
Program Comprehension: Identifying Learning Trajectories for
Novice Programmers

Cruz Izu
The University of Adelaide

Adelaide, Australia
cruz.izu@adelaide.edu.au

Carsten Schulte
Paderborn University
Paderborn, Germany

carsten.schulte@uni-paderborn.de

Ashish Aggarwal
University of Florida

Florida, USA
ashishjuit@ufl.edu

Quintin Cutts
University of Glasgow

Glasgow, UK
quintin.cutts@glasgow.ac.uk

Rodrigo Duran
Aalto University
Helsinki, Finland

rodrigo.duran@aalto.fi

Mirela Gutica
British Columbia Institute of

Technology
Burnaby, Canada

mirela_gutica@bcit.ca

Birte Heinemann
Paderborn University
Paderborn, Germany

birte.heinemann@uni-paderborn.de

Eileen Kraemer
Clemson University

Clemson, USA
etkraem@clemson.edu

Violetta Lonati
University of Milan

Milan, Italy
lonati@di.unimi.it

Claudio Mirolo
University of Udine

Udine, Italy
claudio.mirolo@uniud.it

Renske Weeda
Radboud University

Nijmegen, Netherlands
renske.smetsers@science.ru.nl

ABSTRACT
Thisworking group asserts that ProgramComprehension (PC) plays
a critical part in the writing process. For example, this abstract is
written from a basic draft that we have edited and revised until
it clearly presents our idea. Similarly, a program is written in an
incremental manner, with each step being tested, debugged and
extended until the program achieves its goal.

Novice programmers should develop their program comprehen-
sion as they learn to code, so that they are able to read and reason
about code while they are writing it. To foster such competencies
our group has identified two main goals: (1) to collect and define
learning activities that explicitly cover key components of program
comprehension and (2) to define possible learning trajectories that
will guide teachers using those learning activities in their CS0/CS1
or K-12 courses.

We plan to achieve these goals as follows:

Step 1 – Review the current state of research and development by
analyzing literature on classroom activities that improve
program comprehension.

Step 2 – Concurrently, survey lecturers at various institutions on
their use of workshop activities to foster PC.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland UK
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3325531

Step 3 – Use the outputs from both activities to define and con-
ceptualize what is meant by PC in the context of novice
programmers.

Step 4 – Catalog learning activities with regard to their prerequi-
sites, intended learning outcomes and additional special
characteristics.

Step 5 – Catalog learning activities with regard to their prerequi-
sites, intended learning outcomes and additional special
characteristics.

Step 6 – Develop a map of learning activities and thereby also
models of probable learning trajectories.

KEYWORDS
program comprehension; learning trajectories; CS1;

ACM Reference Format:
Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran,
Mirela Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio
Mirolo, and Renske Weeda. 2019. Program Comprehension: Identifying
Learning Trajectories for Novice Programmers. In Innovation and Technology
in Computer Science Education (ITiCSE ’19), July 15–17, 2019, Aberdeen,
Scotland UK. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3304221.3325531

Related Work
Learning to program is not just about mastering the syntax and
semantics of each construct of a programming language. From the
outset, Soloway identified two key issues for learning to program:
the ability to identify chunks (he renamed them plans) and the
understanding of the way "the computer turns a static program
written on a piece of paper into a dynamic entity that exists over

Session 5A: Working Groups Presentation ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

261

https://doi.org/10.1145/3304221.3325531
https://doi.org/10.1145/3304221.3325531
https://doi.org/10.1145/3304221.3325531

time. In this dynamic representation, notions such as the causal
relationship between the statements become very important and
must be used in describing how a program works"[13, p. 854]. The
latter issue is usually referred to in the literature as the notional
machine [2].

Comprehension is usually conceptualized as a process in which
an individual constructs his or her ownmental representation of the
program. Most novice programmer’s misconceptions and logical
errors are caused by poor understanding of that notional machine.
Multiple models of program comprehension have been proposed
in the literature [8, 16]. The 2010 WG report [11] compared and
contrasted the way in which those models conceptualize program
comprehension. Although this comparison was the main focus of
the report, it also provided some insights into learning concepts and
obstacles, effective learning tasks and teaching methods. Thus, this
working group is picking up the baton by planning to collect and
organize learning tasks that will develop program comprehension.

In the last ten years there has been a rising awareness and focus
on program comprehension as part of learning to program. Assess-
ment components have been proposed to include or target some
aspects of program comprehension like reading [1], tracing [7],
explaining [6], or reversing [3, 15]. Sudol et al. [14] vindicates us-
ing code comprehension questions as learning events instead of as
assessment items. On a similar line, [12] selected 14 program com-
prehension tasks and survey practitioners to rank them in terms of
perceived effectiveness in developing the novices’ program com-
prehension.

Learning trajectories (LT) have garnered the attention of math
and science educators [4], because their ability to model how the
student’s thinking about a specific topic evolves over time, and
hence supporting (in the end) research based curriculum develop-
ment. This is possible due to increased empirical knowledge about
this progression - a knowledge currently lacking in computer sci-
ence education. One reason is that there are seldom efforts to collect
and systematize about such progressions in a domain; Rich et al [9]
is an example of such approach in K-6 education.

TheWG aims to extend our practical knowledge in the domain of
program comprehension by collecting instructors’ views of learning
PC. We are therefore building on what Lobato and Walters have
named the hypothetical learning trajectory; because the trajectory
is seen through the eyes of the instructor [4, p. 84]:

the starting point in teacher planning is the creation
of conjectures regarding what students understand
initially and what they may be able to learn next. In-
structional tasks are selected, not only on the basis of
generic task features, such as high cognitive demand
or student interest, but also because of an inferred
quality of being able to engender the next level of
sophistication of student thinking.

The focus on how different tasks organize the thinking process
of learners, and how tasks can and should be ordered to allow
effective learning progressions is what distinguishes our WG from
other approaches that have aimed at collecting useful examples and
tasks (e.g. [10], [5]). In other words, we are not focusing on how
to assess but looking at how to develop program comprehension.
As mentioned before, assessment questions that target program

comprehension can be extended to become learning activities. Thus,
those previous collections of tasks will be analyzed to identify both
tasks that require program comprehension and assessments that
evaluate it.

REFERENCES
[1] Teresa Busjahn and Carsten Schulte. 2013. The Use of Code Reading in Teaching

Programming. In Proceedings of the 13th Koli Calling International Conference on
Computing Education Research (Koli Calling ’13). ACM, New York, NY, USA, 3–11.
https://doi.org/10.1145/2526968.2526969

[2] Benedict du Boulay. 1986. Some Difficulties of Learning to Program. J. of
Educational Comput. Research 2, 1 (1986), 57–73.

[3] Cruz Izu, Claudio Mirolo, and Amali Weerasinghe. 2018. Novice Programmers’
Reasoning About Reversing Conditional Statements. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (SIGCSE ’18). ACM,
New York, USA, 646–651. https://doi.org/10.1145/3159450.3159499

[4] Joanne Lobato and C David Walters. 2017. A Taxonomy of Approaches to Learning
Trajectories and Progressions. NCTM, 74–101.

[5] Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio
Mirolo, Andreas Mühling, Andrew Petersen, Kate Sanders, Simon, and Jacqueline
Whalley. 2017. Developing Assessments to Determine Mastery of Programming
Fundamentals. In Proceedings of the 2017 ITiCSE Conference on Working Group
Reports (ITiCSE-WGR ’17). ACM, New York, NY, USA, 47–69. https://doi.org/10.
1145/3174781.3174784

[6] Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2012. ‘Explain in Plain
English’ Questions: Implications for Teaching. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (SIGCSE ’12). ACM, New
York, USA, 385–390. https://doi.org/10.1145/2157136.2157249

[7] Greg L. Nelson, Benjamin Xie, and Andrew J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research (ICER ’17). ACM, New York, NY, USA, 2–11. https://doi.org/10.1145/
3105726.3106178

[8] Nancy Pennington. 1987. Comprehension Strategies in Programming. In Empiri-
cal Studies of Programmers: Second Workshop, Gary M. Olson, Sylvia Sheppard,
and Elliot Soloway (Eds.). Ablex Publishing Corp., Norwood, NJ, USA, 100–113.

[9] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and
Diana Franklin. 2017. K-8 Learning Trajectories Derived from Research Literature:
Sequence, Repetition, Conditionals. In Proceedings of the 2017 ACM Conference
on International Computing Education Research (ICER ’17). ACM, New York, NY,
USA, 182–190. https://doi.org/10.1145/3105726.3106166

[10] Kate Sanders, Marzieh Ahmadzadeh, Tony Clear, Stephen H. Edwards, Mikey
Goldweber, Chris Johnson, Raymond Lister, Robert McCartney, Elizabeth Patitsas,
and Jaime Spacco. 2013. The Canterbury QuestionBank: Building a Repository
of Multiple-choice CS1 and CS2 Questions. In Proceedings of the ITiCSE Working
Group Reports Conference on Innovation and Technology in Computer Science
Education-working Group Reports (ITiCSE -WGR ’13). ACM, New York, NY, USA,
33–52. https://doi.org/10.1145/2543882.2543885

[11] Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H.
Paterson. 2010. An Introduction to Program Comprehension for Computer
Science Educators. In Proceedings of the 2010 ITiCSE Working Group Reports
(ITiCSE-WGR ’10). ACM, New York, NY, USA, 65–86. https://doi.org/10.1145/
1971681.1971687

[12] A. Shargabi, S. A. Aljunid, M. Annamalai, S. M. Shuhidan, and A. M. Zin. 2015.
Tasks that can improve novices’ program comprehension. In 2015 IEEE Conference
on e-Learning, e-Management and e-Services (IC3e). 32–37. https://doi.org/10.1109/
IC3e.2015.7403482

[13] E. Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850–858. https://doi.org/10.
1145/6592.6594

[14] Leigh Ann Sudol-DeLyser, Mark Stehlik, and Sharon Carver. 2012. Code Com-
prehension Problems As Learning Events. In Proceedings of the 17th ACM Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’12). ACM, New York, NY, USA, 81–86. https://doi.org/10.1145/2325296.2325319

[15] Donna Teague and Raymond Lister. 2014. Programming: Reading, Writing and
Reversing. In Proceedings of the 2014 Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’14). ACM, New York, USA, 285–290.
https://doi.org/10.1145/2591708.2591712

[16] Susan Wiedenbeck and Vennila Ramaligan. 1999. Novice comprehension of small
programs written in the procedural and object-oriented styles. International
Journal of Human-Computer Studies 51, 1 (1999), 71 – 87. https://doi.org/10.1006/
ijhc.1999.0269

Session 5A: Working Groups Presentation ITiCSE ’19, July 15-17, 2019, Aberdeen, Scotland, UK

262

https://doi.org/10.1145/2526968.2526969
https://doi.org/10.1145/3159450.3159499
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/3174781.3174784
https://doi.org/10.1145/2157136.2157249
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/3105726.3106166
https://doi.org/10.1145/2543882.2543885
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1145/1971681.1971687
https://doi.org/10.1109/IC3e.2015.7403482
https://doi.org/10.1109/IC3e.2015.7403482
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/2325296.2325319
https://doi.org/10.1145/2591708.2591712
https://doi.org/10.1006/ijhc.1999.0269
https://doi.org/10.1006/ijhc.1999.0269

	Abstract
	References

