core radius and 𝛼2 = 1.25643 ensures that the maximum swirl 

velocity is located at 𝑟 = 𝑟𝑐. Therefore, it is assumed that 𝒖𝑖𝑛𝑑 can be approximated by Eq. (5.5) 

Figure 5.2 – Contours of absolute vorticity components in the local reference frame of the TV, 
extracted from the RANS solution in the region between the FR trailing edge and the MP. 

Figure 5.3 – Orientation of a grid for the vorticity extraction. 
a) 3D view. b) projection onto (𝑋, 𝑌) plane. 
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in the region around the TV trajectory (see the blue velocity profile in Figure 5.1). Moreover, 

Delattre and Falissard [18] and Quaglia et al. [46] showed that the wake-like velocity deficit, 

𝒖𝑑𝑒𝑓, locally aligned with the 𝑥 direction, is well approximated by an axisymmetric gaussian 

distribution (see the orange velocity profile in Figure 5.1): 

 

 
𝑢𝑥,𝑑𝑒𝑓(𝑟) = [−𝑉𝑥,𝑑𝑒𝑓𝑒

−(
𝑟
𝑟𝑐
)
2

] , (5.6) 

 

where 𝑉𝑥,𝑑𝑒𝑓 > 0 identifies the velocity peak at the vortex centre. 

Assuming that the local velocity components 𝑢𝜗 and 𝑢𝑥 are given by Eqs. (5.5) and (5.6), 

respectively, while 𝑢𝑟 = 0, and that the rate of change of the velocity along the vortex trajectory 

is small (i.e., 𝜕 𝜕𝑥⁄ ≪ 𝜕 𝜕𝑟⁄ ), the TV absolute vorticity in a cylindrical coordinate system locally 

aligned with the TV helix can be expressed as: 

 

 
𝝎 = ∇ × 𝒖 =

1

𝑟

𝜕(𝑟𝑢𝜗)

𝜕𝑟
𝒆𝑥 −

𝜕𝑢𝜗
𝜕𝑥

𝒆𝑟 −
𝜕𝑢𝑥
𝜕𝑟

𝒆𝜗 ≈

≈ [
Γ𝛼2

𝜋𝑟𝑐
2
𝑒
−𝛼2(

𝑟
𝑟𝑐
)
2

] 𝒆𝑥 + [−
2𝑟

𝑟𝑐
2
𝑉𝑥,𝑑𝑒𝑓𝑒

−(
𝑟
𝑟𝑐
)
2

] 𝒆𝜗 , 

(5.7) 

 

where (𝒆𝑥, 𝒆𝑟, 𝒆𝜗) are the unit vectors of the local coordinate system. The contribution of a single 

TV can be singled out by fitting Eq. (5.7) with the vorticity extracted from the RANS solution in 

the local region 𝑧 > 0 in order to calibrate the unknown parameters of the TV model, that is Γ, 𝑟𝑐 

and 𝑉𝑥,𝑑𝑒𝑓. 

In what follows, a detailed description of the TV trajectory and velocity field models is given. 

Then, the calibration procedure is reported, and preliminary results are provided for the velocity 

field, 𝒖𝑇𝑉, ascribed to the tip vortices. Finally, the procedure for merging the TV and 2D flow 

perturbations is described. 

 

5.2 Vortex path model 
 

A TV released by the front rotor undergoes an increase in the axial transport velocity due to 

the acceleration produced by both rotors and to the influence of the adjacent TVs (see Landgrebe 

[58] for a comprehensive study on the latter effect for helicopter rotors in hover conditions). 

Therefore, a radial contraction and a variable pitch of the TV helix must be considered for an 

appropriate modelling of the TV path, and hence of the TV velocity field. The wake generated by 
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the FR is divided into a near wake region and an ultimate wake region (see Figure 5.4). The 

former lies between the FR trailing edge and axial coordinate 𝑋𝑢𝑤, and is characterized by a radial 

contraction and a variable pitch of the TV helix. The ultimate wake extends from 𝑋𝑢𝑤 to infinity 

downstream and has constant radius and pitch. 

To compute radius 𝑅∞  and pitch angle 𝛽∞  of the ultimate wake region, the stream-tube 

contraction and the flow acceleration must be determined. For this purpose, the front and rear 

rotors are reduced to a single actuator disc, as shown in Figure 5.5. By assuming that the flow is 

incompressible and no residual swirl is present in the wake, the following equation can be derived 

from the actuator disc theory: 

 

 

𝑇 = 𝜌0𝐴(𝑣0 +𝑤)2𝑤 ⟹ 𝑤 =
−𝑣0 +√𝑣0

2 + 4
𝑇

2𝜌0𝐴

2
 . 

(5.8) 

 

Knowing the freestream conditions, the total thrust 𝑇 = 𝑇1 + 𝑇2, and the disc area 𝐴 = 𝜋𝑅𝑇,1
2, 

the velocity 𝑤 induced at the disc can be calculated. Then, area 𝐴∞ of the contracted stream-tube 

at infinity can be computed by applying the mass conservation 

 

 
�̇� = 𝜌0𝐴(𝑣0 +𝑤) = 𝜌0𝐴∞(𝑣0 + 2𝑤) ⟹ 𝐴∞ =

𝐴(𝑣0 +𝑤)

(𝑣0 + 2𝑤)
 , (5.9) 

 

and the radius of the TV helix in the ultimate wake region is given by 𝑅∞ = √𝐴∞ 𝜋⁄ . Since no 

residual swirl is assumed in the wake, the pitch angle of the helix can be computed as 

 

 
𝛽∞ = tan

−1
Ω1𝑅∞

(𝑣0 + 2𝑤)
 , (5.10) 

 

where Ω1 is the angular velocity of the front rotor. The analytical TV path in the ultimate wake is 

therefore described in cartesian coordinates by 

 

 
{
𝑌(𝑋) = 𝑅∞ cos(𝑏∞𝑋 +Ψ𝑖,∞)

𝑍(𝑋) = 𝑅∞ sin(𝑏∞𝑋 +Ψ𝑖,∞)
 , (5.11) 

 

with 𝑏∞ = tan(𝛽∞) 𝑅∞⁄ = Ω1 (𝑣0 + 2𝑤)⁄ . 

The general form of the TV helix in the near wake is given by 
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{
𝑌(𝑋) = 𝑅(𝑋) cos[Ψ(𝑋)]

𝑍(𝑋) = 𝑅(𝑋) sin[Ψ(𝑋)]
 , (5.12) 

 

and the following exponential laws for the radial and azimuthal coordinates are assumed: 

 

 
{

𝑅(𝑋) = 𝑅∞ + 𝐾𝑟1𝑒
−𝐾𝑟2𝑋

Ψ(𝑋) = Ψ𝑖 + 𝐾Ψ1[1 − 𝑒
−𝐾Ψ2𝑋]

 , (5.13) 

   

with parameters 𝐾𝑟1, 𝐾𝑟2, 𝐾Ψ1, 𝐾Ψ2 > 0. 𝑅(𝑋) represents the radial contraction of the TV, while 

Ψ(𝑋) accounts for the increasing rate of the axial displacement due to the flow acceleration. The 

exponential laws in Eq. (5.13) are proposed since they allow obtaining a smooth transition of the 

TV trajectory from near to ultimate wakes. Curve 𝑅(𝑋) approaches asymptotically 𝑅∞ , and, 

strictly speaking, the initial coordinate of the ultimate wake, 𝑋𝑢𝑤, should be located at infinity. 

However, 𝑋𝑢𝑤 is assumed to be the axial coordinate where 𝑅(𝑋) = 1.01 ∙ 𝑅∞, and it is computed 

according to the equation: 

Figure 5.4 – Near wake and ultimate wake of the FR tip vortex. 

Figure 5.5 – Actuator disc model. 



 
Chapter 5.  Tip vortex model 

____________________________________________________________________________________ 

 
45 

 

 
𝑋𝑢𝑤 = −

1

𝐾𝑟2
ln (

0.01 ∙ 𝑅∞
𝐾𝑟1

) . (5.14) 

 

Thus, curve 𝑅(𝑋)  is used for both near and ultimate wakes. Recent experimental 

investigations show that the TV radial contraction is almost linear in the region between the FR 

trailing edge and the RR leading edge [59]. Therefore, a piecewise function 𝑅(𝑋), consisting of 

two straight lines smoothly connected by a curve, could be suitable for a good representation of 

the TV path. However, the exponential laws in Eq. (5.13) makes the algorithm more robust, 

because it avoids the introduction of an arbitrary curve to connect the near and ultimate wakes. 

A smooth helix at the interface 𝑋 = 𝑋𝑢𝑤 is obtained by imposing 𝑑Ψ(𝑋𝑢𝑤) 𝑑𝑋⁄ = 𝑏∞, which 

leads to the equation 𝐾Ψ1 = 𝑏∞ 𝐾Ψ2𝑒
−𝐾Ψ2𝑋𝑢𝑤⁄ . When using this relationship to eliminate 𝐾Ψ1 

from Eq. (5.13), only 𝐾Ψ = 𝐾Ψ,2 remains as an unknown parameter. To summarize, the analytical 

TV path in polar coordinates is defined as follows: 

 

∎ 𝑅(𝑋) = 𝑅∞ +𝐾𝑟1𝑒
−𝐾𝑟2𝑋     for both near and ultimate wake regions, (5.15) 

 

∎ Ψ(𝑋) = Ψ𝑖 +
𝑏∞

𝐾Ψ𝑒
−𝐾Ψ𝑋𝑢𝑤

[1 − 𝑒−𝐾Ψ𝑋]     for 𝑋 ≤ 𝑋𝑢𝑤 (near wake), (5.16) 

 

∎ Ψ(𝑋) = Ψ𝑖,∞ + 𝑏∞𝑋     for 𝑋 > 𝑋𝑢𝑤 (ultimate wake). (5.17) 

 

The parameters to be calibrated using the RANS solution are 𝐾𝑟1, 𝐾𝑟2, Ψ𝑖, and 𝐾Ψ, while Ψ𝑖,∞ =

Ψ(𝑋𝑢𝑤) − 𝑏∞𝑋𝑢𝑤 can be calculated directly. 

 

5.3 Velocity field model 
 

Consider the helix representing the TV released by the k-th blade of the FR, where k =

1…𝐵1. The helix is treated as a vortex filament that generates an induced velocity field, 𝒖𝑖𝑛𝑑,𝑘. 

Then, the helix is discretized into small straight-line vortex segments and the induced velocity at 

a given point is evaluated numerically by means of the Biot-Savart law [47,60] applied to each 

segment. Referring to Figure 5.6, the contribution Δ𝒖𝑖𝑛𝑑 at point 𝐶 due to the segment 𝐴𝐵 having 

constant circulation Γ is computed as [61]: 

 

 
𝛥𝒖𝑖𝑛𝑑 = 𝐾𝑣

𝛤

4𝜋

(𝑟𝐴 + 𝑟𝐵)(𝒓𝐴 × 𝒓𝐵)

𝑟𝐴𝑟𝐵(𝑟𝐴𝑟𝐵 + 𝒓𝐴 ∙ 𝒓𝐵)
 . (5.18) 
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The correction factor 𝐾𝑣 has been introduced to account for the viscous core of finite size typical 

of tip vortices [47], thus avoiding the singular behaviour of the Biot-Savart law as point 𝐶 

approaches the vortex filament. It is assumed that the local TV swirl velocity is well represented 

by the Lamb-Oseen vortex distribution, Eq. (5.5), which leads to the following form of the 

correction factor: 

 

 
𝐾𝑣 = 1 − 𝑒

−𝛼2(
ℎ
𝑟𝑐
)
2

 , (5.19) 

 

where ℎ is the distance of point 𝐶 from vortex segment 𝐴𝐵 (see Figure 5.6). 

According to Eq. (5.6), the velocity deficit ascribed to the TV released by the k-th blade of 

the FR is modelled by the axisymmetric gaussian 

 

 
𝒖𝑑𝑒𝑓,𝑘(𝑟) = [−𝑉𝑥,𝑑𝑒𝑓𝑒

−(
𝑟
𝑟𝑐
)
2

] 𝒆𝑥 , (5.20) 

 

where 𝒆𝑥 is the unit vector tangent to the TV helix and pointing in the direction of the vortex 

convection. The magnitude of this velocity deficit can be considerable and its impact on the flow 

perturbations at the LE of the rear blades should be taken into account for a correct estimation of 

the interaction noise tones [18,46]. 

To compute 𝒖𝑑𝑒𝑓,𝑘  at a point (𝑋, 𝑌, 𝑍), the corresponding coordinates (𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶) of the 

analytical TV helix are determined numerically so that the line connecting the two points is 

perpendicular to 𝒆𝑥(𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶) . The local radius is 𝑟 = [(𝑋 − 𝑋𝐶)
2 + (𝑌 − 𝑌𝐶)

2 + (𝑍 −

𝑍𝐶)
2]1 2⁄  and 𝒆𝑥(𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶)  gives the opposite direction of 𝒖𝑑𝑒𝑓,𝑘(𝑋, 𝑌, 𝑍) . The example in 

Figure 5.7 shows the direction of 𝒖𝑑𝑒𝑓,𝑘 (red arrows), associated with the TV emitted by one of 

the FR blades (black dashed line) and computed along a circular arc (black continuous line). It is 

observed that both the direction of 𝒖𝑑𝑒𝑓,𝑘 and the radius (blue lines) vary along the circular arc. 

Figure 5.6 – Velocity induced at point C by a straight-line vortex segment AB. 
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 Since its inception at the TE of the FR blade, the TV exhibits a viscous diffusion of the 

vorticity contained in the vortex core, which results in an increase in the core radius and a decrease 

in the maximum swirl velocity and velocity deficit. The Lamb-Oseen vortex model is capable of 

accounting for the effect of the vorticity diffusion by introducing an appropriate dependence of 

core radius 𝑟𝑐 on time, that is, on the downstream position of the TV. Since 𝑟𝑐 is directly related 

to the standard deviation of the gaussian function describing 𝒖𝑑𝑒𝑓,𝑘 (see Equation (5.20)), the 

spreading of the velocity deficit can also be considered. Therefore, the effect of the vorticity 

diffusion is included in the present TV model by introducing the equations suggested by Quaglia 

et al. [46] for the distributions of 𝑟𝑐 and 𝑉𝑥,𝑑𝑒𝑓 along the TV helix: 

Figure 5.7 – Direction of the velocity deficit (red arrows) along a circular arc. 
a) 3D view, b) projection onto (𝑋, 𝑌) plane. 
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 𝑟𝑐
2(𝑋) = 𝑟𝐼

2 + 𝑟𝑋
2𝑋 , (5.21) 

 

 
𝑉𝑥,𝑑𝑒𝑓(𝑋) = 𝑉𝐼 +

𝑉𝑋

√𝑋
 . (5.22) 

 

Another effect considered in this study is the variation of the circulation Γ that may occur due 

to the quick rollup of the TV in its early development stage [47] and to the resulting ingestion of 

vorticity in the viscous core. An empirical law is proposed to model the circulation along the 

helix: 

 

 Γ(𝑋) = Γ𝐼 + 𝐾Γ1[1 − 𝑒
−𝐾Γ2(𝑋−𝑋𝑇𝐸)] , (5.23) 

 

where Γ𝐼 > 0, 𝐾Γ1, 𝐾Γ2 ≥ 0 and 𝑋𝑇𝐸 is the axial coordinate of the helix at the blade TE. It should 

be noted that Γ(𝑋) increases monotonically and tends asymptotically to the maximum value Γ∞ =

Γ𝐼 + 𝐾Γ1 . Therefore, the dissipation due to viscosity, which would lead to a decrease in the 

circulation moving downstream along the helix, is neglected. 

According to the proposed model, the velocity field generated by a single TV can be computed 

after calibrating the parameters 𝑟𝐼, 𝑟𝑋, 𝑉𝐼, 𝑉𝑋, Γ𝐼, 𝐾Γ1, and 𝐾Γ2. 

Finally, the velocity field, 𝒖𝑇𝑉, due to the tip vortices released by all the blades of the front 

rotor is evaluated by superimposing the contributions of all vortices 

 

 

𝒖𝑇𝑉 =∑(𝒖𝑖𝑛𝑑,𝑘 + 𝒖𝑑𝑒𝑓,𝑘)

𝐵1

𝑘=1

= 𝒖𝑖𝑛𝑑 + 𝒖𝑑𝑒𝑓 , (5.24) 

 

where 𝐵1 is the number of FR blades. The contribution of the tip vortex released by the k-th blade 

is calculated by positioning the associated vortex helix at the proper azimuthal coordinates. 

 

5.4 Calibration of the tip vortex model 
 

The first step to determine 𝒖𝑇𝑉  is the calibration of the analytical path of the TV centre. 

Subsequently, the parameters of the velocity model are balanced using the absolute vorticity 

extracted from the RANS solution and represented in the reference frame locally aligned with the 

TV path. 
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5.4.1 Vortex path parameters 

In order to calibrate the unknown parameters of the TV helix (𝐾𝑟1, 𝐾𝑟2, Ψ𝑖 , and 𝐾Ψ) the 

coordinates of the TV centre are extracted from the RANS solution by detecting the points of 

maximum helicity [62] at several axial locations between the front rotor TE and the MP. The 

green circles in Figure 5.8 indicate the extracted (𝑋, 𝑅) and (𝑋,𝛹) coordinates of such points. In 

the figure, the linear coordinates are normalized by the FR tip radius, while the azimuthal 

coordinate is normalized by the angular interval of one FR blade passage. First, the radial 

coordinates are fitted by Eq. (5.15), and the ultimate wake initial coordinate 𝑋𝑢𝑤 is computed by 

means of Eq. (5.14). Then, the azimuthal coordinates are fitted by Eq. (5.16), which describes the 

helix in the near wake region. Finally, Ψ𝑖,∞ = Ψ(𝑋𝑢𝑤) − 𝑏∞𝑋𝑢𝑤  is computed to define 

completely the TV helix. The black solid lines in Figure 5.8 represent the analytical fitting of the 

centre path, which is in good agreement with the data extracted from the RANS solution. It should 

be noted that 𝑋𝑢𝑤  lies downstream of the rear rotor, as shown in Figure 5.9. This result is 

physically consistent since the rear rotor is loaded and the stream-tube contraction cannot end in 

the region between FR and RR. 

The values of the parameters of the TV helix obtained for the present test case are reported in 

Table 5.1. The parameters that depend on the rotor dimension, i.e., 𝑅∞, 𝑋𝑢𝑤, 𝐾𝑟1, 𝐾𝑟2, and 𝐾Ψ, 

are normalized by the FR tip radius. Note that the values of the initial azimuthal coordinates, Ψ𝑖 

and Ψ𝑖,∞ (see Eqs. (5.16) and (5.17)), given in the table refer to the trajectory of the TV released 

by the reference blade of the FR, that is, the blade having the PCA aligned with the axis 𝑍. To 

calculate the trajectory of the vortices generated by the other front blades, the initial azimuthal 

coordinates must be shifted by ∆𝛹𝑘 = k(2𝜋 𝐵1⁄ ), where k = 1…(𝐵1 − 1). 

The coordinates of the analytical TV helix extrapolated beyond the MP, up to the leading edge 

of the RR, are represented by the black dashed lines in Figure 5.8. A comparison is made with the 

TV centre trajectory extracted from URANS data and represented by the red bands in Figure 5.8. 

Table 5.1 – Parameters of the analytical TV path. 

Computed parameters 

𝑅∞ 𝑅𝑇,1⁄  𝑋𝑢𝑤 𝑅𝑇,1⁄  

𝑏∞ 

[
rad

m
] 

Ψ𝑖,∞ 

[rad] 

0.8663 0.9784 5.8275 2.0959 

Calibrated parameters 

𝐾𝑟1 𝑅𝑇,1⁄  𝐾𝑟2 ∙ 𝑅𝑇,1 
Ψ𝑖 

[rad] 
𝐾Ψ ∙ 𝑅𝑇,1 

0.1961 3.1882 1.4388 0.6137 
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These bands indicate the radial and azimuthal ranges spanned by the TV centre during the blade 

rotation and are obtained by extracting the centre coordinates at six blade angular positions, 

equally spaced over one mutual blade passage. It is observed that the location of the impingement 

on the RR leading edge is well predicted, with a difference ∆𝑅 𝑅𝑇,1⁄ ≈ 0.013  in the radial 

coordinate and ∆𝛹 (2𝜋 𝐵1⁄ )⁄ ≈ 0.07 in the azimuthal coordinate. The coordinates extracted from 

the URANS solution show that the TV trajectory contracts radially when moving downstream 

with a higher rate than the fitted exponential law (Figure 5.8 a)), resulting in a slight error in the 

Figure 5.8 – Coordinates of the tip vortex centres extracted from RANS and URANS solutions, 
and analytical centre path (fitted upstream of the MP and extrapolated downstream). 

a) normalized (X, R) coordinates. b) normalized (X,Ψ) coordinates. 
 

Figure 5.9 – Position of the interface between near wake and ultimate wake 
resulting from the model calibration. 
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radius extrapolation. Looking at the azimuthal coordinates (Figure 5.8 b)), a variation in the helix 

pitch at increasing 𝑋 is clearly visible in the URANS data, which supports the assumption of 

variable pitch angle in the near wake region. 

It is noted that the trajectory extracted from URANS lies within a very limited spatial range 

during the blade rotation. This can be interpreted as an indication that the circumferential 

perturbations due to the RR do not influence significantly the trajectory of the front rotor TVs 

and, presumably, the geometry of the perturbations generated by the FR during the blade rotation. 

 

5.4.2 Velocity field parameters 

To balance the velocity parameters by fitting Eq. (5.7), the RANS vorticity field is projected 

onto the TV local reference frame (𝑥, 𝑟, 𝜗), which can be defined after calibrating the vortex path 

parameters. Once the analytical representation of the TV helix has been obtained, the unit vector 

𝒆𝑥, locally tangent to the helix, is computed in the region between the FR trailing edge and the 

MP by means of the following equation: 

 

 
𝒆𝑥(𝑋) =

𝝉(𝑋)

|𝝉(𝑋)|
=  
𝜏𝑋(𝑋)𝒆𝑋 + 𝜏𝑌(𝑋)𝒆𝑌 + 𝜏𝑍(𝑋)𝒆𝑍

|𝝉(𝑋)|
, (5.25) 

 

The TV helix is a parametric curve in the global system of coordinates (𝑋, 𝑌, 𝑍) , and the 

components (𝜏𝑋, 𝜏𝑌, 𝜏𝑍) of a vector 𝝉 parallel to 𝒆𝑥 are computed as: 

 

{

𝜏𝑋(𝑋)

𝜏𝑌(𝑋)

𝜏𝑍(𝑋)
} =

{
 
 

 
 
𝜕𝑋𝐶(𝑋)

𝜕𝑋
𝜕𝑌𝐶(𝑋)

𝜕𝑋
𝜕𝑍𝐶(𝑋)

𝜕𝑋 }
 
 

 
 

= 

 

= {

1
−𝐾𝑟1𝐾𝑟2𝑒

−𝐾𝑟2𝑋 cos[Ψ𝑖 + 𝐴(1 − 𝑒
−𝐾Ψ𝑋)] − (𝑅∞ + 𝐾𝑟1𝑒

−𝐾𝑟2𝑋) sin[Ψ𝑖 + 𝐴(1 − 𝑒
−𝐾Ψ𝑋)] 𝐴𝐾Ψ𝑒

−𝐾Ψ𝑋

−𝐾𝑟1𝐾𝑟2𝑒
−𝐾𝑟2𝑋 sin[Ψ𝑖 + 𝐴(1 − 𝑒

−𝐾Ψ𝑋)] + (𝑅∞ +𝐾𝑟1𝑒
−𝐾𝑟2𝑋) cos[Ψ𝑖 + 𝐴(1 − 𝑒

−𝐾Ψ𝑋)] 𝐴𝐾Ψ𝑒
−𝐾Ψ𝑋

}, 

(5.26) 

 

where 𝑌𝐶(𝑋)  and 𝑍𝐶(𝑋)  are given by Eq. (5.12) and 𝐴 = 𝑏∞ 𝐾Ψ𝑒
−𝐾Ψ𝑋𝑢𝑤⁄ . Then, the local 

reference frame (𝒆𝑥, 𝒆𝑦, 𝒆𝑧) is determined so that unit vector 𝒆𝑦 (green segment in Figure 5.10) 

lies in the plane defined by 𝒆𝑥 and global radial direction 𝒆𝑅 (black line in Figure 5.10). Setting 

this orientation will be useful to select specific regions of the flow field for the calibration of the 

parameters of model (5.7). 



 
Chapter 5.  Tip vortex model 

____________________________________________________________________________________ 

 
52 

The RANS vorticity is interpolated on structured polar grids in plane (𝒆𝑦 , 𝒆𝑧), centered at the 

helix (𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶), for several axial locations between the FR trailing edge and the MP. The grey 

discs in Figure 5.11 show the position and the orientation of some extraction grids. After 

interpolating the absolute vorticity on the local grids, the local components (𝜔𝑥 , 𝜔𝑦, 𝜔𝑧) are 

Figure 5.10 – Reference frame locally aligned with the analytical TV helix. 

Figure 5.11 – Orientation of the grids for the vorticity extraction. 
a) 3D view. b) projection onto (𝒆𝑋, 𝒆𝑌) plane. 
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computed and their counterparts in the cylindrical coordinate system (𝜔𝑥 , 𝜔𝑟, 𝜔𝜗) are finally 

obtained. The contours in Figure 5.12 show the vorticity, normalized using the FR angular 

velocity, extracted at the locations depicted in Figure 5.11 (the contours are incomplete at some 

locations simply because a portion of the grid lies beyond the mixing plane). The trace of the 

blade wake is visible in the region 𝑦 < 0. At 𝑋𝐶 𝑅𝑇,1⁄ = 0.112, which corresponds to the axial 

coordinate of the blade TE, the tip vortex is still developing (see Figure 5.12 a)) and the 

axisymmetric pattern of the vorticity is not well established. Moving downstream, the rollup 

process generates a good axisymmetric distribution of 𝜔𝑥 and 𝜔𝜗 close to the vortex centre (see 

Figures 5.12 b)-e)), and the TV is considered completely developed for 𝑋𝐶 𝑅𝑇,1⁄ ≥ 0.132 . 

Therefore, only the vorticity field extracted in this range is used for the model calibration. It is 

observed that the radial component of the vorticity is about one order of magnitude less that the 

other components in the region of the TV viscous core, which support the assumption 𝜔𝑟 = 0 in 

the TV vorticity model. 

The effect of the TV rollup is clearly shown in Figure 5.12 by the trace of the blade wake that 

moves in the negative 𝑧 direction during the convection downstream [56,57]. Starting from the 

axial location where the TV is considered completely developed, the vorticity sheet of the blade 

wake lies entirely in the half-plane 𝑧 < 0 (Figures 5.12 b)-e)), and the vorticity contained in the 

region 𝑧 > 0 is ascribed solely to the tip vortex. Therefore, the azimuthal averages of 𝜔𝑥 and 𝜔𝜗 

in the range 0 ≤ 𝜗 ≤ 𝜋 (enclosed by the white dashed lines in Figure 5.12) can be considered as 

the axisymmetric distributions of the vorticity components associated with the TV in the local 

reference frame. In this way, the contribution of a single TV has been singled out. 

A quantitative assessment of the azimuthal averaging at different axial locations is given in 

Figure 5.13. The grey bands represent the ranges between the minimum and maximum values of 

𝜔𝑥 and 𝜔𝜗 in the interval 0 ≤ 𝜗 ≤ 𝜋, whereas the black lines indicate the azimuthal averages. It 

is observed that the minimum and maximum values of 𝜔𝑥 differ very little from the average, 

confirming that the axial component of the vorticity is essentially axisymmetric. Concerning 𝜔𝜗, 

the variation band is wider. Nevertheless, the assumption of axial symmetry is considered 

acceptable. 

At each extraction grid, the azimuthally averaged profiles of 𝜔𝑥 and 𝜔𝜗 are fitted with the 

corresponding vorticity distribution of Eq. (5.7) to calibrate the unknown parameters of the model, 

i.e., Γ, 𝑟𝑐 and 𝑉𝑥,𝑑𝑒𝑓, along the vortex helix. The fitting was performed using the Trust-Region-

Reflective algorithm available in MATLAB. First, the axial component is fitted, so determining 

Γ and 𝑟𝑐 at each axial position. Then, 𝑉𝑥,𝑑𝑒𝑓 is balanced by fitting the tangential component of the 

vorticity. Note that the choice of calibrating parameters 𝑟𝑐  and Γ together is arbitrary. As an 

alternative, the couple 𝑟𝑐 and 𝑉𝑥,𝑑𝑒𝑓 could be calibrated by fitting 𝜔𝜗,  and  Γ  could  be  balanced 
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Figure 5.12 – Vorticity contours in the local reference frame of the TV, extracted from RANS 
solution at different axial locations: a) 𝑋𝐶 𝑅𝑇,1⁄ = 0.112, b) 𝑋𝐶 𝑅𝑇,1⁄ = 0.132,  

c) 𝑋𝐶 𝑅𝑇,1⁄ = 0.161, d) 𝑋𝐶 𝑅𝑇,1⁄ = 0.190, e) 𝑋𝐶 𝑅𝑇,1⁄ = 0.233. 
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Figure 5.13 – Fitting of the vorticity in the local reference frame of the TV at different axial locations: 
a) 𝑋𝐶 𝑅𝑇,1⁄ = 0.132, b) 𝑋𝐶 𝑅𝑇,1⁄ = 0.161, c) 𝑋𝐶 𝑅𝑇,1⁄ = 0.190, d) 𝑋𝐶 𝑅𝑇,1⁄ = 0.233. 
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subsequently by fitting 𝜔𝑥 . A further possibility is to calibrate all three parameters 

simultaneously. Nevertheless, the coupled calibration of one of the two parameters, Γ or 𝑉𝑥,𝑑𝑒𝑓, 

with 𝑟𝑐 should give a more accurate identification of that parameter, since the fitting model has 

two degrees of freedom. As it will be shown later on, the velocity deficit is non-zero within a 

region of very limited extent close to the TV trajectory, whereas the induced velocity exhibits a 

significant magnitude along a wide portion of the rear blade span. Therefore, it is preferable to 

privilege the accuracy in the identification of Γ instead of 𝑉𝑥,𝑑𝑒𝑓. 

In Figure 5.13, red dashed lines represent the fitted profiles. A very good agreement with the 

averaged profiles is obtained for component 𝜔𝑥, with slight differences limited to the outer region 

of the vortex core where the vorticity tends to zero. Also fitted component 𝜔𝜗 exhibits moderate 

deviations at the outer radii, accompanied by a slight radial shift of the profiles. The latter 

misalignment is most probably a consequence of the choice to calibrate 𝑟𝑐 and 𝜔𝑥 together, thus 

letting 𝑉𝑥,𝑑𝑒𝑓  to be the only free parameter for the 𝜔𝜗  fitting. Nevertheless, the observed 

deviations are minor and the result of the overall fitting can be considered satisfactory. 

Figure 5.13 also shows that the fitted 𝑟𝑐 (black dotted lines) increases moving downstream, 

according to the diffusion of the viscous core. 

After calibrating the velocity parameters Γ, 𝑟𝑐 and 𝑉𝑥,𝑑𝑒𝑓 at each extraction grid, their axial 

distributions are fitted by means of Eqs. (5.21)-(5.23). In Figure 5.14, the empty circles represent 

the velocity parameters at all the extraction grids considered, while the black solid lines represent 

their analytical fitting. 𝑟𝑐  and 𝑉𝑥,𝑑𝑒𝑓  are normalized with respect to the FR tip radius and the 

freestream velocity, respectively. It is observed that the fitted distributions represent well the axial 

evolution of the parameters in the region from the FR trailing edge to the MP. An increase in the 

TV circulation moving downstream is clearly visible in Figure 5.14 a), indicating that an ingestion 

of vorticity takes place during the vortex rollup and supporting the model assumption of a variable 

circulation along the vortex trajectory. 

The values of the parameters of the axial distributions of 𝑟𝑐, 𝑉𝑥,𝑑𝑒𝑓 and Γ (see Eqs. (5.21)-

(5.23)) obtained for the present test case are reported in Table 5.2. The parameters are normalized 

using the FR tip radius and the freestream velocity (apart from parameters related to the 

circulation, Γ𝐼 and 𝐾Γ1, which are kept dimensional). 
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Figure 5.14 – Calibrated velocity parameters and fitted analytical distributions along the TV helix. 
a) Circulation, b) Viscous core radius, c) Peak of the axial velocity deficit. 

 

5.5 Velocity field ascribed to the tip vortices 
 

Once the TV model parameters have been calibrated, the velocity field generated by a single 

tip vortex is evaluated at any point of the space by means of the Biot-Savart law (Eq. (5.18)) and 

Eq. (5.20). Then, the velocity field due to the vortices released by all the FR blades is computed 

as the superposition of the single contributions according to Eq. (5.24). In order to calculate the 

unsteady loading on the rear blades, the velocity field of the TVs is extrapolated beyond the MP, 

and evaluated along circumferences located at the LE of the rear rotor, that is, along the curve 

𝑋𝐿𝐸,2(𝑅). Figure 5.15 shows the contours of the absolute velocity components due to all the TVs, 

computed at the surface of revolution generated by the curve 𝑋𝐿𝐸,2(𝑅) and represented in the 

coordinate system (𝑋, 𝑅,Ψ) of the FR. The velocity field due to the TVs is steady in such a 

Table 5.2 – Parameters of the axial distributions of 𝑟𝑐 , 𝑉𝑥,𝑑𝑒𝑓  and 𝛤. 

𝑟𝐼 𝑅𝑇,1⁄  𝑟𝑋 √𝑅𝑇,1⁄  𝑉𝐼 𝑣0⁄  𝑉𝑋 (𝑣0√𝑅𝑇,1)⁄  

Γ𝐼 

[
m2

s
] 

𝐾Γ1 

[
m2

s
] 

𝐾Γ2 ∙ 𝑅𝑇,1 

0.0139 0.0608 3.3564∙ 10−16 0.3665 2.3020 2.2078 44.5683 
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coordinate system. The considered azimuthal range is limited to one blade passage of the FR, 

since the flow field is periodic, and it repeats identically in the other blade passages. The angular 

sectors depicted in Figure 5.15 represent the projection of the surface of revolution onto plane 

(𝑌, 𝑍). Figures 5.15 a) and b) show the contributions of the circulation and the axial velocity 

deficit, respectively, while Figure 5.15 c) shows the total velocity 𝒖𝑇𝑉 = 𝒖𝑖𝑛𝑑 + 𝒖𝑑𝑒𝑓 . The 

spatial coordinates are normalized with respect to the RR tip radius and the velocity components 

are normalized using the freestream velocity. The white dashed circular and straight lines indicate 

Figure 5.15 – Contours of the velocity components due to the tip vortices, computed at the 
rear rotor inlet (surface of revolution generated by the curve 𝑋𝐿𝐸,2(𝑅)). a) Velocity induced by 

the circulation, 𝒖𝑖𝑛𝑑, b) axial velocity deficit, 𝒖𝑑𝑒𝑓, c) total, 𝒖𝑇𝑉 = 𝒖𝑖𝑛𝑑 + 𝒖𝑑𝑒𝑓. 
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the radial and azimuthal coordinates, respectively, of the point where the vortex helix intersects 

the surface of revolution (only one of the helices intersects the surface within one blade passage). 

Note that the induced velocity maintains a significant magnitude at large distances, compared to 

the viscous core radius, from the vortex helix. Therefore, it is expected that the flow fields of the 

individual vortices influence significantly each other at the location of the RR leading edge, and 

this is automatically accounted for by the model. Concerning the axial deficit, its magnitude tends 

rapidly to zero as the distance from the vortex centre is increased (see Figure 5.15 b)), and hence 

there is no mutual influence of adjacent TVs. In fact, the viscous core radius, which is directly 

related to the standard deviation of the gaussian function defining 𝒖𝑑𝑒𝑓,𝑘 (see Eq. (5.20)), is of 

order 𝑟𝑐 𝑅𝑇⁄ = 𝑂(10−2) close to the RR leading edge. Nevertheless, the maximum magnitudes 

of 𝒖𝑖𝑛𝑑  and 𝒖𝑑𝑒𝑓  are comparable, and therefore the contribution of the axial deficit must be 

properly taken into account for the computation of the unsteady loading on the RR blades. Finally, 

it is observed that the radial component of 𝒖𝑑𝑒𝑓 is one order of magnitude lower than the axial 

and tangential ones, because of the small contraction angle of the analytical vortex helix close to 

the RR leading edge (see Figure 5.8 a)). By comparing Figures 5.15 a) and c) it is also noted that 

𝑢𝑅,𝑇𝑉 is slightly influenced by the contribution 𝑢𝑅,𝑑𝑒𝑓, unlike the axial and tangential velocity 

components. 

 

5.6 Merging TV and 2D flow perturbations 
 

Considering the RANS solution in the region between the FR trailing edge and the mixing 

plane, we denote by 𝒗′2𝐷 the azimuthal flow perturbations generated by flow structures other than 

tip vortices, that is, the viscous wake and the potential field bound to the FR blades. Perturbations 

𝒗′2𝐷  are obtained by subtracting the tip vortex flow field from the RANS solution. The 2D 

extrapolation model is then used to propagate 𝒗′2𝐷 through the MP, up to the leading edge of the 

RR. Finally, the extrapolated 𝒗′2𝐷 is added to the tip vortex contribution, 𝒗′𝑇𝑉 , to obtain the 

complete description of the azimuthal perturbations responsible for the unsteady loading on the 

rear blades. 

 

5.6.1 Subtraction of the tip vortex velocity field from the RANS solution 

For a proper calibration of the 2D model, the influence of the TVs must be removed from the 

RANS flow field, so that 𝒗′2𝐷 can be isolated. Recalling Eqs. (5.2) and (5.3), the RANS flow 

field between the FR trailing edge and the MP can be split into the azimuthal average and the 

perturbations in azimuthal direction, i.e., 𝒗𝑅𝐴𝑁𝑆 = �̅�𝑅𝐴𝑁𝑆 + 𝒗′𝑅𝐴𝑁𝑆 = �̅�𝑅𝐴𝑁𝑆 + 𝒗′2𝐷 + 𝒗′𝑇𝑉 . 
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Contribution 𝒖′𝑇𝑉, computed by means of the TV model, is subtracted from the RANS solution, 

and the fitting of the 2D model is performed using the resulting perturbations: 

 

 𝒗′2𝐷(𝑋, 𝑅,Ψ) = 𝒗𝑅𝐴𝑁𝑆(𝑋, 𝑅, Ψ) − �̅�𝑅𝐴𝑁𝑆(𝑋, 𝑅) − 𝒖
′
𝑇𝑉(𝑋, 𝑅, Ψ) =

= 𝒗′𝑅𝐴𝑁𝑆(𝑋, 𝑅,Ψ) − 𝒖
′
𝑇𝑉(𝑋, 𝑅,Ψ) . 

(5.27) 

 

To do this, the TV velocity field 𝒖𝑇𝑉 is calculated as circumferential profiles at different axial 

positions along azimuthally averaged streamlines, and the perturbations 𝒖′𝑇𝑉 are computed as 

𝒖′𝑇𝑉 = 𝒖𝑇𝑉 − �̅�𝑇𝑉, where �̅�𝑇𝑉 is the azimuthal average. 

Figure 5.16 shows the (𝑋, 𝑅) coordinates of the circumferential profiles considered for the 

calibration of the 2D model along streamlines 30, 46 and 55. The black dashed lines represent 

these averaged streamlines, while the empty circles indicate the locations of the 8 circumferential 

profiles considered. The numbering of the axial locations runs from 𝑖 = 1 at the FR trailing edge 

to 𝑖 = 8 close to the MP. The TV trajectory is indicated by the red dash-dotted line. Figure 5.17 

compares 𝒗′𝑅𝐴𝑁𝑆(𝑋𝑖, Ψ), 𝒖′𝑇𝑉(𝑋𝑖, Ψ) and 𝒗′2𝐷(𝑋𝑖, Ψ), showing the effect of removing the TV 

velocity perturbations. Figures 5.17 a), b) and c) refer to the axial location 𝑖 = 4 along streamlines 

30, 46 and 55, respectively. Although 𝒖𝑇𝑉 has a significant magnitude up to the rotor hub, it was 

found that the amplitude of 𝒖′𝑇𝑉 decreases moving radially inward from the TV helix. Figure 

5.17 a) shows that when the radial distance from the TV trajectory is sufficiently large, 𝒗′2𝐷 

differs slightly from 𝒗′𝑅𝐴𝑁𝑆, indicating that the flow field in this region is not influenced by the 

Figure 5.16 – Azimuthally averaged streamlines 30, 46 and 55 (dashed lines), and locations 
of the circumferential profiles for the calibration of the 2D model (empty circles). 
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three-dimensional effects due to the tip vortices. In fact, the velocity profiles exhibit an almost 

2D behaviour, and the influence of the viscous wake can be clearly identified by local peaks (at 

𝐵1Ψ 2𝜋⁄ = 2.33 in Figure 5.17 a)). 

The influence of the tip vortices increases at reducing the radial distance from the TV helix. 

In Figure 5.17 b), the peaks of 𝒗′𝑅𝐴𝑁𝑆 due to the viscous wake are still visible, but secondary 

strong peaks are observed at 𝐵1Ψ 2𝜋⁄ = 1.51 for the axial and tangential components, and at 

𝐵1Ψ 2𝜋⁄ = 1.59 for the radial component. The red dashed lines show that contribution 𝒗′𝑇𝑉 

dominates the velocity perturbations within the entire azimuthal range, and that the secondary 

peaks can certainly be ascribed to the tip vortices. When 𝒖′𝑇𝑉  is subtracted from the overall 

perturbation field, the resulting velocity profiles (𝒗′2𝐷) show features similar to those observed 

Figure 5.17 – Comparison of the velocity perturbations 𝒗′𝑅𝐴𝑁𝑆  (black solid lines), 
𝒖′𝑇𝑉 (red dashed lines) and 𝒗′2𝐷  (blue dash-dotted lines), computed at the 

axial location 𝑖 = 4 along azimuthally averaged streamlines. 
a) streamline 30, b) streamline 46, c) streamline 55. 
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at smaller radii, where the flow field can be considered approximately two-dimensional (compare 

blue dash-dotted lines in Figures 5.17 a) and b)). Note that the three-dimensional effects are 

significant up to the outermost streamline (streamline 55), as can be observed in Figure 5.17 c). 

 

5.6.2 Calibration of the 2D flow model 

The perturbation field 𝒗′2𝐷, computed from RANS data according to Eq. (5.27), is used to 

calibrate the 2D model of the viscous wake and potential field due to the front rotor blades. In the 

present application, 𝒗′2𝐷 was extracted at 8 axial locations along each averaged streamline (see 

Figure 5.16). 

To assess the effect of removing the TV velocity perturbations, the model fitting has been 

performed using both 𝒗′𝑅𝐴𝑁𝑆 (as done by Jaron et al. [42]) and 𝒗′2𝐷, and representative results 

are shown in Figure 5.18 and Figure 5.19, respectively. The black solid lines represent the velocity 

perturbations to be fitted, while the red dashed lines represent the model velocity 𝑢′. For a clearer 

visualization, only the profiles at the axial locations i = 2, 4 and 6 are shown. Consider that the 

trend of the fitting is the same at the other axial locations. 

Figure 5.18 a) refers to streamline 46, where the flow field is strongly influenced by the tip 

vortices. It is observed that the presence of three-dimensional effects leads to a wrong calibration 

of the model, even though the quality of the fitting may appear good. This is particularly evident 

Figure 5.18 – Fitting of the 2D flow model using 𝒗′𝑅𝐴𝑁𝑆. Velocity profiles at 
axial locations 𝑖 = 2, 4 and 6. a) streamline 46, b) streamline 55. 
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for component 𝑣′𝑋. In this case, the positive peaks due to the TVs are considerably stronger than 

the peaks due to the viscous wake (indicated by the arrows), and the fitting procedure ascribes 

these TV peaks to the wake contribution, 𝑢𝑤
′ , leading to an incorrect identification of the 2D 

model parameters. A similar behaviour is found for the tangential and radial velocity components. 

Note that a bad fitting of the wake contribution automatically affects the identification of the 

parameters of the potential field model. 

The fitting of 𝒗′𝑅𝐴𝑁𝑆 on streamline 55 is shown in Figure 5.18 b). This streamline passes over 

the FR blade, and hence only the potential field contribution is considered. The bad quality of the 

fitting indicates that the model velocity 𝑢𝑝
′  is inappropriate to describe the perturbations at the 

outer radii if the TV contribution is not removed from the RANS solution. In fact, considering 

the axial distribution of  𝑢𝑝
′  in Eq. (4.2), wavenumber (𝑀𝑋

2 tan𝛽𝑟𝑒𝑙 (𝑋 − 𝑋𝑇𝐸,1) (1 − 𝑀𝑋
2)𝑅⁄ ) and 

Figure 5.19 – Fitting of the 2D flow model using 𝒗′2𝐷. Velocity profiles at axial 
locations 𝑖 = 2, 4 and 6. a) streamline 30, b) streamline 46, c) streamline 55. 
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amplitude decay rate (𝑒𝑥𝑝 {−[ℎ𝐵1√1 − 𝑀𝑟𝑒𝑙
2 |𝑋 − 𝑋𝑇𝐸,1| (1 − 𝑀𝑋

2)𝑅⁄ ]}) are quite different from those 

of the TV (see Eqs. (5.15)-(5.17) and (5.19)-(5.20)). 

Figure 5.19 a) shows the fitting performed using 𝒗′2𝐷 on streamline 30, where the three-

dimensional effects of the TV are negligible. The quality of the fitting is very good, in spite of 

small fluctuations due to higher order harmonics. Similar results were obtained for all the 

streamlines where 𝒗′𝑇𝑉 is small compared to 𝒗′𝑅𝐴𝑁𝑆 (from the hub to 𝑅 𝑅𝑇,1⁄ ≈ 0.85). 

The impact of removing 𝒖′𝑇𝑉 from 𝒗′𝑅𝐴𝑁𝑆 on the calibration of the 2D flow model emerges 

from the comparison of Figures 5.19 b-c) with Figures 5.18 a)-b). Figure 5.19 b) refers to 

streamline 46 and shows that the peaks due to the viscous wake, emphasized by the removal of 

the three-dimensional effects (compare with Figure 5.18 a)), are clearly identified by the model. 

Although the match is not perfect, the calibration based on 𝒗′2𝐷 leads to physically meaningful 

values of the unknown parameters of both 𝑢𝑤
′ (𝑋,Ψ) and 𝑢𝑝

′ (𝑋,Ψ). In Figure 5.19 c), which refers 

to streamline 55, it can be observed that the 2D model is able to reproduce the axial evolution of 

𝒗′2𝐷 reasonably well, resulting in a significant improvement compared to the fitting based on 

𝒗′𝑅𝐴𝑁𝑆 in Figure 5.18 b). Similar results are obtained for all the streamlines where the influence 

of the TVs is not negligible. 

Although the fitting of the 2D flow model using 𝒗′2𝐷  appears satisfactory, some 

inconsistencies can be observed in Figures 5.19 b) and c). In fact, the plots in Figure 5.19 b) show 

small oscillations of 𝑣′Ψ and 𝑣′𝑅 in the azimuthal range 1.5 < 𝐵1Ψ 2𝜋⁄ < 1.75, which can be 

hardly justified by the superposition of typical velocity profiles of the wake and potential flows 

generated by the FR blades. Moreover, the last plot in Figure 5.19  c) shows that the amplitude 

𝑣′𝑅  increases from i = 2 to i = 4, in contrast to the perturbation decay that should occur at 

increasing 𝑋. This behaviour is observed also in Figure 5.18 b), but in that case it could be 

justified by the increasing influence of 𝒗′𝑇𝑉 when moving downstream along streamline 55. 

The above inconsistencies can be ascribed to the model approximations, that is, the 

assumption of linear superposition of perturbations and the simplified model of the flow field 

around the tip vortex. Nevertheless, these inaccuracies are minor effects, and the general quality 

of the fitting is substantially improved on almost all the streamlines where the 3D effects of the 

tip vortices are significant. Consequently, also the velocity perturbations extrapolated beyond the 

mixing plane should be more physically consistent. 
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6 RESULTS 
 

 

 

The results of the numerical simulations and the predictions of the considered semi-analytical 

models are presented in order to assess and validate the present method for the fast prediction of 

the IN tones emitted by the rear rotor. First, the results of the RANS and URANS simulations are 

validated against experimental data. The comparison between RANS and URANS flow fields is 

also presented.   The extrapolated velocity perturbations, computed at the RR leading edge, are 

compared with the URANS solution to assess the reconstruction of the flow unsteadiness by 

means of the RANS-informed model. Then, a comparison between the unsteady loading provided 

by the blade response model and the one computed from the URANS blade pressure is presented. 

The IN emission is evaluated and compared with the results of the FWH analogy. Finally, a 

comparison between the predicted noise emission and wind tunnel noise measurements found in 

the literature is presented. 

 

6.1 Numerical simulations 
 

6.1.1 Validation of the CFD simulations  

Since the reproduced and actual blade geometries are not identical, local differences between 

computed and real flow fields may occur under the same operating condition. Therefore, it was 

decided to compare the numerical predictions with measured integral quantities representative of 

the CROR performance to assess whether the main features of the computed flow field (viscous 

wake velocity deficit, tip vortex intensity, stream-tube contraction, etc.) are consistent with the 

considered operating condition. In this view, the benchmark for the simulated test case is the 

experiment conducted in the 9- by 15- Anechoic Wind Tunnel at NASA Lewis Research Center 

[50]. The operating condition is representative of take-off at freestream Mach number 𝑀0 = 0.2. 

The scaled CROR model built for the experiment had rotor diameters 𝐷1 = 0.622 𝑚 for the FR 

and 𝐷2 = 0.607 𝑚 for the RR. In the present work, the 8 x 8 blade number configuration (the 

notation refers to the number of blades of the FR and the RR) was considered, with axial distance 

Δ𝑋𝑎 = 0.15 𝑚 between the pitch change axes of the rotors, corresponding to Δ𝑋𝑎 𝑅𝑇,1⁄ = 0.482 

(see Figure 3.1). The operating parameters are summarized in Table 6.1. 𝛽1  and 𝛽2  are the 

nominal pitch angles of the blades, while 𝐽1 and 𝐽2 are the advance ratios of the two rotors (𝐽 =

𝑣0 (𝑛𝐷)⁄ ). 
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In order to improve the matching of computational and experimental results, slight pitch angle 

corrections, Δ𝛽1  and Δ𝛽2 , have been applied. This is a common procedure in propeller 

simulations (see Mikkelson et al. [63]). The final corrections resulting from a reasonable number 

of numerical simulations are reported in Table 6.2, together with the corresponding errors in the 

predictions of torque (𝑄), total thrust (𝑇) and net efficiency (𝜂𝑛𝑒𝑡 = 𝑣0𝑇 (Ω1Q1 + Ω2Q2)⁄ ). The 

prediction errors of the URANS have been computed from the time-average values of torque and 

thrust after the simulation had reached a converged periodic solution. The small errors obtained 

are considered as an indication that the main features of the computed and real flow fields are 

very similar. 

 

6.1.2 RANS flow field 

This section reports the velocity and vorticity fields past the CROR resulting from the RANS 

simulation with the mixing plane boundary condition. The velocity field was extracted at the 

surfaces S1, S2 and S3 depicted in Figure 6.1. The azimuthal extension of these surfaces 

corresponds to the angular interval of a single blade passage, that is, ∆Ψ = 360° 𝐵1⁄ =

360° 𝐵2⁄ = 45° for both rotors. In the simulation setup, the pitch change axes of front and rear 

blades are parallel and the blade passages of FR and RR are aligned. Recalling that the 𝑍 axis of 

the FR reference frame (𝑋, 𝑌, 𝑍) coincides with the PCA of one of the front blades, that is, the 

simulated blade (see Figure 6.1 a)), the limits of the azimuthal angle of the blade passage 

considered for both FR and RR are Ψ𝑚𝑖𝑛 = 90° − 45° 2⁄ = 67.5° and Ψ𝑚𝑎𝑥 = 90° + 45° 2⁄ =

112.5°. 

Table 6.1 – Test case operating condition. 

Blades 

number 

FR 

speed 

[rpm] 

RR 

speed 

[rpm] 

𝛽1 

[deg] 

𝛽2 

[deg] 
𝐽1 𝐽2 

8 x 8 7610 7120 36.2 38.4 0.862 0.951 

 

Table 6.2 – Errors of the RANS and URANS predictions. 

∆𝛽1 

[deg] 

∆𝛽2 

[deg] 

𝑄1 

Err 

[%] 

𝑄2 

Err 

[%] 

𝑇 

Err 

[%] 

𝜂𝑛𝑒𝑡 
Err 

[%] 

RANS 

-1 -1 1.02 -3.61 -0.92 -0.41 

URANS 

-1 -1 1.04 -1.83 0.07 -0.48 
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S1 is a cylindrical surface of radius 𝑅 𝑅𝑇,1⁄ = 0.75 and axial extension −0.2 ≤ 𝑋 𝑅𝑇,1⁄ ≤

0.7. As shown in Figure 6.1, this surface intersects both front and rear blades. Surfaces S2 and S3 

are normal to the rotation axis and they extend radially from the hub to 𝑅 𝑅𝑇,1⁄ = 1.1. The former 

is located inside the computational domain of the FR, i.e. upstream of the MP, whereas the latter 

lies inside the computational domain of the RR, i.e. downstream of the MP (see Figure 6.1 b)). 

The axial coordinates of S2 and S3 are 𝑋 𝑅𝑇,1⁄ = 0.161 and 𝑋 𝑅𝑇,1⁄ = 0.338, respectively, while 

the MP is located at 𝑋 𝑅𝑇,1⁄ = 0.259. 

Both relative, 𝒘1 and 𝒘2, and absolute, 𝒗, velocity fields have been analysed. 𝒘1 is defined 

in the reference frame of the FR (𝑋, 𝑌, 𝑍) , while 𝒘2  is defined in the frame of reference 

(𝑋2, 𝑌2, 𝑍2) rotating with the RR. As shown in Figure 6.2, the origins of the two reference frames 

are coincident, and the 𝑍2 axis is parallel to the PCA of the rear blade. 

Figure 6.1 – Surface of constant radius 𝑅 𝑅𝑇,1⁄ = 0.75 (S1) and surfaces normal 

to the rotation axis located at 𝑋 𝑅𝑇,1⁄ = 0.161 (S2) and 𝑋 𝑅𝑇,1⁄ = 0.338 (S3). 

a) 3D view, b) projection onto (𝑋, 𝑍) plane, c) projection onto (𝑌, 𝑍) plane. 
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Considering the relative velocities in the reference frames of the two rotors, (𝑋, 𝑅,Ψ) and 

(𝑋2, 𝑅2, Ψ2), the absolute velocities are simply computed as: 

 

 𝒗(𝑋, 𝑅,Ψ) = 𝒘1 + Ω1𝒆𝑋 × 𝑅𝒆𝑅 = 𝒘1 + Ω1𝑅𝒆Ψ  , (6.1) 

 

and 

 

 𝒗(𝑋2, 𝑅2, Ψ2) = 𝒘2 + Ω2𝒆𝑋,2 × 𝑅2𝒆𝑅,2 = 𝒘2 + Ω2𝑅2𝒆Ψ,2  , (6.2) 

 

where (𝒆𝑋, 𝒆𝑅 , 𝒆Ψ)  and (𝒆𝑋,2, 𝒆𝑅,2, 𝒆Ψ,2)  are the unit vectors of the cylindrical coordinate 

systems of the FR and RR, respectively (see Figure 6.2). Note that the absolute and relative 

velocities differ from each other only for the tangential component, 

 

 𝑣Ψ(𝑋, 𝑅,Ψ) = 𝑤Ψ,1(𝑋, 𝑅,Ψ) + Ω1𝑅 , (6.3) 

 

 𝑣Ψ(𝑋2, 𝑅2, Ψ2) = 𝑤Ψ,2(𝑋2, 𝑅2, Ψ2) + Ω2𝑅2 , (6.4) 

 

while the axial and radial components do not change (𝑣𝑋 = 𝑤𝑋,1 = 𝑤𝑋,2 and 𝑣𝑅 = 𝑤𝑅,1 = 𝑤𝑅,2). 

The contours in Figure 6.3 show the normalized velocity at the cylindrical surface S1. In the 

figure, the surface is projected onto plane (𝑋, 𝑌). Figure 6.3 a) reports the map of the axial 

velocity, 𝑣𝑋, while Figure 6.3 b) shows the tangential components of the relative velocities. 𝑤Ψ,1 

Figure 6.2 – Cartesian and cylindrical coordinate systems 
in the reference frames of a) front rotor, b) rear rotor. 
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and 𝑤Ψ,2 are depicted in the region upstream and downstream of the MP, respectively (i.e., in the 

computational domains of the FR and RR, respectively). The tangential component of the absolute 

velocities, 𝑣Ψ, is depicted in Figure 6.3 c). The figure shows that the velocity perturbations in 

space generated by each rotor are suppressed at the MP, where a discontinuity in the contours is 

clearly visible. For instance, it is observed that the trace of the viscous wake released by the front 

blade stops abruptly at 𝑋 𝑅𝑇,1⁄ = 0.259 (axial coordinate of the MP). In particular, the flow 

perturbations in the azimuthal direction, which are responsible for the periodic fluctuation of the 

blade loads during the rotation, do not propagate through the MP. Indeed, the RANS solution in 

the computational domain of each rotor is steady in the reference frame of the rotor and it gives 

a good approximation of the time averaged flow field. 

The axial flow acceleration can be observed in Figure 6.3 a). At axial coordinate 𝑋 𝑅𝑇,1⁄ =

−0.2  (upstream of the considered section of the front blade), the axial velocity is 1.25 <

𝑣𝑋 𝑣0⁄ < 1.40 and it undergoes an increase moving downstream. At 𝑋 𝑅𝑇,1⁄ = 0.7 (downstream 

of the rear blade section), the range of the axial flow velocity is 1.98 < 𝑣𝑋 𝑣0⁄ < 2.07. Similar 

results were found at other radial coordinates along the blade span. 

Looking at the tangential components of the absolute velocity at surface S1 (see Figure 6.3 

c)), it is observed that the FR produces a negative swirl velocity that affects the axial region 

between the front and rear blades. The RR performs an effective recovery of the swirl kinetic 

energy, as shown by the small values of the azimuthally averaged tangential velocity downstream 

of the rear blade section (�̅�Ψ 𝑣0⁄ = −0.047 at 𝑋 𝑅𝑇,1⁄ = 0.7). Similar results were found at other 

radial coordinates along the blade span. This support the assumption of no residual swirl adopted 

in the modelling of the tip vortex path. 

The velocity contours in Figure 6.4 refer to surface S2, which is normal to the rotation axis 

and located in the computational domain of the FR. The maps of axial, tangential and radial 

velocity components are shown. Surface S2 span the single blade passage of the FR, where the 

RANS solution is periodic in the azimuthal direction. On the left side of the figure, the velocity 

contours are reproduced circumferentially in order to show the full annulus velocity field, and the 

black lines indicate the boundaries of S2. On the right side of the figure, the contours are limited 

to S2 for a clearer visualization. 

The relative tangential velocity in the reference frame of the FR, 𝑤Ψ,1, (Figure 6.4 b)), rapidly 

increases moving radially outward. Figure 6.4 c) shows that 𝑣Ψ, represented in the coordinate 

system of the FR, is negative in almost the whole region 𝑅 𝑅𝑇,1⁄ < 0.95 , illustrating the 

distribution of the swirl velocity generated by the front blades. Also the radial velocity 

component, 𝑣𝑅, is negative on almost the entire surface S2 (Figure 6.4 d)), indicating that the 

flow contracts radially. 
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The velocity perturbations in space observed in Figure 6.4 are ascribed to viscous wakes, tip 

vortices and bound potential field of the front blades. In the figure, the trace of the viscous wake 

is identified by the radial pattern of velocity deficit enclosed by the dashed oval, and it is 

particularly visible in the maps of 𝑣𝑋 (Figure 6.4 a)) and 𝑣Ψ (Figure 6.4 c)). The black circles 

represent the points where the analytical TV trajectory intersects surface S2. The TVs released 

by the front blades are mainly responsible for the intense velocity perturbations observed in the 

regions near the vortex trajectory. For  instance,  the  axial  and  radial  velocity  components  vary 

Figure 6.3 – Contours of the velocities extracted from the RANS solution at surface S1. 
a) axial velocity, 𝑣𝑋, b) relative tangential velocity, 𝑤𝛹, c) absolute tangential velocity, 𝑣𝛹. 



 
Chapter 6.  Results 

____________________________________________________________________________________ 

 
71 

 

Figure 6.4 – Contours of the velocities extracted from the RANS solution at surface S2. 
a) axial velocity, 𝑣𝑋, b) relative tangential velocity, 𝑤𝛹,1, 

c) absolute tangential velocity, 𝑣𝛹, d) radial velocity, 𝑣𝑅. 
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approximatively in ranges −0.2 < 𝑣𝑋 𝑣0⁄ < 2.2 and −1.3 < 𝑣𝑅 𝑣0⁄ < 0.8, respectively, within 

regions of limited extension around the TV centres. 

The contours in Figure 6.5 show the velocity fields on surface S3, which is normal to the 

rotation axis and located in the computational domain of the RR. Similarly to Figure 6.4, the full 

annulus velocity field is depicted on the left side of the figure, while the plots on the right side 

illustrate the velocity maps over a the single blade passage of the RR. The axial, tangential and 

radial velocity components are represented in the coordinate system of the RR. 

Note that the velocity perturbations in space generated by the FR do not affect the flow on 

surface S3 since they are suppressed at the MP. Therefore, the perturbations observed in Figure 

6.5 are generated by the RR and they are ascribed to the bound potential field of the rear blades. 

The stream-tube has undergone a significant radial contraction with respect to the axial 

position of the front blades. In fact, at the 𝑋2 coordinate of surface S3, the axial velocity and the 

absolute tangential velocity are nearly 𝑣𝑋 𝑣0⁄ = 1  and 𝑣Ψ 𝑣0⁄ = 0 , respectively, for radial 

coordinates larger than about 𝑅2 𝑅𝑇,1⁄ = 0.93 (see Figures 6.5 a) and c)). This indicates that the 

flow in that region lies outside the stream-tube crossing the FR disc, since it does not exhibit the 

axial acceleration and swirl velocity generated by the front rotor. Moreover, 𝑣𝑅 shows significant 

negative values over S2 (Figure 6.5 d)), meaning that the flow is still contracting radially. 

The absolute vorticity, 𝝎, represented in the coordinate system (𝑋, 𝑌, 𝑍) of the FR, is shown 

in Figures 6.6 and 6.7. The figures illustrate the vorticity calculated by RANS in the 

computational domain of the FR, i.e., the vorticity released by the front blades. The RANS 

solution for a single blade passage is repeated circumferentially to visualize the vorticity field 

over the full annulus result. 

Figure 6.6 shows the contours of vorticity magnitude, normalized using the FR angular 

velocity, at 9 planes normal to the rotation axis, located from 𝑋 = 0 to the MP. The range of the 

contours is 6 < |𝝎| |Ω1|⁄ < 44 and the values outside this interval are not displayed in favour of 

the visualization of multiple planes. It is observed that the vorticity is generated at the blade 

surface and is convected downstream, giving rise to tip vortices and viscous wakes. The region 

of high vorticity indicated by the arrows in Figure 6.6 identifies the viscous core of the TV. 

Moving downstream, the maximum value of |𝝎| within the TV core decreases, while the region 

where |𝝎| |Ω1|⁄ > 6 enlarges (compare the contours on different planes), due to the vorticity 

diffusion and viscous dissipation. 

In Figure 6.6, the vorticity ascribed to the viscous wake is also visible in the region radially 

inward with respect to the TV viscous core. Note that the magnitude of the vorticity of the viscous 

wake is significantly smaller than that of the tip vortex. 

 



 
Chapter 6.  Results 

____________________________________________________________________________________ 

 
73 

 

Figure 6.5 – Contours of the velocities extracted from the RANS solution at surface S3. 
a) axial velocity, 𝑣𝑋, b) relative tangential velocity, 𝑤𝛹,2, 

c) absolute tangential velocity, 𝑣𝛹, d) radial velocity, 𝑣𝑅. 



 
Chapter 6.  Results 

____________________________________________________________________________________ 

 
74 

The blue surfaces in Figure 6.7 are those of constant vorticity magnitude |𝝎| |Ω1|⁄ = 10, and 

show the morphology of the tip vortices generated by the FR. The vorticity sheet released by the 

front blade quickly rolls up while moving downstream from the tip trailing edge, generating the 

tube-shaped surface of |𝝎| |Ω1|⁄ = 10 indicated by the arrows in the figure. This surface encloses 

most of the TV viscous core and provides a representation of the TV shape. 

Figure 6.6 – Contours of normalized vorticity magnitude, |𝝎| |𝛺1|⁄ , extracted from the RANS 
solution at 9 planes normal to the rotation axis located from 𝑋 = 0 to the MP. 

Figure 6.7 – Surfaces of constant vorticity |𝝎| |𝛺1|⁄ = 10 (blue surfaces) obtained from the RANS 
simulation in the computational domain of the FR. a) 3D view, b) projection onto (𝑋, 𝑌) plane. 
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6.1.3 URANS flow field 

 

The absolute velocity and vorticity fields past the CROR blades, computed by means of the 

URANS simulation, are presented below. The reported results refer to 4 time instants, equally 

spaced within the time interval, ∆𝑡, taken by the rotors to span one mutual blade passage: 

 

 
∆𝑡 =

∆Ψ

|Ω1| + |Ω2|
=

2𝜋

𝐵1(|Ω1| + |Ω2|)
=

2𝜋

𝐵2(|Ω1| + |Ω2|)
  . (6.5) 

 

The first time instant, 𝑡0, was chosen as the time when the front and rear blades are aligned, while 

the other time instants are 𝑡1 = 𝑡0 + ∆𝑡 3⁄ , 𝑡2 = 𝑡0 + 2∆𝑡 3⁄  and 𝑡3 = 𝑡0 + ∆𝑡. 

The positions of the blades in the absolute frame of reference, (𝑋𝑎 , 𝑌𝑎 , 𝑍𝑎), at the 4 time 

instants are depicted in Figure 6.8. Only two blades per rotor are shown for a clearer visualization. 

Consider the numbering k1 = 1…𝐵1 and k2 = 1…𝐵2 for the front and rear blades, respectively, 

where the values increase in the direction of rotation of each rotor. At time 𝑡0, the pitch change 

Figure 6.8 – Surface of constant radius 𝑅 𝑅𝑇,1⁄ = 0.75 (S1) and relative positions of the 

FR and RR blades at 4 time instants: a) 𝑡0 (FR and RR blades aligned), b) 𝑡1 = 𝑡0 + ∆𝑡 3⁄ , 
c) 𝑡2 = 𝑡0 + 2∆𝑡 3⁄ , d) 𝑡3 = 𝑡0 + ∆𝑡 (FR and RR blades realigned). 
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axes of blades k1 and k2 are parallel, as well as the pitch change axes of blades (k1 − 1) and 

(k2 + 1), and so on (see Figure 6.8 a)). After time interval ∆𝑡, that is at time 𝑡3, the blades of the 

FR and RR return to align. Therefore, at time 𝑡3, the pitch change axes of blades (k1 − 1) and k2 

are parallel (see Figure 6.8 d)), as well as the pitch change axes of blades (k1 − 2) and (k2 + 1), 

and so on. 

The velocity field shown hereafter was extracted from the URANS solution on the cylindrical 

surface S1 of radius 𝑅𝑎 𝑅𝑇,1⁄ = 0.75 depicted in Figure 6.8. The azimuthal extension of S1 is 

limited to one blade passage, ∆Ψ = 45° , with Ψ𝑎,𝑚𝑖𝑛 = 90° − ∆Ψ 2⁄ = 67.5°  and Ψ𝑎,𝑚𝑎𝑥 =

90° + ∆Ψ 2⁄ = 112.5°. Figure 6.8 shows the locations where surface S1 intersects the blades of 

the FR and RR at the 4 time instants considered. 

The contours in Figure 6.9 illustrate the axial and tangential components of the absolute 

velocity on surface S1, from time 𝑡0 (Figure 6.9 a)) to time 𝑡3 (Figure 6.9 d)). In the figure, S1 is 

projected onto plane (𝑋𝑎 , 𝑌𝑎). Recalling that only a single blade passage was simulated, 𝑣𝑋 and 

𝑣Ψ from URANS are repeated circumferentially to show the solution on the whole surface S1 at 

each time. Note that the absolute velocity components in the cylindrical coordinate system 

(𝑋𝑎 , 𝑅𝑎 , Ψ𝑎)  are periodic in the azimuthal direction over S1 (e.g., 𝑣Ψ(𝑋𝑎 , 𝑅𝑎, Ψ𝑎,𝑚𝑖𝑛, 𝑡) =

𝑣Ψ(𝑋𝑎 , 𝑅𝑎 , Ψ𝑎,𝑚𝑎𝑥, 𝑡)), as can be observed in Figure 6.9. 

The URANS solution allows assessing the effects of the aerodynamic interaction of the two 

rotors. Figure 6.9 shows the influence of the azimuthal perturbations 𝒗′𝐹𝑅 and 𝒗′𝑅𝑅, generated 

by FR and RR, respectively (see Eq. (5.2)), on the velocity field. 𝒗′𝐹𝑅  and 𝒗′𝑅𝑅  are velocity 

perturbations in space that rotate with the front and rear blades, respectively. For instance, the 

velocity deficit due to the viscous wake shed by front blade k1, which contributes to 𝒗′𝐹𝑅, is 

visible in Figure 6.9 a) (time 𝑡0). The movement of this wake on surface S1 during the rotation 

of the blades can be observed by comparing Figures 6.9 from a) to d). The viscous wakes of the 

FR periodically impact the rear blades, leading to a periodic fluctuation of the velocity perceived 

by an observer rotating with the RR. Figure 6.9 shows that significant variations of 𝑣𝑋 and 𝑣Ψ 

occur close to the rear blade during the rotation, due to the impingement of 𝒗′𝐹𝑅. This causes 

significant fluctuations of the rear blade loading. 

The perturbations 𝒗′𝑅𝑅  in the region upstream of the RR are due to the potential field of the 

rear blades, which decays very rapidly moving away from the rotor. It was found that 𝒗′𝑅𝑅 does 

not influence significantly the velocity field at the axial location of the front blades. In fact, the 

contours in Figure 6.9 show that 𝑣𝑋  and 𝑣Ψ  for 𝑋𝑎 𝑅𝑇,1⁄ < 0.1  are almost constant for an 

observer rotating with the front blades. Similar results were found  along  the  entire  span  of  the  
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Figure 6.9 – Contours of axial velocity, 𝑣𝑋, and absolute tangential velocity, 𝑣𝛹, 
extracted from the URANS solution on surface S1. Four time instants are considered: 

a) 𝑡0 (FR and RR blades aligned), b) 𝑡1 = 𝑡0 + ∆𝑡 3⁄ , c) 𝑡2 = 𝑡0 + 2∆𝑡 3⁄ , 
d) 𝑡3 = 𝑡0 + ∆𝑡 (FR and RR blades realigned). 
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front blade, also regarding the radial velocity component, 𝑣𝑅. Consequently, the amplitude of the 

unsteady loading on the front blades is negligible. 

The absolute vorticity computed by means of the URANS simulation is shown in Figure 6.10, 

which illustrates the surfaces of constant vorticity magnitude |𝝎| |Ω1|⁄ = 10 at time instants 𝑡0, 

𝑡1, 𝑡2 and 𝑡3. The URANS solution for a single blade passage is repeated circumferentially to 

visualize the results over the full annulus. The TVs generated by the FR are identified by the tube-

shaped surfaces where |𝝎| |Ω1|⁄ = 10 (indicated by arrows in Figure 6.10 a)), which depart from 

the front blade tips. It is observed that the FR tip vortices are convected downstream through the 

RR. Also the TVs generated by the rear rotor blades can be identified in the figure (see the arrows 

labelled RR TV). Note that the vorticity is dissipated very rapidly moving downstream of the RR. 

This occurrence is mostly ascribed to the numerical dissipation. In fact, the computational grid 

was refined in the region between the two rotors, whereas it is coarse in the remainder of the 

computational domain (see Figure 3.4). Therefore, significant numerical viscosity is introduced 

downstream of the rear blades. 

Figures 6.10 a)-d) show the phases of the impingement of the FR tip vortices on the rear 

blades. Since in the present test case the FR and RR have the same number of blades, all the 

blades of the rear rotor are hit by a TV released by the front rotor at the same time during the 

rotation. At time 𝑡0 (Figure 6.10 a)), the rear blade is cutting the viscous core of the TV. The 

vorticity tube with |𝝎| |Ω1|⁄ = 10, which identifies the shape of the TV core, is dissected by the 

blade and the portion that lies on the blade pressure side is visible in Figure 6.10 a). 

At time 𝑡1 (Figure 6.10 b)), the TV core has left the rear blade surface and is located between 

two consecutive blades of the RR. Figure 6.10 c) shows that at time 𝑡2 the viscous core of the TV 

is impinging the leading edge of the rear blade. The radial coordinate of the impingement point 

is about 𝑅𝑎 𝑅𝑇,2⁄ = 0.91. For 𝑡 > 𝑡2 the rear blade enters the region of the viscous core, thus 

repeating the cutting process of the tip vortex. 

At time 𝑡3 (Figure 6.10 d)), the mutual azimuthal position of front and rear blades is the same 

as at time 𝑡0, and a period of the cyclic impact of the TV on the rear blade is then completed. 

Because of the periodic TV-blade impingement, an observer rotating with the RR perceives a 

periodic velocity fluctuation due to the passage of the strong azimuthal perturbations, 𝒗′𝑇𝑉 , 

ascribed to the FR tip vortices (see Eqs. (5.2) and (5.3)). This produces unsteady loads of large 

amplitude on the rear blades close to the impingement radius. 
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Figure 6.10 – Surfaces of constant vorticity |𝝎| |𝛺1|⁄ = 10 (blue surfaces) obtained from the 
URANS simulation. Four time instants are considered: a) 𝑡0 (FR and RR blades aligned), 
b) 𝑡1 = 𝑡0 + ∆𝑡 3⁄ , c) 𝑡2 = 𝑡0 + 2∆𝑡 3⁄ , d) 𝑡3 = 𝑡0 + ∆𝑡 (FR and RR blades realigned). 
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6.2  Extrapolated velocity perturbations 
 

In the absolute reference frame (𝑋𝑎 , 𝑅𝑎 , Ψ𝑎), the unsteady flow field approaching the rear 

rotor can be reconstructed by adding perturbations 𝒗′𝐹𝑅 (steady with respect to the FR) to RANS 

solution 𝒗𝑅𝐴𝑁𝑆 (steady with respect to the RR) at corresponding azimuthal positions at any time 

instant. However, reconstructing the overall unsteadiness at the inlet of the rear rotor is not 

required because the unsteady loads on the RR are only due to the perturbations generated by the 

front rotor, 𝒗′𝐹𝑅. 

To validate the perturbations extrapolated to the leading edge of the RR, 𝒗′𝐹𝑅(𝑋𝐿𝐸,2, 𝑅, Ψ) is 

compared with the perturbations 𝒗′𝑈−𝑅 (subscript U – R means URANS – RANS) computed as: 

 

 𝒗′𝑈−𝑅(𝑋𝐿𝐸,2, 𝑅, Ψ) = 〈𝒗𝑈𝑅𝐴𝑁𝑆(𝑋𝐿𝐸,2, 𝑅, Ψ, 𝑡)〉 − �̅�𝑅𝐴𝑁𝑆(𝑋𝐿𝐸,2, 𝑅, Ψ) , (6.6) 

 

where 〈∙〉  denotes time averaging. In Eq. (6.6), the absolute velocities are extracted in the 

coordinate system (𝑋, 𝑅,Ψ) rotating with the FR. An observer fixed to the front rotor perceives 

variations in time of the URANS velocity field due to the relative motion of the perturbations in 

space generated by the rear rotor and fixed to it. Therefore, averaging in time 𝒗𝑈𝑅𝐴𝑁𝑆 leads to the 

removal of such RR perturbations from the URANS solution. Finally, the URANS flow 

perturbations due to the front rotor are obtained by subtracting the azimuthally averaged RANS 

solution (�̅�𝑅𝐴𝑁𝑆) from the time averaged URANS flow field. 

The contours in Figure 6.11 are computed on the surface of revolution generated by the curve 

𝑋𝐿𝐸,2(𝑅) in the azimuthal range of a single blade passage. The angular sectors depicted in Figure 

6.11 represent the projection of the surface of revolution onto plane (𝑌, 𝑍). Figure 6.11 a) shows 

the normalized axial, tangential and radial components of 𝒗′𝑈−𝑅. The trace of the viscous wake 

is visible in the region from the hub to about 𝑅 𝑅𝑇,2⁄ = 0.85, while the TVs emitted by the FR 

are mainly responsible for the complicated flow structures observed in the outer region. 

It should be noted that the radial velocity component is not useful for the computation of the 

blade response, which is based on the assumption of 2D flow field. However, it is considered 

hereafter for a more complete representation and validation of the results of the extrapolation 

models. 

Figures 6.11 b) to 6.11 e) show the velocity perturbations predicted by the different 

extrapolation models at the LE of the rear rotor, pointing out the influence of the 3D effects. The 

results in Figure 6.11 b) are obtained by means of the 2D extrapolation model, calibrated using 

the complete RANS solution, which includes also the TV effects. This means that the calibration 

of the model parameters is affected by the TV flow field. A comparison with 𝒗′𝑈−𝑅 (Figure 6.11 
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Figure 6.11 – Contours of velocity perturbations generated by the FR and 
computed at the rear rotor inlet (surface of revolution generated by the curve 𝑋𝐿𝐸,2(𝑅)). 

 a) 𝒗′𝑈−𝑅  computed from URANS solution (see Eq. (6.6)), b) 2D model 𝒖′ calibrated using 𝒗′𝑅𝐴𝑁𝑆, 
c) 2D model 𝒖′ calibrated using 𝒗′2𝐷, d) TV model 𝒖′𝑇𝑉, e) 𝒗′𝐹𝑅 = 𝒖′𝑇𝑉 + 𝒖′. 
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a)) shows that the general features of the perturbations produced by the FR are reproduced 

reasonably well in the inner region, up to about 𝑅 𝑅𝑇,2⁄ = 0.8, whereas the reconstruction is very 

poor in the outer region. 

The results of the 2D model, calibrated after removing the TV flow field from the RANS 

solution (see Eq. (5.27)), are depicted in Figure 6.11 c). In this case, the reconstructed 

unsteadiness is consistent with the effects of the viscous wake and potential field along the entire 

blade span. This indicates that the removal of the flow field ascribed to the TVs improves the 

result of the extrapolation of the essentially 2D flow structures. 

The contribution of the TV model, 𝒖′𝑇𝑉, to the reconstructed perturbations is shown in Figure 

6.11 d). The influence of the TV is limited to the outer part of the rear rotor and the perturbations 

are significantly stronger than the ones due to the wake and potential field (compare Figure 6.11 

d) with Figure 6.11 c)). The general velocity distribution clearly resembles 𝒗′𝑈−𝑅 in the range 

0.85 < 𝑅 𝑅𝑇,2⁄ ≤ 1, even though a slight shift is observed in both radial and azimuthal directions. 

In the figure, the black solid and empty circles represent the points where the URANS (time 

averaged) and analytical TV trajectories, respectively, intersect the considered surface. The shift 

between these two points is a consequence of the misalignment of URANS and analytical TV 

trajectories close to the RR leading edge already discussed in Chapter 5. 

The total unsteadiness 𝒗′𝐹𝑅 = 𝒖′𝑇𝑉 + 𝒖′, reconstructed by adding the contributions of the TV 

and 2D models (calibrated after removing the three-dimensional effects), is shown in Figure 6.11 

e). A good agreement with 𝒗′𝑈−𝑅 (Figure 6.11 a)) is observed along the entire blade span, and a 

remarkable improvement with respect to the merely 2D extrapolation (Figure 6.11 b)) is obtained 

in the outer flow region. 

Figure 6.12 shows the velocity perturbations computed along the circumferential paths 

indicated by the dashed lines in Figure 6.11. The velocity profiles computed from the URANS 

solution, 𝒗′𝑈−𝑅 , are indicated by solid black lines. The perturbation profiles extrapolated 

according to the 2D model and the TV model are indicated by dashed and dash-dotted black lines, 

respectively, while the overall reconstructed perturbations are represented by dotted red lines. 

Figure 6.12 a) refers to radial coordinate 𝑅 𝑅𝑇,2⁄ = 0.576 , where 𝒖′𝑇𝑉 ≈ 0 , and the 

reconstruction relies only on the 2D model. A fairly good agreement with 𝒗′𝑈−𝑅 is found. The 

amplitude of the negative peaks, due to the viscous wake, is overpredicted for the axial and 

tangential components, but their azimuthal position is well reproduced. Similar results are found 

in the radial range from the hub to about 𝑅 𝑅𝑇,2⁄ = 0.75. 

Moving radially outward, the influence of 𝒖′𝑇𝑉 becomes increasingly important, and Figures 

6.12 b) to 6.12 d) show that it is essential to obtain a satisfactory reconstruction of the flow 

unsteadiness. At 𝑅 𝑅𝑇,2⁄ = 0.848 (Figure 6.12 b)), the 2D model predicts correctly the azimuthal 



 
Chapter 6.  Results 

____________________________________________________________________________________ 

 
83 

position of the wake (see the negative peaks of 𝒗′𝑈−𝑅 and 𝒖′ at 𝐵2Ψ 2𝜋⁄ = 2.16 for the axial and 

tangential velocity components), and when adding the contribution of the TV model a good 

reproduction of 𝒗′𝑈−𝑅 is obtained over the whole azimuthal range. 

Figure 6.12 – Circumferential profiles of velocity perturbations generated by the FR and computed at 
the RR leading edge: 𝒗′𝑈−𝑅  (solid black lines), 𝒖′ (dashed black lines), 𝒖′𝑇𝑉 (dash-dotted black lines) 

and 𝒗′𝐹𝑅  (dotted red lines). Profiles located at 
a) 𝑅 𝑅𝑇,2⁄ = 0.576 , b) 𝑅 𝑅𝑇,2⁄ = 0.848 , c) 𝑅 𝑅𝑇,2⁄ = 0.914, d) 𝑅 𝑅𝑇,2⁄ = 1. 
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The profiles in Figure 6.12 c) are located at 𝑅 𝑅𝑇,2⁄ = 0.914 , where the TV trajectory 

computed from URANS intersects the 𝐿𝐸2  surface. The differences between 𝒗′𝑈−𝑅  and the 

reconstructed velocities 𝒗′𝐹𝑅 are mainly due to the misalignment between URANS and analytical 

vortex trajectories. This is shown by the azimuthal shift of the positive peak of the axial velocity 

and the negative peak of the tangential velocity. Nevertheless, the main features of the 𝒗′𝑈−𝑅 

profiles are reproduced fairly well. 

Close to the blade tip (Figure 6.12 d)), the contribution of the viscous wake is not taken into 

account because the streamlines impacting the rear rotor originate over the FR tip (see Chapter 

4), and the extrapolated potential field turns out to be very weak. The TV model leads to a good 

reproduction of the perturbation wave, even though the misalignment of the TV trajectory causes 

the observed azimuthal shift of the velocity profiles. 

 

6.3 Unsteady loads on the rear rotor blade 
 

To assess the impact of the error in the unsteadiness reconstruction on the computation of the 

blade loading, the lift and drag coefficients (Eqs. (4.14) and (4.15)) resulting from the blade 

response to 𝒗′𝐹𝑅  and 𝒗′𝑈−𝑅  have been compared. Furthermore, the blade response has been 

validated against 𝐶𝐿ℎ1  and 𝐶𝐷ℎ1  obtained by performing the DFT of the blade pressure 

distributions resulting from the URANS computation. 

Figures 6.13 to 6.16 show the distributions of amplitude and phase of 𝐶𝐿ℎ1 and 𝐶𝐷ℎ1 along 

the RR blade span, up to harmonic order ℎ1 = 4. The blade responses to reconstructed (𝒗′𝐹𝑅) and 

URANS (𝒗′𝑈−𝑅) perturbations are indicated by dash-dotted red lines and dashed black lines, 

respectively. The former exhibits a larger amplitude along wide portions of the blade span, with 

a more pronounced overestimation for harmonic order ℎ1 = 1 (Figure 6.13). In the range from 

the hub radius to about 𝑅 𝑅𝑇,2⁄ = 0.8, this is ascribed to an overestimation of the amplitude of 

the wake deficit (see Figure 6.12 a)). The differences at the outer radii, where the contribution of 

the TV model is stronger, are ascribed to the misalignment between extrapolated and URANS 

vortex trajectories and to the overestimation of the TV velocity deficit, 𝑉𝑥,𝑑𝑒𝑓 (see Figure 5.15). 

Concerning the predicted phases, a good agreement is found along the whole blade span for ℎ1 =

1 and ℎ1 = 2. At the higher harmonic orders (Figs. 6.15 and 6.16), major differences are observed 

close to the blade tip (𝑅 𝑅𝑇,2⁄ > 0.9), and similar results were found for ℎ1 > 4. Despite the 

observed discrepancies in amplitude and phase, the general agreement between the responses to 

𝒗′𝐹𝑅 and to 𝒗′𝑈−𝑅 can be considered satisfactory. In fact, as it will be shown in the following 

section, these deviations do not affect significantly the noise prediction. 

 



 
Chapter 6.  Results 

____________________________________________________________________________________ 

 
85 

 

 

Figure 6.13 – Harmonic of the unsteady loading of order ℎ1 = 1.  
Comparison among URANS results (black solid line), blade response to 𝒗′𝑈−𝑅 (dashed black line), 

and blade response to 𝒗′𝐹𝑅  (dash-dotted red line). a) Amplitude of 𝐶𝐿ℎ1 ,  

b) Phase of 𝐶𝐿ℎ1, c) Amplitude of 𝐶𝐷ℎ1 , d) Phase of 𝐶𝐷ℎ1. 

 

 

 

Figure 6.14 – Harmonic of the unsteady loading of order ℎ1 = 2.  
Comparison among URANS results (black solid line), blade response to 𝒗′𝑈−𝑅 (dashed black line), 

and blade response to 𝒗′𝐹𝑅  (dash-dotted red line). a) Amplitude of 𝐶𝐿ℎ1 ,  

b) Phase of 𝐶𝐿ℎ1, c) Amplitude of 𝐶𝐷ℎ1 , d) Phase of 𝐶𝐷ℎ1. 
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Figure 6.15 – Harmonic of the unsteady loading of order ℎ1 = 3.  
Comparison among URANS results (black solid line), blade response to 𝒗′𝑈−𝑅 (dashed black line), 

and blade response to 𝒗′𝐹𝑅  (dash-dotted red line). a) Amplitude of 𝐶𝐿ℎ1 ,  

b) Phase of 𝐶𝐿ℎ1, c) Amplitude of 𝐶𝐷ℎ1 , d) Phase of 𝐶𝐷ℎ1. 

 

 

 

Figure 6.16 – Harmonic of the unsteady loading of order ℎ1 = 4.  
Comparison among URANS results (black solid line), blade response to 𝒗′𝑈−𝑅 (dashed black line), 

and blade response to 𝒗′𝐹𝑅  (dash-dotted red line). a) Amplitude of 𝐶𝐿ℎ1 ,  

b) Phase of 𝐶𝐿ℎ1, c) Amplitude of 𝐶𝐷ℎ1 , d) Phase of 𝐶𝐷ℎ1. 
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Amplitude and phase of lift and drag coefficients calculated from the URANS blade pressure 

are indicated by black solid lines in Figures 6.13 to 6.16. Note that the phases of 𝐶𝐿ℎ1 and 𝐶𝐷ℎ1  

are quite similar to each other, except near the hub for ℎ1 = 2 . The blade response to the 

reconstructed perturbations predicts reasonably well the trends of amplitude and phase of lift and 

drag for 𝑅 𝑅𝑇,2⁄ < 0.9 . The observed deviations between the blade response and URANS 

pressure results are partially ascribed to some inaccuracy in the reconstruction of the velocity 

perturbations. However, the major contribution to the prediction error is ascribed to the blade 

response model, especially close to the blade tip. In fact, span-end effects at the tip of the rear 

blades, which are not considered in the present blade response model, modify the lift and drag 

distributions close to the tip [45]. Moreover, the angle of attack of the mean flow for 0.9 <

𝑅 𝑅𝑇,2⁄ ≤ 1 ranges from 7.4° to 14.1°, in contrast with the small angle of attacks assumed by the 

present blade response model. The comparison with the loads extracted from URANS highlights 

some limitations of the blade response model implemented in the present work, suggesting that 

more sophisticated models could be used. 

 

6.4 Interaction noise estimation 
 

The IN tones emitted by the rear rotor at frequencies 𝑓 = |ℎ1𝐵𝑃𝐹1 + ℎ2𝐵𝑃𝐹2|  were 

computed by means of the Hanson model. The results are presented in terms of sound pressure 

level (SPL) directivity along a sideline parallel to the CROR axis and located at 4.514 RR tip radii 

from it. 

The SPL is defined as: 

 

 
𝑆𝑃𝐿(𝜚, 𝜑, 𝑓) = 20log10 [

�̃�𝑝(𝜚, 𝜑, 𝑓)

𝑝𝑟𝑒𝑓
] , (6.7) 

 

where �̃�𝑝(𝜚, 𝜑, 𝑓) is the root mean square value of the harmonic amplitude, computed by Eq. 

(4.12), and 𝑝𝑟𝑒𝑓 = 20 𝜇𝑃𝑎 is the reference pressure. For a more compact notation, a frequency 

of order ℎ1 and ℎ2 of the rotor 𝐵𝑃𝐹𝑠 is denoted as {ℎ1, ℎ2}. 

Results up to orders 2 and 3 of 𝐵𝑃𝐹1 and 𝐵𝑃𝐹2 are reported in Figure 6.17 and Figure 6.18, 

respectively. The noise emissions due to the 2D model perturbations (dash-dotted black line), 𝒖′, 

calibrated after removing the three-dimensional effects, and to the overall perturbations 𝒗′𝐹𝑅 (red 

solid line) were computed separately to assess the influence of the tip vortices. 

First, a comparison with the noise emissions produced by the URANS perturbations (dashed 

black lines), 𝒗′𝑈−𝑅 , is addressed. This allows evaluating the impact of the accuracy in the 
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unsteadiness reconstruction on the IN estimation. When only the contribution of 𝒖′ is considered, 

the magnitude of the SPL is considerably underestimated at most frequencies in wide angular 

ranges. For example, a difference of about 20 dB is observed for 20° < 𝜑 < 45° and 135° <

𝜑 < 160° at frequency {2,1} (see Figure 6.17), and an underestimation from 5 dB to 30 dB results 

along the entire sideline at frequencies {1,3} and {3,1} (see Figure 6.18). Moreover, the shape of 

the SPL directivity predicted using perturbations 𝒖′  exhibits strong deviations from the one 

resulting from 𝒗′𝑈−𝑅 along wide portions of the sideline, at all frequencies. 

By adding the contribution of the TV model, both magnitude and shape of the SPL directivity 

are recovered very well, resulting in a good agreement with the IN generated by the URANS 

perturbations. At the lower frequencies (Figure 6.17), the shape of the directivity is reproduced 

almost perfectly. At frequencies {1,1}  and {1,2}  the only significant differences in the SPL 

amplitude observed for some negative peaks, while at {2,1} a deviation of about 3 dB is found in 

the angular range 75° < 𝜑 < 110°. Regarding the higher frequencies (Figure 6.18), the most 

significant differences in the shape of the directivity are limited to ranges 130° < 𝜑 < 140° and 

to 40° < 𝜑 < 49° for {2,3} and {3,2}, respectively. Similar results were found for ℎ1, ℎ2 > 3. 

Assuming that the present TV model is reasonably founded and recognizing that the perturbations 

Figure 6.17 – Interaction noise up to harmonic order ℎ1, ℎ2 = 2 of the rotor 𝐵𝑃𝐹𝑠. 



 
Chapter 6.  Results 

____________________________________________________________________________________ 

 
89 

due to the tip vortices largely influence the flow field, these comparisons show that including the 

effects of the front rotor TVs leads to a more consistent estimation of the IN. 

The IN emission evaluated by means of the present model (accounting for the total 

perturbations 𝒗′𝐹𝑅) is validated against high fidelity FWH results (solid black lines in Figure 6.17 

and Figure 6.18), obtained by means of a dedicated tool available in ANSYS Fluent. At the lower 

frequencies (Figure 6.17), a fairly good agreement is obtained, especially for {1,1}, {1,2} and 

{2,1}, where the maximum differences are limited to about 5 dB along most of the sideline. This 

indicates that the present model is able to reproduce properly the main flow features responsible 

for the IN emission. 

At higher frequencies (Figure 6.18), larger discrepancies are observed. Since the harmonics 

of the noise emitted at higher frequencies are characterized by a shorter wavelength, the noise 

emission is very sensitive to the mutal phases of the sources distributed along the blade span. 

Therefore, even small errors in the phases of the blade loads predicted by the blade response 

model can lead to a significantly inaccurate noise estimation. However, predicted and FWH noise 

directivities agree reasonably within some angular intervals. 

Figure 6.18 – Interaction noise up to harmonic order ℎ1, ℎ2 = 3 of the rotor 𝐵𝑃𝐹𝑠. 
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Since the noise estimations resulting from 𝒗′𝑈−𝑅 and 𝒗′𝐹𝑅 are very similar, the limitations of 

the blade response model are considered the main responsible for the differences between the 

present predictions and the FWH results. Moreover, the propagation model proposed by Hanson 

does not account for the contribution of radial dipoles (see Appendix C). This could explain the 

underestimation of the SPL generally observed in the angular range close to the propeller plane 

(see [41]). 

Figure 6.19 and Figure 6.20 show a comparison between the noise emissions due to the 2D 

model perturbations (dashed black line), 𝒖′, calibrated without removing the three-dimensional 

effects, and to the overall perturbations (solid red line), 𝒗′𝐹𝑅. The acoustic emissions resulting 

from the URANS velocity perturbations (solid black line), 𝒗′𝑈−𝑅, are taken as reference for the 

validation. This comparison allows assessing the benefits produced by a proper modelling of the 

tip vortices instead of mimicking their effects by means of the 2D extrapolation model. 

Results up to harmonic orders 2 and 3 of 𝐵𝑃𝐹1 and 𝐵𝑃𝐹2 are reported in Figure 6.19 and 

Figure 6.20, respectively. For some frequencies, the accuracies of the 2D model and the present 

model are comparable. For instance, for frequency {1,1} (see Figure 6.19), the purely 2D model 

Figure 6.19 – Interaction noise up to harmonic order ℎ1, ℎ2 = 2 of the rotor 𝐵𝑃𝐹𝑠. 
Comparison between the SPLs generated by 𝒗′𝑈−𝑅 (solid black line),  𝒖′ calibrated without 

removing three-dimensional effects (dashed black line), and 𝒗′𝐹𝑅  (solid red line). 
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is particularly inaccurate within limited angular intervals, that is, near the negative SPL peaks at 

𝜑 = 34° and 𝜑 = 146°, which are better reproduced by the present model. Also for frequencies 

{2,2} (Figure 6.19) and {2,3} (Figure 6.20) the directivity shapes are similar, even though for the 

latter frequency a better match with the positive SPL peaks of the reference IN emission is 

obtained by means of the present model. 

The comparable accuracy in the predictions of the IN tones for some frequencies is due to the 

fact that the 2D model, calibrated without removing the three-dimensional effects, partially 

ascribes the velocity perturbations generated by the TV to the viscous wake contribution (see 

Chapter 5). Therefore, the influence of the tip vortices to the reconstructed perturbations is 

partially included, even if in an inappropriate way. In fact, for many other frequencies, a 

remarkable improvement in the accuracy of the IN predictions is obtained by means of the present 

model. 

For frequencies {1,2}  (Figure 6.19) and {1,3}  (Figure 6.20) the purely 2D model 

underestimates the magnitude of the SPL of about 10 dB along wide portions of the sideline. For 

frequency {2,1}, the predictions of the present model agree very well with the reference noise 

Figure 6.20 – Interaction noise up to harmonic order ℎ1, ℎ2 = 3 of the rotor 𝐵𝑃𝐹𝑠. 
Comparison between the SPLs generated by 𝒗′𝑈−𝑅 (solid black line),  𝒖′ calibrated without 

removing three-dimensional effects (dashed black line), and 𝒗′𝐹𝑅  (solid red line). 
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emissions, while the 2D model underestimates the SPL of about 3 dB and 5 dB in the angular 

intervals 20 < 𝜑 < 65 and 115 < 𝜑 < 160, respectively. Accurate predictions are obtained by 

including properly the TV influence also for frequencies {3,1} and {3,2} (Figure 6.20). Similar 

results were found for ℎ1, ℎ2 > 3. 

These results show that more accurate predictions of the IN tones can be obtained by means 

of a proper modelling of the influence of the tip vortices, as done by the present RANS-informed 

model. 

 

6.5 Comparison with noise measurements 
 

For completeness, the IN tones predicted by means of the present RANS-informed model are 

compared with noise measurements found in the literature, which refer to the benchmark 

experiment conducted in the 9- by 15- Anechoic Wind Tunnel at NASA Lewis Research Center 

[50]. The acoustic signal was measured along a sideline parallel to the CROR axis and located at 

4.514 RR tip radii from it. The results are presented in terms of SPL directivity along this sideline. 

Figures 6.21 a) to 6.21 c) show the SPL directivities at frequencies {1,1}, {1,2} and {2,1}. 

The results of the wind tunnel measurements are indicated by solid black lines, while the SPLs 

predicted by the present RANS-informed model are depicted by solid red lines. For frequency 

{1,1} (Figure 6.21 a)), a reasonable agreement is observed between the measured and estimated 

SPL directivities for angular ranges 40 < 𝜑 < 90  and 125 < 𝜑 < 150 , while larger 

discrepancies are obtained for 90 < 𝜑 < 125. 

For frequency {1,2} (Figure 6.21 b)), the measured SPL is predicted fairly well within the 

limited angular interval 135 < 𝜑 < 150, while larger inaccuracies are found for the remaining 

portion of the sideline. 

The measured SPL is underpredicted by the present model along the whole sideline for 

frequency {2,1}  (Figure 6.21 c)). However, the trend of the SPL directivity is predicted 

reasonably well in the angular intervals 40 < 𝜑 < 75 and 110 < 𝜑 < 130. 

Although some features of the SPL directivity are estimated reasonably well, these 

comparisons show some inaccuracies in the prediction of the wind tunnel noise measurements 

using the present RANS-informed model. However, it is found that also the SPL computed by 

means of the high fidelity FWH analogy, depicted by dashed black lines in Figure 6.21, exhibits 

relevant inaccuracies in the prediction of the noise measurements along wide portions of the 

sideline. Indeed, significant improvements with respect to the present model are obtained only 

within the angular ranges 60 < 𝜑 < 80 for frequency {1,1} (Figure 6.21 a)) and 60 < 𝜑 < 75 

for frequency {2,1} (Figure 6.21 c)). 
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Both the RANS-informed and URANS-FWH approaches are not capable of providing a 

highly accurate prediction of the IN tones measurements. This is due to the differences that 

certainly exist between the simulated and the actual flow field past the CROR in the wind tunnel 

facility. In fact, the flow field in the wind tunnel experiment is affected by complicated 

phenomena which are not considered in the present CFD simulations, such as ground and wall 

effects. Moreover, the reproduced geometries of the FR and RR blades are slightly different from 

the actual ones (see Chapter 2). 

Also the broadband noise, which is not accounted for in the present work, may contribute 

significantly to the measured IN tones emitted by the CROR scaled model. Moreover, it should 

be noted that the contribution of the FR blades to the noise emission is not considered in the 

present work. Even though the acoustic pressure disturbances generated by the front blades have 

a smaller impact on the IN tones in comparison with the ones due to the rear blades, their influence 

may not be totally negligible. Therefore, the results reported in Figure 6.21 suggest that the 

Figure 6.21 – Comparison between the SPLs obtained from wind tunnel measurements [50] 
(solid black line), predicted by the FWH analogy (dashed black line), and estimated by the 

present RANS-informed model (solid red line). Interaction noise tones at frequency 
 a) 𝑓 = 1 × 𝐵𝑃𝐹1 + 1 × 𝐵𝑃𝐹2, b) 𝑓 = 1 × 𝐵𝑃𝐹1 + 2 × 𝐵𝑃𝐹2, c) 𝑓 = 2 × 𝐵𝑃𝐹1 + 1 × 𝐵𝑃𝐹2. 
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proposed RANS-informed model can be further improved by considering the contribution of the 

broadband noise and the front blades to the interaction noise emission. 
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7 CONCLUSIONS 
 

 

 

The work carried out in this Ph.D thesis consists in the development of an improved RANS-

informed model for the fast prediction of the noise emitted by CRORs including the effect of the 

blade tip vortex. The focus is on the estimation of the interaction noise tones emitted by the rear 

rotor, arising from the interaction with the flow perturbations generated by the front rotor. The 

RANS-informed model proposed by Jaron et al., based on 2D flow assumptions, is considered as 

the basis for further improvements. This 2D analytical model, calibrated using data extracted from 

RANS solutions, allows extrapolating the azimuthal perturbations of flow velocity generated by 

the FR beyond the mixing plane, up to the leading edge of the rear rotor. Then, the unsteady loads 

on the rear blades are computed by means of a blade response function and the IN emission is 

calculated through an analytical noise propagation model in the frequency domain. In the present 

work the 2D blade response model proposed by Goldstein and the noise propagation model by 

Hanson have been used. 

A novel tip vortex model has been developed to properly account for the contribution to the 

IN emission of the FR tip vortices impacting the rear blades. The semi-analytical TV model is 

genuinely 3D and is calibrated using data extracted from RANS solutions. The model allows 

extrapolating the velocity perturbations due to the front blade tip vortices beyond the MP. 

The CROR geometry UDF F7/A7 was taken as the reference test case. Realistic shapes of the 

blades and nacelle were reproduced based on data found in the literature. 

RANS and URANS simulations of the flow field around the CROR were performed using 

commercial software ANSYS Fluent. Data extracted from the RANS simulation, conducted 

introducing the mixing plane boundary condition, were used for the calibration of the TV model 

and 2D extrapolation model. The results of the URANS simulation were used to validate the 

proposed RANS-informed model. The CROR operating condition considered is representative of 

take-off. The benchmark for the validation of the numerical simulations is an experiment 

conducted in the 9- by 15- Anechoic Wind Tunnel at NASA Lewis Research Center. Even though 

the reproduced and actual geometries of the CROR are slightly different, the small errors obtained 

in the predicted thrust and net efficiency are considered as an indication that the main features of 

the computed and real flow fields are very similar. 

 The proposed tip vortex model consists in a semi-analytical representation of the vortex 

trajectory and the absolute velocity field generated by a single TV released by the FR blade. The 
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velocity field is given by the superposition of the induced velocities, computed by means of the 

Biot-Savart law, and the wake-like velocity deficit, locally aligned with the vortex trajectory. 

The path of the vortex centre is modelled as a helix having variable pitch and radius to account 

for flow acceleration and stream-tube contraction. The analytical path is calibrated by fitting the 

vortex trajectory extracted from the RANS solution in the region between the FR trailing edge 

and the MP. The path extrapolated beyond the MP agrees well with the vortex trajectory extracted 

from the URANS solution, with a slight misalignment observed at the location of the vortex 

impingement on the RR leading edge. This supports the assumption of a helical trajectory with 

variable pitch and radius. 

A novel calibration procedure is proposed to identify the parameters of the TV velocity model. 

The procedure is based on the fitting of the absolute vorticity extracted from the RANS solution 

in specific regions close to the tip vortex trajectory. In this way, the contribution of a single tip 

vortex can be singled out from the RANS flow field, leading to a proper calibration of the model. 

To do so, a model describing the local vorticity distribution has been developed. The results of 

the fitting show that the analytical vorticity distribution reproduces well the local vorticity 

extracted from the RANS solution, thus providing physically consistent values of the velocity 

parameters. 

The effect of the diffusion and the ingestion of vorticity in the viscous core of the tip vortex 

are also modelled by means of empirical laws, which are used to fit the evolution of the velocity 

parameters along the vortex helix. It is found that the fitted distributions represent well the axial 

evolution of the velocity parameters in the region between the FR trailing edge and the MP. 

After calibrating the model parameters, the absolute velocity field due to a single TV is 

evaluated at any point in the system of coordinates fixed to the FR. The velocity field generated 

by all the tip vortices released by the FR blades is evaluated by superimposing the single 

contributions. 

The velocity perturbations in space, that is, in the azimuthal direction, due to the FR tip 

vortices are subtracted from the RANS velocity field in the region between the FR trailing edge 

and the MP to remove the three-dimensional effects. It was found that the removal of the TV 

perturbations improves the fitting of the 2D model at the outer radial coordinates, where the tip 

vortices have a stronger influence, leading to a more physically consistent extrapolation of the 

viscous wake and potential field contributions along the entire span on the rear blade. 

The velocity perturbations computed by means of the TV model and 2D model are added at 

the LE of the rear rotor to obtain the complete reconstruction of the flow unsteadiness due to tip 

vortices, viscous wakes and potential field. The reconstructed velocity perturbations have been 

validated by comparison with the perturbations extracted from the URANS solution. A 
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remarkable improvement is obtained with respect to the merely 2D extrapolation in the outer flow 

region, where the influence of the tip vortices is stronger. 

Both reconstructed and URANS velocity perturbations have been used as an input to the blade 

response model to assess the impact of the errors in the unsteadiness reconstruction on the 

computed unsteady loading. The general trends of both amplitude and phase of the load 

coefficients of the two responses agree fairly well, especially for high harmonic orders. Some 

discrepancies are observed at the lower frequency, due to some inaccuracy in the velocity 

reconstruction. However, it is found that these deviations do not affect significantly the noise 

prediction. 

The response to the reconstructed flow perturbations has also been compared with the loading 

obtained from the DFT of the blade pressure distributions resulting from the URANS 

computation. Fairly large errors are found in the prediction of both amplitude and phase of the 

lift and drag coefficients, especially in the blade tip region. This is ascribed to the limitations of 

the implemented blade response model, which is based on 2D flow assumptions. 

 The noise emission has been computed along a sideline parallel to the CROR axis. The blade 

response model and the Hanson’s noise propagation model has been used to compute the noise 

generated by both reconstructed and URANS velocity perturbations. The latter are used as a 

reference for a first validation of the noise estimated by means of the RANS-informed model. It 

is found that considering the contribution of the tip vortices leads to a very good agreement of the 

predicted IN tones with the reference noise emission, which is an indication of the quality of the 

unsteadiness reconstruction. 

The IN emission evaluated by means of the present RANS-informed model has finally been 

validated against high fidelity FWH results. The observed prediction errors are mainly ascribed 

to the limitations of the blade response model and to the fact that the Hanson’s acoustic model 

does not account for the contribution of radial dipoles. However, the comparison with the noise 

generated by URANS perturbations indicates that the proposed RANS-informed method, based 

on the introduction of the TV model, leads to physically consistent results, significantly 

improving the capabilities of the 2D model from literature. 

Further developments of the present work should include the implementation of a more 

refined blade response model and an acoustic propagation model that accounts for the 

contribution of radial dipoles. 

The IN tones predicted by means of both the proposed RANS-informed model and the 

URANS-FWH approach have been compared with wind tunnel noise measurements found in the 

literature. Both the prediction approaches show some inaccuracies in the estimation of the noise 

measurements. This result suggests that the present RANS-informed model can be further 
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improved by accounting for the contribution of the broadband noise and the front blades to the 

interaction noise emission. 

Finally, it is pointed out that the computation of CROR noise performed using the present 

RANS-informed approach requires about 20 hours of computing time on a 32-core computer, 

whereas the noise estimation by means of URANS coupled with FWH takes roughly 3 months 

with the same CPU resources. Therefore, the proposed model shows the potential to be 

successfully embedded into a multidisciplinary design strategy of CROR that includes acoustic 

targets. 
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Appendix A  DERIVATION OF THE 2D 

EXTRAPOLATION MODEL 

 

 

 

The RANS-informed model proposed by Jaron et al. [42] allows modelling the azimuthal 

perturbations of velocity, 𝒗′𝐹𝑅, generated by the front rotor. The model is based on the hypothesis 

of 2D flow and assumes that 𝒗′𝐹𝑅 is due to the contributions of the viscous wake and bound 

potential field. The circumferential profile of the velocity perturbations is decomposed into 

harmonics, considering different distributions for the wake and potential flow contributions. The 

model is valid for any velocity component in the cylindrical coordinate system (𝑋, 𝑅,Ψ) of the 

FR reference frame [43], and the generic velocity perturbation, 𝑢′, is expressed as a Fourier series: 

 

 
𝑢′(𝑋,Ψ) = 𝑢′𝑤(𝑋,Ψ) + 𝑢′𝑝(𝑋,Ψ) = 2 ∙ 𝑅𝑒 {∑[𝑢𝑤(𝑋, ℎ) + 𝑢𝑝(𝑋, ℎ)]𝑒

𝑖ℎ𝐵1Ψ

+∞

ℎ=1

} , (A.1)  

 

where Fourier coefficients 𝑢𝑤(𝑋, ℎ) and 𝑢𝑝(𝑋, ℎ) represent the contributions of the viscous wake 

and potential field, respectively. The derivation of 𝑢𝑤(𝑋, ℎ) and 𝑢𝑝(𝑋, ℎ) is presented below, 

highlighting some important aspects of the model. 

 

A.1 Contribution of the viscous wake 
 

The viscous wake is modelled by a Gaussian distribution, modified to account for an 

asymmetric velocity deficit between the blade pressure and suction sides, typical of lifting airfoils 

[52]. A classic Gaussian distribution is characterized by the same phase for all harmonics. 

Therefore, the Gaussian model for the amplitude of the harmonics is maintained, while the zero-

phase property is relaxed by introducing a different phase for each harmonic [42]. This allows 

reproducing circumferential periodic perturbations that are asymmetric about the wake centreline. 

Consider a cylindrical section of the reference blade of the FR, as shown in Figure A.1. The 

cylindrical coordinate system (�̃�, 𝑅, Ψ̃) fixed to the rotor is defined so as the coordinates �̃� = 0 

and Ψ̃ = 0 are located at the trailing edge of the considered blade section (see Figure A.1). The 

contribution of the wake to the velocity perturbations is given by the equation: 
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𝑢′𝑤(�̃�, Ψ̃) = 2 ∙ 𝑅𝑒 {∑𝑢𝑤(�̃�, ℎ)𝑒

𝑖ℎ𝐵1Ψ̃

+∞

ℎ=1

} . (A.2)  

 

Assuming an axial mean flow and a Gaussian distribution centered at Ψ̃ = 0 for the velocity 

deficit due to the wake, the Fourier coefficients in Eq. (A.2) are [42]: 

 

 𝑢𝑤(�̃�, ℎ) = 𝑢𝑤0𝑒
−𝜋𝑊(�̃�)2ℎ2𝑒𝑖𝜋 = −𝑢𝑤0𝑒

−𝜋𝑊(�̃�)2ℎ2  , (A.3)  

 

where 𝑢𝑤0 determines the peak value of the velocity deficit at the trailing edge and 𝑊 is the wake 

width, normalized by the azimuthal interval of one blade passage, ∆Ψ̃ = 2𝜋 𝐵1⁄ . 𝑊(�̃�) describes 

the spreading of the wake moving downstream (it is proportional to the standard deviation of the 

Gaussian function) and is modelled by [42,64]: 

 

 
𝑊(�̃�) = √𝑊0

2 + 𝐾�̃� , (A.4)  

 

Figure A.1 – Example of axial evolution of the normalized velocity perturbation 

𝑢′𝑤(�̃�, �̃�) |𝑢′𝑤,𝑚𝑖𝑛|⁄ , under the assumptions of Gaussian wake and axial mean flow. 

𝑊0 = 0.1 and 𝐾 ∙ 𝑅 = 0.02 are assumed. 
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where 𝑊0  represents the non-dimensional wake width at the TE and 𝐾  is a coefficient that 

accounts for the wake expansion in the downstream direction. 

An example illustrating the axial evolution of the circumferential profile 𝑢′𝑤(�̃�, Ψ̃), obtained 

by means of Eqs. (A.2)-(A.4), is given in Figure A.1. In the figure, the axial and azimuthal 

coordinates are normalized by the blade section radius and azimuthal interval ∆Ψ̃, respectively. 

The three velocity profiles depicted are located at �̃� 𝑅⁄ = 0, �̃� 𝑅⁄ = 0.5 and �̃� 𝑅⁄ = 1, and they 

are computed assuming 𝑊0 = 0.1, 𝐾 ∙ 𝑅 = 0.02 and considering the sum of 𝑁 = 40 harmonics. 

The velocity perturbation profiles are normalized using the amplitude of the initial deficit peak at 

the wake centreline: 

 

 

|𝑢′𝑤,𝑚𝑖𝑛| = |𝑢′𝑤(�̃� = 0, Ψ̃ = 0)| = |2 ∙ ∑−𝑢𝑤0𝑒
−𝜋𝑊0

2ℎ2
𝑁

ℎ=1

| . (A.5)  

 

The wake spreading described by the model can be observed in Figure A.1 by comparing the 

perturbation profiles at different axial coordinates. In fact, moving downstream, the amplitude of 

the deficit peak decreases while the wake width, 𝑊(�̃�), increases. It is also observed that 𝑢′𝑤 is 

periodic in the azimuthal direction with period 2𝜋 𝐵1⁄ , corresponding to the azimuthal angle 

between two consecutive blades. 

It should be noted that the phase term 𝑒𝑖𝜋 in Eq. (A.3) is not present in the original formulation 

of Jaron et al. Since it is known a priori that the viscous wake generates a velocity deficit, this 

term was introduced in the present formulation in order to have 𝑢′𝑤(�̃�, Ψ̃ = 0) < 0 under the 

assumption of a classic Gaussian wake. However, as it will be shown later on, the introduction of 

a different phase for each harmonic allows obtaining a deficit at the wake centreline even though 

term 𝑒𝑖𝜋 is not present. 

Typically, the actual mean flow is characterized by a swirl in the reference frame of the rotor. 

Therefore, the Fourier coefficients 𝑢𝑤(�̃�, ℎ) are modified by introducing a phase shift which 

depends on the axial coordinate, �̃�, to model properly the convection of the wake. The phase shift 

𝑒𝑥𝑝[−𝑖ℎ𝐵1(tan𝛽𝑟𝑒𝑙 𝑅⁄ )�̃�] is assumed [42], and the coefficients become: 

 

 
𝑢𝑤(�̃�, ℎ) = −𝑢𝑤0𝑒

−𝜋𝑊(�̃�)2ℎ2𝑒−𝑖ℎ𝐵1
tan𝛽𝑟𝑒𝑙

𝑅
�̃� , (A.6)  

 

where 𝛽𝑟𝑒𝑙 is the mean outflow angle in the reference frame of the rotor. 

Figure A.2 shows the effect of considering the swirl accounting to Eq. (A.6) in the calculation 

of the circumferential profiles 𝑢′𝑤(�̃�, Ψ̃). In the reported example, the outflow angle 𝛽𝑟𝑒𝑙 = 45° 
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and blade number 𝐵1 = 8 are assumed. The wake deficit, computed at different axial coordinates, 

undergoes an azimuthal shift defined by the direction of the swirling flow in the plane (�̃�, Ψ̃) 

(dashed arrow in Figure A.2). 

The final formulation of the viscous wake model is obtained by relaxing the zero-phase 

property of the harmonics of a classic Gaussian distribution, which allows the reproduction of an 

asymmetric velocity deficit. Therefore, a different phase, �̃�𝑤(ℎ), is introduced for each harmonic 

and the final form of the Fourier coefficients is [42]: 

 

 
𝑢𝑤(�̃�, ℎ) = −𝑢𝑤0𝑒

−𝜋𝑊(�̃�)2ℎ2𝑒−𝑖ℎ𝐵1
tan𝛽𝑟𝑒𝑙

𝑅
�̃�𝑒𝑖�̃�𝑤(ℎ) . (A.7)  

 

By substituting Eq. (A.7) into Eq. (A.2), the wake model accounting for the swirl and the 

asymmetric velocity distribution is obtained: 

 

 
𝑢′𝑤(�̃�, Ψ̃) = 2 ∙ 𝑅𝑒 {∑−𝑢𝑤0𝑒

−𝜋𝑊(�̃�)2ℎ2𝑒
𝑖[ℎ𝐵1(Ψ̃ − 

tan𝛽𝑟𝑒𝑙
𝑅

�̃�) + �̃�𝑤(ℎ)]
+∞

ℎ=1

} . (A.8)  

 

Figure A.3 shows the circumferential profiles of 𝑢′𝑤 |𝑢′𝑤,𝑚𝑖𝑛|⁄  computed by setting 

�̃�𝑤(ℎ = 1) = 𝜋 8⁄  and keeping �̃�𝑤(ℎ) = 0 for ℎ = 2…𝑁 . The sum of 𝑁 = 40 harmonics is 

considered. The values of the other model parameters are the same as in the examples of Figures 

A.1 and A.2. The asymmetric periodic perturbations obtained by introducing the phase shift can 

be observed. 

When considering the relative reference frame (𝑋, 𝑅,Ψ), where the coordinates 𝑋 and Ψ are 

not centered at the TE of the blade sections, the model perturbations 𝑢′𝑤(𝑋,Ψ) are computed by 

applying the coordinate transformations �̃� = 𝑋 − 𝑋𝑇𝐸,1 and Ψ̃ = Ψ −Ψ𝑇𝐸,1. Thus, defining the 

phase as 𝜑𝑤(ℎ) = �̃�𝑤(ℎ) − ℎ𝐵1Ψ𝑇𝐸,1 and considering the sum of a finite number of harmonics 

(𝑁 < +∞, in view of the numerical implementation of the model), Eq. (A.8) becomes Eq. (4.1). 

Model parameters 𝑢𝑤0, 𝑊0, 𝐾 and 𝜑𝑤(ℎ) have to be calibrated by fitting the RANS solution 

extracted in the coordinate system (𝑋, 𝑅,Ψ) (see Chapter 4). 

It should be noted that the phase term 𝑒𝑖𝜋 (see Eq. (A.3)) may be repealed, thus recovering 

the formulation of the model proposed by Jaron et al. Indeed, the fitting procedure would balance 

the phase parameters 𝜑𝑤(ℎ) accordingly, and a velocity deficit at the wake centreline could be 

obtained anyway. 
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Figure A.2 – Example of axial evolution of the normalized velocity perturbation 

𝑢′𝑤(�̃�, �̃�) |𝑢′𝑤,𝑚𝑖𝑛|⁄ , under the assumptions of Gaussian wake and swirling mean flow. 

𝛽𝑟𝑒𝑙 = 45°, 𝐵1 = 8, 𝑊0 = 0.1 and 𝐾 ∙ 𝑅 = 0.02  are assumed. 

 

 

 

Figure A.3 – Example of axial evolution of the normalized velocity perturbation 

𝑢′𝑤(�̃�, �̃�) |𝑢′𝑤,𝑚𝑖𝑛|⁄ , under the assumptions of asymmetric wake and swirling mean flow. 

�̃�𝑤(ℎ = 1) = 𝜋 8⁄ , 𝛽𝑟𝑒𝑙 = 45°, 𝐵1 = 8, 𝑊0 = 0.1 and 𝐾 ∙ 𝑅 = 0.02,  are assumed. 
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A.2 Contribution of the potential flow 
 

The contribution of the potential flow perturbations is given by the following equation: 

 

 
𝑢′𝑝(�̃�, Ψ̃) = 2 ∙ 𝑅𝑒 {∑𝑢𝑝(�̃�, ℎ)𝑒

𝑖ℎ𝐵1Ψ̃

+∞

ℎ=1

} , (A.9)  

 

where the modes 𝑢𝑝(�̃�, ℎ)𝑒𝑥𝑝(𝑖ℎ𝐵1Ψ̃) are derived from the theory of waves in ducted swirling 

flows [53]. They represent cut-off modes of the velocity field bound to a subsonic rotor, 

corresponding to a special solution for the wave equation in an infinitely long circular duct 

[42,53,65]. The coefficients 𝑢𝑝(�̃�, ℎ) are written as follows: 

 

 𝑢𝑝(�̃�, ℎ) = 𝑢𝑝0(ℎ)𝑒
𝑖𝑘𝑋,𝑚𝑛|�̃�|𝑒𝑖�̃�𝑝(ℎ) , (A.10)  

 

where 𝑘𝑋,𝑚𝑛 is the axial wavenumber of a mode of azimuthal order 𝑚 = ℎ𝐵1 and radial order 𝑛, 

while 𝑢𝑝0(ℎ) and �̃�𝑝(ℎ) are the initial amplitude and phase, respectively, of that mode at the 

trailing edge. 

The expression for 𝑘𝑋,𝑚𝑛 is derived under the assumption of radial equilibrium (i.e., 𝑣𝑅 = 0) 

and a solid-body swirl for the absolute mean flow: 

 

 �̅�Ψ(𝑅) = Ω𝑅 . (A.11)  

 

A mean flow of axially and radially constant axial Mach number is further assumed (𝜕𝑀𝑋 𝜕𝑋⁄ =

𝜕𝑀𝑋 𝜕𝑅⁄ = 0). Under these assumptions, the axial wavenumber of the modes propagating in 

downstream direction is given by [53]: 

 

 

𝑘𝑋,𝑚𝑛 =

−𝑀𝑋 (𝑘Ψ −𝑚
Ω
𝑎0
) + √(𝑘Ψ −𝑚

Ω
𝑎0
)
2

− (1 −𝑀𝑋
2)𝜇𝑚𝑛

2

1 −𝑀𝑋
2  , 

(A.12)  

 

where 𝑎0 is the speed of sound, 𝑘Ψ is the azimuthal wavenumber and 𝜇𝑚𝑛 is the radial eigenvalue 

of the wave function. 

A 2D flow approximation is adopted, which leads to 𝜇𝑚𝑛 = 𝑚 𝑅⁄  [42]. Then, the axial 

wavenumber becomes: 
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𝑘𝑋,𝑚 =

−𝑀𝑋 (𝑘Ψ −𝑚
Ω
𝑎0
) + √(𝑘Ψ −𝑚

Ω
𝑎0
)
2

− (1 −𝑀𝑋
2) (

𝑚
𝑅)

2

1 −𝑀𝑋
2  . 

(A.13)  

 

Since the modes describe the bound potential field generated by the rotor, they rotate with the 

rotor itself, and the relation between the azimuthal wavenumber and the blade angular speed, Ω1, 

is given by the equation: 

 

 
𝑘Ψ = 𝑚

Ω1
𝑎0
 , (A.14)  

 

and the axial wavenumber is: 

 

 

𝑘𝑋,𝑚 =

−𝑀𝑋𝑚
Ω1 − Ω
𝑎0

+√(𝑚
Ω1 − Ω
𝑎0

)
2

− (1 −𝑀𝑋
2) (

𝑚
𝑅
)
2

1 −𝑀𝑋
2  . 

(A.15)  

 

Considering the following relationships for the azimuthal Mach number, 𝑀Ψ,𝑟𝑒𝑙, and the outflow 

angle, 𝛽𝑟𝑒𝑙, in the reference frame of the rotor: 

 

 
𝑀Ψ,𝑟𝑒𝑙(𝑅) = −𝑅

Ω1 −Ω

𝑎0
 , (A.16)  

 

 
tan𝛽𝑟𝑒𝑙 =

𝑀Ψ,𝑟𝑒𝑙
𝑀𝑋

 , (A.17)  

 

and neglecting the radial mean flow component, which gives 𝑀𝑟𝑒𝑙
2 = 𝑀𝑋

2 +𝑀Ψ,𝑟𝑒𝑙
2 , the final form 

of the axial wavenumber is obtained: 

 

 

𝑘𝑋,𝑚 =
𝑀𝑋
2𝑚
tan𝛽𝑟𝑒𝑙
𝑅 + 𝑖

|𝑚|
𝑅
√1 −𝑀𝑟𝑒𝑙

2

1 −𝑀𝑋
2  . 

(A.18)  

 

Finally, by substituting Eqs. (A.10) and (A.18) into Eq. (A.9), the potential flow perturbation 

field is given by: 
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 𝑢′𝑝(�̃�, Ψ̃) =

= 2 ∙ 𝑅𝑒

{
 
 

 
 

∑𝑢𝑝0(ℎ) 𝑒
−ℎ𝐵1 

√1−𝑀𝑟𝑒𝑙
2

1−𝑀𝑋
2  

|�̃�|
𝑅  𝑒

𝑖[ℎ𝐵1(Ψ̃ − 
𝑀𝑋
2

1−𝑀𝑋
2
tan𝛽𝑟𝑒𝑙

𝑅
�̃�) + �̃�𝑝(ℎ)]

+∞

ℎ=1

}
 
 

 
 

 . 
(A.19)  

 

For cut-off modes, which vanish moving away from the rotor, the axial wavenumber is 

complex (see Eq. (A.18)). The real part, 𝑅𝑒(𝑘𝑋,𝑚), represents the phase shift along the axial 

coordinate, which describes the mode spinning. The imaginary part, 𝐼𝑚(𝑘𝑋,𝑚), describes the 

axial decay of the mode amplitude. Notice that the higher is the blade number the larger is the 

decay rate. 

An example illustrating the axial evolution of the circumferential profile 𝑢′𝑝(�̃�, Ψ̃) , 

computed by means of Eq. (A.19), is provided in Figure A.4. The three perturbation profiles 

depicted are located at �̃� 𝑅⁄ = 0, �̃� 𝑅⁄ = 0.1 and �̃� 𝑅⁄ = 0.2, and they are calculated as the sum 

of 𝑁 = 40  harmonics. An exponential distribution of the initial amplitudes, 𝑢𝑝0(ℎ) =

𝑢0𝑒𝑥𝑝[−(ℎ − 1)], and zero initial phases, �̃�𝑝(ℎ) = 0 for ℎ = 1…𝑁, are assumed. The blade 

number, outflow angle and axial Mach number are set to 𝐵1 = 8, 𝛽𝑟𝑒𝑙 = 45° and 𝑀𝑋 = 0.2. 

Consequently, 𝑀Ψ,𝑟𝑒𝑙 = 𝑀𝑋 tan𝛽𝑟𝑒𝑙 = 0.2  and 𝑀𝑟𝑒𝑙
2 = 𝑀𝑋

2 +𝑀Ψ,𝑟𝑒𝑙
2 = 0.08. The profiles are 

normalized by the maximum amplitude of the perturbation at the trailing edge, computed as: 

 

 
𝑢′𝑝,𝑚𝑎𝑥 = 𝑢′𝑝(�̃� = 0, Ψ̃ = 0) = 2 ∙ ∑ 𝑢𝑝0(ℎ)

+∞

ℎ=1

 . (A.20)  

 

It is observed that the amplitude of the potential field perturbations decay significantly faster 

than those of the viscous wake moving away from the rotor (compare Figure A.4 with Figure 

A.3). 

The azimuthal shift of the potential field moving downstream, defined by the spinning of the 

modes, is indicated by the dashed arrow in Figure A.4. Note that, differently from the viscous 

wake, the potential field is not convected by the mean flow, and its swirl is influenced by the term 

𝑀𝑋
2 (1 −𝑀𝑋

2)⁄  (see Eq. (A.19)). 

Similarly to the wake model, by applying the coordinate transformations �̃� = 𝑋 − 𝑋𝑇𝐸,1 and 

Ψ̃ = Ψ −Ψ𝑇𝐸,1 and defining the phase as 𝜑𝑝(ℎ) = �̃�𝑝(ℎ) − ℎ𝐵1Ψ𝑇𝐸,1, Eq. (A.19) reduces to Eq. 

(4.2), which describes the potential flow perturbations in the relative reference frame (𝑋, 𝑅,Ψ). 
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Model parameters 𝑢𝑝0(ℎ) and 𝜑𝑝(ℎ) have to be calibrated by fitting the RANS solution 

extracted in the coordinate system (𝑋, 𝑅,Ψ) (see Chapter 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 – Example of axial evolution of the normalized velocity 

perturbation 𝑢′𝑝(�̃�, �̃�) 𝑢′𝑝,𝑚𝑎𝑥⁄ . 𝑢𝑝0(ℎ) = 𝑢0𝑒𝑥𝑝[−(ℎ − 1)], 

�̃�𝑝(ℎ) = 0, 𝐵1 = 8, 𝛽𝑟𝑒𝑙 = 45° and 𝑀𝑋 = 0.2 are assumed. 
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Appendix B  DERIVATION OF THE BLADE 

RESPONSE MODEL 

 

 

 

In this Appendix, the blade response model adopted in the present work for the calculation of 

the unsteady blade loads is presented. First, the formulation for the calculation of the unsteady 

aerodynamic forces acting on a 2D airfoil due to the impingement of a velocity gust is discussed, 

along with relevant considerations about the phase of the forces. Then, the application of the 

model to the CROR configuration, involving kinematic considerations for the computation of the 

model parameters, is reported. 

 

B.1 Unsteady aerodynamic forces on a thin airfoil   
 

Consider a 2D airfoil and a reference frame (𝑥2, 𝑦2) attached to it, as shown in Figure B.1. It 

is assumed that the 2D flow relative to the airfoil is inviscid and compressible, consisting of a 

uniform mean flow, 𝑊𝒆𝑥2, that convects a spatial velocity disturbance, 𝒗′: 

 

 𝒘 = 𝑊𝒆𝑥2 + 𝒗′ , (B.1)  

 

where the unit vector 𝒆𝑥2 has the direction of the 𝑥2 axis. The flow is steady but not spatially 

uniform in the reference frame (𝑥1, 𝑦1) moving with velocity 𝑊𝒆𝑥2. The velocity perturbation, 

𝒗′, is frozen with respect to the mean flow and is usually called a gust. 𝒗′ is perceived as a time 

disturbance by the airfoil, which causes fluctuating aerodynamic forces on the airfoil surface. 

It is assumed that 𝒗′ is small with respect to the mean flow velocity. Moreover, the aifoil is 

considered thin, with small camber and at small angle of attack with respect to 𝑊𝒆𝑥2. Also, it is 

reasonable to assume that the presence of the airfoil does not modify the gust 𝒗′. Under these 

assumptions, the flow field can be considered linear. 

Considering the relationship between coordinates (𝑥1, 𝑦1) and (𝑥2, 𝑦2): 

 

 

{

𝑥1 = 𝑥2 −𝑊𝑡

𝑦1 = 𝑦2

 , (B.2)  
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the gust velocity can be represented as a superposition of plane waves [37] according to the 

equation: 

 

 
𝒗′ = ∫𝒗′𝑘𝑒

𝑖(𝑘𝑥𝑥1+𝑘𝑦𝑦1)𝑑𝒌 = ∫𝒗′𝑘𝑒
𝑖(𝑘𝑥𝑥2+𝑘𝑦𝑦2−𝑘𝑥𝑊𝑡)𝑑𝒌 , (B.3)  

 

where 𝑘𝑥  and 𝑘𝑦  are the components of the wavenumber 𝒌 = 𝑘𝑥𝒆𝑥2 + 𝑘𝑦𝒆𝑦2 . Since the flow 

field is linear, the unsteady forces induced by any velocity disturbance 𝒗′ can be obtained by 

superposing the effects of incident harmonic gusts: 

 

 𝒗′ = 𝒗′𝑘𝑒
𝑖(𝑘𝑥𝑥2+𝑘𝑦𝑦2−𝑘𝑥𝑊𝑡) . (B.4)  

 

A closed form solution of the problem is given by Goldstein [37], under the additional 

assumption that the airfoil is a semi-infinite flat plate, normal to 𝑦2 and extending from 𝑥2 =

−𝑐 2⁄  to infinity. Moreover, it is assumed that the gust is a harmonic of the upwash velocity 

component, i.e., the component parallel to 𝑦2, and its wavefront is normal to the plate, i.e., normal 

to 𝑥2 (see Figure B.1), that is: 

 

 𝒗′(𝑥2, 𝑡) = 𝑣
′
𝑦(𝑥2, 𝑡)𝒆𝑦2 = 𝑣𝑦,𝑘𝑒

𝑖(𝑘𝑥𝑥2−𝑘𝑥𝑊𝑡)𝒆𝑦2  , (B.5)  

 

where 𝑣𝑦,𝑘 represents the amplitude of the harmonic. Hence, the fluctuating pressure difference 

across the plate is given by the following equation [37]: 

 

Figure B.1 – Reference frame of the airfoil, (𝑥2, 𝑦2), reference frame of the gust, (𝑥1, 𝑦1), 
and representation of the harmonic of the upwash velocity gust, 𝑣′𝑦 . 
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Δ𝑝′(𝑥2, 𝑡) =

−𝑖2𝜌0𝑊𝑣𝑦,𝑘𝑒
−𝑖𝜎𝑥

√𝑖𝜋𝜎𝑥(1 + 𝑀𝑟𝑒𝑙)(2𝑥2 𝑐⁄ + 1)
𝑒
𝑖[
𝑀𝑟𝑒𝑙𝜎𝑥(2𝑥2 𝑐⁄ +1)

1+𝑀𝑟𝑒𝑙
 − 𝑘𝑥𝑊𝑡]. (B.6)  

 

In this equation, 𝜌0 and 𝑀𝑟𝑒𝑙 = 𝑊 𝑎0⁄  are the freestream density and Mach number, respectively, 

while 𝜎𝑥 = 𝑘𝑥𝑐 2⁄  is the reduced frequency of the perturbation. By integrating Eq. (B.6) over the 

chord length, the net fluctuating lift force per unit span is obtained: 

 

 

𝐿′(𝑡) = ∫ Δ𝑝′(𝑥2, 𝑡)𝑑𝑥2

𝑐 2⁄

−𝑐 2⁄

= 𝜋𝜌0𝑐𝑣𝑦,𝑘𝑊𝑆𝑐(𝜎𝑥,𝑀𝑟𝑒𝑙)𝑒
−𝑖 𝑘𝑥𝑊𝑡 , (B.7)  

 

where 𝑆𝑐 is the high-frequency approximation of the compressible Sears function, already given 

in Eq. (4.8) and here reported for convenience: 

 

 

𝑆𝑐(𝜎𝑥, 𝑀𝑟𝑒𝑙) =
𝑒−𝑖𝜎𝑥

𝜎𝑥𝜋
√
2𝑖

𝑀𝑟𝑒𝑙
𝐹 (√

4𝜎𝑥𝑀𝑟𝑒𝑙
𝜋(1 +𝑀𝑟𝑒𝑙)

) , (B.8)  

 

and 

 

 

𝐹(𝜒) =  ∫ 𝑒𝑖
𝜋
2
𝜉2𝑑𝜉

𝜒

0

 (B.9)  

 

is the complex Fresnel integral. The validity condition of Eq. (B.7) is 𝑀𝑟𝑒𝑙𝜎𝑥 (1 −𝑀𝑟𝑒𝑙
2 )⁄ > 1, 

which indicates that the compressibility effects become important at high frequencies, even when 

𝑀𝑟𝑒𝑙 is small. 

Note that, in the case of incompressible flow, the unsteady lift obtained by means of the 

linearized theory acts through the quarter-chord point (see Von Kármán and Sears [66] and Sears 

[67]). However, in a real compressible flow, the centre of lift moves toward the trailing edge as 

the frequency of the impinging perturbation increases. Therefore, the contribution of the trailing 

edge region to the net lift can be considered relatively unimportant. This justifies the adopted 

simplification of considering the airfoil as a semi-infinite flat plate. 

Eqs. (B.2) and (B.5) imply that, at time 𝑡 = 0, the origins of the reference frames (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2) are coincident, and the phase of the harmonic gust is zero at 𝑥1 = 𝑥2 = 0, as shown in 

Figure B.2 a). Therefore, the initial phase of 𝐿′(𝑡 = 0), corresponding to the phase of the complex 
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function 𝑆𝑐 (see Eq. (B.7)), is related to this particular initial condition for the upwash gust. The 

more general case of a harmonic upwash with arbitrary initial phase, 𝜙, in the reference frame 

(𝑥1, 𝑦1), and an initial position, Δ𝑥2, with respect to the midchord point is here considered (see 

Figure B.2 b)). Thus, the relationship between the axial coordinates becomes: 

 

 𝑥1 = 𝑥2 − Δ𝑥2 −𝑊𝑡 , (B.10)  

 

and the gust is given by the equation: 

 

 𝑣′𝑦 = 𝑣𝑦,𝑘𝑒
𝑖(𝑘𝑥𝑥1+𝜙) = 𝑣𝑦,𝑘𝑒

𝑖(𝑘𝑥𝑥2−𝑘𝑥𝑊𝑡)𝑒𝑖(−𝑘𝑥Δ𝑥2+𝜙) , (B.11)  

 

showing that the phase of the gust at time 𝑡 = 0 with respect to the midchord point 𝑥2 = 0 

corresponds to Δ𝜙 = −𝑘𝑥Δ𝑥2 + 𝜙. The initial phase of the unsteady lift is changed accordingly 

by introducing the phase shift Δ𝜙: 

 

 𝐿′(𝑡) = 𝜋𝜌0𝑐𝑣𝑦,𝑘𝑊𝑆𝑐(𝜎𝑥,𝑀𝑟𝑒𝑙)𝑒
𝑖(−𝑘𝑥Δ𝑥2+𝜙)𝑒−𝑖 𝑘𝑥𝑊𝑡. (B.12)  

 

As it will be shown later, this general formulation, which accounts for arbitrary initial phases 

of the harmonic upwash gust, is useful for the application of the blade response model to the 

CROR configuration. Indeed, in that case, the harmonic gusts are computed at the leading edge 

of the blade sections (that is, Δ𝑥2 = −𝑐 2⁄ ), where they may have an initial phase 𝜙 ≠ 0. 

 

 

Figure B.2 – Initial condition (𝑡 = 0) for the harmonic gust. 
a) initial phase zero at the midchord point 𝑥2 = 0, 

b) initial phase ∆𝜙 = −𝑘𝑥𝛥𝑥2 + 𝜙 at the midchord point 𝑥2 = 0. 
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B.2 Application of the blade response to the CROR configuration 
 

The blade response model proposed by Goldstein can be used to compute the unsteady lift on 

a rotor blade due to the interaction with periodic velocity perturbations. Since the model relies on 

2D assumptions, the blade is divided into cylindrical sections, which are treated as isolated thin 

airfoils, and the blade response is computed separately for each section. 

Suppose that the velocity perturbation, 𝒗′, is generated by the FR and impacts a blade of the 

RR. In this case, particular conditions hold for 𝒗′  and some important considerations are 

presented hereafter to clarify how the perturbation is perceived by the rear blade. The equations 

for the wavenumber and reduced frequency of the perturbation detected by an airfoil radial section 

of the rear blade are then obtained. 

Consider a cylindrical reference frame (𝑋, 𝑅,Ψ∗)  fixed to the FR, where the azimuthal 

coordinate, Ψ∗, is measured in the rotation direction of the rotor. The blade sections of radius 𝑅 

of front and rear rotors are represented in the unwrapped 2D reference frame (𝑋, 𝑅Ψ∗) moving 

with the FR, as shown in Figure B.3. It is assumed that the velocity perturbation 𝒗′ is generated 

by the front blades and is convected by a uniform flow, 𝑾1, in the reference frame (𝑋, 𝑅Ψ∗). Due 

to the relative rotation of the two rotors, the blade sections of the RR perceive the perturbation as 

convected by the relative mean flow 𝑾2  (see Figure B.3). Consider the coordinate system 

(𝑥2, 𝑦2) attached to the blade section of one of the rear blades (say, the reference blade), where 

𝑥2 and 𝑦2 are parallel and normal to 𝑾2, respectively. The blade section is considered thin, with 

small camber and small angle of attack with respect to 𝑾2. Therefore, it is assumed that the airfoil 

lies on 𝑦2 = 0 and −𝑐2 2⁄ ≤ 𝑥2 ≤ 𝑐2 2⁄ . 

According to the blade response model of Goldstein, the component of 𝒗′ responsible for the 

loading fluctuation is the upwash 𝑣′𝑦2, parallel to axis 𝑦2. Since the model is linear, a single 

harmonic of the upwash gust is considered. The objective is to obtain the analytical form of 

𝑣′𝑦2(𝑥2, 𝑡), from which the chordwise wavenumber of the perturbation perceived by the blade 

section can be identified. 

It is assumed for the moment that the harmonic 𝑣′𝑦2(𝑋, 𝑅Ψ
∗) has zero phase at coordinates 

𝑋 = 0 and 𝑅Ψ∗ = 0. Since 𝒗′ is periodic in the circumferential direction Ψ∗ with period equal to 

∆Ψ∗ = 2𝜋 𝐵1⁄ , the harmonic of order ℎ of the velocity gust in the coordinate system (𝑋, 𝑅Ψ∗) is 

given by the equation: 

 

 
𝑣′𝑦2(𝑋 = 0, 𝑅Ψ

∗) = |𝑣𝑦2(ℎ)|𝑒
𝑖(ℎ

2𝜋
𝑅∆Ψ∗𝑅Ψ

∗)
= |𝑣𝑦2(ℎ)|𝑒

𝑖(ℎ
𝐵1
𝑅
𝑅Ψ∗)

 , (B.13)  
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where |𝑣𝑦2(ℎ)| represents the amplitude of the harmonic. One of the assumptions of the blade 

response model is that the convected gust is frozen, i.e., it is time independent in a reference frame 

moving with the mean flow. To clarify the consequences of this assumption, consider the 

coordinate systems (𝑥1, 𝑦1) and (𝑥1
∗, 𝑦1

∗) shown in Figure B.3. The former is attached to the front 

rotor while the latter moves with the relative mean flow 𝑾1. Both 𝑥1 and 𝑥1
∗ axes are aligned with 

the direction of 𝑾1, so that the coordinates (𝑥1, 𝑦1) and (𝑥1
∗, 𝑦1

∗) are related by: 

 

 

{

𝑥1
∗ = 𝑥1 −𝑊1𝑡

𝑦1
∗ = 𝑦1

 , (B.14)  

 

where 𝑊1 = |𝑾1|. 

Since the profile of 𝑣′𝑦2  given by Eq. (B.13) is generated by the FR, it is steady in the 

coordinate system (𝑥1, 𝑦1). Nevertheless, the profile must be steady also in the coordinate system 

Figure B.3 – Blade sections of front and rear rotors, and pattern of the 
upwash harmonic gust, 𝑣′𝑦2 , generated by the front rotor. 
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(𝑥1
∗, 𝑦1

∗) . Consequently, in order to satisfy the assumption of frozen gust, 𝑣′𝑦2  must be 

independent of both 𝑥1 and 𝑥1
∗ coordinates, that is, the profile is convected rigidly with the mean 

flow velocity 𝑾1, as depicted in Figure B.3. Thus, the harmonic gust can be expressed in 𝑦1
∗ 

coordinate as: 

 

 
𝑣′𝑦2(𝑦1

∗) = |𝑣𝑦2(ℎ)|𝑒
𝑖(
ℎ𝐵1
𝑅
 

𝑦1
cos𝛽𝑟𝑒𝑙,1

)
= |𝑣𝑦2(ℎ)|𝑒

𝑖(
ℎ𝐵1
𝑅
 

𝑦1
∗

cos𝛽𝑟𝑒𝑙,1
)
 , (B.15)  

 

where 𝛽𝑟𝑒𝑙,1 is the angle between the axial direction and the direction of 𝑾1, (see Figure B.3). 

Knowing the gust pattern 𝑣′𝑦2(𝑦1
∗), the formulation for 𝑣′𝑦2(𝑥2, 𝑡) can be easily obtained. To 

do so, a coordinate system (𝑥2
∗, 𝑦2

∗), which moves with the mean flow velocity 𝑾2 relative to the 

rear blade section, is introduced (see Figure B.4). The relationship between coordinates (𝑥2
∗, 𝑦2

∗) 

and (𝑥2, 𝑦2) is given by: 

 

 

{

𝑥2
∗ = 𝑥2 −𝑊2𝑡

𝑦2
∗ = 𝑦2

 , (B.16)  

 

where 𝑊2 = |𝑾2|. Without loss of generality, it is assumed that at time 𝑡 = 0 the origins of the 

coordinate systems (𝑥1
∗, 𝑦1

∗), (𝑥2, 𝑦2) and (𝑥2
∗, 𝑦2

∗) are coincident, as shown in Figure B.4 a), and 

the phase of 𝑣′𝑦2 is zero at 𝑦1
∗ = 0, so that 𝑣′𝑦2(𝑦1

∗) is given by Eq. (B.15). Note that this initial 

condition corresponds to the one illustrated in Figure B.2 a). At any time 𝑡 > 0, the origins of 

(𝑥1
∗, 𝑦1

∗) and (𝑥2
∗, 𝑦2

∗) are still coincident since both coordinate systems moves with the mean flow 

(see Figure B.4 b)), and the relationship between these coordinates is as follows: 

 

 

{

𝑥1
∗ = 𝑥2

∗ cos 𝜇 − 𝑦2
∗ sin 𝜇

𝑦1
∗ = 𝑥2

∗ sin 𝜇 + 𝑦2
∗ cos 𝜇

  , (B.17)  

 

where 𝜇 is the angle between axes 𝑥1
∗ and 𝑥2

∗, as indicated in the figure. Considering Eq. (B.17), 

the harmonic upwash in terms of (𝑥2
∗, 𝑦2

∗) is given by: 

 

 
𝑣′𝑦2(𝑥2

∗, 𝑦2
∗) = |𝑣𝑦2(ℎ)|𝑒

[𝑖(
ℎ𝐵1
𝑅
 
(𝑥2
∗ sin𝜇+𝑦2

∗ cos𝜇)
cos𝛽𝑟𝑒𝑙,1

)]
 . (B.18)  
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Finally, since the airfoil is assumed to lie on 𝑦2
∗ = 𝑦2 = 0, and substituting Eq. (B.16) into 

Eq. (B.18), the equation describing the upwash gust perceived by the rear blade section is 

obtained: 

 

 
𝑣′𝑦2(𝑥2, 𝑡) = |𝑣𝑦2(ℎ)|𝑒

[𝑖 
ℎ𝐵1
𝑅
 
sin𝜇

cos𝛽𝑟𝑒𝑙,1
 (𝑥2−𝑊2𝑡)]

= |𝑣𝑦2(ℎ)|𝑒
[𝑖(𝑘𝑥2𝑥2−𝑘𝑥2𝑊2𝑡)] . (B.19)  

 

Equation (B.19) allows identifying the chordwise wavenumber 

 

 
𝑘𝑥2 =

ℎ𝐵1
𝑅
 
sin 𝜇

cos𝛽𝑟𝑒𝑙,1
  (B.20)  

 

and the reduced frequency, 𝜎𝑥2 = 𝑘𝑥2𝑐2 2⁄ . 

For the application of the blade response model to the CROR configuration, the 

circumferential profile of 𝑣′𝑦2 is computed at the axial coordinate of the LE of the blade section, 

𝑋𝐿𝐸,2, and is given by (see also Eq. (4.6)): 

 

 

𝑣′𝑦2(𝑋𝐿𝐸,2, 𝑅Ψ
∗) = |𝑣𝑦2(ℎ)|𝑒

𝑖(ℎ
𝐵1
𝑅
𝑅Ψ∗+Ψ∗(ℎ))

= |𝑣𝑦2(ℎ)|𝑒
𝑖(ℎ𝐵1Ψ

∗+Ψ∗(ℎ)) , 
(B.21)  

 

where Ψ∗(ℎ) is the phase of the harmonic at Ψ∗ = 0, which depends on the actual distribution of 

𝒗′(𝑋𝐿𝐸,2, Ψ
∗). At time 𝑡 = 0, the phase of the harmonic gust at the LE of the blade section, that 

Figure B.4 – Coordinate systems useful for the computation of the upwash gust 𝑣′𝑦2(𝑥2, 𝑡) 

perceived by the rear blade section. a) position of the coordinate systems at time 𝑡 = 0 
(origin at the midchord point), b) position of the coordinate systems at time 𝑡 > 0. 
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is, 𝑥2 = −𝑐2 2⁄ , corresponds to 𝜙 = ℎ𝐵1Ψ𝐿𝐸,2
∗ +Ψ∗(ℎ) . Therefore, the phase shift Δ𝜙 =

𝑘𝑥2𝑐2 2⁄ + 𝜙 is introduced to account for the initial phase of the gust with respect to the midchord 

point, which leads to: 

 

 𝑣′𝑦2(𝑥2, 𝑡) = |𝑣𝑦2(ℎ)|𝑒
𝑖(𝑘𝑥2𝑥2−𝑘𝑥2𝑊2𝑡)𝑒𝑖(𝑘𝑥2𝑐2 2⁄ +𝜙) . (B.22)  

 

Equation (B.22) is analogous to Eq. (B.11). Thus, the fluctuating lift force per unit span acting on 

the blade section, calculated by the blade response, is as follows: 

 

 
𝐿′2(𝑡) = 𝜋𝜌0𝑐2|𝑣𝑦2(ℎ)|𝑊2𝑆𝑐(𝜎𝑥2 ,𝑀𝑟𝑒𝑙,2)𝑒

𝑖(𝑘𝑥2
𝑐2
2
+𝜙)

𝑒−𝑖 𝑘𝑥2𝑊2𝑡 , (B.23)  

 

where 𝑀𝑟𝑒𝑙,2 = 𝑊2 𝑎0⁄  is the Mach number of the mean flow relative to the blade section. 

Eq. (B.23) demonstrates that the Fourier coefficients, 𝐿2(ℎ), of the unsteady lift described in 

Chapter 4 are given by Eq. (4.7). 

Finally, a useful expression for the chordwise wavenumber, 𝑘𝑥2 , in terms of the angular 

speeds of the two rotors and the mean flow velocity can be obtained. Consider angles 𝛽𝑟𝑒𝑙,1, 𝛽𝑟𝑒𝑙,2 

and 𝜇, defined in Figure B.4, and the following relations for the axial and tangential components 

of the relative mean flow velocity: 

 

 𝑊𝑋,1 = 𝑊𝑋,2 = 𝑊1 cos𝛽𝑟𝑒𝑙,1 = 𝑊2 cos𝛽𝑟𝑒𝑙,2 , (B.24)  

 

 𝑊Ψ,1 = 𝑊1 sin𝛽𝑟𝑒𝑙,1 , (B.25)  

 

and 

 

 𝑊Ψ,2 = 𝑊2 sin𝛽𝑟𝑒𝑙,2 . (B.26)  

 

Then, the following relationships hold: 

 

 sin𝜇

𝑅 cos𝛽𝑟𝑒𝑙,1
=
sin(𝛽𝑟𝑒𝑙,1 + 𝛽𝑟𝑒𝑙,2)

𝑅 cos𝛽𝑟𝑒𝑙,1
=
1

𝑅
(
cos𝛽𝑟𝑒𝑙,2
cos𝛽𝑟𝑒𝑙,1

sin𝛽𝑟𝑒𝑙,1 + sin𝛽𝑟𝑒𝑙,2) . (B.27)  

 

Since cos𝛽𝑟𝑒𝑙,2 cos𝛽𝑟𝑒𝑙,1⁄ = 𝑊1 𝑊2⁄  (Eq. (B.24)), and noting that 𝑊Ψ,1 +𝑊Ψ,2 = 𝑅(|Ω1| +

|Ω2|), we can write: 
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 sin 𝜇

𝑅 cos𝛽𝑟𝑒𝑙,1
=
𝑊1 sin𝛽𝑟𝑒𝑙,1 +𝑊2 sin𝛽𝑟𝑒𝑙,2

𝑅𝑊2
=
𝑊Ψ,1 +𝑊Ψ,2

𝑅𝑊2
=
|Ω1| + |Ω2|

𝑊2
 . (B.28)  

 

By substituting Eq. (B.28) into Eq. (B.20), the following formula for the chordwise wavenumber 

is obtained: 

 

 
𝑘𝑥2 =

ℎ𝐵1(|Ω1| + |Ω2|)

𝑊2
 , (B.29)  

 

and the reduced frequency can be computed as: 

 

 
𝜎𝑥2 = 𝑘𝑥2

𝑐2
2
=
ℎ𝐵1(|Ω1| + |Ω2|)𝑐2

2𝑊2
 . (B.30)  

 

Eq. (B.29) shows that the frequency of the unsteady lift, 𝑘𝑥2𝑊2, depends on the harmonic order 

ℎ of the upwash gust, the number of blades 𝐵1 of the rotor that generates the velocity perturbation, 

and the relative angular speed of the two rotors. Expressions (B.29) and (B.30) for 𝑘𝑥2 and 𝜎𝑥2 

are the same given in Chapter 4. 
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Appendix C  DERIVATION OF THE NOISE 

PROPAGATION MODEL 
 

 

 

The model proposed by Hanson [39] is adopted in the present work for the computation of 

the interaction noise tones emitted by the rear rotor. In this Appendix, the derivation of the 

equations provided in Chapter 4 for the calculation of the acoustic pressure amplitude (Eqs. (4.11) 

and (4.12)) is presented. 

The starting point for the derivation of the model is the Goldstein’s version of the acoustic 

analogy which gives the density disturbance, 𝜌′ = 𝜌 − 𝜌0, caused by surfaces in arbitrary motion 

[37]: 

 

 

𝜌′(𝒙, 𝑡) = −
1

𝑎0
2 ∫ ∫ (𝜌0𝒗𝑛

𝜕𝐺

𝜕𝜏
+ 𝑙𝑖

𝜕𝐺

𝜕𝑦𝑖
)

𝑆(𝜏)

𝑑𝑆(𝜏)𝑑𝜏

𝑇

−𝑇

 

 

+ 
1

𝑎0
2 ∫ ∫ 𝑇𝑖𝑗

𝜕2𝐺

𝜕𝑦𝑖𝜕𝑦𝑗𝜈(𝜏)

𝑑𝒚𝑑𝜏

𝑇

−𝑇

  . (C.1) 

  

 

Eq. (C.1) applies to any volume region 𝜈(𝜏)  bounded by impermeable surfaces 𝑆(𝜏) . 𝒙 =

(𝑥1, 𝑥2, 𝑥3) and 𝒚 = (𝑦1, 𝑦2, 𝑦3) are the observer and source coordinates, respectively, measured 

from a reference point in the quiescent fluid. 𝑡  is the observer time, while 𝜏  is the source 

(emission) time. The monopole source, 𝒗𝑛, is the normal surface velocity, which is responsible 

for the thickness noise contribution generated by the volume displacement caused by the surface 

motion. The dipole sources, 𝑙𝑖, are the components of the force per unit area exerted by the fluid 

on surface 𝑆(𝜏), which give the loading noise contribution. 𝑇𝑖𝑗 is the Lighthill’s stress tensor, 

which contains the viscous and nonlinear effects and describes the quadrupole noise contribution 

[33]. 𝐺 is the free-space Green’s function, given by:  

 

 
𝐺 =

𝛿(𝑡 − 𝜏 − 𝑑 𝑎0⁄ )

4𝜋𝑑
 , 

(C.2) 
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where 𝛿  is the Dirac delta function and 𝑑 = |𝒙 − 𝒚|. When distance 𝑑 between observer and 

noise sources is large enough, 𝑎0
2𝜌′ can be identified as the acoustic pressure disturbance, 𝑝′. 

For rigid surfaces 𝑆(𝜏), which is the case of a rotating blade, Eq. (C.1) reduces to the well-

known Ffowcs Williams-Hawkings equation [24,37]. 

Consider the application of Eq. (C.1) to a propeller blade in forward motion with speed 𝑣0 

and rotating with angular speed Ω . The geometrical simplification of considering the noise 

sources as distributed on the helicoidal surface swept out by the blade PCA during its motion is 

adopted [38] (see Figure 4.4). The source strengths 𝒗𝑛 and 𝑙𝑖 are determined from the actual blade 

geometry, but their point of action is assumed to lie on the helicoidal surface. Then, it is 

convenient to introduce the helicoidal source coordinates 𝛾𝑖 = (𝛾, 𝜉, 𝑅), where 𝑅 is the radial 

coordinate while 𝛾 and 𝜉 are arc lengths measured on a cylindrical surface of radius 𝑅. 𝛾 is the 

distance along the helix, measured backward from the location of the PCA at time 𝑡 = 0 (see 

Figure 4.5 b)). 𝜉  is measured normal to 𝑅  and 𝛾  directions, so that 𝜉 = 0 corresponds to the 

helicoidal surface. 

The helicoidal surface is fixed in space and the sources are convected in direction −𝛾 at the 

advancing speed 𝑉𝑎𝑑𝑣(𝑅) = (𝑣0
2 + Ω2𝑅2)1 2⁄ . For analytical convenience, the convected source 

system is replaced by an equivalent system, 𝒗𝑛, 𝑙𝑖, 𝑇𝑖𝑗, that is fixed in space but timed to be 

activated by the passing of the blade. Thus, the sources are defined along the whole helix, i.e., 

−∞ < 𝛾 < ∞ , but they are nonzero only at the blade locations. Considering these 

approximations, the equation for the acoustic pressure becomes: 

 

 

𝑝′(𝒙, 𝑡) = 𝑎0
2𝜌′(𝒙, 𝑡) = − ∫   ∫ ∫ (𝜌0𝒗𝑛

𝜕𝐺

𝜕𝜏
+ 𝑙𝑖

𝜕𝐺

𝜕𝛾𝑖
)𝑑𝛾𝑑𝑅𝑑𝜏

∞

−∞

𝑅𝑇

0

∞

−∞

                   

 

                  + ∫   ∫ ∫   ∫𝑇𝑖𝑗
𝜕2𝐺

𝜕𝛾𝑖𝜕𝛾𝑗
𝑑𝜉𝑑𝛾𝑑𝑅𝑑𝜏

∞

−∞

𝑅𝑇

0

∞

−∞

  , 
(C.3) 

  

 

where 𝑇𝑖𝑗 is assumed to be sufficiently localized so that the 𝜉 integration does not extend to the 

helicoidal surface of the adjacent blades. 

To the purpose of computing the interaction noise emission, only the dipole sources 𝑙𝑖 are 

taken into account, since the thickness noise due to 𝒗𝑛  is independent of the aerodynamic 

interaction between rotors and the quadrupole sources 𝑇𝑖𝑗  are considered negligible. 𝑙𝑖  is 

interpreted as the sum of the values on the upper and lower (in 𝜉 direction) blade surfaces. It is 

convenient to express the surface sources 𝑙𝑖 as volume sources by using the delta function [38]: 
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𝑙𝑖(𝛾, 𝑅) = ∫𝐿𝑖(𝛾, 𝜉, 𝑅)𝑑𝜉 , (C.4)  

 

where 

 

 𝐿𝑖(𝛾, 𝜉, 𝑅) = 𝑙𝑖(𝛾, 𝑅)𝛿(FA + 𝜉) . (C.5)  

 

In Eq. (C.5), FA is the local face alignment of the blade section of radius 𝑅, as defined in Figure 

4.5 b), and function 𝛿(FA + 𝜉) places the sources on surface 𝜉 = −FA, thus accounting for the 

local lean of the blade. Components 𝑙𝛾 and 𝑙𝜉 of the forces per unit area, that is, the components 

in 𝛾 and 𝜉 directions, are taken into account [39]. Thus, considering Eqs. (C.4) and (C.5), the 

acoustic pressure is given by: 

 

 

𝑝′(𝒙, 𝑡) = − ∫   ∫ ∫   ∫ [(𝑙𝛾
𝜕𝐺

𝜕𝛾
+ 𝑙𝜉

𝜕𝐺

𝜕𝜉
)𝛿(FA + 𝜉)] 𝑑𝜉𝑑𝛾𝑑𝑅𝑑𝜏

∞

−∞

𝑅𝑇

0

∞

−∞

 . (C.6)  

 

Integration by parts allows shifting the derivatives from the Green’s function to the source 

functions and the following form of the equation is obtained: 

 

 
𝑝′(𝒙, 𝑡) = ∫∫∫∫𝑔(𝛾, 𝜉, 𝑅)

𝛿(𝑡 − 𝜏 − 𝑑 𝑎0⁄ )

4𝜋𝑑
𝑑𝜉𝑑𝛾𝑑𝑅𝑑𝜏 , (C.7)  

 

where 𝑔 is the generalized source function defined as: 

 

 
𝑔(𝛾, 𝜉, 𝑅) =

𝜕

𝜕𝛾
𝑙𝛾(𝛾, 𝑅)𝛿(FA + 𝜉) + 𝑙𝜉(𝛾, 𝑅)𝛿′(FA + 𝜉) . (C.8)  

 

The frequency domain representation of the source distributions can be obtained by 

considering a Fourier series for the time evolution and a wavenumber representation in space 

[38,39,68]. Consider the impingement of periodic velocity disturbances on the blade. This causes 

periodic fluctuations of the strength of the dipole sources and their time dependence can be 

expressed by means of a Fourier series: 
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𝑙𝛾(𝛾, 𝑅, 𝜏) = ∑ 𝑙𝛾ℎ(𝛾, 𝑅)𝑒

−𝑖ωℎ𝜏

∞

ℎ=−∞

 (C.9)  

 

and 

 

 
𝑙𝜉(𝛾, 𝑅, 𝜏) = ∑ 𝑙𝜉ℎ(𝛾, 𝑅)𝑒

−𝑖ωℎ𝜏

∞

ℎ=−∞

 , (C.10)  

 

where the Fourier coefficients 𝑙𝛾ℎ and 𝑙𝜉ℎ are the forces per unit area for harmonic order ℎ, and 

ωℎ is the angular frequency of the harmonic. Then, the generalized source function can be written 

as: 

 

 
𝑔(𝛾, 𝜉, 𝑅, 𝜏) = ∑ 𝑔ℎ(𝛾, 𝜉, 𝑅)𝑒

−𝑖ωℎ𝜏

∞

ℎ=−∞

 , (C.11)  

 

where 𝑔ℎ(𝛾, 𝜉, 𝑅) is given by: 

 

 
𝑔ℎ(𝛾, 𝜉, 𝑅) =

𝜕

𝜕𝛾
𝑙𝛾ℎ(𝛾, 𝑅)𝛿(FA + 𝜉) + 𝑙𝜉ℎ(𝛾, 𝑅)𝛿′(FA + 𝜉) . (C.12)  

 

A wavenumber representation of the source distribution in space is defined through the Fourier 

transform pair given by the equations: 

 

 

𝑔ℎ (
ω

𝑉𝑎𝑑𝑣
, 𝜉, 𝑅) = ∫ 𝑔ℎ(𝛾, 𝜉, 𝑅)𝑒

𝑖
ω

𝑉𝑎𝑑𝑣
𝛾
𝑑𝛾

∞

−∞

 , (C.13)  

 

 

𝑔ℎ(𝛾, 𝜉, 𝑅) =
1

2𝜋𝑉𝑎𝑑𝑣
∫ 𝑔ℎ(𝛾, 𝜉, 𝑅)𝑒

−𝑖
ω

𝑉𝑎𝑑𝑣
𝛾
𝑑ω

∞

−∞

 , (C.14)  

 

where ω 𝑉𝑎𝑑𝑣(𝑅)⁄  represents the spatial wavenumber of the sources in direction 𝛾  (i.e., 

chordwise). Therefore, accounting for Eqs. (C.11) and (C.14) and substituting into Eq. (C.7), the 

acoustic pressure depending on the source distribution in the time-space frequency domain is 

obtained: 
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𝑝′(𝒙, 𝑡) = ∫∫∫∫

1

8𝜋2𝑉𝑎𝑑𝑣𝑑
∫ ∑ {�̂�ℎ𝑒

−𝑖ωℎ𝜏}

∞

ℎ=−∞

𝑒
−𝑖

ω
𝑉𝑎𝑑𝑣

𝛾
 

 

×  𝛿(𝑡 − 𝜏 − 𝑑 𝑎0⁄ )𝑑ω𝑑𝜉𝑑𝛾𝑑𝑅𝑑𝜏 .               (C.15) 

 

Eq. (C.15) can be specialized to compute the acoustic pressure disturbance generated by a 

rear rotor with 𝐵2  blades, rotating with angular speed Ω2 , which impinges the velocity 

perturbations generated by a front rotor with 𝐵1 blades counter-rotating with angular speed Ω1. 

In this case, the time frequency of the dipole sources on the rear blades for harmonic order ℎ 

corresponds to ωℎ = ℎ𝐵1(|Ω1| + |Ω2|) , as shown in Appendix B (see Eq. (B.29)). In the 

following, the index ℎ is called ℎ1 to highlight that it actually corresponds to the harmonic order 

of the periodic velocity perturbations in space generated by the FR. It is further assumed that the 

observer location is in the far field, that is, 𝑑 ≫ 𝑅𝑇,2 . The observer position is defined in a 

spherical coordinate system, (𝜚, 𝜑, 𝜓), that moves forward with the propeller at speed 𝑣0, and 

defined as shown in Figure C.1. The polar angle, 𝜑, is equal to 90° in the plane of rotation of the 

RR, while the azimuthal angle, 𝜓, is measured in the rotational direction of the RR, from the 

(arbitrary) position of one of the rear blades at time 𝑡 = 0. Hanson [39] shows that, under these 

assumptions, the acoustic pressure detected by an observer moving forward with the rotor 

becomes (the full demonstration is omitted for brevity): 

 

 
𝑝′(𝜚, 𝜑, 𝜓, 𝑡) =

−𝑖𝜌0𝑎0
2𝐵2𝐷2

8𝜋𝜚(1 −𝑀0 cos𝜑)
                                                                                  

 

× ∑  ∑ 𝑒
𝑖(ℎ2𝐵2 − ℎ1𝐵1)(𝜓 −  

𝜋
2
)
𝑒
𝑖(ℎ2𝐵2|Ω2| + ℎ1𝐵1|Ω1|)(

𝜚
𝑎0
 − 𝑡)

∞

ℎ1=−∞

∞

ℎ2=−∞

                                

 

× ∫ 𝑀𝑎𝑑𝑣,2
2 𝑒𝑖(𝜙𝑙+𝜙𝑠)

𝑡𝑖𝑝

ℎ𝑢𝑏

𝒥ℎ2𝐵2−ℎ1𝐵1(𝑞) [𝑘𝛾
𝐶𝐷ℎ1
2

Ψ𝐷ℎ1 + 𝑘𝜉
𝐶𝐿ℎ1
2
Ψ𝐿ℎ1] 𝑑 (

𝑅

𝑅𝑇,2
) , 

(C.16) 

 

 

where the wavenumbers 𝑘𝛾 and 𝑘𝜉 are given by: 

 

 
𝑘𝛾 =

2𝑀𝑇,2

𝑀𝑎𝑑𝑣,2
[
ℎ2𝐵2 + ℎ1𝐵1Ω12
1 −𝑀0 cos𝜑

− ℎ1𝐵1(1 + Ω12)]
𝑐2
𝐷2
 , (C.17)  
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𝑘𝜉 = −

2

𝑀𝑎𝑑𝑣,2
[
(ℎ2𝐵2 + ℎ1𝐵1Ω12)𝑀𝑇,2

2 𝑅 cos𝜑

𝑅𝑇,2(1 − 𝑀0 cos𝜑)
−
𝑅𝑇,2(ℎ2𝐵2 − ℎ1𝐵1)𝑀0

𝑅
]
𝑐2
𝐷2
 , (C.18)  

 

while 

 

 
𝜙𝑠 =

2𝑀𝑇,2

𝑀𝑎𝑑𝑣,2
[
ℎ2𝐵2 − ℎ1𝐵1Ω12
1 −𝑀0 cos𝜑

− ℎ1𝐵1(1 + Ω12)]
MCA

𝐷2
= 𝑘𝛾

MCA

𝑐2
 , (C.19)  

 

 
𝜙𝑙 =

2

𝑀𝑎𝑑𝑣,2
[
(ℎ2𝐵2 + ℎ1𝐵1Ω12)𝑀𝑇,2

2 𝑅 cos𝜑

𝑅𝑇,2(1 − 𝑀0 cos𝜑)
−
𝑅𝑇,2(ℎ2𝐵2 − ℎ1𝐵1)𝑀0

𝑅
]
FA

𝐷2
= 

 

= −𝑘𝜉
FA

𝑐2
 .                                                                                                                 

(C.20)  

 

In Eqs. (C.17) to (C.20), 𝑀𝑇,2 = |Ω2|𝑅𝑇,2 𝑎0⁄  represents the blade tip rotational Mach number, 

and Ω12 = |Ω1| |Ω2|⁄  is the ratio of the angular speeds of the two rotors. MCA is the local 

midchord alignment, or sweep, of the blade section of radius 𝑅, as defined in Figure 4.5 b). 

Complex terms 𝐶𝐿ℎ1(𝑅)  and 𝐶𝐷ℎ1(𝑅)  result from the integration along 𝛾 , that is, the 

integration in chordwise direction, of the harmonic dipole sources 𝑙𝜉ℎ(𝛾, 𝑅)  and 𝑙𝛾ℎ(𝛾, 𝑅) , 

respectively. Therefore, Hanson [39] refers to these terms as the lift and drag harmonics, and they 

are related to the distributed dipole sources by means of the following equations: 

 

Figure C.1 – Spherical coordinate system, (𝜚, 𝜑,𝜓), moving forward with the rotor. 
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𝑙𝜉ℎ(𝛾, 𝑅) =

𝜌0𝑉𝑎𝑑𝑣,2
2

2
𝐶𝐿ℎ1(𝑅)𝑓𝐿ℎ1(𝜒) , 

(C.21)  

 

 
𝑙𝛾ℎ(𝛾, 𝑅) =

𝜌0𝑉𝑎𝑑𝑣,2
2

2
𝐶𝐷ℎ1(𝑅)𝑓𝐷ℎ1(𝜒) , 

(C.22)  

 

where 𝜒 = (𝛾 − MCA) 𝑐2⁄  is the normalized chordwise distance that ranges from -0.5 at the LE 

to 0.5 at the TE, while 𝑓𝐿ℎ1 and 𝑓𝐷ℎ1 are factors with unit area that give the shape of the load 

distribution. Note that Eqs. (C.21) and (C.22) imply that 𝑓𝐿ℎ1(𝜒) and 𝑓𝐷ℎ1(𝜒) are real functions. 

In Eq. (C.16), complex coefficients Ψ𝐿ℎ1(𝑘𝛾)  and Ψ𝐷ℎ1(𝑘𝛾)  are dimensionless non-

compactness factors. They account for the effect of the actual distribution of the sources along 

the chord of the blade sections [38,39], and they are computed according to the equations: 

 

 

Ψ𝐿ℎ1(𝑘𝛾) = ∫ 𝑓𝐿ℎ1(𝜒)𝑒
𝑖𝑘𝛾𝜒𝑑𝜒

1 2⁄

−1 2⁄

 , (C.23)  

 

 

Ψ𝐷ℎ1(𝑘𝛾) = ∫ 𝑓𝐷ℎ1(𝜒)𝑒
𝑖𝑘𝛾𝜒𝑑𝜒

1 2⁄

−1 2⁄

 . (C.24)  

 

Ψ𝐿ℎ1(𝑘𝛾) and Ψ𝐷ℎ1(𝑘𝛾) modify the acoustic pressure amplitude by introducing a phase shift and 

an amplitude variation, which depend on the chordwise distribution of the dipoles 𝑓𝐿ℎ1(𝜒) and 

𝑓𝐷ℎ1(𝜒). 

The exponential term 𝑒𝑥𝑝[𝑖(𝜙𝑙 + 𝜙𝑠)] introduces a phase shift that accounts for the local 

misalignment of the blade surface with respect to the ideal helicoidal surface, where the noise 

sources are assumed to lie. In fact, Eqs. (C.19) and (C.20) show that parameters 𝜙𝑙  and 𝜙𝑠 

depends on the local geometrical quantities FA and MCA of a blade section, which correspond 

to the local lean and sweep of the blade, respectively. 

Term 𝑒𝑥𝑝[−𝑖(ℎ2𝐵2|Ω2|  +  ℎ1𝐵1|Ω1|)𝑡] within the double summation in Eq. (C.16) shows 

that the acoustic pressure detected by the observer consists of the superposition of all the harmonic 

signals with frequencies 

 

 
𝑓 =

 |ℎ1𝐵1|Ω1| + ℎ2𝐵2|Ω2||

2𝜋
= |ℎ1𝐵𝑃𝐹1 + ℎ2𝐵𝑃𝐹2| , (C.25)  
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which are linear combination of the blade passing frequencies of the two rotors. Note that for 

ℎ1 = 0 the sources are steady for an observer rotating with the blade (ωℎ1 = 0). In this case, 

𝐶𝐿0(𝑅) and 𝐶𝐷0(𝑅) represent the ordinary steady lift and drag coefficients, and Eq. (C.16) gives 

the loading noise emitted by the rotor at frequencies 𝑓 = |ℎ2𝐵𝑃𝐹2|. Instead, the contribution of 

the harmonics characterized by both ℎ1 ≠ 0 and ℎ2 ≠ 0 corresponds to the interaction noise. 

The exponential term 𝑒𝑥𝑝[𝑖(ℎ2𝐵2 − ℎ1𝐵1)(𝜓 − 𝜋 2⁄  )] describes the pattern of the acoustic 

pressure in azimuthal direction 𝜓 at constant time 𝑡. This pressure distribution in space spins 

around the rotor axis at frequency 𝑓 = |ℎ1𝐵𝑃𝐹1 + ℎ2𝐵𝑃𝐹2|. 

It should be noted that, although Eq. (C.16) allows computing the time history of the acoustic 

pressure disturbance at a desired observer position, it depends on the harmonic content of the 

blade loading. Therefore, provided that 𝐶𝐿ℎ1, 𝐶𝐷ℎ1, Ψ𝐿ℎ1 and Ψ𝐷ℎ1 are known from a separate 

analysis, the discrete tones that contribute to the noise emission can be directly calculated. For 

the purpose of computing the pressure amplitude for a specific IN frequency, the exponential 

terms describing the azimuthal pattern and the time advance of the pressure disturbances can be 

repealed by Eq. (C.16), since they do not influence the signal amplitude. Thus, the Fourier 

coefficient, 𝑃ℎ1,ℎ2(𝜚, 𝜑), of the harmonic with frequency 𝑓 = |ℎ1𝐵𝑃𝐹1 + ℎ2𝐵𝑃𝐹2|, for ℎ1, ℎ2 ∈ 

{… ,−2,−1,1,2,… }, is computed by means of Eq. (4.11) presented in Chapter 4. Then, the 

pressure amplitude is given by 𝐴𝑝(𝜚, 𝜑, 𝑓) = 2|𝑃ℎ1,ℎ2(𝜚, 𝜑)|  (Eq. (4.12)). Notice that the 

pressure amplitude for a specific frequency does not depend on the azimuthal angle 𝜓, which 

influences only the phase of the harmonic. 
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