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Abstract 

I 

A B S T R A C T 

This thesis presents theoretical and experimental work on time-harmonic vibration 

energy harvesting with electromagnetic and piezoelectric seismic and reactive 

transducers. The study is focussed on macroscale transducers built assembling 

multiple components fabricated with traditional processes and materials using 

classical industrial processes (milling, soldering, printing, etc.). The electromagnetic 

transducer is composed by a magnet component connected to a moving 

ferromagnetic ring and coil assembly via soft springs. The piezoelectric transducer is 

made by a thin cantilever beam with two piezoelectric patches bonded at the top and 

bottom sides and two tip masses fixed at the base end and at free end. The two 

prototypes are designed and built in such a way as they have similar weights and 

volumes for the base and suspended components and same fundamental natural 

frequencies. Both purely resistive and resistive-reactive harvesting impedance loads 

are considered. Expressions for the optimal impedances are derived in the frequency 

domain with reference to time harmonic base vibrations.  

The study is based on simple lumped parameters models, which, however, take 

into account all physical effects that characterise the response of the two harvesters, 

including the effects of eddy currents losses and dielectric losses. Also, a unified 

energy formulation based on the frequency response functions of the electro-

mechanical transduction coefficients and mechanical and electrical impedances of the 

two transducers is derived and validated experimentally.  

The thesis is structured in three parts. The first part is focussed on the response 

and energy harvesting with the seismic transducers. The study shows that the 

maximum power harvested is obtained close to the fundamental natural frequency of 

the two devices and is significantly influenced by eddy current losses in the 

electromagnetic transducer and by the dielectric losses in the piezoelectric transducer. 

Comparing the two prototypes, the electromagnetic harvester is characterised by 

higher damping effect that reduces the stroke amplitude at the fundamental 

resonance frequency and thus the maximum power harvested per unit of 

acceleration. Alternatively, the piezoelectric device is affected by lower mechanical 

damping and so the power harvested is larger. If instead the harvested power per 

unit of stroke is examined, the result is opposite. 



 
 

II 

In the second part of the thesis the power harvesting with reactive electromagnetic 

and piezoelectric transducers, is investigated. The same transducers than those of the 

first part of the study are considered, with the seismic masses clamped to a solid block 

acting as an inertial reference system. Thus, the same models and analytical 

formulations developed for the seismic harvesters are used, assuming the proof 

masses are blocked. The study shows that the transducers become effective only for 

large vibrations of the base mass and furthermore the power harvested is not 

magnified in correspondence of their fundamental resonant frequency. Also, the 

electromagnetic harvester outperforms the piezoelectric harvester in the whole 

frequency range of work, both when the optimal complex impedance and the optimal 

resistive impedance loads are implemented. 

The last part of the thesis is dedicated to the scaling laws for the physical properties 

and energy harvesting of the seismic and reactive transducers studied respectively in 

parts 1 and 2. The scaling analysis is limited to the case of tonal ambient vibrations 

and is carried out considering that the devices are operated at their fundamental 

natural frequency. An isotropic downscaling is assumed for both harvesters, 

therefore it is considered that the shapes of the components and of the whole devices 

do not change with the dimension. Both the optimal purely resistive and resistive-

reactive loads are considered. The scaling of the transduction coefficients and 

electrical and mechanical parameters, which characterise the lumped parameter 

models of the electromagnetic and piezoelectric seismic and reactive transducers, is 

first provided. Volume power density normalized to the input squared acceleration 

and power efficiency are then examined with respect to the scaling length of the 

seismic harvesters. In addition, a comparative scaling stroke analysis is carried out 

for either seismic devices. Finally, the scaling laws of the power density and efficiency 

of the reactive electromagnetic and piezoelectric energy harvesters are investigated. 

The thesis is enriched with 6 appendices that provide a detailed account of the 

modelling and scaling laws derived for and used in the study. 
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Introduction 

1 

1  
I N T R O D U C T I O N  

This thesis is focussed on vibration energy harvesting with macro scale electro-

magnetic and piezoelectric transducers, that are, transducers built assembling 

components fabricated with traditional methods. More specifically, this study 

considers either electromagnetic harvesters composed by a magnet and wire wound 

coil connected via soft metal springs or piezoelectric harvesters formed by a cantilever 

beam substrate with, bounded on either side, flexible piezoelectric MFC patches and 

a tip block mass. The size of the harvesters is assumed in the range of few cubic 

centimetres, such that, they can generate from milliwatts to tens of watts. Therefore, 

this study does not consider microscale electromagnetic and piezoelectric 

transducers, which are normally fabricated with micro electro mechanical systems 

(MEMS) technologies and, thus, normally have total dimensions of few cubic 

millimetres and generate micro and milliwatts. 

This introductory section presents an overview of the primary driver behind this 

technology, that are wireless electronic devices and discusses the characteristics and 

limitations of the principal energy storage technologies, which are normally used to 

power wireless electronic devices. It then revises the principal features of local energy 

sources and respective energy harvesting systems. At this point, vibration energy 

harvesting is introduced in detail. The physics and modelling of electro-magnetic, 

piezoelectric, electrostatic harvesters is first revised in detail. Also, the scaling 

properties of seismic and reactive harvesters is discussed. The section is then 

concluded with an overview of the scope, contributes and structure of the thesis. 

 

 

1.1  WIRELESS ELECTRONIC DEVICES  

The past few decades have seen a continuous development of implanted/wearable 

electronic devices and wireless sensors, which are becoming progressively more 

pervasive in several fields of application. According to Mitcheson et al.[1] these 
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systems can be divided in two principal groups, which are defined with respect to 

applications. The first group is the so called body sensor network [2], [3], [4] for 

automated health care systems and medical remote sensing using wearable and 

implanted electronic devices [5] (e.g. blood pressure monitoring, electrocardiograph 

real-time processing, control devices, cochlear implants, etc. [5], [6], [7]). The objective 

of Body Sensor is to provide an integrated interface platform to ensure and facilitate 

the development of diffused monitoring systems. As schematically shown in Figure 

1.1, several promising prototypes are starting to emerge in practical applications. For 

example, the blood glucose level of patients with diabetes can be monitored 

continuously checking the insulin delivery from an implanted reservoir. Also, there 

are already commercially implantable, multiprogrammable brain stimulators for the 

treatment of epilepsy or other debilitating neurological disorders, which can help 

patients that had important surgical operations. In cardiology, the role of implantable 

cardioverter-defibrillators has increasingly been recognized for their ability to 

prevent sudden cardiac attacks. The second group is the so called wireless sensor 

network (WINS) [7], [8], [9], [10], [11], [12], that includes several self-contained nodes, 

often called motes [1], which are used for industrial and machinery condition 

monitoring [13], [14], ambient intelligence and personal tracking [9], [14], structural 

monitoring of buildings and transportation infrastructures [15], [16], [17], [18], 

domestic condition monitoring and surveillance [19], condition monitoring and 

sensing for transportation vehicles [19], [20], [21], environment [22], [23], agriculture 

and food industry monitoring [24], [25], oil and gas pipelines, health monitoring [26] 

etc. 

 

 

Figure 1.1: Basic design of the body sensor network [4]. 
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As shown in Figure 1.2, WINS consist of a large number of small sensing nodes that: 

a) monitor the environment, b) process data (through the use of microprocessors) and 

c) send or receive processed information to or from other sensor motes. These 

individual sensing nodes are normally distributed in the space and propagate the 

measured signals to a centralised network, which collects data and provides to the 

end user. This system allows a base station to service a much larger network than 

would be possible with classical communication systems.  

Portable and wireless electronic systems offer a number of advantages, such as for 

example: extended range of applications, flexibility, ease of installation (also in 

previously inaccessible locations), reduced material costs (e.g. wiring and 

connectors), reduced installation costs, reduced risks of failure in wiring and 

connectors, possibility of retrofitting existing machinery, replacement of the large 

transmission distances with multiple low power and low cost sensors, etc. [1], [23], 

[27].  

 

 

Figure 1.2:  Example of a typical connection between body sensors and wireless sensor 
networks [28]. 

 

 

1.2  ENERGY STORAGE DEVICES  

The recent advances in wireless sensors and communication devices, combined with 

their increased computing power, has brought to the development of fully automated 
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prognostic and monitoring systems for a large number of complex physical and 

biological systems. In this framework of constantly evolving technologies, sensing 

and communication devices are becoming progressively smarter and more powerful. 

As a result, they all need more energy to operate. Thus to ensure portable and wireless 

operation conditions, these systems require a local energy store [1], [11], [29], [30], 

[31]. The term energy store/ storage describes technology to convert energy from a 

form that is difficult to accumulate (i.e. electrical) to a storable form (mechanical, 

electrostatic, chemical, electrochemical, etc.). The stored energy can then be converted 

back into a directly usable form. There are various types of energy storage systems, 

which are characterised by different properties, such as energy or power capacity and 

time of charge/discharge. The choice of a particular storage technology depends on 

the application requirements. In the context of sensors and monitoring systems, 

energy storage units must satisfy a specific set of requirements related to their small 

size, cost, and low environmental impact. 

In the majority of cases, because of their practicability and simplicity, 

electrochemical batteries offer the most practical and convenient solution [11], [32], 

[33]. Indeed, although hydrocarbon fuels can deliver one order of magnitude higher 

energy densities, compared to electrochemical batteries, they require rather complex 

energy converters such as miniature turbine engines, micro Stirling-engines, micro 

fuel cells. Also, the speed of intervention that is required and the different duration 

of the power supply make the electrochemical batteries more suitable for wireless 

systems. 

It is important to recall that several other storage elements exist in practice, 

including, for example, flywheel energy storage (FES) [34] and superconducting 

magnetic energy storage (SMES) [35]. These systems are characterised by higher 

power densities and higher cycle lifetime, but have energy densities comparatively 

lower than those of electrochemical batteries. Also, the costs and the technological 

complexity make them less attractive. Another important device, typically used to 

storage energy is the capacitor or super-capacitor, constructed as an electrochemical 

double layer capacitor and characterised by high power density, high charge – 

discharge efficiency (up to 98 %) and wide operating temperatures compared to 

batteries. However, this technology is affected by a serious self – discharge which can 

reach 11% per day [36]. 

Finally, radioactive material miniature sources are characterised by long life but 

lower power densities than those of electrochemical batteries. 
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Hence, despite being characterised by a comparatively slower technological 

development, the combined functionality and low cost make the electrochemical 

batteries still the most common local energy storage devices for powering electronic 

systems and wireless sensors [37]. However, they often determine the size of the 

system and, in most cases, also its life and cost, since they require additional 

maintenance for replacement or recharging [1], [27], [32]. 

 

 

1.3  LOCAL ENERGY SOURCES 

The constant evolution of solid-state electronics, circuit designs and Micro Electro-

Mechanical Systems (MEMS) has brought to a significant miniaturisation and 

decrease in power consumption of implanted/wearable electronic devices and 

wireless sensors [1], [29], [38]. With the proliferation of these technologies, the power 

generation for small and micro devices is becoming an interesting and important 

research subject. Nowadays the batteries, which are the most common local energy 

sources, can be divided into two fundamental types: primary or secondary [32]. 

Primary batteries are non-rechargeable batteries and are characterised by high 

capacity and temperature stability; their main disadvantage is the need of periodic 

maintenance and replacement at the end of life. Secondary batteries, which can be 

divided in alkaline and acidic, are rechargeable but their number of charge/recharge 

cycles is still limited by cycling capacity. In general the lifetime of most 

electrochemical batteries is on the order of hundreds to thousands of 

charging/discharging cycles and their storage efficiency is comprised in a range from 

60% to 80%, depending on the operational cycle and on the electrochemistry type [39], 

[40]. Compared to the electronics technology, battery technology have had a 

comparatively lower technological progress during the past few decades. In 

particular, they are unable to cope with the shrinking geometrical constraints and 

power density requirements necessary to run modern wireless systems. During the 

past few years new materials and designs have been proposed, which, however, are 

characterised by problems related to costs, reliability and safety. Therefore the 

replacement of batteries with other energy systems such as indeed energy harvesting 

devices has been the focus of a vast research activity carried out by many research 

groups in the world. The environment offers many sources of energy, indeed there is 

now a growing interest for energy harvesting from local inexhaustible energy sources, 
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such as for example: T thermal gradients, S light, W wind, RF electromagnetic 

radiation, M kinetic (e.g. solid/fluid motion) [1], [40], [41], naturally present in the 

environment or results from human activities. These sources can be used to run low 

power consumption electronic devices via an interface electronic circuit [42], [43], [44] 

which, in some cases, may incorporate micro-battery or super capacitor energy 

storage elements [1], [11], [29], [45], [46], [47]. As discussed in [1], [11], [29], [30], [48], 

[49], [50], each of these energy sources are characterised by specific features that bring 

in advantages and disadvantages for energy harvesting. 

 

 

1.4  ENERGY HARVESTING 

In general, “energy harvesting” refers to the nonchemical generation of a small 

amount of electrical energy on local scale using one of the energy conversion 

principles introduced above.  

For example, the use of solar energy with solar cells, also under low light levels, is 

widely used in many consumer products to power calculators, watches and in 

general, any application where solar illumination is available and the power 

requirements can be withstood. In general, a photovoltaic harvester is able to produce 

a level of power from μW to MW depending on its surface area. A typical value of 

power density considered for the energy harvesting purposes is 15 mW⁄  [22]. 

Nevertheless, it is important to underline that in many applications the use of solar 

energy cannot be withstood, as for example in enclosed spaces where natural light is 

not available.  

Compared to the solar radiation energy, the exploitation of the thermal energy is 

of particular interest because, in general, is always available and present in every 

natural and handmade environments and has a high power density. Thermal energy 

can be harvested from spatial gradients (thermoelectric effect), time domain 

variations (pyroelectric effect) or by means of ferroelectric phase transitions [51]. 

These methods of conversion are well suited in common applications such as 

automotive, human activities and data processing. For example, thermoelectric 

energy can be harvested from asphalt pavement roadways. The prototype described 

in Ref. [39] accumulates heat energy from the pavement surface and transfers it to the 

thermoelectric generators placed at the edge of the pavement. For example, a 64 × 64 mm prototype device was developed, which generates about 10 mW of 
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electrical power over a period of 8 h. Nevertheless, practical problems, such as the 

low efficiency (only about 5 – 6 %) and relatively high material costs poses practical 

limitation in the use of this form of energy.  

Ambient radio waves are commonly present in a very large range of frequencies  

(3 kHz – 300 GHz) and power levels [51], especially in the areas where the density 

population is very high. Communication devices such as wireless radio networks, 

mobile base stations, mobile telephones and TV signals generally propagate RF 

electromagnetic fields in the environment. The ability to capture RF energy enables 

wireless charging of low power devices such as GPS autonomous sensors nodes and 

consumer electronics in comparison with solar and thermal energy harvesting [28]. 

The main advantage of RF-based energy harvesting is its availability in indoor 

locations [52]. However, the energy transmitted from the RF sources is very low 

unless the receiver is large and adjacent to the source. In addition, the nature of the 

source makes the use of the harvesters impractical inside conductive enclosures [53].  

The analysis presented above brings to the conclusions that in many applications, 

energy harvesting based on the conversion of kinetic and potential mechanical energy 

to electrical becomes the only and most convenient option. For example the kinetic 

energy air flow can be extracted from air wind and converted into electricity by rotors 

or small wind turbines [22], [54]. Mendonca [55] reports the performances of a 6.9 cm 

radius turbine equipped with 6 blades and able to produce 439 mW of power with an 

efficiency of 14.3% at 7 m/s wind speeds. Other prototypes are described in Ref. [56] 

that use a wind flutter generator based on the aeroelastic flutter effect. Baranov [57] 

has used a hybrid power supply combining wind and solar radiation to power 

wireless nodes used to monitor carbon monoxide levels in civil areas and outdoor 

industrial structures. Hobeck and Inman [58] developed a new design of piezoelectric 

grass employed for fluid flow environment.  Wireless power transmission based on 

acoustic energy has also recently been investigated, in particular for applications 

related to power implantable sensors and devices used for therapeutic functions. 

Furthermore, the possibility that acoustic waves have to penetrate into the liquids has 

enabled the powering of under-water sensors and communication networks [59]. An 

ultrasonic transcutaneous energy transfer system (UTET) designed to convert 

electrical energy from pressure waves, operating at frequency about 670 Hz and able 

to achieve 70 mW with an efficiency of 27 % has been reported in [60]. Other 

experiments have shown that implantable oscillators can achieved a vibration 

amplitude of 71 μm at a distance of 5 mm . Nevertheless the problems related to the 

human safety due to the interaction of the pressure waves with the human body and 
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the low efficiency related with the small power density of the acoustic waves makes 

this technology to be still immature for practical applications.  

In general, kinetic energy related to body movements is a clean, stable, ubiquitous 

and abundant energy source [1], [37]. Indeed, significant levels of motion, normally 

occurring as vibrations, regular and impulsive displacements and driving 

forces/moments [29], [37], characterise most biological organisms (e.g. plants, 

animals, human beings), domestic and industrial appliances (e.g. washing machines, 

fridges, etc.), industrial plant equipment and machinery, transportation vehicles (e.g. 

cars, aircraft, etc.), transport infrastructures (e.g. bridges, railway, etc.), buildings [1], 

[11], [29], [48], [61]. 

Among the various forms of kinetic energy, vibration energy has received 

particular attention for its ubiquity and because it requires small size and lightweight 

transducers for conversion into electrical energy [19], [49]. In general, kinetic energy 

harvesters relies on simple electro-mechanical reactive or seismic (inertial) systems, 

which are excited either by imposed forces or imposed displacements which are 

exerted by the hosting body or structure [1]. 

 

 

1.5  VIBRATION ENERGY HARVESTING 

In general, vibration energy is typically present in the form of displacements or forces 

and is commonly converted into electrical energy by using electro-mechanical 

transducers. The quantity of electrical energy that can be harvested from vibrations 

depends on several factors: first, type of excitation and its amplitude (deterministic, 

stochastic, pure tone, periodic, impulsive, white and coloured noise, etc.); second, the 

amount of kinetic energy available in the environment; third the transduction 

mechanisms used to convert the energy of the vibrations. 

In general, vibration energy harvesting is based either on seismic or reactive 

harvesters, which can be respectively attached or embedded on the vibrating source 

[46]. Three types of transducers are normally employed [1], [11], [29], [27], [33], [37], 

[62], [63], [64], [65], [66] first electromagnetic, second piezoelectric and third 

electrostatic. Magnetostrictive transducers could also be employed in some cases, but 

comparatively fewer practical applications have been investigated up to present [1], 

[67].  
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In general, these transduction mechanisms generate electricity through mechanical 

strain of the transducer element or relative displacement/velocity of the transducer 

components produced by the vibrating source. Strain transduction exploits the 

deformation of a material which is typically a piezoelectric material [64]. Relative 

velocity transduction is instead implemented with coil-magnet linear transducers. 

Finally, the displacement transduction is associated to electrostatic transducers. Each 

transduction mechanism is characterised by specific physical phenomena that can 

vary with the complexity and architecture of the transducers [41]. Electromagnetic 

harvesting systems are based on the electromagnetic induction principle, i.e. a 

varying magnetic field induces a voltage across the wire of the coil. The most common 

coupling architecture is a cylindrical magnet, which oscillates inside a coil [68]. 

Piezoelectric harvesting systems are instead built with piezoelectric patches that 

produce a charge separation and thus a current flow, when strained. The most 

common architecture of piezoelectric harvesters is the cantilever beam substrate with 

piezoelectric layers bounded on either side. There are several types of piezoelectric 

transducers. Piezoceramic materials are characterised by high electro-mechanical 

coupling and efficiency conversion but low fracture toughness (see for example the 

Zirconate Titanate PZT). For this reason recently NASA has developed a new 

material, the Macro Fiber Composite (MFC) composed by piezo ceramic rods 

sandwiched between layers of adhesive, electrodes, and polyimide film [69], widely 

used in the piezoelectric energy harvesting field. Alternatively, there is a second class 

of piezoelectric materials made with PVDF, which guarantee high flexibility but 

comparatively lower electromechanical coupling and energy conversion efficiency. 

Electrostatic harvesters are formed by dielectric material that generates voltage based 

on the variation of its capacitance. More specifically, a current flow is produced when 

the charged electrodes are set into axial or shear relative motion by the external 

vibrations. The resulting change of electric charge causes the variation of the 

electrostatic field and thus an electric motion. A literature review of these transducers 

can be found in [70]. Finally, magnetostrictive harvesters are based on the Villari 

effect. Under the effect of strain, a magnetostrictive material induces a magnetic field, 

which can be set to interact with a coil wiring to produce electrical current [71]. No 

well-defined architectures can still be found in literature for such magnetostrictive 

devices. Comparing the electromagnetic and piezoelectric transducers, the second 

covers a larger range of volume power densities  (W⁄ ) [33]. In addition, the 

voltage output in the electromagnetic energy harvesters is very low and thus an 

increment of the voltage level is usually required to charge a storage component [72]. 
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On the other hand, electromagnetic harvesters cover a larger range of surface power 

densities (W⁄ ) and are characterised by lower mechanical quality factor, thus are 

more suitable for high amplitude vibrations. 

During the past two decades a large number of vibration energy harvesting 

prototypes have been designed, built and tested, which are characterised by a wide 

range of dimensions, geometries, materials and construction techniques, [1], [27], [29], 

[33], [37], [38], [67], [71], [73], [74], [75], [76], [77], [78], [79], [80] (in particular see 

Tables A1, A2 in Ref. [50] and Table 2, 3 in Ref.[81]). Moreover, quite a few commercial 

products have been put in the market [82]. A comprehensive state of the art on  

vibration energy harvesting can be found in Ref. [71] and [83]. 

 

 

1.6  VIBRATION ENERGY HARVESTING: MODELS AND THEORIES 

The research work on vibration energy harvesting systems covers several disciplines 

of engineering and various mathematical models have been proposed in literature to 

study such devices [72]. Initially, researchers tried to characterise the harvesting 

systems with lumped models formed by a single mechanical degree of freedom 

coupled to an electrical mesh. The fundamental principles of vibration energy 

harvesting were first set in Refs. [48], [84], [85], [86] starting from simple second order 

models formed by mass-spring-damper lumped elements connected in parallel, 

where the damper element accounts for both the system parasitic energy loss effects 

and the energy harvesting effect. Williams and Yates [84], first derived an expression 

for the “generated power” assuming time-harmonic vibrations and calculated the 

maximum power that can be harvested at the fundamental resonance frequency of a 

seismic harvester. Stephen [86] further examined this simple model and highlighted 

a number of shortfalls in the interpretation of the power expressions that often lead 

to wrong conclusions. In particular, he highlighted that the parasitic damping effect 

in the seismic harvester plays a role in both the vibration power input to the harvester 

and the electric power output from the harvester. Moreover, he noted that in principle 

the equation for maximum power harvested seems to indicate that, to reach a 

maximum, the harvester should be undamped. However this condition will lead to a 

overgrowing unstable response. Thus a certain amount of damping is needed in the 

harvester to have a stable response and finite amount of energy harvested. Also, he 

underlined that indeed the maximum power transfer to the load requires matching 
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between the harvester electromechanical load and the electrical load. Finally, he also 

noticed that the power extraction strongly depends on the maximum allowed stroke 

of the transducer. For example, Mehdi’ Hendijanizade [87] has shown that, for limited 

range of motion of the moving mass, the optimal energy harvesting load differs from 

that of unconstrained seismic devices. 

As pointed by some authors (for example see Ref. [72]), for the piezoelectric 

vibration energy devices, the simplified lumped parameter model neglects some key 

aspects of the coupled physical system, such as the higher order mechanical and 

electrical effects. In particular, the contribution of the distributed stiffness and inertia 

effects is usually not taken into account [72]. Many of these aspects and 

oversimplifications are discussed and summarized in [88]. A modal model, called as 

Rayleigh Ritz type model [89], was proposed in [90], [91]. This model was derived 

starting from Hamilton’s Principle and modal expansion formulation for the beam 

vibration to obtain a discrete formulation in terms of modal amplitudes. Analytical 

solutions for the electromechanical piezoelectric model based on the modal expansion 

were given by [92], [93], along with experimental validation. Modal solutions are 

discussed also in [72], [94], [95], [96].  

To increase the power output and amplify the working bandwidth, researchers 

have explored different devices and configurations and have proposed a variety of 

theoretical models and solutions. Considering that the linear resonant harvesters are 

not good to harvest energy from broadband or frequency varying excitations, some 

authors focused their efforts on the non-linearities in vibration based energy 

harvesting and the common second order linear equations employed to descript the 

dynamic characteristics were modified to take into account nonlinear dynamic 

responses [97], [98], [99], [100], [101], [102], [103], [104], [105], [106]. Under the 

hypothesis of harmonic excitation, Boisseau et al. [99] showed the possibility to 

increase the frequency bandwidth in which the energy can be harvested by means of 

nonlinear springs. The study indicates that the output power can be increased up to 

48 % respect to the linear device. Maryam and Elliot [107] tried to extend the 

operational range of frequency excitation of an electromagnetic device introducing a 

cubic non-linear term for the viscous damper. Mann [108], [109] investigated a non-

linear inertial energy harvester composed by a series of magnets which interacting 

make the system by-stable, reducing the constitutive equations in form of a Duffing 

oscillator (see also Ref. [110]). Ibrahim et al. [111] studied the nonlinear response of a 

cantilever beam with piezoelectric patches in which is exposed to a magnetic force 

generated by two magnets placed on either side of the tip of the beam with opposite 
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poles. A generic approach to introduce a mathematical model for mechanical non-

linearities in systems of one or more degrees of freedom is discussed in detail in 

Ref.[100]. Also, non-linear Hysteresis phenomena for the piezoelectric devices is also 

taken into account in Ref. [112]. In addition to tonal excitations, these non-linear 

models have been further improved to consider as stochastic the ambient excitation 

[113], [114], [115], [116], [117], [118], [119], [120], [121], [122] (in particular see Chapter 

2 of [123] and Langley’s paper on mass law for nonlinear energy harvesters [114] ). In 

this respect several studies were focused on widening the frequency bandwidth of 

the harvesters. Several configurations were proposed, such as for example 

mechanical stoppers, multimodal arrays, linear and non linear mechanical-electrical 

elements or bi-stable structures are shown in [124], [125], [126]. A self tuning 

piezoelectric energy harvester was also proposed in [127]. Tuning using switching 

methods were proposed in [128]. 

Normally, the response of energy harvesters is investigated considering simplified 

second order mechanical models that encompass the electric circuit as a resistive 

impedance load. From the electrical point of view, the alternating voltage output 

generated from the inertial harvesters requires to be rectified by using a rectified 

bridge (AC-DC converter) and then a regulator (DC-DC converter) connected to a 

storage component. These electrical power aspects require detailed model as shown 

in Refs. [43], [44], [97], [129], [130]. These articles provide detailed models and studies 

on the practical implementation of the interface electronic devices and regulator 

circuits. The non-linear electric effects derived from the introduction of AC-DC 

converter and DC–DC pulsewidth modulation and other optimization techniques 

were also considered in Refs. [131], [132], [133], [134], [135], [136], [137], [138].  

 

 

1.7  VIBRATION ENERGY HARVESTING: SCALING SIZE 

Since the first studies on energy harvesting were presented in the late 1990s, 

researchers have considered a wide range of technologies, architectures, strategies, 

dimensions, materials and operation modes. It is therefore difficult to identify a 

unique figure of merit for such devices. In general the harvested power varies with 

the characteristic surface and/or volume ([28], [139]). Therefore despite the vast 

assortment of systems that have been investigated, vibration energy harvesters can 

be classified in two broad categories: micro-scale harvesters (normally with size           
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< 1 cm ) fabricated with micro-electro-mechanical System (MEMS) technology 

starting from batch silicon wafers and macro-scale harvesters (normally with size >1 cm ) assembled from discrete electro-mechanical components (springs, beams, 

block masses, magnets, coils, piezoelectric patches, etc.) [140]. In general, 

electromagnetic transducers are best suited for macro-scale seismic vibration energy 

harvesters [141], [142], which normally are composed by a coil-magnet cylindrical 

assembly (either with coil or magnet moving element) connected to each other either 

via helical springs or flexible cantilever beams (for example see Refs.[112], [143]). In 

fact as pointed in [67], [144], there is a practical dimension limit of the cross section 

and coil turns of the wire that can be used in the harvesting devices. An example of 

large size electromagnetic harvester used for civil scale structure and capable to 

produce 100 W with a 1kN of force at below 1Hz of frequency is proposed in [141]. 

Shen et al. [145] studied a macroscale pendulum-type electromagnetic harvester from 

low frequency structural vibration under earthquakes. Also, Simeone et al. [146] 

shown and demonstrated the effectiveness of an energy harvesting pendulum type 

with a level-dependent load. Another macroscale linear electromagnetic harvester 

installed in the structural cables of a bridge to scavenge the wind-induced vibration 

mechanical energy and able to produce a peak power of 233.49 mW is investigated in 

[147]. Nevertheless, a few micro-scale oscillatory electromagnetic harvester 

prototypes were also designed and fabricated using plane coils and tiny block 

magnets mounted on flexible links [74], [148], [149]. A silicon micromachined 

realization of such architecture with discrete magnet was published in 2007 by Serre 

[150]. The prototype proposed therein was able to reach a maximum power output of 

55 W for an excitation with 5.1 m amplitude at about 300 Hz (18 m/s²). In addition 

to classical architectures, many other micro-prototypes have also been investigated 

[76]. Two promising types of microscale magnetic generators have emerged from the 

literature: rotational and hybrid devices. Rotational generators operate under 

constant driving torque while hybrid devices convert linear to rotational motion by 

means of eccentric rotors. Powers from μW to ten’s of mW can be achived for inertial 

electromechanical harvesters of size 0.01 - 0.1  under tonal source acceleration of 

amplitude 10 m s⁄  and for a range of frequency comprised between 1-100 Hz [149]. 

A comprehensive summary of many  micro prototypes from literature is well 

summarized in Tables I, II, II in [74]. 

Moving to the piezoelectric transducers, these types of devices are better  suited 

for macro-scale seismic vibration energy harvesting [65], [80], [151], [152], [153], [154] 

which are normally composed by a small cantilever beam with a tip block mass and 
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piezoelectric patch thin transducers on either faces [152]. For example Xie et al. [155] 

has identified a set-up and derived a mathematical model for a piezoelectric harvester 

which collects electrical energy from the wave motion of the sea. Such prototype is 

composed by a host cantilever beam of 3 m length equipped with ten MFC piezo-

patches. It is able to collect up to 55 W for a sea wave of 3 m depth, 2 m height and 15 m length respectively. Hobeck and Inman [154] proposed the use of a set of 112 

flexible piezoelectric arrays of 30 cm length  in a wind tunnel to harvest the induced 

vibration energy flow of the air fluid. Gardonio and Zilletti [156] analysed the 

generation of power from an array of flexible stalks (300 x 25 x 0.25 mm) exposed to 

airflow. A smaller scale (5 c ) piezoelectric harvester with cantilever beam 

configurations have been also investigated [157]. Indeed, piezoelectric 

microgenerators have been studied in Refs. [94], [158], [159], [160], [161], [162], [163]. 

These micro-electromechanical systems are relatively simple to fabricate [81], [164]. 

In the last ten years the development of miniature piezoelectric devices fabricated 

with the MEMS technique has been greatly improved, particularly with respect of 

new materials and new structure design and optimization. The harvesting 

performances, expressed in terms of mW/c  of MEMS prototypes proposed in the 

literature between the years  2009 - 2017 are summarised in Table 2 of [81]. Power 

levels from 1 μW [165] to ten’s of mW are usually reached by such MEMS devices.   

Electrostatic transducers are instead ideal only for micro-scale MEMS seismic 

vibration energy harvesters [149], [166], [167], [168], [169]. Normally these devices are 

composed by outer frame and inner block structures connected via folded springs 

and equipped with large arrays of comb fingers forming electrostatic transducers that 

work either in transverse or shear modes [27]. Examples of electrostatic micro-

machined power generators are shown in [168] or [169], which can harvest 24 μW at 

10 Hz and 1 μW with about 0.03 g Hz⁄  of PSD vibration acceleration. 

 

 

1.8  SCOPE AND OBJECTIVE OF THE THESIS  

The scope of this thesis is to provide a comprehensive comparative study of vibration 

energy harvesting using electromagnetic and piezoelectric transducers. The study is 

focussed on macroscale transducers built assembling multiple components, which are 

fabricated from traditional materials using classical industrial processes (milling, 

bonding, soldering, printing, etc.). Recently, Mitcheson at al. [1] have presented a 
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comprehensive review on “Energy Harvesting From Human and Machine Motion for 

Wireless Electronic Devices”. 

In particular they provided a detailed overview of all technologies and studies 

carried out on kinetic energy harvesting and annotated towards the end of the article 

the following interesting, and to some extent surprising, observations on modelling 

and testing of prototype vibration energy harvesters: 

 

• “There has been significantly more work presented on electromagnetic 

generators than on the other two types”.  

 

• “The typical size of electromagnetic generators has been shrinking over the last 

decade”. 

 

• “Around half of the reported work contains information regarding models of 

microgenerators, the other half giving measured results of prototypes. There 

are six cases where results of a model and a prototype are presented; of these, 

the piezoelectric generator by Roundy et al. achieves the closest match 

between the model and measurements”. 

 

• “The designed operating frequency of most devices, independent of transducer type, 

is 50–200 Hz. Only three groups-Tashiro et al., Kulah et al., and our own-have 

attempted to design inertial micro- generators to operate at frequencies below 5 Hz”. 

 

• “There is a large variation in the amplitudes of the motion used to drive the 

generators, ranging from less than 1 nm to several millimeters. Generally, generators 

designed to work at higher frequencies are driven by lower displacement amplitude 

sources”.  

 

In response to these observations, particularly the parts highlighted in bold, the 

objective of this thesis is thus to develop and validate experimentally a consistent 

modelling framework and unified energy formulation that take into account all 

physical features of electromagnetic and piezoelectric transducers and can be 

effectively used to contrast the vibration energy harvesting efficiency, particularly 

with respect to the scale of the transducers. 
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1.9  CONTRIBUTIONS OF THE THESIS  

The main contributions of this thesis are: 

• Realization and testing of two prototype vibration energy harvesters having 

similar weights, volumes and fundamental natural frequencies.  

• Development of consistent lumped parameter models for electromagnetic and 

piezoelectric seismic and reactive vibration energy harvesters, which include 

the effects of eddy current damping and induction losses in the 

electromagnetic transducer and the effect of dielectric losses in the 

piezoelectric transducer. 

• Development of a unified formulation for the transducer constitutive 

equations and input/harvested power and efficiency parameters. 

• Accurate identification and validation of the mathematical models with 

measured mechanical impedance, electrical impedance and electrical to 

mechanical and mechanical to electrical transduction functions. 

• Consistent energy analysis for the input/harvested power and efficiency with 

electromagnetic and piezoelectric seismic and reactive harvesters. 

• Derivation of the scaling laws for electromagnetic and piezoelectric energy 

harvesters.  

• Identification of general guidelines regarding the potential applications of 

both technologies based on the power/efficiency performances and transducer 

dimensions.  

 

 

1.10  STRUCTURE OF THE THESIS  

The thesis is organised in five chapters as detailed below. 

CHAPTER TWO and THREE present the models, analytical formulations and 

simulations results respectively for the seismic and reactive electromagnetic and 

piezoelectric harvesters. The two chapters initially describe the electromagnetic and 

piezoelectric harvester prototypes considered in the study, summarizing their 

geometrical and physical properties. Consistent electromechanical lumped parameter 

models, which include eddy currents and dielectric losses are then derived and used to 

study and analyse the two vibration energy harvesters. A unified impedance formulation 

based on the constitutive electromechanical equations and energy analysis for the input 

harvested power and efficiency is then presented and validated experimentally. The 
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electric load conditions to maximise the vibration energy absorption from tonal vibrations 

of the base structure are also derived. Finally, the last section of chapter two also presents 

a comparative study based on the power harvested per unit stroke. The most important 

results are then summarised and commented. 

CHAPTER FOUR introduces the scaling study of the electromagnetic and piezoelectric 

seismic and reactive energy harvesters. The principal scaling laws of the mechanical and 

electrical components for both harvesters are first revisited. The scaling laws are obtained 

with reference to a single variable L, which identifies the typical linear dimension of the 

entire device. Starting from the lumped parameter model and impedance analysis 

introduced in Chapter 2, a power input – output and efficiency formulation in terms of 

non-dimensional coupling coefficients is obtained and specified under the hypothesis of 

tonal base vibrations tuned to the fundamental natural frequency of the two seismic 

harvesters. The effects of scaling on the efficiency and harvested power normalized to the 

volume of the devices are then investigated. A comparative section, which includes the 

scaling stroke analysis and summarises the scaling power-efficiency results is then 

presented. 

CHAPTER FIVE presents a summary of the presented studies and suggests ideas for 

future work. 
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2  
S E I S M I C  V I B R A T I O N  H A R V E S T E R S  

This chapter compares with simulations and experiments the principal characteristics 

of time-harmonic vibration energy harvesting with electromagnetic and piezoelectric 

seismic transducers. The two seismic transducers are designed and built in such a 

way as they have a) similar weights and similar volumes of the base components         

b) similar weights and similar volumes of the moving components c) the same 

fundamental natural frequency, that is about 20 Hz. The electromagnetic prototype is 

a commercially available linear electromagnetic harvester composed by discrete 

components (NCM02-17-035-2F). Instead, the piezoelectric device was assembled in 

laboratory using off the shelve components (block masses, beam, MFC piezoelectric 

patches). The study is focused on equivalent lumped parameter models and a 

consistent formulation of the constitutive electromechanical equations for the two 

transducers so that a unified energy formulation is obtained for the two harvesters. 

Both transducers are connected to either a resistive-reactive or a purely resistive 

harvesting impedance load. The content of this chapter is based on Ref. [93]. 

 

 

2.1  SEISMIC TRANSDUCERS 

Figure 2.1 shows: a) the pictures, b) the schematics and c) the lumped parameter 

models of (I) the coil-magnet and (II) the piezoelectric patch seismic transducers for 

vibration energy harvesting considered in this thesis. As shown in picture (a) and (b) 

the first prototype is formed by a magnetic cylindrical element, which is characterised 

by an inner cylindrical cut where it is housed a coil rigidly connected to the case of 

the transducer. The magnetic element is also connected to the case via soft axial 

springs, which allow relative motion between the coil and the magnet. The magnetic 

element is connected to the vibrating source [170]. The relative motion between the 

magnet and coil produces a back electromotive force, i.e. a voltage, at the terminals 

of the coil; vice versa, a current flow in the coil generates reactive forces on the 
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magnetic and on the coil-armature elements [104], [171], [172], [173]. As shown in 

figure (d) and picture (e) the second prototype harvester, is composed by a thin beam 

with one end fixed to the case and the other end connected to a tip block mass. The 

beam is equipped on the top and bottom side with two rectangular piezoelectric 

patches connected in parallel. The two piezoelectric layers are polarised in the same 

transverse upward direction and are electrically coupled in counter–phase parallel 

architecture. In this case the bending strain of the cantilever beam produces an electric 

displacement in the electrodes of the piezoelectric patches, and thus a current flow 

through the terminals when the patches are connected to the harvesting electrical 

circuit. Alternatively, the voltage generated at the terminals of the transducer 

produces a back bending strain effect on the cantilever beam.  

As summarised in Table 2-1 and Table 2-2 the two prototypes shown in pictures 

(a) and (d) of Figure 2.1 were designed in such a way as they have similar volume 

and similar mass of the base elements and similar volume and similar mass of the 

seismic elements. Also, the axial stiffness of the spiral springs in the electromagnetic 

harvester and the bending stiffness of the composite beam in the piezoelectric 

harvester are such that the two harvesters are characterised by similar fundamental 

natural frequencies, i.e. 20 Hz. As can be noticed in Figure 2.1 (a, d) and summarized 

in  Table 2-1 and Table 2-2, the slender beam piezoelectric seismic transducer occupies 

about five times the footprint area of the electromagnetic seismic transducer which 

has a compact cylindrical shape. Finally, the volume of the core magnet in the 

electromagnetic seismic transducer is about ten times than that of the two 

piezoelectric patches bonded on the beam substrate of the piezoelectric seismic 

transducer. 

The other list of data reported in Table 2-1 and Table 2-2 were obtained from 

examination of the components of the two harvesters (geometry, weights), from 

mechanical and electrical static measurements (mechanical stiffness and electrical 

resistive, inductive/ capacitive properties) and from the information given in 

datasheets of the electromagnetic (H2W NCM02-17-035-2F) and piezoelectric patch 

(MFC Type M8514-P1) transduction elements. In addition, missing data were 

identified from the measured mechanical and electrical impedances FRFs and two 

electromechanical transduction functions FRFs, which, have been obtained both as 

modulus-phase and real-imaginary FRF graph as will be shown in Sec. 2.5. 
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Figure 2.1: Pictures (a,d), functional drawings (b,e) and lumped parameter schematics 
(c,f), for the electromagnetic (left hand side) and piezoelectric (right hand side) 
seismic transducers. Common equivalent lumped parameter schematic for the two 
seismic transducers (g). 
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Table 2-1: Parameters of the coil magnet harvester. 

Parameters Value 

Base mass and volume (inner magnet) = ×    = . ×   

Proof mass and volume (outer ring and 

coil) 
= ×    = . ×   

Transducer total mass and total 

volume 
= ×     = . ×   

Transducer footprint area  = . ∙   

Magnet radius and length = .   = .   

Outer ring volume = . ×   

Outer ring electrical conductivity = . ×  /  

Magnet magnetization per unit length =  /  

Spiral springs equivalent stiffness =   /  

Fundamental natural frequency = .    

Viscous damping coefficient/ratio =  .   /     = .  

Eddy current damping coefficient/ratio = .   /    = .  

Equivalent damping coefficient/ratio = .   /     = .  

Electromagnetic transduction factor = .   /  

Coil resistance =    

Coil lossy inductance constant and       

exponent 
= .     = .  

Coil lossy inductance loss factor = .  
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Table 2-2: Parameters of the piezoelectric harvester. 

 Parameters Value 

Steel 

substrate 

Width and thickness =     =    

Length =    

Density =  ⁄  

Young’s modulus = ×  ⁄  

Mass and volume = ×    = . ×   

Piezoelectric 

layers 

Width and thickness =     = .    

length =    

Density =  ⁄  

Young’s modulus = ×  ⁄  

Strain/charge constant = − ×  ⁄  

Permittivity under constant stress = . ×  ⁄  

Electrical conductivity = . ×  /  

Electromechanical coupling factor =  .  

Mass and volume = . ×           = . ∙   

Lumped 

elements 

Base (block) mass and volume = ×           = . ×   

Proof (block) mass and volume = ×          = . ×   

Transducer total mass and total 

volume 
= ×     = . ×   

Transducer footprint area = . ∙   

Equivalent proof mass = ×    

Equivalent stiffness with the 

piezo-electrodes in short circuit 
=   /  

Additional equivalent stiffness 

with piezo-electrodes in open 

circuit 

∆ =  /  

Fundamental natural frequency 

(short circuit) 
=    

Equivalent viscoelastic damping 

coefficient and ratio 
= .   /  = .  

Equivalent piezoelectric 

transduction factor 
= − .   /  

Capacitance of the two 

piezoelectric layers 
= . ×    

 

 



 
 

24 

2.2  LUMPED PARAMETER MODEL 

The dynamic response of the two inertial transducers is briefly revised here 

considering the two equivalent lumped parameter models shown in the schematics 

(c) and (f) of Figure 2.1, which, for simplicity, are detailed respectively in Appendix 

A and Appendix B. These models are characterised by equivalent mechanical and 

equivalent electrical parts. These two parts are joined via a current-controlled force 

generator and a relative velocity-controlled voltage generator that identify the 

electromechanical transduction effects.  

Considering first the electromagnetic transducer, as shown in Figure 2.1 (c), the 

mechanical part is composed by a base mass (inner magnet) and a proof mass (outer 

ferromagnetic ring and coil assembly), which are connected to each other via a spring 

(spiral springs) and a damper (air and eddy currents damping), with in parallel an 

idealised current-controlled reactive force generator, whose strength is linked to the 

current flowing in the coil via a complex FRF. The damper accounts for the air 

damping that develops in the tiny gap between the coil and magnet and for the 

damping effect produced by eddy currents that develop in the ferromagnetic ring 

component of the transducer [174], [175], [176]. The sky-hook air damping produced 

on the outer surface of the moving ferromagnetic ring was found comparatively 

smaller than the air damping effect produced in the gap between the coil and the 

magnet and thus was assumed negligible in the model. Also, as synthesized in Table 

2-1, the electromagnetic seismic transducer at hand is characterised by a rather large 

eddy currents damping effect, which is about 3.4 times larger than the air damping. 

The electrical part is composed by an idealised relative velocity-controlled voltage 

generator, that produces a voltage per unit relative velocity between the coil and the 

magnet proportionally to a voltage-velocity transduction transfer function. This 

voltage source is connected in series to a resistor and a lossy inductor (inductive effect 

influenced by eddy currents that develops in the wiring of the coil ([177], [178], [179]).  

Similarly, for the piezoelectric transducer, as shown in Figure 2.1 (f), the 

mechanical part consists of a base mass (base block) and a moving mass (beam and 

tip block equivalent mass) connected to each other via a spring (beam modal bending 

stiffness) and a damper (beam Kelvin-Voight viscoelastic equivalent damping [72]) 

with in parallel a current-controlled reactive force generator, whose magnitude depends 

on the current input to the transducer via a transduction FRF. As discussed in Ref. 

[72], the air loading on the beam laminate produces a distributed sky-hook viscous 

damping effect, which, however, was found comparatively smaller than the 
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viscoelastic bending damping and, thus, was neglected in the model. The electrical 

part is composed by a relative velocity-controlled voltage generator, whose strength is 

proportional to the relative velocity between the moving and base blocks via a 

transduction FRF. This voltage generator is connected in series to a lossy capacitor 

component (piezoelectric layers characterised by dielectric losses [180], [181], [182], 

[183]).  

The mechanical and electrical parameters in the lumped element model for the 

coil–magnet inertial transducer are derived straightforwardly from inspection of the 

system shown in in Figure 2.1. Instead, the mechanical and electrical parameters in 

the lumped element model for the piezoelectric transducer require a more complex 

analysis of the electro-mechanical flexural response of the cantilever beam with the 

piezoelectric patches and the tip mass shown in Figure 2.1 (d). In brief, the flexural 

response of the beam was derived considering only the first flexural mode that 

characterise the flexural response of the beam-piezoelectric patches laminate and tip 

block mass. Thus, the lumped parameter model shown in the schematic of Figure 2.1 

(f) considers the physical mass and the modal mass, modal stiffness and modal 

damping of the first flexural mode of the clamped smart beam. These modal 

parameters are specifically normalised to allow the construction of the lumped 

parameter model shown in Figure 2.1 (f), which considers the physical base mass and 

the modal proof mass connected via the modal stiffness and modal damping. This 

requires the introduction of a virtual displacement  for the equivalent proof mass, 

which does not correspond to the effective physical displacement of the tip mass  

but it refers to a particular coordinate ̅ respect the clamped end of the beam. 

As one can readily notice, the two schematics in Figure 2.1 (c) and (f) present 

identical topologies of the mechanical and of the electrical parts. Therefore, the 

constitutive equations that govern the response of the two transducers and the energy 

formulation for the power harvested by the two transducers are derived in the 

following sections with reference to the common schematic shown in Figure 2.1 (g). 

 

 

2.3  CONSTITUTIVE EQUATIONS 

The constitutive equations are derived considering time-harmonic vibrations 

described with phasors given in the complex form (t) = Re ( )exp (j ) , where ( ) is the complex amplitude of the function,  is the circular frequency and              
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j = √−1. As normally done in vibration studies, the formulation will thus refer to the 

complex amplitudes ( ) of the time-harmonic functions ( ) and, for simplicity, the 

frequency dependence will be omitted. Considering the common equivalent lumped 

parameter model shown in Figure 2.1 (g), the electromechanical response of the two 

lumped parameter models can be expressed in the frequency domain with the 

following matrix expression: 

 

 = , (2.1) 

 

where, ,  are respectively the complex amplitudes of the force and velocity at the 

base of the seismic transducers and ,  are the complex amplitudes of the voltage 

and current across the terminals of the transducer. As can be deduced from the 

formulations presented in Appendices A and B, the mechanical and electrical 

impedance FRFs and the two electromechanical transduction FRFs are given by the 

following expressions 

 

 = = + , (2.2) 

 = = , (2.3) 

 = = , (2.4) 

 = = − , (2.5) 

 

where 

 

 = j , (2.6) 

 = j . (2.7) 

 

Also, for the coil-magnet transducer 

 

 = + j ,   (2.8) 

 = j + ,   (2.9) 
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 = + = j + + j , (2.10) 

 

while for the piezoelectric transducer 

 

 = 1j , (2.11) 

 = j + , (2.12) 

 = + = j + + j . (2.13) 

 

Considering first the electromagnetic seismic transducer, as discussed in Appendix 

A, ,  are the base and proof masses, , is the suspension stiffness and =+  is the equivalent damping coefficent, which is composed by two terms for the 

air damping  and the eddy curent damping  [174], [175], [176]. Also,  is the coil 

resistance while  is the coil lossy inductance [177], [178], [179], which is given by = (1 − j ), where  is the inductive loss factor. As shown in Appendix A, =sin( 2⁄ )  and = cos( 2⁄ ) sin( 2⁄ )⁄ , where the constants  and  are 

reported in Table 2-1: Parameters of the coil magnet harvester. Parameters of the coil 

magnet harvester were identified from the electric impedance of the electromagnetic 

seismic transducer. Moving next to the piezoelectric seismic transducer, as discussed 

in Appendix B,  is the base mass,  is the equivalent proof mass of the beam 

laminate and tip mass assembly and  is the equivalent viscoelastic damping 

coefficient. Also the stiffness is composed by two terms: = + Δ , where  and Δ   are the beam laminate and tip mass assembly equivalent stiffnesses when the 

electrodes are respectively in short and in open circuit. The additional stiffness Δ  is 

actually a complex term that includes also the effects of dielectric losses in the 

piezoelectric material. More specifically Δ =  where  is a stiffness term 

and = (1 − j )⁄ . Here  is the electromechanical coupling factor of the 

piezoelectric material [184] and (ω) ≅ ( ̅ )⁄  is the frequency dependent 

dielectric loss factor of the material, which, as shown in Appendix B, depends on the 

permittivity of the piezoelectric material in transverse direction under constant stress ̅  and the electrical conductivity of the piezoelectric material  [180], [181], [182], 

[183].  Also, = 1 −  and = 2 ( ) are the lossy capacitances of the 

two piezoelectric layers respectively under constant strain, i.e. = 0, and under 
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constant stress, i.e. = 0 [184]. To conclude, the transduction coefficients for the 

electromagnetic seismic transducer are given by: 

 

 = = , (2.14) 

 = = − , (2.15) 

 

where  is the reactive force produced on the coil and on the magnet components and = −  is the relative velocity between the coil and the magent. Also,  

 

 = , (2.16) 

 

is the electromagnetic transduction factor, where  is the magnetic flux density in the 

air gap between the coil and the magnet and  is the length of the winding [185], [186], 

[187], [188] . Alternatively, the transduction coefficients for the piezoelectric seismic 

harvester are given by: 

 

 = = j , (2.17) 

 = = j , (2.18) 

 

where, as discussed in Appendix B,  is the equivalent piezoelectric transduction 

factor for the bending strain produced by the first natural mode of the clamped beam 

laminated:  

 

 = ̅ ℎ + ℎ ( )( ̅). (2.19) 

 

Here, ( ) and ( ) = ( ) are the amplitude and slope of the first flexural mode 

of the composite beam and tip mass assembly with the base mass clamped. Also, ̅ 
identifies a specific point along the beam, which can be derived by solving the implicit 

Eq. (B.73) given in Appendix B. Finally, as discussed in Appendix B.1.1, ̅  is the 

stress/charge constant for the piezoelectric material derived with reference to Euler–

Bernoulli beam model [72]. Also,  is the width of the metallic substrate and 

piezoelectric layers and ℎ , ℎ  are respectively the thickness of the metallic substrate 
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and piezoelectric layers. According to Hunt’s notation [185], the transduction 

coefficients in Eqs. (2.14)-(2.15) and Eqs. (2.17)-(2.18) should read:  force per 

current and  electromotive force per relative velocity. Thus the  coefficient 

gives the reactive force exerted between the base and moving masses per unit current 

flowing in the transducer while the  coefficient gives the electromotive force, i.e. 

voltage, generated at the terminals of the transducer per unit relative velocity 

between the base and moving masses. The transduction coefficients for the 

electromagnetic seismic harvester assembly are given by real values with opposite 

signs: =  and = − . Instead, neglecting the effects produced by 

dielectric losses, the transduction coefficients for the piezoelectric layers are given by 

equal imaginary, frequency dependent, values: = = . Piezoelectric 

transduction occurs via strain rather than strain rate,[184], [186], [188]. Thus, since the 

formulation introduced above refers to strain rate, i.e. relative velocity between the 

base and moving masses in the lumped parameter model, the piezoelectric 

transduction coefficients are characterised by a 1 (j )⁄  factor as highlighted in Ref. 

[188]. 

The  and  FRFs in Eq. (2.1) represent the electromechanical transduction FRFs 

for both seismic transducers, which give the base force effect produced by the 

transducer per unit current flowing in the blocked seismic transducer, i.e. =/ | , and the electromotive force generated at the terminals of the transducer 

per unit velocity at the base of the open circuit seismic transducer, i.e. =/ | . Also, = / |  is the output electrical impedance of the blocked 

seismic transducer while = / |  is the input mechanical impedance of the 

open circuit seismic transducer.  

 

 

2.4  PRINCIPAL PROPERTIES OF THE TWO TRANSDUCERS  

Before moving on to the analysis of the mechanical impedance, electrical impedance 

and electromechanical transduction FRFs, the constitutive Eqs.(2.1) are examined 

here to highlight two important intrinsic features that characterise the 

electromagnetic and piezoelectric seismic transducers considered in this study. The 

first is related to reciprocity[184], [185], [186] ,[188], which occurs when the so called 

electro-mechanical and mechano-electrical impedances defined here,  
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 = = − , (2.20) 

 = = − , (2.21) 

 

are equal, that is 

 

 = . (2.22) 

 

Considering first the electromagnetic seismic transducer, according to Eqs.(2.3), (2.4) 

and (2.14), (2.15), (2.16), the electromechanical transduction FRFs have same 

magnitude but opposite sign, i.e. = −  such that the impedance Eqs.(2.20) and 

(2.21) are equal in magnitude but reversed in algebraic sign, i.e. = −  . Thus, 

the electromagnetic seismic transducer is “antireciprocal”. In contrast, considering 

the piezoelectric seismic transducer, according to Eqs.(2.3), (2.4) and (2.17), (2.18), 

(2.19) the electromechanical transduction FRFs have same magnitude and same sign, 

i.e. = , which indicates that =  and thus the piezoelectric seismic 

transducer is “reciprocal”. These properties are often referred to the skew–symmetry 

or symmetry of the constitutive equations. Indeed, for the two transducers at hand, the 

constitutive equations given in Eq.(2.1) can be expanded in the following matrix 

expressions,  

 

 =
⎣⎢⎢
⎢⎡ +

− + ⎦⎥⎥
⎥⎤ , (2.23) 

 =
⎣⎢⎢
⎢⎡ +

+ ⎦⎥⎥
⎥⎤ , (2.24) 

 

which highlight that the electromagnetic seismic transducer is skew–symmetric, i.e. the 

off diagonal electromechanical transduction FRFs in the matrix of Eq.(2.23) have 

equal magnitude and opposite sign, while the piezoelectric seismic transducer is 

symmetric, i.e. the off diagonal electromechanical transduction FRFs in the matrix of 

Eq.(2.24) have equal magnitude and equal sign. In other words, the electromagnetic 

seismic transducer has irreversible electromechanical transduction FRFs whereas the 
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piezoelectric seismic transducer has reversible electromechanical transduction FRFs 

and thus the former is an antireciprocal transducer while the latter is a reciprocal 

transducer. However, it should be highlighted that, as discussed by Hunt [185] and 

other authors, the sign reversal in the electromechanical transduction FRFs of the 

electromagnetic seismic transducer arises from a shortcoming of the right-hand screw 

sign convention used to define the positive directions of the physical variables that 

describe the electromagnetic transduction phenomenon and from the choice of the 

independent variables in Eqs.(2.23) and (2.24) [189]. 

The second aspect worth considering is the fact that the expressions of all four 

FRFs in the constitutive equations for the two transducers include the 1⁄  second 

order term, which magnifies the amplitudes of the four FRFs in correspondence of 

the fundamental resonance frequency of the seismic transducers. Therefore, it is 

expected that the mechanical-to-electrical and electrical-to-mechanical energy 

conversions are particularly effective at the fundamental resonance frequency of the 

transducers. Likewise, the mechanical and electrical impedance FRFs are likely to be 

largely affected by the mechanical resonant response of the seismic transducers in 

correspondence of the fundamental resonance frequency of the seismic transducers.  

 

 

2.5  IMPEDANCE AND TRANSDUCTION FRF 

The simulated and measured 10 Hz – 1 kHz spectra of the mechanical and electrical 

impedances and the two electromechanical transduction FRFs that form the 

constitutive Eq.(2.1) for the electromagnetic and piezoelectric seismic transducers 

shown in Figure 2.1 are now analysed. To highlight in detail all the features that 

characterise the four FRFs of the two transducers, both modulus-phase and real-

imaginary graphs are presented and examined. The simulated FRFs given in Eqs. 

(2.2)-(2.5) have been derived using the physical parameters summarised in Table 2-1 

and Table 2-2 that were identified from the two transducers depicted in Figure 2.1 (a, 

b). At frequencies below 10 Hz the base mass and moving mass move approximately 

in phase and no power can be harvested. Also, for frequencies greater than 1 kHz, the 

dynamic response of the two harvesters is greatly reduced and so the energy 

harvesting. Therefore, throughout this thesis, the simulations and experimental 

results will be shown in frequency ranges comprised between 10 Hz and 1 kHz. 
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At first, the simulated FRFs for the electromagnetic seismic transducer depicted by 

the solid blue lines in Figure 2.2 and Figure 2.3 are examined. As can be deduced from 

Eq. (2.2), the mechanical impedance  is defined considering the coil in open circuit, 

i.e. = 0, in which case there is no electromechanical coupling between the coil and 

magnet and therefore the impedance function entirely depends on the mechanical 

response of the transducer. As can be noticed from the solid blue line in Plot (a) of 

Figure 2.2 and Figure 2.3, the mechanical impedance FRF is characterised by low- and 

high-frequency asymptotic mass behaviours, which are proportional respectively to 

the total mass of the transducer +  and to the base mass of the transducer . 

These two asymptotic behaviours converge to a peak at the fundamental resonance 

frequency of the transducer, at about 19.5 Hz, and close to a smooth antiresonance 

trough, at about 36 Hz. The transition between the two mass effects is effectively 

smoothened by the significant eddy currents damping effect that characterises the 

transducer.  The phase starts at +90° and, due to the relatively high damping effect 

and to the vicinity of the resonance and antiresonance frequencies, undergoes only a −90° phase lag and then a +90° phase lead, respectively at the resonance and 

antiresonance frequencies, such that at higher frequencies, it levels at +90°. As 

discussed in Refs. [190], [191], at low frequencies below the fundamental resonance 

frequency at 19.5 Hz, the base and seismic masses of the transducer oscillate in phase 

as if they were a solid body and thus produce a reactive inertial impedance effect 

proportional to the total mass of the transducer. At high frequencies, above the 

antiresonance at 36 Hz, the seismic mass is characterised by rather little oscillations 

compared to those of the base mass such that it acts as a seismic reference point for 

the transducer. Therefore, also at higher frequencies, the mechanical base impedance 

is characterised by a reactive mass impedance effect, in this case proportional to the 

base mass of the transducer, i.e. mass of the inner magnetic element. At frequencies 

close to the resonance frequency at 19.5 Hz, the base and seismic masses undergo 

counter-phase oscillations [190], [191], whose amplitude is however limited by the 

large eddy currents damping effect. According to Eq.(2.5), the electrical impedance 

 is characterised by the superimposition of two components: the coil resistive-

inductive impedance  and the electromechanical impedance / . The electrical 

impedance of the coil  is characterised by a resistance  in series with a lossy 

inductance  that takes into account the effect of eddy currents that develops in the 

coil wire of the transducer [177], [178] , [179]. 

As can be noticed in Plot (d) of Figure 2.2 and Figure 2.3, at low frequencies below 

the cut off frequency = (2 )⁄ = 805 Hz, the electric impedance  is 
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characterised by a real part, which is controlled by the resistive effect  of the coil 

only. At higher frequencies above 805 Hz, the lossy inductive component  becomes 

relevant such that the electric impedance  is characterised by both real and 

imaginary parts that, as discussed in Appendix A, rise proportionally to . . As can 

be noted in Plot (d) of Figure 2.2 and Figure 2.3, the second term due to the 

electromechanical impedance /  becomes relevant in correspondence of the 

transducer fundamental resonance frequency and produces a resonance peak at 

about 19.5 Hz, which confirms one of the characteristic properties for seismic 

transducers discussed in Section 2.4. As found for the mechanical impedance , the 

resonance peak is smoothened by the large eddy currents damping effect that 

characterises this electromagnetic seismic transducer.  

 

 

Figure 2.2: Modulus-phase diagrams of the four characteristic FRFs for the 
electromagnetic seismic transducer. Simulated (solid blue line) and measured (dotted 
black line) FRFs. 
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As discussed in Section 2.4, the electromagnetic transducer is skew-symmetric, i.e. 

antireciprocal; thus, the electromechanical transduction functions  and , given 

respectively by Eqs.(2.3), (2.4) have the same modulus and opposite phase or, 

alternatively, inverted real parts and inverted imaginary parts. Indeed, as can be 

noticed in Plots (b) and (c) of Figure 2.2 and Figure 2.3, at low frequencies the moduli 

of  and  rise proportionally to  towards a peak at the fundamental resonance 

frequency of the seismic transducer, i.e. 19.5 Hz. Also in this case, the resonance peak 

is smoothened by the significant eddy currents damping effect. At frequencies above 

50 Hz, the modulus levels to a constant value such that the seismic transducer both 

generates a constant force per unit current and produces a constant voltage source 

per unit relative velocity of the proof mass with respect to the case. 

 

 

Figure 2.3: Real-imaginary diagrams of the four characteristic FRFs for the 
electromagnetic seismic transducer. Simulated (solid blue line) and measured (dotted 
black line) FRFs. 
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The phase spectra of  and  start respectively at +180° and 0°, and in 

correspondence of the resonance frequency undergo a −180° phase lag. Thus, for this 

transducer, the constant force-current or voltage-stroke velocity transduction effects 

are characterised by active power transfer properties. In particular, at frequencies 

higher than the fundamental resonance frequency of the seismic transducer, the 

constant force-current or voltage-stroke velocity transduction effects are 

characterised by a negative sign with respect to the notation indicated in the lumped 

parameter model, which indicates an opposite flow of power with respect to the 

notation indicated in the lumped parameter model (c) of Figure (2.1. It is important 

to emphasise that, as discussed in Section (2.4), this apparent mismatch of power flow 

is merely due to the right-hand screw sign convention used to define the positive 

directions of the physical variables that describe the electromagnetic transduction 

phenomenon [185]. 

The validity of these simulation results was verified against measured FRFs taken 

on the prototype transducer shown in Figure 2.1 (a). Appendix F lists the equipment 

and shows the experimental set-up used to measure the characteristic FRFs of the two 

transducers. The FRFs of the mechanical and electrical impedances,  and , and 

of the two electromechanical transduction functions,  and , were measured in 

the frequency range between 10 Hz and 1 kHz. As can be noticed by contrasting the 

dotted black lines (measurements) and the solid blue lines (simulations) in Figure 2.2 

and Figure 2.3, the experimental FRFs overlap rather well with the simulated FRFs. 

There are just a couple of small glitches in the four measured FRFs between 35 and 45 

Hz, probably caused by the presence of small rocking vibration modes of the 

suspended ferromagnetic ring and coil assembly, which are not taken into account in 

the model. Also, Plot (a) in Figure 2.3 shows two additional sharp resonance peaks in 

the frequency range comprised between 800 and 1000 Hz. These are probably due to 

local flexural modes of the two spiral springs that hold together the outer 

ferromagnetic ring and coil assembly with the inner magnetic element of the 

transducer, which were also not taken into account in the model.  Finally, Plots (b) 

and (c) in  Figure 2.2 and Figure 2.3 show that, with respect to the simulated results, 

the measured electromechanical transduction FRFs  and  are characterised by a 

small phase divergence at higher frequencies, which is related to a mismatch between 

the measured and simulated imaginary parts. This is due to higher order dynamic 

effects of the transducer occurring at frequencies just above the 1 kHz upper limit of 

the plots in Figure 2.2 and Figure 2.3, which are not considered in the model used to 

simulate the characteristic FRFs of the electromagnetic seismic transducer. 
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The simulated FRFs for the piezoelectric seismic transducer depicted by the solid 

blue lines in  Figure 2.4 and Figure 2.5, are now examined. The spectrum of the 

mechanical base impedance , given by Eq.(2.2), is very similar to that derived for 

the electromagnetic transducer. Indeed, as shown by the solid line in Plot (a) of Figure 

2.4 and Figure 2.5, it is characterised by mass behaviours at low and high frequencies, 

proportional respectively to the total mass +  and to the base mass  of the 

cantilever beam with piezoelectric transducers and tip mass, which are linked by a 

sharp resonance peak at about 20 Hz and a narrow antiresonance trough at about      

33 Hz. In this case, the phase starts at +90° and undergoes a full −180° phase lag at 

the fundamental resonance frequency at about 20 Hz and a full +180° phase recovery 

at the antiresonance frequency at about 33 Hz, such that, at higher frequencies, it 

levels at +90°. In this case the fact that the impedance  is defined for open circuit 

condition, i.e. = 0, implies that, the stiffness term = + Δ  in the expressions 

(2.12), (2.13) of the impedances ,  , is characterised by two components.  

 

 

Figure 2.4: Modulus-phase diagrams of the four characteristic FRFs for the 
piezoelectric seismic transducer. Simulated (solid blue line) and measured (dotted 
black line) FRFs.  
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The first,  is due solely to the mechanical bending stiffness of the beam laminate 

and tip mass assembly produced when the electrodes are in short circuit, whereas the 

second Δ  encompass the additional back electromechanical stiffness effect that is 

produced when the electrodes are in open circuit. Thus, the second term tends to 

slightly enhance the bending stiffness of the composite beam with the electrodes in 

short circuit, such that, as shown in Ref. [192], the fundamental resonance frequency 

of the seismic transducer is only slightly higher than that measured with the 

piezoelectric layers in short circuit. Also, as shown in Appendix B, the equivalent 

stiffness Δ  is actually a complex term, which encompass the energy dissipation effect 

produced by the lossy dielectric property of the piezoelectric material. 

 

 

Figure 2.5: Real-imaginary diagrams of the four characteristic FRFs for the 
piezoelectric seismic transducer. Simulated (solid blue line) and measured (dotted 
black line) FRFs. 

 

As discussed in Ref. [170] and shown in Appendix B.2, the resistive effect produced 

by dielectric losses is relatively small and confined to low frequencies. Thus, the 
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principal energy dissipation effect in this seismic transducer is due to the viscoelastic 

loss in the composite beam. This effect is however, much weaker than the air and 

eddy currents damping effects present in the electromagnetic seismic transducer. 

Therefore, as can be noticed by contrasting Figure 2.2 (a) and Figure 2.4 (a), compared 

to that for the electromagnetic seismic transducer, the mechanical impedance function 

for the piezoelectric seismic transducer is characterised by a sharper resonance peak 

followed by a narrower antiresonance trough. According to Eq. (2.5), as found for the 

electromagnetic seismic transducer, the electrical impedance  is given by the 

superposition of two terms, that is the piezoelectric layers capacitive impedance  

and electromechanical impedance . In this case, as described in Appendix B 

and shown in Figure 2.1 (f), the electrical impedance =  is characterised by a 

lossy capacitor = 1 − . Plot (d) of Figure 2.4 shows a typical capacitive 

impedance function, with a modulus that drops proportionally to  and a phase 

equal to −90°. However, Plot (d) of Figure 2.5 highlights that, at low frequencies, 

around and below the fundamental resonance frequency of the seismic transducer at 

about 20 Hz, the resistive effect due to the dielectric losses becomes relevant. Also in 

this case, as discussed in Section 2.4, Plots (d) in  Figure 2.4 and Figure 2.5 show that 

the second term due to the electromechanical impedance  produces a small 

resonance peak at the fundamental resonance frequency, at about 20 Hz. 

As anticipated in Section 2.4, the piezoelectric seismic transducer is symmetric, i.e. 

reciprocal, thus the electromechanical transduction coefficients T  and T , given 

respectively by Eq.(2.3) and Eq.(2.4), have equal modulus and equal phase. The 

spectra of the electromechanical transduction coefficients T  and T  for the 

piezoelectric seismic transducer greatly differ from those found for the 

electromagnetic transducer. In fact, at low frequencies, the modulus rises 

proportionally to  towards a sharp resonance peak at the fundamental resonance 

frequency of the transducer at about 20 Hz, whose amplitude is controlled by the 

relatively small viscoelastic damping effect in the beam laminate. At higher 

frequencies, the modulus decreases proportionally to . The phase spectra of both T  and T  start at −90° and undergo a −180° phase lag in correspondence to the     

20 Hz fundamental resonance frequency. Thus, with this transducer, the constant 

force-current or voltage-stroke velocity transduction effects are characterised by 

reactive power transfer effects. This characteristic is due to the mechanical-to-

electrical and electrical-to-mechanical transduction effects of piezoelectric materials, 
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which are respectively proportional to strain and charge rather than strain rate and 

current.  

As done for the coil-magnet transducer, the validity of these simulation results was 

checked against measured FRFs taken on the prototype transducer shown in Figure 

2.1 (d). The experimental setup and equipment used to produce these measurements 

are shown in Appendix F. The FRFs of the mechanical and electrical impedances,  

and , and of the two electromechanical transduction functions,  and , were 

measured in the frequency range between 10 Hz and 1 kHz. In this case, contrasting 

the dotted black lines (measurements) and the solid blue lines (simulations) shown in 

Figure 2.4 and Figure 2.5, it is noted that the simulated FRFs reproduce quite closely 

the measured FRFs up to about 90 Hz. At higher frequencies the measured FRFs 

follow the asymptotic behaviours of the simulated FRFs, although they are 

characterised by additional resonance peaks and antiresonance troughs, particularly 

in the , ,  FRFs. These new features are due to the dynamics of higher order 

flexural modes of the composite beam with the tip block, which are not taken into 

account in the model used to derive the four FRFs given in Eqs.(2.2) - (2.5). With 

respect to the symmetry (i.e. reciprocity) feature that characterises this seismic 

transducer, the measured ,  FRFs overlap quite well. There is just a very little 

mismatch in correspondence of the resonance peak at about 80 Hz and a somewhat 

more marked mismatch between 100 and 250 Hz, where the  FRF is characterised 

by two additional resonance peaks with respect to the  FRF. These two additional 

resonance peaks are related to torsional modes of the composite beam, which, due to 

the non-perfect alignment of the piezoelectric layers with the longitudinal axis of the 

beam substrate, are excited when the  FRF is measured. Nevertheless, the 

comparison between simulated and measured FRFs indicate that the model proposed 

in this study accurately reproduce the mechanical and electrical impedance functions, 

 and , and the two electromechanical transduction functions,  and , of the 

piezoelectric transducer up to about 70 Hz. Thus, the model can be suitably used to 

predict the power absorbed by the piezoelectric seismic transducer in correspondence 

to its fundamental resonance frequency where, as will be shown in Section 2.6, the 

maximum energy harvesting occurs. 
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2.6  ENERGY ANALYSIS  

Since the constitutive equations for the two seismic transducers were derived in the 

same form, a unified energy formulation is introduced in this section to study three 

key parameters necessary to characterise the energy harvesting properties with the 

electromagnetic and the piezoelectric seismic transducers, that is: first, the power 

harvested; second, the power input and third, the efficiency. These functions are 

derived for the cases where the electromagnetic and piezoelectric seismic transducers 

are connected to electrical harvesting loads characterised either by complex or real 

optimal impedance functions. To this end, the two seismic electromechanical 

transducers are conveniently represented with the equivalent schematic shown in 

Figure 2.6 [185]. The scheme is formed by a two port (four terminal) network 

comprising a mechanical mesh with input variables  and  and mechanical 

impedance , which is coupled to an electrical mesh with input electrical variables 

 and  and electrical impedance  through a black box called transducer having 

electromechanical transduction coefficients  and . The energy harvesting 

configuration is then completed by connecting to the electrical terminals the 

impedance of the harvesting load  and considering an ideal mechanical velocity 

source  acting at the base of the two seismic transducers. To fully characterise the 

two seismic harvesters, the power harvested, power input and efficiency is also 

analysed with respect to the stroke of the two transducers. Indeed, as anticipated in 

the introduction and described in Refs. [86], [107], [193], [194] for example, non-linear 

effects are often employed to operate the harvesters at their maximum allowed 

strokes so as to make the most of power harvesting for a wide range of amplitudes of 

the ambient vibrations. 

 

 

Figure 2.6: Equivalent schematic representation of the two seismic electromechanical 
transducers connected to the harvesting electrical load. 

 

The results presented in the following section are based on the spectra of the optimal 

impedance harvesting loads and the spectra of the power harvested, of the power 
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input and of the efficiency. Before moving on to the analysis of these graphs, it is 

important to recall that this study is focussed on time-harmonic energy harvesting. 

Therefore, the spectra of the optimal impedance of the harvesting load  should not 

be interpreted as the Power Spectral Densities (PSD) of the harvesting loads. On the 

contrary, they give the values of the complex impedance that should be implemented 

to guarantee the maximum energy harvesting with the two seismic harvesters for a 

given excitation frequency. Also, it is important to anticipate that the graphs 

presented and analysed in the following three sections are all characterised by two 

spectra, both of which were derived from simulations using either the analytical 

expressions (solid blue lines) or the measurements (dotted black lines) of the four 

constitutive FRFs, , , , , that characterise the two transducers as depicted 

in  Figure 2.2 - Figure 2.3 and in Figure 2.4 - Figure 2.5. The latter results are quite 

important since, although obtained from “off line experiments”, they give detailed 

indications on the effective power harvested and effective power input of the two 

prototype seismic harvesters shown in Figure 2.1 (a) and Figure 2.1 (d) that have been 

considered in this study. 

 

 

2.7  HARVESTED POWER 

For time-harmonic vibrations, the time averaged harvested power is given by 

 

 = lim→ 1 ( )d , (2.25) 

 

where the instantaneous harvested power is given by  

 

 ( ) = ( ) ( ), (2.26) 

 

and ( ), ( ) are the voltage across and current through the harvesting load. 

Assuming time-harmonic functions, the following impedance relation holds for the 

harvesting element: 

 

 = − , (2.27) 
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where  is the electrical impedance of the harvesting circuit. Also, considering the 

electric mesh of the harvesters shown in Figure. 2.6 and recalling that the transducers 

yield a voltage 

 

 = , (2.28) 

 

the harvesting current can be derived straightforwardly by analysing the mesh with 

Kirchhoff’s voltage law, which gives: 

 

 = − + . (2.29) 

 

Thus, for harmonic vibrations, the time average harvested power is derived from Eqs. 

(2.25) to (2.29) as follows:  

 

 = 12 Re | | = 12 Re − + | | . (2.30) 

 

Eq.(2.30) suggests that the harvested power depends on the impedance of the 

harvesting circuit. The complex impedance that maximizes the harvested power at 

each frequency can be derived using Fermat’s theorem on the stationary points for n-

dimensional functions [195], which, in this case, sets the following two conditions: 

 

 
∂∂Re = 0 and  ∂∂Im = 0 . (2.31a,b) 

 

Solving Eq.(2.31) leads to the following condition for the optimal impedance of the 

harvesting circuit:  

 

 = ∗ , (2.32) 

 

where * is the complex conjugate operator. The maximum for the harvested power  

is thus obtained when the electric impedance of the harvesting circuit  is the 

complex conjugate of the electrical impedance of the freely suspended seismic 

transducer  given in Eq.(2.5). This result is in line with the maximum power 

transfer theorem [195], which, assuming time-harmonic functions, states that a load 
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collects the maximum amount of power from a source when its resistance is equal to 

the internal resistance of the source and when the imaginary part of the impedance 

of the load has opposite sign than the imaginary part of the impedance of the source. 

Such optimal complex impedance can be produced in practice with a resistance and 

inductance in series. When the reactive part of the optimal impedance is very large 

such that it cannot be generated in practice with passive electrical components, active 

circuits involving operational amplifiers could be used, although this may greatly 

limit the net harvested power and thus turn out also impractical. 

Substituting the optimal condition for  given in Eq.(2.32) into Eq.(2.30), the 

maximum harvested power results:  

 

 = 18 | |Re | | , (2.33) 

 

which, using the formulation presented in Section 2.3, can be specified respectively 

for the electromagnetic and for the piezoelectric seismic harvesters. It should be 

highlighted that Eq.(2.33) is obtained under the assumption that the seismic devices 

can withstand any stroke. Thus, no restrictions on their range of the base vibration 

are assumed. As discussed in Refs. [87], [146] in practical devices the maximum 

relative displacement is limited, thus the formula in Eq.(2.33) cannot be used and 

Eq.(2.32) should be modified in order to consider this constrain.  

 

 

Figure 2.7: Comparison between the simulated (solid blue line) and measured (dotted 
black line) spectra of the Real and Imaginary parts of the optimal impedance = ∗  
of the harvesting circuits for (a) the electromagnetic and (b) the piezoelectric seismic 
harvesters. 
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Figure 2.7 shows the real and imaginary parts of the simulated (solid blue lines) and 

measured (dotted black lines) impedances of the harvesting load = ∗  that would 

maximise the harvested power at each frequency with the electromagnetic seismic 

transducer (Plot a) and with the piezoelectric seismic transducer (Plot b). As already 

observed in Section 2.5, the simulated spectra corresponds fairly well with those 

derived from the measured FRFs of the electrical impedance . Plot (a) indicates 

that, when the electromagnetic seismic transducer is used, the impedance of the 

harvesting load should be characterised by a real positive part whose amplitude 

peaks in correspondence of the transducer fundamental resonance frequency and by 

an imaginary part with amplitude that moves from negative to positive values, and 

thus becomes zero, in correspondence of the fundamental resonance frequency of the 

transducer. At higher frequencies, above the cut off frequency at 805 Hz where the 

lossy inductive effect of the coil winding becomes relevant, the real positive part 

gradually rises while the imaginary part turns again to progressively larger negative 

values. As discussed in Section 2.5, the amplitude of the real part peak is controlled 

by the large eddy currents damping that characterises this electromagnetic seismic 

transducer. As will be discussed below and in Section 2.10, this is a very important 

feature, since it sets the maximum energy that can be harvested with the 

electromagnetic seismic transducer at the fundamental resonance frequency. 

Alternatively, Plot (b) shows that, when the piezoelectric seismic transducer is used, 

the impedance of the harvesting load should be characterised by both real and 

imaginary positive parts that uniformly decrease as the frequency rises, apart from a 

small peak discontinuity in correspondence of the fundamental resonance frequency 

of the transducer. Here, the dielectric losses in the piezoelectric layers play a key role 

in the energy harvesting. In fact, as discussed below and detailed in Appendix B.2.1, 

if they were not taken into account, apart from frequencies close to the fundamental 

resonance frequency of the transducer, the real part of the optimal impedance of the 

harvesting load would rapidly tend to zero. This would lead to the idealised case 

where the same level of maximum power harvesting would be possible for any 

excitation frequency [92], [93], [196]. Thus, it is rather important the model for the 

piezoelectric seismic harvester includes a complex capacitance that accounts for the 

dielectric losses in the piezoelectric layers. To conclude this analysis, contrasting the 

two Plots in Figure 2.7, it jumps out that the real/imaginary components of the 

optimal harvesting impedance for the piezoelectric seismic transducer are three to 

four orders of magnitude greater than the real/imaginary components of the optimal 

harvesting impedance for the electromagnetic seismic transducer. Also, the spectra of 
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the optimal resistive impedance of the harvesting load,  simulated from the 

analytical expressions for the constitutive FRFs correspond fairly well with those 

derived from the measured FRFs of the electrical impedance . 

 

 

Figure 2.8: Spectra of the power harvested with reference to a 1g base acceleration for 
(a) the electromagnetic and (b) the piezoelectric seismic harvesters with optimal 
harvesting impedances = ∗  simulated using either the analytical expressions 
(solid blue lines) or the measurements (dotted black lines) of the four constitutive 
FRFs, , , , . 

 

Figure 2.8 shows the simulated spectra of the 10 Hz to 1 kHz power harvested per 1g 

base acceleration with the electromagnetic seismic harvester (Plot a) and with the 

piezoelectric seismic harvester (Plot b) when the harvesting circuits are characterised 

by the optimal complex impedance = ∗  (the symbol 1g is hereafter used as 

standard acceleration due to gravity, i.e. 1g = 9.80665 ⁄ ). Plot (a) shows that 

when the harvesting circuit implements at each frequency the optimal impedance 

derived in Eq.(2.32) and shown in Plot (a) of Figure 2.7, the spectrum of the harvested 

power is characterised by a smooth peak centred at the fundamental resonance 

frequency of the seismic transducer, with a maximum level of the harvested power 

equal to 33 mW/1g. According to Plot (a) in Figure 2.7, the maximum energy 

harvesting is thus obtained with a purely resistive load of about 75.5 Ω. The spectra 

of the harvested power simulated from analytical FRFs expressions (solid blue lines) 

and measured FRFs (dotted black lines) perfectly overlap in the whole frequency 

range, which confirms the validity of the analytical expressions derived for the 

constitutive FRFs of the electromagnetic harvester in Section 2.3 and Appendix A. 

According to Eq.(2.33), the time average harvested power depends on the electrical 

impedance  and the electromechanical transduction function , which, as 



 
 

46 

discussed in Sections 2.4 and 2.5, at the fundamental resonance frequency of the 

transducer, are controlled by damping, in particular the eddy currents damping 

effect. Thus, the maximum level of power that can be harvested with the 

electromagnetic seismic transducer is controlled by the eddy currents damping.  

Moving to the piezoelectric harvester, Plot (b) of Figure 2.8 shows that when the 

harvesting circuit implements at each frequency the optimal impedance derived in 

Eq.(2.32) and depicted in Plot (b) of Figure 2.7, the spectrum of the harvested power 

is characterised by a sharp peak at the fundamental resonance frequency of the 

seismic transducer, with a maximum level of the harvested power equal to 700 mW/1g. In this case, according to Plot (b) of Figure 2.7, the maximum energy 

harvesting is obtained with a resistive and reactive load of 2.3 × 10  Ω and 4.5 × 10  Ω 

respectively. Contrasting the spectra of the harvested power simulated from 

analytical expressions (solid blue lines) and measurements (dotted black lines) of the 

four constitutive FRFs , , , , it can be easily noted that they overlap only 

up to about 80 Hz. Indeed, as observed in the analysis of the constitutive FRFs 

presented in Figure 2.4 and Figure 2.5, the analytical expressions for the constitutive 

FRFs of the piezoelectric transducer derived in Section 2.2 and Appendix B do not 

reproduce higher frequencies dynamic effects due to higher order natural modes of 

the composite beam and tip block, which are instead encompassed in the measured 

FRFs. Thus, as shown by the dotted black line in Plot (b) of Figure 2.8, the spectrum 

of the harvested power is characterised by two additional sharp peaks at 267 Hz and 

720 Hz where the harvested power is about 300 mW/1g and 60 mW/1g respectively. 

According to Plot (b) in Figure 2.7, the impedance of the harvesting load at these two 

frequencies is much smaller than that in correspondence of the fundamental 

resonance frequency. For instance, at 267 Hz, it should be characterised by a resistive 

load of 2.2 × 10  Ω and a reactive load of 5 × 10  Ω. Thus, given that the level of 

harvested power at the first and second resonance frequencies is not far away, it may 

result more practical setting the harvester to work in correspondence of its second 

resonance frequency. This would be particularly the case, if the piezoelectric layers 

were dimensioned and shaped in such a way as to efficiently detect the second natural 

mode of the composite beam and tip mass [197]. To conclude the analysis of Plot (b) 

in Figure 2.8, it is worth noting how the spectrum of the harvested power simulated 

from measured FRFs (dotted black line) is characterised by some anomalies such has 

narrow drops or small crests that are not related to antiresonance and resonance 

effects. This problem arises from the fact that the spectrum has been simulated from 

measured FRFs, which, although the spectra shown in Figure 2.4 and Figure 2.5 looks 



 
Seismic Vibration Harvesters 

47 

impeccable, still are characterised by small imperfections that, as discussed in Ref. 

[198], produce the glitches observed in the power harvested spectrum depicted by the 

dotted black line in Plot (b) of Figure 2.8. Nevertheless, the simulation results 

accurately reproduce the spectrum of the energy harvested at low frequencies in 

correspondence to the fundamental resonance frequency of the transducer. As 

anticipated above, this result is not trivial since it requires an appropriate modelling 

of the dielectric losses in the piezoelectric patch transducers. In fact, if they were not 

taken into consideration, as shown in Appendix B.2.1, the optimal impedance of the 

harvesting load could be chosen in such a way as the same level of maximum power 

could be harvested for any excitation frequency [92], [93], [196].  

Comparing the spectra in Plots (a) and (b) of Figure 2.8, it is noted that, although 

the piezoelectric harvester outperforms the electromagnetic harvester in 

correspondence of the fundamental and higher order resonance frequencies, the 

electromagnetic harvester performs better at low frequencies below the fundamental 

resonance at 19.5 Hz and also at frequencies comprised between about 30 Hz and 

about 100 Hz.  

Often, practical harvesters are equipped with purely resistive electric loads in 

which case the harvesting electrical impedance is bound to be purely real. In this case, 

the purely real impedance that maximizes the harvested power at each frequency is 

obtained by setting only the condition (a) of Eq.(2.31), which gives:  

 

 , = | |. (2.34) 

 

Thus, in this case the maximum for the harvested power  is produced when the 

electric impedance of the harvesting circuit ,  equals the modulus of the electrical 

impedance of the freely suspended seismic transducer  given in Eq.(2.5). 

Substituting the optimal condition for ,  given in Eq.(2.34) into Eq.(2.30), leads to 

the following expression for the maximum harvested power: 

 

 = 14 | || | + Re | | , (2.35) 

 

which, recalling Eqs.(2.4), (2.5) in conjunction with the formulation presented in 

Section 2.3, can be specified respectively for the electromagnetic and for the 

piezoelectric seismic harvesters.  
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The two Plots in Figure 2.9 show the simulated (solid blue lines) and measured 

(dotted black lines) real impedances of the harvesting load ,  that would maximise 

the harvested power at each frequency with the electromagnetic seismic transducer 

(Plot a) and with the piezoelectric seismic transducer (Plot b). 

 

 

Figure 2.9: Comparison between the simulated (solid blue line) and measured (dotted 
black line) spectra of the real optimal impedance , = | | of the harvesting circuits 
for (a) the electromagnetic and (b) the piezoelectric seismic harvesters. 

 

Considering first the harvester with the electromagnetic seismic transducer, Plot (a) 

shows that the spectrum of the real harvesting load ,  is quite similar to the real 

part of the spectrum of the complex load, i.e. Re . More specifically, compared to 

the spectrum of Re , the spectrum of ,  is characterised by a peak, which has 

same amplitude but covers a slightly wider frequency band than that in the spectrum 

of Re . As discussed above, the amplitude of this peak is controlled by the eddy 

currents damping effect that characterises this electromagnetic seismic transducer. 

Also, at frequencies above the cut off frequency at 805 Hz, where the lossy inductive 

effect of the coil winding becomes relevant, the spectrum of ,  rises monotonically 

at a slightly higher rate than that of the spectrum of Re .  

Plot (b) in Figure 2.9 shows that for the harvester with the piezoelectric seismic 

transducer, the spectrum of the real harvesting load ,  is instead similar to that of 

the imaginary part of the spectrum of the complex load, i.e. Im . Thus, the 

amplitude of the resistive load uniformly decreases as the frequency rises from values 

of about 10 × 10  Ω at about 10 Hz, except for a small trough and peak discontinuity 

in the vicinity of the fundamental resonance frequency of the transducer.  

Comparing the two Plots in Figure 2.9, it is noted that the optimal resistive 

impedance for the piezoelectric seismic transducer is three to four orders of 

magnitude greater than the real part of the optimal harvesting impedance for the 

electromagnetic seismic transducer. Also, the spectra of the optimal resistive 

impedance of the harvesting load, ,  simulated from the analytical expressions for 
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the constitutive FRFs correspond fairly well with those derived from the measured 

FRFs of the electrical impedance . 

 

 

Figure 2.10: Spectra of the power harvested with reference to a 1g base acceleration 
for (a) the electromagnetic and (b) the piezoelectric seismic harvesters with optimal 
harvesting impedances , = | | simulated using either the analytical expressions 
(solid blue lines) or the measurements (dotted black lines) of the four constitutive 
FRFs, , , ,  and measured experimentally (red circles). 

 

Figure 2.10 shows the simulated spectra of the 10 Hz to 1 kHz power harvested per 

1g base acceleration with the electromagnetic seismic harvester (Plot a) and with the 

piezoelectric seismic harvester (Plot b) when the harvesting circuits are characterised 

by the optimal real impedance , = | |. Considering first the electromagnetic 

harvester, Plot (a) shows that when the harvesting circuit implements at each 

frequency the optimal real impedance load given in Eq.(2.34) and depicted in Plot (a) 

of Figure 2.9, the spectrum of the harvested power is very similar to that found when 

the optimal complex impedance load given in Eq.(2.32), and shown in Plot (a) of 

Figure 2.7, is implemented. Thus, it is characterised by a smooth peak centred in 

correspondence of the fundamental resonance frequency of the seismic transducer 

and the maximum level of the harvested power is equal to 33 mW/1g. As was noticed 

above for the complex harvesting load, also with the purely resistive harvesting load, 

the maximum harvested power is controlled by damping produced by the eddy 

currents that develops in the ferromagnetic outer ring of this seismic harvester. For 

instance, if, as shown in Appendix B.2.1, this effect was annihilated, the maximum 

level of the harvested power would rise to 173 mW/1g. This is a rather important 

feature of energy harvesting with electromagnetic seismic transducers, which should 

be carefully considered for the design of an effective harvester. According to Plot (a) 
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in Figure 2.9, the maximum energy harvesting is obtained with a purely resistive load 

of about 76 Ω. This is the same value found for the complex optimal impedance load. 

Thus it can be concluded that, with the electromagnetic seismic harvester, the 

maximum harvested power is obtained when the harvester is operated at its 

fundamental resonance frequency with a purely resistive load whose magnitude can 

be equally derived as either ∗ ( ) or | ( )|. Also in this case, the spectra of the 

harvested power simulated from analytical FRFs expressions (solid blue lines) and 

measured FRFs (dotted black lines) perfectly overlap in the whole frequency range. 

To reinforce the value of the results presented in this study, on line experiments 

were implemented at specific frequencies for the harvested power when optimal 

resistors with resistances taken from Plot (a) of Figure 2.9 are connected to the seismic 

electromagnetic harvester shown in Figure 2.1 (a). As one can readily see from the red 

circles in Plot (a) of Figure 2.10, these measured power levels further confirm the 

validity of the proposed model for the constitutive FRFs of the transducer presented 

in Section 2.3 and Appendix A and the validity of the formulation for the energy 

harvested proposed in this study. The small discrepancies between measured and 

predicted levels of the energy harvested at higher frequencies above 300 Hz are 

probably due to the difficulty of measuring with accuracy low levels of power. 

Considering now the piezoelectric harvester, Plot (b) of Figure 2.10 shows that also 

in the case where the harvesting circuit implements at each frequency the optimal real 

impedance derived in Eq.(2.34) and depicted in Plot (b) of Figure 2.9, the spectrum of 

the harvested power is very similar to that found when the optimal complex 

impedance load given in Eq.(2.32) and shown in Plot (b) of Figure 2.7 is implemented. 

Indeed, the spectrum of the harvested power is characterised by a sharp peak at the 

fundamental resonance frequency of the seismic transducer, with a peak level of the 

harvested power equal to 350 mW/1g. In this case, according to Plot (b) of Figure 2.9, 

the maximum energy harvesting is obtained with a resistive load of 5.05 × 10  Ω. Also 

in this case, comparing the spectra of the harvested power simulated from analytical 

FRFs expressions (solid blue lines) and measured FRFs (dotted black lines), it is noted 

that they overlap only up to about 70 Hz. As discussed above, this is due to the fact 

that the analytical expressions for the constitutive FRFs of the piezoelectric transducer 

derived in Section 2.3 and Appendix B do not reproduce higher frequencies dynamic 

effects due to higher order natural modes of the composite beam and tip block, which 

are instead encompassed in the measured FRFs as can be noticed in Figure 2.4 and 

Figure 2.5. As shown by the dotted black line in Plot (b) of Figure 2.10, the spectrum 

of the harvested power is characterised by two additional sharp peaks at 267 Hz and 
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721 Hz where the harvested power is about 25 mW/1g and 3 mW/1g respectively, 

which, according to Plot (b) of Figure 2.9, are produced with resistive loads of 5.3 × 10  Ω and 2.8 × 10  Ω respectively. In this case the harvested power at the 

second resonance frequency is considerably lower than that harvested at the first 

resonance frequency. Thus, when a resistive real optimal load is implemented, it 

seems more practical setting the harvester to work in correspondence of its first 

resonance frequency only. In this case, the spectrum of the harvested power 

simulated from measured FRFs (dotted black line) is not characterised by the 

anomalies noticed in Plot (b) of Figure 2.8. Also in this case, on line experiments were 

implemented at specific frequencies for the harvested power when optimal resistors 

with resistances taken from Plot (b) of Figure 2.9 are connected to the seismic 

piezoelectric harvester shown in Figure 2.1 (d). As one can readily see from the red 

circles in Plot (b) of Figure 2.10, these measured power levels further confirm the 

validity of the proposed model for the constitutive FRFs of the transducer presented 

in Section 2.3 and Appendix B below 70 Hz while they indicate that the simulated 

result from measured FRFs provides a more accurate estimate of the harvested power 

at higher frequencies above 70 Hz. However, it should be noticed that there are some 

discrepancies at higher frequencies, which as discussed above, are probably due to 

the difficulty of measuring low levels of power, particularly in correspondence of the 

sharp antiresonance through at about 460 Hz. As already argued, this is merely due 

to the fact that the model considers only the fundamental flexural natural mode of the 

composite beam and tip mass, and thus it fails to reproduce the resonant 

contributions of higher order modes. 

Plots (a) and (b) of Figure 2.10 show that also in this case the piezoelectric harvester 

outperforms the electromagnetic harvester in correspondence of the fundamental and 

higher order resonance frequencies although the electromagnetic harvester performs 

better at low frequencies below the fundamental resonance at about 20 Hz and at 

frequencies comprised between about 30 Hz and about 100 Hz. 

 

 

2.8  INPUT POWER 

The time averaged input power to the electromagnetic and piezoelectric harvesters is 

given by: 

 



 
 

52 

 = lim→ 1 ( )d , (2.36) 

 

where the instantaneous input power is given by:  

 

 ( ) = ( ) ( ), (2.37) 

 

and, as specified in Figure 2.1 (c) and Figure 2.1 (f), ( ), ( ) are the force and 

velocity at the base of the two seismic transducers. In this case, assuming time 

harmonic functions, the force at the base of the transducers can be derived from the 

first equation of the matrix expression in Eq.(2.1) assuming the current is given by  

Eq. (2.29) so that: 

 

 = , (2.38) 

 

where  is the base impedance of the seismic harvesters when the transducers are 

connected to the harvesting circuit characterised by the electrical impedance : 

  

 = − + . (2.39) 

 

Thus, for harmonic vibrations, the time average input power is derived from             

Eqs. (2.36) to (2.39) as follows: 

 

 = 12 Re | | = 12 Re − + | | . (2.40) 

 

When the harvesting load implements the optimal complex impedance of Eq.(2.32), 

i.e. = ∗ , the input power expression given above becomes: 

 

 = 12 Re − 2Re | | , (2.41) 

 

which, using the constitutive FRFs given in Eqs.(2.1)-(2.4) and the formulation 

presented in Section 2.3, can be specified respectively for the electromagnetic and 

piezoelectric seismic harvesters. Figure 2.11 shows the simulated spectra of the 10 Hz 

to 1 kHz power input per 1g base acceleration with the electromagnetic seismic 
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harvester i.e. Plot (a) and with the piezoelectric seismic harvester i.e. Plot (b) when 

the harvesting loads are characterised by the optimal complex impedance derived in 

Eq.(2.32), that is = ∗ . Starting with the electromagnetic seismic harvester, when 

the harvesting circuit implements at each frequency the optimal complex impedance = ∗  depicted in Plot (a) of Figure 2.7, the power input to the transducer peaks in 

correspondence of its fundamental resonance frequency, i.e. 19.5 Hz, where it reaches 

a value of about 120 mW/1g, and then monotonically falls down with frequency. As 

found for the harvested power, the peak value at 19.5 Hz is controlled by the strong 

eddy currents damping effect that characterises the electromagnetic seismic 

transducer. The simulated spectra based on analytical expressions (solid blue line) 

and measurements (dotted black line) of the four constitutive FRFs, , , , , 

perfectly overlap up to about 250 Hz. At higher frequencies, there is an increasingly 

larger mismatch, which, as highlighted in Section 2.5, is due to higher order dynamic 

effects of the transducer occurring just above 1 kHz, which are not accounted in the 

model used to simulate the characteristic FRFs of the transducer.  

 

 

Figure 2.11: Spectra of the power input with reference to a 1g base acceleration for (a) 
the electromagnetic and (b) the piezoelectric seismic harvesters with optimal 
harvesting impedances = ∗  simulated using either the analytical expressions 
(solid blue lines) or the measurements (dotted black lines) of the four constitutive 
FRFs, , , , . 

 

Moreover, the spectrum simulated using the measured constitutive FRFs (dotted 

black line) shows two sharp resonance peaks in the frequency band comprised 

between 800 and 1000 Hz, which, as discussed in Section 2.5, are probably due to local 

flexural natural modes of the two spiral springs that connect the outer ferromagnetic 

ring and coil assembly to the inner magnetic element of the transducer. 
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Moving to the piezoelectric seismic harvester, when the harvesting circuit 

implements at each frequency the optimal complex impedance = ∗  depicted in 

Plot (b) of Figure 2.7, the input power to the transducer peaks in correspondence of 

its fundamental resonance frequency, i.e. 20 Hz, where it reaches a value of about 1900 mW/1g. As found for the harvested power, the simulation result based on the 

analytical expressions of the four constitutive FRFs (solid blue line), monotonically 

falls down at higher frequencies. In contrast, the simulation result based on the 

measured constitutive FRFs (dotted black line), is characterised by two additional 

sharp resonance peaks at about 267 Hz and 721 Hz, where the input power reaches 

peak values of 700 mW/1g and 100 mW/1g. As discussed in the previous section, this 

mismatch is due to the fact that the analytical expressions for the constitutive FRFs 

, , ,  of the piezoelectric transducer derived in Section 2.3 and Appendix 

B do not take into account the effects of higher order flexural modes of the composite 

beam and tip block, which are instead part of the measured FRFs. As noted for the 

harvested power, the spectrum simulated from measured constitutive FRFs (dotted 

black line) is characterised by narrow drops or small crests anomalies, which are not 

related to antiresonance or resonance effects. On the contrary they arise from the 

calculus of power based on measured FRFs, which are affected by small errors in the 

real and imaginary parts, that is in the modulus and phase, which, as discussed in 

Ref. [196], produce the glitches observed in the dotted black spectrum. 

To conclude this analysis, it is noted that the spectra of the input and harvested 

power by the electromagnetic seismic harvester shown in Plots (a) of Figure 2.11 and 

Figure 2.8 are quite similar to each other, except that, on average, the spectrum of the 

input power is relatively higher by about 11.2 dB. Likewise the spectra of the input 

and harvested power by the piezoelectric seismic harvester shown in Plots (b) of 

Figure 2.11 and Figure 2.8 also show similar features, with the spectrum of the input 

power being shifted up by about 8.7 dB. For both harvesters, the surplus of power 

input with respect to the power harvested is lost by the dissipative effects in the two 

seismic transducers.  

When the harvesting electrical component is characterised by a purely resistive 

impedance such that according to Eq.(2.34) , = | |, the power input to the 

harvesters given by Eq.(2.40) becomes:  

 

 = 12 Re − + | | | | . (2.42) 
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As seen above, this expression can be specified for the electromagnetic and 

piezoelectric seismic harvesters by substituting in it the expressions for the 

constitutive FRFs given in Eqs.(2.2) - (2.5) derived from the expressions given in the 

formulation of Section 2.3. 

Figure 2.12 shows the simulated spectra of the 10 Hz to 1 kHz power input per 1g 

base acceleration with the electromagnetic seismic harvester i.e. Plot (a) and with the 

piezoelectric seismic harvester i.e. Plot (b) when the harvesting circuits are 

characterised by the optimal real impedance given in Eq.(2.34), i.e.  , = | |. 
Considering first the electromagnetic seismic harvester with the harvesting circuit 

implementing at each frequency the optimal real impedance  , = | | depicted in 

Plot (a) of Figure 2.9, the power input to the transducer reaches the maximum level 

of 120 mW/1g at its fundamental resonance frequency, i.e. 19.5 Hz, and then falls 

down monotonically with frequency. Again, this value is controlled by the high eddy 

currents damping effect that characterises this seismic transducer. Also in this case, 

the spectra simulated using the analytical expressions (solid blue line) and the 

measured (dotted black line) constitutive FRFs, , , , , closely overlap up 

to about 250 Hz. At higher frequencies, there is an increasingly larger mismatch, 

which, as highlighted above and in Section 2.5, are probably due to higher order 

dynamic effects of the transducer occurring just above 1 kHz, which are not accounted 

in the model for the constitutive FRFs.  

 

 

Figure 2.12: Spectra of the input power with reference to a 1g base acceleration for (a) 
the electromagnetic and (b) the piezoelectric seismic harvesters with optimal 
harvesting impedances , = | | simulated using either the analytical expressions 
(solid blue lines) or the measurements (dotted black lines) of the four constitutive 
FRFs, , , , . 
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Also, between 800 and 1000 Hz, the spectrum simulated using the measured 

constitutive FRFs (dotted black line) shows the two sharp resonance peaks, which 

should be due to local flexural natural modes of the two spiral springs that connect 

the outer and inner components of the transducer. 

Considering next the piezoelectric seismic harvester with the harvesting circuit 

implementing at each frequency the optimal real impedance  , = | | depicted in 

Plot (b) of Figure 2.9, the input power to the transducer reaches the maximum level 

of 2100 mW/1g in correspondence of the sharp resonance peak at 20 Hz. As noticed 

above and in the previous Section, at higher frequencies, the simulation result derived 

from the analytical expressions of the four constitutive FRFs (solid blue line), 

monotonically falls down. In contrast, the simulation result based on the measured 

constitutive FRFs (dotted black line) is characterised by two additional sharp 

resonance peaks at about 267 Hz and 721 Hz, where the input power reaches peak 

values of 58 mW/1g and 5 mW/1g. As seen above and in the previous section, this 

mismatch is due to the fact that the analytical expressions for the constitutive FRFs 

, , ,  derived in Section 2.3 and Appendix B neglects the effects of higher 

order flexural modes of the composite beam and tip block assembly. Finally, the 

spectrum simulated from measured constitutive FRFs (dotted black line) is rather 

irregular with many narrow drops and small crests, which, as noticed above and in 

the previous section, is due to fact that the FRFs used to simulate the power 

expression are characterised by small measurement errors [198]. 

In conclusion, as noticed above, the spectra of the input and harvested power by 

either the electromagnetic or the piezoelectric harvesters, shown respectively in Plots 

(a) and in Plots (b) of Figure 2.10 and Figure 2.12, are quite similar to each other, 

except that, the level of the spectrum of the input power is shifted up 11.2 dB for the 

piezo and 15.6 dB for the coil magnet. Again, the surplus of power input with respect 

to the power harvested is lost by the mechanical and electrical dissipative effects in 

the two seismic transducers.  

 

 

2.9  EFFICIENCY 

To fully characterise how well the electromagnetic and the piezoelectric seismic 

harvesters convert the input power to harvested power the following efficiency ratio 

is considered in this section:  
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 = , (2.43) 

 

where  and  are given in Eqs. (2.30) and (2.40) respectively such that: 

  

 = Re − +
Re − + . (2.44) 

 

When the two harvesters are set to implement the harvesting load with either the 

optimal complex impedance, , = ∗ , or the optimal real impedance, , = | |, 
the above expression for the efficiency becomes respectively:  

 

 = 14 | |
Re Re − 2Re ,    (2.45) 

 = 12
 | || | +

− + | | . (2.46) 

 

Figure 2.13 and Figure 2.14 show the simulated spectra of the 10 Hz to 1 kHz 

efficiency when the electromagnetic seismic harvester i.e. Plot (a) and piezoelectric 

seismic harvester i.e. Plot (b) are connected to harvesting loads that implement 

respectively the optimal complex impedance = ∗  and the optimal real 

impedance , = | |. Plots (a) in Figure 2.13 and Figure 2.14 show that the spectra 

of the efficiency for the electromagnetic seismic harvester simulated from analytical 

FRFs expressions (solid blue lines) and measured FRFs (dotted black lines) 

satisfactorily overlap up to about 171 Hz. At higher frequencies the efficiency 

simulated from measured FRFs (dotted black lines) becomes inaccurate because of 

the bias errors in the calculation of the harvested and input power with the measured 

FRFs, which are then magnified in the calculus of the efficiency power ratio. This 

problem is even more relevant in the spectra of the efficiency for the piezoelectric 

seismic harvester shown in Plots (b) of Figure 2.13 and Figure 2.14. Indeed, the spectra 

simulated from analytical FRFs expressions (solid blue lines) are characterised by a 

smooth continuous lines. In contrast, the spectra simulated from measured FRFs 

(dotted black lines) are characterised by segmented lines, which, actually, do not 

accurately overlap with the solid blue lines. As can be noticed in the four Plots of 
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Figure 2.4 and Figure 2.5, the measured FRFs (dotted black lines) used to calculate the 

harvested and input power are characterised by additional resonance peaks and 

antiresonance troughs. Although these FRFs graphically looks well defined, after a 

careful analysis, it was noticed that they are characterised by bias errors in most of 

the 8 Hz to 1 kHz frequency range, which affect the calculus of the harvested and 

input power and thus leads to significant errors in the calculus of the efficiency power 

ratios. 

Considering now the configuration with the optimal complex impedance load 

shown in Figure 2.13, as depicted in Plot (a), the electromagnetic seismic harvester is 

characterised by a somewhat constant efficiency of about 28% over the whole 

frequency range up to 1 kHz. In contrast, according to Plot (b), the efficiency of the 

piezoelectric seismic harvester is independent to the frequency and equal at about 

33%. Moving to the configuration with the optimal real impedance load shown in 

Figure 2.14, Plot (a) indicates that the efficiency of the electromagnetic seismic 

harvester is still equal to 28% at low frequencies up to about 19.5 Hz and then 

gradually falls down such that, at 1 kHz, it is about 22%. 

 

 

Figure 2.13: Spectra of the efficiency for (a) the electromagnetic and (b) the 
piezoelectric seismic harvesters with the optimal harvesting impedances = ∗  
simulated using either analytical expressions (solid blue line) or the measurements 
(dotted black line). 

 

 

Figure 2.14: Spectra of the efficiency for (a) the electromagnetic and (b) the 
piezoelectric seismic harvesters with an optimal harvesting impedances , = | | 
simulated using either analytical expressions (solid blue line) or the measurements 
(dotted black line). 
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Plot (b) shows instead that the efficiency of the piezoelectric seismic harvester drops 

proportionally to frequency and, at the fundamental resonance frequency of the 

transducer, is equal to about 17%. In particular, the efficiencies of the electromagnetic 

and piezoelectric seismic harvesters at the transducers fundamental resonance 

frequency result respectively 28% and 33%, for the optimal complex loads, and 

respectively 28% and 17%, for the optimal real (resistive) loads. These results indicate 

that, when the optimal complex impedance harvesting load is implemented, the 

piezoelectric harvester is more efficient than the electromagnetic harvester to convert 

the input power into the harvested power. Instead, when the optimal real impedance 

harvesting load is implemented, the electromagnetic harvester results more efficient 

that the piezoelectric harvester. These results are however specific to the transducers 

considered in this study. For instance, if the high eddy currents loss that affects the 

electromagnetic harvester was annihilated, considering the results presented in 

Appendix A, the efficiency for the real harvesting load would rise to 42%, thus well 

above the 28% found for the electromagnetic harvester considered in this study. This 

suggests that the inherent damping effects in the two seismic transducers play a key 

role in the conversion of the input mechanical power into harvested electrical power. 

In particular, the efficiency and thus the energy harvesting of the electromagnetic 

harvester can be greatly improved if the seismic transducer is carefully designed in 

such a way as to minimise the effects of eddy currents. 

 

 

2.10  STROKE 

As discussed by Stephen [86], the energy harvesting property of a seismic harvester 

should also be analysed with reference to the maximum stroke allowed by the 

transducer, that is the maximum relative displacement between the seismic mass and 

the base mass. The results derived above assume the harvester can withstand any 

stroke. In practice, this is not the case, since, for large displacements of the base mass, 

the relative motion of the seismic mass may reach saturation points. For the 

electromagnetic seismic harvester, this effect is due to non-linear stiffening of the 

spiral springs or to the presence of end stops that limit large oscillations of the 

suspended ferromagnetic ring and coil assembly. Alternatively, for the piezoelectric 

seismic harvester, this effect is due to the non-linear increase in bending stiffens of 

the beam laminated for large oscillations of the tip mass.  Thus, to fully characterise 
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the energy harvesting with the two systems considered in this paper, the strokes of 

the electromagnetic and piezoelectric seismic transducers are now considered. 

Inspection of the lumped parameter element scheme in Figure 2.1 (g) leads to the 

following equation of motion for the seismic mass and Kirchhoff equation for the 

electric mesh of the transducers:  

 

 ( − ) = − + , (2.47) 

 = − ( − ). (2.48) 

 

Also, according to the notation shown in the scheme in Figure 2.6, the following 

relation holds for the impedance of the harvesting load: 

 

 = − . (2.49) 

 

After some mathematical manipulations the three Eqs.(2.47), (2.48) and (2.49) give the 

following relation for the transducer stroke per unit base displacement 

 

 
− = − − + . (2.50) 

 

Figure 2.15 and Figure 2.16 show the simulated (solid blue lines) and simulated from 

measured FRFs (dotted black lines) strokes per unit base displacement of the two 

transducers, respectively when they are connected to the optimal complex impedance 

load given in Eq.(2.32) (Figure 2.7) and when they are connected to the optimal real 

impedance load given in Eq.(2.34) (Figure 2.9). The graphs based on measured FRFs 

were obtained considering the reciprocal of Eq.(2.50), which is given by the following 

expression: = − + ( ). The first term in this expression was derived 

from direct measurement of the stroke per unit base displacement when the 

transducers are in open circuit, which corresponds to = ∞, such that = | = − . The second term was derived from direct measurement of 

the electric impedance , assuming the relative motion of the transducer seismic and 

base masses is blocked, i.e. − = 0. Also, the impedances of the optimal 

harvesting loads were obtained from Eq.(2.32) and Eq.(2.34) using the measured 

electrical impedance . The impedance of the seismic mass  and the product of 

the transduction coefficients  were instead derived from Eqs. (2.6) and (2.14), 
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(2.15), (2.17), (2.18) using measured constants. In summary, the stroke per unit base 

displacement from measured FRFs was simulated using the following relation: 

 

 
− = 11 + ( + )

, 
(2.51) 

 

where , ,  resulted from measured FRFs and  ,  where calculated 

from Eqs.(2.6) and (2.14), (2.15), (2.17), (2.18) using parameters identified 

experimentally. 

Figure 2.15 and Figure 2.16 show similar graphs for the spectra of the strokes per 

unit base displacement of the electromagnetic and piezoelectric seismic harvesters. 

As anticipated in the discussion of the base impedance FRFs presented in Section 2.5, 

at very low frequencies the base and seismic masses move together such that the 

stroke is small. However, as the frequency rises towards the fundamental resonance 

frequency of the transducers, the two masses increasingly move out of phase such 

that the stroke progressively rise to a peak value. At higher frequencies the amplitude 

of the seismic mass displacement progressively drops toward zero so that the stroke 

tends to be equal to the imposed base displacement. The spectra simulated from 

analytical FRFs expressions (solid blue lines) and measured FRFs (dotted black lines) 

perfectly overlap in the whole frequency range. The spectra simulated from measured 

FRFs for the piezoelectric seismic harvester show additional resonance peaks and 

antiresonance troughs due to the higher order bending modes of the composite beam 

and tip mass assembly, which are not modelled in the analytical FRFs. The amplitude 

of these peaks is however much smaller than that of the peak at the fundamental 

resonance frequency of the transducer and thus do not influence the operation of the 

harvester. Contrasting Plots (a) with Plots (b) in Figs. 2.15 and 2.16, it can be noticed 

that the peak stroke per unit base displacement of the piezoelectric seismic transducer 

is respectively 15 and 20 times greater than that of the electromagnetic transducer. As 

discussed in Section 2.5, this is due to the higher damping effect produced by the air 

in the gap between the magnet and the coil and by the eddy currents that develop in 

the cylindrical ferromagnetic ring element.  

As pointed out by Stephen [86], the peak amplitude of the stroke plays an important 

role in the functioning of seismic harvesters. Indeed, the results presented in the 

previous section are valid only for limited ranges of base vibrations such that the 

resulting strokes do not reach the saturation limits. For instance, assuming the 
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electromagnetic and piezoelectric seismic harvesters considered in this study are 

operated at their fundamental resonance frequency where the stroke is maximum, the 

electromagnetic harvester can be effectively used for relatively higher amplitude base 

vibrations, whereas the piezoelectric harvester is more suitable for low amplitude 

base vibrations. If instead the harvesters are operated at frequencies above their 

fundamental resonance frequency there is no substantial difference in using the two 

harvesters, which actually can withstand base vibrations with amplitude close to their 

maximum allowed stroke before saturation.  

These aspects suggest that the results produced in Section 2.7 for the harvested power 

should be analysed also with respect to the stroke of the transducers. For instance, if 

the peak value of the energy harvested is normalised with respect to the stroke of the 

transducer at the fundamental resonance frequency of the two transducers, the 

following conclusions would be drawn. First, when the harvesters implement the 

complex impedance load, the electromagnetic harvester would produce 30   

whereas the piezoelectric seismic harvester would generate 5  . Alternatively, 

when the harvesters implement the real (resistive) impedance load, the 

electromagnetic harvester would still produce 30   whereas the piezoelectric 

seismic harvester would generate 1.3  . If the outer ferromagnetic ring of the 

electromagnetic seismic transducer was not affected by eddy currents, as discussed 

in Appendix B.2.1, the transducer would be less damped and the stroke per unit base 

displacement would rise by 3.8 times. As a result the electromagnetic harvester would 

produce 12  . Therefore, the peak value of the harvested power with respect to 

stroke results greater for the electromagnetic seismic transducer both with the 

complex and real impedance harvesting loads.  

 

 

Figure 2.15:  Stroke per unit base displacement of the (a) electromagnetic and (b) 
piezoelectric seismic harvesters with the optimal complex harvesting impedances = ∗ . Simulated (solid blue line) and simulated using measured impedances 
(dotted black line). 
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Figure 2.16: Stroke per unit base displacement of the (a) electromagnetic and (b) 
piezoelectric seismic harvesters with the optimal real (resistive) harvesting 
impedances , = | |. Simulated (solid blue line) and simulated using measured 
impedances (dotted black line). 

 

Similar considerations can be made also for the input power per unit strokes of the 

transducers. The efficiency can then be calculated with reference to the maximum 

stroke of the transducers. For instance, when the harvesters implement the complex 

impedance load, the electromagnetic and piezoelectric harvesters would absorb 

respectively 110   and 14  . Alternatively, when the harvesters implement the 

real (resistive) impedance load, the two harvesters would absorb respectively 110   and 8  . If the outer ferromagnetic ring of the electromagnetic seismic 

transducer was not affected by eddy currents, the electromagnetic harvester would 

absorb 30  . Therefore, the efficiency at the resonance frequency of the 

electromagnetic and piezoelectric seismic transducers calculated with respect to the 

stroke of the two harvesters would result respectively equal to 27% and 36% for 

complex impedance loads and to 27% and 15% for the real impedance loads. 

Actually, if the electromagnetic seismic transducer was not affected by eddy currents, 

the efficiency would rise to 40%. These results indicate that, with reference to stroke, 

the piezoelectric harvester is more efficient to convert the mechanical power into 

electrical harvested power when the complex impedance harvesting load is 

implemented whereas the electromagnetic harvester is more efficient when the real 

impedance harvesting load is implemented, particularly if the eddy currents losses 

were annihilated.  
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3  
R E A C T I V E  V I B R A T I O N  H A R V E S T E R S  

Seismic harvesters can be effectively used in applications where there is no body or 

system the transducer can be reacted off. However, as highlighted in the previous 

Chapter, these harvesters effectively work in narrow frequency bands centred at their 

fundamental natural frequencies. Therefore, whenever there is access to a relative 

motion or a strain deformation in the ambient, it is preferable to use reactive 

harvesters, where indeed the transducer is reacted off the components of the vibrating 

body or system. As discussed in Refs. [1], [199] and documented below, reactive 

harvesters are particularly effective at low frequencies. Therefore they effectively 

complement seismic harvesters, which instead tend to work at higher frequencies in 

correspondence to their fundamental resonance frequencies. Practical applications of 

reactive harvesters include machine tools, railway tracks, buildings, power 

generating floors, human activities (foot motion), etc. [199]. 

The aim of this chapter is thus to present a theoretical and experimental study 

contrasting the constitutive equations and the energy harvesting properties of two 

reactive vibration energy harvesting devices. The study considers coil-magnet and 

piezoelectric cantilever beam reactive harvesters, which as shown in Figure 3.1 (a, d) 

were obtained from the seismic harvesters considered in Chapter 2 by clamping the 

inertial moving parts, i.e. the housing Yoke and coil assembly and the tip block mass 

respectively.  

 

 

3.1  REACTIVE TRANSDUCERS 

When the Yoke - coil assembly and the tip mass respectively of the electromagnetic 

and piezoelectric prototypes shown respectively in Figure 2.1 (a) and Figure 2.1 (b) 

are clamped on a rigid frame structure, the resulting reactive transducers can be 

idealised as shown in the pictures (b, e) and schematics (c, f) of Figure 3.1.  
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As indicated in picture 3.1 (b), the electromagnetic reactive transducer is composed 

by a coil–magnet, with the magnet mounted via soft spiral springs and the coil rigidly 

fixed to the case, which is clamped to a rigid host structure. The relative motion 

between the magnet and the fixed coil produces a back electromotive force, i.e. a 

voltage, at the terminals of the coil; vice versa, a current flow in the coil generates 

reactive forces on the magnetic and on the coil-armature elements. 

 

Table 3-1: Parameters of the coil magnet harvester. 

Parameters Value 

Base mass and volume (inner magnet) = ×        = . ×   

Spiral springs equivalent stiffness =   /  

Fundamental natural frequency = .    

Viscous damping coefficient/ratio =  .   /     = .  

Eddy current damping coefficient/ratio = .   /    = .  

Equivalent damping coefficient/ratio = .   /     = .  

Electromagnetic transduction factor = .   /   
Coil resistance =     
Coil lossy inductance constant - exponent = .               = .  

Coil lossy inductance loss factor = .  

 

Table 3-2: Parameters of the piezoelectric harvester. 

Parameters Value 

Base mass and volume = ×         = . ×   

Transducer total mass and total volume 
= ×       = . ×   

Equivalent proof mass = . ×    

Equivalent stiffness with the piezo- 

electrodes in short circuit 
=   /  

Additional equivalent stiffness with piezo-

electrodes in open circuit 
∆ = .  /  

Fundamental natural frequency (short 

circuit) 
= .    

Equivalent viscoelastic damping coefficient 

and ratio 
= .   /  = .  

Equivalent piezoelectric transduction factor = − .   /  

Capacitance of the two piezoelectric layers = . ×    
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Figure 3.1: Pictures (a,d), functional drawings (b,e) and lumped parameter schematics 
(c,f), for the electromagnetic (left hand side) and piezoelectric (right hand side) 
reactive transducers. Common equivalent lumped parameter schematic for the two 
reactive transducers (g). 



 
 

68 

As shown in picture 3.1 (e), the piezoelectric reactive harvester is composed by a thin 

beam with one end clamped to a fixed housing structure and the other moving end is 

equipped with a tip block mass. The beam is equipped on the top and bottom side 

with two rectangular piezoelectric patches connected in parallel. In this case, the 

relative motion between the housing structure and the tip mass produces a bending 

strain of the cantilever beam, which, in turn, produces a separation of electric charge 

in the electrodes of the piezoelectric patches. Alternatively, a bending strain effect is 

produced on the cantilever beam when a voltage is applied at the terminals of the 

piezoelectric patches. The two models in Figure 3.1 (c, f) are characterised by a 

lumped parameter mechanical schematic and an electrical mesh with lumped electric 

components. These two parts are joined via a current-controlled force generator and an 

absolute velocity-controlled voltage generator that exemplify the electromechanical 

transduction effects. Assuming the mechanical parts move as a single degree of 

freedom system, the dynamic responses of the electromagnetic and piezoelectric 

reactive transducers can be derived straightforwardly from the equivalent lumped 

parameter models of the reactive transducers, as shown in Plot (g) of Figure 3.1 and 

as described respectively in Appendix C.1 and Appendix C.2. The list of the electro-

mechanical components (weights, stiffness, resistance, inductance, capacitance, 

transduction coefficient) for the two reactive harvesters are summarized in Table 3-1 

and Table 3-2. The missed data can be found in Table 2-1 and Table 2-2. 

 

 

3.2  LUMPED PARAMETER MODELS 

Considering first the electromagnetic transducer, as shown in Figure 3.1 (c) the 

mechanical part is modelled with a base moving mass (inner magnet) connected to 

the host structure via soft (spiral) springs and a damper with in parallel a current 

reactive force generator. As discussed in Chapter 2 and Appendix A, the damper takes 

into account the effects of both air and eddy current losses. A velocity-controlled voltage 

generator, whose strength is proportional to the absolute velocity between the moving 

base and the fixed case composes the electrical part. This voltage generator is 

connected in series to a resistor and a (lossy) inductor.   

As shown in Figure 3.1 (f), the piezoelectric reactive transducer is modelled with a 

base moving mass connected to a rigid host structure via a spring (beam modal 

bending stiffness) and damper with in parallel a current-controlled reactive force 
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generator. As discussed in Chapter 2 and Appendix B, the damper takes into account 

the effects air and material losses with a Kelvin-Voight viscoelastic damping model. 

A velocity-controlled voltage generator, whose strength is proportional to the absolute 

velocity between the moving base and the fixed host structure composes the electrical 

part. A lossy capacitor is connected in series to the voltage generator ([180], [181], 

[182], [183]). 

Similarly to the electromagnetic seismic transducer, the mechanical and electrical 

scheme for the coil–magnet reactive harvester were derived straightforwardly from 

inspection of the system shown in Figure 3.1 (a). Instead, moving to the reactive 

piezoelectric transducer, the mechanical scheme and electrical mesh required the 

derivation of the flexural response of the beam considering only the contribution of 

the first flexural natural mode of the assembly beam laminate. Contrary to the seismic 

harvester model shown in Figure 2.1 (d) and derived in Appendix B, the lumped 

parameter model shown in the schematic of Figure 3.1 (f) does not require the 

introduction of a virtual displacement ̅ for the equivalent proof mass because in this 

case the cantilever beam is not excited by its inertia. Thus the reference point of the 

moving base mass corresponds to the free end of the beam. 

The mechanical and the electrical parts of the two schematics in Figs. 3.1 (c) and 

3.1 (f) present identical topologies. Therefore, the constitutive equations, which 

identify the dynamic response of the two transducers and the energy formulation for 

the power harvested can be derived in the following sections with reference to the 

schematic shown in Fig. 3.1 (g). 

 

 

3.3  CONSTITUTIVE EQUATIONS 

The constitutive equations for the two reactive transducers are here recalled using the 

unified formulation derived in Chapter 2 for the two seismic transducers. Thus 

considering time-harmonic vibrations described in complex form as (t) =Re ( )exp (j ) , where ( ) is the complex amplitude of the function,  is the 

circular frequency and j = √−1, the constitutive equations for the electromechanical 

response of the two reactive transducers have been derived with the following matrix 

formulation: 
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 = , (3.1) 

 

where, ,  are the complex amplitudes of the force and velocity at the base of the 

reactive transducers and ,  are the complex amplitudes of the voltage and current 

across the terminals of the reactive transducers. The mechanical and electrical 

impedance FRFs and the two-electromechanical transduction FRFs are in this case 

given by: 

 

 = =  +  , (3.2) 

 = = , (3.3) 

 = = , (3.4) 

 = = , (3.5) 

 

where  

 

 = j . (3.6) 

 

Also, for the coil-magnet transducer 

 

 = + j , (3.7) 

 = j + , (3.8) 

 

while for the piezoelectric transducer  

 

 = 1j , (3.9) 

 = j + . (3.10) 

 

In analogy to the seismic transducers, the term  is the base mass,  is the 

suspension stiffness and = +  is the equivalent damping coefficient 

composed by two terms 1) air damping  and 2) eddy current damping  [174], 
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[175], [176]. Also,  is the coil resistance and  is the coil lossy inductance [177]–

[179], identified by = (1 − j ), where  is the inductive loss factor. Also, =sin( 2⁄ )  and = cos( 2⁄ ) sin( 2⁄ )⁄ , where the constants  and  

reported in Table 3-1 were identified from the measured spectra of the electric 

impedance  of the electromagnetic device. Moving to the piezoelectric reactive 

transducer,  is the equivalent proof mass of the beam laminate and tip mass 

assembly and  is the equivalent viscoelastic damping coefficient. Also the stiffness 

is composed by two terms = + Δ , where  and Δ   are the beam laminate 

and tip mass assembly equivalent stiffness when the electrodes are respectively in 

short and in open circuit. The additional stiffness Δ =  is a complex term 

that includes also the effects of dielectric losses in the piezoelectric material. Here  

is a stiffness term equal to =   and = (1 − j )⁄ , with  the 

electromechanical coupling factor of the piezoelectric material [184] and (ω) ≅( ̅ )⁄  the frequency dependent dielectric loss factor of the material, identified 

by the permittivity of the piezoelectric material in transverse direction under constant 

stress ̅  and on the electrical conductivity of the piezoelectric material  [180]–

[183]. Also, = 1 −  and = 2 ( ) are the lossy capacitances of the 

two piezoelectric layers respectively under constant strain, i.e. = 0, and under 

constant stress, i.e. = 0 [58]. Finally, the electromechanical coupling coefficients for 

the electromagnetic reactive transducer are given by: 

 

 = = , (3.11) 

 = = − , (3.12) 

 

where  is the reactive force produced on the coil and on the magnet components,   is the current which flows trough the coil wire and  is the absolute velocity of 

the magnet. Also: 

 

 = , (3.13) 

 

is the electromagnetic transduction factor, where  is the magnetic flux density in the 

air gap between the coil and the magnet and  is the length of the winding [184]–[186], 

[188]. Besides, for the piezoelectric reactive harvester: 
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 = = − j , (3.14) 

 = = − j , (3.15) 

 

where as discussed in Appendix C,  is the equivalent piezoelectric transduction 

factor for the bending strain produced by the first natural mode of the clamped beam 

laminated:  

 

 = ̅ ℎ + ℎ ( )( ). (3.16) 

 

Here, ( ) and ( ) = ( )  are the amplitude and slope of the first flexural 

mode of the clamped composite beam calculated at tip mass assembly. Furthermore, ̅  is the stress/charge constant for the piezoelectric material derived with reference 

to Euler–Bernoulli beam model (Appendix B),  is the width of the metallic substrate 

and piezoelectric layers and ℎ , ℎ  are the thickness of the metallic substrate and 

piezoelectric layers respectively. According to Hunt’s notation [185], the transduction 

coefficients in Eqs.(3.11), (3.12) and (3.14), (3.15) should read:  force per current 

and  electromotive force per base velocity. Thus, the  coefficient gives the 

reactive force exerted to the base moving mass per unit current flowing in the 

transducer while the  coefficient gives the electric voltage generated at the 

terminals of the transducer per unit velocity of the moving base mass. The 

transduction coefficients for the electromagnetic reactive harvester assembly are 

given by real values with opposite signs: =  and = − . Instead, the 

transduction coefficients without piezoelectric losses for the piezoelectric layers are 

given by two equal positive imaginary frequency dependent values = =− . As already mentioned for the seismic harvesters, also the piezoelectric 

transduction for the reactive transducer occurs via strain rather than strain rate [184]–

[186], [188]. Thus, since the formulation introduced above refers to strain rate i.e. 

absolute velocity of the base mass in the lumped parameter model, the piezoelectric 

transduction coefficients are characterised by a 1 (j )⁄  factor. 

The  and  FRFs in Eq.(3.1) are the electromechanical transduction frequency 

response functions for both reactive transducers, which give the force effect produced 

by the transducer per unit current flowing in the blocked reactive devices, i.e. =
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/ |  and the electric voltage generated at the terminals of the transducer per 

unit velocity of the open circuit reactive device i.e. = / | . Finally, =/ |  is the output electrical impedance of the blocked reactive transducer while 

 = / |  is the input mechanical impedance of the open circuit reactive 

transducer. 

 

 

3.4  PRINCIPAL PROPERTIES OF THE TWO TRANSDUCERS 

For both transducers, the constitutive equations given in Eq. (3.1) can be rearranged 

in the matrix expressions of Eqs.(3.17), (3.18), where  =  +   . As seen for the 

inertial transducers, these two equations specify that the electromagnetic reactive 

transducer is skew–symmetric, while the piezoelectric reactive transducer is symmetric, 

where the skew-symmetry or symmetry depends on the algebraic sign of the 

transduction coefficients, which are respectively opposite for the first and equal for 

the second: 

 

 =  −    , (3.17) 

 =  
− j  − j  

 . (3.18) 

 

As highlighted for the seismic transducers, the sign reversal in the electromechanical 

transduction FRFs of the electromagnetic reactive device arises from the sign 

convention used to define the positive directions of the physical variables and from 

the definition of the independent variables used in Eq.(3.17), [189]. 

In contrast to seismic harvesters, the  second order term is not present in the two 

transduction FRFs for the reactive harvesters and thus no magnitude amplification is 

observable in the energy conversion. Moving to the mechanical and electrical FRFs, 

the electrical impedance is only characterised by the electrical lumped elements of the 

transducers and thus is not affected by electromechanical-coupling contributions. 

Also, for the coil magnet, the mechanical FRF is determined only by the mechanical 

resonant response of the reactive transducer. Instead, for the piezoelectric device, the 

mechanical FRF is characterised also by a back electromechanical stiffness effect Δ . 
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3.5  IMPEDANCE AND TRANSDUCTION FRFS 

In Figs. 3.2 – 3.5 are compared the simulated and measured spectra of the four FRFs 

given in Eq.(3.1) for the electromagnetic and for the piezoelectric reactive transducers 

shown in the schematics (a, d) of Figure 3.1. The analysis is limited to the frequency 

range comprised between 10 Hz and 1 kHz. To properly highlight in detail all the 

features that characterise the four FRFs of the two transducers, both modulus-phase 

and real-imaginary graphs are presented and examined. For the simulated FRFs 

given in Eqs.(3.2)-(3.5) the physical parameters are derived using Table 3-1 and Table 

3-2. 

 

 

Figure 3.2: Modulus-phase diagrams of the four characteristic FRFs for the 
electromagnetic reactive transducer. Simulated (solid blue line) and measured 
(dotted black line) FRF. 

 

Firstly, the simulated FRFs for the electromagnetic reactive harvester are considered. 

As can be noticed from Eq.(3.2), similarly to the seismic device, the mechanical 

impedance  is defined assuming the coil in open circuit, i.e. = 0. Thus it is 
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characterised by the mechanical response of the transducer only. As can be deducted 

from the solid blue line in Plot (a) of Figs. (3.2 and (3.3, the mechanical impedance 

FRF is characterised by stiffness behaviour and mass behaviour at low and high 

frequencies respectively, which are proportional to the spring stiffness  and the 

moving base mass  of the transducer. These two asymptotic behaviours are linked 

via a smooth antiresonance trough, at about 25 Hz. The eddy currents damping effect 

contributes to reduce the amplitude of the fundamental anti-resonance peak. The 

phase starts at −90°, undergoes a + 90° phase lag at antiresonance frequency and then 

a +90° phase lead at higher frequencies, reaching a +90° value.  

 

 

Figure 3.3: Real-imaginary diagrams of the four characteristic FRFs for the 
electromagnetic reactive transducer. Simulated (solid blue line) and measured 
(dotted black line) FRFs. 

 

At frequencies lower than the anti-resonance frequency at 25 Hz, the seismic base 

mass of the transducer oscillates at 90° phase lead and thus produces a reactive spring 

impedance effect proportional to the stiffness of the transducer. At high frequencies, 
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above 25 Hz, the seismic base mass moves with little oscillations having 90° phase 

lead and thus the impedance is characterised by a reactive mass impedance effect, 

proportional to the base moving mass of the transducer. At frequencies close to the 

anti-resonance frequency at 25 Hz, the amplitude of the base mass oscillation is 

restricted by the air and eddy currents damping effect.  

According to Eq. (3.5) the electrical impedance does not include an electromechanical 

contribution of the mechanical second order term and thus the electrical impedance 

 is simply equal to the coil resistive-inductive impedance . Similarly to the 

seismic transducer the electric impedance  is composed by the resistance  in 

series with a lossy inductance  that takes into account the effect of eddy currents 

developed in the coil wire [177]–[179]. 

As can be noticed in Plot (d) of Figure 3.2 and Figure 3.3, below the cut off 

frequency = (2 )⁄ = 805 Hz, the electric impedance  is resistive, and thus 

is characterised by a constant real part .At higher frequencies above 805 Hz, the lossy 

inductive effect becomes dominant such that an imaginary and real rising part 

characterise the electric impedance . 

As anticipated in Section 3.4, the electromagnetic transducer is skew-symmetric and 

thus antireciprocal. As a result, the electromechanical transduction functions  and 

, given respectively by Eqs.(3.3), (3.4) are real and characterised respectively by 

positive and negative signs or, alternatively, have same modulus and opposite phase. 

Indeed, as can be noticed in Plots (b) and (c) of Figure 3.2 and Figure 3.3 , in the whole 

frequency range the transduction FRFs are characterised by a constant value equal to 

the transduction coefficient =  given in Eq.(3.13). Therefore, the reactive 

transducer acts respectively as a constant force source per unit current flowing into 

the coil wire and as a constant electromotive source per unit stroke velocity. The 

phase of  and  are respectively equal to 0° and 180° in the whole frequency 

range. Thus, the constant force-current or voltage-stroke velocity transduction effects 

are characterised by active power transfer properties. As mentioned for the 

electromechanical seismic transducer, the opposite algebraic sign in the transduction 

coefficients indicates a power which flows in opposite direction with respect to the 

notation indicated in the lumped parameter model (c) of Figure 3.1. This mismatch is 

again due to the right-hand screw sign convention used to define the positive 

directions of the physical variables that describe the electromagnetic transduction 

phenomenon [185] rather than an effective mismatch of power flow. 

These four simulated FRFs are compared with the measured FRFs obtained from 

the prototype of Figure 3.1 (a) and shown in Figure 3.2 and Figure 3.3 in a range of 
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frequencies comprised between 10 Hz and 1 kHz. First of all, taking into consideration 

the mechanical and electrical FRFs  and  shown in Figures 3.2 and 3.3, the 

measured FRFs (dotted black lines) match quite well the simulated FRFs (solid blue 

line), with the exception of a small mismatch at frequencies comprised between 800 

and 1000 Hz. Moving now to the electromechanical transduction FRFs  and  shown in Plots (b, c) of Figure 3.2 and Figure 3.3, both measured FRFs agree quite 

closely with the simulated FRFs. There is just a small divergence in the phase Plots, 

especially at upper frequencies. This mismatch is probably caused by dynamic effects 

of the housing Yoke clamping, which is not taken into account in the model. 

 

 

Figure 3.4: Modulus-phase diagrams of the four characteristic FRFs for the 
piezoelectric reactive transducer. Simulated (solid blue line) and measured (dotted 
black line) FRFs. 

 

Moving to the simulated FRFs for the piezoelectric reactive transducer shown in 

Figure 3.4 and Figure 3.5, the spectrum of the mechanical impedance  results 

comparable to that depicted for the electromagnetic transducer. In fact, considering 
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the solid blue line in Plot (a) of Figure 3.4, the amplitude inversely decreases with the 

frequency and reaches a minimum in correspondence of the fundamental anti-

resonance frequency of the transducer. It then monotonically increases linearly with 

the frequency. The phase starts at −90° and undergoes through a +180° phase lag at 

the fundamental resonance frequency at about 40 Hz, reaching a +90° phase value. 

Similar to the piezoelectric seismic harvester, the mechanical impedance  for the 

piezoelectric reactive transducer is defined in open circuit boundary condition i.e. = 0 and thus a supplementary term Δ   due to the back electromechanical stiffness 

caused by the capacitive piezoelectric effect is added to the mechanical bending 

stiffness  of the sandwich beam laminate. This equivalent stiffness Δ  is actually a 

complex term, which includes the energy losses produced by non-ideal piezoelectric 

material insulator, which, as discussed in Appendix B, are confined in the low 

frequency range. 

 

 

Figure 3.5: Real-imaginary diagrams of the four characteristic FRFs for the 
piezoelectric reactive transducer. Simulated (solid blue line) and measured (dotted 
black line) FRFs. 
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Indeed, neglecting the effect of air damping, the principal energy dissipation effect in 

the reactive piezoelectric transducer is due to the mechanical losses in the composite 

beam. This implies that, compared to the coil magnet transducer, a narrower anti-

resonance peak characterises the mechanical impedance  of the piezoelectric 

reactive device. Moving to Eq.(3.5), the electrical impedance  is only given by the 

capacitive effect of the piezoelectric layers = 1 j⁄  , where = 1 −  is 

the loss capacitor under constant strain. Plot (d) of Figure 3.4 shows a capacitive 

impedance FRF function, with a modulus inversely proportional to the frequency and 

constant phase equal to −90°. The real and imaginary Plots shown in Figure 3.4 (d) 

emphasises the resistive effect below the anti-resonance frequency.  

Moving to the piezoelectric transduction FRFs, the coefficients , T  given 

respectively by Eq.(3.3) and Eq.(3.4), have equal modulus and equal phase and thus 

the transducer is symmetric, i.e. reciprocal. In contrast to the electromechanical 

transducer, the spectra of the electromechanical transduction coefficients T  and T  

for the piezoelectric reactive transducer have a capacitive behaviour and thus the 

amplitude decreases inversely proportional to the frequency. The phase spectra of 

both T  and T  has a − 90° shift in the whole frequency range and thus both the 

force-current and electromotive stroke-velocity transduction effects are characterised 

by reactive power transfer effects due to the strain and charge transduction 

phenomena of piezoelectric materials.  

As done for the coil-magnet transducer, the validity of these simulations was 

checked against measured FRFs taken on the prototype transducer shown in Figure 

3.1 (d). The two mechanical and electrical impedances  and  and the two 

electromechanical transduction FRFs  and  were measured across the frequency 

range comprised between 10 Hz and 1 kHz. In this case, contrasting the dotted black 

lines (measurements) and the solid blue lines (simulations) shown in Figure 3.4 and 

Figure 3.5 , it is noted that the simulated FRFs reproduce quite closely the measured 

FRFs up to about 90 Hz. At higher frequencies the measured FRFs follow quite closely 

the asymptotic behaviours of the simulated FRFs, although they are characterised by 

additional resonance peaks and antiresonance troughs, particularly in the , , 

 FRFs. As already noticed for the inertial transducers, the lumped model of the 

piezoelectric harvester considers only the fundamental bending vibration mode of the 

beam laminate and thus the contribution of the higher flexural modes are neglected. 

This leads to differences between the analytical model and the experimental results 

for frequencies higher than the fundamental resonance frequency. With respect to the 

symmetry (i.e. reciprocity) feature that identifies this reactive transducer, the measured 
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FRFs ,  overlap quite well the simulations up to 100 Hz. There is a rather marked 

mismatch between 10 and 20 Hz for the  FRF and a very little mismatch at 

frequencies lower than 100 Hz for the  FRF. These issues are probably caused by 

the experiment setup which does not meet rigorously the assumptions made in the 

model. However, the comparison between simulated and measured FRFs suggests 

that the proposed piezoelectric model reproduce sufficiently well the mechanical and 

electrical impedance functions  and  and the two electromechanical 

transduction functions  and . It follows that the proposed lumped models can 

be suitably used to predict the power harvested and absorbed with the 

electromagnetic and piezoelectric harvesters. 

 

 

3.6  ENERGY ANALYSIS  

A unified energy formulation for the power harvested, power input and efficiency for 

the two devices is derived in this section. As done for the seismic harvesters, these 

three functions are obtained assuming that the transducers are connected to a purely 

real or complex electric load. Figure 3.6 shows the scheme of the two-port network 

used to derive the energy analysis.  The mechanical mesh has input variables  and 

 and mechanical impedance . The electrical mesh has input variables  and  

and both ports are connected via the transduction FRFs  and  by the transducer 

black box. Finally, an electric load is connected to the electric terminals of the 

transducer. 

 

 

Figure 3.6: Equivalent schematic representation of the two reactive electromechanical 
transducers connected to the harvesting electrical load. 

 

The results are obtained assuming time harmonic excitation and optimal harvesting 

loads. The spectra of the harvested power, input power and efficiency are presented. 
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The graphs are derived using analytical expressions (solid blue line) and 

measurements (dotted black line) of the four constitutive FRFs , , , .  

 

 

3.7  HARVESTED POWER 

For time-harmonic vibrations, the time averaged harvested power is given by 

 

 = lim→ 1 ( )d , (3.19) 

 

so applying the same procedure derived for the seismic harvesters (Eqs. (2.26)-(2.29)) 

it results: 

 

 = 12 Re | | = 12 Re − + | | . (3.20) 

 

In order to find the optimal complex load, which maximize the power harvested, 

Eq.(3.20) is derived with respect to the real and imaginary part of the complex electric 

load and set to zero: 

 

 
∂∂Re = 0 and  ∂∂Im = 0 . (3.21a,b) 

 

Solving Eq.(3.21) the two conditions lead to the following optimal impedance 

condition for the harvesting circuit: 

 

 = ∗ , (3.22) 
  

where * is the complex conjugate operator. Applying the optimal impedance 

condition in Eq.(3.20), the maximum harvested power results:  

 

 = 18 | |Re | | , (3.23) 
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which using the formulation presented in Section 3.3 can be specified respectively for 

the electromagnetic and for the piezoelectric reactive harvesters. 

 

 

Figure 3.7: Comparison between the simulated (solid blue line) and measured (dotted 
black line) spectra of the Real and Imaginary parts of the optimal impedance = ∗  
of the harvesting circuits for (a) the electromagnetic and (b) the piezoelectric reactive 
harvesters. 

 

Figure 3.7 shows the real and imaginary parts of the simulated (solid blue line) and 

measured (dotted black lines) optimal complex electric loads, which maximize the 

power harvested for (a) the electromagnetic and (b) piezoelectric reactive harvesters. 

The observed results of the simulated spectra correspond fairly well with those 

derived from the measured FRFs of the electrical impedance .  

Plot (a) shows that when the electromagnetic reactive transducer is considered, the 

impedance of the harvesting load should have a constant real positive part for a range 

of frequencies comprised between 10 Hz and 800 Hz and then a rising real part above 

the cut off frequency (i.e. 805 Hz ) because of the lossy inductive effect [177]. Moving 

to the imaginary part, the amplitude moves from zero to progressively larger negative 

values. If the piezoelectric reactive transducer is considered, the impedance of the 

harvesting load is characterised by both real and imaginary positive parts, 

represented by a decreasing trend converging to zero for very high frequencies. In 

particular at low frequencies the real part is due to the conductive dielectric loss effect 

of the piezoelectric transducer, which produces a flow of current into the piezoelectric 

patches. Thus, the dielectric losses in the piezoelectric layers play a fundamental role 

in the energy harvesting. As discussed in Appendix B, no explicit solution for the 

optimal energy harvesting load derived in Eq.(3.21a,b) can be found if the dielectric 

losses are not taken into account.  
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Comparing the two Plots in Figure 3.7 with the Plots of Figure 2.7 it is noted that 

the spectra of the optimal complex harvesting loads are not characterised by peaks at 

the fundamental resonance frequency of the reactive transducers. In addition, 

contrasting the two plots in Figure 3.7 it comes out that the real/imaginary 

components of the optimal harvesting impedance for the piezoelectric reactive 

transducer is four orders of magnitude greater than the real/imaginary components 

of the optimal harvesting impedance for the electromagnetic reactive transducer. 

Also, the complex conjugate of the FRF measured spectra of the electrical impedance 

for both transducers match quite well with the simulated FRFs. 

Figure 3.8 shows the simulated spectra of the 10 Hz to 1 kHz power harvested per 1g base acceleration amplitude with the electromagnetic reactive harvester (Plot (a)) 

and with the piezoelectric reactive harvester (Plot(b)) when the harvesting circuits are 

characterised by the optimal complex impedance = ∗ . Plot (a) shows that if the 

optimal electrical impedance derived from Eq.(3.22) and shown in Plot (a) of Figure 

3.7 is implemented in the harvesting circuit, the spectrum of the harvested power is 

characterised by a decreasing amplitude. In fact, according to the harvesting power 

equation of Eq.(3.23) and with reference to Plots (a,d) of Figure 3.2 and Figure 3.3, the 

transduction FRF  is constant in the whole frequency range while the real part of 

the electric impedance  grows in amplitude only at frequencies above 800 Hz. Thus 

since Figure 3.8 refers to base acceleration, the power harvested is characterised by a 1⁄  additional factor that generates this decreasing trend shown in Figure 3.8 (a) . 

 

 

Figure 3.8: Spectra of the power harvested with reference to a 1 g base acceleration 
for (a) the electromagnetic and (b) the piezoelectric reactive harvesters with optimal 
harvesting impedances =  ∗ simulated using either the analytical expressions 
(solid blue) or the measurements (dotted black lines) of the four constitutive FRFs, 

, , , .  
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It is interesting to note that, if the eddy current losses in the wire are not present the 

harvested power per unit of base velocity imposed would be constant and equal to = ( R⁄ ) |  | . If the lossy inductance  is also considered, the power 

harvested becomes = ( R⁄ +  Im  |  |  and thus tends to decrease as 

the frequency is incremented.  

According to Plot (a) of Figure 3.7 the maximum power harvested is thus obtained 

with a purely resistive load for a range of frequencies comprised between 10 and 800 

Hz. An imaginary reactive load is also required if the frequency of excitation is above 800 Hz. The spectra of the harvested power simulated from analytical FRFs 

expressions (solid blue lines) and measured FRFs (dotted black lines) perfectly 

overlap in the whole frequency range, confirming the validity of the analytical 

expressions derived for the constitutive FRFs of the electromagnetic harvester in 

Section 3.3 and Appendix C. A mismatch is only present in the frequency range 

comprised between 800 and 1000 Hz, probably caused by the higher order dynamic 

flexural modes of the spiral springs.  

Moving to the piezoelectric harvester, Plot (b) of Figure 3.8 shows that if the 

harvesting circuit implements at each frequency the optimal complex impedance 

calculated from Eq.(3.22) and shown in Plot (b) of Figure 3.7, the spectrum of the 

harvested power is characterised by a trend that uniformly decreases as the frequency 

rises. Similarly to the electromagnetic reactive transducer, the harvested power only 

depends on the electromechanical transduction coefficient  and the electrical 

elements of the piezoelectric device, composed in this case by a lossy inductance . 

As anticipated above, the introduction of an appropriate modelling of the dielectric 

losses for the piezoelectric patch of the transducer is of great of importance because 

otherwise no real part for the optimal impedance of the harvesting load could be 

found and no power could be harvested for any frequency of excitation [92],[93],[196].  

Contrasting the spectra of the harvested power simulated from analytical expressions 

(solid blue lines) and from measurements (dotted black lines) of the four constitutive 

FRFs , , , , relevant discrepancies are noticed in the whole frequency 

range. This problem arises from the fact that the spectrum has been simulated from 

measured FRFs, which, are still characterised by small imperfections that, as 

discussed in Ref. [198], produce the anomalies observed in the power harvested 

spectrum depicted by the dotted black line in Plot (b) of Figure 3.8. Comparing the 

spectra in Plots (a) and (b) of Figure 3.8, it is noted that the electromagnetic harvester 

outperforms the piezoelectric harvester in the whole frequency range. 
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If the harvesters are equipped with purely resistive electric loads, the harvesting 

electrical impedance must be purely real. In this specific case, the purely real 

impedance that allows to obtain the maximum power harvested at each frequency is 

found by imposing only the condition (a) of Eq. (3.21), which gives:  

 

 , = | |. (3.24) 

 

This expression suggests that maximum power  is achieved for each frequency 

when the electric impedance of the harvesting circuit ,  is equal to the module of 

the electric impedance of the reactive transducers  given in Eq.(3.5). Thus 

substituting the optimal real electric impedance ,  into Eq. (3.20) leads to the 

following harvested power expression: 

 

 = 14 | || | + Re | | . (3.25) 

 

Using the formulation derived in Section 3.3, Eq.(3.25) can be specified respectively 

for the electromagnetic and for the piezoelectric reactive harvesters.  

 

 

Figure 3.9: Comparison between the simulated (solid blue line) and measured (dotted 
black line) spectra of the real optimal impedance , = | | of the harvesting circuits 
for (a) the electromagnetic and (b) the piezoelectric reactive harvesters. 

 

The two Plots in Figure 3.9 show the simulated (solid blue lines) and measured 

(dotted black lines) optimal real harvesting impedances , , which maximizes the 

harvested power at each frequency using the electromagnetic reactive transducer 

(Plot (a)) and with the piezoelectric reactive transducer (Plot (b)). Considering first 

the optimal electric load of the electromagnetic reactive transducer shown in Plot (a), 

the spectrum of the real harvesting load ,  is very similar to the real part of the 

spectrum of the complex load, i.e. Re . In detail, compared to the spectrum of 
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Re , the spectrum of real harvested load ,  is characterised by a similar constant 

resistive trend appreciable up to the cut off frequency at 805 Hz .Then, the inductive 

effects of the winding coil becomes predominant and thus the spectrum of ,  rises 

monotonically at a slightly higher values than those of the spectrum of Re . 

Moving to the piezoelectric reactive harvester, Plot (b) in Figure 3.9 shows that the 

spectrum of the real harvesting load ,  is not similar to the real part of  but is 

instead comparable to that of the imaginary part of the spectrum of the complex load, 

i.e. Im . Thus, the amplitude of the resistive load starts from a value of 9 × 10  Ω 

at about 10 Hz and then uniformly drops down as the frequency rise, reaching 900 Ω 

at 1000 Hz. The measured spectrum in Plot (a) denotes a similar behaviour with 

respect to the simulated spectrum and confirms the congruences denoted for the real 

part in Figure 3.7 (a). Instead, the experimental result (dotted black line) in Figure 3.9 

(b) shows a very good matching with the theoretical prediction unlike the real part 

result shown in Figure 3.7 (b). This can be explained by the fact that the capacitive 

effect has a very large magnitude and dominates the real part, which can’t be 

appreciated. 

Considering the two Plots in Figure 3.9, it can be noted that the optimal resistive 

impedance for the electromagnetic reactive transducer is three to four orders of 

magnitude smaller than the real part of the optimal harvesting impedance for the 

piezoelectric seismic transducer. In addition, no peaks due to the electromechanical 

transduction phenomena can be appreciated in the whole frequency range. 

 

 

Figure 3.10: Spectra of the power harvested with reference to a 1 g base acceleration 
for (a) the electromagnetic and (b) the piezoelectric reactive harvesters with optimal 
harvesting impedance , = | | simulated using either the analytical expressions 
(solid blue lines) or the measurements (dotted black lines) of the four constitutive 
FRFs, , , , .  
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Figure 3.10 shows the simulated spectra of the 10 Hz to 1 kHz power harvested per 

1g base acceleration with the electromagnetic reactive harvester (Plot (a)) and with 

the piezoelectric reactive harvester (Plot (b)) when the optimal real harvesting circuit 

of impedance , = | | is connected. Taking into account the electromagnetic 

harvester, Plot (a) shows that implementing at each frequency the optimal real 

impedance load given in Eq.(3.24) and depicted in Plot (a) of Figure 3.9, the resulting 

spectrum of the harvested power ,  is very similar to that found when the optimal 

complex impedance load given in Eq.(3.23) and shown in Plot (a) of Figure 3.7 is 

implemented. Thus, it is characterised by a decreasing trend as the frequency rises. 

No resonance peaks are present. As was noted for the complex harvesting load, also 

with the purely resistive harvesting load the maximum harvested power is controlled 

by the transduction constant coefficient and by the electrical FRF, which characterises 

the reactive transducer. Thus the harvested power is not affected by the mechanical 

properties of the harvester, in particular it is not affected by the air damping produced 

between the magnet and ferromagnetic Yoke and by the eddy currents that develops 

in the ferromagnetic outer ring of this reactive harvester. As discussed in Chapter 2, 

the harvested power by the seismic harvesters is instead dominated by the 

mechanical damping. According to Plots (a) of Figure 3.8 and Figure 3.10, with the 

electromagnetic reactive harvester similar values of harvested power can be obtained 

when the device implements either a purely resistive load , = | | or a complex 

electric load of magnitude = ∗ . Similar to the complex impedance case, the 

spectra of the harvested power simulated from analytical FRFs expressions (solid blue 

lines) and measured FRFs (dotted black lines) match quite well in the whole 

frequency range, except at very high frequencies. Such discrepancies above 900 Hz 

are probably due to higher order dynamic effects of the transducer, which are not 

considered in the model used to simulate the FRFs of the transducer.  

Moving to the piezoelectric harvester, Plot (b) of Figure 3.10 shows that when the 

harvesting circuit implements at each frequency the optimal real impedance derived 

in Eq. (3.24) and depicted in Plot (b) of Figure 3.9, the spectrum of the harvested 

power has a very similar trend to that found when the optimal complex impedance 

load given in Eq.(3.22) and shown in Plot (b) of Figure 3.7 is implemented. Indeed, 

the spectrum of the harvested power is characterised by a decreasing trend in the 

whole frequency range. The only difference is due to the amplitude, which for the 

real optimal impedance case is comparatively smaller by about 20 dB. 

According to Plot (b) of Figure 3.9, the maximum power harvested is obtained at 

low frequency with a resistive load of 9 × 10  Ω. Comparing the spectra of the 
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harvested power simulated from analytical FRFs expressions (solid blue line) and 

measured FRFs (dotted black line), a consistent mismatch is found in the whole 

frequency range. As discussed above, this is due to the fact that the measured 

expressions of the constitutive FRFs of the piezoelectric transducer shown in Figure 

3.4 and Figure 3.5 contain small errors, which, however, are greatly magnified when 

the power is calculated. Plots (a) and (b) of Figure 3.10 show that also in this case the 

electromagnetic harvester outperforms the piezoelectric harvester in whole frequency 

range. 

 

 

3.8  INPUT POWER 

Similarly to the seismic harvesters, the time averaged input power for the 

electromagnetic and the piezoelectric reactive devices is given by: 

 

 = lim→ 1 ( )d , (3.26) 

 

where the instantaneous input power is given by: 

 

 ( ) = ( ) ( ), (3.27) 

 

and ( ), ( ) are the force and velocity of the base masses of the two reactive 

transducers. Assuming time harmonic functions, the force at the base mass of the 

transducers can be derived from the first equation of the matrix expression in Eq. 

(3.1). Assuming the current is given by Eq.(2.29) follows: 

 

 = , (3.28) 

 

where  is the base impedance of the reactive harvesters when the transducers are 

connected to the optimal harvesting circuit characterised by the electrical impedance 

: 

 

 = − + . (3.29) 
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Thus, substituting Eqs.(3.28) and (3.29) into Eq.(3.27) the time average input power is 

derived as follows: 

 

 = 12 Re | | = 12 Re − + | | . (3.30) 

 

Considering the optimal complex impedance = ∗ , the input power expression 

becomes: 

 

 = 12 Re − 2Re | | . (3.31) 

 

Eq.(3.31) can be specified respectively for the electromagnetic and piezoelectric 

reactive harvesters. 

 

 

Figure 3.11: Spectra of the power input with reference to a 1 g base acceleration for (a) 
the electromagnetic and (b) the piezoelectric reactive harvesters with optimal 
harvesting impedances = ∗  simulated using either the analytical expressions 
(solid blue lines) or the measurements (dotted black lines) of the four constitutive 
FRFs, , , , . 

 

Figure 3.11 shows the simulated spectra of the 10 Hz to 1 kHz power input per 1g 

base acceleration with the electromagnetic (Plot (a)) and piezoelectric (Plot (b)) 

reactive harvesters when the harvesting loads characterised by the optimal complex 

impedance = ∗  derived in Eq.(3.22) are implemented. Considering at first the 

electromagnetic reactive device, implementing at each frequency the complex 

harvesting impedance = ∗  depicted in Plot (a) of Figure 3.7, the power input 
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starts at a value of 228 mW/1g and then monotonically falls down with frequency. 

No peaks can be appreciated in the whole spectrum and in comparison with the 

power harvested shown in Figure 3.8 , the spectra of the input power of Figure 3.11 

is quite similar except that the input power is relatively higher by about 11,37 dB . 

The simulated spectra based on analytical expressions (solid blue line) and 

measurements (dotted black line) of the four constitutive FRFs, , , , , 

perfectly overlap up to about 800 Hz.  

As previously discussed in Section (3.7) for the power harvested, the increasingly 

larger mismatch between simulation and measured spectra, particularly visible at 

higher frequencies, is due to higher order dynamic effects of the transducer, which 

are not taken into account in the model used to simulate the characteristic FRFs of the 

electromagnetic harvester.  

Considering now the piezoelectric reactive harvester, when the harvesting circuit 

implements at each frequency the optimal complex impedance = ∗  depicted in 

Plot (b) of Figure 3.7, the input power to the transducer using the simulated FRFs 

monotonically falls down as the frequency increases. Instead, the simulation based 

on the measured constitutive FRFs (dotted black line), is characterised by drops and 

crests anomalies. This result is not related to antiresonance or resonance effects but 

arise from the calculus of the power based on measured FRFs, which are affected by 

small errors in the real and imaginary parts, or in the modulus and phase, and, as 

discussed in Ref.[198], produce the glitches observed in the dotted black spectrum. 

In conclusion, as for the electromagnetic reactive transducer, the spectra of the 

harvested and input power by the piezoelectric reactive harvester shown in Plots (b) 

of Figure 3.8 and Figure 3.11 also shows similar features, with the spectrum of the 

input power being shifted up by about 6.68 dB with respect to the harvested power. 

For both transducers, the surplus of power input with respect to the power harvested 

is dissipated by the electrical and mechanical losses in the two reactive harvesters.  

Moving now to the case when the harvesting electrical component is characterised 

by a purely resistive impedance , = | | found in Eq.(3.24) and depicted in Figure 

3.9, the power input given by Eq. (3.30) becomes: 

 

 = 12 Re − + | | | | . (3.32) 

 

This expression can be specified for the electromagnetic and piezoelectric reactive 
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harvesters by substituting it in the expressions for the constitutive FRFs given in Eqs. 

(3.2)- (3.5). 

Figure 3.12 shows the simulated spectra of the 10 Hz to 1 kHz power input per 1g 

base acceleration with the electromagnetic (Plot (a)) and piezoelectric (Plot (b)) 

reactive transducers when the harvesting circuit implements the optimal real 

impedance given in Eq.(3.24), i.e.  , = | |. Starting from the electromagnetic 

reactive device, implementing at each frequency the harvesting circuit characterised 

by the optimal real impedance , = | |, the power input starts at a maximum 

value at about 10 Hz and then falls down monotonically with frequency. Also, in this 

case the spectra of the power input simulated using the analytical expressions (solid 

blue line) and the measured (dotted black line) constitutive FRFs, , , , , 

closely overlap up to about 800 Hz. At higher frequencies, there is an increasingly 

larger mismatch, which, as discussed above, and also in Section 2, is probably due to 

higher order dynamic effects of the transducer occurring just above 1 kHz, which are 

not accounted in the model for the constitutive FRFs.  

 

 

Figure 3.12: Spectra of the input power with reference to a 1 g base acceleration for (a) 
the electromagnetic and (b) the piezoelectric reactive harvesters with optimal 
harvesting impedances , = | | simulated using either the analytical expressions 
(solid blue lines) or the measurements (dotted black lines) of the four constitutive 
FRFs, , , , . 

 

Moving now to the piezoelectric reactive device, implementing at each frequency the 

harvesting circuit with the optimal real impedance  , = | | depicted in Plot (b) of 

Figure 3.9, the input power to the transducer starts with a maximum level of power 

of 11 mW/1g at 10 Hz and monotonically drops down as the frequency increases. As 

can be noticed, the spectrum simulated from measured constitutive FRFs (dotted 
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black line) is rather irregular with many narrow drops and small crests, which, as 

already mentioned, is due to fact that the FRFs used to simulate the power expression 

are characterised by small errors generated during the measurements [198], which are 

greatly amplified in the calculus of the power harvested. 

In conclusion, as shown above, the spectra of the input and harvested power for 

both the electromagnetic and the piezoelectric harvesters, shown respectively in Plot 

(a) and in Plot (b) of Figure 3.12 and Figure 3.10 , are quite similar to each other, except 

for the level of the spectrum of the input power which is shifted up 11.4 dB and 9.5 

dB for the coil magnet and piezoelectric harvester respectively. Also, as for the 

optimal complex electric load case, the surplus of power input with respect to the 

power harvested is dissipated and thus lost by the inherent mechanical damper and 

electrical resistance. 

 

 

3.9  EFFICIENCY 

In analogy to the seismic harvesters, in order to characterise the capacity to convert 

the input power to the harvested power, the efficiency ratio is defined as:  

 

 = , (3.33) 

 

where  and  are given in Eqs.(3.20) and (3.30) respectively such that: 

  

 = Re − +
Re − + . (3.34) 

 

Implementing the harvesting loads with either the optimal complex impedance, =∗ , or the optimal real impedance, , = | |, Eq.(3.34) can be specified as follows:  

 

 = 14 | |
Re Re − 2Re  ,   (3.35) 
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 = 12
 | || | +

− + | | .  

(3.36) 

 

Figure 3.13 and Figure 3.14 show the simulated spectra of the 10 Hz to 1 kHz 

efficiency when the electromagnetic (Plot (a)) and piezoelectric (Plot (b)) reactive 

harvesters are connected to harvesting loads that implement the optimal complex 

impedance = ∗  and the optimal real impedance , = | | respectively. 

Considering at first the electromagnetic harvester, Plots (a) of Figure 3.13 and Figure 

3.14 show that the simulated spectra of the efficiency obtained  from the analytical 

FRFs expressions (solid blue lines) have a somewhat constant efficiency at about         

30 % in a whole frequency range. A slight decrease of the efficiency can be appreciated 

only for high frequencies at about 1000 Hz. Compared to the simulated spectra from 

the measured FRFs, the efficiency (dotted black lines) satisfactorily overlap up to 

about 215 Hz and then grows up monotonically with frequency. At higher 

frequencies the efficiency simulated from measured FRFs (dotted black lines) 

becomes inaccurate because of the bias errors in the calculation of the harvested and 

input power with the measured FRFs, which are then magnified in the calculus of the 

efficiency power ratio. Such problem becomes relevant in the spectra of the efficiency 

for the piezoelectric reactive harvester shown in Plots (b) of Figure 3.13 and Figure 

3.14, where the simulations from analytical FRFs expressions (solid blue lines) are 

only shown. This is because the spectra simulated from measured FRFs (dotted black 

lines) do not accurately overlap with the solid blue lines. Plot (b) in Figure 3.13 shows 

that when the optimal reactive impedance = ∗  is implemented, the efficiency of 

the piezoelectric reactive harvester is characterised by a somewhat constant efficiency 

at about 45% in the entire frequency range. Moving to Plot (b) of Figure 3.14 ,the 

configuration with the optimal real impedance , = | | indicates that the 

efficiency, which at 10 Hz is about to 37%, gradually falls down such that, at 1 kHz,  

is close to 0% . These results show that, when the optimal complex harvesting load is 

implemented, the efficiency of the piezoelectric transducer is higher at about 15 % 

than the electromagnetic harvester to convert the input power into the harvested 

power. Instead, when the optimal real impedance load is implemented, the 

electromagnetic harvester results more efficient than the piezoelectric harvester, in 

particular for frequencies up to 50 Hz. 

As already indicated in Section 2.9 for the seismic harvesters, these results are 

however specific to the transducers considered in this study. For instance, if the 
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transduction coefficient of the devices is increased by 20% by increasing the magnetic 

field  of the coil magnet or the piezoelectric strain charge constant  of the 

piezoelectric harvester, the efficiency implementing the real-reactive harvesting load 

would rise respectively to 4 % and 3%. This suggests that the design of the two 

reactive transducers plays a key role in the conversion of the input mechanical power 

into harvested electrical power. 

 

 

Figure 3.13: Spectra of the efficiency for (a) the electromagnetic and (b) the 
piezoelectric reactive harvesters with the optimal harvesting impedances = ∗  
simulated using either analytical expressions (solid blue line) or the measurements 
(dotted black line).   

 

 

Figure 3.14: Spectra of the efficiency for (a) the electromagnetic and (b) the 
piezoelectric reactive harvesters with an optimal harvesting impedances , = | | 
simulated using either analytical expressions (solid blue line) or the measurements 
(dotted black line). 
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4  
V I B R A T I O N  E N E R G Y  H A R V E S T I N G :  S C A L I N G  

S TU D Y  

This chapter presents a comparative study on the scaling laws of vibration energy 

harvesters using either seismic or reactive electromagnetic and piezoelectric 

transducers. The aim of this chapter is to give a detailed account of how the efficiency 

and harvested power density vary with the dimension so that, the potential (large- or 

small-scale) applications of these transducers can be assessed. The study is primarily 

focussed on seismic harvesters, which present a general case. The scaling laws of 

reactive harvesters is briefly revised at the end of the chapter since it recalls most of 

the results and conclusions drawn for the seismic harvesters. Starting from the models 

presented in Chapter 2 and Appendix A and B, a new energy and then scaling 

formulation is derived under the assumption of steady state oscillation at the 

fundamental mechanical frequency of the transducers, assuming they are driven by 

a base acceleration of 1 g amplitude. An isotropic downscaling is assumed for both 

harvesters and therefore no change of shape takes place as the transducers are scaled 

up or down. Using the notation described by Madou and Trimmer [200], [201] the 

scaling laws are obtained with reference to a single variable , which represents the 

linear proportional scale of the entire device. In addition, it is assumed that the scale = 1 refers to the size of the two harvester prototypes built for this study (See Figure 

4.1). Also, the upper and lower scaling limits were chosen considering the dimensions 

of typical prototypes reported in literature [50], [81], [82]. 

This chapter is structured in eight sections. At first, the derivation of a two port 

network formulation that can be suitably used to implement the scaling study of the 

two seismic harvesters is reformulated starting from that presented in the previous 

chapters. In sections 4.2 - 4.6 the scaling properties of the harvested power and 

efficiency are derived and specified in terms of non-dimensional electromechanical 

coupling coefficients and loss factors of the two seismic transducers. In particular, as 

proposed by Beeby et al. [140], the power scaling analysis has been performed by 

normalizing the power to the total volume of the device and to the amplitude of the 

input acceleration squared. This normalized power density with respect to the 
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fundamental resonance frequency provides an ideal figure of merit to compare the 

energy performances of the two harvesters considered in this study. To this end, the 

downscaling of the fundamental mechanical and electrical properties that 

characterise the components of the models (b) and (d) in Figure 4.2 is briefly revisited. 

 

 

Figure 4.1: Scaling laws of the harvesters for different values of . 

 

A comparative analysis of the two harvesters is then proposed in section 4.7. The 

section closes with a comprehensive analysis of the stroke scaling of the two seismic 

transducers. The scaling of the reactive harvesters is finally presented in section 4.8. 

 

 

4.1  LUMPED MODEL  

Considering the schematics of the prototype electromagnetic and piezoelectric 

seismic harvesters shown in Figure 4.2 (a,c), the lumped parameter models vibrating-

based energy harvesting transducers shown in Figure 4.2 (b,d) are taken into account 

for such study. Starting from the picture (a) of Figure 4.2, the electromagnetic 

harvester is formed by a permanent magnet free to move inside a voice coil housed 

in the external cylindrical case of the transducer. The magnet and external case are 

connected via soft spiral springs. Moving to Figure 4.2 (c), the piezoelectric harvester 

is formed by a cantilever beam blocked at the moving base and with a tip mass 

clamped at the other end. Two piezoelectric patches are bounded on the top and the 
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bottom of the beam laminate. As shown in Figure 4.2 (b,d), the two systems are 

modelled with consistent electromechanical parameter models; in particular are 

characterised by an electrical mesh and mechanical part joined together with  current-

controlled force generator and relative velocity-controlled voltage generator and with 

voltage-controlled force generator and relative velocity-controlled current generator 

respectively for the electromagnetic and piezoelectric harvester.  

 

 

Figure 4.2: Functional drawings (a, c) and lumped parameter schematics (b, d), for the 
electromagnetic (left hand side) and piezoelectric (right hand side) seismic 
transducers. 

 

For the scaling study it is assumed that the two transducers are connected either to 

optimal resistive and reactive or purely resistive harvesting loads. The analysis is 

restricted to steady state base excitation at the fundamental resonance frequency of 

the devices. In fact as shown in Appendix D, for tonal base excitation, the maximum 

power harvested by either electric loads occurs at a frequency close to the transducers 

fundamental natural frequency. This assumption gives the opportunity to simplify 

the model of the electromagnetic seismic harvester neglecting the lossy inductance 

effect that is particular effective only at frequencies above 1 KHz. Compared to 

Chapter 2, the air loading on the beam laminate, which produces a distributed sky-
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hook viscous damping effect, is not neglected, since compared to the viscoelastic 

material losses, air damping widely varies with the scaling size. The constitutive 

equations and the energy and efficiency formulation of the electromagnetic and 

piezoelectric seismic transducers are derived with respect to the equivalent lumped 

parameter models shown in the schematics (b) and (d) of Figure 4.2.  

 

 

4.2  CONSTITUTIVE EQUATIONS  

In analogy to Ref.[185], the two harvesters are characterised in this study by the 

following two port network equations for the electromagnetic (4.1) and piezoelectric 

(4.2) harvester respectively: 

 

 = , (4.1) 

 = . (4.2) 

 

Here ,  , ,  are the complex amplitudes of the force and velocity at the base 

and the  voltage and current through the terminals of the seismic transducers. Based 

on the constitutive Eqs.(A.32)-(A.34) and (B.76), (B.77), (B.79), the mechanical 

impedance, electrical impedance and the two electromechanical transduction FRFs 

are given by the following expressions: 

 

 

=
= = + , (4.3a,b) 

 

=
= = Ψ , (4.4a,b) 

 

=
= = −Ψ , (4.5a,b) 
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 = = + Ψ Ψ ,      (4.6) 

 = = 1 + Ψ Ψ ,       (4.7)  

 

where  

 

 = j +  ,   (4.8) 

 = j ,   (4.9) 

 = j + ,      (4.10) 

 = + = j + + + j .       (4.11) 

 

For the electromagnetic harvester  can be specified as follows: 

 

 = + . (4.12) 

 

Also, for the coil-magnet transducer: 

 

 = + j , (4.13) 

 

while for the piezoelectric transducer: 

 

 = 1j = 1j (1 − ). (4.14) 

 

Finally, the transduction terms Ψ  and Ψ  for the electromagnetic and the 

piezoelectric harvesters are given respectively by: 

 

 Ψ = Ψ = ψ = , (4.15) 

 Ψ = Ψ = ψ = ̅ ℎ + ℎ ϕ ( )ϕ ( ̅). (4.16) 
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For both devices , ,   are the base mass, proof mass and the suspension 

stiffness. The terms  and  represent the total internal and external damping 

coefficients due respectively to the relative and absolute motion of the harvester 

components. In particular, for the coil magnet, the damping coefficient  is 

composed by two contributes  and  ,which represent the effect of the repulsive 

force generated by the eddy currents into the Yoke and the viscous Couette air 

damping acting between the inner gap of the moving magnet and the internal 

cylindrical surface of the housing case [202]. Moving to the piezoelectric device, the 

damping coefficient  represents the structural internal damping while  

identifies the contribution of air damping, which acts on the absolute velocity of the 

moving mass. For the electromagnetic harvester, compared to the other loss effects, 

the effect of the squeeze air damping that develops on the cylindrical housing Yoke 

can be neglected and thus  is considered negligible. Furthermore,  and  are 

the electrical resistance and inductance of the electromagnetic coil while =(1 − ) is the capacitance of the piezoelectric layers under constant strain, where 

 is the electromechanical coupling factor of the piezoelectric material [184]. Also, ( ) = ̅⁄  is the dielectric loss factor of the piezoelectric material [180]–[183] 

introduced to identify the lossy capacitance under constant strain = (1 − ). 

Moving to the transduction factors, for the electromagnetic harvester,  is the 

magnetic flux density of the permanent magnet and  is the length of the winding coil 

[184]–[186], [188]. Also, for the piezoelectric harvester ( ) and ( ) = ( ) are 

the amplitude and slope of the first flexural mode of the composite clamped beam 

with the tip mass attached at the end,  is the width of the metallic substrate and 

piezoelectric layers, ℎ , ℎ  are respectively the thickness of the beam and the single 

piezoelectric layer and ̅  is the stress/charge constant for the piezoelectric material 

[72]. Finally, as discussed in Chapter 2 and in Appendix B,  ̅ identifies a specific point 

along the beam, which allows the derivation of the lumped equivalent model shown 

in Figure 4.2 (d). 

The FRFs  and  derived in Eq.(4.1) represent the electromechanical 

transduction FRFs for the electromagnetic seismic device, which gives the base force 

effect produced by the transducer per unit current flowing in the blocked seismic 

harvester, i.e. = / | , and the electromotive force generated at the terminals 

of the transducer per unit velocity at the base of the open circuit seismic transducer, 

i.e. = / | . Analogously the FRFs ,  derived in Eq.(4.2) represent the 

electromechanical transduction FRFs for the piezoelectric seismic device, which 
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provide the base force generated  by the transducer per unit of voltage imposed across 

the electric circuit in the blocked seismic transducer, i.e. = / |  and the 

current generated per unit velocity at the base of the short circuited seismic 

transducer, i.e. = / | . Finally, = / |  , = / |  and = / |  , = / |  are the output electrical impedance and 

admittance  of the blocked seismic transducer and the input mechanical impedance 

in the open and short circuited electrical configuration for the electromagnetic and 

piezoelectric harvesters respectively.  

 

 

4.3  ENERGY AND EFFICIENCY FORMULATION FOR THE SCALING 

STUDY OF THE ELECTROMAGNETIC HARVESTER 

As derived in Appendix D.1, when the optimal complex electric load = ∗  given 

in Eq.(2.32) and depicted in Plot (a) of Figure 2.7 is implemented, for both transducers 

the harvested power is maximized in correspondence of their fundamental 

mechanical natural frequency. Also, based on Plots (a, b) of Figure 2.10, if the 

harvesting circuit implements at each frequency the optimal real impedance =| | derived in Eq.(2.34) and depicted in Plot (a) of Figure 2.9, the spectrum of the 

harvested power is characterised by a sharp peak at the fundamental resonance 

frequency. Thus, based on these results it is reasonable to focus the scaling study of 

the electromagnetic and piezoelectric harvesters with reference to a tonal excitation 

whose frequency is close to their fundamental mechanical frequency; that is a 

frequency where the power harvested is maximum and thus the seismic harvester 

should operate. 

 

4.3.1 Harvested power 

When the electromagnetic transducer is used for energy harvesting purposes, an 

electric load of impedance  is connected at the terminals of the electrical circuit.  

Assuming time harmonic constant excitation  at the base, the relation between the 

voltage at the terminals  and the current , which flows through the circuit, is: 

 

 = − , (4.17) 
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where  is the electrical load impedance of the harvesting circuit.   

Substituting Eq.(4.17) into Eq.(4.1), it follows: 

 

 = − + . (4.18) 

 

The power harvested to the load results:  

 

 = 12 Re | | = 12 Re − + | | . (4.19) 

 

As seen in Chapter 2, according to the Fermat's theorem [195], the complex electric 

load , which maximizes the harvested power at each frequency is given by: 

 

 = ∗ , (4.20) 

 

where * denotes the complex conjugate. 

Instead, if  is assumed to be purely real, the optimal electric load becomes:  

 

 , = | |. (4.21) 

 

Substituting in Eq.(4.19) the two optimal electrical impedances given in Eqs.(4.20) and 

(4.21) the following expressions for the maximum power harvested are derived: 

 

 = 18 | |Re | | , (4.22) 

 = 14 | || | + Re | | , (4.23) 

 

for the complex and purely real electric loads respectively. 

Specifying Eqs.(4.22), (4.23) for a time harmonic excitation  tuned to the 

fundamental natural frequency i.e. = = ⁄  of the electromechanical 

transducer gives: 

 

 = 18 C1 + C | | , (4.24) 
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 , = 14 1 | | , (4.25) 

 

where  was defined as ≜ + + and, in analogy to Ref. 

[203], C  is identified as the non-dimensional electromagnetic coupling coefficient 

at low frequencies: 

 

 C = ( ) . (4.26) 

 

This coefficient is defined as the ratio between the mechanical impedances of the base 

driven electromechanical transducer excited in correspondence of its mechanical 

natural frequency , respectively when the electrical circuit of the device is opened 

and short-circuited and the value of the mechanical natural frequency  is lower 

than the cut-off frequency = ⁄  . 

In addition, a high frequencies non-dimensional electromagnetic coupling 

coefficient C  can be derived: 

 

 C = ( ) , (4.27) 

 

which is defined as the ratio between the transducer mechanical impedances 

calculated in correspondence of its mechanical natural frequency  respectively 

when the circuit of the harvester is opened and short-circuited and the mechanical 

natural frequency  is higher compared to the cut-off frequency . (For more 

details see Appendix D.2). 

 

4.3.2 Input power 

Substituting in Eq.(4.1) the expression of the current  derived in Eq. (4.18), the 

mechanical response of the electromagnetic harvester can be interpreted in terms of 

its base impedance: 

 

 = = − + , (4.28) 
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where  and  are the time harmonic force and velocity at the base of the transducer 

and  is the mechanical base impedance. 

For harmonic vibrations, the time average mechanical input power is given by: 

 

 = 12 Re | | = 12 Re − + | | . (4.29) 

 

The above expression can then be straightforwardly specified for the two optimal 

electrical impedances derived in Eq.(4.20) and (4.21): 

 

 = 12 Re − 2Re | | , (4.30) 

 , = 12 Re − + | | | | . (4.31) 

 

Considering = = ⁄ , the two equations above reduces to the following 

expressions respectively for the optimal complex and purely real harvester loads: 

 

 = 14 2 + C1 + C | |  (4.32) 

  , = 12 ⎣⎢
⎢⎡1 − + 1C ⎦⎥

⎥⎤ | | . (4.33) 

 

4.3.3 Efficiency  

From Eq.(2.43) the power harvesting efficiency E is defined as: 

 

 = , (4.34) 

 

where  and  are the time average harvested and input power. Thus, substituting 

Eq.(4.19) and Eq.(4.29) into Eq.(4.34) gives: 
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 = Re − +
Re − + . (4.35) 

 

Implementing the optimal complex impedance = ∗ , or the optimal real 

impedance, , = | |, the above expression becomes respectively:  

 

 = 14 | |
Re Re − 2Re

,      (4.36) 

 = 12
 | || | + Re

Re − + | | .       

     (4.37) 

 

Assuming = = ⁄ , the two equations above become: 

 

 = C4 + 2C , (4.38) 

 = 12 1 + 1C
+ 1C − , (4.39) 

 

respectively for optimal resistive-reactive and purely real harvesting load. 

 

 

4.4  ELECTROMAGNETIC HARVESTER:  SCALING LAWS 

In the following subsection, the scaling laws for the principal physical properties of 

the electromagnetic transducer depicted in Plot (a) of Figure 4.2 are first revised. The 

downscaling of the normalized power density and efficiency is then considered. 

 

4.4.1 Physical parameters  

The derivation of the scaling laws for the power harvested and efficiency is 

characterised by the scaling of the coupling coefficients  and . These two 
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terms are identified by the principal mechanical and electrical elements that compose 

the lumped model of the seismic transducer shown in Figure 4.2 (b). The scaling laws 

of such parameters are depicted below. 

 

Figure 4.3: Scaling laws of the Couette air film damping coefficient  (dash-dotted 
line) and eddy current damping  (thin dash-dotted line), mechanical natural 
frequency  (solid line), electrical resistance  (dotted line), transduction coefficient ψ  (dashed line), inductance  (thin solid line). 

 

Figure 4.3 shows that, as the size of the transducer is scaled up, the fundamental 

natural frequency  and the electric resistance  tend to decrease inversely to the 

dimension i.e. , while the air damping coefficient  , the electric inductance  

and the transduction coefficient ψ  rise up proportionally to dimension i.e. . 

Finally the eddy current damping  scales as the power of . . As discussed by 

Gardonio and Gonzalez [204], the proof mass of the electromagnetic device can be 

calculated as = ∅ ℎ 4⁄  , where ∅ , ℎ and  are the outer diameter , height and 

average density respectively and thus scales as the cube of the dimension i.e.  . 

Also, the suspension stiffness can be calculated as [205] = 3 ℎ⁄  ,where ,  and ℎ are respectively the Young’s modulus of elasticity of the material and the base area 

and height of the spiral springs of the transducer. So, the stiffness scales linear to the 

dimension i.e. . As a result, the mechanical natural frequency = ⁄  scales 

with the inverse of the first power of dimension i.e.  . The transduction coefficient 

is defined as  Ψ = Ψ = Ψ =  , where   is the magnetic flux density, which 

as shown in Refs. [206], [207] remains unchanged with scaling, i.e. , and  is the 
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length of the winding coil. It follows that the transduction coefficient scales down 

with the first power of dimension, i.e. . The electrical resistance of the coil wire is 

given by [203] = ⁄ , where  is the resistivity of the wire material 

(independent with scaling i.e.  ),  is the length of the wire and  is the cross 

sectional area of the wire too. Thus  clearly scales with the inverse of the first power 

of dimension i.e. . 

The detailed derivation of the scaling laws for the viscous air damping coefficient , 

the eddy current damping  and the inductance  are reported in Appendix D.4. 

 

4.4.2 Power and efficiency  

Recalling Eqs.(4.24), (4.25) and considering the results shown in Figure 4.3, the scaling 

laws of the harvested power density and efficiency for the electromechanical 

transducer have been derived numerically considering the physical parameters of the 

prototype depicted in Plot (a) of Figure 2.1 and listed in Table 2-1. 

Figure 4.4 shows the scaling laws of the harvested power normalized to the total 

volume of the device per unit of 1g base acceleration for = = ⁄  and for 

the optimal complex (Plot (a)) and purely real (Plot (b)) electric loads. The source 

acceleration 1  at the base of the electromechanical transducer is assumed regardless 

of the harvester dimension.  

 

 

Figure 4.4: Scaling law of the power harvested density  implementing (a) the 
optimal complex electric load and (b) the optimal purely real electric load when the 
effect of the eddy currents  is present (solid line) and is neglected (dashed line). 
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Analysis of Plots (a, b) in Figure 4.4 shows that for both optimal electric loads 

implemented  the electromagnetic harvester is characterised by higher power density 

at largescale, in particular if the effect of the eddy currents that develops in the 

ferromagnetic outer ring is annihilated. In fact, the upper bound of the normalized 

power density in both plots suggests that a much higher upper limit can be reached 

if the eddy current losses are removed from the transducer.  

On the contrary, reducing the dimension of the device, the power density decreases 

to a point it converges to the same scaling law i.e.  for either types of losses and for 

both optimal harvesting load configurations. This effect, can be explained by the fact 

that the Couette air damping losses completely dominate over the eddy current 

losses, which, therefore, become negligible at small scales.  

 

 

Figure 4.5: Scaling laws of the efficiency implementing (a) the optimal complex and 
(b) optimal purely real electrical loads when the effect of the eddy currents  is 
present (solid line) and is neglected (dashed line). 

 

Moving to the analysis of the efficiency, Figure 4.5 shows the variation of the power 

efficiency with the scale dimension of the electromagnetic harvester when the optimal 

complex (Plot (a)) and the purely real (Plot (b)) electric loads are implemented. Taking 

into account Figure 4.5 (a) and considering Eq.(4.38), it results that the efficiency is 

only dependent on the electromechanical coupling coefficient C  whose scaling law 

can be derived from inspection of Eq.(4.26) and Figure 4.3 . It follows that the 

harvesting performances of the electromagnetic seismic harvester increases with the 

size and reaches the maximum value of 0.5, for which very low power is absorbed 

from the mechanical damper of the transducer and equal power is dissipated from its 

internal resistance and harvested to the electric load. The same conclusions can be 
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drawn for the real harvesting load. Considering Figure 4.5 (b) and Eq.(4.39), the 

inductance scaling effect is also present via the contribution of the non-dimensional 

electromagnetic coupling factor C , defined in Eq.(4.27) and derived in Appendix 

D.2. 

It is interesting to note that assuming for the electromagnetic harvester a damping 

coefficient  that, as proposed in Ref. [203], scales as the square of the power i.e. , 

the coefficient C  remains unchanged with scaling i.e.  and Eq.(4.25) can be 

approximated to Eq.(4.24), implying that no distinction can be made between the two 

scaling efficiency configurations shown in graphs (a) and (b) of Figure 4.5. 

 

 

4.5  ENERGY AND EFFICIENCY FORMULATION FOR THE SCALING 

STUDY OF THE PIEZOELECTRIC HARVESTER 

This section presents and discusses the scaling behaviour of the power density and 

efficiency for the piezoelectric seismic harvester. In the following subsection the 

energy and efficiency formulation is derived for either the optimal complex and 

purely real electric loads and then specified at the fundamental natural frequency of 

the transducer, where the maximum power absorption occurs for tonal vibrations. 

 

4.5.1 Energy harvesting 

The scaling study for the harvested power density and efficiency of the piezoelectric 

seismic harvester was implemented using a similar formulation to that presented 

above for the electromagnetic harvester. In this case, assuming a time harmonic 

constant excitation  at the base, the current  that flows through the terminals of 

the electrical impedance was assumed: 

 

 = − , (4.40) 

 

where  is the voltage across the terminals of the electrical load and  is its 

admittance, defined as the inverse of the electric impedance of the harvesting load 

connected across the terminals of the transducer.  

Substituting Eq.(4.40) into Eq.(4.2), the relation between the voltage  and the base 

velocity  can be written as: 
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 = −+ . (4.41) 

 

Thus the time averaged power harvested to the generic load results:  

 

 = 12 Re | | = 12 Re −+ | | . (4.42) 

 

It is now straightforward finding that Eq.(4.42) is maximized with respect to the 

electric admittance if  

 

 = ∗ , (4.43) 

 , = | |, (4.44) 

 

where Eqs.(4.43), (4.44) refer to an optimal resistive-reactive or purely resistive load 

respectively. These results match with what found for the coil magnet in Eqs.(4.20), 

(4.21) and for both transducers in Eqs.(3.22), (3.24) of Chapter 2.  

Substituting in Eq.(4.42) Eqs.(4.43) and (4.44), the following expressions are derived 

for the maximum power harvested for the resistive-reactive (Eq.(4.45)) and purely 

resistive (Eq.(4.46)) electric load respectively: 

 

 = 18 | |Re | | , (4.45) 

 , = 14 | || | + Re | | . (4.46) 

 

Specifying Eqs.(4.45), (4.46) at the fundamental natural frequency of the piezoelectric 

transducer i.e. = = ⁄ , it follows that: 

 

 = 18 C
 + C | | , (4.47) 

 , = 12 C  1 + (C  + + ) | | , (4.48) 
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where  was defined as ≜ 1 + (C + )  and, in analogy to the 

electromechanical harvester, C  identifies the non-dimensional piezoelectric 

coupling coefficient: 

 

 C = ( + ), (4.49) 

 

defined as the ratio between the mechanical impedances of the base driven 

piezoelectric transducer respectively in short circuit and open circuit condition (for 

more details see Appendix D.2). 

Also, inspection of the formulas in Eqs.(4.47) and (4.48) show that the frequency 

dependent dielectric loss factor of the material ( ) introduced in Chapter 2 and 

derived in Appendix B.2 is now defined in correspondence of the fundamental 

natural frequency of the piezoelectric transducer: 

 

 = ̅ , (4.50) 

 

where  and ̅  are respectively the conductivity and the electrical permittivity of 

the piezoelectric material under constant strain [181].  

 

4.5.2 Input power  

Substituting Eq.(4.41) in Eq.(4.1), the mechanical response of the piezoelectric 

harvester can be written in terms of its base impedance: 

 

 = = − + , (4.51) 

 

where  and  are the time harmonic force and velocity at the base and  is the 

mechanical impedance. 

So, for harmonic vibrations, the time average mechanical input power is given by:  

 

 = 12 Re | | = 12 Re − + | | . (4.52) 
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This expression can now be specified for the two optimal electrical admittances 

derived in Eqs.(4.43) and (4.44): 

 

 = 12 Re − 2Re | | , (4.53) 

 , = 12 Re − + | | | | , (4.54) 

 

which in correspondence of the mechanical natural frequency of the harvester i.e.  = = ⁄  can be written as: 

 

 = 14 2 + C+ C | | , (4.55) 

  , = 12 1 − C C + +1 + C + + | | . (4.56) 

 

4.5.3 Efficiency 

The power efficiency = ⁄  can now be specified for the piezoelectric energy 

harvester using Eq.(4.42) and Eq.(4.52):  

 

 = Re +
Re − + . (4.57) 

 

Thus, considering the optimal complex load of admittance = ∗ , or the optimal 

purely real load of admittance , = | | derived respectively in Eqs.(4.43) and (4.44), 

the above expression becomes: 

 

 = 14 | |
Re  Re − 2Re

, (4.58) 

 = 12  | |
(| | + ) − + | | , (4.59) 

 

which, assuming = = ⁄  become:  
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 = C4  + 2C  (4.60) 

 = C  (C + + ) + 1 − C C + +  , (4.61) 

 

respectively for the optimal complex and purely real electric loads. 

 

 

4.6  PIEZOELECTRIC HARVESTER: SCALING LAWS 

In this subsection the scaling laws of the fundamental electrical and mechanical 

physical parameters of the piezoelectric transducer depicted in schematic (c) of Figure 

4.2 are first revised. The downscaling of the normalized harvested power density and 

efficiency are then considered. 

 

4.6.1 Physical parameters  

As for the electromagnetic harvester, the scaling of the power density and efficiency 

of the piezoelectric transducer can be derived analysing how the fundamental 

mechanical and electrical coefficients in Eqs.(4.47), (4.48), (4.60), (4.61) vary with the 

scaling of dimension. With reference to the data of the prototype shown in Plot (d) of 

Figure 2.1 and listed in Table 2-2, the following numerical simulations of the scaling 

parameters are derived.  

Figure 4.6 shows that, increasing the size of the piezoelectric harvester, the 

fundamental natural frequency  decreases inversely as , since the equivalent 

moving mass  and the stiffness  of the lumped parameter model scale 

respectively as  and . The scaling law of the material damping , as well as 

the piezoelectric transduction coefficient ψ , the dielectric loss factor  and the 

electric capacitance  varies as the first power of the dimension, i.e. . Finally the 

viscous air damping coefficient  acting on the surface of the cantilever beam scales 

with the power of 1.7 i.e. .  [208]. The derivation of the scaling laws for each 

mechanical and electrical coefficient shown in Figure 4.6 requires a somewhat more 

elaborate analysis of the electromagnetic parameters and are reported in Appendix 

D.5. 
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Figure 4.6: Scaling laws of air damping coefficient  (thin dash-dotted line) and 
material damping  (dash dotted line), mechanical natural frequency  (solid line), 
dielectric loss factor  (dotted line), transduction coefficient Ψ  (dashed line), 
capacitance  (thin solid line). 

 

 

4.6.2 Power and Efficiency  

The simulated scaling laws of the power density and efficiency for the piezoelectric 

energy harvester is now analysed. Figure 4.7 shows the scaling laws of the harvested 

power density normalized to harmonic acceleration of amplitude 1g for both optimal 

electric loads considered in this study (complex and purely real) when the 

contribution of the air damping is neglected (dashed line) and when is taken into 

account (solid line). Plots (a, b) indicate that for both optimal harvesting loads the 

normalized power density increases as the size of the device is larger. Also, as can be 

noticed in both graphs, the additional contribution of the air damping (solid line) 

compared to material damping only (dashed line) reduces the normalized power 

density of very large harvesters. This effect, particularly visible at the higher scaling 

end, can be explained by the fact that at large dimensions the air damping becomes 

predominant and reduces the stroke of the seismic mass, thus reducing the amount 

of power that could be harvested (see Plots (b) of Figure 4.12 and Figure 4.13). 
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Figure 4.7: Scaling laws of the harvested power density  implementing (a) the 
optimal complex electric load and (b) the optimal purely real electrical load when the 
effect of the air damping  is present (solid line) and neglected (dashed line). 

 

Moving to power efficiency, Plot (a) in Figure 4.8 shows that when the optimal 

complex impedance load given in Eq.(4.43) is implemented, the piezoelectric seismic 

harvester is characterised by a somewhat constant efficiency, which decreases 

proportionally to .  as the size of the device increases. If the air damping effect is 

neglected the efficiency becomes constant. 

Moving to Plot (b) of Figure 4.8, when the configuration with the optimal purely 

real electric load derived in Eq. (4.44) is considered, the efficiency of the device 

increases with dimension and, in case of solely material damping contribution 

(dashed line), converges to the same constant value obtained in Figure 4.8(a) for the 

complex impedance load when the effect of the air damping is not taken into account. 

If the contribution of the squeeze air damping is also considered (solid line), the 

efficiency has a maximum value for a particular size and then falls down at larger 

scale. 

Dielectric losses in the piezoelectric layers of the seismic harvester strongly 

influence the scaling laws for the harvesting power and harvesting efficiency. Figure 

4.9 shows an important scaling effect related to these losses, that originates in the 

piezoelectric patches of the harvester and are modelled as a loss factor ( ) =⁄  in the lumped parameter model.  

Plot (a) of Figure 4.9 shows that, incrementing the performances of the piezoelectric 

layers of the transducer and thus reducing the dielectric losses of the material (i.e. → 0) the power efficiency of the harvester increases reaching the maximum 

theoretical value of 0.5. This result demonstrates that if the air damping can be 
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neglected (for example if the device works in vacuum) a constant efficiency of 0.5 can 

be obtained independently from the scaling size if the optimal resistive reactive 

electric load is implemented. In this particular condition, equal power is dissipated 

by the inherent mechanical damping effect in the transducer and harvested in the 

external optimal electrical load. 

 

 
 

Figure 4.8: Variation of the power efficiency of the piezoelectric transducer 
implementing (a) the optimal complex electric load and (b) the optimal purely real 
electric load when the effect of the air damping  is present (solid line) and is 
neglected (dashed line). 

 

 
 

Figure 4.9: Variation of the power efficiency of the piezoelectric transducer 
implementing (a) the optimal complex electric load and (b) the optimal purely real 
electrical load when the air damping  is neglected and for different values of the 
piezoelectric conductivity : 0.7  (solid line), 0.5  (dashed line), 0.3  (dash 
dotted line). 



 
Vibration Energy Harvesting: Scaling Study 

117 

According to Plot (b), a maximum theoretical efficiency of 0.5 can also be reached for 

large-scale size if the optimal purely resistive electrical load is implemented. In this 

case for small dimensions the coefficient  is not large and thus the coupling is not 

strong. Most of the power is dissipated from the mechanical damper of the device. 

Anyway this is an idealised case and as shown in Chapter 2 and Appendix B, for a 

proper analysis of the optimal load and consequent harvested power, it is mandatory 

to consider and model the dielectric losses of the piezoelectric material. 

 

 

4.7  COMPARATIVE ANALYSIS  

This section presents a comparative study for the scaling properties of the harvested 

power and harvesting efficiency with the electromagnetic and piezoelectric seismic 

transducers.  

 

4.7.1 Harvested power 

Assuming the electromagnetic and piezoelectric transducers have the same mass  

and stiffness  and assuming optimal complex electrical loads are implemented, the 

quotient between the power harvested from the two transducers reduces to: 

 

 = = ,
,
CC + C1 + C , (4.62) 

 

where  and  are the harvested powers derived respectively in Eq. (4.24) and 

Eq.(4.47) for the coil magnet and piezoelectric transducer. Moving to the case when 

the optimal purely real electric load is implemented, the quotient becomes: 

 

 = = 14 ,
,

C1 + C 1 + (C  +  + )C  , (4.63) 

 

where  and  are the harvested powers derived respectively in Eq. (4.25) and 

Eq.(4.48) for the electromagnetic and piezoelectric transducers. The results of the 

numerical simulations of Eqs.(4.62), (4.63) based on the data of Table 2-1 and           

Table 2-2 are shown in Figure 4.10. 
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Considering at first Figure 4.10 (a), for small dimensions the power harvested from 

the electromagnetic transducer scales down more rapidly compared to the 

piezoelectric device when either the reactive and purely real electric loads are 

implemented. For larger scales the eddy currents effect becomes relevant and, 

especially for the complex - real electric load configuration (Plot (a)), the power 

harvested by the electromagnet scales up more slowly with respect to that of the piezo 

harvester. If the coil magnet transducer is well designed (and thus the effect of the 

eddy currents is minimized), Plot (b) shows that also for large dimensions, the power 

harvested from the electromagnetic harvester scales up more rapidly compared to the 

piezoelectric harvester. In addition, without the eddy currents damping effect 

(dashed line) the somewhat linearly rising dashed lines in Plots (a, b) of Figure 4.10 

suggests that, if the harvesters produce the same power at their original dimension 

(i.e. ) and their size becomes larger, more power can be absorbed with the 

electromagnetic harvester than with the piezoelectric harvester. Conversely, for small 

dimensions, the piezoelectric harvester is instead producing more power absorption. 

 

 
Figure 4.10: Electromagnetic and piezoelectric harvested power ratios implementing 
(a) the optimal complex and (b) the purely real electrical load, neglecting (dashed line) 
and considering (solid line) the eddy current losses. 

 

Moving to Figure 4.11, Plots (a, b) compare the efficiencies of the electromagnetic and 

piezoelectric harvesters depicted respectively in  Figure 4.5 and  Figure 4.8 for the  

complex and purely real optimal electrical loads. Considering the dashed line in 

Figure 4.11 (a,b), as already mentioned in the previous sections, for both electric loads, 

the performance of the coil magnet (dashed line) monotonically increases with the 

dimension and reaches a maximum value of 0.5. The presence of the eddy currents 
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(dash dotted line) reduces the efficiency incremental rate but has no effect on the 

value of the horizontal asymptote (i.e. 0.5) reached by the curve. Moving to the 

piezoelectric harvester, the solid line in Plot (a) of Figure 4.11 shows that when the 

optimal complex electric load is implemented the efficiency tends to be constant for 

small size and gradually drops down when the scale is increased. A maximum 

efficiency equal to 0.5 is reached for small scales only if the dielectric losses of the 

material are not present. (As described in Section 2 and Appendix B, to properly study 

the energy harvesting with the piezoelectric seismic transducer it is necessary to 

model the dielectric losses). 

 

 

Figure 4.11: Efficiency of the electromagnetic (dashed lines) and piezoelectric (solid 
line) harvester implementing (a) the optimal complex and (b) the purely real electric 
load including (dashed line) and neglecting (dash-dotted line) the eddy current 
losses. 

 

Moving to Plot (b), when the configuration with the optimal purely real electric load 

is considered (solid line), the efficiency of the piezoelectric transducer tends to rise up 

to a point where it reaches a maximum value and then monotonically falls down due 

to the air damping effect. 

In conclusion, these results show that when the optimal complex harvesting load 

is implemented, the piezoelectric harvester is more efficient than the electromagnetic 

harvester for small dimensions, whereas when the size is very large the 

electromagnetic device exhibits a superior power efficiency with respect to the piezo 

transducer. When the optimal real electrical impedance load is implemented, the 

electromagnetic harvester results more efficient than the piezoelectric harvester in the 

entire scaling bandwidth. 
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4.7.2  Stroke 

As discussed by Gardonio et al. [204] and other authors [190], [203], to properly 

characterise the seismic harvesters, the maximum stroke allowed by the transducers 

should be also taken into consideration. To fully characterise the energy harvesting 

with the two systems considered in this study, the scaling laws of the stroke for the 

electromagnetic and piezoelectric seismic transducers excited by a base displacement 

tuned to their fundamental resonance frequency are now considered. Here the 

simulations are performed assuming that the harvesters can withstand any 

displacement. It should be highlighted that this is a rather significant assumption, 

since in practice the stroke is always limited by geometrical constrains (e.g. end stops 

for the coil magnet relative displacement) or stiffening effects of the elastic component 

(e.g. non linear bending deformation of the beam harvester). 

Inspection of the lumped parameter scheme shown in Figure 4.2 (b) leads to the 

following equation of motion for the seismic mass and Kirchhoff equation for the 

electric mesh of the electromagnetic device: 

 

 ( − ) = − ( − ) + Ψ , (4.64) 

 = Ψ ( − ) + Z . (4.65) 

 

Similarly, inspection of the lumped parameter element scheme in Figure 4.2 (d) 

provides two similar equations for the piezoelectric harvester: 

 

 ( − ) = − ( − ) + Ψ , (4.66) 

 = Ψ ( − ) + Y . (4.67) 

 

Also, according to the notation shown in Figure 4.2 (b) and Figure 4.2 (d), the 

following relations hold for the impedances – admittances of the harvesting loads:  

 

 = − , (4.68) 

 = − . (4.69) 

 

After some mathematical manipulations Eqs.(4.64), (4.65) and (4.66), (4.67) combined 

with Eqs.(4.68) and (4.69) give the following relations for the stroke per unit base 

displacement for the electromagnetic and piezoelectric harvester respectively: 
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− = − + Ψ + , (4.70) 

 − = − + + . (4.71) 

 

Figure 4.12 and Figure 4.13 show the simulated scaling laws for the stroke per unit 

base displacement of the two transducers, respectively when they are connected to 

the optimal complex electric load given in Eqs.(4.20), (4.43) and when they are 

connected to the optimal real electric load given in Eqs.(4.21), (4.44). The simulations 

are performed assuming that the transducers operate at their fundamental natural 

frequency i.e. = = ⁄ . 

The graphs for the electromagnetic seismic transducer depicted in Plots (a) of      

Figure 4.12 and Figure 4.13 show very similar scaling and the same laws when the 

optimal complex and purely real harvesting loads are implemented. Considering first 

the case where the eddy currents are present (solid line), the stroke amplitude grows 

proportionally to the first power of dimension i.e.  and peaks at a particular 

dimension of the transducer. At larger sizes, the stroke progressively decreases and 

falls down with power -0.5 of  i.e . . 

In those cases where effects of eddy currents can be neglected (dotted line), the stroke 

is characterised by a rising trend proportional to , which increases to  for very 

large dimensions. 

Moving to the piezoelectric seismic transducer, the simulated scaling laws of the 

stroke per unit of base displacement show a somewhat linear rising behaviour, i.e. 

, in the entire scaling range. In particular, as can be noticed in both Plots (b) of 

Figure 4.12 and Figure 4.13, the contribution of the air damping (solid line), which 

becomes very dominant at large scales, tends to decrease the stroke. 

Contrasting Plots (a) with Plots (b) in Figure 4.12 and Figure 4.13, it can be noticed 

that, at the bottom end of the scaling range, the stroke per unit base displacement of 

the piezoelectric seismic transducer is respectively 2 and 5 times greater than that of 

the electromagnetic harvester. This difference is also noticeable at the top end of the 

scaling range, where the stroke of the piezoelectric harvester is respectively greater 

than 2.4 and 4.5 times that of the electromagnetic transducer and becomes even 

greater (more than 100 times) if the eddy currents effects are considered in the 

electromagnetic transducer. 
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Figure 4.12: Scaling stroke per unit base displacement at the fundamental resonance 
frequency of (a) the electromagnetic seismic harvester when the effect of the eddy 
currents  is present (solid line) and neglected (dashed line) and (b) the piezoelectric 
seismic harvester when the effect of the air damping  is present (solid line) and 
neglected (dashed line) implementing the optimal complex harvesting load. 

 

 

Figure 4.13: Scaling stroke per unit base displacement at the fundamental resonance 
frequency of (a) the electromagnetic seismic harvester when the effect of the eddy 
currents  is present (solid line) and neglected (dashed line) and (b) the piezoelectric 
seismic harvester when the effect of the air damping  is present (solid line) and 
neglected (dashed line) implementing the optimal real harvesting load. 

 

It is clear that these simulations are valid only for limited ranges of base vibrations 

such that the resulting strokes do not reach the saturation limits. In addition, the 

values of the stroke amplitude found above depend on the dimensions and physical 

properties used in simulations, which refer to the prototypes studied in Chapter 2. 

Nevertheless, as already discussed in Chapter 2.10, this study suggests that the 

piezoelectric energy harvester could be affected by operational problems related to 
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the bending deflection range of the beam transducer and thus can be effectively used 

for low amplitude base vibrations. On the contrary, the electromagnetic harvester 

seems to be more suitable for larger amplitudes base vibrations. 

 

 

4.8  REACTIVE HARVESTERS  

As mentioned in the introduction of this chapter, this final section discusses scaling 

laws for the electromagnetic and piezoelectric reactive harvesters. In general, reactive 

harvesters subjected to an imposed displacement at their base are particularly suited 

for every low frequency energy harvesting conditions. In fact, they do not show the 

amplified stroke, and thus energy harvesting magnification, at their fundamental 

natural frequency, which, in this case, is given by = ⁄ , where  is the 

mass of the moving base. Nevertheless, to offer a fair comparison, the scaling laws 

presented in this section assume the harvesters are operated at their fundamental 

natural frequency i.e. at = = ⁄ .  

 

4.8.1 Electromagnetic Harvester 

Considering the results depicted in Figure 4.3 and considering the formulation 

presented in section 4.3, the power harvested, power input and efficiency given in 

Eqs. (4.19), (4.29), (4.34) can be straightforwardly specified for the optimal complex 

impedance = ∗  and frequency of excitation = = ⁄  of the 

electromagnetic reactive transducer: 

 

 = 18 ( )R | | , (4.72) 

 = 12 1 + C2 | | , (4.73) 

 = C4 + 2C . (4.74) 

 

Similarly, specifying Eqs. (4.19), (4.29), (4.34) for the purely resistive electric load   = | | at the fundamental resonance frequency of the reactive device i.e.               = = ⁄ , it follows: 
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 , = 14 ( )R 1 | | , (4.75) 

 

, = 12 1 + C + | | ,  

(4.76) 

 = C2 +
+ + C  .  

(4.77) 

 

Here = 1 + 1 +  and = ⁄ . Comparing Eqs.(4.72), (4.74), (4.75),  

(4.77) with those derived in Eqs.(4.24), (4.38), (4.25), (4.39), it is noted that the scaling 

of the power harvested from the reactive transducer is only influenced by the 

transduction coefficient , inductance L  and electric resistance R . Thus, in contrast 

to the seismic harvester, the mechanical losses, and in particular the eddy current 

losses, do not affect the power harvested by the electromagnetic reactive transducer. 

This result is of great of importance because, as depicted in Figure 4.4, at large scales, 

the eddy current losses play a key role in the reduction of the power harvested from 

the electromagnetic seismic harvester. The scaling laws of the normalised power 

harvested depicted in the graphs (a) and (b) of Figure 4.14 show that, for either 

optimal load configurations, the harvested power increases with the size. 

 

 

Figure 4.14: Scaling law of the power harvested density  implementing (a) the 
optimal complex electric load and (b) the optimal purely real electric load. 
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Moving to the analysis of the scaling efficiency, the formulas in Eqs.(4.74) and (4.38), 

obtained when the optimal complex electric load is implemented, are the same for 

either the reactive and seismic vibration energy harvesters. Thus identical scaling 

laws are derived. Instead, if the purely real electric load is considered, Eq.(4.77) 

compared to Eq. (4.39) shows a different scaling for the harvesting energy efficiency. 

Nevertheless, the numerical simulations confirms that also in this case, the efficiency 

of the seismic and reactive electromagnetic harvesters follows similar laws. 

 

4.8.2 Piezoelectric Harvester 

The scaling study of the piezoelectric reactive harvester is obtained from a 

formulation analogue to that presented in Section 4.5.  

Substituting the optimal condition = ∗  into Eqs.(4.42), (4.52), (4.57) and specifying 

at = = ⁄ , the power harvested, power input and efficiency are given by: 

 

 = 18 (ψ ) | | , (4.78) 

 = 12 ( + ) 1 + C2 | | , (4.79) 

 = C4 + 2C . (4.80) 

 

Here  is identified as = 1⁄  and represents the real part of the complex 

impedance of the piezoelectric lossy capacitor i.e. = (1 − ) at the 

fundamental mechanical frequency of the piezoelectric transducer.  

Moving to the purely real electric load case, implementing the optimal resistive load 

of admittance = | |, Eqs.(4.42), (4.52), (4.57) can be specified as follows: 

 

 = 14 (ψ ) | | , (4.81) 

 = 12 ( + ) 1 + C +   | | ,  

(4.82) 

 = C2 +   
+   + C ,  

(4.83) 



 
 

126 

where  is defined as = 1 + 1 +    and = 1⁄ . 

 

 

Figure 4.15: Scaling law of the power harvested density  implementing (a) the 
optimal complex electric load and (b) the optimal purely real electric load. 

 

Compared to the electromagnetic reactive transducer, inspection of the formulas in 

Eqs.(4.78), (4.80), (4.81), (4.83) and (4.47), (4.60), (4.48), (4.61) shows that similar 

conclusions can be drawn. In particular, the same scaling power efficiency can be 

obtained for both the seismic and reactive piezoelectric energy harvesters if the 

optimal resistive reactive load is implemented. Different scaling efficiency seems 

instead to arise from inspection of Eqs.(4.83) and (4.61). Nevertheless, numerical 

simulations on the power efficiency of the reactive transducer have shown very 

similar trend to that depicted in Plot (b) of Figure 4.8. 

Moving to the analysis of the power harvested, in Eqs. (4.78) and (4.81) there is no 

contribution of the mechanical losses and the transduction coefficient ψ , electric 

capacitance  and lossy factor  are the only parameters that characterise the power 

scaling of the piezoelectric reactive device.  

Plot (a) of Figure 4.15 shows that, if the complex electric load is implemented, constant 

power density can be obtained independently from the size of the piezoelectric 

reactive harvester. Moving to Plot (b), when the configuration with the optimal purely 

real electric load is considered, the normalised power density is instead characterised 

by an increasingly monotone trend.  

 

  



 
Conclusion and future work 

127 

5  
C O N C L U S I O N  A N D  F U T U R E  W O R K  

This thesis has presented theoretical and simulation/experimental comparative study 

on the energy harvesting using electromagnetic and piezoelectric seismic and reactive 

transducers. The study has been limited to energy harvesting from tonal ambient 

vibrations. In addition, scaling laws have been established for the harvested power 

density and efficiency for the two seismic and two reactive prototypes studied. Also, 

a stroke analysis has been performed for the seismic harvesters.  

To provide a fair comparison study, the two seismic transducers were designed 

and built in such a way as to have similar weights and similar volumes of the 

respective base and moving components and comparable fundamental natural 

frequencies. The reactive harvesters were constructed by simply clamping the 

moving components of the seismic devices.  

In Chapter 2 the seismic transducers were described and studied starting from 

equivalent lumped parameter models that allowed the derivation of a consistent 

formulation of the constitutive electromechanical equations for the two systems and 

a unified energy formulation for the two harvesters. In particular, compared to 

classical simplified models, the lumped parameter model for the piezoelectric seismic 

transducer was reworked in such a way as the electrical part is composed by a lossy 

capacitor connected in series. Furthermore, the proposed models, considered also the 

effects of electromagnetic (eddy currents) and dielectric losses, which have been 

found to play a fundamental role in the energy harvesting with the electromagnetic 

and piezoelectric seismic transducers respectively, although, usually, they are not 

taken into consideration in energy harvesting studies. The electromechanical 

response functions FRFs used to define the constitutive equations were first analysed 

in detail comparing simulations and experiments. The principal results of this 

analysis can be summarised as follows: 

 

- The two harvesters are characterised by typical mechanical impedance of 

seismic systems, that is, mass behaviours at low and high frequencies linked 
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by a resonance peak at the fundamental resonance frequency and 

antiresonance closely follower.  

 

- The electrical impedance of the electromagnetic transducer is dominated by 

the resistive component at low frequency, by the mechanical resonance at 

fundamental natural frequency where the mechanical to electrical impedance 

effect is relevant and by inductive effects which, due to eddy currents in the 

coil wire of the transducer, is characterised by frequency dependent resistive 

and inductive effects. For the piezoelectric transducer, the electrical impedance 

is instead characterised by the capacitive effect which, at low frequencies, is 

heavily affected by dielectric losses. The mechanical to electrical impedance 

effect is negligible, apart at the fundamental natural frequency where in any 

case it produces a very small effect. 

 

- The electromechanical transduction functions for both seismic transducers 

becomes relevant at the fundamental natural frequency where a distinctive 

peak is present and where the energy conversion is therefore maximised. 

While for the electromagnetic the transduction functions remain constant at 

higher frequencies, for the piezoelectric reach a peak and then decreases. 

Indeed the piezoelectric transducer is characterised by a 1 (j )⁄  factor, that is, 

they are in quadrature with respect to those for the electromagnetic transducer. 

This is because the electromagnetic transduction relates force to current and 

voltage to velocity whereas the piezoelectric transduction relates force to 

charge and voltage to strain. 

 

The energy harvesting study has considered two configurations of the harvesting 

circuit, which are characterised by either a resistive-reactive or a purely real 

impedance set to maximise the harvested power. The complex impedance necessary 

to maximise the harvested power was found to be given by the complex conjugate of 

the electrical impedance of the seismic transducers, which is line with the maximum 

power transfer theorem. Alternatively, the purely real impedance necessary to 

maximise the harvested power was found equal to the modulus of the electrical 

impedance of the seismic transducers. The maxima of the harvested power and input 

power was found for both transducers to occur in correspondence of the fundamental 

resonance frequency of the transducers. The piezoelectric transducer is characterised 

by additional resonances produced by higher order flexural modes of the beam 
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laminate and tip mass, which however are characterised by smaller power harvesting 

peak values. In general, the piezoelectric harvester outperforms the electromagnetic 

harvester in correspondence of the fundamental and higher order resonance 

frequencies, even if the peaks of power is very tight and thus the vibration conversion 

is limited to a very narrow band operation. In fact the electromagnetic harvester 

performs better at low frequencies below the fundamental resonance and also at 

frequencies comprised between the fundamental resonance frequency and the 

resonance frequency due to the first higher order resonant mode of the piezoelectric 

harvester. The peak energy harvesting property of the two seismic harvesters was 

analysed also limiting the range of motion of the proof mass and thus with reference 

to the maximum allowed stroke of the transducers (i.e. linear motion). 

 

Table 5-1: Energy harvesting properties with the two seismic transducers                           
(* simulation results assuming no eddy current effects in the outer ring of the 
electromagnetic seismic transducer). 

Trans

ducer 

type 

Base 

mass 

Proof 

mass 

Total 

mass 

(kg)  

Base 

volume 

Proof 

volume  

Total 

volume 

(m3) 

Res. 

freq. (Hz) 

 

Re( ) 

(Ω) 

Im( ) 

(Ω) 

 

mW1g  

 

mW1g  

Δ  

mWmm  

Δ  

mWmm
( ) (Δ ) 

EM 

0.115 

0.185 

0.300 

1.21 ×10    3.24× 10  4.45× 10  

19.5 

Complex 75.5 1 33 120 30 110 0.28 0.27 

Real 76  33 120 30 110 0.28 0.27 

Real* 256  173 412 12 30 0.42 0.4 

PZT 

0.126 

0.189 

0.363 

1.76 ×10    2.64× 10  5.03× 10  

20 

Complex 23000 45000 700 1900 5 14 0.33 0.36 

Real 50500  350 2100 1.3 8 0.17 0.15 

 

The peak values of the energy harvested, energy input and efficiency to convert input 

to harvested power at the fundamental resonance frequency of the two harvesters 

with reference to 1  base acceleration are summarised in Table 5-1; in addition the 

values of the optimal harvesting impedances are also presented. These data show that 

when the optimal complex impedance harvesting load is implemented, the 
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piezoelectric harvester is more efficient than the electromagnetic harvester whereas, 

when the optimal real impedance harvesting load is implemented, the 

electromagnetic harvester results more efficient that the piezoelectric harvester. These 

results are largely dependent on the inherent electrical and mechanical damping in 

the two seismic transducers. For instance, in Appendix A is shown that if the high 

eddy current losses in the electromagnetic harvester was reduced (for example by 

separating the housing yoke disk into two part), the efficiency for the real harvesting 

load would rise from 28% to 42%. Therefore, the energy harvesting of the 

electromagnetic harvester can be greatly improved if the seismic transducer is 

carefully designed in such a way as to minimise the effects of eddy currents. Also, as 

shown in Appendix B.2.1, to properly study the energy harvesting with the 

piezoelectric seismic transducer, it is necessary to model the effect of dielectric losses, 

otherwise the formulation would lead to an unphysical result where the harvester 

could generate a constant level of power at any frequency. 

Table 5-1 also summarises the power per unit of stroke at the fundamental natural 

frequency. In particular the electromagnetic harvester absorbs more power per unit 

stroke than the piezoelectric harvester for both the complex and real impedance 

harvesting loads are implemented. However, when the complex impedance-

harvesting load is implemented, the piezoelectric harvester is more efficient to 

convert the mechanical power into electrical power whereas, when the real 

impedance harvesting load is implemented, the electromagnetic harvester results 

more efficient, and even more if the eddy currents losses were reduced.  

Chapter 3 has presented a comparative study on the energy harvested by 

electromagnetic and piezoelectric reactive harvesters. Based on the study of Chapter 

2, the two systems were modelled with consistent electro-mechanical lumped 

parameter models to allow the derivation of a unified formulation for the energy 

harvesting and thus a direct comparison of the electro-mechanical response and 

energy harvesting properties of the two devices. Analogously to the seismic devices, 

the study has been limited to energy harvesting from tonal ambient vibrations. It was 

shown that the two harvesters are characterised by typical mechanical impedances of 

mass driven mass-spring dashpot systems, where in this case the mass is actually the 

base mass subject to the ambient vibrations. The electrical impedance of the 

electromagnetic transducer is dominated by the resistive and lossy-inductive effects 

of the coil and no mechanical to electrical transduction contribution is present. For 

the piezoelectric transducer, the electrical impedance is instead only characterised by 

the lossy capacitive effect. The electromechanical FRFs of the electromagnetic 
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harvester are simply characterised by its transduction coefficient and thus remain 

constant in the whole frequency range. The transduction FRFs for the piezoelectric 

transducer are instead characterised by its transduction coefficient multiplied by a 1 (j )⁄  factor and thus they are in quadrature with respect to those for the 

electromagnetic transducer. The experimental FRFs of the electromagnetic harvester 

denotes a good matching with the simulated FRFs in the whole frequency band, 

except for frequencies higher than 800 Hz, where the higher order dynamic effects of 

the transducer components become relevant. Instead, the experiments with the 

piezoelectric reactive harvester show, a discrepancy for frequencies higher than the 

fundamental natural frequency of the cantilever laminate beam with tip mass, in 

particular over 100 Hz. This is caused by the dynamic effects of higher order flexural 

modes of the beam laminate and tip mass and by the unwanted mechanical dynamics 

of the hosting structure used in the experiments. 

Similar to Chapter 2 the study on the harvested power has considered two 

configurations of the harvesting circuit, which are characterised by either a complex 

or a purely real impedance, which are set to maximise the absorbed power. The study 

on the harvested power considered a base acceleration of the base mass equal to 1g. 

When the devices implement the optimal complex impedance, the electromagnetic 

reactive harvester generates a power of 70    at about 10 Hz, while the piezoelectric 

reactive harvester generates a power of 44    at about 10 Hz. Alternatively, when 

the devices implement the optimal real impedance, the electromagnetic and 

piezoelectric reactive harvesters generate respectively 70    and 3.5    at about 10 

Hz. For both transducers the level of harvested power decreases with frequency. This 

depends on the electromechanical properties of the systems as well as on the 

amplitude of oscillation of the moving base mass, which decreases with frequency. In 

summary, the electromagnetic device is more effective than the piezoelectric device 

to harvest power for both cases where the real and complex optimal impedances are 

implemented. An important aspect worth considering concerns the fact that the 

input/harvested power is not magnified at a resonance frequency. Therefore, if the 

host structure imposes a motion to the moving mass no amplification of the energy 

conversions is expected. A further analysis on the power input to the harvesters has 

shown that the two devices can transfer the input power to the harvesting load with 

different efficiencies. In general, the electromagnetic reactive device implementing 

either the optimal complex or real impedance loads is characterised by similar 

efficiencies close to 30% over the whole frequency range up to 1 kHz. The 
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piezoelectric harvester is instead characterised by constant efficiency of about 45% 

when the optimal complex load is implemented and an increasingly lower efficiency, 

which is about 38% at 10 Hz, for the purely real harvesting load. 

Chapter 4 investigated the scaling laws that characterise the electro-mechanical 

response and vibration energy harvesting of the seismic and reactive electromagnetic 

and piezoelectric transducers shown in Plots (a, d) of Figure 2.1 and Figure 3.1. The 

study primarily is focused on the seismic harvesters, which represent the most 

general case. Scaling laws for the reactive transducers were reviewed at the end of the 

section. The lumped parameter model presented in Chapter 2 for the piezoelectric 

seismic transducer was reworked in such a way as the mechanical part is composed 

by spring and damper elements in parallel and the electrical part is composed by a 

lossy capacitor and current-velocity transduction element in parallel. The air viscous 

effect was also introduced in the lumped piezoelectric model by means of a damper 

acting on the moving mass. The scaling laws were derived with reference to a single 

variable , which identifies the linear dimension of the two devices. As derived in 

Appendix D.1 and depicted in Chapter 2, both seismic harvesters are particularly 

effective when they operate at frequencies close to their fundamental natural 

frequency; therefore the analyses were restricted to the hypothesis of tonal excitation 

tuned to the fundamental natural frequency of the two seismic harvesters. This has 

given the opportunity to simplify the model of the electromagnetic seismic device, 

neglecting the coil losses, which are particularly effective only at frequencies above    

1 KHz. On the contrary, the dielectric losses of the piezoelectric seismic harvester 

were found being a key feature also in the power-scaling analysis. Specifying the 

energy formulation based on the FRFs of both transducers, power input – output 

formulas in terms of non-dimensional coupling coefficients were obtained. These 

expressions were then used to characterise the efficiency of the two transducers to 

convert vibration into electrical energy. The study has shown that the parameters, 

which characterise the scaling laws for the harvested power and the efficiency depend 

on the mechanical and electrical reactive (mass, spring, inductor, capacitor) and 

dissipative (damper, resistor) components as well as on the transduction coefficients 

in the two lumped parameter models shown in the schematics (b, d) of Figure 4.2 and 

(c, f) of Figure 3.1. In particular, incrementing the size (i.e. ) of both harvesters the 

fundamental natural frequency  decreases proportionally to , since the mass 

and the stiffness of the two systems scale respectively as  and . Also, the 

transduction coefficients of both transducers scale as the first power of the dimension 

i.e. . Moreover, for the electromagnetic harvester the scaling of the air viscous 



 
Conclusion and future work 

133 

damping coefficient , that describes the air losses that develop in the tiny gap 

between the magnet and the coil-Yoke assembly, scales up with the first power of 

dimension, i.e. , while the eddy currents damping coefficient  that describes the 

losses caused by the interaction of the magnetic field and the eddy currents that 

develop in the conductive housing ring scales as . . Moving to the piezoelectric 

harvester the material damping coefficient  that describes the viscoelastic losses in the composite beam scales as the first power of the dimension i.e. , while the air 

damping coefficient  that gives the losses produced by the interaction between the 

beam and the air scales with the power of 1.7 i.e. . . 

In the last part of the chapter a comparison between the two seismic harvesters for 

both the optimal resistive reactive and purely real harvesting loads implemented is 

proposed, which however showed similar scaling laws than those found for the 

inertial harvesters. The principal outcomes of the scaling study can be summarised in 

the following points: 

 

- Implementing both the optimal complex or purely real harvesting loads the 

efficiency of the electromagnetic harvester, starting from very low amplitude 

values for small dimension size, tends to rise and reaches the maximum of        

50 % as the size increases. If the eddy current losses are neglected, this result is 

reached in a narrower dimension span. 

 

- Implementing the optimal complex harvesting load, the efficiency of the 

piezoelectric harvester is constant and equal to 50% only if the material 

damping is present; alternatively, it is less than 50% and independent of the 

size if also the dielectric losses are taken into account. If the air damping is 

added, the efficiency decreases as the scale is increased. For the optimal purely 

real harvesting load configuration, similarly to the electromagnet device, the 

efficiency of the piezoelectric harvester affected only by material damping, 

tends to rise from very low values to a maximum of 50% as the dimension is 

scaled up. When the dielectric losses are also considered, this transition occurs 

in a same manner but reaches a less value equal to that of the optimal complex 

case. Finally, the efficiency in presence of material damping, dielectric losses 

and air damping tends to drop both at low and large dimensions. Thus there 

is an optimal scale where the efficiency is maximum. 
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- The scaling laws of the power density per unit of base acceleration (W c  g⁄ ) 

revealed that for both harvesters the power density achievable increases as the 

size is scaled up regardless the optimal complex or purely real electrical loads 

are implemented. In particular, for small dimensions, the power density 

harvested by the electromagnetic device scales up more rapidly with respect 

to that of the piezoelectric device. For large dimensions, this applies only if the 

eddy current losses in the electromagnetic harvester are annihilated and the 

purely real electric load is considered. Therefore, without eddy current losses 

in the electromagnetic device, the power harvested by the piezoelectric 

transducer is less affected by the dimensional changes at very large and small 

dimension sizes.  

 

- The numerical simulations of the power ratios shown in Figure 4.10 suggest 

that, if the two devices with comparable dimensions produce the same 

harvested power at their original size (i.e. at ) and if the electromagnetic 

harvester is well designed (i.e. no eddy currents develop in the Yoke and coil 

elements), for increasingly smaller dimensions the piezoelectric harvester 

absorbs more power than the electromagnet device. Conversely, the 

electromagnetic system captures more energy for larger size. 

 

- The study on the scaling of the stroke of the electromagnetic and piezoelectric 

seismic transducers at their fundamental resonance frequency has shown that 

the amplitude of oscillation of the moving mass per unit of base displacement 

rises if the harvesters are scaled up, regardless the resistive-reactive or purely 

resistive harvesting impedance loads are implemented. However, if the 

electromagnetic device is affected by eddy currents phenomena, the scaling of 

the stroke for both impedance loads is characterised by a peak centred in 

correspondence of a particular dimension, which depends on the mechanical 

and electrical properties of the harvester. In addition, the stroke amplitude of 

the piezoelectric harvester has proved to be greater from 2 to 5 times than that 

of the electromagnetic device or even 100 to 200 times if the electromagnetic 

harvester is characterised by eddy currents. This suggests that, in a way eddy 

currents may actually be beneficial to limit excessive stroke effects in large size 

harvesters.  
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The theoretical asymptotes of the power law efficiencies for large and small 

dimension sizes under different loss effects are summarised in Table 5-2. 

 

Table 5-2: Asymptote of efficiency scaling laws. 

Transducer Damping 
Complex load 

 

Real load 

 

EM    

Small size 
+  0% 0% 

 0% 0% 

Large size 
+  50% 50% 

 50% 50% 

PZT    

Small size 
+  < 50% 0% 

 < 50% 0% 

Large size 
+  0 %  0% 

 < 50% < 50% 

 

Finally, the scaling analysis of the reactive harvesters working at their fundamental 

natural frequencies have shown that the efficiency exhibits similar laws than those of 

the seismic harvesters, regardless the optimal complex or purely resistive harvesting 

impedance loads are implemented. In contrast, the scaling analysis of the normalized 

power density revealed that the harvested power by the reactive transducers is 

independent of their mechanical losses, which instead strongly influence the power 

scaling law of the seismic devices. In particular, the normalised power harvested with 

the electromagnetic transducer exhibits a rising trend, proportional to the square of 

the dimension, i.e. , along the entire scaling bandwidth and for both load 

configurations. Moving to the piezoelectric harvester, a constant power density can 

be obtained if the optimal resistive-reactive load is implemented. A rising power 

trend with increasing size is instead achieved if the purely real electric load is 

considered. 
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5.1  FUTURE WORK 

The study presented in this thesis has brought up a number of topic worth 

considering in the future studies, which are summarised in the four points reported 

below:  

 

- Consider the possibility of replacing the resistive-reactive electric loads with 

an energy scavenging circuit and investigate a practical electrical interface 

circuit to obtain a more accurate result of the input-harvested power and 

efficiency.  

 

- Develop a self-tuning system such that the resonance frequency of the second 

order seismic transducer automatically adapts to the frequency band or tone 

that characterises the ambient vibration. 

 

- Consider other forms of seismic ambient vibration sources (for example 

broadband or random excitation) for the energy harvesting applications in 

order to compare such results with those obtained for tonal excitation. 

 

- Study and investigate the possibility to introduce non-linearities in the 

mechanical domain model and in the AC-DC electrical conversion system of 

the harvesters in order to obtain a more accurate prediction of the 

electromechanical response at relatively high excitation levels. 
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A  

E L E C T R O M A G N E T I C  S E I S M I C  T R A N S D U C E R  

 

A.1  CONSTITUTIVE EQUATIONS 

The moving-coil transducer is an energy converter which transforms the electrical 

power into mechanical power and vice versa. This device is composed by a permanent 

cylindrical magnet, which is free to move axially within the cylindrical yoke where 

the coil is housed. The magnet generates a magnetic flux density B in the air gap and 

coil-yoke element. The electromechanical constitutive laws are defined by inspection 

of the constitutive fundamental equations, which govern the dynamics of the 

components that form the transducer. The transduction equations of the moving-coil 

transducer follow from Faraday law and Lorentz force law. 

 

A.1.1 Electro-magnetic transduction Fundamental Equations  

Faraday’s law states that by varying in time the flux of the magnetic field  

concatenated with a closed loop wire of length l, an electromotive force (f.e.m.) , 

which is given by the following law is produced:  

 

   ( ) = − (t) = − ∙  . (A.1) 

 

Here S is the surface defined by the closed wire loop and n is the normal versor to the 

surface S. Considering the notation in Figure A.1, n is defined considering the right-

turn screw rule with reference to the t-tangent unit vector. Also the positive and 

negative signs for  are defined with reference to the generator’s convention. 

After some mathematical manipulations of the integral term in Eq.(A.1), the temporal 

derivative of the flux  can be expressed as follows: 
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(t) =  +  ⋅   − × (  ×  )  ⋅   dS , (A.2) 

 

where  is the velocity of the wire loop in direction . 

 

 

Figure A.1: Induced voltage in a wire. 

 

Since the magnetic flux density  has zero divergence (i.e. ⋅ =  ) and is generated 

by a permanent magnet (i.e. there is no temporal variation = 0 ) Eq.(A.2) becomes:  

 

 
(t) =  − × (   ×  ) ⋅  dS . (A.3) 

 

Applying Stokes theorem to Eq.(A.3) follows: 

 

 
(t) =  −   ×  ∙  , (A.4) 

 

where  is the length of the wire loop and the versors n and t are related together 

according to the right handed screw rule. Recalling Eq.(A.1) and using Eq.(A.4) it 

follows: 

 

 ( ) =  ×  ∙  .           (A.5) 

 

Taking into account the definition of electrical voltage (i.e. = ∙   ) it can be 

verified that the f.e.m. generated by the motion of a loop wire with respect to the 
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magnetic flux density  gives the electrical work carried out by a specific electric force 

per unit of charge i.e. = ⁄  which is also called induced electromotive force. 

Respect to the notation shown in Figure A.1 ,  has the same direction of t, therefore 

a wire loop in motion with velocity  generates a positive voltage . 

In parallel, a charge particle  moving at velocity  in a magnetic field  is subjected 

to the Lorentz force [209]: 

 

         =   ×  .  (A.6) 

 

Considering a current-carrying conductor, the phenomenon is characterised by the 

motion of a large number of negative particles = −  (i.e. electrons). When the 

conductor is immersed in a magnetic field, each electron is subjected to the Lorentz 

Force. Therefore, the impacts that the moving electrons have with the ions of the 

crystalline lattice of the conducting material produce a net force on the conducting 

wire. Considering Eq.(A.6) and referring to a filiform conductor, the Lorentz force can 

be rewritten in a form known as the second elementary Laplace law [209]: 

 

 =   ×  . (A.7) 

 

Here  refers to the current that moves through the wire conductor while d  identifies 

the infinitesimal portion of conductor oriented according to the normal of the cross-

section of the wire and whose direction is defined by the direction of the current  

(Figure A.2). This law expresses the fact that the magnetic Lorentz force on an 

infinitesimal piece of wire (d ) run by current is orthogonal to the conductor and to 

the magnetic field (B) and is oriented with respect to d  and B according to the right-

hand rule convention. 

 

 

Figure A.2: Force on a current path conductor element immersed in a magnetic flux 
density B. 
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A.1.2 Ideal transducer 

The coil-magnet components of the electromechanical transducer considered in this 

thesis, move along linear paths. Therefore vector relations that characterise the 

physical phenomena can be specified with scalar relationships. Furthermore, the 

mechanical and electrical variables that govern the transduction mechanisms  are 

directly linked to each other. In order to obtain a rigorous analytical formulation it is 

therefore necessary to identify a reference system and thus a positive sign convention 

for the two electrical (i.e. current and voltage) and mechanical (i.e. force and velocity) 

variables. For this purpose a natural definition occurs from Lenz’s law, which leads 

to  the minus sign in Eq.(A. 1). In fact, considering the notation shown in Figure A.1, 

if the (undeformable) loop wire is short circuited and moves in a same direction of 

the versor n, a current flow is produced trough the wire, which is given by: 

 

 = = − 1  . (A.8) 

 

Here  is the internal electrical resistance of the conductive material. The current   

produces a field  whose direction is associated with the current  (i.e. with the 

versor t), considering the right-hand screw rule. The term  is oriented alongside 

with versor n (first elementary law of Laplace [209]), i.e at magnetic flux density B, 

and therefore tends to compensate for the decrease of the magnetic flow . If the 

electric resistance of the wire loop tends to zero, the compensation would be perfect 

and the chained flux would remain constant.  

 

 

Figure A.3: Lentz law on the direction of the induced currents by temporal variation 
of the magnetic flux density B. 
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Thus if the force and velocity have the same orientation, the resulting voltage drop 

and current flow will have same orientation as that of the induced electric field. 

Moreover, combination of a positive voltage and current will generate a negative 

force. Therefore, considering the notation shown in Figure A.3, recalling Eqs.(A.5) 

and(A.7) and assuming that the wire loop moves only along z axis, the two 

transduction equations can be specified as follows: 

 

 =   ×  , (A.9) 

 ( ) =   ×  ∙  .           (A.10) 

 

These expressions can be rewritten as follows: 

 

 = − , (A.11) 

 = , (A.12) 

 

where  is defined as the the external force (direct according to the positive axis z) 

necessary to balance the Lorentz force . Notice that the transducer constant  

appearing in Eqs.(A.11), (A.12) have the dimension of V s/m or N/A. 

From the relations (A.11), (A.12) is possible to highlight the fundamental 

characteristic of the transducer, that is the electrical to mechanical and mechanical to 

electrical conversion of energy. In fact, adding the mechanical power  employed 

to move the wire and the generated electric power given by  results: 

 

 + ℎ ℎ = − + = 0. (A.13) 

 

In other words, in each element of the wire moving in a magnetic field B and subjected 

to a current flow , the supplied/generated mechanical power is equal to the 

generated/supplied electrical power. So the moving-coil transducer cannot store 

energy, and operates as an ideal electromechanical converter. 
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1.1.1 Inertial transducer 

As shown in Figure 2.1 (a), the transducer considered in this study is characterised by 

a core magnetic element and a coil assembly. Assuming n turns for the coil wire 

conductor, Eqs.(A.11), (A.12) can be rewritten for this sytem as follow: 

 
 = − , (A.14) 

 = , (A.15) 

 
where  is the total length of the coil winding and = −  is the relative velocity 
between the magnet and the coil , assumed positive in elongation.  
Considering the damping and elastic effects in the transducer, Eq.(A.14) becomes: 
 

 = − + + . (A.16) 

 

Here,  is the equivalent axial stiffness of the top and bottom spiral springs that 

connect the outer ferromagnetic ring and coil assembly to the inner magnetic element. 

Also,  is the viscoelastic damping coefficient for: a) the damping produced by eddy 

currents that develops in the ferromagnetic ring, b) the inner air damping that 

develops in the gap between the coil and the magnetic element. 

As shown in Figure A.4, when the coil magnet transducer is used as an inertial 

transducer, the following equations holds for the moving mass  (the moving Yoke 

and coil assembly): 

 

 =  − , (A.17) 

 − = 0. (A.18) 

 

Similarly, for the base magnetic mass  the following equations holds: 

 

 =  , (A.19) 

 − = 0. (A.20) 

 

Solving Eqs.(A.17)- (A.20) gives: 

 

 = − , (A.21) 

 = . (A.22) 
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These expressions can be insert in Eq.(A.16), so that the following two equations of 

motion are obtained for the inertial and base masses: 

 

 = − −  (A.23) 

 = − + + +  (A.24) 

 

Here  is the external force applied to the base mass . Eqs. (A.23), (A.24) are the 

two laws that characterise the mechanical response of the transducer. 

 

 

Figure A.4: Schematic representation of the equivalent mechanical transduction 
mechanism of a real transducer. 

 

Moving to the electrical response of the transducer, at first let’s consider the usual 

generic conductor, which for the sake of simplicity can be seen as a thread-like coil 

whose ends are placed very close, almost to coincide, so that the conductor can be 

modelled as a closed line. A concatenated flow ( ) = ∙   can thus be 

associated to the surface of the close loop. The induced magnetic flux density field  

and the concatenated flux  are generated by the same current of the inductor , 

which is assumed to be solenoidal (i.e. constant current density). If the vector lines of 

, which determine the flow  concatenated with the wire, are due to the sole 

solenoidal current  of the inductor itself, the flow   is called autoconcatenated or 

self-inductioned. 

 



 
 

146 

 

Figure A.5: Self induction flow of a loop wire. 

 

In this situation the field  (and therefore the concatenated flux ) must be a 

function only of the current  and the geometry of the conductor. Choosing the 

positive sign of the current in the direction of the tangent versor , which is linked to 

the versor n via the right-handed screw rule, the inductance can be defined as follows: 

 

 ( ) ≜ ℎ(t)
ℎ( )  . (A.25) 

 

In the absence of hysteresis phenomena, the induction L is always defined as positive 

because  and  have always the same sign. In the hypothesis of linearity and non 

deformability of the inductor, L is constant (i.e.  /  = 0) and for the given sign 

convection therefore the current related self-induced flow can be written as: 

 

 =  .   (A.26) 

 

Applying the Faraday-Neumann law in Eq.(A.26) follows: 

 

 ( ) = − = − . (A.27) 

 

Since the coil has a self-inductance, which opposes to the change in current, a sort of 

inertia effect is produced. Thus, the auto-induced f.e.m is opposed to the variation of 

current passing through it. If, as in the case of the coil magnet, the conducting wire is 

composed by N turns, the auto induced field  becomes . Thus Eq.(A.27) should 

be simply modified multiplying the value of the inductance by N.  
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If the auto-induced voltage is generated by the motion of a loop wire with respect to 

the magnetic flux density , Eq.(A.15) can be substituted into (A.27) giving: 

 

 = − . (A.28) 

 

Eq.(A.28) describes the fact that if the current  in the loop increases, a negative 

velocity is produced between the magnet and the coil elements (i.e. under positive 

currents the force generated by the transducer (i.e. - ) tends to bring magnet and 

wire closer together).  

Rewriting Eq.(A.28) in canonical form:  

 

 + = 0, (A.29) 

 

leads to the classical Kirchhoff law applied to a purely inductive circuit in series with 

a generator of f.e.m. In analogy to a mechanical oscillator, introducing the dissipative 

term  due to the internal resistance of the filiform conductor gives: 

 

 + + = 0. (A.30) 

 

Eq.(A.30) identifies the Kirchhoff law of the circuit depicted in Figure A.6. Assuming 

the circuit is connected to a generic electric network that produces a voltage drop , 

applying the Kirchhoff's law gives: 

 

 = + + . (A.31) 

 

Eqs.(A.23), (A.24), (A.31) represent the constitutive relations of the electromagnetic 

transducer shown in Figure 2.1 (c). It can be observed that Eq.(A.31) identifies the 

Kirchhoff's law applied to the mesh in Figure A.7 under the generator  convention for 

the two-port bipole. 
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Figure A.6: Moving wire (a), equivalent circuit model (b). 

 

In order to move back to a standardized representation (see Ref. [184]–[186]) and since 

the resistive and inductive dipoles are of the passive type, it is more appropriate to 

apply the user convention, thus reversing the signs of all voltages. Thus although 

Eq.(A.31) maintains the same form, it identifies the circuit shown in Figure 2.1 (c). 

 

 

Figure A.7: Equivalent circuit schematic representation of the electrical transduction 
mechanism.  

 

In summary, the constitutive equations of the electromechanical coil magnet 

transducer are given by: 

 

 = − − , (A.32) 

 = − + + + , (A.33) 

 = + + .      (A.34) 
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Assuming time harmonic functions, after some mathematical manipulations, the 

three Eqs.(A.32), (A.33), (A.34) can be reduced to the following two constitutive 

equations for the seismic coil–magnet transducer: 

 

= j + j + j
j + + j + j

j + + j , (A.35) 

= − j
j + + j + + j + j + + j .     

   (A.36) 

 

 

A.2  EDDY CURRENTS (SKIN EFFECT)  

As discussed in the previous section, the electrodynamic behaviour of a linear coil 

magnet device shown in picture (a) of Figure 2.1 is typically modelled in terms of a 

resistor and inductor connected in series. Measurements taken on real coil-magnet  

devices show that eddy currents in the coil wire are responsible for a semi-inductive 

behaviour at high frequencies, which differs from the normal inductive behaviour 

usually assumed in the classical theory. This phenomenon, known as “Skin effect”, 

causes the effective resistance of the conductor to increase at higher frequencies. The 

skin effect is due to opposing eddy currents induced by the changing magnetic field 

resulting from the alternating current in the wire. This section presents a model of 

lossy inductor that can be used to justify the experimental results shown in Figure 2.2 

and Figure 2.3. 

 

A.2.1 Principles  

The starting point for the formulation of the current-field problem comes from the 

four Maxwell’s equations under the condition of no-displacement currents (negligible 

in conductors) [210] : 

 

 ×   = − ∂∂t , (A.37) 

 ×   = ,      (A.38) 
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 ⋅   = 0, (A.39) 

 ⋅  = ε = 0.      (A.40) 

 
Here  and  are the magnetic field density and magnetic field intensity. Also  and 

 are the electric and displacement field . Finally  is the current density. 

Assuming linear, isotropic and homogenous material, the constitutive relations 

between the fields are given by: 

 

   = μ , (A.41) 

    = ε , (A.42) 

    = σ , (A.43) 

 
where μ , ε ,  σ  are the (constant) electric permeability, permittivity and 
conductivity. 
Using Eq.(A.41) into Eq.(A.37) gives: 

 

 ×   = − ∂(μ )∂t . (A.44) 

 

Taking the rotor of Eq.(A.44): 

 

 ∙ −      = −μ ∂( × )∂t , (A.45) 

 

and using Eqs.(A.40), (A.42) gives: 

 

     = μ ∂( × )∂t . (A.46) 

 

Finally using Eqs.(A.38), (A.43) it follows: 

 

   = μ σ ∂∂t , (A.47) 

 

which identifies a classical diffusion equation where μ σ  is the inverse analogues of 

the thermal diffusivity. In the Cartesian coordinate system Eq.(A.47) is decoupled in 

three components of J: 
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   = μ σ ∂∂t      , i = , ,       (A.48) 

 

Assuming for simplicity that the current density   has only one component along the 

 direction it follows: 

 

 
∂∂y = μ σ ∂∂t . (A.49) 

 

Adopting separation of variables such that = ( ) ( ) and assuming harmonic 

time functions given in exponential form the current density can be written as follows: 

 

    ( , ) = ( )e . (A.50) 

 

This expression can be used in Eq.(A.49) such that: 

 

 
d Jdy e = iωμ σ J e . (A.51) 

 

Since Eq.(A.51) applies to every t, eliminating the time dependence follows: 
 

 
d Jdy = H , (A.52) 

 
where ≜ iωμ σ . The solution of Eq.(A.52) can take the general form: 

 

 J = e + e , (A.53) 

 

where  and  are the two constants that depend on the boundary condition. Setting 

the radius of the conductive wire to infinity (hypothesis of semi – infinite medium) 

and assuming an alternating current at the surface = 0 of the wire, the two 

boundary conditions give: 

 

 (0) = e , (A.54) 

 ( → ∞) = 0,    (A.55) 

 

which applied to Eq.(A.53) gives: 
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    = H e e . (A.56) 

 
Introducing the definition of skin depth  [211]: 

 

     ≜ 2ωμ σ , (A.57) 

 

rearranging  as = (1 + i)⁄  and substituting it in Eq.(A.56) gives: 
 

     = e e . (A.58) 

 

Finally taking only the real part: 

 

     ( , ) = e cos ωt − . (A.59) 

 

The current  may be shown to behave in a similar manner [211]: 

 

     ( , ) = e cos ωt − , (A.60) 

 

which describes the distribution of a steady state alternating current with a linearly 
phase shift proportional to  and whose magnitude decrease exponentially.  
 

 

Figure A.8: Skin depth due to the circulating eddy currents I  (arising from a 
changing H field) cancelling the current flow in the centre of a conductor and 
reinforcing it in the skin. 
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The alternating current in a conductor decreases exponentially from its value at the 

surface. For  much greater than  the current is substantially negligible. Eq.(A.60) 

describes the Skin depth effect generated on the coil wire of the electromagnetic 

harvester when an AC current is present [212].  

 

A.2.2 Lossy inductor (Model) 

The theoretical impedance of a lossless voice coil is characterised by 90° phase. 

However, due to the skin effect generated on the surface of the wire, experiments 

show that the phase values are usually measured in the range of 60°-70° [179] (see 

also Figure 2.2 (d), Figure 2.3 (d)). For a lossy inductor, a general frequency dependent 

model can be expressed as a power series in  [178]. An impedance model of a loss 

inductor that leads to excellent agreement with experimental data is proposed by 

[177] and can be written as: 

 

     Z ( ) = K cos 2 + j sin 2 = K , (A.61) 

 

where n and K are constants. A method to determine such coefficients based on Ref. 

[177] is summarised below. Based on the expression defined in Eq.(2.5) and derived 

in Eq.(A.36) a general formula, which identifies the electrical impedance  of a coil 

magnet device, can be expressed as: 

 

     Z ( ) = + Z ( ) + 1
+ 1 + 1,  (A.62) 

 

where  is the internal resistance of the voice coil, Z  is the lossy impedance of the 

coil,  is the mechanical quality loss factor and  is peak amplitude of the 

impedance at the fundamental mechanical resonance frequency  of the device. 

Considering Eq.(A.62), the lossy impedance can thus be written as follows: 

 

    Z ( ) = Z − − 1
+ 1 + 1 . (A.63) 
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The natural logarithms of Eqs.(A.61), (A.63) are given by: 

 

     ln(Z ) = ln(K) + n ln( ) + 2 , (A.64) 

   ln Z = ln Z +  arg Z . (A.65) 

 

Assuming that the electrical impedance Z  is measured at a set of N frequencies and Z  is known in a defined range of frequencies, with reference to specific  and  

parameters, if ln(Z ) − ln Z = 0 over that frequency range, then Z  is the exact 

impedance model of the lossy inductor. A method that minimizes the mean 

magnitude square difference can be obtained introducing an error function : 

   

    =  ln Z ( ) −  ln Z ( ) , (A.66) 

 

which can be minimized by setting  and ( ) ; so that: 

 

 

   = 1∆ ln Z ( ) ln( ) − 1 ln Z ( ) ln( )
+ 2 arg Z ( )  , 

(A.67) 

    ln( ) = 1 ln|Z ( )| −  n ln( ) ,  (A.68) 

 

where ∆ is defined as: 

 

    ∆ = ln( ) − 1  ln( ) + 2 . (A.69) 

 

When Eqs.(A.67), (A.68) are satisfied the lossy impedance Z  fit the measured Z  with 

the minimum squared error.  
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A.3  EDDY CURRENTS (DAMPING) 

Eddy currents produce a damping effect, which can be derived from the magnetic 

distribution of the field in the outer cylindrical Yoke that holds the coil. In this section 

the theoretical basis to understand the phenomenon is presented. 

A.3.1 Fundamental -Equation  

Let’s consider a circular magnetic strip carrying a current loop of intensity , 

considering the notation shown in Figure A.9, the magnetic flux density d  at a 

generic point ( , , ), can be expressed as follows [211], [213], [214]:  

 

 d = 4 × . (A.70) 

 

From Maxwell’s equations, the magnetic field  field has zero divergence everywhere 

in space (i.e. ∇ · = 0,   ∀ x, y, z). Therefore such field can be associated to a vector field 

called potential vector :  

 

 = ∇ × . (A.71) 

 

As shown in [211], [213], the derivation of B can also be obtained calculating the 

potential vector: 

 d = 4  | |, (A.72) 

 

and by taking the curl : 

 

 d = ∇ × d . (A.73) 

 

The derivation of B from A is simpler with respect to the direct calculation of 

Eq.(A.70).  

Considering Figure A.9, the following relations can be obtained: 
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 = ( cos , 0,  sin ), (A.74) 

 = (−  sin , cos , 0) d , (A.75) 

 = ( cos ,  sin , 0), (A.76) 

 | − | = | | = 2 + 2 − 2 cos ′ cos , (A.77) 

 

where ( , , ) are the unit vectors of the Cartesian coordinate system for a loop of 

radius  located in the x-y plane.  

 

 

Figure A.9: Schematic of the circular magnetized strip 

 

Substituting Eqs.(A.74)-(A.77) into Eq.(A.72) and integrating along the circular 

current distribution  follows: 

 

 

= 4  | | = 4 −  sin d+ − 2 cos cos
+ cos d+ − 2 cos cos . (A.78) 

 

From the axial symmetry of the problem, the first integral can be removed (i.e. the 

contribution of  along the  direction is zero and the integration of the  component 

of  can be doubled by changing the limit of integration from 0 ÷ 2  to 0 ÷  ): 
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 = 4  | | = 4 2 cos d+ − 2 cos cos . (A.79) 

 

Introducing cylindrical coordinates: 

 

  = + y , tan =  , = , (A.80) 

 

Eq.(A.79) can be rewritten as follows: 

 

 = 4  | | = 2 cos d + + − 2 cos , (A.81) 

 

where, switching to the cylindrical coordinate solution, the  component becomes  

component. Eq.(A.81) does not have a closed form solution but can be solved by 

converting the integral into the Elliptic integrals [213], [215], [216]: 

 

 ( , ) = 1 − sin ( )
⁄ , (A.82) 

 ( , ) = 1 − sin ( ) .⁄
 

(A.83) 

 

The solution of Elliptic integrals is provided in tabulated functions and their 

derivatives obey to the following relations:  

 

 = (1 − ) −      ,    = − . (A.84) 

 

So introducing the change of variable = + 2  and rearranging the denominator, 

Eq.(A.81) written in scalar notation becomes: 

 

 = 0 2 + 2 + 2
(2 sin2( ) − 1)

1 − 2 sin2( )
2⁄

0 , (A.85) 

 

where: 
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 d = 2d      ,    = 4( + ) +  . (A.86) 

 

The integrand in Eq.(A.85) can be decomposed as: 

 

 
(2 sin ( ) − 1)1 − sin ( ) = 2 sin ( )1 − sin ( ) − 11 − sin ( ), (A.87) 

 

and noting that  

 

 
sin ( )1 − sin ( ) = 11 − sin ( ) − 1 − sin ( ), (A.88) 

 

Eq.(A.87) becomes: 

 

 
(2 sin ( ) − 1)1 − sin ( ) = 2 11 − sin ( ) − 1 − sin ( ) − 11 − sin ( ). (A.89) 

 

Substituting Eq.(A.89) into Eq.(A.85) and using Eqs.(A.82), (A.83) follows: 

 

 = 02 22 − 1 ( ) − 22 ( ) . (A.90) 

 

The magnetic field  is performed from the vector potential  taking the curl of 

Eq.(A.90) in cylindrical coordinates: 

 

 

= ∇ × ≜ 1

= 1 − +  −
+ 1  −
=   − + 1 ≜ + . 

 

(A.91) 
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Substituting Eq.(A.90) into Eq.(A.91) and using the relations between the Elliptic 

integrals 

 

 =    ,   = , (A.92) 

 =    ,   = , (A.93) 

 

it follows that radial and axial magnetic flux density generated by a current loop  are 

given by: 

 

 ( , ) = 02 1 ( + )2 + 2
2 + 2 + 2( − )2 + 2 − ( ) , (A.94) 

 ( , ) = 02 1( + )2 + 2
2 − 2 − 2( − )2 + 2 + ( ) . (A.95) 

 

One approach that can be used to study the physics of a permanent magnet is the 

current model (Ampere’s Equivalence) [215], [216], which reduces the cylindrical 

permanent magnet as an equivalent cylinder where a surface  current density 

circulates around the external surface. Assuming a cylindrical magnet polarized 

along the  axis, the source current surface density can be defined as:  

 

 = , (A.96) 

 

where  is the tangential unit vector around the cylinder and  is the magnetization 

intensity, property of the magnet material [215], [216]. 

Considering the circular magnetic strip carrying a current loop of density , 

extending from − /2  and /2 , the components of the magnetic filed B at a point 

in the plane ( , ) can be derived from Eqs.(A.94), (A.95) as follows : 

 

 ( , ) = 2 −( + ) + ( − )
⁄
⁄  + + ( − )( − ) + ( − ) − ( ) , (A.97) 

 ( , ) = 2 1( + ) + ( − ) − − ( − )( − ) + ( − ) + ( )  ,⁄
⁄  (A.98) 
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where  and  are respectively the magnetization intensity and the variable of 

integration. Also: 

 

 2 = 4( + )2 + ( − ′)2 . (A.99) 

 

Eqs.(A.97), (A.98) describe the spatial magnetic distribution  of a permanent magnet 

axially magnetized of radius  and length  characterised by an magnetization of 

intensity . Considering now the configuration in Figure A.10, in which a 

permanent magnet moves freely inside the conductive housing cylinder of the 

electromagnetic transducer. Neglecting the surface charge on the outside, the current 

density  induced in the conducting cylinder is related to the induced motional 

electric field  by the ohm’s law 

 

 = σ = σ × , (A.100) 

 

where σ  is the electrical conductivity of the material and  is the relative velocity 

between the material and the magnetic flux density of the moving magnet.  

The Lorentz force produced by the magnetic field  acting in an induced current 

loop  can be calculated from the second Laplace’s law: 

 

 = d × , (A.101) 

 

where the integral is performed along the medium circumference of the Yoke. 

 

 

Figure A.10: Example of permanent magnet moving in a tube [175]. 
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Since the circulating current  can be obtained integrating the current density  on 

the transverse area  of the cylinder; i.e:  

 

 =  d , (A.102) 

 

substituting Eq.(A.100) and Eq.(A.102) into Eq.(A.101) it follows: 

 

 = σ ( × ) ×  d , (A.103) 

 

where  identifies the conductor’s Yoke volume. 

Computing Eq. (A.103) in Cartesian coordinates results 

 

 

= σ ( × ) ( × ) ( × ) d  

                     = σ ( ) +  − 2 + 2 , 
(A.104) 

 

where =   and = ̂ + ̂ +  . The repulsion force on the moving 

magnet comes only from the  component: 

 

   = −σ 2 ,          (A.105) 

 

where = + . Eq.(A.105) represents a force-velocity relationship similar to that 

of an ideal mechanical viscous damper. In fact, the relative motion between the 

magnet and the conducting element generates eddy currents and produces repulsive 

force proportional to the relative velocity between the two components. 

Assuming time harmonic motion, the eddy current force acting on the magnet 

varies along  direction because it depends on the interaction between the induced 

current  in the housing cylinder and on the changing magnetic field gradient of the 

permanent magnet, whose distribution depends on the magnet position itself along 

the  axes. 
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Figure A.11: Magnetic flux distribution a) axial  b) Radial   along the transverse 
section of the ferromagnetic Yoke. 

 

Considering for simplicity the magnet in the instant of maximum relative velocity  and thus in the middle of the housing yoke, according to Eq.(A.105), the eddy 

current damping coefficient  can be defined as follows: 

 

 = 2( , )  = 2 ( , )  , (A.106) 

 

where , ,  are the length and the internal and external radius of the cylindrical 

conducting Yoke, while  is the radial distribution of the magnetic field density 

generated by the permanent magnet. Eqs.(A.97), (A.106) cannot be solved analytically 

and thus require a numerical approach. See [174]–[176], [217]–[219] for further details.  
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A.4  LOSSY COIL-MAGNET MODEL  

As discussed in Refs. [177]–[179], coil-magnet transducers are characterised by eddy 

currents that develops in the coil wire of the transducer and produce inductance 

losses. Thus, as shown in Figure 2.1, the electrical response of the coil element in the 

seismic transducer has been modelled in terms of a resistor in series with a lossy 

inductor having complex inductance ( ). As discussed in Refs. [177], [178] and 

shown in Figure A.12 (b,c) the lossy inductor can in turn be modelled as a frequency 

dependent resistor and a frequency dependent lossless inductor connected either in 

series (Figure A.12(b)) or in parallel (Figure A.12(c)). According to Ref. [177], the 

impedance for the series model is given by: = ( ) + j ( ), where the 

frequency dependent resistance and inductance are respectively given by ( ) =cos( 2⁄ ) and ( ) = sin( 2⁄ ), with 0 ≤ ≤ 1. Alternatively, the 

impedance for the parallel model is given by: = ( ) + ( ), where the 

frequency dependent resistance and inductance are respectively given by ( ) =
( ⁄ )  and ( ) = ( ⁄ ) , with 0 ≤ ≤ 1. As one would expect, the 

two models give the same equivalent impedance, which can written in the following 

form: 

 

 = cos 2 + jsin 2 . (A.107) 

 

This expression can be rewritten in terms of a complex lossy inductance  as follows:  

 

 = j ( ), (A.108) 

 

where 

 

 ( ) = ( )(1 − j ). (A.109) 

 

Here ( ) = sin( 2⁄ )  and the inductive loss factor is given by =cos( 2⁄ ) sin( 2⁄ )⁄ . As proposed in Refs. [177], [178] , in this study the parameters 

 and  were identified from the log-log Plot of the magnitude of the measured 

transducer electrical impedance at higher frequencies such that the two constants 
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were found to be given by = 0.034 and = 0.78. As a result, the real and 

imaginary components of  are given respectively by: Re = ( ) = 0.01 .  

and Im = ( ) = 0.03 . . The impedance of the lossy inductor is thus 

characterised by both real and imaginary parts that rise with frequency 

proportionally to . . For simplicity, in this study the complex lossy inductance 

given in Eq.(A.8) has been adopted in the constitutive Eqs. (A.6) such that: 

 

= j + j + j
j + + j + j

j + + j ,    (A.110) 

= − j
j + + j + + j + j + + j .                               

(A.111) 
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Figure A.12: Lumped parameter schematics for the electromagnetic (left hand side) 
and piezoelectric (right hand side) seismic transducers. (a) and (d) complex 
inductance/capacitance models. (b) and (e) series resistance-inductance/resistance-
capacitance models. (c) and (f) parallel resistance-inductance/resistance capacitance 
models. 
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A.5  EDDY CURRENT EFFECTS ON THE TRANSDUCER  

As discussed in Section A.3, the electromagnetic seismic transducer considered in this 

paper is characterised by eddy currents losses, which damp the mechanical response 

of the transducer at frequencies close to its fundamental resonance frequency so that 

the maximum energy that can be harvested in this frequency range is lowered. To 

evaluate the extent of this phenomenon, the maximum power that can be harvested 

at each frequency with a purely resistive harvesting load is here calculated assuming 

the transducer is ideally affected only by air damping or instead affected by both air 

and a strong eddy currents damping, which is the case for the prototype transducer 

considered in this study. This is done by setting respectively =  and = +
 in the constitutive equations for the electromagnetic transducer given in          

Section 2.2.  

Figure A.13, Figure A.14 and Figure A.15 show respectively the simulated spectra 

of the electric impedance , , of the maximum harvested power ,  (Plot a) and 

input power ,  (Plot b) and of the stroke per unit base displacement 
( )

 

considering the optimal real (resistive) harvesting impedance load given Eq.(2.34), i.e. 

, = | | , when the transducer constitutive equations do (solid blue line) and do 

not (dashed black line) take into account the effect of eddy currents losses. As 

discussed in Section 2.5, at the fundamental natural frequency of the transducer, the 

electrical impedance  is purely real and is characterised by the electrical resistive 

effect of the coil, , and the transduced mechanical dissipative effect of the harvester, 

which is given by ⁄ . Considering the data listed in Table 2-1, the damping 

factor for the air loss only, = 2.15 Ns m⁄ , is about 3.8 times smaller than the 

damping factor due to the aggregate eddy currents and air losses = + =9.52 Ns m⁄ . 

 

Figure A.13: Simulated spectra of the optimal real (resistive) harvesting impedance 
function , = | | considering the electromagnetic seismic transducer is (solid blue 
line) and is not (dashed black line) characterised by eddy currents losses. 
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Figure A.14: Simulated spectra of the harvested power ,  (a) and input power ,  
(b) assuming , = | | and considering the electromagnetic seismic transducer is 
(solid blue line) and is not (dashed black line) characterised by eddy currents losses. 

 

 

Figure A.15: Simulated strokes per unit base displacement of the electromagnetic 
seismic harvester assuming , = | | and considering the electromagnetic seismic 
transducer is (solid blue line) and is not (dashed black line) characterised by eddy 
currents losses. 

 

Thus as shown in Figure A.13, in correspondence to fundamental resonance 

frequency of the transducer, the optimal resistive harvesting impedance is 

characterised by a much higher peak when there are no eddy currents losses (dashed 

black line) than in presence of eddy currents losses (solid blue line). As shown in 

Figure A.14, this reflects into a higher capacity of peak power harvesting of 173 mW/1g in contrast to the 33 mW/1g that can be harvested in presence of eddy 

currents losses. Therefore, the peak energy harvesting with the electromagnetic 

seismic harvester strongly depends on the presence or absence of eddy currents 

damping. Finally, as shown in Figure A.15, the stroke per unit base displacement at 

the fundamental resonance frequency of the transducer rises by 3.8 times, that is from 

a value of 1.5 to 5.7. 
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In conclusion, the transducer considered in this study is indeed affected by rather 

strong electromagnetic damping due to the eddy currents that develops in the 

ferromagnetic outer ring. Vanderkooy [179] discussed this effect for voice coil 

loudspeakers, and showed that presence of eddy currents can be effectively lowered 

by cutting the outer ring along the longitudinal axis for example. Another solution 

that is normally used in electrical motors, consists in using an assembly of iron 

laminations rather than a single peace ring element. These are key design features 

that should be taken into account for the construction of effective electromagnetic 

seismic transducers for energy harvesting purposes.  
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B  
P I E Z O E L E C T R I C  S E I S M I C  T R A N S D U C E R  

This chapter presents a brief overview of piezoelectric transducers and in particular, 

of composite materials formed by a beam substrate with piezoelectric layers. The 

constitutive equations of the beam laminate are introduced together with the material 

constitutive equations to derive and identify the piezoelectric lumped seismic 

transducer model used in this thesis. 

 

B.1  LUMPED MODEL CONSTITUTIVE EQUATIONS 

 

B.1.1 Piezoelectric constitutive equations: Reduced Equations for a Thin Beam 

In general, piezoelectric transducers are characterised by the so-called direct and 

inverse transduction effects. Piezoelectric materials are dielectric materials, which can 

be polarised in presence of an electric field, also by applications of a mechanical stress. 

In 1880 Pierre and Jacques Curie conducted experiments on single crystals, such as 

tourmaline, quartz, topaz, cane sugar and Rochelle Salt, that displayed surface 

charges when they were mechanically stressed. This effect was lately classified as 

direct piezoelectric effect. In 1881 Lippmann predicted from fundamental laws of 

thermodynamics the inverse effect, that is, an imposed electric field produced by 

mechanical deformation of the crystals, which was then experimentally confirmed by 

Pierre and Jacques Curie. 

In simplified form, the basic relationships between the electrical and elastic properties 

(for a static or quasi static application at constant temperature) can be represented as 

follows [181], [220]–[222]: 

 

 = , (B.1) 
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where S is the mechanical strain vector, D is the electric flux density vector, T is the 

mechanical stress component and E is the electric field vector. The superscripts T, E, 

and t denote the constant stress, constant electric field and transposte respectively. 

Finally, the quantities d, s and  represent the vectors with the permittivity, the charge 

or strain coefficient and the elastic compliance coefficients. These relationships apply 

only to small electrical and mechanical amplitudes.  

The subscripts of the coefficients that characterise Eq.(B.1) are conventionally 

labelled according to the Voigt notation [72] and are designated by 1, 2 and 3 axes, 

corresponding to principal axes X, Y, Z, defined according to the classical right-hand 

rule, whereas the shear axes are designated with 4,5,6: 

 

Table B-1: Contracted axes notation. 

Axis Notation 

X 1 

Y 2 

Z 3 

Shear around X 4 

Shear around Y 5 

Shear around Z 6 

 

In most general form the matrix in Eq.(B.1) contains 21 elastic mechanical strain 

components ,  (from 36 to 21 according to the elastic theory taken into account , =
, ), 6 permittivity coefficients ,  and 18 piezoelectric strain/charge constants , . 

The two piezoelectric patches considered in the study have comparatively small 

thickness, such that the stress components other than  can be neglected [223]–[225], 

i.e. = 0, = 2 ÷ 6. Along with this simplification, if the thin electrodes are deposited 

on the piezoelectric patches perpendicular to the 3-direction, Eq.(B.1) reduces to: 

 

 = , (B.2) 

 

where it is implicitly assumed that = = 0. 

The permittivity coefficient  indicates the charge density produced by an 

electric field applied along the same direction (i.e. 3). The piezoelectric strain/charge 

constant is represented by , where the sub-index 31 means that the electric field is 
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applied or the charge is collected in the 3 direction for a displacement or a stress force 

produced in the 1 direction. Two interpretations of this constant coefficient can be 

derived: 1) it is the ratio between the produced strain and the applied electrical field 

when external stresses are constant /  2) it is the ratio between the charge density 

flowing through the electrodes perpendicular to the 3 direction and the mechanical 

stress applied in the 1 direction / . Finally the elastic compliance coefficient  

represents the ratio of the mechanical strain to the mechanical stress in direction 1. 

From Eq.(B.2) the stress-electric displacement form of the reduced constitutive 

equations for a thin beam can be rewritten as follows: 

 

 = − , (B.3) 

 

where: 

 

 = 1 , = ,         = − , (B.4) 

 

and the superscript  and  denotes that the respective constants are evaluated at 

constant strain and constant electric field. 

 

 

B.1.2 Constitutive equations for the beam composite 

Considering bending strain, the equilibrium with reference to the rotation and 

translation in directions x and z respectively ( Figure B.1) ) of a segment of beam under 

the hypothesis of the uniform Euler–Bernoulli beam model are given by [223]–[225]:  

 

 = − ( ), (B.5) 

 = − , (B.6) 

 

where  and  are the internal bending moment (caused by the stress components 

along the axial direction ) and shear force at any cross-section of the beam and ( ) 
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is the external transverse force (i.e. z axis) per unit of length of the beam. Combining 

Eqs.(B.5), (B.6) follows: 

 

 = ( ). (B.7) 

 

 

 

Figure B.1: Infinitesimal element of a beam. 

 

The bending moment at any transverse section of the beam is thus related to the 

bending displacement as follows: 

 

 = . (B.8) 

 

Here =   is the bending stiffness term of the cross section of the beam, in which  is the Young’s modulus of the material and  is the cross sectional moment of 

inertia about the second moment of area of cross-section of the beam about the neutral 

axis. Substituting Eq.(B.8) into Eq. (B.7) follows: 

 

 = ( ). (B.9) 

 

In order to identify the equation of motion the effect of transverse inertia should be 

taken into account, which gives ( , ) = − ( , )
, where  is the mass per unit of 

length of the beam. Thus equation (B.9) becomes: 
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( , ) + ( , ) = ( ), (B.10) 

 

where in this case ( ) is the externally applied transverse force per unit length of the 

beam. The equation of motion is characterised by a fourth-order term in space and a 

second order term in time. Thus to solve Eq.(B.10) four boundary conditions and two 

initial conditions are required. The boundary conditions of interest in this thesis are 

those for a beam clamped at the end  =  0 and with a free end at  =  . In addition, 

a mass  with rotational inertia  is attached at the end of the beam  =  : 

 

 ( , )| = 0, (B.11) 

 ( , ) = 0, (B.12) 

 ( , ) + ( , ) = 0, (B.13) 

 ( , ) − ( , ) = 0. (B.14) 

 

The fixed end requires that the displacement and the slope of the displacement are 

both zero as indicated in Eqs.(B.11) and (B.12) respectively. The free end requires that 

the sum of the moments and the sum of the shear forces acting at =   must be zero, 

as indicated in Eqs.(B.13) and (B.14) respectively. The force  and the moment Γ  caused by the tip mass  is expressed using the second law of dynamics and the 

principle of conservation of the angular momentum 

 

 Γ  = = ( , ) , (B.15) 

 = = ( , ) . (B.16) 

 

The method of separation of variables can be used to solve the linear homogenous 

partial differential equation associated to Eq.(B.10). More specifically the transverse 

displacement can be written as follows: 

 

 ( , ) = ( ) ( ), (B.17) 
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where ( ) is only a function of x and ( ) is only a function of t. Substituting 

Eq.(B.17) into Eq. (B.10) follows: 

 

 ( ) + ( ) = 0. (B.18) 

 

The spatial and temporal terms can be separated considering that the above equation 

can be rewritten in the following form: 

 

 
1 = − 1 ≜ . (B.19) 

 

Since the left side of Eq.(B.19) depends only on the spatial coordinate while the right 

hand side depends on the temporal variable alone and these two variables are 

independent from each other, both sides of Eq.(B.19) must be equal to the same 

arbitrary constant , known as separation constant [226]. Thus, Eq.(B.19) yields two 

ordinary differential equations:  

 

 + = 0, (B.20) 

 + = 0. (B.21) 

 

Eqs.(B.20) and (B.21) are differential equations with constant coefficients whose 

solutions can be readily derived. It is important to note that  is an arbitrary constant. 

Also, since the problem in exam is a vibration problem, the time-dependent solution 

of Eq.(B.21) is given by an harmonic function and thus  should be a positive constant. 

Under this assumption, the solutions form of Eq.(B.20) and (B.21) can be written as 

follows: 

 

 ( ) = cos + cosh + sin + sinh , (B.22) 

 ( ) = cos( ) + sin( ), (B.23) 

 

where has been defined: 

 

 ≜ ,   = . (B.24) 
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From the solution of Eq.(B.17) the product ( ) ( ) must also satisfy the four 

boundary conditions (B.11)-(B.14), which are valid for every time . Thus substituting 

Eq.(B.17) into Eqs.(B.11)-(B.14), for no trivial solution (i.e. ( ) ≠ 0), considering that 

from Eq.(B.23) results that = − ( ), the following boundary value problem is 

derived: 

 

 ( )| = 0, (B.25) 

 = 0, (B.26) 

 − = 0, (B.27) 

 + ( ) = 0. (B.28) 

 

The values of  (i.e. ) for which there are no trivial solutions  are the eigenvalues 

while a nontrivial solution  which exist only for certain values of  is called 

eigenfunction of the eigenvalue .  

Because Eq.(B.20) is of fourth order, its solution in Eq.(B.22) contains four constants 

of integration, in addition to the parameter  , for a total five unknowns coefficients. 

To evaluate these unknowns, the four boundary conditions (B.25)-(B.28) are invoked. 

Because there are only four boundary conditions, it is not possible to evaluate all the 

unknowns uniquely. In fact, since Eq. (B.20) is homogenous, only the general shape 

of  can be determined uniquely, but not the amplitude. Thus applying Eqs.(B.25), 

(B.26) into Eq.(B.22), results: 

 

 ( ) = cos − cosh + sin − sinh . (B.29) 

 

Using the remaining two boundary conditions (B.27), (B.28) in (B.29) it follows: 

 

cos( ) + cosh( ) − sin( ) + sinh ( ) sin( ) + sinh ( ) + cos( ) − cosh ( )
sin( ) − sinh ( ) + cos( ) + cosh ( ) −cos( ) − cosh( ) + sin( ) − sinh ( )

= 00 . 
(B.30) 
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In order to obtain no trivial solutions (i.e. A = C = 0), the eigenvalues  must satisfy 

the following characteristic equation, obtained setting the determinant of the matrix 

in Eq.(B.30) to zero: 

 

 

1 + cos( ) cosh( ) + cos( ) sinh( ) − sin( ) cosh( )
− cosh( ) sin( ) + sinh( ) cos( )
+ 1 − cos( ) cosh( ) = 0. 

(B.31) 

 

Since Eq.(B.31) is a nonlinear algebraic equation; the solution can be obtained with an 

iterative numeric procedure. Figure B.2 shows the graphical solutions. 

 

 

Figure B.2: Graphical solution of Eq.(B.31) considering the tip mass  (solid line) and 
with the only distributed inertial contribution of the beam (dotted line). 

 

The zeros of Eq.(B.31), which identifies the no trivial solutions, gives the following 

eigenvalues: 

 

 = = . (B.32) 
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The square roots  for the eigenvalues  are recognized as the natural frequencies of 

the system and the eigenfunctions  as the natural modes. In conclusion the natural 

mode  corresponding to the natural frequency  is given by: 

 

 ( ) = cos − cosh + sin − sinh , (B.33) 

 

where = = ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )  is obtained from the second row of 

Eq.(B.30). In order to uniquely obtain the amplitude of the mode, the constant  is 

determined through a normalization procedure. The corresponding unique natural 

modes are referred to as normal modes. For brevity the relations, which can be used to 

mass normalize the eigenfunctions, are here reported with no mathematical proof (for 

more details see [72],[226]) : 

 

 
( ) ( ) − ( ) ( ) +

= , (B.34) 

  ( ) ( ) + ( ) ( ) +  = . (B.35) 

 

In summary, the solutions of equation (B.17) satisfying the specific boundary 

conditions (B.25)-(B.28) can be defined for each corresponding natural frequency . 

The constants  and  represent internal factors and depend on the inherent nature 

of the differential equations and boundary conditions, whereas  represent external 

factor, defined from the initial conditions (displacement and velocity profile).  

For the physical problem considered in this thesis, a unique solution to initial value 

problem exists for every rth solution. In analogy to the Fourier analysis (in which for 

one period T a function of arbitrary shape can be expanded in an infinite series of 

orthogonal harmonic functions), the expansion theorem [226] can be used to represent 

any possible displacement of the beam. As a result, any function, which represents a 

possible displacement of the beam ( ) that satisfies boundary conditions and such 

that , is a continue function, that can be expanded in the absolutely and 

uniformly convergent series of the eigenfunctions: 
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 ( ) = ( ), (B.36) 

 

where the relations between  and  are verified from the orthonormal properties 

of Eqs.(B.34), (B.35). As shown in Eq.(B.17), every natural motion ( , ) is obtained 

from the natural modes ( ) (which are orthogonal and hence by definition 

independent) multiplied by time dependent harmonic functions ( ) of frequencies 

equal to the natural frequency . Since every mode is independent, the consequence 

is that every one of the natural modes can be excited independently from the other. 

Hence, consistent with this, the solution ( , ) of equation (B.10) can be expressed in 

the form:  

 

 ( , ) = ( ) ( ). (B.37) 

 

 

B.1.3 Constitutive equations for the piezoelectric energy harvester 

The cantilever configuration shown in Figure 2.1 is assumed thin (i.e. the length to 

thickness aspect ratio is greater than 20) such that, for small flexural deformations, 

Euler Bernoulli beam theory can be employed, which neglects the rotational inertia 

and shear deformation effects. The core substrate is made of a homogeneous, 

isotropic, linearly elastic steel material. The outer piezoelectric layers are given by 

two piezoelectric patches that cover the whole surface of the core layer. The 

piezoelectric layers are made of homogeneous, transversally isotropic, linearly elastic 

piezoelectric materials. The thin electrodes deposited on the piezoelectric patches are 

perfectly conductive such that a single potential difference can be assumed across the 

patches and thus a uniform electric field is generated along the length of the patches. 

Also, since the piezoelectric material is homogeneous and the patches have constant 

thickness, the electric fields in the patches is assumed constant. 

It is assumed that the clamped base of the beam undergoes a transverse input 

motion , which is persistent, so that continuous electrical outputs can be extracted 

from the electromechanical system. The instantaneous average bending strains in the 

top and the bottom layers at an arbitrary position x over the beam length have the 

opposite sign (one is in tension while the other is in compression). The piezoelectric 
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layers of the laminate shown in Figure 2.1 are poled in the thickness along the same 

direction (z or 3 direction) and are assumed electrically connected in parallel.  

Using the Newtonian or the Hamiltonian approach, the governing equation for an 

undamped vibrations of a uniform Euler Bernoulli beam (with time dependence) can 

be derived in Eq.(B.7), i.e.: 

 

 = ( , ), (B.38) 

 

where ( , ) is the internal bending moment (excluding the strain rate damping 

effect) and ( , ) is the transverse force per unit of length of the beam (in the z - 

direction). Considering Figure B.1, the convention chosen for the moment ( , ) is 

such that the positive bending moment creates positive curvature. The total bending 

moment for the three layers laminate is given by: 

 

 ( , ) = − ⁄
⁄

( , , ) − ⁄
⁄

( , , ) −
⁄

⁄
( , , ) , (B.39) 

 

where  is the width, ℎ  is the thickness of each piezo ceramic layer and ℎ  is the 

thickness of the substructure layer. ,  are the normal stress components in 

direction 1 that develop in the substrate and piezoelectric layers respectively. 

Considering Euler-Bernoulli hypothesis, they are given by the following relations 

[72], [226], [225]:  

 

 1( , , ) = 1( , , ), (B.40) 

 1 ( , , ) = 1 ( , , ) − 31 3( , ), (B.41) 

 

where   and  are the Young’s modulus of elasticity respectively for the metallic 

substrate and for the piezoelectric layers under constant electric field, i.e. 3 = 0. 

Also, as shown in Eq.(B.3), 31 = 31 is the piezoelectric stress/charge constant for 

the uniaxial normal stress field in the beam, assuming the electric field in the 

transverse direction 3 is constant, i.e. 3 = 0.  

Finally ( ) and ( ) are the normal strains in direction 1 of the metallic 

substrate and piezoelectric layers respectively, which according to Euler–Bernoulli 

hypothesis are given by the following linear strain–displacement relations: 
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 1( , , ) = − ∂2 ( , )∂ 2 , (B.42) 

 1 ( , , ) = − ∂2 ( , )∂ 2 , (B.43) 

 

where  is the transverse displacement of the beam mid–plane. The transverse 

electric fields ( ) in the two piezoelectric layers can be expressed in terms of the 

electric potential differences between the electrodes of the two layers, which, for the 

counter-phase parallel connection result equal with opposite sign (negative for the 

top layer and positive for the bottom layer). This opposite sign for the voltage is due 

to the fact that for positive bending the upper layer is compressed while the bottom 

layer is stressed. Thus from the definition of electric voltage the electric field can be 

defined as: 

 

 3( , ) = ∓ ℎ( ) ( ) − ( − )ℎ , (B.44) 

 

where ( ) is the Heaviside function [72], [227] used in Eq.(B.44) to introduce the 

spatial dependence of the electric component , which is function of the time only. 

It is important to keep in mind that the two piezoelectric layers are connected in 

parallel and thus the voltage across the electrodes of both is equal to ℎ( ). 

Substituting Eqs.(B.40)-(B.43), (B.44) into Eq.(B.39) the internal bending term can be 

defined as: 

 

 ( , ) = ∂ ( , )∂ − Θ ( ) ( ) − ( − ) , (B.45) 

 

where the coupling term Θ  for the parallel connection is given by: 

 

 Θ = 31 ℎ + ℎ , (B.46) 

 

and the bending stiffness  of the composite cross – section for the short-circuited 

condition of the piezo beam is given by: 

 

 = + , (B.47) 
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where =  and = ℎ + −  are the second moment of the cross 

section (about the neutral axis) of the substructure and piezo layer respectively. 

Substituting of Eq.(B.45) into Eq.(B.38) gives the following coupled (undamped) 

partial differential equation of motion for the flexural vibration of the uniform beam 

clamped: 

 

 
∂ ( , )∂ + ∂ ( , )∂ − Θ ( ) d ( )d − d ( − )d = 0, (B.48) 

 

where  is the delta Dirac function [227] and ( , ) = − ( , )
 is the inertial force 

of the beam laminate, with  is the mass per unit length: 

 

 = ℎ + 2 ℎ , (B.49) 

 

where  and  are the mass density of the steel substructure and piezoelectric 

layers respectively,  is the width of the beam, ℎ  and ℎ  are the thicknesses of the 

substrate and piezoelectric layers respectively. 

Assuming that the left support of the beam is excited in vertical direction, the absolute 

displacement (relative to the fixed reference frame) of the beam mid–plane ( , ) can 

be written as a simple superposition of the displacement of the base ℎ and beam 

displacement relative the base where the beam is clamped : 

 

 ( , ) = ( ) + ( , ). (B.50) 

 

Thus substituting Eq.(B.50) into (B.47), (B.48) the free coupled vibration equation for 

the absolute vibratory motion of the beam becomes a forced vibration equation for 

the vibratory motion of the beam: 

 

 
∂ ( , )∂ + ∂ ( , )∂ − Θ ( ) d ( )d − d ( − )d= (x, t), (B.51) 

 

where (x, t) is the external inertial term: 
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 (x, t) = − + ( − ) d ( )d . (B.52) 

 

In order to use the standard modal approach, a particular model of damping should 

be examined. Banks and Inman [228] demonstrate that the strain rate damping model 

for the internal damping mechanism and the viscous air damping model for the 

external damping mechanism are the analogue to proportional damping (i.e. a linear 

combination of mass and stiffness operators) and therefore are compatible with the 

modal approach of the corresponding undamped free vibration problem. For simplicity 

and as in common practise in structural dynamics the damping will be introduced in 

the modal equations. Based on the linear assumption, the transverse vibration 

response relative to the base of the beam can be represented as a convergent series of 

the eigenfunctions as derived in Eq.(B.37): 

 

 ( , ) = ( ) ( ), (B.53) 

 

where ( ) is the r-th flexural natural mode of the beam and tip mass assumed 

clamped on the right hand side and ( ) is the r-th generalised coordinate for the 

flexural vibration of the composite beam for the short circuited configuration ( ( ) =0). Substituting the solution (B.53) in Eq.(B.51), multiplying both side of the equation 

by the generic mass normalize eigenfunction ( ), integrating over the length of the 

beam follows: 

 

 

( ) ( ) ( ) 
+  ( ) ( ) ( )
− Θ ( ) ( ) d ( )d − d ( − )d  =
− d ( )d  ( ) + ( − )   .   

(B.54) 

 

Substituting into Eq.(B.54) the conditions of orthogonality (B.34), (B.35): 
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( ) − ( ) ( ) − ( ) ( )
+  ( ) + ( ) ( )
− ( ) ( ) − Θ ( ) − dd + dd
= − ( ) ( ) + ( ) , 

(B.55) 

 

and rearranging the terms follows: 

 

 

( ) + ( ) + ( ) − ( ) ( ) + ( ) ( )
− ( ) ( ) ( ) + ( ) ( ) 
− Θ dd ( )    = − ( ) ( ) + ( )  . 

(B.56) 

 

Applying the boundary conditions given in Eqs. (B.25)-(B.28) the last two terms on 

the left side of Eq.(B.56) are zero: 

 

 

( ) + ( ) − Θ dd ( )
= − ( ) ( ) + ( ) . (B.57) 

 

Thus a set of Eqs. in the form: 

 

 

( ) + ( ) + + 2 ( ) − Π ( )
= − ( ) ( ) + ( ) , (B.58) 

 

are obtained. The modal strain-rate damping ratio  has introduced in Eq.(B.58) in 

standard form where the electromechanical modal coupling term is given by           Π = Θ .The Kronecker delta operator = 1 is retained in this and in the 

following equations to underline the presence of a mass term such that the units of 

all terms in the equations could be properly verified. 
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Considering now the electric part, in order to obtain the governing electrical circuit 

equations of the bimorph configurations for parallel connections of the two 

piezoelectric layers, the second constitutive equation of piezoelectric transducers, 

under Euler-Bernoulli hypothesis (Eq. (B.2)), should be considered: 

 

 3( , , ) = 31 1 ( , , ) + ̅33 3( , ). (B.59) 

 

Using Eq.(B.43) and Eq.(B.44), Eq.(B.59) can be specified for the upper piezoelectric 

layer as:  

 

 3( , , ) = − 31 ∂2 ( , )∂ 2 − ̅33 h( )ℎ . (B.60) 

 

From the Gauss’s law [72] the separation of charge contained in the two piezoelectric 

layers can be written as = ∙   , where  is a generic closed surface 

enclosing the free charge  contained in the electrode of the beam and  and  are 

respectively the electric displacement and the versor perpendicular to the surface . 

In the present case, the only contribution to the inner product of the integrand in       

Eq. (B.60) comes from  (since the electrodes are perpendicular to the 3-axis) and 

thus the surface  simply becomes the surface of the piezoelectric layer: 

 

 = ( , , ) dx = −ℎ ̅ ∂ ( , )∂ dx − ̅ ℎ ( ), (B.61) 

 

where ℎ = ℎ + ℎ 2⁄  is the distance between the neutral axis of the composite 

beam and the centre of each piezoelectric patch. The electrodes of the upper piezo 

layer are connected to a generic circuit, the electric current ( ) produced by the 

upper piezoelectric patch can be derived from the conservation of the charge integral 

[72], which, written in scalar notation, gives: 

 

 ( ) = − = ℎ ̅ ∂ ( , )∂ ∂ dx + ̅ ℎ . (B.62) 

 

Here, in analogy to the coil magnet, the minus sign convention in Eq.(B.62) highlights 

the nature of generator of the piezoelectric transducer. That is, the electric charges 

leave the electrodes of the piezoelectric patch i.e. ⁄  < 0 . 
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Substituting the modal expansion given in Eq.(B.53), Eq.(B.62) can be expressed with 

reference to the generalised coordinate for the flexural vibration of the composite 

beam as follows: 

 

 ( ) = ℎ ̅ dx + ̅ ℎ , (B.63) 

 

and, since , 

 

 ( ) = ℎ ̅ + ̅ ℎ . (B.64) 

 

 

Figure B.3: (a) Piezoelectric layer, source of an electromotive force  and generator 
of a moving electric charge b) Equivalent electric circuit representation. 

 

Considering the schemes shown in Figure B.3, Eq.(B.64) represents, for the upper 

piezo layer, the Kirchhoff's Current Law of a current source  in parallel with a 

capacitance. At this point, assuming a parallel connection of the two piezoelectric 

patches bounded on the cantilever beam, the total electric inherent flowing from the 

two transducers results: 

 

 ( ) = 2ℎ ̅ + 2 ̅ ℎ . (B.65) 

 

Thus rearranging the terms in Eq.(B.65): 

 

 ( ) = Π q ( ) + ( ), (B.66) 
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where Π = Θ  and = 2 . 

 

 

Figure B.4: Electric circuit representing the parallel connection of the two piezoelectric 
layers. 

 

It can be observed that Eq.(B.66) identifies the Kirchhoff’s law applied to Figure B.4, 

assuming the generators convention for the two piezoelectric patch transducers. In 

analogy to the electromagnetic harvester, as shown in Figure 2.1, the user convention 

is employed, thus reversing the orientation of all voltages. This choice only effects the 

graphical representation of the electric circuit, but doesn’t change the form of the 

constitutive electric equation.  

 

B.1.4 Lumped model for the piezoelectric energy harvester 

As derived in the previous section, the closed form of the rth coupled beam equation 

and the electrical circuit equation in modal coordinates are obtained from Eqs.(B.58), 

(B.66): 

 

 

( ) + ( ) + + 2 ( ) − Π ( )
= − ( ) ( ) + ( ) , (B.67) 

 ( ) = Π q ( ) + ( ). (B.68) 

 

As discussed in Section 2.6, for tonal disturbances, the maximum energy harvesting 

occurs in correspondence of the fundamental resonance frequency of the seismic 

harvesting transducer. Thus, normally the harvester is operated at its fundamental 
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resonance frequency. In this case, the flexural response of the laminate composite 

beam with tip mass could be derived by taking into account the contribution of the 

first bending natural mode only i.e. ( , ) ≅ ( ) ( ). Thus, Eqs.(B.67), (B.68) can 

be rewritten as follows: 

 

 ( ) + ( ) + + 2 ( ) − Π ( ) = − ( ) ( ) + ( ) , (B.69) 

 ( ) = Π q ( ) + ( ). (B.70) 

 

At this point, since the generalised coordinate ( ) is given by ( ) ≅( , ) ( )⁄ , Eqs. (B.69), (B.70) can be rewritten with respect to ( , ) as follows: 

 

 
( ) ( , ) + 2( ) ( , ) + ( ) ( , ) − Π( ) ( )

= − 1( ) ( ) + ( ) ( ), (B.71) 

 ( ) = Π( ) ( , ) + ( ), (B.72) 

 

where, in order to get the same electromechanical transduction term Π ( )⁄  in 

Eq.(B.71) and (B.72), the right and left hand sides of Eq.(B.71) have been divided by ( ). Eq.(B.71) is similar to the equation of motion that would be derived for the 

suspended mass when the equivalent lumped parameter model shown in Figure 2.1 

is employed to derive the response of the seismic transducer. In detail, a close 

examination of Eq.(B.71) shows that, this is the case when the left hand side inertia 

term is equal to the right hand side inertia term, and so when 

 

 ( ) = ( ) + ( ) . (B.73) 

 

This implicit equation is verified by a coordinate ̅, which, in this study, has been 

derived numerically to be given by ̅ = 0.9 = 0.13 m. Thus, from Eq.(B.50), the 

schematic picture shown in Figure 2.1 can be employed to model the 

electromechanical response of the piezoelectric seismic transducer assuming the 

displacement of the suspended equivalent mass is given by the following relation: 
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 ( ) = ( ) + ( ̅ , ). (B.74) 

 

In this case, Eq.(B.71) becomes: 

 

 
 ( ̅ , ) +  ( ̅, ) +  ( ̅ , ) − ( )= −  ( ), (B.75) 

 

such that, Eq.(B.71) and (B.72) can be re-written as follows: 

 

  ( ) = −  ( ̅, ) −  ( ̅ , ) + ( ). (B.76) 

 ( ) = ( ̅, ) + ( ), (B.77) 

 

where, , , ,  are respectively the equivalent seismic mass, the equivalent 

visco-elastic damping factor, the equivalent beam flexural stiffness (assuming the 

electrodes are short circuited) and the equivalent piezoelectric transduction factor, 

which are given by the following expressions: 

 

 = ( ̅) = 2( ̅)   = ( ̅)   = ̅ ℎ + ℎ ( )( ̅). (B.78) 

 

At this point, a second equation of motion can be derived for the base mass, which, 

considering the elastic, damping and electromechanical bending actions exerted by 

the composite beam and tip mass clamped to it and the action produced by the 

external force , results given by the following expression: 

 

 ( ) =  ( ̅ , ) +  ( ̅, ) − ( ) + ( ). (B.79) 

 

Assuming time harmonic functions and setting ( ̅, ) = ( ) − ( ), after some 

mathematical manipulations, the three Eqs. (B.76), (B.77) and (B.79) give the following 

two constitutive equations for the seismic piezoelectric transducer: 

 

= j + j + j
j + + j + j j

j + + j , (B.80) 
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= j j
j + + j + 1j + j + + j  

 

(B.81) 

 

Here = + Δ  is composed by  two stiffness terms: the first, which is 

characterised by the constant , represents the equivalent bending stiffness when 

the electrodes are in short circuit whereas the second, 

Δ = , with = ( )( ̅) , represents the additional equivalent 

bending stiffness effect produced in open circuit configuration of the electrodes. 

As will be shown in the following paragraph, the piezoelectric materials are 

characterised by dielectric losses. These effects are normally modelled with a complex 

permittivity ̃ = ̅ (1 − j ), where  represents the dielectric loss factor, which, 

at low frequencies can be approximated with the following expression [67]: 

 

 (ω) ≅ ̅ , (B.82) 

 

where  is the electrical conductivity of the piezoelectric material. Thus, the 

capacitance of the piezoelectric layers under constant stress, = 2 , results: 

= (1 − j ). Likewise the electromechanical coupling factor = ̅⁄  is 

also complex and given by = (1 − j )⁄ . As a result, the capacitance of the 

piezoelectric layers under constant strain, = (1 − ), is given by the following 

complex term = 1 − . Therefore Eqs.(B.80),  

(B.81) become: 

 

= j + j + j
j + + j + j j

j + + j  (B.83) 

= j j
j + + j + 1j +

j + + j  
 

(B.84) 

 

where = + Δ  with Δ = . As will be derived in Appendix B  and 

shown in Figure A.12, the complex impedance of the lossy piezoelectric layers =1 j⁄  can be modelled with resistor and capacitor elements connected either in 
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series or in parallel. In fact, the complex impedance can be derived in the following 

form: 

 

 = + j ( − 1), (B.85) 

 

where = + (1 − ) . Thus, the resistance and capacitance for the series scheme 

are given by: ( ) =  and ( ) = (1 − )⁄ , whereas for the parallel 

scheme they are given by: ( ) =  and ( ) = (1 − ).  As can be readily 

be noticed from Eq.(B.85), both the real and imaginary parts of the complex 

impedance of the piezoelectric lossy capacitor vary proportionally to  with 

frequency. In contrast to the real part, the imaginary part assumes negative values 

since the reactive component of the impedance is given by ( − 1) ( )⁄ . 

 

 

B.2  DIELECTRIC LOSS EFFECTS 

As pointed by Krupka [229], there are two basic types of polarization mechanism in 

solids: Electronic and Ionic. Electronic polarization describes the separation of the 

canters of "gravity" of the electron charges in orbitals such that the dipoles formed 

with the positive charge in the nucleus is always present. Ionic polarization, which 

characterises the piezoelectric materials, is identified by a net effect of changing the 

distance between neighbouring ions in an ionic crystal. All polarization mechanisms 

respond to an electrical field by shifting masses around. Therefore masses are 

accelerated and decelerated. This phenomenon takes some time. When an external 

time – varying field is applied to the material, displacement of the bound charges 

occurs, giving rise to the polarization density . For a sinusoidal steady state, the 

polarization  varies at the same frequency as the applied field . For low frequencies, 

 is also in phase with  and both quantities reach the maximum and minima at the 

same point of the cycles. As the frequency increases, however, the inertia of the 

particles and also the elastic and frictional forces that keep them together tends to 

prevent the polarization. As a result, the polarization field will be progressively more 

and more out of phase with the electric field. If the frequency is very large the whole 

polarization mechanism will die out. The condition of out of phase polarization  that 

occurs at high frequencies can be characterised by a complex dielectric susceptibility 
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 and hence by a complex permittivity coefficient ≜ (1 + ). Thus considering 

Eq.(B.2), a complex permittivity  for the piezoelectric layer material can be 

introduced as follows: 

 

 ̅ ( ) = ( ) − ( ). (B.86) 

 

In general the validity of a damping model for a linear time invariant system in the 

frequency domain is linked to the mathematical condition of causality, which is 

usually denoted in the so called Kramers – Kroning relation [230]: 

 

 ( ) = − 2 ( )− , (B.87) 

 ( ) = 2 ( )− . (B.88) 

 

If an ideal dielectric material (i.e. perfect insulator) is considered, only displacement 

currents occurs for alternating electric field . According to Eq.(B.2), the current 

density can be obtained as ( ) = , thus assuming time-harmonic functions: 

 

   ( ) = ( ) = ̅ ( ) ( ), (B.89) 

 

where a constant stress i.e. = 0 is assumed for simplicity. Substituting Eq.(B.86) 

into Eq.(B.89) gives: 

 

   ( ) = ( ) + ( ) . (B.90) 

 

The total power density , defined as the product between current and electrical field 

can be defined as: 

 

   = ( ) + ( ) , (B.91) 

 

which identifies two components, the real active power, which is the power deposited 

in the system that heats in the material, and the reactive power which cycles back and 

forth. Since ( ) depends on the frequency, the maximum dissipation corresponds 

to the frequency which maximize the product  ( ). In analogy to the definition 
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of the mechanical loss factor , the measure of the quality factor of a dielectric 

material can be identified as the quotient between the real and reactive power:  

 

 ( )  ≜ ( ) = ( )( ) .  (B.92) 

 

Thus, using Eq.(B.92) into Eq.(B.90) the displacement current density can be rewritten 

as 

 

   ( ) =  ( )(1 − ). (B.93) 

 

The relations of Eqs.(B.90), (B.93) can be modelled as the equivalent circuit diagram 

shown in Figure B.5, which consists of an ideal capacitor ( ) =  and ideal 

resistor ( ) = 1 : 

 

 

Figure B.5: Graphical representation of Eq.(B.93). 

 

At low frequencies,  is small due to  being small and due to the fact that  is 

itself small so that the losses are largely negligible and no current flows to the 

resistance ( → ∞). However, at higher frequencies,  increases and produces a 

macroscopic effect as if the dielectric had effective conductivity  =  (in a 

conducting material in response to a constant applied filed , from Ampere’s law a 

DC current density =  is always generated) and thus for a perfect dielectric 

piezoelectric material the losses are completely contained in the imaginary  part  

of ̅ . Therefore, when the dielectric is excited at frequencies high enough for to 

be appreciable, an alternating current density of ( ) ( ) and a displacement 

current density ( ) ( ) flows through the material. All this is only true for a 

perfect insulator where at low frequencies the permittivity tends to be zero; in reality 
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there is always a finite conductivity  also for DC current. In this case, it is sufficient 

considering an additional electrical conductivity  effect in Eq.(B.90); that is: 

 

   ( ) = ( ) + ( ) + . (B.94) 

 

From the definition of current density in Eq.(B.93), Eq.(B.94) can be rewritten in terms 

of a new permittivity ( ) for non perfect piezoelectric insulators: 

 

   ( ) = ( )(1 − ),      (B.95) 

 

where 

 

 = ( )( ) + ( ) = ( ) + ( ). (B.96) 

 

Here tan( ) is the dielectric loss tangent associated with the pure dielectric loss 

mechanism (polarization) and ( ) is the loss component due to the conductivity 

of the dielectric, which can be modelled in terms of two resistors in parallel as shown 

in Figure B.6.  

 

 

Figure B.6: Graphical representation of the dielectric losses identified by Eq.(B.96) in 
a piezoelectric material.  

 

As shown in Figure B.7, for many piezoelectric materials, the conductivity is very low 

and the frequencies of interest are in the region of kilohertz and higher. Thus usually 

the contribution of the polarization lag is much larger than the DC conductivity effect. 

Despite that, the seismic (and reactive) piezoelectric harvesters operate at very low 

frequencies (i.e. < KHz), so the permittivity real part ( ) is constant with frequency 

while the imaginary part ( ) is close to zero. No phase lag between the electric 
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field  and the vector displacement  is appreciable. Thus the conductivity term is 

dominant and imposes an inverse frequency dependence for the dissipation effect, 

which usually is not taken into account for the majority of the dielectric materials 

[229], [231], [232], [233]. Thus for such range of frequencies, the loss factor  can be 

approximated as follows: 

 

 ≅ . (B.97) 

 

 

Figure B.7: (a) Approximation of the permittivity in the range of frequency of work 
for the seismic harvesters (b) Equivalent simplified circuit. 

 

B.2.1 Dielectric loss effects on the piezoelectric harvester 

The dielectric losses  play an important role in the response and energy harvesting 

with the piezoelectric seismic transducer studied in this thesis. According to Eq. 

(2.33), the maximum power that can be harvested at each frequency is given by  

 

 = 18 | |Re | | . (B.98) 

 

Considering Eqs.(2.4), (2.5), (2.11), and (2.14), (2.15), and assuming there are no 

dielectric losses in the piezoelectric layers, i.e. η = 0, 

 

 = = j , (B.99) 



 
Piezoelectric seismic transducer 

195 

 = − = 1j C + 1 . (B.100) 

 

Thus, substituting Eqs.(B.99) and (B.100) into Eq.(B.98), and recalling Eqs.(2.6), (2.13), 

the maximum power that can be harvested at each frequency would result constant 

and equal to: 

 

 ℎ| =0 =  18
2 2 | ℎ|2. (B.101) 

 

This phenomenon is confirmed in Figure B.8 and Figure B.9, which shows 

respectively the simulated spectra of the electric impedance  and of the maximum 

power that can be harvested at each frequency  with (solid blue line) and without 

(dashed black line) dielectric losses. If dielectric losses are not presented, the real part 

of the electric impedance  would be very small apart from a narrow frequency peak 

centred at the fundamental resonance frequency of the seismic transducer, i.e. 20 Hz, 

where the viscoelastic mechanical losses become relevant via the mechanical to 

electrical transduction effect. Instead, if dielectric losses are present, the real part 

assumes relatively large values in the whole frequency range. As predicted in 

Eq.(B.97), this is particularly visible at low frequencies below 50 Hz, where the effect 

of dielectric losses is particularly strong. These effects have a direct impact on the 

maximum power  that can be harvested at each frequency. In fact, as shown in 

Figure B.9, if the dielectric losses were not taken into consideration (dashed black 

line), the harvested power would be constant and equal to the value given by 

Eq.(B.101). Alternatively, in presence of dielectric losses, the spectrum of the 

harvested power assumes the typical feature for seismic transducers, with a 

resonance peak in correspondence to the fundamental resonance of the seismic 

transducer as was found in the experimental results shown in Figure 2.8. This peculiar 

phenomenon can be described by recovering the equivalent electrical components of 

the optimal harvesting impedance and then converting this components into 

equivalent mechanical lumped elements in the mechanical scheme of the transducer. 

According to Eq. (2.32) the optimal impedance of the harvester is given by = ∗ , 

which, recalling Eqs. (2.5), (2.11), (2.13) and (2.14), (2.15) results: 
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 = ∗ = ∗ − ∗ ∗
∗ = − 1j C + 1

− j + − j . (B.102) 

 

 

Figure B.8: Comparison between the simulated spectra of the complex impedance 
function = ∗  with (solid blue line) and without (dashed black line) dielectric 
losses. 

 

 

Figure B.9: Comparison between the simulated spectra of the maximum power that 
can be harvested at each frequency  assuming the piezoelectric patches are (solid 
blue line) and are not (dashed black line) characterised by dielectric losses. 
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Figure B.10: a) Piezoelectric seismic harvester connected to the optimal complex 
harvesting load. b) Equivalent mechanical lumped parameter model. The electrical 
and mechanical lumped parameters of the harvesting load are highlighted in red.  

 

As shown in Figure B.10 (a), this harvesting impedance is composed by a negative 

capacitance −C  connected in series with a parallel RLC mesh formed by a resistance = ⁄ , by a negative inductance = − ⁄  and by a negative capacitance =− ⁄ , where = ( )⁄ . The negative capacitance −C  eliminates the 

positive capacitance effect of the piezoelectric patches. The parallel RLC elements can 

then re-defined into equivalent mechanical elements noting that  

 

 − = − = − j + − j , (B.103) 

 

where = − ∗ ∗
∗ =  and − ∗ ∗ = . As shown in 

Figure B.10 (a), the three terms which characterise Eq. (B.102) correspond to a negative 

stiffness − , an “harvesting damper”  and a negative inerter −  [234]. It is 

interesting to note that the negative harvesting inductance = − ⁄  produces a 

relative inductive effect, which results into a relative negative inertia effect between 

the base and seismic elements of the transducer. As presented and discussed by Smith 

[234], this effect can be modelled with an inerter mechanical element, which is 

represented by the square box in Figure B.10 (a). At this point, assuming the harvester 

undergoes a base velocity , the following equation of motion can be derived for the 

seismic mass : 

 

 
= − ( − ) + ( − ) + ( − )− 2 ( − ), (B.104) 
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such that  

 

 = + 22 . (B.105) 

 

The time averaged power harvested by the “harvesting damper”  at each frequency 

is given by:  

 

 | = 12 | − | , (B.106) 

 

which, after substitution of Eq.(B.105), results in the same expression as in Eq.(B.101), 

derived for the maximum power that can be harvested at each frequency: 

 

 | =  18 | | . (B.107) 

 

Thus in conclusion, to properly model the response and energy harvesting of a 

seismic (and reactive) piezoelectric harvester, it is necessary to account for the 

dielectric losses that occur in the piezoelectric patches of the harvester. 
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C  
R E A C T I V E  T R A N S D U C E R  

In this chapter the fundamental constitutive equations for the reactive coil–magnet 

and symmetric piezoelectric energy harvester shown respectively in Plots (a, b) of 

Figure 3.1 are presented. 

 

C.1  ELECTROMAGNETIC TRANSDUCER: CONSTITUTIVE EQUATIONS 

 

Considering the schematic in Figure 3.1 (a), application of Newton’s law of motion to 

the base mass gives:   

 

 = − + + + , (C.1) 

 

where  is the external force applied at the base of the transducer and  is the mass 

of the base magnetic element, which is fixed on the vibrating source. Also,  is the 

equivalent axial stiffness of the top and bottom spiral springs that, as shown in Figure 

3.1, connect the outer yoke and coil assembly to the inner magnetic element. Finally, 

 is the sum of two terms: 1) the coefficients for the inner viscous damping effect 

that develops in the air gap between the coil and the magnetic element and 2) the 

eddy current damping generated in the inner Yoke. The sky-hook viscous damping 

generated by the outer air loading on the moving yoke-coil assembly was found 

comparatively smaller and thus has been neglected in this model.   

The electrical response of the coil can be straightforwardly derived by applying 

Kirchhoff’s laws to the electric mesh depicted in the scheme of Figure 3.1 (a), which 

gives:  

 

 = + + , (C.2) 
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where  and  are respectively the electric resistance and the lossless inductance of 

the coil (the scheme considers the lossy inductance , which has been investigated 

in Section 2 and Appendix A). Assuming time harmonic functions, after some 

mathematical manipulations, the two Eqs.(C.1), (C.2) give the following two 

constitutive equations for the reactive coil–magnet transducer: 

 

 = j + j + +  , (C.3) 

 = −  + + j . (C.4) 

 

As discussed in Appendix A, if the eddy currents that develop in the coil wire of the 

electromagnetic harvester are considered, the response of the coil element is modelled 

as a lossy inductor having complex inductance ( ) ( Eq.(A.109) ), which, used in 

the constitutive Eqs.(C.3), (C.4) gives: 

 

 = j + j + +  , (C.5) 

 = −  + + j . (C.6) 

 

 

C.2  PIEZOELECTRIC TRANSDUCER:  CONSTITUTIVE EQUATIONS 

Following the procedure described in Eq.(A.1) and considering the schematic in 

Figure 3.1 (b), application of the Newton’s law of motion to a generic infinitesimal 

segment of the beam results (see Eq.(B.48)): 

 ∂ ( , )∂ + ∂ ( , )∂ − Θ ( ) d ( )d − d ( − )d = 0, (C.7) 

 

where  is the mass per unit length of the beam laminate, Θ  is the coupling term 

for the piezoelectric layers connected in parallel,  is the bending stiffness of the 

composite beam,  is the voltage drop across the electric terminals and  ( , ) is the 

transverse displacement of the beam mid–plane relative to its fixed end. 

If a point force of amplitude  is applied to the base mass of the bimorph 

cantilever beam shown in Figure 3.1 (b), the governing Eq.(C.7) becomes: 
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∂ ( , )∂ + ∂ ( , )∂ − Θ ( ) d ( )d − d ( − )d = ( ) ( − ). (C.8) 

 

Also, with reference to Eq.(B.62), the governing electrical circuit equation of the 

bimorph configurations for the parallel connection of the two piezoelectric layers can 

be expressed as: 

 

 ( ) = 2ℎ ̅ ∂ ( , )∂ ∂ dx + 2 ̅ ℎ , (C.9) 

 

where ̅  is the piezoelectric stress/charge constant , ̅  is the permittivity of the 

piezoelectric material in transverse direction under constant strain,  is the width of 

the beam. The transverse response relative to the fixed end of the bimorph cantilever 

is formulated in terms of convergent series of eigenfunctions: 

 

 ( , ) = ( ) ( ). (C.10) 

 

Substituting this expression into Eqs.(C.8), (C.9), integrating along the length of the 

beam and applying the boundary conditions of Eqs. (B.11)-(B.14) for the undamped 

problem, the mechanical and electrical constitutive equations become: 

 

 ( ) + 2 ( ) + ( ) − Π ( ) = ℎ( ) ( ), (C.11) 

 ( ) = Π q ( ) + ( ). (C.12) 

 

Here Π = ̅ ℎ + ℎ ( ) and = (1 − ), where = 2  is the 

capacitance of the two piezoelectric layers under constant stress, i.e. = 0 and  is 

the electromechanical coupling factor. 

In analogy to Appendix B, the flexural response of the laminate beam with tip mass 

can be derived by taking into account the contribution of the first bending natural 

mode only. Thus, setting ( , ) = ( ) ( ) and expressing the generalised 

coordinate ( ) as ( ) = ( , ) ( )⁄ , Eqs.(C.11), (C.12) can be rewritten as 

follows: 

 

( ) ( , ) + 2( ) ( , ) + ( ) ( , ) − Π( ) ( ) = ( )( ), (C.13) 
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( ) = Π( ) ( , ) + ( ). (C.14) 

 

Considering the free end of the bimorph beam = , Eqs.(C.13), (C.14) can be 

rewritten in terms of a lumped parameter schematic model as shown in the schematic 

(d) of Figure 3.1: 

 

 ( ) = −  ( ) −  ( ) + ( ) + ℎ( ), (C.15) ( ) =  ( ) + ( ). (C.16) 

 

Here  ( ) = ( , ) and ( ) are respectively the absolute displacement and the 

external point force in correspondence of the free end of the bimorph cantilever beam. 

Also, , , ,  are respectively the equivalent reactive mass, the equivalent 

viscous-elastic damping factor, the equivalent beam flexural stiffness ( for the short 

circuit configuration) and the equivalent piezoelectric transduction factor, which are 

given by the following expressions: 

 

= ( ) ,    = ( )  ,    = ( )  ,    = ̅ ℎ + ℎ ( )( ).  (C.17a-d) 

 

Now, assuming time harmonic functions, after some mathematical manipulations of 

Eqs.(C.15), (C.16), the following two constitutive equations for the reactive 

piezoelectric transducer are derived: 

 

 = j + + Δj + − j  , (C.18) 

 = − j  + 1j . (C.19) 

 

Here Δ = , where = ( )( ̅)  represents the additional 

equivalent bending stiffness effect produced when the electrodes are in open circuit. 

If the dielectric losses characterising the piezoelectric material are taken into account, 

thus the capacitance of the piezoelectric layers is rewritten as a complex term =(1 − ) with = C (1 − j ) and = (1 − j )⁄  where  the dielectric 

loss factor (see Appendix B.1), Eqs.(C.18), (C.19) become: 
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 = j + + Δj + − j  , (C.20) 

 = − j  + 1j , (C.21) 

 

where Δ =  . 
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D  
S C A L I N G  O F  P H Y S I C A L  P A R A M E T E R S   

 

D.1  FREQUENCY OF MAXIMUM POWER TRANSFER 

This section shows that, assuming the optimal complex electrical load is 

implemented, for lightly damped transducers, the optimal frequency of operation of 

the two harvesters that maximises the power harvested coincides to their mechanical 

natural frequency, i.e. = = ⁄ . To this end, a closed form analytical 

solution can be obtained only in the optimal complex electric load case. Thus a 

numerical approach should be implemented for the case where the optimal load is 

purely real. Nevertheless, such numerical study has confirmed the result obtained for 

the real complex load. 

 

D.1.1 Electromagnetic transducer 

Considering harmonic vibrations, as derived in Eq.(2.33), when the optimal reactive 

impedance = ∗  is implemented, the frequency dependent harvested power is 

equal to: 

 

 = 18 | | | | . (D.1) 

 

This expression can be rewritten with respect the transduction and electrical FRFs  

and : 

 

 = 18 ( − ) + ( + ) | | . (D.2) 
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The effects of the coil loss inductance is not considered since it is assumed that in the 

frequency range where the device operates this phenomenon is negligible.  

Setting = 0 gives: 

 

 8 3 ( − ) + ( + ) − 4 ( − ) + 2 ( + )( − ) + ( + )= 0. (D.3) 

 

After some mathematical manipulations, this equation is verified setting: 

 

 + 2 ( (1 − 2 ) + 2 ) − 3 = 0, (D.4) 

 

where =  and = 2⁄  are the mechanical natural frequency and 

damping ratio of a classical mass spring damper model. 

For damping ratio   lower than 1 2⁄   the terms containing the second order  can 

be neglected and Eq.(D.4) becomes approximately equal to:  

 

 + (2 ) − 3 = 0. (D.5) 

 

Solving Eq.(D.5) with respect to frequency, the only physically meaningful solution 

is: 

 

 | = = . (D.6) 

 

D.1.2 Piezoelectric transducer  

Considering now the piezoelectric harvester, the time-averaged power harvested 

with the optimal complex electric load is given by (Eq.(4.45)): 

 

 = 18 | |Re | | . (D.7) 

 

Using the FRFs of  and , this equation can be rearranged  as follows: 
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 = 18 ( )( − ) + + | | . (D.8) 

 

Setting = 0 gives: 

 

 4 ( − ) + + − 4 ( − ) + 2 + 2( − ) + + = 0, (D.9) 

 

where = 1⁄  is the inverse of the piezoelectric time constant, which depends from 

the dielectric loss = ≜  . 

Dividing Eq.(D.9) by 4  (Ip. ≠ 0 ) and rearranging the terms in the 

numerator, it follows: 

 

 − (1 − 2 ) + = 0, (D.10) 

 

where =  and = 2⁄  for definition. 

For damping ratio   lower than 1 2⁄  , the terms containing the second order  can 

be neglected and thus  Eq.(D.10) becomes approximately equal to: 

 

   − + = 0. (D.11) 

 

Since the term  is two order of magnitude lower respect to  the equation 

can be reduced as: 

 

 − + = 0. (D.12) 

 

Thus solving Eq.(D.12), the only physically meaningful solution results: 

 

 | = = . (D.13) 
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D.2  COUPLING COEFFICIENTS  

 

For frequencies close to the fundamental natural frequency of the transducer, the 

three non-dimensional coupling coefficients ,  and  give approximately a 

measure of how the mechanical impedances of the transducers are influenced  by 

their electro-mechanical and piezoelectric additional transduction effects, when the 

devices are short circuited and open circuited respectively. 

 

D.2.1 Electromagnetic harvester  

Assuming harmonic vibration at the base of the transducer, two equations are 

necessary to characterise the behaviour of the device: 

 

 = − − + ℎ, (D.14) 

 ℎ = + ℎ + ℎ. (D.15) 

 

Assuming external base force excitation = − , the mechanical impedance of 

the harvester in open-circuit configuration ( = 0) results: 

 

 ℎ = − = + + , (D.16) 

 

which, in correspondence of the mechanical natural frequency , becomes: 

 

 ℎ | = = − = = . (D.17) 

 

For the short-circuit configuration ( = 0), the mechanical impedance becomes: 

 

 ℎ = − = + + + 2
+ , (D.18) 

 

which, in correspondence of the mechanical natural frequency, becomes: 
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 ℎ | = = − = = + 2
+ . (D.19) 

 

The ratio of the short-circuit mechanical impedance to the open circuit mechanical 

impedance gives: 

 

 

ℎ
ℎ = = + 2+ = 1 + 2( + )

= 1 + 2(1 + ⁄ ). 
(D.20) 

 

If the mechanical natural frequency = ⁄  of the transducer is lower 

compared to the cut off frequency ≜ ⁄  of the transducer electric mesh, the 

effect of the inductance can be neglected and thus Eq.(D.20) can be approximated with 

the following expression: 

 

 
ℎ
ℎ = ≅ 1 + 2 ≜ 1 + . (D.21) 

 

In the opposite case, where only the effect of the inductance is relevant, Eq.(D.20) can 

be rearranged as follows: 

 

 ≅ 1 − j ≜ 1 − j . (D.22) 

 

D.2.2 Piezoelectric harvester  

Assuming harmonic base vibrations, the two equations that characterise the 

behaviour of an ideal piezoelectric seismic transducer are:  

 

 = − − − + ℎ, (D.23) 

 = + . (D.24) 
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The mechanical impedance under base force excitation = −  and short-

circuited terminals ( = 0) results: 

 

 ℎ = − = + + + , (D.25) 

 

which, in correspondence of the mechanical natural frequency  of the transducer  

becomes : 

 

 ℎ | = = − = = + . (D.26) 

 

The mechanical impedance in open-circuited configuration ( = 0) results: 

 

 ℎ = − = + + + + 2 , (D.27) 

 

which, calculated for frequencies equal to the mechanical natural frequency becomes: 

 

 ℎ = − = = + + 2 . (D.28) 

 

Thus the ratio of the open circuit mechanical impedance to short circuit mechanical 

impedance is given by: 

 

 ℎ
ℎ = = + + 2

+ = 1 − 2
( + ) ≜ 1 − . (D.29) 
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D.3  SCALING PHYSICAL PARAMETERS  

 

Considering Ref. [235], this chapter introduces and reviews the basic scaling laws for 

the mechanical and electric parameters that characterise the electromagnetic and 

piezoelectric harvesters considered in this study. 

D.3.1 Mechanical parameters 

Based on the theory of stress in solids, normally constant mechanical stress is 

assumed, which under linear theory and constant material properties implies 

constant deformation. From this, it follows that the force exerted on the material 

simply scales as: 

 

   ∝ area ∝ . (D.30) 

 

Based on the assumption of constant material density, the mass scales with the 

volume: 

 

   ∝ ∝ . (D.31) 

 

Both shear and normal stiffness depend on area and length, thus scales as: 

 

   ℎ  ∝ ℎ ∝ , (D.32) 

    ∝ ℎ ∝ . (D.33) 

 

Alternatively, the bending stiffness of a circular rod or a rectangular beam scales as: 

 

     ∝ ℎ ∝ ℎ ∗ ℎ ℎ ∝ , (D.34) 

 

denoting the same linear behaviour. 

Moving to the dynamic properties of mechanical systems, the scaling property of 

distributed flexible system, can be redirected to the scaling of wave propagation [226]. 

For simplicity, the wave propagation due to longitudinal or transverse vibrating 
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strings or rods is considered, which, are characterised by propagation velocity =  

and =  respectively, where  and  are the axial and shear moduli of elasticity 

and  is the material density. For these wave-types, the vibrational frequencies scale 

with the following law: 

 

   ∝  ℎ ∝ . (D.35) 

 

Normal vibrational modes can also be described in terms of mass and stiffness modal 

parameters such that the natural frequency scales: 

 

   ∝ ∝ , (D.36) 

 

thus, describing the same scaling relationship as for the wave propagation. 

 

D.3.2 Electrical parameters  

Moving to the scaling of the electric parameters, it is convenient to assume that the 

electrostatic field strength  is indipendent from the dimension. Under this 

assumption, the scaling results obtained above continue to hold also for 

electromechanical systems. Under this assumption, the electric voltage scales as: 

 

 ∝   ℎ ∗ ℎ ∝ . (D.37) 

 

Assuming a constant electric resistivity, from the Ampere’s law it follows: 

 

 ∝ ℎ ∝ , (D.38) 

 

from which: 

 

 ℎ  ∝  ∝ , (D.39) 
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and thus constant current density. From the definition of electrostatic energy: 

 

  ∝ ∗  ∝ , (D.40) 

  

which yields an expression for the scaling of capacitance: 

 

 ∝   ∝ . (D.41) 

 

Under the assumption of constant current density, the magnetic field generated by 

the current flowing through a conductor is derived from the Biot – Savart law, such 

that: 

 

  ∝  ∝ , (D.42) 

 

while the corresponding magnetic field energy is: 

 

  ∝ ∗ (  ) ∝ . (D.43) 

 

Finally, the scaling of a lumped inductance element can be found from its storage 

magnetic energy: 

 

 ∝   ∝ . (D.44) 

 

 

D.4  ELECTROMAGNETIC HARVESTER – SCALING LAWS  

 

D.4.1 Couette film damping  

The scaling laws for the moving mass  and the helical spring stiffness  of the 

electromagnetic harvester can be derived from [190] and scales respectively as  

and . More complicated is the derivation of the scaling behaviour for the damping 

term  since the dissipation effect depends on several phenomena. For example [204] 
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suggests that the dissipative effect is produced by the squeeze film generated between 

the central hole of the housing ring and the stinger, concluding that  is directly 

proportional to their linear dimension ∝ . In this case, it was assumed that the 

magnitude of the air damping exceed the structural damping of the suspension 

system. 

A different approach is proposed by Elliott et al. [203], where comparing the non-

dimensional coupling factor: 

 

 C = , (D.45) 

 

of a large number of electromagnetic transducers with respect their size concludes 

that the damping  scales as the square power of the dimension 

 

 ∝ , (D.46) 

 

under the assumption that the transduction coefficient  and the electrical 

resistance of the coil  scales respectively proportional and inversely proportional  

to the dimension . 

In fact, as already described in Chapter 4 the electric resistance  of a cylindrical 

shaped conductor (i.e. wire) can be described by the following equation [203]: 

 

 = , (D.47) 

 

where  is the resistivity of the material and is independent from the size,  is the 

length of the wire and  is the cross sectional area of the wire too . Thus  clearly 

scales as . In addition, the transduction coefficient  = , defined as the 

product between the magnetic flux density  (independent from the size of the 

device) and the length of the wire gives a proportional scaling law ∝ . 

Considering experimental data, Elliott and Zilletti [203] found that C  scales 

approximately linearly with the dimension, so C ∝ . The scaling behaviour of 

 is thus obtained indirectly from such measures. In this case a non well-defined 

damping phenomenon is studied but a generic damping effect which may include 

many dissipative aspects is considered. 
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In addition, two other important damping effects may play an important role in 

the dissipative mechanism of electromagnetic transducers: 1) the Couette film 

damping generated through the air gap between the magnet and the internal surface 

of the housing yoke and 2) the eddy currents generated in the cylindrical ring of the 

device, caused by the interaction between the moving magnet and the conductor 

material. 

Let’s consider at first the Couette film damping effect. As pointed in Ref. [202], a 

Newtonian viscous fluid (air) moving between two surfaces in relative motion is 

subject to a constant stress  and undergoes a Couette Flow with a linear velocity 

profile. 

 

 

Figure D.1: Couette film damping. 

 

Let’s consider two rigid plates of surface area , separated by an air gap h. Also, let’s 

assume that one plate is free to move relatively to the other along the axial direction 

. In this case the constant shear stress  is proportional to the velocity gradient ⁄  : 

 

 = ≅ , (D.48) 

 

where  is a property of the fluid called coefficient of viscosity [202]. Thus, it follows 

that the friction force  acting on the moving plate is: 

 

 = . (D.49) 

 

So substituting Eq.(D.48) into Eq.(D.49) gives:  

 

 = , (D.50) 
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and rearranging the terms in compact form: 

 

 = . (D.51) 

 

Since the velocity gradient is inversely proportional to the size and the surface area is 

proportional to the square of the dimension it results: 

 

 = ∝ . (D.52) 

 

A similar result can be obtained for the coil magnet transducer, where the magnet 

and external ring are separated by a small air gap and move relative to each other. 

This result shows that Couette and Squeeze film damping scales in the same manner 

(i.e. linear to the dimension size). 

 

D.4.2 Eddy currents  

Numerical simulations have been performed in order to evaluate how the damping 

coefficient  scales with reference to the device characteristic dimension (i.e. ). 

The result shows that the radial magnetic field density  generated by the permanent 

magnet does not increase in value with the dimension of the device, provided the 

magnet maintains the same aspect ratio; i.e. the magnitude of the field remains 

constant while the field gradient ∇  increase if the dimension is reduced ([206], 

[207]). As a result, considering Eq.(A.106), it is straightforward to verify that  scales 

with the volume of the transducer ant thus as the cube of the characteristic length (i.e. 

[ ). 

However taking into account the results of Appendix A.2.1, the presence of a 

diffusion phenomenon, due to the interaction of the eddy currents with the magnetic 

field density of the permanent magnet, produces a reduction in the distribution of the 

current density along the radial direction of the conducting housing Yoke cylinder. 

In this case, Eq.(A.106) can be rearranged changing the limits of integration  ,   

as follows: 
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   =  2 σ ( , ) d  dz, (D.53) 

 

where  is the skin depth defined in Eq.(A.57). If the electromagnetic harvester works 

close to its natural frequency  the skin depth can be specified as ≜ . This 

implies that  scales as .  (μ  and σ  are properties of the material and ω  scales 

proportional to ) and thus the damping coefficient  tends to vary as .  and 

not as the cube of the dimension. 

 

D.4.3 Inductance 

The only fundamental parameter that remains to be investigated to characterise the 

scaling behaviour of the electromagnetic power harvester studied in this thesis is the 

electrical inductance  of the coil: 

 

 ≜ ∅, (D.54) 

 

which is derived above as the quotient between the flux ∅ generated by the current  

which flows through the wire of the coil and the current . Recalling that the axial 

magnetic flux density generated by the current  of a generic voice coil of N turns, 

length  and radius  can be defined as =  and the auto-flux generated inside 

the coil is  ∅ = , Eq.(D.54) can be rewritten as: 

 

 ≜ . (D.55) 

 

Since the magnetic permeability  is a constant property of the material and 

assuming that the number  of the coil turns does not vary with the dimension, it 

follows that the inductance varies linearly with the dimension size of the transducer 

i.e. ∝ . 
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D.5  PIEZOELECTRIC HARVESTER  

 

D.5.1 Mass 

Considering the piezoelectric harvester shown in Figure 4.2 , the scaling law of the 

equivalent moving mass  derived in Section B.1.4 can be obtained as follows. 

The first flexural natural mode of the clamped composite beam with tip mass and the 

corresponding first natural frequency are given from Eqs.(B.32),(B.33): 

 

 
( ) = − ℎ

+ − ℎ , (D.56) 

 = , (D.57) 

 

where ( ) =  and = +  is the 

bending stiffness of the composite beam with Y the Young’s module and  the 

composite beam cross section second moment of inertia about the transverse axis y . 

Also  is the mass per unit of length ,  is the tip mass clamped at the end of the 

beam and   is the 1-th eigenfunction. Finally  is the arbitrary constant of the first 

mode while  is the 1-th eigenvalue derived from the root of the characteristic 

equation of the eigenvalue problem: 

 

 1 + (  ) ℎ(  ) +  (  ) ℎ(  ) − (  ) ℎ(  ) = 0. (D.58) 

 

Since the product   ∝ =  doesn’t scale with the size of the beam, Eq. (D.58) 

doesn’t scale with the dimension an thus it is straightforward to verify that  is 

independent of the size of the harvester. Neglecting the rotational inertia of the tip 

mass clamped at the end, the orthonormality relation of the eigenfunctions gives: 
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   + ( ) ( ) = , (D.59) 

 

where for simplicity, it is assumed that the arbitrary constant  for the 1-th mode is 

equal to = 1. In fact the term  is the modal mass related to the first mode of the 

beam. It should be noted that in this study the mass normalization for the flexural 

natural mode is assumed i.e. = 1. 

As shown in Appendix B.1, the equivalent physical seismic mass  in the lumped 

model can be derived as the quotient between the modal mass  and the square of 

the first eigenfunction : 

 

 = ( ̅), (D.60) 

 

where ̅ is a specific coordinate along the length  of the beam. Since the natural 

mode ( ) is independent from the size and , ,  scales respectively as , , , it 
follows that the modal mass scales as ∝  and thus: 

 

 ∝ = . (D.61) 

 

D.5.2 Natural frequency  

From the eigenvalue problem, the relation between the fundamental natural 

frequency  of the 1-st eigenfunction and the first eigenvalue  is taken from 

Eq.(B.32): 

 

 = . (D.62) 

 

Since  is independent from the size and the bending stiffness , the mass  and the 

length  of the composite beam scales respectively as , , , it follows that the first 

natural frequency related to the first natural mode scales as: 

 



 
 

220 

 ∝ = , (D.63) 

 

D.5.3 Stiffness  

As derived in Eq.(B.78), the equivalent beam flexural stiffness  calculated when the 

electrodes are short circuited is given by: 

 

 = ( ̅). (D.64) 

 

Using the results obtained above, the flexural stiffness of the cantilever beam scales 

as: 

 

 ∝ = . (D.65) 

 

The fundamental natural frequency  of the equivalent piezoelectric lumped model 

shown in Figure 4.2 can be defined also in terms of its lumped parameters stiffness 

and mass so that = ⁄ = , which clearly identify the same scaling 

relationship in terms of the first modal frequency. 

 

D.5.4 Transduction coefficient  

As found in Eq.(B.78), the piezoelectric transduction coefficient of the composite beam 

can be defined as follows: 

 

 = ̅ ℎ + ℎ ( )( ̅), (D.66) 

 

where ̅ ≜  is the piezoelectric stress/charge constant for the uniaxial normal 

stress field in the beam under a constant electric filed  ,  is the width of the beam 

and ℎ , ℎ  are the thicknesses of the substrate and piezoelectric layers respectively. 

Finally ( ) is the first derivative of the 1-th mode calculated at the tip of the beam: 
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 ( ) = ( ) = − ( ) − ℎ( ) + ( ) − ℎ( ) . (D.67) 

 

Since  is a constant (set equal to 1),  is size independent and  varies linearly with 

the dimension, as a result ( ) scales as  and thus the transduction coefficient 

 scales as : 

 

 ∝ = . (D.68) 

 

D.5.5 Material damping   

The lumped constitutive equation of the harvester is obtained starting from the Euler 

Bernoulli beam Equation, which, as shown in Ref. [228], can be combined with two 

physical damping models, compatible with the modal model. The modal damping 

operators considered in this study are the viscous air damping: 

 

 ℒ =  , (D.69) 

 

and the Kelvin Voigt damping : 

 

 ℒ = . (D.70) 

 

In these expressions, , ,  are respectively the air damping factor, the cross section 

moment of area and the strain rate damping coefficient.  

Recalling the Newton’s law of motion for a generic infinitesimal segment of the 

beam under an imposed steady state base displacement  presented in Section B, 

which includes the two beam damping mechanisms: 

 

 

∂ ( , )∂ + ∂ ( , )∂ ∂ + ∂ ( , )∂t + ∂ ( , )∂
= − + ( − ) d ( )d − d ( )dt , (D.71) 

 

and applying the modal analysis: 
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( ) + 2 ( ) + ( ) − Π ( )
= − ( ) ( ) + ( ) , (D.72) 

 

results the relation between the damping ration  and the two damping operators is:  

 

 + = 2 , (D.73) 

 

where  is the first eigenvalue and ω  is the first natural frequency. The first modal 

damping ratio can thus be expressed as: 

 

 2 + 2 = , (D.74) 

 

indicating that the effect of air damping is inversely proportional to the natural 

frequency mode. This agrees with the physical intuition that higher order modes are 

less effective in displacing air. On the contrary, material damping increases for higher 

order modes. 

The linear viscous external damping and KV internal damping models can be 

conveniently adopted in modal models for the beam response. However, since the 

origin of the coefficients  and  cannot be well identified and different possible 

choices of the operators ℒ  and ℒ  can be selected for convenience, the nature of the 

scaling damping mechanism must be investigated separately in order to obtain 

results closer to the experiments. In order to identify the correct damping scale law, a 

review of the most used damping models is presented below. 

One of the first attempts to generalize the equations of the classical elasticity theory 

was made by Kevin-Voigt, assuming that the tensile stress  and strain  are related 

to the equation: 

 

 = + ∗ , (D.75) 

 

where , ∗ are viscous elastic material constants. In order to introduce the viscous 

damping parameter, the energy dissipation method is adopted in Ref. [236], so 

assuming a tonal a excitation ε(t) = ε sin( ), the energy loss per cycle is : 
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 = ( + ∗ ) = ∗/ . (D.76) 

 

As discussed in Ref. [237], a variety of expressions for the maximum energy stored 

for a dynamic steady state excitation could be chosen. In the case of maximum 

deformation per cyclic response, the following definition is used: 

 

 =  = 12 . (D.77) 

 

The loss factor  for a KV material is then defined as follows [237], [238]: 

 

 ≜ 2 = ∗12 2 = ∗ , (D.78) 

 

which can be interpreted as the energy loss per radiant 2π⁄  divided to the 

maximum energy available W. This parameter is one of the most commonly measure 

of damping used in dynamical analysis [236]. In the frequency domain, Eq.(D.75) can 

be rearranged as: 

 

 = + ∗ = 1 + ∗ ≜ (1 + ) . (D.79) 

 

This model is analogue to an ideal elastic spring  in parallel with an ideal dashpot  

that acts as a linear viscous damper: 

 

 = + = 1 + ≜ 1 + ( ) . (D.80) 

 

Actually, Eq.(D.80) does not match with real cases, since a solid subjected to an 

oscillating stress has not a linear frequency dependence ( ) [236]. 

Another simple model, usually used in dynamic analysis, is the Kimball Lovell 

model, valid only in the frequency domain: 

 

 = + ∗ = 1 + ∗ ≜ (1 + ) . (D.81) 
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This expression is composed by a complex Young module, which represent the fact 

that the equilibrium response of the material is not instantaneous. In this case the 

measure of damping is derived by the tangent of the loss angle tan , identified by 

the material properties alone. This model simply consists of a spring characterised by 

a complex term: 

 

 = + ∗ = 1 + ∗ ≜ (1 + ) . (D.82) 

 

These two simple viscous loss models, which are usually adopted in reality are too 

simple to accurately replicate the behaviour of metals and other material solids. 

Boltzman [239] introduced the concept of memory mechanism defining that the 

effects of an applied stress on the material depends not only on the stress at a 

particular instant but also on the stresses applied at any prior instant of time. This 

mechanism is mathematically explained by a convolution expression between the 

first order derivative of the strain  and a memory function : 

 

 ( ) = ( − ) . (D.83) 

 

Since  is defined to be zero if ( − ) > 0, Eq.(D.83), can be integrated from minus 

infinity to the generic time : 

 

 ( ) = ( − ) . (D.84) 

 

A partial integration of Eq.(D.84) gives: 

 

 ( ) = ( − ) ( ) + ( − ) = (0) ( ) + ( − ) ( ) , (D.85) 

 

where (−∞) tends to be zero, ( ) ≜ ⁄  and, as defined in Ref. [239], is found 

experimentally to be a negative and monotonically increasing function of time.   

As first approximation, a generic memory function and its first derivative can be 

written as [239]: 

 

 ( ) = + ,    ( ) =  − , (D.86) 
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where ,  and  are real and positive. Substituting Eq.(D.86) into Eq.(D.85) gives: 

 

 ( ) = (0) ( )− ( ) . (D.87) 

 

Also, its derivative results: 

 

 = (0) + 12 1 − 1 1 ( )−∞ − 1 1 ( ), (D.88) 

 

where (0) = + . Multiplying Eq.(D.87) by  and adding to Eq.(D.88) follows:  

 

 1 ( ) + = 1 (0)− 1 1 ( ) + (0) , (D.89) 

 

which can be rewritten as: 

 

 + ∗ = + ∗ , (D.90) 

 

where ∗ ≜ ( + )⁄  and ∗ ≜ 1⁄  can be defined as material constants. 

Eq.(D.90) is known as standard linear solid model and was introduced by Zener and 

applied to estimate the damping for the fundamental mode of a uniform cantilever 

beam [240], [241]. Note that Eq.(D.90) includes the Voigt model as special case ( ∗ =0). The terms in Eq.(D.90) can be rearranged as: 

 

 + = ( + ), (D.91) 

 

where ,  are respectively the time of relaxation under condition of constant strain 

and  stress while the relaxed elastic moduly = ⁄  is the final value of the ration of 

stress to strain when all relaxation has occurred ( , = 0) [242]. 

Another important quantity can be introduced considering that in a very short 

time ∆  the stress receives a finite increment ∆ . Integrating both sides of Eq. (D.91) 

in the time interval ∆ , the quantities  and  tends to zero and thus: 
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 ∆ = ∆ . (D.92) 

 

It follows that: 

 

 
∆∆ = ≜ . (D.93) 

 

The term  is called “unrelaxed elastic moduly” [242] and gives the relation between 

stress and strain when no relaxation has time to effect. The deviation between  and 

 from unity gives the effects of the relaxation phenomena. Solving Eq.(D.91) by 

using the complex response method gives: 

 

   ( )( ) = 1 +1 + . (D.94) 

 

Rearranging the formula in terms of the real and imaginary part: 

 

 
( )( ) = 1 +1 + ( ) + −1 + ( )  , (D.95) 

 

and factoring by extracting the real factor it follows: 

 

 
( )( ) = 1 +1 + ( ) 1 + ( − )1 + . (D.96) 

 

The complex term in the brackets identifies the loss factor for the Zener model: 

 

 ( ) = ( − )1 +  . (D.97) 

 

Defining =  and = , Eq.(D.97) can be rearranged as follows: 

 

 = − 1 + ( ) . (D.98) 

 

Eq.(D.98) can be specified for a cantilever beam [240], [241]: 
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 =  1 + ( )  , (D.99) 

 

where , , ,  are respectively the thermal coefficient, modulus of elasticity, absolute 

temperature, specific heat per unit of volume of the beam and: 

 

 = ℎ  , (D.100) 

 

where ℎ,  are the beam thickness and thermal conductivity respectively. Eq.(D.99) 

describes a loss mechanism due to heat, which flows from the warmed compressed 

fiber to the cooled tension fiber of the beam [240], [241]. It should be noted that in this 

model the damping loss factor  is maximum in correspondence of the relaxation 

frequency = 1⁄  and decreases gradually at both higher and lower frequencies.  

 

 

Figure D.2: Loss factor: Kelvin Voigt Model (dash line), Kimball and Lovell (dash-
dotted line), Zener model (solid line). 

 

Figure D.2 shows the frequency dependence of the loss factor for the three models 

proposed: Kelvin Voigt (KV), Kimball and Lovell (KL), Zener (Z). 

Limiting the analysis to the 1-st natural frequency of the beam , Eq.(D.99) becomes: 

 

   | =  1 + ( )  , (D.101) 
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From Eqs.(D.63), (D.100),  and  scales respectively as  and  and thus from 

Eq. (D.101) the mechanical loss factor scales as: 

 

   | ∝ L1 + L  . (D.102) 

 

Therefore two asymptotic scaling relations can be derived: 

 

   | ∝     for  L → 0 , (D.103) 

   | ∝ 1L    for  L →  ∞ , (D.104) 

 

indicating that the scaling loss should be characterised by a peak, centred at a specific 

dimension of the device. This result was experimentally investigated by Brantley 

[240], who studied how the damping factor of the first natural mode of four clamped 

cantilever beams of different scale varies with respect to their dimension. The 

experimental results, showed that the total damping given by the sum of two loss 

mechanisms, i.e. the structural material hysteresis and the joint damping, is 

essentially inversely proportional to the dimension of the beam: 

 

   | ∝ . (D.105) 

 

Brantley [240] showed a good matching between the experimental results and the 

simulated results derived by Zener, but also clarified that these conclusion are valid 

only in the macro scale:  “the experimental results shown that caution should be used in 

extrapolating damping data obtained in tests of small models system since this estimation 

could lead gross over estimates of damping in the full-scale system” [240]. 

The derivation of the scaling law for the material loss factor of a cantilever beam 

has required the introduction of a loss model (Zener), which is more complex to the 

KV and KL models. In order to reduce the mathematical complexity and tune these 

simple models to experimental results, the following consideration should be made. 

Recalling the loss factor for the KV and KL models, it follows: 

 

   =  , (D.106) 

   = tan = const , (D.107) 
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which, specified in correspondence of the natural frequency  of the piezoelectric 

harvester gives:  

 

 |  = =  , (D.108) 

   | = tan  . (D.109) 

 

 

Figure D.3: Results predicted by Zener theory and experimental validation [240]. 

 

Considering KV and KL models, a dimensional dependent dashpot and loss tangent 

can be defined introducing the experimental loss factor  |  obtained by Brantley: 

 

 |  = =  , (D.110) 

   | = tan  . (D.111) 

 

As a result, the damping factor and loss tangent results: 

 

  =  | ∝ = L , (D.112) 

   tan = | ∝  . (D.113) 

 

Eqs.(D.112), (D.113) represent  the scaling laws of an ideal dashpot and  loss tangent 

for KV and KL models respectively, applied to the first mode of a clamped cantilever 

beam. In terms of their scalability, the choice of the KV or KL damping model  

adopted for the lumped piezoelectric seismic harvester has no effect on the power 
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and efficiency results because their scaling behaviour are the same. In fact, recalling 

the Newton’s law for both the models and assuming a steady state harmonic base 

excitation tuned to the natural frequency  of the seismic transducer, it results: 

 

 = + ∗ = (1 + tan ) , (D.114) 

 = +  , (D.115) 

 

Taking into account the previous scaling results, it is straightforwardly verified that 

both models give the same scaling laws for the elastic and damping terms. 

 

Table D-1: Scaling laws of the elastic and damping forces per unit of base velocity 
imposed 

Model Scaling law (stiffness effect) Scaling law (damping effect) 

KV ⁄ ∝ ⁄ =  ∝  

KL ⁄ ∝ ⁄ =  tan ⁄ ∝ ⁄ =  

 

In conclusion, adopting the viscoelastic model damping of Figure 4.2 for the 

piezoelectric harvester and thus assuming the  KV model for convenience, the 

damping material  scales proportional to the dimension i.e. . 

 

D.5.6 Air damping  

The vibratory response of a mechanical system is dependent on many dissipative 

phenomena, due to internal hysteresis, joint frictions and external air damping. In 

particular as presented in Ref. [208], for a cantilever harvester, air damping may 

significantly exceed the structural damping. As discussed in Ref. [243], two simple 

theoretical equations can be used to describe the interaction between a vibrating 

cantilever beam and the surrounding fluid: 

 

 = ∗ | |, (D.116) 

 

 = , (D.117) 
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where  and  are the drug forces which acts along the beam, w  is the 

instantaneous  velocity at a certain point  of the cantilever and ∗  and  are 

parameters dependent on the beam dimension, frequency of excitation, mode shape, 

etc. Ref. [243] shows that in contrast to the coefficient ∗ , that scales with the area of 

the beam normal to the flows, the dependency of the parameters  is not clearly 

identified. 

An investigation of the free response decay time of a beam system was found by 

Stephens  [208] and a mathematical damping relation in terms of the logarithmic 

decrement  was proposed: 

 

 = 22 / , (D.118) 

 

where , , are the tip mass and the surface area attached at the end of the beam and ρ ,  are respectively  the air density and the amplitude of displacement excitation. 

As described in Ref. [237], the log decrement for a viscous type force of the form         

Eq.(D.117) acting on a lumped mass spring system can be related to the loss factor  

as follows: 

 

 = . (D.119) 

 

This expression denotes the well-known relationship between the measured damping 

parameters under harmonic and transient response [244]. Eq.(D.119) has been 

identified under the hypothesis of low damping effect, i.e. 0 < ≤ 0.9. Thus 

combining Eqs.(D.110), (D.118), (D.119) results: 

 

 = 22 / , (D.120) 

 

where ,  are the flexural stiffness and the first natural frequency of cantilever beam 

respectively. 

From Eqs.(D.63), (D.65), since the surface area  clearly scales as , it follows 

that : 

 

 ∝ LL ≅ . , (D.121) 
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suggesting that the air damping rise to the power of 1.7 . 

 

D.5.7 Piezoelectric Capacitance  

From Appendix B the capacitance of the piezoelectric harvester under constant stress 

and strain can be defined respectively as: 

 

 = 2 ̅ ℎ , (D.122) 

 = (1 − ), (D.123) 

 

where  ≜ ̅ ̅  is the electromechanical coupling factor and , , ℎ  are the 

width, length and thickness of the piezoelectric layer respectively. Since ̅  , ̅ ,  

are constant  properties of the composite layers, it follows that both capacitances scale 

linearly with dimension = ∝ . If the dielectric losses are taken into 

account a complex permittivity is introduced: 

 

 ( ) = ( )(1 − ), (D.124) 

 

where from Appendix B.2: 

 

 ≜ ( ) = + ≜ ( ) + ≅ . (D.125) 

 

Since the scaling of the harvesters is specified for operational frequencies  close to 

the natural frequency  , Eq.(D.125) can be specified as : 

 

 | = . (D.126) 

 

From Eq.(D.126) follows that the loss factor scales inversely to the natural frequency 

of the system and thus proportional to the scale factor  of the harvester: 

 

 | = ∝ 1 = . (D.127) 
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E  
T W O  P O R T  T R A N S D U C E R   

 

E.1  ENERGY TRANSFORMER 

In each system, the concepts of energy flow, storage and dissipation can be defined 

in terms of lumped parameter elements. These elements, usually known as lumped one 

port elements [245], form a set of blocks which are used to model and analyse the 

physical system under study. For an electrical or mechanical domain, three passive 

elements, two of which store energy (capacitance, inductance or spring and mass) and 

one dissipative (resistance or damper) can be defined. In addition, two active source 

elements (voltage and current or force and velocity) can be introduced to model the 

release of energy. These lumped elements are not sufficient to model every physical 

phenomena because the behaviour of many engineering systems are also 

characterised by the transfer and conversion of energy from one physical system to 

another (electrical motors, pumps, etc.). This process of conversion is known as 

transduction process and the elements that convert the energy are defined 

transducers. Some examples are shown in Figure E.1. 

As shown in Figure E.2, the ideal transduction process that distinguish such systems, 

as for example those in Figure E.1, can be represented by a two-port losses element. 

Each port is identified by two variables. Power can flow in either side of the port. 

Usually, regardless of the nature of the variables involved, the modelling of a real 

physical system requires the coupling of such two-port model with one or more one-

port elements, necessary to account for the storage and dissipation phenomena that 

occurs in real transducers. Figure E.3 gives a schematic representation. 
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Figure E.1: Examples of two port transducers within a single energy domain (a, b) 
and between different energy domains (c, d) (from Ref. [245]). 

 

 

Figure E.2: Two port model representation of an ideal transformer. 

 

 

Figure E.3: Two port model representation of a real transformer. 
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E.1.1 Ideal Energy Transformer  

The properties of an ideal transducer, which arise from a reversible linear two-port 

transformer shown in Figure E.2, can be summarised in the following three 

conditions: 

 

1) Linearity: the functional operators ,  , which connect the power variables of the 

two-port element are linear and multiplicative in form. This is manifested by the 

following relation: 

 

 
= ( , ) = + , = ( , ) = + , (E.1) 

 

which can be summarised in the following matrix form: 

 

 = ( ) ( )( ) ( ) . (E.2) 

 

Here, considering the scheme shown in Figure E.2, ,  and ,  are two pairs of 

generic trough and across variables at the ports. 

 

2) Losses: no storage or dissipation phenomena take place in the transduction process. 

 

Considering Figure E.2, the left hand side of the two port element identifies the 

instantaneous power which flows into the port 1, calculated as: 

 

 (t) = . (E.3) 

 

Similarly, a net power into port 2 can be defined as follows: 

 

 (t) = . (E.4) 

 

The losses power condition requires that the sum of the instantaneous power at the 

two ports must be zero: 

 

 (t) + (t) = 0, (E.5) 
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where the power flow is defined to be positive in both ports. 

 

3) Static: the relations between the power variables are constant and time 

independent.  

 

The third condition combined with Eqs.(E.2), (E.4), (E.5) gives: 

 

 + + (1 + + ) = 0. (E.6) 

 

Eq.(E.6) yields only two non-trivial solutions, which are respectively: 

 

 = = 0  ∧   = − 1 , (E.7) 

 = = 0   ∧   = − 1 . (E.8) 

 

It should be noted that the minus sign in both Eqs.(E.7), (E.8) is related to the power 

convention, which is defined positive into both ports of the scheme in Figure E.2. 

Substituting Eq.(E.7) into Eq.(E.6) gives the ideal transformer relationship for the two 

port transducer: 

 

 = 00 − 1⁄ . (E.9) 

 

Here =  is defined as transformer ratio. In fact Eq.(E.9) relates the across and 

trough variables of both ports. Similarly, substituting Eq.(E.8) into Eq.(E.6) yields to 

the ideal gyrator relationship for the two port transducer: 

 

 = 0− 1⁄ 0 . (E.10) 

 

Here =  is defined as gyrator modulus. Eq.(E.10) relates the across variable of 

one port to the through variable of the other. Independent of the domain, Eq.(E.9) and 

(E.10) represent the most elementary form of power- continuous two port transducers 

[245]. It is easy to prove that Eqs.(E.9), (E.10) can be specified for the electromagnetic 

and piezoelectric transducer respectively: 

 

 = 0 − 0 , (E.11) 
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 = 0 − 0 . (E.12) 

 

The gyrating constant  and the transformer constant  defined respectively in 

Eq.(E.11) and Eq.(E.12), represent the energy transduction for both actuator and 

generator applications. It is important to stress that the sign convention for the two 

transducers is consistent with the definition of positive power into both ports      

(Figure E.2). Thus adopting a sign convention with electrical power flowing out from 

the transducer as positive and mechanical power flowing into the transducer as 

positive, the non-trivial solutions found in Eqs.(E.7), (E.8) become: 

 

 = = 0  ∧   = 1 , (E.13) 

 = = 0   ∧   = 1 . (E.14) 

 

Thus the relations in Eqs.(E.11), (E.12) turn into: 

 

 = 0 0 , (E.15) 

 = 0 0 . (E.16) 
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F  

E Q U I P M E N T  A N D  E X P E R I M E N T A L  S E T U P   

 

This Appendix shows the experimental setups and lists the equipment used for the 

measurements of the electromagnetic and piezoelectric FRFs. The shaker and the 

transducers used in the tests were excited by a logarithmic sweep signal up to 1 KHz. 

The input voltage signal was fed by amplifiers and kept fixed during all 

measurements. All signals of interest (force, velocity, voltage, current) were acquired 

simultaneously (sampling frequency of 5 KHz) and then processed using the Data 

Physic analyser. The FRFs were obtained calculating the FFT (Fast Fourier Transform) 

of the input and output signals of interest. Also, the input and output channels of the 

Data Physic system were connected to anti-aliasing filters.  

 

 

F.1  EQUIPMENT 

The equipment used in the experimental tests is listed in Table F1. 

 

Table F-1: List of the equipment used in the measurements.  

No. Equipment Manufacturer Model 

1 ICP Impedance head PCB 288D01 

2 Shaker 1 PCB 2004E 

3 Shaker 2 PCB 2075E 

4 Shaker amplifier PCB 2100E21-400 

5 Quad amplifier InterM QD-4480 

6 Signal analyser DP Data Physics Abacus 

7 Current probe Pico Technology TA018 
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F.2  ELECTROMAGNETIC HARVESTER:  EXPERIMENTAL SETUP 

Figure F.1 shows the pictures of the experimental setups used to measure the base 

and electric impedances and the two transduction FRFs. For the base vibration tests, 

as shown in pictures (a b) of Figure F.1, the electromagnetic harvester was mounted 

on a shaker, which provided the base acceleration. The shaker was excited by a 

logarithmic sweep signal up to 1 KHz. This input voltage was generated by the Signal 

Analyser and fed through a power amplifier. For the base impedance FRF tests, the 

PCB impedance head mounted between the harvester and shaker was used to 

measure the base force and acceleration signals. When the voltage per unit velocity 

FRF was considered, the base acceleration and the voltage produced at the terminals 

of the device were measured and sent to the Data Analyser system (Abacus). The 

seismic harvester was kept in open circuit configuration during the two experiments. 

 

 
Figure F.1: Picture of the FRFs test setup: (a, b) , , (c, d) ,  

 

For the blocked base tests, Pictures (c, d) show that the electromagnetic harvester was 

attached to a rigid base and driven with an input voltage signal. The quad amplifier 

was used to drive the electromagnetic harvester with the logarithmic sweep signal 

generated by the Analyser system (Abacus). The PCB impedance head was placed 

between the harvester and the housing frame. For the electric impedance FRF 

measurement, the voltage across the terminals of the transducer and the current, 

which flows through the wire, were measured. For the current driven blocked force 
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FRF, the force exerted to the base and the current circulating in the device were 

aquired. 

 

 

F.3  PIEZOELECTRIC HARVESTER: EXPERIMENTAL SETUP 

Similarly to Figure F.1, Figure F.2 shows the pictures of the experimental setups used 
to measure the base and electric impedances and the two transduction FRFs of the 
piezoelectric transducer. The same equipment and experimental procedure than 
those used for the electromagnetic transducer were used and thus are not described 
in details. 

 

 

Figure F.2: Picture of the FRFs test setup: (a, b) , , (c, d) ,  
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