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A MEAN FIELD EQUATION INVOLVING POSITIVELY

SUPPORTED PROBABILITY MEASURES: BLOW-UP

PHENOMENA AND VARIATIONAL ASPECTS

ALEKS JEVNIKAR, WEN YANG

Abstract. We are concerned with an elliptic problem which describes a mean
field equation of the equilibrium turbulence of vortices with variable intensities.

In the first part of the paper we describe the blow-up picture and high-

light the differences from the standard mean field equation as we observe non-
quantization phenomenon.

In the second part we discuss the Moser-Trudinger inequality in terms of

the blow-up masses and get the existence of solutions in a non-coercive regime
by means of a variational argument, which is based on some improved Moser-

Trudinger inequalities.

1. Introduction

We are concerned with the following equation:

(1) −∆u = ρ1

(
h1e

u´
M
h1eu dVg

− 1

|M |

)
+ aρ2

(
h2e

au´
M
h2eau dVg

− 1

|M |

)
,

where h1, h2 are smooth positive functions, ρ1, ρ2 are two positive parameters,
a ∈ (0, 1) and M is a compact orientable surface with Riemannian metric g. For
simplicity we always assume the total volume of M is |M | = 1.

Equation (1) is motivated by turbulence flows and it was first proposed by On-
sager [29]. More precisely, in case the circulation number density is ruled to a
probability measure, under a deterministic assumption on the point vortex inten-
sities, see for example [34], the model is the following:

(2) −∆u = ρ

ˆ
[−1,1]

α

(
eαu´

M
eαu dVg

− 1

|M |

)
P(dα),

where u corresponds to the stream function of a turbulent flow, P is a Borel prob-
ability measure defined on the interval [−1, 1] describing the point vortex intensity
distribution and ρ > 0 is a constant related to the inverse temperature. We restrict
our discussion to the choice P(dα) = τδ1(dα) + (1 − τ)δa(dα), where a ∈ (0, 1)
and τ1 ∈ [0, 1]. Moreover, we will see it differs from the different-sign case (i.e.
a < 0) not only on the study of the blow-up local masses but also on the associated
Moser-Trudinger inequality.

2000 Mathematics Subject Classification. 35J61, 35J20, 35R01, 35B44.
Key words and phrases. Geometric PDEs, Mean field equation, Blow-up analysis, Variational

methods.
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2 ALEKS JEVNIKAR, WEN YANG

When P(dα) = δ1, equation (2) turns to be the standard mean field equation

(3) −∆u = ρ

(
h eu´

M
h eu dVg

− 1

|M |

)
.

The latter equation is motivated both in geometry and mathematical physics as it is
related to the prescribed Gaussian curvature problem and the mean field equation
of Euler flows. The equation (3) has attracted a lot of attentions in the past decades
and we refer the readers to [2, 6, 7, 5, 17, 18, 24, 35, 37].

The study of (3) is well-understood now. For our purpose we shall state the
result on the quantization obtained in [4, 19, 20]. For a sequence of solutions {uk}
to (3) which blows-up at x̄, we have the local blow-up mass

(4) lim
δ→0

lim
k→+∞

ρk

´
Bδ(x̄)

h euk´
M
h euk dVg

= 8π.

A direct consequence of the above quantization result is the blow-up phenomenon
can occur only for ρ ∈ 8πN.

Recently, the latter result was extended to the symmetric case in [14], where
P(dα) = τδ1(dα) + (1− τ)δ−1(d−1). It is known as the sinh-Gordon equation (see
[13] for an analogous problem):

(5) −∆u = ρ1

(
h1e

u´
M
h1eu dVg

− 1

|M |

)
− ρ2

(
h2e
−u´

M
h2e−u dVg

− 1

|M |

)
,

In the asymmetric case of (1) there are by now just partial results, see for example
[26, 27, 28, 31, 33].

We treat the problem (1) by following the ideas in [14] which is concerned for
the equation (5) (this idea was first introduced in [21] for the SU(3) Toda system).
However, the situation is quite different for the same-sign case, where we may meet
a new blow-up situation which yields non-quantization phenomenon as highlighted
in Theorem 1.1 and in Remark 1.1. Before we state the results, let us first fix some
notation for later use. Since the problem (1) is invariant by translation we will
often work in the following space:

H̊1(M) =

{
u ∈ H1(M) :

ˆ
M

u dVg = 0

}
.

For a sequence of solutions uk to (1) as ρi,k → ρi, i = 1, 2, we consider the normal-
ized functions

u1,k = uk − log

ˆ
M

h1 e
uk dVg, u2,k = auk − log

ˆ
M

h2 e
auk dVg,(6)

which satisfy

−∆u1,k = ρ1,k (h1e
u1,k − 1) + aρ2,k (h2e

u2,k − 1) ,

and we define the blow-up set S = S1 ∪ S2, where

(7) Si =

{
p ∈M : ∃{xk} ⊂M, xk → p, ui,k(xk)→ +∞

}
, i = 1, 2.

The first result is the following

Theorem 1.1. Let uk ∈ H̊1(M) be a sequence of solutions to (1) with a ∈ (0, 1)
and let ui,k, S be defined as above. Then, by passing to a subsequence if necessary,
the following alternatives hold true:
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(1) (compactness) S = ∅ and uk is uniformly bounded in L∞(M).
(2) (blow-up) S 6= ∅ and it is finite. It holds

(8) ρ1,kh1e
u1,k ⇀ r1 +

∑
p∈S1

m1(p)δp , ρ2,kh2e
u2,k ⇀ r2 +

∑
p∈S2

m2(p)δp ,

in the sense of measures, where ri ∈ L1(M) ∩ L∞loc(M \ Si), i = 1, 2 and

mi(p) = lim
r→0

lim
k→+∞

ρi,k

ˆ
Br(p)

hie
ui,k dVg.

Moreover, we have:

(a) If a ∈
[

1
2 , 1
)
, then (m1(p),m2(p)) is one of the following types:

(9) (8π, 0),

(
0,

8π

a2

)
, (m1,m2),

where m1 ∈ (0, 8π), m2 ∈
(

0,
8π

a2

)
. In addition (m1,m2) satisfies

m1 + am2 > 8π and (m1 + am2)2 = 8π(m1 +m2).

(b) If a ∈
(
0, 1

2

)
, then (m1(p),m2(p)) is one of the following types:

(10) (8π, 0),

(
0,

8π

a2

)
,

(
8π,

8π

a2
− 16π

a

)
, (m1,m2), (8πm, ηm),

where m1 ∈ (0, 8π), m2 ∈
(

8π

a2
− 16π

a
,

8π

a2

)
and (m1,m2) satisfies

m1 + am2 >
8π

a
− 8π and (m1 + am2)2 = 8π(m1 +m2),

while m ∈ N, m > 1 and ηm satisfies (8πm+ aηm)2 = 8π(8πm+ ηm).

We list here some remarks concerning the latter result.

Remark 1.1. Theorem 1.1 exhibits drastic differences from the standard mean
field equation (3) and the opposite-sign case, see for example (5). Indeed, the local
blow-up masses are not quantized any more as we have the type (m1,m2) in (9),
(10) for equation (1). This phenomenon is due to the same-sign structure: the
reason is that in the opposite-sign case the local blow-up mass is given by a globally
defined solution of −∆v = ev (or −∆v = a2e−av), while our problem could exhibit
a fully blow-up phenomenon which may lead us to consider an equation of the form
−∆v = ev + aeav: the latter equation was recently considered in [38] and gives rise
to the type (m1,m2) in (9), (10).

Remark 1.2. Results in the spirit of Theorem 1.1 were observed also in [9, 22] for
what concerns Liouville-type systems which are a generalization of (3), i.e.

−∆ui =

N∑
j=1

aij

(
hje

uj´
M
hjeuj dVg

− 1

|M |

)
,

where A = (aij) is a N × N matrix. Observe that equation (1) can be considered
as a Lioville system with

A =

(
1 a
a a2

)
.
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The authors in [9, 22] show that the blow-up limits, see (4), form a hypersurface
provided that A is irreducible, invertible and A−1 is nonnegative. However, it is
known that the matrix associated to the mean field equation we are interested in
is degenerate and hence non invertible and the strategy introduced for Liouville
systems can not be carried out in our setting.

Remark 1.3. From the description in (10) if a ∈
(
0, 1

2

)
and m2(p) 6= 0 we could

get a minimum mass. This in turn gives us some partial information about the
boundedness of the solutions to (1), see Theorem 1.2 (see also the existence result of
Theorem 1.3). On the other hand, for a ∈

[
1
2 , 1
)

a minimum mass is not guaranteed
and we can not derive either boundedness properties or the existence of solutions to
(1).

Remark 1.4. Different from the opposite-sign case, we will show in Theorem 1.2
that if S1 6= ∅ the residual r1 of the first component u1,k in (8) vanishes, i.e. r1 ≡ 0.
We have been informed that this fact was already known by Prof. T. Ricciardi and
Prof. T. Suzuki. This crucial property will be used in the proof of the compactness
result of the Theorem 1.2.

Remark 1.5. By means of the local blow-up mass (9), (10) in Theorem 1.1 we can
interpret the sharp Moser-Trudinger inequality associated to (1) obtained in [26],
see the discussion in Section 3.

The strategy of the proof for Theorem 1.1 is the following: the main point is to
determine the local masses in (9), (10). To this end we shall restrict our attention
to a blow-up sequence of solutions to (1). Then it is standard to get the desired
conclusion, see for example Section 5 in [23]. On the other hand, the convergence in
(8) is by now well-known and is obtained by similar arguments as in [33]. By means
of a selection process we can find a finite number of disks where, after scaling, the
blowing-up sequence of solutions to (1) tends to some globally defined Liouville-
type equations, see Remark 1.1. In each disk the local mass is then given by the
classification results on the local blow-up limits of the globally defined Liouville
equations and the Pohozaev identity. Finally, we study the combination of the
bubbling disks and get the desired result.

Remark 1.6. In a forthcoming paper, we shall consider the existence of blowing-up
solutions to (1) with (m1,m2) type local mass, see (9), (10). On the other hand,
we believe the last possibility in (10) could be ruled out.

By exploiting the above result we will derive the following compactness property,
which will be used later on.

Theorem 1.2. Let u ∈ H̊1(M) be a solution to (1). Suppose that a ∈
(
0, 1

2

)
and

that ρ1 /∈ 8πN, ρ2 <
8π

a2
− 16π

a
. Then, there exists a fixed constant C > 0 such that

|u(x)| ≤ C, ∀x ∈M.

Notice that the assumption on ρ2 is related to the minimum local blow-up mass
of (m1,m2) in (10).

In the second part of the paper we will introduce a variational argument to get the
existence result in a non-coercive regime, see Theorem 1.3. The argument will rely
on the analysis developed for the mean field equation (3): a similar approach was



MEAN FIELD EQUATION INVOLVING PROBABILITY MEASURES 5

used in [25, 39] in treating the SU(3) Toda system and the sinh-Gordon equation
(5), respectively. The Euler-Lagrange functional of (3) is given by Iρ : H1(M)→ R,

(11) Iρ(u) =
1

2

ˆ
M

|∇u|2 dVg − ρ
(

log

ˆ
M

h eu dVg −
ˆ
M

u dVg

)
.

By the standard Moser-Trudinger inequality

(12) 8π log

ˆ
M

eu−u dVg ≤
1

2

ˆ
M

|∇u|2 dVg + CM,g, u =

 
M

u dVg,

we have Iρ is bounded from below and coercive if ρ < 8π. Then we can apply
the direct minimization methods. For larger values of the parameter the problem
becomes subtler and one needs the improved version of the Moser-Trudinger in-
equality obtained in [8] which are based on some macroscopic division of eu over
the surface. It is a key point to show that if ρ < 8(k + 1)π, k ∈ N and Iρ(u) is
sufficiently negative, then eu can not be spreading around and as a result it starts
to accumulate around at most k points. Such configuration resembles the space of
the k-th formal barycenters of M

(13) Mk =

{
k∑
i=1

tiδxi :

k∑
i=1

ti = 1, xi ∈M

}
.

It is then possible to construct suitable min-max scheme based on the latter set,
exploiting the crucial fact that it has non-trivial topology, and finally we can get
existence of solutions to (3).

For the general equation (1) there is an analogous associated functional Jρ :
H1(M)→ R, ρ = (ρ1, ρ2)

Jρ(u) =
1

2

ˆ
M

|∇u|2 dVg − ρ1

(
log

ˆ
M

h1e
u dVg −

ˆ
M

u dVg

)
− ρ2

(
log

ˆ
M

h2e
au dVg −

ˆ
M

au dVg

)
.

(14)

In this framework a sharp Moser-Trudinger inequality was obtained in [26] (actually,
in a much more general setting). We point out that the case suppP ⊂ [0, 1] presents
striking differences from the opposite-sign case, see for example equation (5). We
postpone this discussion to Section 3: we suspect that the difference is due to the
third possibility of the local blow-up mass (9), (10) in Theorem 1.1.

The literature on the existence issue is limited in this framework: it turns out
that the sinh-Gordon case is more treatable and one can get both existence and
the multiplicity results, see [1, 3, 10, 11, 12, 16] (see also [15] for what concerns an
asymmetric sinh-Gordon equation). In the asymmetric case of (1) there are very few
results: in the recent paper [32] the authors provide existence results to (1) under
the assumption that ρi are not too large and the parameter a is sufficiently small.
This work is actually motivated by the latter paper and our aim is to give both a
possible sharper condition on a as well as some interpretation for the condition on a
based on the local blow-up mass obtained from Theorem 1.1, see also Remark 1.7.

Exploiting the above argument for the mean field equation (3) and the compact-
ness property in Theorem 1.2, we can get the following existence result.

Theorem 1.3. Suppose that a ∈
(
0, 1

2

)
and that ρ1 /∈ 8πN, ρ2 <

8π

a2
− 16π

a
. Then,

equation (1) is solvable.
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The assumptions in the latter result are somehow sharp in the sense that they are
related to the minimum local blow-up mass of (m1,m2) given in (10) of Theorem 1.1.

Remark 1.7. As mentioned before, this paper is motivated by [32] where (1) is
studied on a bounded domain Ω ⊂ R2 with Dirichlet boundary conditions. We point
out that in the latter work the authors exclude boundary blow-up: since our blow-up
analysis is purely local the same conclusions of Theorems 1.1, 1.2 hold true in this
setting. Moreover, by assuming Ω has non trivial homology it is possible to run the
variational method to deduce Theorem 1.3 in bounded domains.

We organize the paper in the following way: in Section 2 we study the blow-up
phenomenon related to equation (1) in bounded domains, we obtain the possible
values of the local blow-up masses and then give the proof of the Theorem 1.1
and Theorem 1.2, in Section 3 we introduce the min-max scheme and obtain the
existence result of Theorem 1.3.

Notation

The average of u is denoted by u =
ffl
M
u dVg. The sublevels of the functional Jρ

will be denoted by

(15) JLρ =
{
u ∈ H1(M) : Jρ(u) ≤ L

}
.

LettingM(M) be the set of all Radon measures on M , the Kantorovich-Rubinstein
distance is defined as

(16) d(µ1, µ2) = sup
‖f‖Lip≤1

∣∣∣∣ˆ
M

f dµ1 −
ˆ
M

f dµ2

∣∣∣∣ , µ1, µ2 ∈M(M).

The symbol Br(p) stands for the open metric ball of radius r and center at p. When
there is no ambiguity we will write Br ⊂ R2 for balls which are centered at 0.

Throughout the paper the letter C will stand for positive constants which are
allowed to vary among different formulas and even within the same lines. To stress
the dependence of the constants on some parameter we add subscripts to C, for
example Cδ. We will write oα(1) to denote quantities that tend to 0 as α → 0 or
α→ +∞; the symbol Oα(1) will be used for bounded quantities.

2. Blow-up analysis

In this section we are going to perform the blow-up analysis and prove Theo-
rems 1.1, 1.2, see the discussion after Theorem 1.1.

Let uk be a sequence of blow-up solutions to the following equation with (ρ1,k, ρ2,k)→
(ρ1, ρ2):

(17) −∆uk = ρ1,kh1e
u1,k + aρ2,kh2e

u2,k in B1,

where u1,k, u2,k are defined in (6), such that
´
M
uk dVg = 0 and 0 is the only blow-up

point in B1, more precisely:

(18) max
K⊂⊂B1\{0}

ui,k ≤ C(K), max
x∈B1, i=1,2

{ui,k(x)} → ∞.
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Furthermore, we suppose that
(19)

h1(0) = h2(0) = 1,
1

C
≤ hi(x) ≤ C, ‖hi(x)‖C3(B1) ≤ C, ∀x ∈ B1, i = 1, 2,

for some constant C > 0. We can assume

|ui,k(x)− ui,k(y)| ≤ C, ∀ x, y ∈ ∂B1,

ˆ
B1

ρi,khie
ui,k ≤ C,(20)

where C is independent of k. Indeed, the assumption on the bounded oscillation
can be obtained through the Green’s representation. To simplify the notation, the
local masses are usually defined as

σi = lim
δ→0

lim
k→∞

1

2π

ˆ
Bδ

ρi,khie
ui,k .(21)

Remark 2.1. To fix the notation and to make clear the blow-up analysis we remark
the following: since we are working over a compact surface, all the arguments are
intended in local charts around the blow-up points. More precisely, let ψ be a local
chart centered around a blow-up point p. Then, g = eψ

(
dx2

1 + dx2
2

)
, where

ψ(0) = 0, ∆ψ = −2Keψ

and K is the Gaussian curvature. Clearly, the coefficient functions h1, h2 in (1)
in this local chart are scaled accordingly, see for example [19] or Section 5 in [23]
for full details. For simplicity and with a little abuse of notation we will neglect the
latter scaling.

The result concerning the local masses in Theorem 1.1 can be rephrased as
follows:

Theorem 2.1. Let σi be defined as in (21). Suppose uk satisfies (17), (18), (20),
with a ∈ (0, 1) and hi satisfy (19). Then, it holds:

(a) If a ∈
[

1
2 , 1
)
, then (σ1, σ2) is one of the following types:

(4, 0),

(
0,

4

a2

)
, (α, β),

with α ∈ (0, 4), β ∈
(

0,
4

a2

)
such that

α+ aβ > 4 and (α+ aβ)2 = 4(α+ β).

(b) If a ∈
(
0, 1

2

)
, then (σ1, σ2) is one of the following types:

(4, 0),

(
0,

4

a2

)
,

(
4,

4

a2
− 8

a

)
, (α, β), (4m, γm),

with α ∈ (0, 4), β ∈
(

4

a2
− 8

a
,

4

a2

)
such that

α+ aβ >
4

a
− 4 and (α+ aβ)2 = 4(α+ β)

and with m ∈ N, m > 1, γm such that (4m+ aγm)2 = 4(4m+ γm).
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In order to prove the Theorem 2.1, we introduce a suitable selection process for
the equation (17).

Proposition 2.2. Let uk be a sequence of blow-up solutions to (17) with u1,k, u2,k

defined in (6). Suppose ui,k satisfies (18) and (20) with a ∈ (0, 1) and hi satisfies
(19), i = 1, 2. Set Mk(x) = maxi=1,2{ui,k(x)}. Then, there exist finite sequences
of points Σk := {xk1 , · · · , xkm} (all xkj → 0, j = 1, · · · ,m) and positive numbers

lk1 , · · · , lkm → 0 such that,

(1) Mk,j = maxi=1,2{ui,k(xkj )} = maxB
lk
j

(xkj ),i=1,2{ui,k} for j = 1, · · · ,m.

(2) exp( 1
2Mk,j)l

k
j →∞ for j = 1, · · · ,m.

(3) Let εk,j = e−
1
2Mk,j . In each Blkj (xkj ) we define the dilated function

(22) vi,k = ui,k(εk,jy + xkj ) + 2 log εk,j , i = 1, 2.

Then we have the following possibilities:
(a) v1,k converges to a solution of ∆v + ρ1e

v = 0 and v2,k → −∞ over
compact subsets of R2, where ρ1 = limk→+∞ ρ1,k or

(b) v2,k converges to a solution of ∆v + a2ρ2e
v = 0 and v1,k → −∞ over

compact subsets of R2, where ρ2 = limk→+∞ ρ2,k or
(c) v1,k, v2,k converges to v1 and v2 respectively, where v1, v2 satisfies

∆v1 + ρ1e
v1 + aρ2e

v2 = 0 and v2 = av1 + c with some constant c.
(4) There exits a constant C1 > 0 independent of k such that

Mk(x) + 2 log dist(x,Σk) ≤ C1, ∀x ∈ B1.

Proof. The proof is in the same spirit of the one used in [21, Proposition 2.1] and
[14, Proposition 2.1]. However, compared with the sinh-Gordon case, it is more
complicate for the same sign case. Therefore, we would like to give a sketch of the
proof and point out the differences.

Let Mk(xk1) = maxx∈B1
Mk(x). By assumption we clearly have xk1 → 0. Let

v1,k, v2,k be defined in (22) with xkj ,Mk,j replaced by xk1 ,Mk(xk1) respectively. By
the definition of εk,1 and (22), we have vi,k ≤ 0, i = 1, 2. We note that vi,k satisfies,
(23)
∆v1,k + ρ1,kh1e

v1,k + aρ2,kh2e
v2,k = 0, ∆v2,k + aρ1,kh1e

v1,k + a2ρ2,kh2e
v2,k = 0.

Therefore, we can deduce that |∆vi,k| is bounded. By standard elliptic estimate,
|vi,k(z)−vi,k(0)| is uniformly bounded in any compact subset of R2. Since u1,k and
u2,k has the following relation

au1,k = u2,k + log

ˆ
M

h2e
auk − a log

ˆ
M

h1e
uk ,

u1,k, u2,k reaches their maximal value at the same point. If u2,k(xk1) � Mk(xk1).
Then u1,k(xk1) = Mk(xk1), v1,k(0) = 0 and v1,k converges in C2

loc(R2) to a func-
tion v1, while the other component v2,k → −∞ over compact subsets of R2. As a
consequence, we have the limit of v1,k satisfies the following equation:

(24) ∆v1 + ρ1e
v1 = 0 in R2.

This is one of the alternatives listed in the third conclusion and we can follow the
arguments in [14, Proposition 2.1] to find lk1 such that

(25) Mk(x) + 2 log |x− xk1 | ≤ C, |x− xk1 | ≤ lk1 , e
1
2u1,k(xk1 )lk1 →∞.
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The case u1,k(xk1) � Mk(xk1) can be treated similarly and we can also find lk1
such that similar estimates as in (25) hold. The left possibility is the situation
when u1,k(xk1) and u2,k(xk1) are comparable. Without loss of generality, suppose
ck = u2,k(xk1) − u1,k(xk1). According to our assumption, ck is uniformly bounded
and we assume ck → c0 as k →∞ by passing to a subsequence if necessary. Then
the limit of the corresponding sequence v1,k, v2,k satisfy

(26) ∆v1 + ρ1e
v1 + ρ2ae

v2 = 0, v2 = av1 + c0.

We can rewrite the equation (26) as

(27) ∆v1 + ρ1e
v1 + ρ2a1e

av1 = 0, a1 = aec0 .

By [30, Theorem 1.1] we have equation (27) admits a solution if and only if

(28) η :=
1

2π

ˆ
R2

(ρ1e
v1 + ρ2a1e

av1) ∈
(

max

{
4,

4

a
− 4

}
,

4

a

)
.

Furthermore, we have the following estimate on the asymptotic behavior on vi,

(29) |v1 + η log(|y|+ 1)| ≤ C in R2, |v2 + aη log(|y|+ 1)| ≤ C in R2.

From (28) we can get aη > 2. Then we can take Rk →∞ such that

(30) vi,k(y) + 2 log |y| ≤ C, |y| ≤ Rk, i = 1, 2.

In other words, we can find lk1 → 0 such that

Mk(x) + 2 log |x− xk1 | ≤ C, |x− xk1 | ≤ lk1 ,
and

e
1
2Mk(xk1 )lk1 →∞, as k →∞.

Then we consider the functionMk(x)+2 log |x−xk1 |. If the functionMk(x)+2 log |x−
xk1 | is bounded in whole B1, then the selection process is terminated. Otherwise,
we can use a similar argument in [14, Proposition 2.1] or [21, Proposition 2.1] to
find xk2 and lk2 , where

Mk(x) + 2 log |x− xk2 | ≤ C, |x− xk2 | ≤ lk2 and e
1
2Mk(xk2 )lk2 →∞.

We can continue such process if the function Mk(x) + 2 log dist(x, {xk1 , xk2}) is un-
bounded. Since each bubbling area contributes a positive mass, the process stops
after finite steps due to (20). Finally we get

Σk = {xk1 , xk2 , · · · , xkm}
and it holds

(31) Mk(x) + 2 log dist(x,Σk) ≤ C,
which concludes the proof. �

From the last conclusion of Proposition 2.2, we can get a control on the upper
bound of the behavior for the blow-up solutions outside the bubbling disks and the
following Harnack type inequality.

Proposition 2.3. For all x ∈ B1 \Σk, there exists a constant C independent of x
and k such that

(32) |ui,k(x1)− ui,k(x2)| ≤ C, ∀x1, x2 ∈ B(x, d(x,Σk)/2).

Proof. We can modify the arguments in [14, Lemma2.1] or [21, Lemma2.4] to get
Proposition 2.3. �
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Let xk ∈ Σk and τk = 1
2d(xk,Σk \ {xk}), then for x, y ∈ Bτk(xk) and |x− xk| =

|y − xk| we can get ui,k(x) = ui,k(y) + O(1), i = 1, 2 from Proposition 2.3. Hence
ui,k(x) = ui,xk(r) +O(1) where r = |xk − x| and

ui,xk(r) =
1

2π

ˆ
∂Br(xk)

ui,k.

We say ui,k has fast decay at x ∈ B1 if

(33) ui,k(x) + 2 log dist(x,Σk) ≤ −Nk
holds for some Nk →∞ for i = 1, 2. On the other hand, we say ui,k has slow decay
at x if

ui,k(x) + 2 log dist(x,Σk) ≥ C,
for some C > 0 independent of k. It is known from the following lemma that it is
possible to choose r such that both ui,k, i = 1, 2 have the fast decay property, see
[14, Lemma 3.1] and [21, Lemma 3.2].

Lemma 2.4. For all εk → 0 with Σk ⊂ Bεk/2(0), there exists lk → 0 such that
lk ≥ 2εk and

max{ū1,k(lk), ū2,k(lk)}+ 2 log lk → −∞,
where ūi,k(r) := 1

2πr

´
∂Br

ui,k.

Furthermore, in each bubbling disk Blkj (xkj ) obtained in Proposition 2.2, we can

choose some suitable ball such that both ui,k, i = 1, 2 have the fast decay property
on the boundary of such ball: this fact plays an important role in getting the local
Pohozaev identity, which is an essential tool in determining the local mass, see
Remark 2.2.

By straightforward computations we have the following Pohozaev identity:ˆ
Br

(x · ∇h1ρ1,ke
u1,k + x · ∇h2ρ2,ke

u2,k) +

ˆ
Br

(2ρ1,kh1e
u1,k + 2ρ2,kh2e

u2,k)

=

ˆ
∂Br

r

(
|∂νu1,k|2 −

1

2
|∇u1,k|2

)
+

ˆ
∂Br

r (ρ1,kh1e
u1,k + ρ2,kh2e

u2,k) .

(34)

It is possible to choose suitable r = lk → 0 such that

1

2π

ˆ
Blk

ρi,khie
ui,k = σi + o(1), i = 1, 2

and both ui,k have fast decay property on ∂Blk , where σi are introduced in (21).
We point out that the fast decay property is important because it leads to the
second term on the right hand side of (34) is o(1). By (34) one can derive that

(35) 4 (σ1 + σ2) = (σ1 + aσ2)2.

For the detailed proof of (35) we refer the readers to [14, Proposition 3.1]. In addi-
tion, we have the following remark which will be used frequently in the forthcoming
argument.

Remark 2.2. We have already observed that the fast decay property is crucial in
evaluating the Pohozaev identity (34). Moreover, let Σ′k ⊆ Σk and assume that

dist
(
Σ′k, ∂Blk(pk)

)
= o(1) dist

(
Σk \ Σ′k, ∂Blk(pk)

)
.
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If both components ui,k, i = 1, 2 have the fast decay property on ∂Blk(pk), namely

max{ui,k(x)} ≤ −2 log |x− pk| −Nk, x ∈ ∂Blk(pk),

for some Nk → +∞. Then, we can evaluate a local Pohozaev identity as in (34)
and get (

σ̃k1 (lk) + aσ̃k2 (lk)
)2

= 4
(
σ̃k1 (lk) + σ̃k2 (lk)

)
+ o(1),

where

σ̃ki (lk) =
1

2π

ˆ
Blk (pk)

ρi,khie
ui,k , i = 1, 2.

We note that if Blk(pk)∩Σk = ∅ then σ̃ki (lk) = o(1), i = 1, 2 and the above formula
clearly holds.

To understand the local blow-up limit we have to study the contribution of the
local mass from each bubbling disk. Without loss of generality we may assume that
0 ∈ Σk (after suitable translation if necessary). Let τk = 1

2dist(0,Σk \ {0}). We set

σki (r) =
1

2π

ˆ
Br(0)

ρi,khie
ui,k , i = 1, 2,

for 0 < r ≤ τk and ui,k(r) = 1
2πr

´
∂Br(0)

ui,k. By using equation (17) we get the

following key property:

d

dr
u1,k(r) =

1

2πr

ˆ
∂Br

∂u1,k

∂ν
=

1

2πr

ˆ
Br

∆u1,k =
−σk1 (r)− aσk2 (r)

r
,

d

dr
u2,k(r) =

1

2πr

ˆ
∂Br

∂u2,k

∂ν
=

1

2πr

ˆ
Br

∆u2,k =
−aσk1 (r)− a2σk2 (r)

r
.

(36)

Moreover, from the selection process we have

max{u1,k(x), u2,k(x)}+ 2 log |x| ≤ C, |x| ≤ τk.

We recall that if both components have fast decay property on ∂Br(0) for r ∈ (0, τk),
then σk1 (r), σk2 (r) satisfy(

σk1 (r) + aσk2 (r)
)2

= 4
(
σk1 (r) + σk2 (r)

)
+ o(1),

see Remark 2.2. Furthermore, we have the following result on the description of
the local blow-up mass contributed in Bτk(0).

Proposition 2.5. Suppose (17)-(20) hold for uk and hi. Then, we have:

(a) If a ∈
[

1
2 , 1
)
, then

(
σk1 (τk), σk2 (τk)

)
is a small perturbation of one of the

following types:

(4, 0),

(
0,

4

a2

)
, (α, β),

with α, β as in the point (a) of the Theorem 2.1 and both ui,k are fast decay
on ∂Bτk .
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(b) If a ∈
(
0, 1

2

)
, then

(
σk1 (τk), σk2 (τk)

)
is either a small perturbation of one of

the following types:

(4, 0),

(
0,

4

a2

)
,

(
4,

4

a2
− 8

a

)
, (α, β),

with α, β as in the point (b) of the Theorem 2.1 and both ui,k are fast decay
on ∂Bτk , or σk1 (τk) = 4 + o(1) and u1,k is fast decay on ∂Bτk .

Remark 2.3. The latter result is different in nature from the sinh-Gordon (5)
and other opposite-sign cases where the fast decaying component is the one with the
bigger local mass. On the contrary, here we can assert both components have fast
decay if we exclude the σk1 (τk) = 4 + o(1) case.

Proof of Proposition 2.5. The proof is mainly followed by the argument in [21,
Proposition 5.1] and [14, Proposition 4.1], with some modifications. We start by
sketching the idea of the strategy: first of all we distinguish the cases whether the
maximal values of ui,k are comparable or not. The first step is to consider a suitable
scaling around the maximum point to get a Liouville-type equation defined in R2.
By standard classification results we can then recover some information about the
local blow-up mass at this scale. The idea is then to understand how much mass
we get when enlarging the scale. To this end, we use (36) to deduce whether ui,k
have fast decay or not, see (33). As long as ui,k have fast decay one can argue
as in [14, Lemma 4.1] to show the mass almost does not increase. On the other
hand, whenever one of ui,k has fast decay and the other one has slow decay we can
apply [14, Lemma 4.2] to show that the mass indeed increase and the increment
is obtained by applying the Pohozaev identity, see Remark 2.2. The procedure is
then iterated for a finite number of times to get the desired properties.

The argument goes as follows: as explained in the proof of Proposition 2.2, both
components obtain its maximal at the same point, which is here by assumption
xk1 = 0. Let

−2 log δk = max{u1,k(xk1), u2,k(xk1)} = max
x∈Bτk (0)

max{u1,k(x), u2,k(x)}.

We set

vki (y) = ui,k(δky) + 2 log δk, |y| ≤ τk
δk
.

Suppose the maximal values of ui,k(x) are comparable: as in Proposition 2.2 it
holds that vki converges to vi, where vi verifies the following

(37) ∆v1 + ρ1e
v1 + aρ2e

v2 = 0, v2 = av1 + c0,

for some constant c0. Then, from [38, Proposition 3.2] and [30, Theorem 3.1] we
have (37) admits a solution if and only if

(38) η =
1

2π

ˆ
R2

(ρ1e
v1 + aρ2e

v2) ∈
(

max

{
4,

4

a
− 4

}
,

4

a

)
.

In addition, we have the following estimate on the asymptotic behavior on vi,

|v1 + η log(|y|+ 1)| ≤ C in R2, |v2 + aη log(|y|+ 1)| ≤ C in R2.(39)
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From (38) we have aη > 2. As a consequence, we can choose Rk →∞ (we assume
that Rk = o(1)τk/δk) such that

(40)
1

2π

ˆ
BRk

ρi,khi(δky)ev
k
i =

1

2π

ˆ
R2

ρie
vi + o(1).

For r ≥ Rk we point out that

σki (δkr) =
1

2π

ˆ
Br

ρi,khi(δky) ev
k
i .

Then we get σki (δkRk) = 1
2π

´
R2 ρie

vi + o(1). Now, we consider the behavior of the
solutions from BδkRk to Bτk . First we note that on ∂BδkRk by estimate of the local
energies in (38) and by (36) we get

d

dr
(ūi,k(r) + 2 log r) < 0.

The latter property together with (40) implies that both ui,k are fast decay from
BδkRk to Bτk . Therefore, following a similar argument in [14, Lemma 4.1], we
conclude that the local blow-up mass of each component only changes by o(1) and
both components remains fast decay on ∂Bτk . This gives raise to the (α, β) type in
the points (a), (b).

If the maximal values of ui,k are not comparable, then we have two cases:
u1,k(xk1) � u2,k(xk1) or u1,k(xk1) � u2,k(xk1). When the former case happens, we
shall get v1,k → −∞ uniformly in any compact subsets of R2, while v2,k converges
to a solution which satisfies

(41) ∆v + a2ρ2e
v = 0.

Then by the quantization of the limit equation (41) we can choose Rk → ∞ such
that

(42)
1

2π

ˆ
BRk

ρ1,kh1(δky)ev
k
1 (y) = o(1),

1

2π

ˆ
BRk

ρ2,kh2(δky)ev
k
2 (y) =

4

a2
+ o(1).

For r ≥ Rk we clearly have

σki (δkr) =
1

2π

ˆ
Br

ρi,khi(δky)ev
k
i (y).

Then we have σk1 (δkRk) = o(1) and σk2 (δkRk) =
4

a2
+ o(1). By using the equation

(36), we have

d

dr
(ūi,k(r) + 2 log r) ≤ 0,

as before, we could get both components are fast decay up to ∂Bτk and each com-

ponent only changes by o(1). Hence, we end up with the

(
0,

4

a2

)
type in the points

(a), (b).

The left case is u1,k � u2,k. Similarly, we could find Rk →∞ such that

(43)
1

2π

ˆ
BRk

ρ1,kh1(δky)ev
k
1 (y) = 4 + o(1),

1

2π

ˆ
BRk

ρ2,kh2(δky)ev
k
2 (y) = o(1).

Then we have σk1 (δkRk) = 4+o(1) and σk2 (δkRk) = o(1). If a ≥ 1
2 then d

dr (ū2,k(r)+
2 log r) ≤ 0 and as before each component only changes by o(1): we get the (4, 0)
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type in the point (a). On the other hand, for a < 1
2 we can not determine the sign of

d
dr (ū2,k(r)+2 log r). Then we get the following alternatives: for r ≥ Rk either both

vi,k have fast decay property up to ∂Bτk (and we get
(
σk1 (τk), σk2 (τk)

)
= (4, 0)+o(1))

or there exists Lk ∈ (Rk, τk/δk) such that v2,k has the slow decay

vk2 (y) ≥ −2 logLk − C, |y| = Lk,

for some C > 0, while

vk1 (y) ≤ −2 log |y| −Nk, |Rk| ≤ |y| ≤ Lk,

for some Nk → +∞. If the latter happens and Lk = o(1)τk/δk, we can repeat the

arguments in [14, Lemma 4.2] to find L̃k such that L̃k/Lk →∞ and L̃k = o(1)τk/δk
and both components have fast decay:

vki (y) ≤ − log |y| −Nk, |y| = L̃k, i = 1, 2,

for some Nk →∞. Moreover, by the Pohozaev identity, see Remark 2.2, σk1 (δkL̃k) =

4 + o(1) and σk2 (δkL̃k) =
4

a2
− 8

a
. Then as r grows from δkL̃k to τk, we have both

ui,k satisfy d
dr (ūi,k(r) + 2 log r) ≤ 0. Hence, both components have fast decay up

to ∂Bτk and the energies are σki (δkL̃k) + o(1), respectively. Hence, we end up with

the

(
4,

4

a2
− 8

a

)
type in the point (b).

If instead Lk = O(1)τk/δk, by Proposition 2.3 we directly conclude that the
first component has fast decay while the second one has slow decay. Moreover,
σk1 (τk) = 4 + o(1), while σk2 (τk) can not be determined at this point. Thus, we
finish the proof. �

After analyzing the behavior of the bubbling solution ui,k in each disk, we turn
to consider the combination of the bubbling disks in a group. The concept of group
for this kind of problems was first introduced in [21]. Roughly speaking, the groups
are made of points in Σk which are relatively close to each other but relatively far
away from the other points in Σk.

Definition. Let G = {pk1 , · · · , pkq} be a subset of Σk with more than one point in
it. G is called a group if

(1) dist(pki , p
k
j ) ∼ dist(pks , p

k
t ), where pki , p

k
j , p

k
s , p

k
t are any points in G such that

pki 6= pkj and pkt 6= pks .

(2)
dist(pki , p

k
j )

dist(pki , pk)
→ 0, for any pk ∈ Σk \G and for all pki , p

k
j ∈ G with pki 6= pkj .

We note that from Proposition 2.3 if both components ui,k have fast decay
around one of the disks in a group, they are forced to have fast decay around all
the disks in this group. More precisely, suppose Bτk1 (xk1), · · · , Bτkm(xkm) are all the

bubbling disks in some group, where τkj = 1
2dist(xkj ,Σk \{xkj }). By the definition of

group, all the τkl , l = 1, · · · ,m are comparable. Suppose both ui,k have fast decay:
then we can find Nk → ∞ such that all the disks in this group are contained in
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BNkτk1 (0) and

σki
(
Nkτ

k
1

)
=

m∑
j=1

σki

(
Bτkj (xkj )

)
+ o(1), i = 1, 2,(44)

where

σki

(
Bτkj (xkj )

)
=

1

2π

ˆ
B
τk
j

(xkj )

ρi,khie
ui,k , i = 1, 2.

Roughly speaking, the local blow-up mass contribution comes just from the local
blow-up mass in each bubbling disk.

From Proposition 2.5, if there is a bubbling disk such that(
σk1

(
Bτkj (xkj )

)
, σk2

(
Bτkj (xkj )

))
∈

{(
0,

4

a2

)
+ o(1),

(
4,

4

a2
− 8

a

)
+ o(1),

(α, β) + o(1)

}
,

(45)

where (α, β) satisfies the relation listed in Proposition 2.5, we can conclude both
components ui,k, i = 1, 2 have fast decay. Then we claim there is at most one
bubbling disk in this group. If not, suppose there are more than one bubbling disk:

Bτk1 (xk1), · · · , Bτkm(xkm), m ≥ 2. From Remark 2.2 σki

(
Bτkj (xkj )

)
satisfies

(
σk1

(
Bτkj (xkj )

)
+ aσk2

(
Bτkj (xkj )

))2

= 4
(
σk1

(
Bτkj (xkj )

)
+ σk2

(
Bτkj (xkj )

))
+ o(1),

(46)

for j = 1, · · · ,m and, by (44)

 m∑
j=1

σk1

(
Bτkj (xkj )

)
+ a

m∑
j=1

σk2

(
Bτkj (xkj )

)2

= 4

 m∑
j=1

σk1

(
Bτkj (xkj )

)

+

m∑
j=1

σk2

(
Bτkj (xkj )

)+ o(1).

(47)

However, when m ≥ 2, it is impossible for (46) and (47) to hold simultaneously.
Thus, we prove the claim.

Therefore, if there are more than one bubbling disk in some group, then all of

the local energies σk1

(
Bτkj (xkj )

)
must be a small perturbation of 4 with u1,k fast

decay and u2,k slow decay. Then we can choose Nk → ∞ such that both ui,k are
fast decay on ∂BNkτk(0) and

σk1 (BNτk(0)) =

m∑
j=1

σk1

(
Bτkj (xkj )

)
+ o(1) = 4m+ o(1),(48)

with m > 1. Furthermore, σk1 (BNτk(0)) , σk2 (BNτk(0)) satisfy(
σk1 (BNτk(0)) + aσk2 (BNτk(0))

)2
= 4

(
σk1 (BNτk(0)) + σk2 (BNτk(0))

)
.(49)
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If the quadratic equation (4m+ ax)2 = 4(4m+ x) admits solution γm, i.e.,

(4m+ aγm)2 = 4(4m+ γm),(50)

then we can get (
σk1 (BNτk(0)) , σk2 (BNτk(0))

)
= (4m, γm) + o(1).(51)

Since m > 1 we observe that for a ≥ 1
2 the equation (50) does not admit solutions

and hence this type of local mass is not present for this range of the parameter a.
Furthermore, from (36) we can see that u1,k is still the fast decay component in
BNτk \Bτk . In conclusion, if there is only one bubbling disk, then the local blow-up
mass of the area covered by this group is one of the following{

(4, 0),

(
0,

4

a2

)
,

(
4,

4

a2
− 8

a

)
, (α, β)

}
,

where (α, β) satisfy the relation listed in Proposition 2.5 (the third type is not
present for a ≥ 1

2 ), or there are multiple bubbling disks in this group, and the

associated local blow-up mass is (4m, γm) where γm satisfies (4m+aγm)2 = 4(4m+
γm), m > 1. We point out that except for the case (α, β) the local blow-up mass
of the first component is always a perturbation of a multiple of 4 and u1,k is fast
decaying. Then, we start to combine the groups, which is very similar as the
combination of the bubbling disks. We continue to include the groups which are
far away from 0: from the selection process we have only finite bubbling disks and
as a result the combination procedure will terminate in finite steps. Then, we can
take sk → 0 with Σk ⊂ Bsk(0) such that both components ui,k are fast decay on
∂Bsk(0). Therefore, we have σk1 (sk1), σk2 (sk2) is a small perturbation of one of the
following types {

(4, 0),

(
0,

4

a2

)
,

(
4,

4

a2
− 8

a

)
, (α, β), (4m, γm)

}
,

where γm satisfies (50), m > 1, and (α, β) satisfy the condition stated in Propo-
sition 2.5 (the third and the last types are not present for a ≥ 1

2 ). On the other
hand, we have

σi = lim
k→∞

σki (sk), i = 1, 2.

It follows that σ1, σ2 satisfy the quantization property of Theorem 2.1 and we finish
the proof.

We end this section by giving the proof of the compactness property of Theo-
rem 1.2.

Proof of Theorem 1.2. We prove this theorem by contradiction. Suppose the conclu-
sion is wrong. Then S 6= ∅. In order to derive a contradiction, we need an improved
version of the second conclusion in Theorem 1.1. We claim that if S1 6= ∅, then

ρ1,kh1e
u1,k ⇀

∑
p∈S1

m1(p)δp,(52)

in other words, we claim r1 ≡ 0 if S1 6= ∅. It is equivalent to
´
M
h1e

uk dVg → ∞.

If the claim is not true, then we have
´
M
h1e

uk dVg is uniformly bounded and so is
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´
M
h2e

auk dVg by Holder’s inequality. Letting

C−1
1k =

ˆ
M

h1e
uk dVg, C−1

2k =

ˆ
M

h2e
auk dVg,

we can find two positive constants C1 and C2 such that C1 ≤ Cik ≤ C2. Then, we
can write (1) as (recall |M | = 1)

∆uk + C1kρ1,kh1e
uk + aC2kρ2,kh2e

auk − ρ1,k − aρ2,k = 0.

We decompose uk = v1k + v2k, where vik satisfy{
∆v1k + C1kρ1,kh1e

v2kev1k = 0 in Br(p),
v1k = 0 on ∂Br(p),

and {
∆v2k + aC2kρ2,kh2e

auk − ρ1,k − aρ2,k = 0 in Br(p),
v1k = uk on ∂Br(p),

where r is chosen such that Br(p) ∩ S = {p}. Since
´
Br(p)

euk dVg is uniformly

bounded we have eauk ∈ L 1
a (Br(p)). Using Green’s representation formula we can

conclude uk is uniformly bounded in M \ S. By standard elliptic estimate, we can
get v2k is uniformly bounded in Br(p). Then v1k satisfies

(53)

{
∆v1k + hke

v1k = 0 in Br(p),
v1k = 0 on ∂Br(p),

where hk = C1kρ1,kh1e
v2k is uniformly bounded. Since uk blows-up at p we apply

Y.Y. Li’s result [19] to deduce C1kρ1,kh1e
uk = hke

v1k ⇀ 8πδp in Br(p). This
contradicts to the assumption

´
M
h1e

uk dVg is bounded. Hence, we finish the proof
of the claim.

It follows that if S1 6= ∅ we get ρ1,kh1e
u1,k ⇀

∑
p∈S1

m1(p)δp. Since we are

assuming a < 1
2 and ρ2 <

8π

a2
− 16π

a
, we can not have a local mass of the type

(α, β) in the Theorem 1.1. Therefore, the local mass of u1,k is a multiple of 8π
around the blow-up point, i.e. m1(p) is multiple of 8π for every p ∈ S1. Then, we
get ρ1 ∈ 8πN. Contradiction arises. Therefore, S1 = ∅ and S2 6= ∅. Since the blow-
up mass (8π, 0) was already considered in the latter argument, from Theorem 1.1

we have m2(p) =
8π

a2
for any blow-up point p ∈ S2. This leads to ρ2 ≥

8π

a2
and it

contradicts the assumption ρ2 <
8π

a2
− 16π

a
. Thus, S2 is also empty. Therefore, we

prove the theorem.

�

3. Variational analysis

In this section we will introduce the variational argument needed for the existence
result of Theorem 1.3. We will start by discussing about the Moser-Trudinger
inequality associated to (1) and its improved version. Next we construct a min-
max scheme based on the barycenters of M , see (13), which yields the existence
of solutions to (1). The latter argument is quite standard now, see for example
[25, 39], so we shall only give the crucial steps.
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3.1. Moser-Trudinger inequality. As already pointed out in the Introduction,
a sharp Moser-Trudinger inequality in this setting was obtained in [26]. More
precisely, let

(54) JP(u) =
1

2

ˆ
M

|∇u|2 dVg − ρ
ˆ
I

(
log

ˆ
M

eα(u−u) dVg

)
P(dα)

be the energy functional associated to the general problem (2), JP is bounded from
below if and only if

(55) ρ ≤ 8π inf

 P(K±)(´
K±

αP(dα)
)2 : K± ⊂ I± ∩ suppP

 ,

where K is a Borel set and I+ = [0, 1] and I− = [−1, 0). In the case P(dα) =

P̃(dα) = τδ1(dα) + (1− τ)δa(dα), with a ∈ (0, 1) and τ ∈ [0, 1], the functional (54)
is reduced to

JP̃(u) =
1

2

ˆ
M

|∇u|2 dVg − ρτ
(

log

ˆ
M

h1e
u dVg −

ˆ
M

u dVg

)
− ρ(1− τ)

(
log

ˆ
M

h2e
au dVg −

ˆ
M

au dVg

)
,

while the sharp inequality (55) is given by

(56) ρ ≤ 8πmin

{
1

τ
,

1

a2(1− τ)
,

1

(τ + a(1− τ))2

}
,

by taking K = {1}, K = {a} and K = {a, 1}, respectively. In the notation of the
functional Jρ in (14), where ρ = ρ1 + ρ2 and τ = ρ1

ρ1+ρ2
, 1 − τ = ρ2

ρ1+ρ2
, we get

equivalently

1 ≤ 8πmin

{
1

ρ1
,

1

a2ρ2
,

ρ1 + ρ2

(ρ1 + aρ2)2

}
,

which implies that all the following conditions have to be satisfied:

(57) ρ1 ≤ 8π, ρ2 ≤
8π

a2
, (ρ1 + aρ2)2 ≤ 8π(ρ1 + ρ2).

Some comments are needed here: the first value in (57) is related to the standard
Moser-Trudinger inequality (12), while the first two values are the sharp inequality’s
constants in the opposite-sign case, see for example (5). On the other hand, in the
same-sign case the sharp inequality changes due to the last value in (57). By means
of the Theorem 1.1 we can interpret the latter quantity in terms of the local blow-
up masses in (9), (10). Indeed, the first two values in (57) correspond to the first
two masses in (9), (10) while the last one in (57) is related to the fully blow-up
mass, see also Remark 1.1, which is the third (resp. fourth) possibility in (9) (resp.
(10)). The third local mass in (10) is nothing but the limit case of the fully blow-up
situation and represents the infimum of the latter fully blow-up masses. On the
other hand, the last type of local mass in (10), which we denote here by (σ1, σ2),
does not give any further restriction on the parameters in the Moser-Trudinger
inequality since σ1 > 8π.

Let us see now what kind of Moser-Trudinger inequality we will need in the
sequel. Recall that in the existence result of Theorem 1.3 we assume a < 1

2 and
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ρ2 <
8π

a2
− 16π

a
. Under the latter assumptions we can derive by straightforward

calculations that the sharp condition in (57) is given by ρ1 ≤ 8π (namely, the last
bound in (57) does not give any restriction on ρ1). In other words, we deduce the
following inequality:

(58) 8π log

ˆ
M

eu−u dVg + ρ2,a log

ˆ
M

ea(u−u) dVg ≤
1

2

ˆ
M

|∇u|2 dVg + CM,g,

where u =
ffl
M
u dVg and we set ρ2,a =

8π

a2
−16π

a
. We point out that our assumptions

are sharp in the sense that if ρ2 > ρ2,a, the latter inequality does not hold true
with respect to (8π, ρ2).

Inequality (58) gives boundedness from below and coercivity of the functional Jρ
in (14) for ρ1 < 8π and ρ2 < ρ2,a. In the non-coercive regime what we really need
is an improved version of it. It is by now well-known how to deduce following type
of results, see in particular [39] (see also [3, 13] for more general results), hence we
only sketch the process.

Proposition 3.1. Let ρ2,a be defined as above and let δ > 0, θ > 0, k ∈ N, {Si}ki=1 ⊂M
be such that d(Si, Sj) ≥ δ for i 6= j. Then, for any ε > 0 there exists C = C (ε, δ, θ, k,M)
such that if u ∈ H1(M) satisfiesˆ

Si

eu dVg ≥ θ
ˆ
M

eu dVg, ∀i ∈ {1, . . . , k},

it follows that

8kπ log

ˆ
M

eu−u dVg + ρ2,a log

ˆ
M

ea(u−u) dVg ≤
1 + ε

2

ˆ
M

|∇u|2 dVg + C.

Proof. We list the main steps for the reader’s convenience. One may assume u = 0
and u is decomposed so that u = v + w, with v = w = 0 and v ∈ L∞(M). Such
decomposition will be suitably chosen in the final step. By a covering argument,
see for example [3, 13, 25], there exist δ > 0, θ > 0 and {Ωn}kn=1 ⊂M such that
d(Ωi,Ωj) ≥ δ for i 6= j and
(59)̂

Ωn

eu dVg ≥ θ
ˆ
M

eu dVg,

ˆ
Ω1

eau dVg ≥ θ
ˆ
M

eau dVg, ∀ n ∈ {1, . . . , k}.

Next we take k cut-off functions 0 ≤ χn ≤ 1 such that

(60) χn|Ωn ≡ 1, χn|M\(Bδ/2(Ωn)) ≡ 0, |∇χn| ≤ Cδ, n = 1, . . . , k.

The assumption (59) on the volume spreading of u implies

log

ˆ
M

eu dVg ≤ log

ˆ
Ωn

eu dVg + Cδ ≤ log

ˆ
M

eχnw dVg + ‖v‖L∞(M) + C.(61)

Reasoning similarly for au in Ω1 and using the Moser-Trudinger inequality (58) we
obtain

8π log

ˆ
M

eu dVg + ρ2,a log

ˆ
M

eau dVg ≤
1

2

ˆ
M

|∇(χ1w)|2 dVg + C‖v‖L∞(M)

+ (8π + aρ2,a)

ˆ
M

χ1w dVg + C.

(62)
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By the Poincaré’s and Young’s inequalities it is possible to show

(63)

ˆ
M

χ1w dVg ≤ ε
ˆ
M

|∇w|2 dVg + Cε.

while the gradient term can be estimated by the Young’s inequality as follows:ˆ
M

|∇(χ1w)|2 dVg ≤ (1 + ε)

ˆ
Bδ/2(Ω1)

|∇w|2 dVg + Cε,δ

ˆ
M

w2 dVg.(64)

For m = 2, . . . , k we use the spreading of u and the standard Moser-Trudinger
inequality (12) and the same argument as above to get

8π log

ˆ
M

eu dVg ≤
1 + ε

2

ˆ
Bδ/2(Ωm)

|∇w|2 dVg + ε

ˆ
M

|∇w|2

+ Cε,δ

ˆ
M

w2 dVg + C‖v‖L∞(M) + C.

(65)

By combining (62), (65) and recalling that the sets Ωj are disjoint we end up with

8kπ log

ˆ
M

eu dVg + ρ2,a log

ˆ
M

eau dVg ≤
1 + ε

2

ˆ
M

|∇w|2 dVg + ε

ˆ
M

|∇w|2 dVg

+ Cε,δ

ˆ
M

w2 dVg + C‖v‖L∞(M) + C.(66)

Finally, we can suitably choose v, w by means of a decomposition of u relative to
a basis of eigenfunctions of −∆ in H1(M) with zero average condition to estimate
the left terms, see for example [13, 25]. �

Proposition 3.1 tells us that in the case when Jρ is sufficiently negative, the
functions eu can not be spread over the surface (otherwise we would have a lower
bound on Jρ) and hence they are close to the set Mk in (13): more precisely,
recalling JLρ in (15) and d in (16), it holds the following (see for example [39] for
the first part of the statement and [3] for the second one).

Proposition 3.2. Suppose ρ1 ∈ (8kπ, 8(k + 1)π), k ∈ N and ρ2 < ρ2,a. Then, for

any ε > 0 there exists L > 0 such that if u ∈ J−Lρ then

d

(
h1e

u´
M
h1eu dVg

,Mk

)
< ε.

Moreover, for L sufficiently large there exists a continuous retraction

Ψ : J−Lρ →Mk.

3.2. Min-max scheme. We construct now the min-max scheme which yields ex-
istence of solutions to (1). We observed in the previous subsection that the low
sublevels J−Lρ are mapped to the set Mk, see Proposition 3.2. The min-max scheme
will be based on the latter set: to this end we need the following key result which
asserts that Mk and the associated map Ψ are a good description of J−Lρ , in the
sense that one can define a reverse map such that the composition of them is ho-
motopic to the identity map, see for example [3, 25, 39]. Recall the map Ψ in

Proposition 3.2 and that ρ2,a =
8π

a2
− 16π

a
.
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Proposition 3.3. Suppose ρ1 ∈ (8kπ, 8(k + 1)π), k ∈ N and ρ2 < ρ2,a. Then, for
L sufficiently large there exists a continuous map

Φ : Mk → J−Lρ ,

such that Ψ ◦ Φ ∼= IdMk
.

Proof. We sketch the proof for the reader’s convenience. For large L and the

parameter λ > 0 to be defined in the sequel we consider σ :=
∑k
i=1 tiδxi ∈Mk,

(67) ϕλ,σ(x) = log

k∑
i=1

ti

(
1

1 + λ2d(x, xi)2

)2

,

and define Φ = Φλ : Mk → H1(M) by Φλ(σ) = ϕλ,σ. We need to show

(68) Jρ(ϕλ,σ)→ −∞ as λ→ +∞, uniformly in σ ∈Mk.

Concerning the gradient part we claim that

(69)
1

2

ˆ
M

|∇ϕλ,σ(x)|2 dVg ≤
(
16kπ + oλ(1)

)
log λ+ C.

It is indeed possible to show the following two estimates:

(70) |∇ϕλ,σ(x)| ≤ Cλ, for every x ∈M,

where C is a constant independent of λ, σ ∈Mk, and

(71) |∇ϕλ,σ(x)| ≤ 4

dmin(x)
, for every x ∈M,

where dmin(x) = min
i=1,...,k

d(x, xi).

We consider then

1

2

ˆ
M

|∇ϕλ,σ(x)|2 dVg =
1

2

ˆ
⋃
i B 1

λ
(xi)

|∇ϕλ,σ(x)|2 dVg

+
1

2

ˆ
M\

⋃
i B 1

λ
(xi)

|∇ϕλ,σ(x)|2 dVg.

From (70) we get ˆ
⋃
i B 1

λ
(xi)

|∇ϕλ,σ(x)|2 dVg ≤ C.

We then introduce the sets

Ai =

{
x ∈M : d(x, xi) = min

j=1,...,k
d(x, xj)

}
,

and by (71) we obtain

1

2

ˆ
M\

⋃
i B 1

λ
(xi)

|∇ϕλ,σ(x)|2 dVg ≤ 8

k∑
i=1

ˆ
Ai\B 1

λ
(xi)

1

d2
min(x)

dVg + C

≤
(
16kπ + oλ(1)

)
log λ+ C.

For the part involving the nonlinear term we claim

(72) log

ˆ
M

eϕλ,σ dVg = −2 log λ+O(1).
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It is enough to estimate ˆ
M

1(
1 + λ2d(x, x)2

)2 dVg,
for some fixed x ∈M . By a change of variables it is easy to show thatˆ

M

1(
1 + λ2d(x, x)2

)2 dVg = λ−2(1 +O(1)),

which gives the claim in (72).
Concerning the average part we claim that

(73)

ˆ
M

ϕλ,σ dVg = −
(
4 + oλ(1)

)
log λ+O(1).

For simplicity we show the latter estimate just for k = 1. It holds

ϕλ,σ(x) = −4 log
(

max{1, λd(x, x1)}
)

+O(1), x1 ∈M.

We haveˆ
M

ϕλ,σ dVg = −4

ˆ
M\B 1

λ
(x1)

log
(
λd(x, x1)

)
dVg − 4

ˆ
B 1
λ

(x1)

dVg +O(1)

= −4 log λ
∣∣∣M \B 1

λ
(x1)

∣∣∣− 4

ˆ
M\B 1

λ
(x1)

log(d(x, x1)) dVg +O(1).

Recalling that we have |M | = 1 the claim (73) is proved.

Finally, using first the Jensen’s inequality involving the part ea(ϕλ,σ−ϕλ,σ) and
then (69), (72), (73) we deduce

Jρ(ϕλ,σ) =
1

2

ˆ
M

|∇ϕλ,σ|2 dVg − ρ1

(
log

ˆ
M

h1e
ϕλ,σ dVg −

ˆ
M

ϕλ,σ dVg

)
− ρ2

(
log

ˆ
M

h2e
aϕλ,σ dVg −

ˆ
M

aϕλ,σ dVg

)
≤ 1

2

ˆ
M

|∇ϕλ,σ|2 dVg − ρ1

(
log

ˆ
M

h1e
ϕλ,σ dVg −

ˆ
M

ϕλ,σ dVg

)
≤
(
16kπ − 2ρ1 + oλ(1)

)
log λ+O(1),

which proves (68) since by assumption ρ1 > 8kπ.
We prove now the final assertion of the proposition. It is standard to see that

eϕλ,σ´
M
eϕλ,σ dVg

⇀ σ, as λ→ +∞,

in the sense of measures, see for example [3, 25, 39]. We point out that the map Ψ
in Proposition 3.2 is a retraction: it follows then that

Ψ

(
eϕλ,σ´

M
eϕλ,σ dVg

)
→ σ,

which gives the desired homotopy Ψ ◦ Φ ∼= IdMk
. �

We are now in the position to construct the min-max scheme and to prove the
Theorem 1.3.
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Proof of Theorem 1.3. Let Mk be the topological cone over Mk, i.e.

(74) Mk =
(
Mk × [0, 1]

)/(
Mk × {1}

)
,

where the equivalence relation identifies all the points in Mk × {1}. We choose
L > 0 so large that the map Ψ : J−Lρ → Mk in Proposition 3.2 is well-defined and
let λ > 1 be so large such that Jρ(ϕλ,σ) ≤ −4L uniformly in σ ∈ Mk, where ϕλ,σ
is given in (67). We then consider the following family of functions

(75) H =
{
h : Mk → H1(Σ) : h is continuous and h

(
σ, 0
)

= ϕλ,σ , σ ∈Mk

}
,

which clearly is non-empty: indeed, h̄(σ, s) = (1−s)ϕλ,σ, s ∈ [0, 1], σ ∈Mk belongs
to H. Letting

cρ = inf
h∈H

sup
m∈Mk

Jρ
(
h(m)

)
,

the key property is that

cρ > −2L.

Indeed, assuming by contradiction that cρ ≤ −2L and there would exist a map
h ∈ H with supm∈Mk

Jρ
(
h(m)

)
≤ −L. Then, let m = (σ, t), with ϑ ∈ Mk, from

Proposition 3.2 we can conclude the map t 7→ Ψ ◦ h(·, t) would be a homotopy
in Mk between Ψ ◦ ϕλ,σ (for t = 0) and a constant map (for t = 1 due to the
equivalence relation in (74)). But this is impossible since Mk is non-contractible
and since Ψ ◦ ϕλ,σ = Ψ ◦ Φ ∼= IdMk

by Proposition 3.3. Therefore we deduce the
desired estimate.

On the other hand, by construction and by the choice of λ > 1 we have

sup
h∈H

sup
m∈∂Mk

Jρ
(
h(m)

)
= sup
σ∈Mk

Jρ(ϕλ,σ) ≤ −4L.

We conclude that the functional Jρ has a min-max structure which in turn yields
a Palais-Smale sequence. However, we cannot directly conclude the existence of a
critical point, since it is not known whether the Palais-Smale condition holds or
not. It is then standard to follow the monotonicity argument introduced in [36] to
get in a first step bounded Palais-Smale sequences and then a sequence of solutions
to (1) relative to ρ1,k → ρ1 ∈ (8kπ, 8(k+1)π), ρ2,k → ρ2 < ρ2,a. It is then sufficient
to apply the compactness result in Theorem 1.2 to deduce convergence to a solution
of (1). �
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