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MILNOR-WOLF THEOREM FOR GROUP ENDOMORPHISMS

ANNA GIORDANO BRUNO AND PABLO SPIGA

Abstract. We study the growth of group endomorphisms and we prove an

analogue of Chou’s extension of Milnor-Wolf Theorem. Indeed, if G is an

elementary amenable group and φ : G → G is an endomorphism, then φ has
either polynomial or exponential growth.

This result follows by studying the growth of automorphisms of finitely

generated groups, where we prove some stronger results.

1. Introduction

For a group G, denote by F(G) the family of all finite non-empty subsets of G.
If φ : G → G is an endomorphism and F ∈ F(G), the growth function of φ with
respect to F is

γφ,F :N→ N
n 7→ |Tn(φ, F )|,

where

Tn(φ, F ) := Fφ(F ) · · ·φn−1(F ) := {f0φ(f1) · · ·φn−1(fn−1) : f0, . . . , fn−1 ∈ F}

is the n-th φ-trajectory of F (see [5, 6, 8]). Here, we define φ0(F ) := F for every
F ∈ F(G) and T0(φ, F ) := {eG} where eG is the identity element of G. When
eG ∈ F , we get Tn(φ, F ) ⊆ Tn+1(φ, F ) for every n ∈ N, and hence {Tn(φ, F )}n∈N
is an increasing (with respect to inclusion) sequence of subsets of G.

Since we want to measure the growth of the group endomorphism φ : G→ G by
using the growth functions γφ,F , we need the following equivalence relation.

Given two maps γ, γ′ : N → {z ∈ R : z ≥ 0}, we write γ � γ′ if there exists
C ∈ N such that γ(n) ≤ Cγ′(Cn) for every n ∈ N. We say that γ and γ′ are
equivalent, and write γ ∼ γ′, if γ � γ′ and γ′ � γ; indeed, ∼ is an equivalence
relation. Routine computations show that, for every α, β ∈ {z ∈ R : z ≥ 0},
nα ∼ nβ if and only if α = β; moreover, for every a, b ∈ {z ∈ R : z > 1}, an ∼ bn,
thus one can consider any convenient exponential such as en.

A map γ : N→ {z ∈ R : z ≥ 0} is called:

(a) polynomial if γ(n) � nd for some d ∈ N \ {0};
(b) exponential if γ(n) ∼ en;
(c) intermediate if nd � γ(n) for every d ∈ N \ {0}, γ(n) � en and en 6� γ(n).
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2 ANNA GIORDANO BRUNO AND PABLO SPIGA

Our definition here slightly differs from other definitions that can be found in the
literature, as [4, 5, 8]. These small differences do not matter for the content of this
paper.

Going back to our setting, for every F ∈ F(G), we have that

|F | ≤ γφ,F (n) ≤ |F |n for each n ∈ N \ {0},

hence the growth of γφ,F is always at most exponential.

Definition 1.1 (See [4, 5, 8]). Let G be a group and let φ : G → G be an
endomorphism. Then:

(a) φ has polynomial growth if γφ,F is polynomial for every F ∈ F(G);
(b) φ has exponential growth if there exists F0 ∈ F(G) such that γφ,F0 is expo-

nential;
(c) φ has intermediate growth if γφ,F is not exponential for every F ∈ F(G)

and there exists F0 ∈ F(G) such that γφ,F0
is intermediate.

Two group endomorphisms φ : G → G and ψ : H → H have the same growth
type if φ and ψ are both polynomial, or both exponential, or both intermediate;
moreover, the growth type of φ is smaller than the growth type of ψ if for every
F ∈ F(G) there exists F ′ ∈ F(H) with γφ,F � γψ,F ′ .

For simplicity, we say that φ is subexponential if φ has either polynomial or
intermediate growth.

For a group endomorphism φ : G → G and F ∈ F(G), the algebraic entropy of
φ with respect to F is

H(φ, F ) := lim
n→∞

log γφ,F (n)

n
(this limit exists in view of [5, Lemma 5.1.1]). The algebraic entropy of φ is

h(φ) := sup
F∈F(G)

H(φ, F ).

It was proved in [5, Proposition 5.4.3] that H(φ, F ) > 0 if and only if γφ,F is
exponential, and

(1) h(φ) > 0 if and only if φ has exponential growth.

Equivalently, h(φ) = 0 if and only if φ has subexponential growth.

The above notion of growth for group endomorphisms was inspired by the classic
one. Indeed, given a finitely generated group G and a finite set of generators S of
G, for every g ∈ G, denote by `S(g) the smallest ` ∈ N \ {0} with

g = sε11 s
ε2
2 · · · s

ε`
` ,

where s1, . . . , s` ∈ S and ε1, . . . , ε` ∈ {−1, 1}. In particular, `S(g) is the length of a
shortest word representing g in the alphabet S ∪ S−1, where S−1 := {s−1 : s ∈ S}.
By abuse of notation, we let `S(eG) := 0. The growth function of G with respect
to S is

γS :N→ N
n 7→ |BS(n)|,

where

BS(n) := {g ∈ G : `S(g) ≤ n}
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is the ball of radius n in the word metric of G determined by the generating set S.
Note that BS(0) = {eG} and BS(1) = S ∪ S−1 ∪ {eG}.

Routine computations show that γS ∼ γS′ , for every finite generating sets S and
S′ of G. This observation allows us to say that G has polynomial (respectively,
exponential, intermediate) growth if γS is polynomial (respectively, exponential,
intermediate), and to notice that this definition does not depend upon S.

We mention the famous Milnor Problem on group growth (see [18]):

(i) Are there finitely generated groups of intermediate growth?
(ii) What are the finitely generated groups of polynomial growth?

Part (i) was solved by Grigorchuk [10] by constructing his famous examples of
finitely generated groups with intermediate growth. Part (ii) was solved by Gro-
mov [12] by proving that a finitely generated group has polynomial growth if and
only if it is virtually nilpotent; in the sequel we refer to this result as Gromov The-
orem. Pioneering the work of Gromov, Milnor [19] proved that a finitely generated
soluble group of subexponential growth is polycyclic, while Wolf [20] showed that a
polycyclic group of subexponential growth is virtually nilpotent, so it has polyno-
mial growth by Gromov Theorem. As customary, we call Milnor-Wolf Theorem the
fact that a finitely generated soluble group has either polynomial or exponential
growth. Later, Chou [2] extended this result to elementary amenable group.

The main result of this paper is a dynamic version of Chou’s extension of Milnor-
Wolf Theorem:

Theorem 1.2. If G is an elementary amenable group and φ : G → G is an
endomorphism, then φ has either exponential or polynomial growth.

The proof of Theorem 1.2 (see Theorem 8.6 below) is rather involved and uses
the work of Gromov [12] and some ideas of Grigorchuk [11] and Milnor [19]. In our
opinion the most interesting case of Theorem 1.2 is when G is finitely generated
and φ is an automorphism; under these assumptions we prove a stronger statement
that seems to be of independent interest (see Proposition 5.2 below):

Theorem 1.3. Let G be a finitely generated elementary amenable group, let φ :
G → G be an automorphism, and let 〈G,φ〉 the subgroup of the holomorph G o
Aut(G) of G generated by G and φ. Then either φ has exponential growth or 〈G,φ〉
is virtually nilpotent. In the latter case, φ is polynomial.

(For more details on the definition of 〈G,φ〉 we refer to the first paragraph of
Section 5.)

Both of these theorems are inspired by our preliminary investigation in [8] where
we extended Gromov Theorem and Milnor-Wolf Theorem to arbitrary groups G,
by showing that the identity automorphism idG has polynomial growth precisely
when G is locally virtually nilpotent and that if G is locally virtually soluble then
idG has either exponential or polynomial growth.

In the light of Theorem 1.2 and in the spirit of Milnor Problem, we pose the
following:

Problem 1.4 (See [8]). Characterize the groups admitting no endomorphism of
intermediate growth.

We conclude this introductory section by highlighting another consequence of
our work.
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Theorem 1.5. Let G be a finitely generated elementary amenable group and let
φ : G → G be an automorphism of polynomial growth. Then there exists d ∈ N
(which depends on G and φ only) such that γφ,F ∼ nd, for every finite generating
set F of G.

The number d in Theorem 1.5 can be inferred from Theorem 1.3 (see also Propo-
sition 5.2) and the work of Grigorchuk on growth in cancellative semigroups (see [11,
Theorem 2]). In fact, d can be computed with the Bass-Guivarc’h formula [1, 13]
applied to the virtually nilpotent group 〈G,φ〉.

Theorem 1.5 implies in particular that if G is a finitely generated elementary
amenable group and φ : G → G is an automorphism of polynomial growth, then
γφ,F ∼ γφ,F ′ for every pair of finite generating sets F and F ′ of G.

So Theorem 1.5 partially answers the following open problem.

Problem 1.6. Let G be a finitely generated group, let φ : G→ G be an automor-
phism, and let F and F ′ be any two finite generating sets of G. Is it always true
that γφ,F ∼ γφ,F ′?

2. Background on finitely generated groups

In this section we collect useful known results on finitely generated groups, that
we frequently use in the paper. We start with the following consequence of Schreier
Lemma.

Lemma 2.1. If G is a finitely generated group and H is a subgroup of G having
finite index, then H is finitely generated.

The lower central series of a group G is defined inductively by γ1(G) := G
and γn+1(G) := [γn(G), G] for every n ∈ N \ {0}. Each γn(G) is a characteristic
subgroup of G. The group G is nilpotent if γc+1(G) = 1 for some c ∈ N. We say
that G has nilpotency class c if c ∈ N is the minimum such that γc+1(G) = 1.

It is easy to verify that subgroups and quotients of nilpotent groups are nilpotent.
Moreover, we use the following basic property of nilpotent groups.

Lemma 2.2. Let G be a group and let N be a normal subgroup of G. If G/N is
nilpotent of nilpotency class c ∈ N, then γc+1(G) ≤ N .

Given a group G, the torsion t(G) of G is the set {g ∈ G : g has finite order}.
When G is nilpotent, t(G) is a subgroup of G (see [17, Page 31]). Moreover, a
torsion finitely generated nilpotent group is finite (see [17, Proposition 2.19]).

Given a property P, the group G is said to be virtually P if there is a finite
index subgroup H ≤ G such that H has property P.

In particular, G is virtually nilpotent if it admits a nilpotent subgroup H of finite
index; equivalently, G admits a normal nilpotent subgroup of finite index. Routine
computations show that subgroups and quotients of virtually nilpotent groups are
virtually nilpotent.

We recall that a group G is Noetherian if each subgroup of G is finitely generated.
It is known that every finitely generated nilpotent group is Noetherian (see [17,
Theorem 2.18]). It is easy to extend this property to the following:

Lemma 2.3. Every subgroup H of a finitely generated virtually nilpotent group G
is finitely generated.
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For a group G, the derived series is defined inductively by G(0) := G and
G(n+1) := [G(n), G(n)] for every n ∈ N. Each G(n) is a characteristic subgroup
of G. The group G is soluble if G(d) = 1 for some d ∈ N. We say that G has derived
length d if d ∈ N is the minimum such that G(d) = 1.

Subgroups and quotients of soluble groups are soluble. Moreover, we recall that
a torsion finitely generated soluble group is necessarily finite (see [16, 1.3.5]).

A group G is virtually soluble if it admits a soluble subgroup H of finite index;
equivalently, G admits a soluble normal subgroup of finite index. As for virtu-
ally nilpotent groups, routine computations show that subgroups and quotients of
virtually soluble groups are virtually soluble.

We recall the following basic observation (see [19, Lemma 2]).

Lemma 2.4. Let G be a finitely generated soluble group and let A be an abelian
normal subgroup of G. If the quotient G/A has a finite presentation, then there exist
finitely many elements α1, . . . , α` ∈ A so that every element of A can be expressed
as a product of conjugates of the αj in G.

A group G is polycyclic if it has a normal series

1 = Gn CGn−1 C · · ·CG1 = G

with cyclic factor groups Gi/Gi+1, for each i ∈ {1, . . . , n − 1}. A soluble group is
Noetherian if and only if it is polycyclic (see [17, Proposition 2.10]).

Subgroups and quotients of polycyclic groups are polycyclic. It is known that
every virtually polycyclic group is finitely presented.

We recall the following useful fact (see [17, Theorem 2.12]).

Theorem 2.5. A polycyclic group G contains a finite index torsion-free normal
subgroup N .

The class EG of elementary amenable groups was introduced by Day [3] as the
smallest class of groups containing the finite groups and the abelian groups which is
closed under taking subgroups, quotients, group extensions and direct limits. Chou
[2] showed that EG can be constructed from finite groups and abelian groups by
applying only group extensions and direct limits.

It is known that virtually soluble groups are elementary amenable.

Our next lemma shows that among all finite index nilpotent (respectively, sol-
uble, polycyclic, elementary amenable) subgroups of a finitely generated virtually
nilpotent (respectively, soluble, polycyclic, elementary amenable) group G, we may
always select one that is characteristic in G.

Lemma 2.6. Let P be a property of groups that is stable under taking finite index
subgroups. If G is a finitely generated virtually P group, then there exists a finite
index characteristic subgroup H of G with property P.

Proof. Let H be a subgroup of G with property P and |G : H| = k finite. As a
finitely generated group has only finitely many subgroups of index k, the subgroup
N obtained as intersection of all subgroups of G of index k is a characteristic
subgroup of G. Moreover, N has finite index in G and has property P. �
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3. Background on growth and entropy

In this section we first see that the growth of γφ,F is either bounded above by an
absolute constant or at least linear. Then we recall known results and properties
about the growth of group endomorphisms and the algebraic entropy, that we use
in the main part of the paper.

Proposition 3.1. Let G be a group, let φ : G → G be an endomorphism and let
F ∈ F(G). Then one of the following holds:

(a) there exists a constant C > 0 such that γφ,F (n) ≤ C for every n ∈ N,
(b) γφ,F (n) ≥ n+ 1 for every n ∈ N.

Proof. First observe that γφ,F is monotone increasing. If γφ,F is strictly increasing,
then γφ,F (n) ≥ n + 1 for every n ∈ N. In particular, we may assume that γφ,F is
not strictly increasing, and hence there exists n0 ∈ N such that

|Tn0(φ, F )| = |Tn0+1(φ, F )|.

Select once and for all f̄ ∈ F . Since Tn0+1(φ, F ) = Tn0(φ, F )φn0(F ), we have

(2) Tn0+1(φ, F ) = Tn0
(φ, F )φn0(f̄).

We prove, by induction on m ∈ N \ {0}, that

(3) Tn0+m(φ, F ) = Tn0
(φ, F )φn0(f̄)φn0+1(f̄) · · ·φn0+m−1(f̄).

The case m = 1 is Eq. (2). Suppose that m ≥ 2. The inductive hypothesis yields

Tn0+m(φ, F ) = Fφ(Tn0+m−1(φ, F ))

= Fφ(Tn0
(φ, F )φn0(f̄)φn0+1(f̄) · · ·φn0+m−2(f̄))

= Fφ(Tn0(φ, F ))φn0+1(f̄)φn0+2(f̄) · · ·φn0+m−1(f̄)

= Tn0+1(φ, F )φn0+1(f̄)φn0+2(f̄) · · ·φn0+m−1(f̄)

= Tn0(φ, F )φn0(f̄)φn0+1(f̄)φn0+2(f̄) · · ·φn0+m−1(f̄).

Eq. (3) yields

γφ,F (n) ≤ |Tn0
(φ, F )| = γφ,F (n0)

for every n ∈ N and the lemma follows by taking C := γφ,F (n0). �

It is easy to show that, for the functions γφ,F , our definition of � is equivalent
to other definitions that can be found in the literature (e.g., see [17, page 4]).

For a group G and an endomorphism φ : G → G, we say that a subgroup H
of G is φ-invariant (respectively, φ-stable) if φ(H) ⊆ H (respectively, φ(H) = H).
Clearly, when φ is an automorphism, every characteristic subgroup of G is φ-stable.
In what follows, we denote by φ �H the restriction of φ to the φ-invariant subgroup
H.

The next useful observation is a direct consequence of the definitions.

Lemma 3.2. Let G be a group, let φ : G → G be an endomorphism and let H be
a φ-invariant subgroup of G. Then:

(a) the growth type of φ �H is smaller than the growth type of φ;
(b) if H is normal in G and φ̄ : G/H → G/H is the endomorphism induced by φ,

then the growth type of φ̄ is smaller than the growth type of φ.
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The following result is fundamental for the proof of our main theorems. Indeed,
when we have a group endomorphism φ : G→ G of subexponential growth and we
aim to prove that φ has polynomial growth, Lemma 3.3 let us reduce to finitely
generated groups.

For a group endomorphism φ : G→ G and F ∈ F(G), let

V (φ, F ) := 〈F, φ(F ), φ2(F ), . . . , φn(F ), . . .〉

Lemma 3.3 (See [8, Corollary 4.4]). Let G be a group and let φ : G → G be an
endomorphism. If φ has subexponential growth (i.e., h(φ) = 0), then V (φ, F ) is
finitely generated for every F ∈ F(G).

It is known (e.g., see [5, Proposition 5.1.8]) that if φ : G → G is a group
endomorphism, then h(φn) = nh(φ) for every n ∈ N \ {0}. This has the following
consequence in view of Eq. (1).

Lemma 3.4. Let G be a group, let φ : G → G be an endomorphism and let
n ∈ N \ {0}. Then φ has subexponential growth if and only if φn has subexponential
growth.

In the next sections the so-called Algebraic Yuzvinski Formula plays a crucial
role. Therefore, we recall this fundamental result on algebraic entropy of abelian
groups.

Let f(X) be a polynomial in Z[X] of degree n ≥ 1. As C is algebraically closed,
we may write

f(X) = s

n∏
i=1

(X − λi),

with s ∈ Z and λ1, . . . , λn ∈ C. The logarithmic Mahler measure of f(X) is

m(f(X)) := log |s|+
∑

i∈{1,...,n}
with |λi|>1

log |λi|.

This invariant is closely related to the algebraic entropy of endomorphisms of
abelian groups. Indeed, the Mahler measure of a linear transformation φ of a
finite dimensional rational vector space Qn, n ∈ N \ {0}, is defined as follows. Let
g(X) ∈ Q[X] be the characteristic polynomial of φ. Then there exists a smallest
s ∈ N \ {0} such that sg(X) ∈ Z[X] (so sg(X) is primitive). The Mahler measure
of φ is

m(φ) := m(sg(X)).

Theorem 3.5 (Algebraic Yuzvinski Formula, see [9]). Let n ∈ N \ {0} and let
φ : Qn → Qn be an endomorphism, then h(φ) = m(φ).

The following lemma can be deduced from [7, Proposition 3.7]. We use it to
extend an automorphism of a finitely generated free abelian group, that is, Zn for
some n ∈ N, to an automorphism of Qn in order to apply the Algebraic Yuzvinski
Formula.

Lemma 3.6. Let G be a torsion-free abelian group, let φ : G→ G be an endomor-
phism and let φ⊗ idQ be the unique extension of φ to the injective hull G⊗Z Q of
G. Then h(φ) = h(φ⊗ idQ) and φ has the same growth type of φ⊗ idQ.

In what follows we need the following result due to Kronecker.
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Theorem 3.7 (See [15]). Let f(X) ∈ Z[X] be a monic polynomial with roots
α1, . . . , αk ∈ C. If |αi| = 1 for every i ∈ {1, . . . , k}, then αi is a root of unity for
every i ∈ {1, . . . , k}.

4. Reduction to automorphisms

By the next proposition, an injective endomorphism of subexponential growth
is necessarily an automorphism.

Proposition 4.1. Let G be a group and let φ : G → G be an injective endomor-
phism. If φ is not surjective, then φ has exponential growth.

Proof. Suppose that φ(G) < G. Let f ∈ G \ φ(G) and set F := {eG, f}. We claim
that, for n ∈ N \ {0}, we have

γφ,F (n) = 2n;

from this it immediately follows that φ has exponential growth. We argue by
induction on n. If n = 1, we have γφ,F (1) = |F | = 2 = 21. Assume now that
γφ,F (n) = 2n. Observe that this implies that the 2n many products

e1φ(e2) · · ·φn−1(en) (for e1, . . . , en ∈ F )

are all distinct. Let e1, . . . , en+1, e
′
1, . . . , e

′
n+1 ∈ F and suppose that

(4) e1φ(e2) · · ·φn−1(en)φn(en+1) = e′1φ(e′2) · · ·φn−1(e′n)φn(e′n+1).

Multiplying both sides of this equation by the subgroup φ(G), we get

e1φ(G) = e′1φ(G).

As e1, e
′
1 ∈ F = {eG, f} and f /∈ φ(G), we get e1 = e′1. Therefore, by simplifying

e1 = e′1 on both sides of Eq. (4), we deduce

φ(e2φ(e3) · · ·φn−2(en)φn−1(en+1)) = φ(e2) · · ·φn−1(en)φn(en+1)

= φ(e′2) · · ·φn−1(e′n)φn(e′n+1)

= φ(e′2φ(e′3) · · ·φn−2(e′n)φn−1(e′n+1)).

Since φ is injective, we obtain

e2φ(e3) · · ·φn−2(en)φn−1(en+1) = e′2φ(e′3) · · ·φn−2(e′n)φn−1(e′n+1)

and the inductive hypothesis gives ei = e′i for every i ∈ {2, . . . , n + 1}. Thus
γφ,F (n+ 1) = 2n+1. �

We see now that the group endomorphism φ : G→ G has the same growth type
of the endomorphism φ̄ : G/Ker(φ)→ G/Ker(φ) induced by φ.

Lemma 4.2. Let G be a group, let φ : G → G be an endomorphism and let
φ̄ : G/Ker(φ)→ G/Ker(φ) be the endomorphism induced by φ. Let F ∈ F(G) and
let F̄ be the projection of F on G/Ker(φ). Then

(5) γφ,F (n) ≤ |F |γφ̄,F̄ (n− 1) ≤ |F |γφ,F (n− 1)

for each n ∈ N \ {0}. In particular,

γφ,F ∼ γφ̄,F̄ , H(φ, F ) = H(φ̄, F̄ ), h(φ) = h(φ̄).



MILNOR-WOLF THEOREM FOR GROUP ENDOMORPHISMS 9

Proof. Set K := Ker(φ). We denote by ¯ : G → G/K the natural projection of G
onto G/K, and we use the usual “bar” notation.

Let S be a subset of G. We claim that

(6) |φ(S)| = |S̄|.
Indeed, for x, y ∈ S, we have φ(x) = φ(y) if and only if xy−1 ∈ K; this in turn

happens if and only if xy−1 = 1, that is, x̄ = ȳ.
Now, let F ∈ F(G) and n ∈ N. From Eq. (6) applied with S replaced by

Tn(φ, F ), we get

(7) |φ(Tn(φ, F ))| = |Tn(φ, F )| = |Tn(φ̄, F̄ )|.
From Eq. (7) the first part of the lemma immediately follows. In fact, given n ∈
N \ {0}, we have

γφ,F (n) = |Tn(φ, F )| = |Fφ(Tn−1(φ, F ))| ≤ |F ||φ(Tn−1(φ, F ))|
= |F ||Tn−1(φ̄, F̄ )| = |F |γφ̄,F̄ (n− 1) ≤ |F |γφ,F (n− 1).

From these inequalities, we see that if γφ̄,F̄ (respectively, γφ,F ) is bounded above by
an absolute constant, then so is γφ,F (respectively, γφ̄,F̄ ). In particular, γφ,F ∼ γφ̄,F̄ .
Suppose that γφ,F and γφ̄,F̄ are not bounded above by an absolute constant. Then
Proposition 3.1 yields γφ̄,F̄ (n) ≥ n+ 1, for every n ∈ N. Now, a moment’s thought
yields

|F |γφ̄,F̄ (n− 1) ≤ γφ̄,F̄ (Cn)

for every n ∈ N \ {0}, for some absolute constant C > 0. Thus

γφ,F (n) ≤ |F |γφ̄,F̄ (n− 1) ≤ γφ̄,F̄ (Cn)

for every n ∈ N \ {0}, and hence γφ,F � γφ̄,F̄ . As it is clear that γφ̄,F̄ � γφ,F , we
get γφ,F ∼ γφ̄,F̄ .

From Eq. (5), we obtain

H(φ, F ) = lim
n→∞

log γφ,F (n)

n
= lim
n→∞

log γφ̄,F̄ (n)

n
= H(φ̄, F̄ )

and hence h(φ) = h(φ̄). �

For a group G and an endomorphism φ : G→ G, let

(8) Ker∞(φ) :=
⋃

n∈N\{0}

Ker(φn).

It is straightforward to verify that

φ(Ker∞(φ)) ⊆ Ker∞(φ) and φ−1(Ker∞(φ)) = Ker∞(φ).

Moreover, the induced endomorphism φ̄ : G/Ker∞(φ)→ G/Ker∞(φ) is injective.

Lemma 4.3. Let G be a group, let φ : G → G be an endomorphism and let
φ̄ : G/Ker∞(φ) → G/Ker∞(φ) be the endomorphism induced by φ. Assume there
exists n0 ∈ N \ {0} with Ker∞(φ) = Ker(φn0). Let F ∈ F(G) and let F̄ be the
projection of F on G/Ker∞(φ). Then

γφ,F (n) ≤ |F |n0γφ̄,F̄ (n− n0) ≤ |F |n0γφ,F (n− n0),

for every n ∈ N with n ≥ n0. In particular,

γφ,F ∼ γφ̄,F̄ , H(φ, F ) = H(φ̄, F̄ ), h(φ) = h(φ̄).
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Proof. Set K := Ker∞(φ). For n ∈ N \ {0}, let Kn := Ker(φn) and denote by
φ̄n : G/Kn → G/Kn the endomorphism induced by φ on G/Kn and by πn : G →
G/Kn the natural projection. Applying Lemma 4.2 inductively, for every n ∈ N
with n ≥ n0, we get

γφ,F (n) ≤ |F |γφ̄1,π1(F )(n− 1)

≤ |F |(|F |γφ̄2,π2(F )(n− 2)) ≤ · · · ≤ |F |n0γφ̄n0 ,πn0 (F )(n− n0).

As K = Ker(φn0), we have πn0(F ) = F̄ and φ̄n0 = φ̄ and hence

γφ,F (n) ≤ |F |n0γφ̄,F̄ (n− n0).

The inequality γφ̄,F̄ (n− n0) ≤ γφ,F (n− n0) is clear.
The rest of the proof follows verbatim the proof of Lemma 4.2. �

Lemma 4.4. Let G be a group and let φ : G→ G be an endomorphism. If Ker∞(φ)
is finitely generated, then Ker∞(φ) = Ker(φn0) for some n0 ∈ N \ {0}.

Proof. Let k1, . . . , k` be a family of generators for Ker∞(φ). From the definition
of Ker∞(φ) in Eq. (8), for every i ∈ {1, . . . , `}, there exists ti ∈ N \ {0} with
ki ∈ Ker(φti). Now, consider

n0 := max{ti : i ∈ {1, . . . , `}}

and observe that k1, . . . , k` ∈ Ker(φn0). Therefore

Ker(φn0) ≤ Ker∞(φ) = 〈k1, . . . , k`〉 ≤ Ker(φn0)

and hence Ker∞(φ) = Ker(φn0). �

Lemma 4.5. Let G be a Noetherian group and let φ : G→ G be an endomorphism.
Then Ker∞(φ) = Ker(φn0) for some n0 ∈ N \ {0}.

Proof. Since G is Noetherian, Ker∞(φ) is finitely generated and hence Ker∞(φ) =
Ker(φn0) for some n0 ∈ N \ {0} by Lemma 4.4. �

Corollary 4.6. Let G be a finitely generated virtually nilpotent group and let φ :
G→ G be an endomorphism. Then Ker∞(φ) = Ker(φn0) for some n0 ∈ N \ {0}.

Proof. By Lemma 2.3, G is Noetherian, so Lemma 4.5 applies. �

The following lemma is more general than Corollary 4.6. On the other hand,
it does not cover Lemma 4.5 because there exist Noetherian groups that are not
finitely presented. (For instance, a Tarski monster is not finitely presented and
is clearly Noetherian because the only proper non-identity subgroups are cyclic of
prime order.)

Lemma 4.7. Let G be a finitely generated group, let φ : G → G be an endo-
morphism, and assume that G/Ker∞(φ) is finitely presented. Then Ker∞(φ) =
Ker(φn0) for some n0 ∈ N \ {0}.

Proof. Let K := Ker∞(φ) and Kn := Ker(φn) for every n ∈ N \ {0}. We denote by
¯ : G→ G/K the natural projection of G onto G/K = Ḡ. Let g1, . . . , gκ be a finite
set of generators for G. Observe that ḡ1, . . . , ḡκ is a finite set of generators for Ḡ.
As Ḡ is finitely presented, Ḡ has a finite presentation (in the generators ḡ1, . . . , ḡκ):

Ḡ = 〈x1, . . . , xκ : r1(x1, . . . , xκ), . . . , r`(x1, . . . , xκ)〉.
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For i ∈ {1, . . . , `}, let ki := ri(g1, . . . , gκ) and observe that ki ∈ K because

k̄i = ri(ḡ1, . . . , ḡκ) = 1.

We claim that

K = 〈kgi : i ∈ {1, . . . , `}, g ∈ G〉.
Let us denote

H := 〈kgi : i ∈ {1, . . . , `}, g ∈ G〉.
As ki ∈ K and K EG, we have that H ≤ K. We prove the reverse inclusion. Let
k ∈ K. Since G is generated by g1, . . . , gκ, the element k must be written as a word
in g1, . . . , gκ, that is, k = w(g1, . . . , gκ) for some word w(x1, . . . , xκ). Now,

eḠ = k̄ = w(g1, . . . , gκ) = w(ḡ1, . . . , ḡκ)

and hence, directly from the definition of group-presentation, the word w(x1, . . . , xκ)
lies in the normal closure

〈ri(x1, . . . , xκ)x : i ∈ {1, . . . , `}, x ∈ 〈x1, . . . , xκ〉〉.

Therefore

k = w(g1, . . . , gκ) ∈ 〈ri(g1, . . . , gκ)g : i ∈ {1, . . . , `}, g ∈ G〉
= 〈kgi : i ∈ {1, . . . , `}, g ∈ G〉 = H.

Observe now that K is the union of the infinite chain K1 ≤ K2 ≤ K3 ≤ · · · . Let
n0 ∈ N \ {0} with k1, . . . , k` ∈ Kn0

. Observe that n0 exists because k1, . . . , k` is a
finite set in K. Since Kn0

EG, we now get

Kn0
≤ K = 〈kgi : i ∈ {1, . . . , `}, g ∈ G〉 ≤ Kn0

,

that is, K = Kn0 . �

5. Classic growth versus endomorphism growth

Let G be a finitely generated group and let φ : G → G be an automorphism.
We consider the semidirect product Go 〈φ〉 given by the action of φ on G, and we
identify G with the subgroup G × {idG} of G o 〈φ〉. Using this identification, we
write 〈G,φ〉 in place of Go 〈φ〉. Clearly, 〈G,φ〉 is a finitely generated group.

If N is a normal φ-stable subgroup of G, we write simply 〈N,φ〉 and 〈G/N, φ〉
in place of 〈N,φ �N 〉 and 〈G/N, φ̄〉 respectively, where φ̄ : G/N → G/N is the
automorphism induced by φ.

In this section we give relations between the growth of the group automorphism
φ : G→ G and the classic growth of the finitely generated group 〈G,φ〉.

Lemma 5.1. Let G be a finitely generated group, let φ : G → G be an automor-
phism, let F be in F(G) and let n ∈ N \ {0}. Then γφ,F (n) = |(Fφ−1)n|.

Proof. Computing in 〈G,φ〉, we see that for g ∈ G, we have φ(g) = φ−1gφ. Then

Tn(φ, F ) = Fφ(F )φ2(F ) · · ·φn−1(F ) = F (φ−1Fφ)(φ−2Fφ2) · · · (φ−(n−1)Fφn−1)

= (Fφ−1)(Fφ−1) · · · (Fφ−1)φn = (Fφ−1)nφn.

Therefore, γφ,F (n) = |Tn(φ, F )| = |(Fφ−1)n|. �
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Using one of our favourite results of Grigorchuk [11], we now prove that φ has
polynomial growth precisely when 〈G,φ〉 has polynomial growth. By Gromov The-
orem the latter condition is equivalent to require that 〈G,φ〉 is virtually nilpotent.
(We thank Grigorchuk for sharing with us the ideas in [11].)

Proposition 5.2. Let G be a finitely generated group and let φ : G → G be an
automorphism. Then the following conditions are equivalent:

(a) φ has polynomial growth;
(b) 〈G,φ〉 has polynomial growth;
(c) 〈G,φ〉 is virtually nilpotent.

Proof. (a)⇒(b) Let F be a finite set of generators for G with eG ∈ F and consider

S :=
⋃
n∈N

(Fφ−1)n,

where the computations are performed in 〈G,φ〉, as usual we set (Fφ−1)0 = {eG}.
By construction, S contains eG and is closed by taking products, therefore S is
the subsemigroup of G with identity generated by Fφ−1. Observe that S is a
cancellative semigroup, because S ⊆ G and G is a group. By hypothesis γφ,F (n) is
polynomial, so the function

n 7→ |(Fφ−1)n|
is polynomial by Lemma 5.1. Since S is a cancellative semigroup of polynomial
growth, S has the group of left quotients S−1S by [11, Corollary 1]. Clearly,
S−1S = 〈G,φ〉, since 〈G,φ〉 is generated by Fφ−1 as a group, and in particular
〈G,φ〉 = 〈S〉. Now [11, Theorems 1 and 2] show that the polynomial growth of the
semigroup S forces a polynomial growth of the group S−1S = 〈G,φ〉.

(b)⇒(a) By hypothesis, for each finite subset S of 〈G,φ〉, there exist two natural
numbers d1(S), d2(S) ∈ N such that

|Sn| ≤ d1(S)nd2(S),

for every n ∈ N. In particular, if F is a finite subset of G, by Lemma 5.1 we get

γφ,F (n) = |(Fφ−1)n| ≤ |(Fφ−1 ∪ (Fφ−1)−1)n|

≤ d1(Fφ−1 ∪ (Fφ−1)−1)nd2(Fφ−1∪(Fφ−1)−1),

thus φ has polynomial growth.
(b)⇔(c) This is Gromov Theorem. �

To apply the ideas in Proposition 5.2 more directly in later arguments, we prove
the following result.

Proposition 5.3. Let G be a finitely generated group and let φ : G → G be an
automorphism. If ` ∈ N \ {0} and N is a finite index normal φ-stable subgroup of
G, then 〈N,φ`〉 has finite index in 〈G,φ〉. Consequently:

(a) 〈G,φ〉 is virtually nilpotent if and only if 〈N,φ`〉 is virtually nilpotent;
(b) 〈G,φ〉 has polynomial growth if and only if 〈N,φ`〉 has polynomial growth.

Proof. Let N be a finite index normal φ-stable subgroup of G. Observe that a set
of representatives for the right cosets of N in G is also a set of representatives for
the right cosets of 〈N,φ〉 in 〈G,φ〉. Therefore |〈G,φ〉 : 〈N,φ〉| = |G : N |. Moreover,
|〈N,φ〉 : 〈N,φ`〉| = `. Hence, 〈N,φ`〉 is a finite index subgroup of 〈G,φ〉.
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Consequently, the statement in (a) holds true. Moreover, (b) follows from (a)
and Proposition 5.2. �

It is rather hard for the authors to skip to the next section without adding
a remark that we believe is pivotal to have a better understanding on growth of
automorphisms. In fact, we believe that Proposition 5.2 is only the tip of an iceberg
and dare to make the following conjecture.

Conjecture 5.4. Let G be a finitely generated group and let φ : G → G be an
automorphism. Then φ has exponential growth if and only if 〈G,φ〉 has exponential
growth.

Clearly, if φ has exponential growth, so does 〈G,φ〉.

6. Automorphisms acting nilpotently

Let G be a group and let φ : G→ G be an automorphism. For n ∈ N \ {0}, we
define the symbol [G,φ, . . . , φ︸ ︷︷ ︸

n times

] (or, [G,n φ] for short) inductively:

[G,1 φ] := [G,φ] := 〈g−1φ(g) : g ∈ G〉 and [G,n+1 φ] := [[G,n φ], φ] for n ≥ 1.

Note that, for g ∈ G,

g−1φ(g) = g−1φ−1gφ = [g, φ],

so here we are just considering commutators in 〈G,φ〉.

Definition 6.1. Let G be a group and let φ : G → G be an automorphism. We
say that φ acts nilpotently on G if there exists n ∈ N \ {0} such that [G,n φ] = 1.

We start with basic properties, whose proofs are clear from the definition.

Lemma 6.2. Let G be a group, let φ : G→ G be an automorphism and let H be a
φ-stable subgroup of G. If φ acts nilpotently on G, then φ acts nilpotently on H.

Proof. It follows from the fact that [H,n φ] ⊆ [G,n , φ] for every n ∈ N \ {0}. �

Lemma 6.3. Let G be a group and let φ : G → G be an automorphism. If φ acts
nilpotently on G, then φ` acts nilpotently on G for every ` ∈ N \ {0}.

Proof. For ` ∈ N \ {0} and g ∈ G, we have that

g−1φ`(g) = g−1φ(g)φ(g)−1φ2(g) . . . φ`−1(g)−1φ`(g);

hence

[G,n φ
`] ⊆ [G,n φ]

for every n ∈ N \ {0}. Then the thesis follows. �

Proposition 6.4. Let G be a finitely generated group and let φ : G → G be an
automorphism. Then the following conditions are equivalent:

(a) 〈G,φ〉 is nilpotent;
(b) G is nilpotent and φ acts nilpotently on G.
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Proof. (a)⇒(b) Let H := 〈G,φ〉 and assume that H is nilpotent, that is, γd+1(H) =
1, for some d ∈ N \ {0}. Clearly, G is nilpotent; moreover, φ acts nilpotently on G
since [G,d φ] ≤ γd+1(H) = 1.

(b)⇒(a) Let c,m ∈ N \ {0} where c is the nilpotency class of G and [G,m φ] = 1.
We show, by induction on c, that γmc+1(〈G,φ〉) = 1. Suppose that c = 1, that is,
G is abelian, and so [G,G] = 1. For each g ∈ G and i, j ∈ Z we have that

[gφi, φj ] = [g, φj ]φ
i

[φi, φj ] = [g, φj ]φ
i

= [φi(g), φj ] ∈ [G,φ];

moreover, for every g, g′ ∈ G and i ∈ Z, we have that

[gφi, g′] = [g, g′]φ
i

[φi, g′] = [φi, g′] ∈ [G,φ].

Since 〈G,φ〉/G is cyclic, we deduce that [〈G,φ〉, 〈G,φ〉] ⊆ [G,φ]. The converse
inclusion is clear, so we get

γ2(〈G,φ〉) = [G,φ].

Arguing inductively on m > 2, we have also that

γm+1(〈G,φ〉) = [γm(〈G,φ〉), 〈G,φ〉] = [[G,m−1 φ], φ] = [G,m φ] = 1.

Suppose now that c > 1. Let Ḡ := G/γc(G) and let φ̄ : Ḡ → Ḡ be the au-
tomorphism induced by φ on Ḡ. As [Ḡ,m φ̄] = 1, the inductive hypothesis yields
γm(c−1)+1(〈Ḡ, φ̄〉) = 1, that is, γm(c−1)+1(〈G,φ〉) ≤ γc(G) by Lemma 2.2. Therefore

γmc+1(〈G,φ〉) = [γm(c−1)+1(〈G,φ〉), 〈G,φ〉, . . . , 〈G,φ〉︸ ︷︷ ︸
m times

] ≤ [γc(G), 〈G,φ〉, . . . , 〈G,φ〉︸ ︷︷ ︸
m times

].

Since γc(G) is a central subgroup of G, we get [γc(G), 〈G,φ〉] = [γc(G), φ] and hence

γmc+1(〈G,φ〉) ≤ [γc(G), φ, . . . , φ︸ ︷︷ ︸
m times

] = [γc(G),m φ] = 1.

Thus, 〈G,φ〉 is nilpotent. �

For abelian groups we have the following clear set-theoretic description of the
subgroups [G,n φ].

Lemma 6.5. Let G be an abelian group and let φ : G → G be an automorphism.
Then, for every n ∈ N \ {0},
(9) [G,n φ] = (φ− idG)n(G) = {(φ− idG)n(g) : g ∈ G}.
Consequently, [G,n φ] = 1 if and only if (φ− idG)n = 0.

Proof. We proceed by induction on n ∈ N \ {0}. (We use an additive notation for
G.) When n = 1, we have

[G,φ] = 〈[g, φ] : g ∈ G〉 = 〈−g + φ−1gφ : g ∈ G〉
= 〈−g + φ(g) : g ∈ G〉 = 〈(φ− idG)(g) : g ∈ G〉 = {(φ− idG)(g) : g ∈ G}.

Let now n ∈ N \ {0}; then

[G,n+1 φ] = [[G,n φ], φ] = [{(φ− idG)n(g) : g ∈ G}, φ]

= {(φ− idG)(φ− idG)n(g) : g ∈ G} = {(φ− idG)n+1(g) : g ∈ G}.
This proves Eq. (9). The second assertion is an immediate consequence. �

The next result is used in Proposition 6.7.
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Lemma 6.6. Let G be a finitely generated abelian group and let φ : G→ G be an
automorphism such that φ acts nilpotently on G. Then there exists a sequence

G = C0 > C1 > · · · > Cm = 0

such that, for each i ∈ {0, . . . ,m− 1},

Ci/Ci+1 is cyclic and [Ci, φ] ≤ Ci+1.

Proof. From Proposition 6.4, 〈G,φ〉 is nilpotent and hence polycyclic. Since each
γi(〈G,φ〉)/γi+1(〈G,φ〉) is finitely generated and γ2(〈G,φ〉) ≤ G, we may take
(Ci)

m
i=0 to be any normal series of 〈G,φ〉 passing through G, witnessing that 〈G,φ〉

is polycyclic and refining the lower central series of 〈G,φ〉. �

The next result is applied in the proof of Theorem 8.4.

Proposition 6.7. Let G be a polycyclic group of derived length d ∈ N \ {0} and
let φ : G→ G be an automorphism such that φ acts nilpotently on G(i)/G(i+1) for
every i ∈ {1, . . . , d− 1}. Then there exists a normal series

G = G1 > G2 > · · · > Gκ−1 > Gκ = 1,

(i) refining the derived series of G;
(ii) with Gi/Gi+1 cyclic for each i ∈ {1, . . . , κ− 1};

(iii) with [Gi, φ] ≤ Gi+1 for each i ∈ {1, . . . , κ− 1}.

Proof. Let i ∈ {1, . . . , d − 1}. Then G(i)/G(i+1) is abelian and finitely generated
since G is polycyclic. By Lemma 6.6 applied with B := G(i)/G(i+1), there exists a
normal series

G(i) = C0 > C1 > · · · > Cmi = G(i+1)

such that Cj/Cj+1 is cyclic and [Cj , φ] ≤ Cj+1 for every j ∈ {0, . . . ,mi − 1}. �

We give an auxiliary lemma used in the proof of Lemma 8.5.

Lemma 6.8. Let A be an infinite finitely generated torsion-free abelian group and
let φ : A → A be an automorphism such that φ acts nilpotently on A. Then there
exists a φ-stable subgroup B of A such that A/B is infinite cyclic (i.e., isomorphic
to Z).

Proof. Assume that A/[A, φ] is finite. Using Lemma 6.5, for n ∈ N \ {0} we have
that

|[A,n φ] : [A,n+1 φ]| = |(φ− idA)n(A) : (φ− idA)n([A, φ])| ≤ |A : [A, φ]|,

where the last inequality follows because (φ − idA)n is a group endomorphism.
Hence, [A,n φ]/[A,n+1 φ] is finite for every n ∈ N \ {0}. Since φ acts nilpotently on
A, there exists n0 ∈ N \ {0} with [A,n0

, φ] = 1, however this would mean that A is
finite, contradicting the fact that A is infinite by hypothesis.

Therefore A/[A, φ] is an infinite finitely generated abelian group, so there exists
a subgroup B of A such that [A, φ] ≤ B and A/B is infinite cyclic. Since B contains
[A, φ], B is φ-stable. �
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7. Growth of endomorphisms of locally virtually nilpotent groups

In this section we prove that, if G is a locally virtually nilpotent group, then
every endomorphism of G has either polynomial or exponential growth.

We start with a technical lemma which permits (for example) to restrict to
torsion-free finitely generated nilpotent (or abelian) groups.

Lemma 7.1. Let G be a finitely generated nilpotent group, let φ : G → G be an
automorphism and let T be a finite normal φ-stable subgroup of G. If there exists
` ∈ N \ {0} such that 〈G/T, φ`〉 is nilpotent, then there exists `′ ∈ N \ {0} such that

〈G,φ`′〉 is nilpotent.

Proof. Assume that G has nilpotency class c and that 〈G/T, φ`〉 has nilpotency class
d. Since T is finite and φ` �T : T → T is an automorphism, there exists a non-zero
multiple `′ of ` such that φ`

′
�T= idT (for instance, we may take `′ := `|Aut(T )|).

We prove that L := 〈G,φ`′〉 is nilpotent. By Lemma 2.2 applied to 〈G,φ`〉 and to
its normal subgroup T , we have γd+1(〈G,φ`〉) ≤ T and hence

γd+1(L) ≤ γd+1(〈G,φ`〉) ≤ T.

Therefore, since φ`
′

centralizes T ,

γd+c+1(L) = [γd+1(L), L, . . . , L︸ ︷︷ ︸
c times

]

≤ [T, L, . . . , L︸ ︷︷ ︸
c times

]

≤ [T,G, . . . , G︸ ︷︷ ︸
c times

] ≤ [G, . . . , G︸ ︷︷ ︸
c+1 times

] = γc+1(G) = 1.

Thus, L is nilpotent of nilpotency class at most c+ d. �

The following lemma is fundamental for this and for the next section. It uses
the Algebraic Yuzvinski Formula.

Lemma 7.2. Let G be a finitely generated abelian group and let φ : G→ G be an
automorphism of subexponential growth. Then there exists ` ∈ N \ {0} such that φ`

acts nilpotently on G and consequently 〈G,φ`〉 is nilpotent.

Proof. Since the torsion t(G) is a finite φ-stable subgroup of G, by Lemma 7.1 we
can assume without loss of generality that G is torsion-free, that is, G ∼= Zm for
some m ∈ N \ {0}.

Let pφ(X) be the characteristic polynomial of φ⊗Q. As φ is an automorphism of
G ∼= Zm, we see that pφ(X) ∈ Z[X] and that pφ(X) is monic. As h(φ⊗Q) = h(φ) =
0 in view of Eq. (1) and Lemma 3.6, by Theorem 3.5 we get that |λ| ≤ 1 for each
eigenvalue λ of φ ⊗ Q. Recall that the coefficient of degree zero of pφ(X) ∈ Z[X]
is (up to a sign change) the product of the eigenvalues of φ ⊗ Q. Consequently,
|λ| = 1 for each eigenvalue λ of φ⊗Q, so Theorem 3.7 yields that each eigenvalue
of φ⊗Q is a root of unity. Thus

pφ(X) =

t∏
i=1

(X − ωi)mi ,
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where m1, . . . ,mt ∈ N \ {0}, m = m1 + · · · + mt, and ω1, . . . , ωt ∈ C are roots
of unity. Let ` be the least common multiple of the order of the roots of unity
ω1, . . . , ωt. Now,

pφ`(X) =

t∏
i=1

(X − ω`i )mi =

t∏
i=1

(X − 1)mi = (X − 1)
∑t
i=1mi = (X − 1)m,

and hence (φ` − 1)m = 0. By Lemma 6.5, this is equivalent to

(10) [G,φ`, . . . , φ`︸ ︷︷ ︸
m times

] = 1.

Since G is abelian, we have [G,G] = 1, hence Eq. (10) implies that 〈G,φ`〉 has
nilpotency class at most m. �

By applying inductively the above lemma, we can prove a similar result for
finitely generated nilpotent groups.

Lemma 7.3. Let G be a finitely generated nilpotent group and let φ : G→ G be an
automorphism of subexponential growth. Then there exists ` ∈ N \ {0} with 〈G,φ`〉
nilpotent.

Proof. We argue by induction on the nilpotency class c of G. If c = 1, that is
[G,G] = 1, then G is abelian and Lemma 7.2 applies.

Suppose c > 1. By Lemma 7.2 and by the inductive hypothesis there exist
`1, `2 ∈ N \ {0} such that both

〈γc(G), φ`1〉 and

〈
G

γc(G)
, φ`2

〉
are nilpotent, say that the first has nilpotency class c1 and the second nilpotency
class c2.

Write ` := `1`2. In view of Lemma 2.2 applied to 〈G,φ`〉 and to its normal
subgroup γc(G), we have γc2+1(〈G,φ`〉) ≤ γc(G). Moreover, since [γc(G), G] =
γc+1(G) = 1, we get

γc1+c2+1(〈G,φ`〉) = [γc2+1(〈G,φ`〉), 〈G,φ`〉, . . . , 〈G,φ`〉︸ ︷︷ ︸
c1times

]

≤ [γc(G), 〈G,φ`〉, . . . , 〈G,φ`〉︸ ︷︷ ︸
c1times

]

≤ [γc(G), φ`, . . . , φ`︸ ︷︷ ︸
c1 times

]

≤ γc1+1(〈γc(G), φ`〉) = 1.

Therefore 〈G,φ`〉 is nilpotent of nilpotency class at most c1 + c2. �

We are now in the position to prove the result announced at the beginning of
this section.

Theorem 7.4. If G is a locally virtually nilpotent group and φ : G → G is an
endomorphism, then φ has either exponential or polynomial growth.
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Proof. Assume that φ has subexponential growth. To conclude that φ has poly-
nomial growth, we need to prove that, for every F ∈ F(G), the function γφ,F
is polynomial. Fix F ∈ F(G). By Lemma 3.2(a) φ �V (φ,F ) has subexponential
growth. Clearly, γφ,F is polynomial if φ �V (φ,F ) has polynomial growth. In partic-
ular, we can assume without loss of generality that G = V (φ, F ). By Lemma 3.3,
G is finitely generated.

In view of Corollary 4.6 and Lemma 4.3, we may assume that φ is injective,
hence φ is an automorphism of G by Proposition 4.1.

By Lemma 2.6 there exists a finite index nilpotent normal φ-stable subgroup H
of G, hence φ �H : H → H is an automorphism; moreover H is finitely generated by
Lemma 2.1. Since φ �H has subexponential growth by Lemma 3.2(a), there exists
` ∈ N \ {0} with 〈H,φ`〉 nilpotent by Lemma 7.3. Hence, φ has polynomial growth
by Proposition 5.3 and Proposition 5.2. �

8. Growth of endomorphisms of elementary amenable groups

In this section we finally prove that, if G is an elementary amenable group, then
every endomorphism of G has either polynomial or exponential growth.

Lemma 8.1. Let G be a finitely generated group, let φ : G→ G be an automorphism
of subexponential growth and let A be a normal φ-stable subgroup of G. Then, for
each α ∈ A and for each β ∈ G, the set of conjugates

{(βφ−1)−kα(βφ−1)k : k ∈ Z}
spans a finitely generated subgroup of A. (The computations are performed in
〈G,φ〉.)

Proof. Let α ∈ A and β ∈ G. For each m ∈ N \ {0} and for each sequence
i1, i2, . . . , im with ij ∈ {0, 1}, consider the expression

(11) αi1βφ−1αi2βφ−1 · · ·αimβφ−1 ∈ 〈G,φ〉.
We rewrite this expression in two different ways, each giving some useful insight.
First, observe that φ−1γ = φ(γ)φ−1 and, more generally, φ−tγ = φt(γ)φ−t for every
t ∈ Z. Thus Eq. (11) can also be written as

(12) αi1βφ(αi2β)φ2(αi3β) · · ·φm−1(αimβ)φ−m.

Now set ψ := φβ−1, where we view ψ : G → G as the automorphism defined by
ψ(γ) := βφ(γ)β−1, for every γ ∈ G.

Arguing as above, for each γ ∈ G and t ∈ Z, we have ψ−tγ = ψt(γ)ψ−t for every
t ∈ Z. Thus Eq. (11) can also be written as

(13) αi1ψ(αi2) · · ·ψm−1(αim)ψ−m.

If for every m ∈ N\{0} these 2m expressions all represented distinct elements of
〈G,φ〉, then Eq. (12) would give |Tm(φ, {β, αβ})| ≥ 2m, contradicting the fact that
φ does not have exponential growth.

Therefore there exist m ∈ N, i1, . . . , im, j1, . . . , jm ∈ {0, 1} with (i1, . . . , im) 6=
(j1, . . . , jm) such that the expressions in Eq. (11) corresponding to these strings
give rise to the same element of 〈G,φ〉. Observe that by choosing m as small as
possible, we may assume that i1 6= j1 and im 6= jm, and that m ≥ 2.

By using Eq. (13), we obtain the equality

αi1ψ(αi2)ψ2(αi3) · · ·ψm−1(αim) = αj1ψ(αj2)ψ2(αj3) · · ·ψm−1(αjm).
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Therefore we get
(14)
ψm−1(αim−jm) = (αi1ψ(αi2)ψ2(αi3) · · ·ψm−2(αim−1))−1αj1ψ(αj2)ψ2(αj3) · · ·ψm−2(αjm−1),

and
(15)
ψ−1(αi1−j1) = αj2ψ(αj3)ψ2(αj4) · · ·ψm−2(αjm)(αi2ψ(αi3)ψ2(αi4) · · ·ψm−2(αim))−1,

where the exponents ik − jk take the values 0 or 1 or −1, and are not all zero. In
particular, by the minimality of m, i1 − j1 6= 0 and im − jm 6= 0. From Eqs. (14)
and (15), we deduce that ψm−1(α) and ψ−1(α) are words in α,ψ(α), . . . , ψm−2(α).

From this it easily follows that ψk(α) is a word in α,ψ(α), . . . , ψm−2(α) for every
k ∈ Z. Recalling the definition of ψ we deduce that for every k ∈ Z,

(βφ−1)−kα(βφ−1)k ∈ 〈α, (βφ)−1α(βφ−1)−1, . . . , (βφ−1)m−2α(βφ−1)−(m−2)〉.

This concludes the proof. �

Lemma 8.2. Let G be a finitely generated group, let A be a finite index normal
subgroup of G and let φ : G→ G be an automorphism of G. Then G admits a finite
index normal φ-stable subgroup A′ with A′ ≤ A.

Proof. Let d be the number of generators of G and let k := |G : A|. From Zel-
manov’s positive solution of the Restricted Burnside Problem, there exists nd,k ∈ N
such that every finite group with d generators and of exponent dividing k has order
at most nd,k.

Define A0 := A and, for each i ∈ N,

Ai := A0 ∩ φ(A0) ∩ · · · ∩ φi(A0).

Moreover, define

A∞ :=
⋂
i∈N

φi(A).

Clearly, Ai+1 ≤ Ai, Ai+1 EG and |G : Ai| is finite for every i ∈ N.
As G/A∞ has a natural embedding in

∏
i∈NG/φ

i(A) and since G/φi(A) has
exponent dividing k, we deduce that G/A∞ has exponent dividing k. In particular,
for every i ∈ N, G/Ai is a finite group with d generators having exponent dividing
k, and hence |G : Ai| ≤ nd,k. Since the sequence {|G : Ai|}i∈N is bounded above
by a constant, there exists i ∈ N with Ai+1 = Ai. Then Ai = Ai+1 = φ(Ai) ∩ Ai
and hence Ai ≤ φ(Ai). Since |G : Ai| = |G : φ(Ai)|, we deduce that Ai = φ(Ai)
and hence Ai is a finite index normal φ-stable subgroup of G. �

We now define formally the class of elementary amenable groups: we follow the
treatment in Chou [2], see also the more recent book of Juschenko [14].

Definition 8.3. Let EG0 be the class of all finite groups and all abelian groups.
Assume that α > 0 is an ordinal and that we have defined EGα for each ordinal
β < α. Then, if α is a limit ordinal, we let EGα :=

⋃
β<αEGβ . If α is not a limit

ordinal, we let EGα be the class of groups which can be obtained from groups in
EGα−1 by applying either a group extension or a direct union. In other words,
G ∈ EGα if and only if there exists a short exact sequence 1→ A→ G→ C with
A ∈ EGα−1 and C either finite or abelian, or G is a direct limit lim−→Gi of a direct

system {Gi}i∈I of groups in EGα−1.
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Theorem 8.4. Let G be a finitely generated elementary amenable group and let
φ : G → G be an automorphism of subexponential growth. Then G has a finite
index polycyclic normal φ-stable subgroup.

Proof. Since G is elementary amenable, we have that G ∈ EGα, for some ordinal
α.

We argue by transfinite induction on α. If α = 0, then G is either a finite group
or a finitely generated abelian group, and in either case the conclusion is obvious.

Suppose now that α is a limit ordinal and that the conclusion holds true for
every ordinal β with β < α. As EGα =

⋃
β<αEGβ , we deduce that G ∈ EGβ

for some β < α and hence, by induction, G has a finite index polycyclic normal
φ-stable subgroup.

Suppose that α is not a limit ordinal, so that the ordinal α−1 is defined. If G is a
direct limit lim−→Gi of a direct system {Gi}i∈I of groups in EGα−1, then G ∈ EGα−1

because G is finitely generated, and we conclude by inductive hypothesis.

Therefore, assume that G has a normal subgroup A such that A ∈ EGα−1 and
G/A is either finite or abelian. If |G : A| is finite, then by Lemma 8.2 A contains a
finite index normal φ-stable subgroup A′ of G. The subgroup A′ is finitely generated
because so is G, by Lemma 2.1. Hence, by induction, A′ has a finite index polycyclic
normal φ-stable subgroup, and therefore so does G by Lemma 2.6.

Assume that G/A is an infinite abelian group. Our next aim is to prove that A
is finitely generated in Claim 2 below.

Consider

A∞ :=
⋂
i∈Z

φi(A)

and observe that A∞ is a normal φ-stable subgroup of G contained in A. Clearly,
A∞ ∈ EGα−1 because A∞ ≤ A ∈ EGα−1. Moreover, as G/A∞ has a natural
embedding in

∏
i∈ZG/φ

i(A), we obtain that G/A∞ is abelian since so is G/A.
Hence, by replacing A with A∞, we may assume without loss of generality that A
is a normal φ-stable subgroup of G such that G/A is an infinite abelian group.

Let

φ̄ : G/A→ G/A

be the automorphism induced by φ on G/A. As G/A is abelian and φ̄ has subex-
ponential growth by Lemma 3.2(a) and (b), we deduce from Lemma 7.2 that there
exists ` ∈ N \ {0} such that φ` acts nilpotently on G/A. By Lemma 3.4, φ` has
subexponential growth. Since our aim is to prove that A is finitely generated in
Claim 2, let ψ := φ`.

As G/A is abelian and ψ acts nilpotently on G/A, by Proposition 6.7 there exists
a normal series

G = G1 > G2 > · · · > Gκ−1 > Gκ = A,

(i) with Gi/Gi+1 cyclic for each i ∈ {1, . . . , κ− 1};
(ii) with [Gi, ψ] ≤ Gi+1 for each i ∈ {1, . . . , κ− 1}.

For each i ∈ {1, . . . , κ − 1}, let gi ∈ Gi with Gi = 〈gi, Gi+1〉, that is, giGi+1 is
a generator for the cyclic group Gi/Gi+1. Since G/A is polycyclic, so is 〈G,ψ〉/A
and hence each element of 〈G,ψ〉/A can be written as a product

(16) gi11 g
i2
2 · · · g

iκ−1

κ−1 ψ
iκA
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with i1, i2, . . . , iκ−1, iκ ∈ Z. We call g1, . . . , gκ−1, ψ a polycyclic presentation of
〈G,ψ〉/A. Furthermore, as [Gi, ψ] ≤ Gi+1, we have that

(17) ψ(gi) = gixi,

for some xi ∈ Gi+1.

Claim 1. Each element x of 〈G,ψ〉/A can be written as

x = (g1ψ
−1)i1(g2ψ

−1)i2 · · · (gκ−1ψ
−1)iκ−1ψiκA

with i1, i2, . . . , iκ−1, iκ ∈ Z.

Proof. We prove this claim arguing by induction on κ.

Let x ∈ 〈G,ψ〉/A. By Eq. (16), we have x = gj11 g
j2
2 · · · g

jκ−1

κ−1 ψ
jκA, for some

j1, . . . , jκ ∈ Z. With a computation, we obtain that

(g1ψ
−1)j1 = (g1ψ

−1)(g1ψ
−1) · · · (g1ψ

−1)︸ ︷︷ ︸
j1 times

= g1ψ(g1)ψ2(g1) · · ·ψj1−1(g1)ψ−j1

= g1(g1x1)(g1x1ψ(x1)) · · · (g1x1ψ(x1) · · ·ψj1−2(x1))ψ−j1 ,

where in the second equality we use that ψ−`g1 = ψ`(g1)ψ−` for each ` ∈ {1, . . . , j1−
1}, and in the third equality we use Eq. (17). Now, x1 ∈ G2 and hence ψ`(x1) ∈ G2

for each `. Moreover, G2EG1 = G. Therefore, by collecting all the g1’s on the left
hand side, we obtain

(18) (g1ψ
−1)j1 = gj11 y1ψ

−j1 ,

for some y1 ∈ G2. Hence

gj11 = (g1ψ
−1)j1ψj1y−1

1 ,

and so

(19) x = (g1ψ
−1)j1ψj1y−1

1 gj22 · · · g
jκ−1

κ−1 ψ
jκA.

Observe that each element of 〈G2, ψ〉/A can be written as a product as in Eq. (16)

with i1 = 0. As y−1
1 gj22 · · · g

jκ−1

κ−1 ∈ G2 and ψj1G2ψ
−j1 = ψ−j1(G2) = G2, we have

ψj1(y−1
1 gj22 · · · g

jκ−1

κ−1 )ψ−j1A = g`22 g
`3
3 · · · g

`κ−1

κ−1 A

for some `2, . . . , `κ−1 ∈ Z. Therefore,

ψj1y−1
1 gj22 · · · g

jκ−1

κ−1 ψ
jκA = ψj1y−1

1 gj22 · · · g
jκ−1

κ−1 φ
−j1ψj1+jκA =

= g`22 g
`3
3 · · · g

`κ−1

κ−1 ψ
j1+jκA

= g`22 g
`3
3 · · · g

`κ−1

κ−1 ψ
`κA,

where `κ := j1 + jκ. By the inductive hypothesis applied to the group 〈G2, ψ〉/A
with polycyclic presentation given by the elements g2, . . . , gκ−1, ψ, there exist i2, . . . , iκ ∈
Z with

(20) g`22 g
`3
3 · · · g

`κ−1

κ−1 ψ
`κA = (g2ψ

−1)i2 · · · (gκ−1ψ
−1)iκ−1ψiκA.

Summing up, from Eqs. (19) and (20), we get

x = gj11 g
j2
2 · · · g

jκ−1

κ−1 ψ
jκA = [(g1ψ

−1)j1ψj1y−1
1 ]gj22 · · · g

jκ−1

κ−1 ψ
jκA

= (g1ψ
−1)j1(g2ψ

−1)i2 · · · (gκ−1ψ
−1)iκ−1ψiκA,

and the claim is now proved. �
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In what follows we set gκ := eG.

As 〈G,ψ〉/A is polycyclic, it is finitely presented and hence, in view of Lemma 2.4,
there exist α1, . . . , α` ∈ A such that every element of A can be expressed as a
product of conjugates of the αj in 〈G,ψ〉, that is,

(21) A = 〈xαjx−1 : x ∈ 〈G,ψ〉, j ∈ {1, . . . , `}〉.

Claim 2. A is finitely generated.

Proof. Applying Lemma 8.1 with β := gκ and with each α ∈ {α1, . . . , α`}, we see
that the set

{(gκψ−1)−kαj(gκψ
−1)k : k ∈ Z, j ∈ {1, . . . , `}}

spans a finitely generated subgroup A1 of A. Let α1,1, . . . , α1,`1 be a finite set of
generators for A1.

Applying Lemma 8.1 with g := gκ−1 and with each α ∈ {α1,1, . . . , α1,`1}, we see
that the set

{(gκ−1ψ
−1)−kα1,j(gκ−1ψ

−1)k : k ∈ Z, j ∈ {1, . . . , `1}}
spans a finitely generated subgroup A2 of A with A1 ≤ A2. Moreover, A2 contains
all the elements of the form

(gκ−1ψ
−1)−iκ−1(gκψ

−1)−iκαj(gκψ
−1)iκ(gκ−1ψ

−1)iκ−1 ,

with iκ−1, iκ ∈ Z and j ∈ {1, . . . , `}.
Arguing inductively we may construct a chain

A1 ≤ A2 ≤ A3 ≤ · · · ≤ Aκ−1 ≤ Aκ
of finitely generated subgroups of A.

By construction, Aκ contains all elements of the form

(g1ψ
−1)−i1 · · · (gκ−1ψ

−1)−iκ−1(gκψ
−1)−iκαj(gκψ

−1)iκ(gκ−1ψ
−1)iκ−1 · · · (g1ψ

−1)i1 ,

with i1, . . . , iκ−1, iκ ∈ Z and j ∈ {1, . . . , `}. Since i1, . . . , iκ are arbitrary integers,
from Claim 1, we deduce that Aκ contains all elements of the form

xαjx
−1,

with x ∈ 〈G,ψ〉 and j ∈ {1, . . . , `}.
Thus Eq. (21) yields A = Aκ and A is finitely generated. �

Since A is finitely generated by Claim 2, A ∈ EGα−1 and φ �A: A → A is an
automorphism of subexponential growth by Lemma 3.2(a), by induction we have
that A contains a finite index polycyclic normal φ-stable subgroup B. Since A is
normal in G and B has finite index in A, without loss of generality we may assume
that B is also normal in G. Let

C := CG(A/B) = {x ∈ G : axB = xaB for every a ∈ A},
which is the kernel of the action of G on A/B by conjugation. Then C is normal in
G, and |G : C| is finite since G/C is isomorphic to a subgroup of the finite group
Aut(A/B). Moreover, C is φ-stable because so are A and B. Since CA/A ∼= C/(A∩
C), the group C/(A ∩ C) is finitely generated and abelian. Also [C,A ∩ C] ⊆ B
and so (A ∩ C)/B is a finite abelian group. Since B is polycyclic, we deduce that
C is polycyclic as well. �

The next lemma contains a fundamental part of the proof of Theorem 8.6.
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Lemma 8.5. Let G be a torsion-free polycyclic group and let φ : G → G be an
automorphism of subexponential growth. Then there exist ` ∈ N \ {0} and a finite
index normal φ-stable subgroup N of G such that 〈N,φ`〉 is nilpotent.

Proof. We proceed by induction on the Hirsch length of G. Our aim is to prove
that G is virtually nilpotent and then Lemma 2.6 and Lemma 7.3 give the thesis.

Consider the abelian quotient G/[G,G]. Then φ induces an automorphism on
G/[G,G] of subexponential growth by Lemma 3.2(b). By Lemma 7.2, there exists
` ∈ N\{0} such that φ` acts nilpotently on G/[G,G] and 〈G/[G,G], φ`〉 is nilpotent.

Let t := |t(G/[G,G])| (so, t is the order of the torsion subgroup of the abelian-
ization of G) and set

N := 〈[G,G], xt : x ∈ G〉.
Then N is a normal φ-stable subgroup of G such that [G,G] ≤ N ≤ G and N/[G,G]
is torsion-free. Since G is torsion-free, we have that N > [G,G] because G/[G,G]
cannot be a torsion group. Moreover, φ` acts nilpotently on N/[G,G]; so, as
N/[G,G] is a torsion-free abelian group, by Lemma 6.8 there exists a φ`-stable
subgroup M of G with [G,G] ≤ M < N and N/M infinite cyclic. As M contains
[G,G], we see that M is a normal subgroup of G.

By construction, the Hirsch length of G is strictly larger (by one) than the Hirsch
length of M . Therefore, by induction, there exists a non-zero multiple `′ of ` and
there exists a finite index normal φ`

′
-stable subgroup K of M such that 〈K,φ`′〉 is

nilpotent.
Take

C :=
⋂
g∈G

Kg.

Clearly, C is a normal φ`
′
-stable subgroup of G and 〈C, φ`′〉 is nilpotent; moreover,

C has finite index in M , since M is finitely generated and so M has finitely many
subgroups of index |M : K|.

Consider the following sequence of normal φ`
′
-stable subgroups of G

C ≤M < N ≤ G,

and observe that G/C is polycyclic and it is actually an extension of the finite
group M/C, by the infinite cyclic group N/M , by the finite group G/N . By

Theorem 2.5 and Lemma 2.6 there exists a finite index normal φ`
′
-stable subgroup

L of G with L/C torsion-free; in our situation this means that L/C is infinite cyclic.
See Figure 1.

Since our aim is to prove that G is virtually nilpotent, to simplify our notation
we replace G by L, M by C and φ by φ`

′
. In particular, now

G is a torsion-free polycyclic group that contains a normal φ-stable
subgroup M with G/M infinite cyclic, φ acts nilpotently on M and
〈M,φ〉 is nilpotent (hence M is nilpotent).

Let x ∈ G with G = 〈x,M〉. As φ normalizes G/M ∼= Z, we see that φ(xM) =
xεM , where ε ∈ {−1, 1}. In particular, replacing φ by φ2 we may now assume that
ε = 1. In particular, there exists m ∈M such that

φ(x) = xm.
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Figure 1. Figure for the proof of Lemma 8.5

Given k ∈ N \ {0}, set

mk := mφ(m) · · ·φk−1(m).

Arguing inductively, it is easy to show that

(22) φk(x) = xmk and mk ∈M,

for every k ∈ N \ {0}.
Let A be the last term of the lower central series of M , thus A is abelian and

central in M . Set

C := CA(φ) = {a ∈ A : φ(a) = a} ≤ A ≤M.

Claim 1. C is an infinite torsion-free normal subgroup of G.

Proof. As φ acts nilpotently on A and A is torsion-free, C is infinite and torsion-free.
In fact, there exists a minimum k ∈ N \ {0} such that [A,k φ] = 1, so [A,k−1 φ] 6= 1
(by Lemma 6.5 we have [A,n φ] = (φ − idA)n(A) for every n ∈ N \ {0}, hence
C ≥ [A,k−1 φ]).

Moreover, C is a normal subgroup of G, since C EM and

Cx = (CA(φ))x = CAx(x−1φx) = CA(φ · (φ−1x−1φ)x)

= CA(φ · φ(x−1)x) = CA(φ · (xm)−1x) = CA(φm−1) = CA(φ) = C,

where the equality CA(φm−1) = CA(φ) follows because m ∈M and A is central in
M . �

Since the Hirsch length of G/C is strictly smaller than the Hirsch length of G, by
the inductive hypothesis there exist κ ∈ N \ {0} and a finite index normal φ-stable
subgroup R of G with C ≤ R and 〈R/C, φκ〉 nilpotent.

Since our aim is to prove that G is virtually nilpotent, to simplify our notation
we replace G by R, M by M ∩R and φ by φκ (and the role of C stays the same).
In particular,
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G is a torsion-free polycyclic group and C ≤M ≤ G with

(i) G/M ∼= Z,
(ii) G = 〈x,M〉,

(iii) 〈G/C, φ〉 nilpotent (and hence G/C nilpotent),
(iv) C central in 〈M,φ〉,
(v) 〈M,φ〉 nilpotent (and hence M nilpotent).

Claim 2. Let ιx : C → C be the automorphism induced by x by conjugation on C
(i.e., ιx is the restriction to C of the inner automorphism of G relative to x). Let
F ∈ F(C) and let m ∈ N \ {0}. Then

γιx−1 ,F (m+ 1) = γφ,Fx(m+ 1).

Proof. Consider α0, . . . , αm ∈ F and

y := α0xφ(α1x)φ2(α2x) · · ·φm(αmx) ∈ Tm+1(φ, Fx).

Since φ centralizes C (i.e., φ(c) = c for every c ∈ C), the above product becomes

y = α0xα1φ(x)α2φ(x2) · · ·αmφm(x).

For every k ∈ N \ {0} and α ∈ C, from Eq. (22) we have

φk(x)α = xmkα = xαmk = xαx−1 · xmk = ιx−1(α)xmk = ιx−1(α)φk(x)

and hence

φk(x)α = ιx−1(α)φk(x).

Then we may rewrite our product y by pushing all the x’s on the right, obtaining

y = α0ιx−1(α1)ι2x−1(α2) · · · ιmx−1(αm)xφ(x)φ2(x) · · ·φm(x)

∈ Tm+1(ιx−1 , F )xφ(x)φ2(x) · · ·φm(x).

This proves that

Tm+1(φ, Fx) = Tm+1(ιx−1 , F )xφ(x)φ2(x) · · ·φm(x).

Now,

|Tm+1(φ, Fx)| = |Tm+1(ιx−1 , F )xφ(x)φ2(x) · · ·φm(x)| = |Tm+1(ιx−1 , F )|,

and this proves the claim. �

Since φ has subexponential growth, from Claim 2 we deduce that γιx−1 ,F is
subexponential, and by the arbitrariness of F ∈ F(C) we conclude that ιx−1 (and
hence ιx) has subexponential growth.

From Lemma 7.2, applied with G := C and φ := ιx, there exists ` ∈ N\{0} such
that ι`x = ιx` acts nilpotently on C. As usual, replacing φ` by φ, we may assume
that ` = 1. Let c ∈ N \ {0} with

[C,c ιx] = 1.

From (iii), G/C is nilpotent and hence there exists d ∈ N with γd+1(G/C) = 1.
Then γd+1(G) ≤ C by Lemma 2.2. Since G = 〈x,M〉 and C is central in M (see (ii)
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and (iv)), we obtain that

γd+c+1(G) = [γd+1(G), G, . . . , G︸ ︷︷ ︸
c times

] ≤ [C,G, . . . , G︸ ︷︷ ︸
c times

]

= [C, 〈x,M〉, . . . , 〈x,M〉︸ ︷︷ ︸
c times

] = [C,c ιx] = 1.

This implies that G is nilpotent. �

We are now in the position to prove our main theorem.

Theorem 8.6. If G is an elementary amenable group and φ : G → G is an
endomorphism, then φ has either exponential or polynomial growth.

Proof. Let G be an elementary amenable group and let φ : G→ G be a group en-
domorphism of subexponential growth. To conclude that φ has polynomial growth,
we need to prove that, for every F ∈ F(G), the function γφ,F is polynomial. Fix
F ∈ F(G). By hypothesis, γ �V (φ,F ) is subexponential. Clearly, γφ,F is polynomial
if φ �V (φ,F ) has polynomial growth. In particular, since a subgroup of an elementary
amenable group is elementary amenable, we may assume without loss of generality
that G = V (φ, F ). From Lemma 3.3, we have that G is finitely generated.

Let K := Ker∞(φ) and let φ̄ : G/K → G/K be the endomorphism induced by
φ. Observe that φ̄ is injective. By Lemma 3.2(b), φ̄ has subexponential growth,
and hence Proposition 4.1 yields that φ̄ is an automorphism.

Theorem 8.4 yields that G/K has a finite index polycyclic normal φ̄-stable sub-
group H/K. In particular G/K is virtually polycyclic, hence finitely presented. By
Lemma 4.7 and Lemma 4.3, we conclude that φ̄ and φ have the same growth type.

Replacing G by G/K if necessary, we may assume that G is virtually polycyclic,
φ is an automorphism of subexponential growth and H is a finite index polycyclic
normal φ-stable subgroup of G. By Theorem 2.5, Lemma 2.6 and Lemma 8.2, H
admits a finite index torsion-free polycyclic normal φ-stable subgroup H ′.

By Lemma 8.5, there exist ` ∈ N \ {0} and a finite index normal φ`-stable
subgroup N of H ′ such that 〈N,φ`〉 is nilpotent; we may assume without loss of
generality that N is normal in G. Since

|〈G,φ〉 : 〈N,φ`〉| = |G : N |`
is finite, the group 〈G,φ〉 is virtually nilpotent. Hence φ has polynomial growth by
Proposition 5.2. �
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