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Language representation in the bilingual brain is the result of many factors, of which
age of appropriation (AoA) and proficiency of the second language (L2) are probably the
most studied. Many studies indeed compare early and late bilinguals, although it is not
yet clear what the role of the so-called critical period in L2 appropriation is. In this study,
we carried out coordinate-based meta-analyses to address this issue and to inspect
the role of proficiency in addition to that of AoA. After the preliminary inspection of the
early (also very early) and late bilinguals’ language networks, we explored the specific
activations associated with each language and compared them within and between the
groups. Results confirmed that the L2 language brain representation was wider than that
associated with L1. This was observed regardless of AoA, although differences were
more relevant in the late bilinguals’ group. In particular, L2 entailed a greater enrollment
of the brain areas devoted to the executive functions, and this was also observed in
proficient bilinguals. The early bilinguals displayed many activation clusters as well, which
also included the areas involved in cognitive control. Interestingly, these regions activated
even in L1 of both early and late bilingual groups, although less consistently. Overall,
these findings suggest that bilinguals in general are constantly subjected to cognitive
effort to monitor and regulate the language use, although early AoA and high proficiency
are likely to reduce this.

Keywords: meta-analysis, bilingualism, age of appropriation (AoA), proficiency, first language (L1), second
language (L2)

INTRODUCTION

How does the brain of a bilingual person work? Research on this topic has extensively developed
in the last decades, with an increasing number of studies devoted to the identification of
the brain areas activated when bilinguals perform language tasks in the known languages.
Bilinguals are different from each other in several respects. Given the definition of a bilingual
as a person that masters more than one language or dialect (see Fabbro, 1999, 2001),

Frontiers in Human Neuroscience | www.frontiersin.org 1 May 2019 | Volume 13 | Article 154

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2019.00154
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2019.00154&domain=pdf&date_stamp=2019-05-21
https://creativecommons.org/licenses/by/4.0/
mailto:elisa.cargnelutti@lanostrafamiglia.it
https://doi.org/10.3389/fnhum.2019.00154
https://www.frontiersin.org/articles/10.3389/fnhum.2019.00154/full
https://loop.frontiersin.org/people/661482/overview
https://loop.frontiersin.org/people/52953/overview
https://loop.frontiersin.org/people/59028/overview
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Cargnelutti et al. Bilinguals’ Language Brain Networks

it appears clear that this may apply to a wide range of individuals.
For this reason, the bilinguals assessed in the published studies
rarely form consistent and homogeneous groups. It follows
that a comprehensive and universally accepted picture about
the bilingual brain functioning is still lacking and that some
questions are yet to be answered.

In this study, we tried to address some of these issues. The
first notes the possibly different language brain representation in
relation to the so defined critical period. This represents a specific
age after which the learning process becomes challenging and
the achieved performance in the second language (L2) hardly
equals that of the native or first language (L1). In the past
decades, an extensive debate has concerned the identification
of the L2 age of acquisition or age of appropriation (as lately
better defined, see Paradis, 2009) cutoff (hereafter, AoA).
Some authors set it around puberty, a period during which
language skills fully develop (e.g., Lenneberg, 1967; Long, 1990;
Locke and Bogin, 2006), whereas others suggest the period
around 6–7 years of age to be crucial, because, after this
age, learning some linguistic skills becomes challenging (e.g.,
Johnson and Newport, 1989).

As long as AoA is judged as one of the parameters that
mainly determine the L2 performance and shapes its brain
representation, many studies compared the language networks
between early and late bilinguals, hence between bilinguals
having approached L2 either before or after the defined AoA
cutoff. Although not univocally, most of these studies used
6 years of age as the AoA cutoff. This choice is motivated by
the important developmental events taking place around this age.
First, the brain is almost at its adult size (e.g., Giedd et al., 1999;
Casey et al., 2000) and most of the myelination processes are
complete (e.g., Nakagawa et al., 1998). Concerning language, skill
achievement is attained in almost every domain, despite the fact
that not all of the skills are perfectly mastered yet (e.g., Skeide
and Friederici, 2016). Another important change concerns the
memory systems supporting the cognitive processes. At this age,
memory is organized as in adults and the verbal component takes
on importance with respect to the visuo-spatial components
(e.g., Gathercole et al., 2004).

Important changes also take place concerning the dissociation
between implicit and explicit memory systems (see Paradis, 1994,
2004, 2009; Ullman, 2001, 2005, 2006). Up to this age, in fact,
children acquire skills through implicit memory, therefore in an
almost unconscious way. These skills are easily internalized and
automatically applied. Along with development, this memory
system becomes less flexible and late-learned skills are therefore
mainly supported by explicit memory, with the enrollment of
conscious brain processes. These skills are unlikely to become
highly automatized, in particular concerning some language
domains, such as grammar and phonology/articulation, whereas
lexico-semantics appeared to be less affected by AoA (see also
Ruben, 1997). In this case, the critical AoA seems to fall on
adolescence, as long as the lexical knowledge mainly depends
on the declarative memory capacity, then on proficiency and
extent of use.

Another tricky aspect concerns the effects of the acquisition
of both languages roughly simultaneously since birth. Such

bilinguals are referred to as simultaneous, in comparison
with the sequential bilinguals, who, irrespective of their AoA,
had approached L2 successively to L1 and possibly when
L1 acquisition was almost complete. As the majority of bilinguals
belongs to the second category, neuroimaging data on the
language brain networks in simultaneous bilinguals is reported
in very few papers. Rather, studies more often include bilinguals
having learned the two languages at least in the very first years
of life (see Supplementary Table S1). In this sense, it would be
interesting to inspect whether the language brain networks of
very early bilinguals differ from those of general early bilinguals,
as inspected in a few studies (see Supplementary Table S1).

A few previous meta-analyses focused on the functional
networks associated with each language in the groups of
early and late bilinguals. In this respect, Liu and Cao (2016)
found that L2 activated several regions (i.e., insula and frontal
cortex areas) more than L1 and this especially occurred
in the group of late bilinguals. Similarly, Indefrey (2006),
who conducted an explorative investigation of the areas that
activate in bilinguals with different AoA, observed that it was
more likely for individuals with late AoA to have an overall
greater activation (especially in the left inferior frontal gyrus).
The author reported a similar trend for bilinguals with low
proficiency/exposure.

The aspect of language proficiency has been addressed in
another meta-analysis (Sebastian et al., 2011). In this case, the
authors observed that the L1 and L2 networks were more similar
to each other in the group of the high-proficiency bilinguals,
whereas greater differences between the two languages emerged
as the result of low proficiency. Actually, evidence from the
clinical literature seems to suggest that factors such as language
proficiency and use/exposure are sometimes more relevant than
mere AoA. There were indeed cases of bilingual aphasia in
which the language that was premorbidly ‘‘weaker’’ was the
most affected, whereas the language that the patient mastered
better was less impaired. This indicated that proficiency in a
given language is sometimes more relevant in predicting the
impairment profile in bilingual aphasia (e.g., Edmonds and
Kiran, 2006; Druks and Weekes, 2013; Gray and Kiran, 2013).

Nevertheless, a recently published systematic review on
bilingual aphasia reported on the role of proficiency and use to
be secondary to that of AoA (Kuzmina et al., 2019). Actually,
L2 was more preserved—probably because of its stronger brain
representation—in the case it was the best-mastered or mostly
used language premorbidly, but only in early bilinguals; the effect
of proficiency and use were instead limited for late bilinguals.
In summary, although both AoA and proficiency appear to be
relevant in shaping the bilingual brain, their relative role is not
yet clear and the extent to which the proficiency level might scale
down the role of AoA has not been yet investigated.

THE CURRENT META ANALYSIS

The principal aim of the present meta-analysis was to shed
further light on the impact of AoA on the overall language
brain representation and on those specifically associated
with each language. Therefore, we tried to derive which
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brain regions bilinguals activate in a consistent way when
performing language tasks in known languages. We carried
out the analysis separately for the groups of early and late
bilinguals. In addition, we wanted to inspect if some reliable
activations could be found in a subgroup of very early
bilinguals. After these more global analyses, we investigated
the specific activations associated with each language, to
then compare L1 and L2 within each group (i.e., early
and late bilinguals), and L1s and L2s between groups.
Lastly, we aimed to investigate the effect of proficiency. In
particular, we inspected whether the two language networks
in early and late bilinguals differed as the result of different
proficiency levels.

With respect to the previous meta-analyses, this study: (i)
explored more in depth the language networks associated with
each language as the result of AoA first and of proficiency,
second; (ii) investigated the language brain representation
resulting from a very early L2 acquisition; and (iii) adopted quite
stringent criteria for both paper inclusion and data analysis, in
order to ascertain the strength of the resultant findings.

We hypothesized to confirm the results from previous
meta-analyses in terms of an overall greater functional activation
for the group of the late bilinguals with respect to that of the
early bilinguals. Regarding the comparison between the two
languages, we attended greater functional activation for L2 than
L1 and expected to find this difference even in the group of early
bilinguals. Finally, we expected the differences between early and
late bilinguals and between L2 and L1 to reduce in high vs. low
proficient bilinguals.

MATERIALS AND METHODS

Paper Search and Selection
In the current meta-analysis, we included the papers selected
from the pool of English-written articles published between
1995 and the end of 2016. To be included, the papers had to
report neuroimaging studies (by fMRI or PET) involving healthy
adult participants (aged 18–60). We performed the research
in MedLine and Scholar databases, using keywords such as
‘‘fMRI’’ or ‘‘functional MRI,’’ ‘‘PET,’’ ‘‘bilingual∗.’’ The sample
was further integrated with some papers found by inspecting the
list of references of the papers resulting from this research. The
paper selection procedure is sketched out in the PRISMA flow
chart (Moher et al., 2009) in Figure 1.

In the selection, we excluded cases of bimodal bilingualism
(i.e., with one of the languages being a sign language) and studies
assessing the language abilities specific to bilingualism, such as
translation/interpretation and switching.We hence restricted the
selection to the studies having addressed the main structural
domains (i.e., lexico-semantics, phonology/articulation, and
morpho-syntax) and we excluded those investigating more
specific tasks, as the affective/emotional components of language
(e.g., role of emotional words) or numbers and mathematics.
The selection was not limited to specific language families.
We were confident in including different language tasks
from different languages in the same analysis, given that
the algorithm we used (see afterwards) looks for the areas

FIGURE 1 | PRISMA flowchart. Schematic representation of the
paper search and selection process. From Moher et al. (2009).

showing a convergence of activation across different experiments
and therefore provides only consistently recurring activations.
Finally, in order to reduce confounding effects, we also excluded
studies performing assessments after learning/training processes
(e.g., learning of new words or grammar rules, training in
a barely mastered language) or after some manipulations to
language exposure. Further, the participant samples in these
studies were normally gender-balanced and quite homogeneous
in terms of age (often including young adults). This assuredmore
robust findings.

For this analysis, we included only the studies that have
been published after a peer-reviewed process. In this sense, the
study might be subjected to a publication bias. Nevertheless,
coordinate-based meta-analyses differ from effect-size
meta-analyses in that they look for the spatial convergence
between the reported coordinates; hence, they do not quantify
the effect size, which is prone to bias. Therefore, this analysis
seems to be less susceptible to region- and task-dependent biases
and was not affected by the lacking inclusion of unpublished
data (see Fox et al., 1998; Rottschy et al., 2012). Moreover, to
reduce other sources of bias, we included only the results from
whole-brain analysis, excluding those resulting from a priori
selected ROIs.

This first selection resulted in 112 papers, which we further
scrutinized to obtain the final sample. This selection was
followed by the exclusion of some additional papers due to:
(i) absent or incomplete (not full 3D) coordinates, including
only coordinate ranges, coordinates that were reported only for
single subjects, coordinates from a priori selected ROIs (not
derived from the observed activations), n = 19; (ii) analyses
where the contrasts were not informative (e.g., they did not
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differentiate between different languages or between bilinguals
and monolinguals), were too specific or regarded a very low
level of linguistic processing (e.g., passive viewing of single
letters), n = 17; (iii) AoA that was not explicitly reported
or did not fit our classification (see afterwards) n = 20;
and (iv) other reasons (e.g., tasks assessing a linguistic ability
‘‘contaminated’’ by another aim, such as reading finalized to
memorization), n = 3.

To define the two groups of early and late bilinguals,
we adopted the age of 6 years as the AoA cutoff. The
previously mentioned developmental steps occurring around
this age guided our choice, further supported by the high
number of studies having adopted this same cutoff. In fact,
most of the studies classified bilinguals in early and late
following an AoA that was, respectively, below and above
6 years of age. Alternatively, studies focused on either group,
therefore either on early bilinguals, for instance from bilingual
communities, or on late bilinguals, typically represented by
people having learnt L2 at school. Concerning the very early
bilinguals, an inspection of the studies we selected led us to
include those with participants having an AoA up to 3 years.
Unfortunately, the paucity of the studies on the early bilinguals
that acquired L2 after L1 did not allow a specific analysis on
this subgroup.

To meet the specific purposes of our paper, we, therefore,
excluded the studies where AoA was not explicitly indicated
or the reported AoA did not allow to include the participants
in the groups we defined on the basis of the selected AoA
cutoff (n = 17). Finally, in order to reduce additional sources
of variability, we also excluded studies that investigated language
learning in adulthood (n = 3).

Concerning proficiency, we observed that many studies
reported self-rating assessments, or a general evaluation based
on the performance in a single task (e.g., naming). Only a
small percentage of studies reported a quantitative assessment
by structured tests (e.g., TOEFL test for the English language).
These ratings did not allow to reliably classify bilinguals from
the proficiency viewpoint. Nevertheless, the studies in which
the participants achieved a high score in a comprehensive
language assessment or were defined to have a high proficiency,
were, more consistently represented than those with low or
intermediate proficiency. For this reason, we limited the analysis
to the subsample of high proficient bilinguals and excluded from
this subgroup the bilinguals whose proficiency in L2 was greater
than in L1, in order to remove potential confounds.

The process of paper selection was preceded by the definition,
by the three authors, of the objective criteria for study inclusion
and exclusion. During the process, we consulted with one other
to define additional criteria based on the issues that emerged in
the meanwhile. At the end of the process, we discussed together
about the residual papers that we did not know whether to
include or not. In this way, we assured a consistent, unbiased
selection procedure.

The final sample consisted of 57 papers (53 fMRI and
four PET studies), from which we identified the groups of
early bilinguals (74 experiments; 536 foci; 1,048 subjects), very
early bilinguals (17 experiments; 91 foci; 227 subjects), and

late bilinguals (174 experiments; 1,351 foci; 2,519 subjects), see
Supplementary Table S1 for paper list details.

Statistical Analyses
We carried out the meta-analyses using the coordinate-based
activation likelihood estimation (ALE) algorithm developed for
neuroimaging data (e.g., Turkeltaub et al., 2002; Eickhoff et al.,
2009; Laird et al., 2009a,b). The algorithm looks for convergence
across the experiment data, by evaluating whether the clustering
is higher than that expected under the null distribution of a
random spatial association. It, therefore, treats the reported
foci as centers for 3D Gaussian probability distributions, to
capture the spatial uncertainty associated with each focus. The
provided probability distribution maps, which were weighted on
the number of subjects in each study, described the probability
for a given focus to lay within a given voxel.

We thresholded the probability maps for the main effect
analyses at p < 0.05 (cluster-level corrected for multiple
comparisons) and set a minimum cluster size to 200 mm3

(25 voxels). For the analysis on individual languages, we reduced
the extent threshold to 120 mm3 (15 voxels). For the contrast
analyses, we used threshold values of p < 0.001 (uncorrected)
and a minimum cluster size of 80 mm3 (10 voxels). Nevertheless,
for the conjunction results, we retained only a minimum of 120-
mm3 (15 voxels) clusters, in order to exclude a possible incidental
overlap between the ALE maps from individual analyses (see
Rottschy et al., 2012).

We performed the following analyses:

(i) overall language brain representation in early, very early,
and late bilinguals.
In the first preliminary analysis, we investigated the overall
(not language-specific) functional brain representation of
early and late bilinguals (main effects). We also performed
the same analysis on a subgroup of early bilinguals that have
acquired the two languages roughly simultaneously (up to
the age of 3) and therefore defined as very early bilinguals.

(ii) L1 and L2 networks and between-language and
between-group comparisons.
We then focused on the functional networks associated with
each language. We performed the analysis separately for
late and early bilinguals, excluding the very early bilinguals
for whom a distinction between L1 and L2 based on the
AoA was not possible. We first carried out the main effect
analyses; next, we performed between-group analyses to
compare the networks of L1s and L2s across the two
groups and within-group analysis to compare the functional
networks associated with L1 and L2 within each group.

(iii) L1 and L2 networks in proficient bilinguals and between-
language and between-group comparisons.
We replicated the recently mentioned analyses on a
subgroup of proficient bilinguals.

We reported the coordinates in the Montreal Neurological
Institute (MNI) standard space. The coordinates that were
standardized to the Talairach and Tournoux (1988) space in
the included studies were converted to the MNI space by
the icbm_spm2tal transform. To define the precise anatomical
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localization and label of the resulting areas, we used the SPM
Anatomy toolbox (Eickhoff et al., 2005), running on MATLAB.
We, therefore, reported the macro-anatomic localization and,
when provided, the cytoarchitectonic location.

RESULTS

Whole Language Brain Representation in
Early, Very Early, and Late Bilinguals
The main effect results for each group are reported in Tables 1.1,
1.2 and Figure 2.

Early Bilinguals
With regard to the early bilinguals, functional activations
emerged in the following regions of the left hemisphere: (i)
inferior parietal lobule (including the intraparietal sulcus—area
hIP2); (ii) inferior occipital gyrus (i.e., fusiform area); (iii)
precentral gyrus; (vi) rolandic operculum; and (v) inferior frontal
gyrus (i.e., BA 44, BA 45, and the dorsolateral prefrontal cortex,
DLPFC); right-sided activations included (vi) the cerebellum
(lobule VIIa and crus I) and bilateral activations; (vii) middle
temporal gyri (including the higher auditory cortex—area TE3);
(viii) posterior-medial frontal gyri; and (ix) the insulae.

Very Early Bilinguals
The very early bilinguals displayed activation, in the left
hemisphere, of the (i) middle temporal gyrus and, in

both the hemispheres, of the (ii) cerebella (lobule VI,
in the left hemisphere; lobule VIIa and crus I, in the
right hemisphere).

Late Bilinguals
The late bilinguals’ activation clusters included the following
regions of the left hemisphere: (i) the inferior occipital gyrus
(fusiform gyrus—area FG4); (ii) superior parietal lobule; (iii)
middle temporal gyrus; (iv) precentral gyrus; (v) posterior-
medial frontal gyrus; and (vi) inferior frontal gyrus (including
BA 44, pars orbitaris, and DLPFC); activation clusters were
also found in right (viii) angular gyrus (more precisely
the intraparietal sulcus—area hIP3); and (ix) cerebellum
(lobule VI, lobule VIIa, and crus I) and in bilateral (x)
middle occipital gyrus (lateral cortex—area hOc4lp); and
(xi) insulae.

L1 and L2 Networks in Early and Late
Bilinguals
The functional brain activations associated with either L1 or
L2 are detailed in Tables 2, 3 for L1 and L2, respectively and are
all represented in Figure 3.

L1
Early bilinguals, when performing tasks in their L1, activated
the following regions, all located in the left hemisphere: (i) the
inferior temporal gyrus (fusiform gyrus); (ii) middle temporal

TABLE 1.1 | Main effect results of the activation likelihood estimation (ALE) meta-analysis for the groups of early and very early bilinguals.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

Early bilinguals
1 L inferior parietal lobule −24 −68 44 71 0.029
2 L inferior occipital (FG4) −44 −58 −12 148 0.030
3 L middle temporal gyrus −50 −48 4 41 0.025
5 L middle temporal gyrus (TE3) −68 −32 2 152 0.037
6 R middle temporal gyrus (TE3) 70 −14 −8 53 0.029
7 L precentral gyrus −46 −6 38 631 0.033

L inferior frontal gyrus −40 12 28 0.033
L inferior frontal gyrus −46 18 22 0.031
L precentral gyrus −42 0 28 0.027

8 L precentral gyrus −52 2 50 25 0.026
9 L posterior-medial frontal gyrus −2 2 66 264 0.036

L posterior-medial frontal gyrus −4 16 52 0.034
10 L rolandic operculum −48 8 2 114 0.024

L insula −44 12 −4 0.022
L inferior frontal gyrus (BA 44) −56 8 10 0.021

11 R posterior-medial frontal gyrus 12 16 46 36 0.027
12 L insula −30 18 4 124 0.028

L insula −32 26 0 0.027
13 R insula 36 24 −4 59 0.031
14 L inferior frontal gyrus (BA 45) −54 30 4 137 0.032
15 R cerebellum (lobule VIIa, crus I) 36 −74 −28 25 0.023
Very early bilinguals
1 L middle temporal gyrus −66 −30 −2 46 0.020
2 L cerebellum (lobule VI) −16 −68 −20 53 0.020
3 R cerebellum (lobule VIIa, crus I) 18 −68 −16 45 0.018

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.05 (corrected) and extent threshold of 25 voxels. FG4, Fusiform area; hIP2, Horizontal tracts of the intraparietal sulcus; IPS, Intraparietal sulcus; TE3, Higher
auditory cortex.
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TABLE 1.2 | Main effect results of the ALE meta-analysis for the group of the late bilinguals.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

Late bilinguals
1 L middle occipital gyrus (hOc4lp) −28 −92 4 83 0.039
2 R middle occipital gyrus (hOc4lp) 36 −88 8 70 0.050
3 L inferior occipital gyrus (FG4) −46 −64 −12 180 0.049
4 L superior parietal lobule −26 −64 46 422 0.063
5 R angular gyrus (IPS, hIP3) 30 −62 48 63 0.039
6 L middle temporal gyrus −52 −36 8 30 0.037
7 L inferior frontal gyrus −44 12 28 2,630 0.091

L insula −32 26 −2 0.071
L inferior frontal gyrus (BA 45) −48 28 18 0.070
L inferior frontal gyrus (BA 44) −54 12 10 0.062
L inferior frontal gyrus −50 32 10 0.047
L inferior frontal gyrus (pars orbitaris) −48 38 −8 0.039
L precentral gyrus −50 10 50 0.039
L precentral gyrus −52 2 50 0.033
L precentral gyrus −48 −4 40 0.030

8 L posterior-medial frontal gyrus −2 20 48 842 0.096
9 R insula 36 24 −4 159 0.058
10 R cerebellum (lobule VIIa, crus I) 36 −74 −26 25 0.035
11 R cerebellum (lobule VI) 22 −66 −22 43 0.037

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.05 (corrected) and extent threshold of 25 voxels. FG4, Fusiform area; hIP2, hIP3, Horizontal tracts of the intraparietal sulcus; hOc4lp, Lateral occipital cortex;
IPS, Intraparietal sulcus.

gyrus (area TE3); (iii) precentral gyrus; (iv) posterior-medial
frontal gyrus; and (v) the inferior frontal gyrus (Broca’s area—BA
45—and a region associable with the DLPFC).

FIGURE 2 | Language networks associated with different age of
appropriation (AoA). Rendered templates of the main effect analysis results for
(A) early bilinguals, (B) very early bilinguals, and (C) late bilinguals. Color bars
indicate the activation likelihood estimation (ALE) values.

The L1 activation clusters in late bilinguals included the
following regions of the left hemisphere: (i) inferior occipital
gyrus (fusiform gyrus—area FG4); (ii) middle temporal gyrus;
(iii) precentral gyrus; (iv) posterior-medial frontal gyrus; (v)
inferior frontal gyrus (including BA 44, BA 45, and DLPFC);
and (vi) insula; right-sided activations were found in the
(vii) superior-medial gyrus; and (viii) cerebellum (lobule VIIa
and crus I).

L2
The activation clusters associated with early bilinguals’
L2 emerged in the following regions, all in the left hemisphere:
(i) the superior parietal lobule; (ii) precentral gyrus; (iii) inferior
frontal gyrus (region including the DLPFC); and (iv) the
posterior-medial frontal gyrus.

The late bilinguals’ L2 functional activations were located
in the following regions of the left hemisphere: (i) superior
parietal lobule; (ii) inferior parietal lobule; (iii) superior
temporal gyrus,; (iv) posterior-medial frontal gyrus; (v)
inferior frontal gyrus (including BA 45, pars oribitaris,
and DLPFC); and (vi) superior-medial gyrus; in the right
hemisphere, activations emerged in (vii) calcarine gyrus
(hOc1, V1); (viii) middle occipital gyrus (lateral cortex-
area hOc4lp); (ix) angular gyrus; and (x) cerebellum (lobule
VIIa and crus I); bilateral activations were observed in the
(xi) insulae.

Between-Group Comparison Between L1s and L2s
The activation clusters resulting from the between-group
contrast conditions (i.e., comparison between L1s and L2s across
the two groups of early and late bilinguals) are reported inTable 4
and Figure 4.
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TABLE 2 | Results of the single ALE meta-analysis on L1 in the two groups of early and late bilinguals.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

L1: Early bilinguals
1 L inferior temporal gyrus (FG4) −46 −56 −12 58 0.027
2 L middle temporal gyrus (TE3) −68 −34 2 107 0.034
3 L precentral gyrus −50 0 32 15 0.020
4 L posterior-medial frontal gyrus −2 4 64 35 0.024
5 L inferior frontal gyrus (BA 45) −54 30 4 22 0.020
6 L inferior frontal gyrus −46 32 10 58 0.020

L1: Late bilinguals
1 L inferior occipital gyrus (FG4) −46 −64 −12 400 0.028
2 L middle temporal gyrus −58 −40 −2 184 0.027

L precentral gyrus −44 2 30 0.029
3 L precentral gyrus −48 10 34 1,288 0.028
4 L inferior frontal gyrus (BA 44) −54 10 8 424 0.029
5 L posterior-medial frontal gyrus −4 20 48 1,504 0.047
6 L inferior frontal gyrus (BA 45) −52 26 24 1,224 0.030

L inferior frontal gyrus −48 28 20 0.030
7 L insula −28 28 −2 136 0.025
8 R superior medial gyrus 4 38 46 152 0.024
9 R cerebellum (lobule VIIa, crus I) 16 −90 −30 216 0.030

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.05 (corrected) and extent threshold of 15 voxels. FG4, fusiform area; TE3, higher auditory cortex.

TABLE 3 | Results of the single ALE meta-analysis on L2 in the two groups of early and late bilinguals.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

L2: Early bilinguals
1 L superior parietal lobule −22 −70 46 22 0.023
2 L precentral gyrus −42 −4 38 56 0.026
3 L inferior frontal gyrus −48 18 22 56 0.027
4 L posterior-medial frontal gyrus −4 20 66 18 0.022

L2: Late bilinguals
1 R calcarine gyrus (V1) 14 −88 −2 32 0.027
2 R middle occipital gyrus (hOc4lp) 36 −88 8 29 0.028
3 R angular gyrus 28 −62 48 36 0.027
4 L superior parietal lobule −24 −62 46 369 0.046
5 L inferior parietal lobule −44 −40 42 31 0.029
6 L superior temporal gyrus −54 −36 10 17 0.026
7 L inferior frontal gyrus −46 12 26 2,212 0.078

L insula −32 26 −2 0.056
L inferior frontal gyrus (BA 45) −48 30 20 0.043
L inferior frontal gyrus (BA 45) −52 22 2 0.030
L inferior frontal gyrus −50 32 6 0.029
L inferior frontal gyrus (pars orbitalis) −52 24 −8 0.025
L posterior-medial frontal gyrus −2 22 50 815 0.062

8 L superior medial gyrus −4 28 40 0.042
L posterior-medial frontal gyrus −4 8 54 0.037

9 R insula 38 24 −6 178 0.046
10 R cerebellum (lobule VIIa, crus I) 34 −72 −28 21 0.026

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.05 (corrected) and extent threshold of 15 voxels. hOc4lp, lateral occipital cortex; V1, primary visual cortex.

L1: Conjunction (Early Bilinguals ∩ Late Bilinguals) and
Subtraction Analyses (Early Bilinguals > Late Bilinguals
and Late Bilinguals > Early Bilinguals)
No one area appeared to be consistently activated for L1 in
conjunction of the two groups or in one group more than in
the other.

L2: Conjunction (Early Bilinguals ∩ Late Bilinguals) and
Subtraction Analyses (Early Bilinguals > Late Bilinguals
and Late Bilinguals > Early Bilinguals)
Concerning L2, the areas activated in conjunction by the two
groups were located in the left (i) inferior frontal gyrus (at
the border between BA44 and DLPFC). The direct comparison
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FIGURE 3 | Language networks associated with L1 and L2 in the two groups of early and late bilinguals. Rendered templates of the main effect results for (A) early
bilinguals’ L1; (B) late bilinguals’ L1; (C) early bilinguals’ L2; (D) late bilinguals’ L2. Color bars indicate the ALE values.

TABLE 4 | Results of the between-group ALE meta-analysis for L1s and L2s.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

L1s
Early bilinguals ∩ Late bilinguals

No suprathreshold clusters of activation
Early bilinguals > Late bilinguals

No suprathreshold clusters of activation
Late bilinguals > Early bilinguals

No suprathreshold clusters of activation
L2s
Early bilinguals ∩ Late bilinguals

1 L inferior frontal gyrus −48 18 22 56 0.027
Early bilinguals > Late bilinguals

No suprathreshold clusters of activation
Late bilinguals > Early bilinguals

No suprathreshold clusters of activation

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.001 (uncorrected) and 15 voxels for the conjunction analysis, and p < 0.001 (uncorrected) and 10 voxels for the subtraction analyses.

did not show any clusters activating more consistently in either
group over the other.

Within-Group Comparison Between L1 and L2
Results of the within-group comparison are reported in Table 5.

Early Bilinguals: Conjunction (L1 ∩ L2) and Subtraction
(L1 > L2 and L2 > L1) Analyses
For the early bilinguals’ group, neither the conjunction nor the
subtraction analysis provided suprathreshold activation clusters
in the comparison between L1 and L2.

Late Bilinguals: Conjunction (L1 ∩ L2) and Subtraction
(L1 > L2 and L2 > L1) Analyses
The late bilinguals activated the following left-hemisphere areas
in conjunction with the two languages: (i) the precentral gyrus;
(ii) posterior-medial frontal gyrus; and (iii) the inferior frontal
gyrus (BA 45 and DLPFC).

The direct comparison between the two languages did not
reveal any single region to be more consistently activated
in L1 than in L2. Conversely, L2, when compared to L1,
engaged more consistently in following regions, both in the left
hemisphere: (i) the inferior frontal gyrus (region including the
DLPFC); and (ii) the posterior-medial frontal gyrus.

L1 and L2 Networks in Proficient Bilinguals
We re-ran the previous analyses on a subgroup of highly
proficient bilinguals (16 studies including the early bilinguals,
17 studies including the late bilinguals). The functional networks
associated with either L1 or L2 are detailed in Tables 6.1,
6.2 for L1 and L2, respectively and are represented in
Figure 5.

L1 in Proficient Bilinguals
For the early bilinguals, the functional activations
associated with L1 emerged in the left:
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FIGURE 4 | L2 network comparison between the groups of early and late bilinguals. Rendered templates and axial projection of the conjunction analysis results for
L2: Early bilinguals ∩ Late bilinguals. Color bars indicate the Z-score values.

TABLE 5 | Results of the within-group contrast ALE meta-analysis between L1 and L2 in the two groups of early and late bilinguals.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

Early bilinguals
L1 ∩ L2
No suprathreshold clusters of activation

Early bilinguals, L1 > L2
No suprathreshold clusters of activation

Early bilinguals, L2 > L1
No suprathreshold clusters of activation

Late bilinguals
L1 ∩ L2

1 L precentral gyrus −48 10 34 67 0.029
2 L precentral gyrus −44 2 30 0.029

L posterior-medial frontal gyrus −4 20 48 118 0.047
3 L inferior frontal gyrus (BA 45) −52 26 24 74 0.030

L inferior frontal gyrus −48 28 20 0.030
L1 > L2
No suprathreshold clusters of activation
L2 > L1

1 L inferior frontal gyrus −44 14 20 39 n/a
L inferior frontal gyrus −43 12 24 n/a

2 L posterior-medial frontal gyrus −2 20 58 17 n/a

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.001 (uncorrected) and 15 voxels for the conjunction analysis, and p < 0.001 (uncorrected) and 10 voxels for the subtraction analyses.

TABLE 6.1 | Results of the single ALE meta-analysis on L1 in the two groups of proficient early and late bilinguals.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

L1: Proficient early bilinguals
1 L middle temporal gyrus (TE3) −68 −34 2 113 0.036
2 L posterior-medial frontal gyrus −2 4 66 19 0.023

L1: Proficient late bilinguals
1 L inferior frontal gyrus (BA 45) −52 28 24 48 0.023

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.05 (corrected) and extent threshold of 15 voxels. TE3, Higher auditory cortex.

(i) middle temporal gyrus (area TE3—higher
auditory cortex); and (ii) the posterior-medial
frontal gyrus.

In the late bilinguals, the functional network included the left:
(i) posterior-medial frontal gyrus; and (ii) the inferior frontal
gyrus (BA 45).
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TABLE 6.2 | Results of the single ALE meta-analysis on L2 in the two groups of proficient early and late bilinguals.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

L2: Proficient early bilinguals
1 L inferior frontal gyrus −48 18 22 56 0.027

L2: Proficient late bilinguals
1 L calcarine gyrus (hOc1) −8 −96 0 26 0.023
2 L inferior parietal lobe −28 −70 48 120 0.028
3 L middle temporal gyrus (TE3) −66 −24 −2 31 0.023
4 L caudate nucleus −8 8 0 16 0.022
5 L inferior frontal gyrus −46 12 26 549 0.040

L inferior frontal gyrus (BA 45) −50 26 22 0.026
6 L posterior-medial frontal gyrus −2 22 50 519 0.047

L posterior-medial frontal gyrus −4 20 66 0.023
7 L inferior frontal gyrus −52 24 −8 37 0.023
8 L insula −32 26 −2 230 0.038
9 R caudate nucleus 12 18 0 15 0.021
10 R insula 38 26 −4 102 0.035

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.05 (corrected) and extent threshold of 15 voxels. hOc1, Primary visual cortex (V1); TE3, Higher auditory cortex.

FIGURE 5 | Language networks associated with L1 and L2 in the groups of proficient early and late bilinguals. Rendered templates of the main effect results for (A)
proficient early bilinguals’ L1; (B) proficient late bilinguals’ L1; (C) proficient early bilinguals’ L2; (D) proficient late bilinguals’ L2. Color bars indicate the ALE values.

L2 in Proficient Bilinguals
The early bilinguals’ L2 significantly activated a portion
of the left (i) inferior frontal gyrus (region including
the DLPFC).

The late bilinguals’ functional activations associated with
L2 included different areas in the left hemisphere: (i) inferior
parietal cortex; (ii) inferior frontal gyrus (including BA 45 and
a region associable with the DLPFC); and (iii) posterior-medial
frontal gyrus; bilateral activation was found in the (iv) caudate
nuclei and (v) insulae.

Between-Group Comparison Between Early and Late
Proficient Bilinguals
Results of the between-group comparison are reported in
Table 6.3.

L1: Conjunction (Early Bilinguals ∩ Late Bilinguals) and
Subtraction (Early Bilinguals > Late Bilinguals and Late
Bilinguals > Early Bilinguals) Analyses
For L1, neither the conjunction nor the subtraction analysis
provided suprathreshold activation clusters in the comparison
between L1 and L2.

L2: Conjunction (Early Bilinguals ∩ Late Bilinguals) and
Subtraction (Early Bilinguals > Late Bilinguals and Late
Bilinguals > Early Bilinguals) Analyses
For L2, the conjunction analysis provided a shared activation
cluster between early and late bilinguals in the left (i) inferior
frontal gyrus (region including the DLPFC).

In the subtraction analyses, suprathreshold activation clusters
did not result from either comparison.
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TABLE 6.3 | Results of the between-group ALE meta-analysis for L1s and L2s in proficient bilinguals.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

Proficient bilinguals’ L1s
Early bilinguals ∩ Late bilinguals

No suprathreshold clusters of activation
Early bilinguals > Late bilinguals

No suprathreshold clusters of activation
Late bilinguals > Early bilinguals

No suprathreshold clusters of activation
Proficient bilinguals’ L2s

Early bilinguals ∩ Late bilinguals
L inferior frontal gyrus −48 18 22 56 0.027

Early bilinguals > Late bilinguals
No suprathreshold clusters of activation

Late bilinguals > Early bilinguals
No suprathreshold clusters of activation

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.001 (uncorrected) and 15 voxels for the conjunction analysis, and p < 0.001 (uncorrected) and 10 voxels for the subtraction analyses.

TABLE 6.4 | Results of the within-group ALE meta-analysis for L1s and L2s in proficient bilinguals.

Cluster (area) MNI coordinates Cluster size (voxels) Extrema value

x y z

Proficient early bilinguals
L1 ∩ L2

No suprathreshold clusters of activation
Early bilinguals, L1 > L2

No suprathreshold clusters of activation
Early bilinguals, L2 > L1

No suprathreshold clusters of activation
Proficient late bilinguals

L1 ∩ L2
1 L inferior frontal gyrus (BA 45) −54 28 20 32 0.023

L1 > L2
No suprathreshold clusters of activation

L2 > L1
No suprathreshold clusters of activation

Note. For the anatomical localization the macro-anatomic area is indicated and, when provided, the cytoarchitectonic location is indicated (in parentheses). Analyses were performed
with a threshold of p < 0.001 (uncorrected) and 15 voxels for the conjunction analysis, and p < 0.001 (uncorrected) and 10 voxels for the subtraction analyses.

Within-Group Comparison Between L1 and L2 in
Proficient Bilinguals
Results of the within-group comparison are reported in
Table 6.4.

Early Proficient Bilinguals: Conjunction (L1 ∩ L2) and
Subtraction (L1 > L2 and L2 > L1) Analyses
For the early bilinguals’ group, neither the conjunction nor the
subtraction analysis provided suprathreshold activation clusters
in the comparison between L1 and L2.

Late Proficient Bilinguals: Conjunction (L1 ∩ L2) and
Subtraction (L1 > L2 and L2 > L1) Analyses
For the late bilinguals’ group, the conjunction analysis showed a
shared activation cluster between L1 and L2 in the left (i) inferior
frontal gyrus (BA 45).

In the subtraction analyses, neither comparison provided
suprathreshold activation clusters.

DISCUSSION

The present meta-analysis aimed to inspect whether AoA
and the traditional classification in early and late bilinguals
have an actual role in shaping the bilingual language brain
networks, even when accounting for the level of proficiency.
We hence identified the two groups of early and late bilinguals
(by taking 6 years of age as the AoA cutoff), and also
a subgroup of very early bilinguals, in order to investigate
the effect of the simultaneous acquisition of two languages.
The first preliminary analyses were comprehensive of both
the languages the participants knew, as we wanted to obtain
a global overview of the whole language network in the
three groups. We then performed more focused analyses
to assess the functional networks specifically associated with
each language, and between- and within-group comparisons
between the languages. In this way, we inspected whether,
irrespective of other intervening factors, the conventional
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classification in early and late bilinguals reflected actual
differences in the related brain networks. Finally, we replicated
these analyses by including only the highly proficient bilinguals,
in order to check whether AoA was still relevant when
proficiency was comparable (and high) between early and
late bilinguals. We carried out these language-specific analyses
only for the late bilinguals and for the early bilinguals for
which the identification of the first and second language
was possible.

Early, Very Early, and Late Bilinguals
As a first account, we showed that both early and late
bilinguals displayed a widespread language network, which was
located predominantly in the left (dominant) hemisphere. This
network included the classical language areas, together with
additional cortical and subcortical regions possibly recruited to
support the language functions. For instance, in line with the
monolingual language network, both early and late bilinguals
activated the classical language areas, such as the Broca’s area
(BA 44 and BA 45) known to be involved in a variety of
language domains (for reviews see Grodzinsky and Santi, 2008;
Friederici, 2011; Price, 2012). Additional shared activations
emerged in the left premotor cortex (precentral gyrus) and
pre-SMA (posterior-medial frontal gyrus). These regions are
involved in articulation-related processes (e.g., Hickok and
Poeppel, 2004; Indefrey and Levelt, 2004; Alario et al., 2006;
Kemeny et al., 2006), but also in other language tasks, including
phonological rehearsal (e.g., Démonet et al., 1992; Paulesu et al.,
1993; Awh et al., 1996). However, the role of pre-SMA seems
to go beyond these functions to include the control in language
use. Actually, Abutalebi and Green (2007, 2016) proposed this
area to be one of the stations of the language control network
(see afterwards).

Other activation clusters included the middle temporal
gyrus—particularly the area associated with the auditory
cortex—and fusiform gyrus, both in the left hemisphere. The
former is known to be specialized in the perception of words
over other non-linguistic sounds (e.g., Binder et al., 1997). The
fusiform gyrus is specific for the recognition of words as well,
in particular in their written form, across diverse languages
and scripts (e.g., Cohen et al., 2000; Turkeltaub et al., 2002;
Vigneau et al., 2005; Price and Devlin, 2011). The activation
of these two regions might reflect the nature of the stimuli,
either auditory or written. Nevertheless, the fusiform gyrus
was also shown to contribute to lexical-semantic access, by
working in association with the other areas of the middle
and inferior temporal gyri (e.g., Papathanassiou et al., 2000;
Démonet et al., 2005).

Besides the classical fronto-temporal language areas, also
the parietal lobe—particularly the posterior parietal cortex
(PPC)—activated in both bilingual groups. This region is not
typically devoted to language, although some studies reported
its involvement in the performance of some language tasks (for
instance in vocabulary learning, see Pasqualotto et al., 2015).
Interestingly, this region is relevant to working memory and its
activation might, therefore, reflect the heightened necessity for
the bilingual speakers to reinforce and elaborate the linguistic

information associated with each language (e.g., Gold et al., 2005;
Hartwigsen et al., 2010).

Early and late bilinguals also activated the right cerebellum,
which is reciprocally connected with the left neocortex and
whose involvement in language is becoming progressively
more apparent (see for an overview De Smet et al., 2013;
Mariën et al., 2014).

Both bilingual groups activated brain areas that more likely
reflect the act of having to handle more than one language. In
particular, we observed a prominent activation in the DLPFC,
which is traditionally associated with high cognitive (executive)
functions (e.g., Daffner et al., 2000; McDonald et al., 2000).
With respect to bilinguals, DLPFC has been proposed to be a
chief station of the network that regulates language selection and
control; this region hence modulates the use of each language,
for instance by inhibiting the interfering one (i.e., not-in-use;
e.g., Abutalebi and Green, 2007, 2016). Another key area of
this network has been proposed to be the pre-SMA, which was
activated as well, as previously discussed.

An analogous functional interpretation can also be proposed
for the insula, which was activated in both hemispheres.
Although this region is traditionally viewed as part of the limbic
system, its role in language is becoming progressively more
evident. Regarding bilingualism, previous evidence supported
its involvement in the mechanisms of switching and control
(e.g., Wager et al., 2005). Despite the greater role attributed to the
left insula, several studies reported bilateral activations in relation
to diverse language functions, both receptive and expressive
(see the meta-analysis by Oh et al., 2014). Nevertheless,
the specific involvement of the right insula requires further
investigation. However, it is generally thought to support the
dominant hemisphere in various language functions, especially
when they become cognitively more demanding (see also
the meta-analysis by Vigneau et al., 2011), as can occur in
bilingual settings.

Although we did not carry out a direct comparison with
the monolingual network (as only a small percentage of studies
included data on monolinguals), these preliminary results
supported the notion that ‘‘the bilingual is not two monolinguals
in one person’’ (Grosjean, 1989); this means that the language
network in bilinguals is different from the one that could result
from the sum of two language-specific networks in monolinguals
(Fabbro, 1999). Actually, bilinguals have to constantly regulate
the use of a certain language even when immersed in a
monolingual mode, as both languages are, to a certain extent,
active (e.g., Marian and Spivey, 2003; Dijkstra, 2005). Even
when only one language is in use, there is a continuous
interference from the other language, which therefore has to
be inhibited (see Paradis, 2004).

The further analysis we conducted investigated the effects
associated with an almost concurrent acquisition of the two
languages. The functional activations in the very early bilinguals’
group were found in a few areas, such as the left middle temporal
gyrus and bilateral cerebella. Interesting was the activation of the
left cerebellum, which did not emerge from the previous analyses.
This finding leads us to stress once more of the importance of
this subcortical structure and hints at a speculative hypotheses
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for its role (see Ullman, 2006; Paradis, 2009; and Supplementary
Material for details).

The fact that very early bilinguals activated in a consistent
manner in only a few regions could reflect two possible reasons.
First, it is reasonable that these bilinguals need the recruitment
of a lower number of regions to perform the language tasks
because the very precocious acquisition could imply a lower
cognitive effort. This is only a partial explanation, given that
the resultant activation clusters did not include other relevant
areas of the language network. Hence, this finding may also
reflect the low number of studies that have addressed very
early language acquisition and, consequently, the low number of
provided foci (see the ‘‘Materials and Methods’’ section). These
analyses, therefore, need to be replicated once a suitable number
of studies is available.

L1 and L2 Brain Representation
Whereas the previous analyses provided a general overview
of the overall brain functioning in response to different AoA,
the subsequent analyses were devoted to the investigation of
the language brain activations associated with each language.
Because a distinction between L1 and L2 in very early bilinguals
was rarely possible, we carried out this investigation separately
for late bilinguals and for the early bilinguals for which such
distinction was achievable.

L1
Concerning L1, the results showed different functional networks
for early and late bilinguals. With regards to the former,
activations (all left-sided) emerged in the classical language
areas (i.e., fusiform gyrus, middle temporal gyrus, precentral
gyrus, and BA 45) and in regions devoted to cognitive control
(i.e., pre-SMA and DLPFC). This suggests that, even in early
bilinguals and even when dealing with the first language, there
is the need to control and regulate the language use, by possibly
suppressing the activation of the second language, which is likely
to exert a strong interference.

Regarding late bilinguals, a greater number of activated
clusters emerged. These included language-associated areas (as
the fusiform gyrus, the middle temporal gyrus, the precentral
gyrus, and Broca’s area), control areas (i.e., DLPFC, pre-SMA,
and insula in the left hemisphere, and ACC in the right), and
the right cerebellum. Also, in late bilinguals, then, language
control seems to be required even when performing tasks in L1.
This could occur because the first language has to be strongly
inhibited in a bilingual context because it tends to prevail even
when it is the L2 being used. Consequently, when L1 has
to be activated again, great cognitive resources are required
to overcome this inhibition, thus implying increased cognitive
effort (see switching studies, e.g., Meuter and Allport, 1999;
Garbin et al., 2011).

L2
Also regarding L2, the network of activations was more
substantial for the group of late bilinguals compared to early
bilinguals (who activated the superior parietal lobule, precentral
gyrus, DLPFC, and pre-SMA), in part probably because of the
lower number of contrasts associated with the latter. The late

bilinguals’ functional activations were widespread and spanned
from the left parietal lobe—both inferior and superior—to the
left superior temporal gyrus, frontal regions specifically devoted
to language (i.e., BA 45 and pars orbitalis) or control (i.e., left pre-
SMA, ACC, and DLPFC, and bilateral insuale), and to the right
cerebellum. Some clusters of activation also emerged in the right
hemisphere and concerned posterior areas located in the occipital
cortex and angular gyrus.

Findings on the number and extent of activations observed
for late-learned L2 were not surprising and support the
hypothesis of a greater involvement of the areas typically
associated with language (e.g., wider activations to compensate
for lower efficiency), those devoted to control, and the additional
involvement of the right hemisphere. Concerning the activations
in the left inferior parietal lobule and in the right hemisphere,
a detailed inspection of the contrasts, having concurred to
these clusters, helped us hypothesize the rationale for their
involvement. In the Supplementary Material, we illustrated
these hypotheses and stressed the role that some brain areas,
especially in the parietal lobe, can hold in some language
functions under specific conditions.

Between- and Within-Group Comparison Between
L1 and L2
The last analyses we performed were aimed at comparing
L1 and L2 within and between each group. For the between-
group analysis, L1 did not appear to determine any specific
activation for either early or late bilinguals. Similarly, the
subtraction analysis did not provide group-specific activations
either. However, the main effect results revealed a higher
number of activation clusters for the late bilinguals’ group; we
cannot exclude this finding to depend on the higher number of
available contrasts and the consequent higher probability to draw
consistent activations. This limitation prevents us from stating
with certainty whether—and in case with which extent—the
L1 network might differ as the result of a different AoA. In other
words, we cannot comment on the possible feedback impact of
this factor on the L1 brain representation (e.g., Titone et al., 2011,
for eye-tracking findings).

With regards to the comparison between early and late
bilinguals’ L2s, the sole area that activated in conjunction with
the two groups, possibly indicating its role irrespective of AoA,
was a portion of the left IFG at the border between Broca’s
area and DLPFC. The lack of additional common clusters can
reasonably reflect the paucity of consistent activations in the
group of early bilinguals. In addition, this could also result from
actual differences in the L2 activation sites, which can be located
in close areas but peak at different coordinates (see Indefrey,
2006). With respect to the direct subtractions between the two
groups, the lack of any significant specific activation was not
surprising, again possibly resulting from high data variability and
consequent lack of consistency. Liu and Cao (2016), who adopted
more lenient threshold parameters, reported the findings from a
similar subtraction analysis in which they compared the specific
L2 activations between early and late bilinguals. Comparable
to our analyses, they did not find any region that was more
consistently activated in the early bilinguals’ group. They did,
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however, find a specific late bilinguals’ activation in the region
of the left superior frontal gyrus, showing again the greater
recruitment of executive control regions as the result of late
L2 learning.

Moreover, we can tentatively attribute the lack of consistent
results to the inadequacy of the sharp AoA-based classification
in reflecting the bilingual brain development. In fact, although
development is characterized by clearly defined steps, changes
in language appropriation flexibility are not expected to
reduce sharply, but rather gradually. In this sense, the
re-conceptualization of the critical period in the sensitive
period could better account for the gradualness of the process
(e.g., Flege et al., 1999). In relation to this, it is also
important to underline that the critical age for language
appropriation was also shown to depend on the language
domain. For instance, an early appropriation seems to be more
crucial for grammar and phonology/articulation, whereas late
appropriation has a less negative impact on lexico-semantics
(Paradis, 1994, 2009; Ruben, 1997). In this study, we purposefully
investigated the role of AoA on the whole L1 and L2 brain
representation, therefore independently from the language
domain. A previous meta-analysis, however, inspected the
language networks associated with lexico-semantics (Indefrey,
2006), which is probably the most studied domain. This analysis
was exploratory as it included a small sample of studies. With
the increasing number of neuroimaging studies in bilinguals, in
future years it will be possible to have a suitable number of studies
in each language domain to investigate the related networks in
the two languages.

With regard to the within-group comparisons in the group of
the early bilinguals, neither the conjunction nor the subtraction
analyses between L1 and L2 provided significant findings. The
stringent criteria of paper selection together with the relatively
conservative thresholding parameters could possibly explain the
discrepancy with Liu and Cao (2016) findings, which showed
more relevant L2 activations in the left frontal cortex and insula.

Concerning the late bilinguals, our conjunction analysis
revealed L1 and L2 to activate common sites in both classical
language areas (i.e., left precentral gyrus and BA 45) and in
regions supporting general executive functions (i.e., left pre-SMA
and DLPFC). The comparison between the two languages did
not provide any regions that appeared to activate selectively
for L1. On the contrary, and in line with previously discussed
findings, L2 appeared to activate the left pre-SMA and DLPFC
more robustly, in a close location to that which emerged from
both the conjunction analysis and the same subtraction analysis
reported in Liu and Cao (2016).

Trying to interpret these results in the light of the clinical
findings on the bilingual patients with aphasia is quite tricky.
Clinical literature indeed reports a plethora of different cases,
in which the two languages were comparably affected (parallel
aphasia) or not (differential aphasia); further, in the latter
case, the most affected language could be represented by
either L1 or L2.

In this respect, some clinical findings support the role of AoA,
by reporting higher impairment in the language that had been
learned late (e.g., Diéguez-Vide et al., 2012). Nevertheless, the

variety of clinical profiles indicates that many are the factors
that contribute to the language brain representation and possible
impairment. Among these factors, proficiency and use/exposure
have a relevant role in determining which language could be
more affected by a clinical event (e.g., Gray and Kiran, 2013).
This means that the language that was highly mastered prior
to the brain injury is likely to be more resistant to damage,
and could, therefore, be better preserved (e.g., Samar and
Akbari, 2012). However, AoA has been proposed to retain a
leading role, with the role of performance instead emerging
only when both languages have been learnt early (see Kuzmina
et al., 2019). In the current study, we, therefore, inspected
whether, after having accounted for proficiency, AoA could
still account for differences between the two languages. In
other words, we wanted to assess the actual role of proficiency,
which also emerged from a meta-analysis on healthy individuals,
in which, however, the role of AoA was not accounted for
(Sebastian et al., 2011).

Proficient Bilinguals
The last analyses we performed aimed to investigate the
language brain representation in early and late bilinguals by
removing possible confounding effects due to proficiency. For
methodological reasons, we could perform the analyses only
on the proficient bilinguals; as long as a high proficiency level
was expected to reduce the cognitive effort associated with L2,
we inspected whether, proficiency held constant, different brain
activations still emerged as the result of different AoA.

These analyses as well were almost exploratory. In fact, the
number of experiments included in each analysis was rather
low (except for the late bilinguals’ L2) and this was probably
the reason why the ‘‘classical’’ language network could not be
traced and only a few activation clusters resulted even from the
main effect analyses. Nevertheless, this factor, together with the
application of stringent thresholds, probably provided the most
robust activation clusters for the inspected conditions, which are
therefore expected to be highly reliable.

Concerning L1, the main effect analysis showed, in both
groups, left-sided activation clusters in areas typically involved
in language (in the middle temporal gyrus in early bilinguals
and in BA 45 in late bilinguals). Further, the early bilinguals
also activated the left pre-SMA. Although our data only allow
for speculative interpretations, these results seem to suggest that
handling L1 as well requires a certain cognitive control, even
when proficiency in both languages is high and appropriation
occurred at an early age. This indicates the constant need for
bilinguals to monitor and regulate the use of both languages
(Abutalebi and Green, 2007, 2016; Grosjean and Li, 2013).

With respect to L2, it is interesting to note that the language
brain representation in the late bilinguals was consistently wider
than that of the early bilinguals and that the two groups shared a
cluster in the left inferior frontal gyrus, at the border between BA
45 and DLPFC. Nevertheless, no one cluster resulted from the
direct comparison between the two groups. However, the main
effect analysis in the late bilinguals’ group provided activation
clusters that did not result from the previous analysis and that
corresponded to the bilateral caudate nuclei, one of the regions
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included in the Abutalebi and Green’s (2007, 2016) language
control network. An overall observation, therefore, suggests that,
in spite of AoA and proficiency, L2 nevertheless requires the
involvement of the executive functions, although the cognitive
load appeared to be much greater when appropriation occurred
after the age of 6. Late bilinguals, for instance, activated the insula
in both hemispheres and control areas such as the pre-SMA.
However, we have to remember that these findings might reflect,
at least in part, the lower number of contrasts included in the
early bilinguals’ analysis.

CONCLUSION

Overall, results from these several meta-analyses lead us to
conclude that, globally, bilinguals performing language tasks
habitually recruit some additional brain regions with respect to
the classical language network areas. These additional regions
are involved in general cognitive functions, suggesting the
constant effort experienced by every bilingual to manage the
two languages. Even L1 and every other language possibly
acquired since early childhood seem to call for this control.
When dealing with two languages, there is clearly a need for
their coordination, with the constant inhibition of the not-in-
use language (Fabbro, 1999; Abutalebi andGreen, 2007; Grosjean
and Li, 2013). Nevertheless, in agreement with previous findings,
we generally observed that the cognitive effort is stronger for
L2, especially when this was learned late (e.g., Indefrey, 2006).
The cognitive effort appeared to be present even in proficient
bilinguals, although proficiency is likely to reduce the cognitive
load associated with late L2 appropriation. This indicates that
an early vs. late AoA significantly shapes the bilingual brain,
although high proficiency canmodulate the languages’ functional
representation (Fabbro and Cargnelutti, 2018).

The involvement of general cognitive areas is also, from
a clinical viewpoint, a relevant finding. Actually, the cases
of differential bilingual aphasia (where one language is more
affected than the other) have also been explained in terms of
control difficulties (e.g., Verreyt et al., 2013) and rehabilitation
programs also focusing on the general cognitive functions were
observed to promote language recovery after a brain insult (e.g.,
Hillis, 2001).

In this study, we did not carry out analyses for the main
language domains separately, first because our aim was to
identify the most relevant brain regions independently from the
assessed task, and, second, because there was not an adequate
number of studies to be included in these separate analyses.
However, as the different domains are expected to rely more
on either AoA (i.e., morpho-syntax and phonology/articulation)
or proficiency (i.e., lexico-semantics), future analyses should

investigate how these factors modulate the brain representation
of these domains.

Further, for reasons we have explained, we found lower-than-
expected significant activations in the comparison between the
two languages. Intraoperative stimulation mapping studies in
bilingual patients showed that the two languages shared many
language sites, whereas other sites appeared to be language-
specific (e.g., Roux and Trémoulet, 2002; Roux et al., 2004).
However, there was a certain inter-subject variability, which
could not be attributed uniquely to the different patients’
language history (e.g., AoA or proficiency). These reports
result from a clinical condition that might have induced
brain reorganization processes and we cannot, therefore, make
a direct comparison with our findings. Nevertheless, they
suggest the complex interplay between the diverse factors in
shaping the language brain representation in bilingual people.
Factors such as the linguistic distance between the two known
languages, the educational level, and possibly gender could
modulate the differential representation of L1 and L2. Future
studies should also address proficiency and other relevant
parameters, including language exposure and use, in a more
thorough way, in order to allow for a reliable assessment
of their role. This, in turn, will contribute to a better
understanding of the clinical reports of parallel and differential
impairment andwould, therefore, contribute to the rehabilitation
program setting.
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