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SYMMETRY AND UNIQUENESS OF SOLUTIONS TO SOME

LIOUVILLE-TYPE EQUATIONS AND SYSTEMS

CHANGFENG GUI, ALEKS JEVNIKAR, AMIR MORADIFAM

Abstract. We prove symmetry and uniqueness results for three classes of

Liouville-type problems arising in geometry and mathematical physics: asym-
metric Sinh-Gordon equation, cosmic string equation and Toda system, under

certain assumptions on the mass associated to these problems. The argument

is in the spirit of the Sphere Covering Inequality which for the first time is
used in treating different exponential nonlinearities and systems.

1. Introduction

In this paper, we shall consider three classes of Liouville-type equations and sys-
tems: asymmetric Sinh-Gordon equation, cosmic string equation and Toda system.
These problems arise in geometry and mathematical physics. We are mainly con-
cerned about the symmetry and uniqueness questions under certain assumptions
on the mass associated to these problems.

1.1. Asymmetric Sinh-Gordon equation. Consider the following version of the
asymmetric Sinh-Gordon equation

(1)

 −∆u = ρ
eu + α

|α|e
αu

´
Ω

(eu + eαu) dx
in Ω,

u = 0 on ∂Ω,

where α ∈ [−1, 1), α 6= 0, ρ > 0 is a parameter and Ω ⊂ R2 is a bounded domain
with smooth boundary ∂Ω. Equation (1) is known also as Neri’s mean field equation
and arises in the context of the statistical mechanics description of 2D-turbulence
introduced in [43]. In the model where the circulation number density is subject to
a probability measure, under a stochastic assumption on the vortex intensities one
obtains the following equation (see [42]):

(2)


−∆u = ρ

ˆ
[−1,1]

β
eβu P(dβ)˜

[−1,1]×Ω
eβu P(dβ) dx

in Ω,

u = 0 on ∂Ω,
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where u stands for the stream function of a turbulent Euler flow, P is a Borel prob-
ability measure defined in [−1, 1] describing the point vortex intensity distribution
and ρ > 0 is a physical constant associated to the inverse temperature. Equation
(1) is related to the latter model when P is supported in two points.

On the other hand, a deterministic assumption on the vortex intensities yields
the following model (see [51]):

(3)


−∆u = ρ

(
eu´

Ω
eu dx

+ α
|α|

eαu´
Ω
eαu dx

)
in Ω,

u = 0 on ∂Ω.

Concerning the analysis of the latter equation we refer the interested readers to
[24, 25, 26, 27, 29, 30, 31, 32, 47, 49]. The arguments presented here do not apply
to (3), and we postpone its analysis to a forthcoming paper.

Observe that by taking α = −1 in (1) we end up with the standard Sinh-Gordon
equation, while for P supported in a single point we derive the standard mean field
equation

(4)


−∆u = ρ

eu´
Ω
eu dx

in Ω,

u = 0 on ∂Ω,

which is related to the prescribed Gaussian curvature problem and Euler flows (see
[2, 13, 14] and [9, 35], respectively). The latter equation has been widely studied
and we refer to the surveys [40, 54]. We note that even though the equation in (4)
is related to geometric applications, the Dirichlet boundary conditions are usually
not natural in this geometric setting. Recently in [21, 22, 23] the authors proved
the Sphere Covering Inequality (see Theorem 2.5 below) which leads to several
symmetry and uniqueness results for the latter equation. The Sphere Covering
Inequality [21] will also be a crucial tool in this paper.

Returning to (1), some partial existence results and blow-up analysis was carried
out in [48, 50], while a complete existence result for (2) with suppP ⊂ [0, 1] was
given in [18]. On the other hand, we are not aware of any symmetry or uniqueness
results for the latter equation with the only exception of [52] where (3) is considered.
We present here several results in this direction, under natural assumptions both
on the parameter ρ and the domain Ω. Due to different features of problem (2)
depending on whether suppP ⊂ [0, 1] or suppP ⊂ [−1, 1] we will distinguish these
two cases in the discussion below. In the first situation we may rewrite (1) as

(5)


−∆u = ρ

eu + eau´
Ω

(eu + eau) dx
in Ω,

u = g(x) ≥ 0 on ∂Ω,

with a ∈ (0, 1). Our first result is the following.

Theorem 1.1. Let Ω ⊂ R2 be a bounded, simply-connected domain and g ∈ C(∂Ω)
be a non-negative function. Suppose ρ ≤ 4π. If u1 and u2 are two solutions of (5)
such that

(6)

ˆ
Ω

(eu1 + eau1) dx =

ˆ
Ω

(eu2 + eau2) dx,

then u1 ≡ u2.
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Corollary 1.2. Under the condition of Theorem 1.1, assume further Ω and g are
evenly symmetric about a line. Then, any solution of (5) must be evenly symmetric
about that line. In particular, if Ω is radially symmetric and g is a non-negative
constant, then u is radially symmetric.

We will exploit the fact that for suppP ⊂ [0, 1] equation (2) shares some features
with the mean field equation (4). Indeed we shall rewrite (2) in the form of (4) and
apply the Sphere Covering Inequality (see [21]) to get the desired results.

Remark 1.3. The argument for Theorem 1.1 can be adapted to treat the more
general case where the probability measure P in (2) is supported at (m+ 1) points,
i.e. 

−∆u = ρ
eu + ea1u + · · ·+ eamu´

Ω
(eu + ea1u + · · · eamu) dx

in Ω,

u = g ≥ 0 on ∂Ω,

with ai ∈ (0, 1) for all i. Indeed if ρ ≤ 8π

m+ 1
and

ˆ
Ω

(eu1 + ea1u1 + · · · eamu1) dx =

ˆ
Ω

(eu2 + ea1u2 + · · · eamu2) dx,

then we must necessarily have u1 ≡ u2. In particular, Corollary 1.2 also generalizes
to the above equation. The case where ai > 1 fore some i can be carried out as well
and we refer to Remark 1.5 for more details.

On the other hand, for the general case suppP ⊂ [−1, 1], the problem (2) sub-
stantially differs from the standard equation (4). In this case we may rewrite (1)
as

(7)


−∆u = ρ

eu − e−au´
Ω

(eu + e−au) dx
in Ω,

u = 0 on ∂Ω,

with a ∈ (0, 1]. Observe that u ≡ 0 is a solution of the latter problem. We indeed

show that for ρ ≤ 8π

1 + a
the trivial solution is the only solution.

Theorem 1.4. Suppose ρ ≤ 8π

1 + a
and Ω ⊂ R2 bounded, simply-connected. Then,

equation (7) admits only the trivial solution u ≡ 0.

The proof is based on the Sphere Covering Inequality (see Section 2 in [21] ).
Roughly speaking, letting v1 = u, v2 = −au we will consider a symmetrization of
v2 − v1 with respect to two suitable measures to get the conclusion.

Remark 1.5. Let us point out that in equations (5) and (7) we are considering
a < 1 and a ≤ 1 (respectively) due to the physical motivations. However, we
can treat the case a > 1 as well. More precisely, letting v = au in (5) we may
rewrite the latter equation in a form to which we can apply Theorem 1.2 with a new
parameter ρ̃ = aρ. Therefore, the conclusions of Theorem 1.1 and Corollary 1.2

still hold true for ρ ≤ 4π

a
and a > 1. On the other hand, one can easily see from

the proof of Theorem 1.4 that the assumption a ≤ 1 is not needed and we get the
same conclusion for a > 1.
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Remark 1.6. The same arguments clearly apply to the following version of (1):

(8)

{
−∆u = eu + α

|α|e
αu in Ω,

u = g(x) ≥ 0 on ∂Ω.

We have:

1. Let α = a ∈ (0, 1). Suppose Ω ⊂ R2 is a bounded, simply-connected domain
and g ∈ C(∂Ω) is a non-negative function. If u1 and u2 are two solutions
of (8) such that ˆ

Ω

eu1 dx =

ˆ
Ω

eu2 dx ≤ 4π,

then u1 ≡ u2.

Moreover, suppose that Ω and g are evenly symmetric about a line. Let
u be a solution of (8) Then, u is evenly symmetric about that line. In
particular, if Ω is radially symmetric and g is a non-negative constant,
then u is radially symmetric.

2. Let α = −a, a ∈ (0, 1]. Suppose Ω ⊂ R2 bounded, simply-connected. If u is
a solution of (8) with g = 0 such thatˆ

Ω

(
eu + e−au

)
dx ≤ 8π

1 + a
,

then u ≡ 0.

Moreover, similar results hold for a > 1 (see Remark 1.5).

The above results follow by suitably adapting the proofs of Theorem 1.1, Corol-
lary 1.2 and Theorem 1.4 and we omit the details here.

Finally, we have the following remark concerning the sharpness of the above
results.

Remark 1.7. Consider for simplicity the standard Sinh-Gordon equation with α =
−1 in (1). Even though the associated energy functional is coercive for ρ < 8π (see
[50]), we can not extend Theorem 1.1, Corollary 1.2 and Theorem 1.4 to the range
ρ ≤ 8π (as it holds for the standard mean field equation (4)). In [52] (Section 2)
the authors provide non-trivial solutions for (3) with ρ < 8π.

1.2. Cosmic String Equation. We will next discuss the following problem to
which we will refer to as the cosmic string equation:

(9)

{
−∆u = eau + h(x) eu in Ω,

u = g(x) ≥ 0 on ∂Ω,

with a > 0, and Ω ⊂ R2 is a smooth bounded domain containing the origin and h
is of the form

(10) h(x) = e−4πNG0(x),
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where N ∈ N and G0 is the Green’s function with pole at 0, i.e.

(11)

{
−∆G0(x) = δ0 in Ω,

G0(x) = 0 on ∂Ω.

Observe that

h > 0 in Ω \ {0} and h(x) ∼= |x|2N near 0.

Equation (9) describes the behavior of selfgravitating cosmic strings for a massive
W-boson model coupled with Einstein’s equation where a is a physical parameter
and N the string’s multiplicity (see [44, 57]). Observe that for a = 1 the equation
(9) is also related to the Gaussian curvature with conic singularities (see [54] and
references therein).

Many results concerning (9) have been established especially for the full plane
case. We refer to [11, 12, 57] for existence results, to [44, 45] for what concerns
symmetry issues, and to [56] for blow-up analysis. In particular, in [44, 45] the
authors provide necessary and sufficient conditions for the solvability of (9) in the
full plane in the context of radially symmetric solutions, depending on the values
of the total mass β =

´
R2

(
eau + |x|2Neu

)
dx. For N ∈ (−1, 0] it follows from a

moving plane argument that all the solutions to (9) are radially symmetric, under
suitable assumptions on the domain Ω. However, it remains an open problem if the
results in [44, 45] are sharp for the non-radial framework. We prove the following
result.

Theorem 1.8. Let Ω ⊂ R2 be a bounded, simply-connected domain, a > 0, N ≥ 0
and g ∈ C(∂Ω) be non-negative. Suppose u1 and u2 are two distinct solutions of
(9) such that

(12)

{ ´
Ω

(eau1 + eau2) dx ≤ 8π

a
if a ≥ 1,´

Ω
(eu1 + eu2) dx ≤ 8π if a < 1

Then u1 and u2 can not intersect, i.e. either

(13) u2 > u1 or u2 < u1 in Ω.

Corollary 1.9. Let Ω ⊂ R2 be a a bounded, simply-connected domain, a > 0,
N ≥ 0 and g ∈ C(∂Ω) be non-negative. Assume

(14) γ :=

{ ´
Ω
eau dx ≤ 4π

a
if a ≥ 1,´

Ω
eu dx ≤ 4π if a < 1.

Then (9) has a unique solution u for any γ satisfying (14). In particular, if 0 ∈ Ω
and Ω, g are evenly symmetric about a line passing through the origin, then u is
evenly symmetric about that line. Consequently, if Ω is radially symmetric about
the origin and g is a non-negative constant, then u is radially symmetric about the
origin.

The proof is based on a simple manipulation of equation (9) and the Sphere
Covering Inequality (see Theorem 2.5 below or [21]).



6 CHANGFENG GUI, ALEKS JEVNIKAR, AMIR MORADIFAM

Remark 1.10. Theorem 1.8 and Corollary 1.9 can be generalized for the following
more general equation (we refer to [45] for applications of this equation)

−∆u =

m∑
i=0

hi(x) eaiu in Ω,

u = g(x) ≥ 0 on ∂Ω,

where ai > 0 and

hi(x) = e−4πNiG0(x),

with Ni ≥ 0 for all i. Let aM = maxi{ai}. Using similar arguments as in the proofs
of Theorem 1.8, one can check the assumptions (12) and (14) (where m = 1) should
be replaced by ˆ

Ω

(eaMu1 + eaMu2) dx ≤ 16π

aM (m+ 1)
,

and ˆ
Ω

eaMu dx ≤ 8π

aM (m+ 1)
,

respectively.

1.3. Liouville-Type Systems. We also study the following class of Liouville-type
systems:

(15)


−∆u1 = Aeu1 −Beu2

−∆u2 = B′eu2 −A′eu1
in Ω,

u1 = u2 = g(x) on ∂Ω,

with g ∈ C(∂Ω) and

(16) A,A′, B,B′ > 0, A+A′ = B +B′ := M > 0.

Observe that we allow some of the above coefficients to be zero.
The latter system is deeply connected both with geometry and mathematical

physics. For example, by taking A = B′ = 2, B = A′ = 1 we recover the 2×2 Toda
system which has been extensively studied in the literature. This equation appears
in the description of holomorphic curves in CPN (see [8, 10, 39]). It also arises in
the non-abelian Chern-Simons theory in the context of high critical temperature
superconductivity (see [19, 56, 57]). The case A = B′ = 1 and B = A′ = τ with a
singular source was considered in [46] in unbounded domains.

For what concerns Toda-type systems we refer to [33, 37, 38] for blow-up analysis,
to [39] for classification issues, and to [6, 28, 41] for existence results. On the other
hand, we are not aware of any symmetry or uniqueness results for Liouville-type
systems alike (15). In this direction we provide the following result.

Theorem 1.11. Let (u1, u2) be a solution of (15) and (16). Let M be as defined
in (16). Suppose that Ω is a bounded, simply-connected domain andˆ

Ω

(eu1 + eu2) dx ≤ 8π

M
.
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Then u1 ≡ u2 ≡ u, where u is the unique solution to{
−∆u = Deu in Ω,

u = g(x) on ∂Ω,

and D := A−B = B′ −A′.

Remark 1.12. For Toda-type systems where A = B′ = 2, B = A′ = 1, the above
result asserts that if Ω is bounded, simply-connected andˆ

Ω

(eu1 + eu2) dx ≤ 8π

3
,

then u1 ≡ u2 ≡ u, where u is the unique solution to{
−∆u = eu in Ω,

u = g(x) on ∂Ω.

Arguing as in the proof of the Sphere Covering Inequality (see Section 2 below
or [21]), we will consider a symmetrization of u2 − u1 with respect to two suitable
measures to get the latter result. The uniqueness property will then follow by
applying the Sphere Covering inequality to the scalar equation.

A similar argument can be carried out for the following singular version of (15):

(17)


−∆u1 = Aeu1 −Beu2 − 4παδ0

−∆u2 = B′eu2 −A′eu1 − 4παδ0
in Ω,

u1 = u2 = g(x) on ∂Ω,

where α ≥ 0 and 0 ∈ Ω. Recall the definitions of M , D in (16) and in Theorem 1.11,
respectively. By using the Green’s function G0 with pole at 0 as in (11) we may
consider

(18) ũi(x) = u(x) + 4παG0(x)

which satisfies 
−∆ũ1 = Ah(x)eũ1 −Bh(x)eũ2

−∆ũ2 = B′h(x)eũ2 −A′h(x)eũ1

in Ω,

ũ1 = ũ2 = g(x) on ∂Ω,

with h(x) = e−4παG0(x). We have the following result.

Theorem 1.13. Let (u1, u2) be a solution of (17) with α ≥ 0 and (16). Let ũi be
as in (18). Suppose Ω is bounded, simply-connected andˆ

Ω

(
eũ1 + eũ2

)
dx ≤ 8π

M

Then u1 ≡ u2 ≡ u, where u is the unique solution to{
−∆u = Deu − 4παδ0 in Ω,

u = g(x) on ∂Ω.

The next remark concerns a possible generalization of the results we have ob-
tained so far for multiply-connected domains.
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Remark 1.14. All the previous results hold for multiply-connected domains with
constant boundary condition, i.e. g(x) = c ∈ R. This follows from the same
arguments and the Sphere Covering Inequality (Theorem 2.5) for multiply-connected
domains. See Remark 2.6 below.

The paper is organized as follows. In Section 2 we recall the main ingredients
of the Sphere Covering Inequality. In Section 3 we present our strategy for proving
the uniqueness result of Theorem 1.1, the symmetry result of Corollary 1.2, and
the uniqueness result of Theorem 1.4. In Section 4 we show how to get the no
intersection property of Theorem 1.8 and the symmetry property of Corollary 1.9.
In Section 5 we provide the proof of the uniqueness result inTheorems 1.11 and
1.13.

Notation

The symbol Br(p) will denote the open metric ball of radius r and center p.
Where there is no ambiguity, with a little abuse of notation we will write x and dx
to denote (x, y) ∈ R2 and the integration with respect to (x, y), respectively.

2. The Sphere Covering Inequality

In this section we recall the main ingredients of the Sphere Covering Inequality
proved in [21] as we will need them in the sequel. Roughly speaking, the latter
result asserts that the total area of two distinct surfaces with Gaussian curvature
equal to 1, conformal to the Euclidean unit disk with the same conformal factor
on the boundary, must cover the whole unit sphere after a proper rearrangement.
See [21] for more details. Let us start by recalling the standard Bol’s isoperimetric
inequality as in [53, 55] (see also [7] in its original form).

Proposition 2.1. Let Ω ⊂ R2 be a simply-connected set and u ∈ C2(Ω) be such
that

∆u+ eu ≥ 0 and

ˆ
Ω

eu dx ≤ 8π.

Then, for any ω ⊂⊂ Ω of class C1 it holds(ˆ
∂ω

e
u
2 dσ

)2

≥ 1

2

(ˆ
ω

eu dx

)(
8π −

ˆ
ω

eu dx

)
.

The basic function, which satisfies the above properties and will be used in the
sequel, is the following:

(19) Uλ(x) = −2 ln

(
1 +

λ2|x|2

8

)
+ 2 lnλ,

for λ > 0. Observe that

∆Uλ + eUλ = 0 and

ˆ
Br(0)

eUλ dx = 8π
λ2r2

8 + λ2r2
,

for all r > 0.
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Now the idea is to consider symmetric rearrangements with respect to two dis-
tinct measures. More precisely, let w ∈ C2(Ω) be such that

(20) ∆w + ew ≥ 0.

Then, any function φ ∈ C2(Ω) can be equimeasurably rearranged with respect to
the measures ew dx and eUλ dx (see [3]). Indeed, for t > minx∈Ω φ(x) let B∗t be the
ball centered at the origin such thatˆ

B∗
t

eUλ dx =

ˆ
{φ>t}

ew dx.

Then, if we let φ∗ : B∗t → R to be φ∗(x) = sup
{
t ∈ R : x ∈ B∗t

}
, it holds that

φ∗ is a symmetric equimeasurable rearrangement of φ with respect to the measures
ew dx and eUλ dx, i.e.

(21)

ˆ
{φ∗>t}

eUλ dx =

ˆ
{φ>t}

ew dx,

for all t > minx∈Ω φ(x). Moreover, by using Bol’s inequality stated in Proposition
2.1 we get the following estimate on the gradient of the rearrangement (see [21]).

Proposition 2.2. Let w ∈ C2(Ω) be such that it satisfies (20) with Ω ⊂ R2 being
simply-connected. Let Uλ be as in (19). Suppose φ ∈ C2(Ω) is such that φ ≡ C on
∂Ω. If φ∗ is the equimeasurable symmetric rearrangement of φ with respect to the
measures ew dx and eUλ dx, thenˆ

{φ∗=t}
|∇φ∗| dσ ≤

ˆ
{φ=t}

|∇φ| dσ,

for all t > minx∈Ω φ(x).
We shall also need the following counterpart of Bol’s inequality in the radial

setting (see [21]).

Proposition 2.3. Let ψ ∈ C0,1(BR(0)) be a strictly decreasing radial function
satisfyingˆ
∂Br(0)

|∇ψ| dσ ≤
ˆ
Br(0)

eψ dx for a.e. r ∈ (0, R) and

ˆ
BR(0)

eψ dx ≤ 8π.

Then (ˆ
∂BR(0)

e
ψ
2 dσ

)2

≥ 1

2

(ˆ
BR(0)

eψ dx

)(
8π −

ˆ
BR(0)

eψ dx

)
.

The main idea is then to relate the strictly decreasing radial function ψ with two
radial solutions Uλ1

, Uλ2
defined in (19) with λ2 > λ1, such that ψ = Uλ1

= Uλ2
on

∂BR(0).

Proposition 2.4. Uλ1 , Uλ2 defined in (19) with λ2 > λ1. Let ψ ∈ C0,1(BR(0)) be
a strictly decreasing radial function satisfying

(22)

ˆ
∂Br(0)

|∇ψ| dσ ≤
ˆ
Br(0)

eψ dx for a.e. r ∈ (0, R)

and ψ = Uλ1 = Uλ2 on ∂BR(0). Then, eitherˆ
BR(0)

eψ dx ≤
ˆ
BR(0)

eUλ1 dx or

ˆ
BR(0)

eψ dx ≥
ˆ
BR(0)

eUλ2 dx.
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Moreover, we have ˆ
BR(0)

(
eUλ1 + eUλ2

)
dx = 8π.

We can now state the Sphere Covering Inequality as in [21].

Theorem 2.5. Let Ω ⊂ R2 be a simply-connected set and let wi ∈ C2(Ω), i = 1, 2
be such that

(23) ∆wi + ewi = fi(x) in Ω,

where f2 ≥ f1 ≥ 0 in Ω. Suppose{
w2 ≥ w1, w2 6≡ w1 in Ω,

w2 = w1 on ∂Ω,

Then, it holds ˆ
Ω

(ew1 + ew2) dx ≥ 8π.

Moreover, if some fi 6≡ 0 then the latter inequality is strict.

The idea is to consider a symmetric rearrangement ϕ of w2 − w1 with respect
to the measures ew1 dx and eUλ1 dx for a suitableλ2. Then, by using equation (23)
and the properties of the rearrangements (see also Proposition 2.2), it is possible
to show that (22) holds true for ψ = Uλ1

+ ϕ. Applying then Proposition 2.4 one
can deduce thatˆ

Ω

(ew1 + ew2) dx ≥
ˆ
BR(0)

(
eUλ1 + eUλ2

)
dx = 8π.

See [21] for full details.

Remark 2.6. We point out that the Sphere Covering Inequality holds as long as
Bol’s inequality holds. Indeed, if ∆w+ew ≥ 0 in Ω which is simply-connected, then
Bol’s and Sphere Covering Inequalities hold in any region Ω1 ⊂ Ω for general bound-
ary data. In particular, Ω1 does not need to be simply-connected. Moreover, Bol’s
inequality and Sphere Covering inequalities hold for a multiply-connected domain
Ω, provided that we have constant boundary conditions (see [5]).

3. Asymmetric Sinh-Gordon equation

In this section we study uniqueness and symmetry of solutions of asymmetric
Sinh-Gordon equation (1), and prove Theorem 1.1 and Theorem 1.4. The first one
relies mainly on the Sphere Covering Inequality (see Theorem 2.5). On the other
hand, the second one is based on the arguments which yield the Sphere Covering
Inequality, which we collected in Section 2.

Let us start with the case suppP ⊂ [0, 1] which we recall here for convenience

(24)


−∆u = ρ

eu + eau´
Ω

(eu + eau) dx
in Ω,

u = g(x) ≥ 0 on ∂Ω,

with a ∈ (0, 1), ρ > 0, and g ∈ C(∂Ω).
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Proof of Theorem 1.1. Let u1 and u2 be solutions of equation (24) satisfying the
assumptions of Theorem (1.1). We aim to show that u1 ≡ u2. We proceed by
contradiction by assuming that this is not the case. Rewrite equation (24) as

∆u+ ρ
2eu´

Ω
(eu + eau) dx

= ρ
eu − eau´

Ω
(eu + eau) dx

.

Let

(25) v = u+ log 2 + log ρ− log

(ˆ
Ω

(eu + eau) dx

)
.

Then v satisfies

(26) ∆v + ev = f(u) := ρ
eu − eau´

Ω
(eu + eau) dx

.

It follows from (6) that there exists two regions Ω1,Ω2 ⊂ Ω (not necessarily simply-
connected) such that u1 > u2 in Ω1, u2 > u1 in Ω2, and u1 = u2 on ∂Ω1 ∪∂Ω2. We
have that v1, v2 defined by (25) satisfy

∆vi + evi = f(ui) in Ω.

Moreover

v1 > v2 in Ω1, v2 > v1 in Ω2 and v1 = v2 on ∂Ω1 ∪ ∂Ω2.

Since g ≥ 0, both solutions u1 and u2 are positive in Ω by the maximum principle.
By the latter fact it is also easy to see that

f(u1) > f(u2) > 0 in Ω1 and f(u2) > f(u1) > 0 in Ω2.

Therefore, by applying the Sphere Covering Inequality (Theorem 2.5, see also Re-
mark 2.6), we get (observe that fi 6≡ 0)ˆ

Ω

(ev1 + ev2) dx ≥
ˆ

Ω1

(ev1 + ev2) dx+

ˆ
Ω2

(ev1 + ev2) dx > 16π.

Recalling now the definition of v in (25) and (6) we have

4ρ =
2ρ´

Ω
(eu1 + eau1) dx

(ˆ
Ω

(eu1 + eau1) dx+

ˆ
Ω

(eu1 + eau1) dx

)
≥ 2ρ´

Ω
(eu1 + eau1) dx

ˆ
Ω

(eu1 + eu2) dx =

ˆ
Ω

(ev1 + ev2) dx > 16π.

Hence ρ > 4π, which is a contradiction. The proof is now complete. �

Proof of Corollary 1.2. Without loss of generality we can assume that Ω and g are
evenly symmetric with respect to the line y = 0. Suppose u is a solution of (5),
which is not evenly symmetric about y = 0. Then u1 = u and u2(x, y) = u(x,−y)
are two distinct solutions of (5) satisfying the condition (6). Thus it follows from
Theorem 1.1 that ρ > 4π. �

We consider now the general case suppP ⊂ [−1, 1] which yields to (7), i.e.:

(27)


−∆u = ρ

eu − e−au´
Ω

(eu + e−au) dx
in Ω,

u = 0 on ∂Ω,
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with a ∈ (0, 1), ρ > 0. We give here the proof of the uniqueness result for the trivial
solution u ≡ 0.

Proof of Theorem 1.4. Let u be a solution of (27). We will show that u ≡ 0 in Ω.
Assume by contradiction this is not the case and let

v1 = −au+ log ρ− log

(ˆ
Ω

(
eu + e−au

)
dx

)
,

v2 = u+ log ρ− log

(ˆ
Ω

(
eu + e−au

)
dx

)
.

(28)

Then we have

∆(v2 − v1) + (1 + a) (ev2 − ev1) = 0.

Letting further

(29) wi = vi + log(1 + a), i = 1, 2,

we deduce

(30) ∆(w2 − w1) + (ew2 − ew1) = 0.

Since u = 0 on ∂Ω, we get

(31) w1 = w2 = log(1 + a) + log ρ− log

(ˆ
Ω

(
eu + e−au

)
dx

)
on ∂Ω.

It follows that there exists at least one region Ω̃ ⊆ Ω (not necessarily simply-
connected) such that

(32)

{
w1 6= w2 in Ω̃,

w1 = w2 on ∂Ω̃,

and

(33) ∆(w2 − w1) + (ew2 − ew1) = 0 in Ω̃.

We point out that Ω̃ may coincide with Ω. Without loss of generality we may
assume w2 > w1. From equation (27) and the definitions of wi in (28) and (29) we
derive that

∆v1 + aev1 = aev2

and thus

(34) ∆w1 + ew1 =

(
1

1 + a
ew1 + aev2

)
> 0 in Ω.

We now proceed as in the proof of the Sphere Covering Inequality. Let λ2 > λ1 be
such that Uλ2

> Uλ1
in B1(0) and Uλ1

= Uλ2
on ∂B1(0), where Uλ is given as in

(19), and such that ˆ
Ω̃

ew1 dx =

ˆ
B1(0)

eUλ1 dx.

Since w1 satisfies (34) we can find a symmetric equimeasurable rearrangement ϕ∗

of w2−w1 with respect to the two measures ew1 dx and eUλ1 dx. See the discussion
after (20). In particular we haveˆ

{ϕ∗>t}
eUλ1 dx =

ˆ
{w2−w1>t}

ew1 dx
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for t ≥ 0. We first estimate the gradient of the rearrangement by Proposition 2.2,
then exploit equation (33), the equation satisfied by Uλ1 and the properties of the
rearrangements to obtainˆ

{ϕ∗=t}
|∇ϕ∗| dσ ≤

ˆ
{w2−w1=t}

|∇(w2 − w1)| dσ

=

ˆ
{w2−w1>t}

(ew2 − ew1) dx

=

ˆ
{ϕ∗>t}

eUλ1+ϕ∗
dx−

ˆ
{ϕ∗>t}

eUλ1 dx

=

ˆ
{ϕ∗>t}

eUλ1+ϕ∗
dx−

ˆ
{ϕ∗=t}

|∇Uλ1 | dσ,

for a.e. t > 0. Thereforeˆ
{ϕ∗=t}

|∇
(
Uλ1

+ ϕ∗
)
| dσ ≤

ˆ
{ϕ∗>t}

eUλ1+ϕ∗
dx,

for a.e. t > 0. Since ϕ∗ is decreasing by construction, Uλ1
+ ϕ∗ is a strictly

decreasing function. Moreover, by the above estimate we derive

(35)

ˆ
∂Br(0)

|∇
(
Uλ1

+ ϕ∗
)
| dσ ≤

ˆ
Br(0)

eUλ1+ϕ∗
dx for a.e. r > 0.

Furthermore, since ϕ∗ ≥ 0, we clearly haveˆ
B1(0)

eUλ1+ϕ∗
dx ≥

ˆ
B1(0)

eUλ1 dx.

By the latter estimate, (34) and (35) we can exploit Proposition 2.4 with ψ =
Uλ1

+ ϕ∗ to get ˆ
B1(0)

eUλ1+ϕ∗
dx ≥

ˆ
B1(0)

eUλ2 dx.

Thusˆ
Ω̃

(ew1 + ew2) dx =

ˆ
B1(0)

(
eUλ1 + eUλ1+ϕ∗

)
dx ≥

ˆ
B1(0)

(
eUλ1 + eUλ2

)
dx = 8π.

Recall now the definitions of wi in (28) and (29). We have

ρ(1 + a)´
Ω

(eu + e−au) dx

ˆ
Ω̃

(
eu + e−au

)
dx ≥ 8π,

and hence
8π

1 + a
≤ ρ´

Ω
(eu + e−au) dx

ˆ
Ω̃

(
eu + e−au

)
dx ≤ ρ.

The above inequality is indeed strict. To see this, we note that the equality would
yield the equality in (35) which corresponds to equality in Bol’s inequality in Propo-
sition 2.1 for w1 and consequently w1 should satisfy ∆w1 + ew1 = 0, which contra-

dicts (34). In view of the assumption ρ ≤ 8π

1 + a
, we therefore have shown u ≡ 0 in

Ω as desired. �
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4. Cosmic string equation

In this section we study the cosmic string equation

(36)

{
−∆u = eau + h(x) eu in Ω,

u = g(x) ≥ 0 on ∂Ω,

with a > 0 and h as in (10). We will rewrite this equation in a form suitable to
apply the Sphere Covering Inequality, Theorem 2.5, to prove Theorem 1.8.

Proof of Theorem 1.8. First suppose a > 1. Let u1 and u2 be two solutions of (36)
with a > 1, N ≥ 0 satisfying (12). We proceed by contradiction. Suppose there
exists Ω1,Ω2 ⊂ Ω (not necessarily simply-connected) such that

u1 > u2 in Ω1 and u2 > u1 in Ω2.

The equation (36) can be rewritten as

∆u+ 2eau = eau − h(x) eu.

Multiply this equation by a and let

(37) v = au+ log (2a) .

Then v satisfies

(38) ∆v + ev = f(u) := a
(
eau − h(x) eu

)
.

Let v1, v2 be defined by (37) (u replaced by u1 and u2, respectively). Then we have

∆vi + evi = f(ui) in Ω.

Furthermore, we get

v1 > v2 in Ω1, v2 > v1 in Ω2 and v1 = v2 on ∂Ω1 ∪ ∂Ω2.

Since g ≥ 0, it follows from the maximum principle that both solutions u1 and u2

are positive inside Ω. Note also that h(x) ≤ 1. It is now easy to see that

f(u1) > f(u2) > 0 in Ω1 and f(u2) > f(u1) > 0 in Ω2.

By the Sphere Covering Inequality (Theorem 2.5, see also Remark 2.6) we conclude
that ˆ

Ω

(ev1 + ev2) dx ≥
ˆ

Ω1

(ev1 + ev2) dx+

ˆ
Ω2

(ev1 + ev2) dx > 16π.

Using the expression of v in (37) we deduce

2a

ˆ
Ω

(eau1 + eau2) dx > 16π,

which contradicts the assumptionˆ
Ω

(eau1 + eau2) dx ≤ 8π

a
.

For what concerns the case a < 1 we write (36) in the form

∆u+ 2eu = (eu − eau) + (eu − h(x) eu) .

The argument is then developed as before so we skip the details. The proof is now
complete. �
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Proof of Corollary 1.9. Without loss of generality we assume that Ω and g are
evenly symmetric with respect to the line y = 0. Observe that the associated
Green’s function (and hence h, see (10)) is evenly symmetric with respect to the
line y = 0. We consider just the case a > 1 since for a < 1 one can proceed in
the same way. Suppose u is a solution of (5) satisfying (14), which is not evenly
symmetric about y = 0. Then u1 = u and u2(x, y) = u(x,−y) are two distinct
intersecting solutions of (9). It follows from Theorem 1.8 that

2

ˆ
Ω

eau dx =

ˆ
Ω

(eau1 + eau2) dx >
8π

a
.

which contradicts (14). �

5. Liouville-type systems in domains

In this section we consider the class of Liouville-type systems

(39)


−∆u1 = Aeu1 −Beu2

−∆u2 = B′eu2 −A′eu1
in Ω,

u1 = u2 = g(x) on ∂Ω,

where A,A′, B,B′ satisfy condition (16), and prove Theorem 1.11.

Proof of Theorem 1.11. Let (u1, u2) be a solution of (39). We will prove that there
exists a unique u solving a mean field equation as stated in Theorem 1.11 such that
u1 ≡ u2 ≡ u in Ω. Assume by contradiction u1 6≡ u2. As in the proof of Theorem
1.4, the strategy is to apply the argument of the Sphere Covering Inequality in
Theorem 2.5 (see Section 2) to the functions u1 and u2. We start by recalling that
the coefficients in (39) are such that A+A′ = B +B′ := M . Hence

∆(u2 − u1) +M (eu2 − eu1) = 0.

Letting

(40) wi = ui + logM, i = 1, 2,

we deduce that

(41) ∆(w2 − w1) + (ew2 − ew1) = 0,

and

(42) w1 = w2 = logM + g(x) on ∂Ω.

It follows that there exists at least one region Ω̃ ⊆ Ω (not necessarily simply-
connected) such that

(43)

{
w1 6= w2 in Ω̃,

w1 = w2 on ∂Ω̃,

and

(44) ∆(w2 − w1) + (ew2 − ew1) = 0 in Ω.

Without loss of generality we can assume w2 > w1 in Ω̃.
Using the first equation in (39), the definitions of wi in (29), and the fact that

M = A+A′ we get
∆u1 +Aeu1 = Beu2
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and hence

(45) ∆w1 + ew1 =

(
A′

A+A′
ew1 +Beu2

)
≥ 0 in Ω.

The rest of the argument is very similar to the proof of Theorem 1.4 so we will
skip the details. Let λ2 > λ1 be such that Uλ2

> Uλ1
in B1(0) and Uλ1

= Uλ2
on

∂B1(0), where Uλ is given as in (19), and
ˆ

Ω̃

ew1 dx =

ˆ
B1(0)

eUλ1 dx.

Recalling (45) we can find a symmetric equimeasurable rearrangement ϕ∗ of w2−w1

with respect to the two measures ew1 dx and eUλ1 dx. Reasoning as in the proof of
Theorem 1.4 we get

ˆ
∂Br(0)

|∇
(
Uλ1 + ϕ∗

)
| dσ ≤

ˆ
Br(0)

eUλ1+ϕ∗
dx for a.e. r > 0.

Furthermore Uλ1 +ϕ∗ is a strictly decreasing function. Hence from Proposition 2.4
to ψ = Uλ1 + ϕ∗ we deduce

ˆ
B1(0)

eUλ1+ϕ∗
dx ≥

ˆ
B1(0)

eUλ2 dx.

Thereforeˆ
Ω̃

(ew1 + ew2) dx =

ˆ
B1(0)

(
eUλ1 + eUλ1+ϕ∗

)
dx ≥

ˆ
B1(0)

(
eUλ1 + eUλ2

)
dx = 8π.

It follows from the definitions of wi that

M

ˆ
Ω̃

(eu1 + eu2) dx ≥ 8π.

Thus
8π

M
≤
ˆ

Ω̃

(eu1 + eu2) dx ≤
ˆ

Ω

(eu1 + eu2) dx.

Arguing as in the proof of Theorem 1.4 it is easy to show that the latter inequality
is strict, which is a contradiction. Hence u1 ≡ u2 in Ω. Letting u := u1 = u2 and
using the system (39) we get{

−∆u = Deu in Ω,

u = g(x) on ∂Ω,

where we recall D := A−B = A′−B′. Note that M := A+A′ = B+B′ and henceˆ
Ω

Deu dx ≤ 4π
D

M
= 4π

A−B
A+A′

< 4π.

Since Ω is simply-connected and the latter bound holds true, by the Sphere Covering
Inequality of Theorem 2.5 we deduce that u is unique. This concludes the proof of
Theorem 1.11. �
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We conclude this section by giving the proof of Theorem 1.13 regarding the
uniqueness of solutions of the system

(46)


−∆u1 = Aeu1 −Beu2 − 4παδ0

−∆u2 = B′eu2 −A′eu1 − 4παδ0
in Ω,

u1 = u2 = g(x) on ∂Ω.

Proof of Theorem 1.13. Let (u1, u2) be a solution of (46) with α ≥ 0. By using
the Green’s function G0 with pole in 0 as in (11) we desingularize the problem by
setting

ũi(x) = u(x) + 4παG0(x).

Indeed (46) is equivalent to

(47)


−∆ũ1 = Ah(x)eũ1 −Bh(x)eũ2

−∆ũ2 = B′h(x)eũ2 −A′h(x)eũ1

in Ω,

ũ1 = ũ2 = g(x) on ∂Ω,

where

(48) h(x) = e−4παG0(x).

Observe that

h > 0 in Ω \ {0} and h(x) ∼= |x|2α near 0.

Assume now by contradiction that ũ1 6≡ ũ2 and suppose, without loss of generality,

that ũ2 > ũ1 in Ω̃ ⊆ Ω. Recall that A+A′ = B +B′ := M . Therefore, by (47) we
have

∆(ũ2 − ũ1) +Mh(x)
(
eũ2 − eũ1

)
= 0.

Note also that h(x) ≤ 1. Since ũ2 > ũ1 in Ω̃ we deduce

∆(ũ2 − ũ1) +M
(
eũ2 − eũ1

)
≥ 0 in Ω̃.

With an argument similar to the one in the proof of Theorem 1.11 we get a con-
tradiction. Thus ũ1 ≡ ũ2 := ũ and ũ satisfies{

−∆ũ = Dh(x)eũ in Ω,

ũ = g(x) on ∂Ω,

where D := A−B = A′ −B′. Arguing as in the proof of Theorem 1.11 we deduce
that ũ is unique. �
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