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ABSTRACT
Thisworking group asserts that ProgramComprehension (PC) plays
a critical part in the writing process. For example, this abstract is
written from a basic draft that we have edited and revised until
it clearly presents our idea. Similarly, a program is written in an
incremental manner, with each step being tested, debugged and
extended until the program achieves its goal.

Novice programmers should develop their program comprehen-
sion as they learn to code, so that they are able to read and reason
about code while they are writing it. To foster such competencies
our group has identified two main goals: (1) to collect and define
learning activities that explicitly cover key components of program
comprehension and (2) to define possible learning trajectories that
will guide teachers using those learning activities in their CS0/CS1
or K-12 courses.

We plan to achieve these goals as follows:

Step 1 – Review the current state of research and development by
analyzing literature on classroom activities that improve
program comprehension.

Step 2 – Concurrently, survey lecturers at various institutions on
their use of workshop activities to foster PC.
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Step 3 – Use the outputs from both activities to define and con-
ceptualize what is meant by PC in the context of novice
programmers.

Step 4 – Catalog learning activities with regard to their prerequi-
sites, intended learning outcomes and additional special
characteristics.

Step 5 – Catalog learning activities with regard to their prerequi-
sites, intended learning outcomes and additional special
characteristics.

Step 6 – Develop a map of learning activities and thereby also
models of probable learning trajectories.
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Related Work
Learning to program is not just about mastering the syntax and
semantics of each construct of a programming language. From the
outset, Soloway identified two key issues for learning to program:
the ability to identify chunks (he renamed them plans) and the
understanding of the way "the computer turns a static program
written on a piece of paper into a dynamic entity that exists over
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time. In this dynamic representation, notions such as the causal
relationship between the statements become very important and
must be used in describing how a program works"[13, p. 854]. The
latter issue is usually referred to in the literature as the notional
machine [2].

Comprehension is usually conceptualized as a process in which
an individual constructs his or her ownmental representation of the
program. Most novice programmer’s misconceptions and logical
errors are caused by poor understanding of that notional machine.
Multiple models of program comprehension have been proposed
in the literature [8, 16]. The 2010 WG report [11] compared and
contrasted the way in which those models conceptualize program
comprehension. Although this comparison was the main focus of
the report, it also provided some insights into learning concepts and
obstacles, effective learning tasks and teaching methods. Thus, this
working group is picking up the baton by planning to collect and
organize learning tasks that will develop program comprehension.

In the last ten years there has been a rising awareness and focus
on program comprehension as part of learning to program. Assess-
ment components have been proposed to include or target some
aspects of program comprehension like reading [1], tracing [7],
explaining [6], or reversing [3, 15]. Sudol et al. [14] vindicates us-
ing code comprehension questions as learning events instead of as
assessment items. On a similar line, [12] selected 14 program com-
prehension tasks and survey practitioners to rank them in terms of
perceived effectiveness in developing the novices’ program com-
prehension.

Learning trajectories (LT) have garnered the attention of math
and science educators [4], because their ability to model how the
student’s thinking about a specific topic evolves over time, and
hence supporting (in the end) research based curriculum develop-
ment. This is possible due to increased empirical knowledge about
this progression - a knowledge currently lacking in computer sci-
ence education. One reason is that there are seldom efforts to collect
and systematize about such progressions in a domain; Rich et al [9]
is an example of such approach in K-6 education.

TheWG aims to extend our practical knowledge in the domain of
program comprehension by collecting instructors’ views of learning
PC. We are therefore building on what Lobato and Walters have
named the hypothetical learning trajectory; because the trajectory
is seen through the eyes of the instructor [4, p. 84]:

the starting point in teacher planning is the creation
of conjectures regarding what students understand
initially and what they may be able to learn next. In-
structional tasks are selected, not only on the basis of
generic task features, such as high cognitive demand
or student interest, but also because of an inferred
quality of being able to engender the next level of
sophistication of student thinking.

The focus on how different tasks organize the thinking process
of learners, and how tasks can and should be ordered to allow
effective learning progressions is what distinguishes our WG from
other approaches that have aimed at collecting useful examples and
tasks (e.g. [10], [5]). In other words, we are not focusing on how
to assess but looking at how to develop program comprehension.
As mentioned before, assessment questions that target program

comprehension can be extended to become learning activities. Thus,
those previous collections of tasks will be analyzed to identify both
tasks that require program comprehension and assessments that
evaluate it.
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