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ABSTRACT 

In this paper a novel approach to the analysis of the energetic performance of an industrial robot is 

presented. The attention is focused on the energetic impact of two design variables which define a 

pick-and-place task: the choice of the trajectory planning algorithm and the location of the task 

within the workspace of the robot. An inverse dynamic model of the manipulator and the electro-

mechanical model of the actuators are developed in order to estimate the energy consumption 

related to the execution of a basic motion task. The results are collected into energy consumption 
maps, which allow to investigate how the positioning of the task and the choice of the motion 

profile affect the energetic performance of the robot. 

 

KEY WORDS: Energy saving, Trajectory planning, Task positioning, Pick-and-Place operation, 

SCARA robot 
 

 

1. INTRODUCTION 

 

In the last years, the growing energy demand and the increasing of environment awareness have 

shifted the focus of all engineering fields towards the research of new methods and solutions for 

energy saving. Especially in modern robotics, where high volumes of production and high speed 

operation are required, this trend has caused a great change in the mind-set of industries and 

researchers. As a proof of this, a large variety of techniques for the improvement of the energetic 

efficiency of industrial robots has been designed and tested in recent years, as presented in [9]. 

According to this, a first category of methods relies on hardware optimization, e.g. the selection of 
the most suitable robot model for a given task [10], the design of lightweight structures [3, 21, and 

1], the use of systems for energy recovery [13] and the exploitation of robot natural dynamics [11, 

14]. A second category relies on software optimization and in particular on the planning of energy 

efficient trajectories. Examples of such techniques can be found in [12], where a simple trajectory 

planning for energy saving of industrial machines has been developed, and in [15] where both 

energy  and   time optimal  motion  profile are analyzed  for  a  6 degree-of-freedom  (d.o.f.)  robot  



 
 

Fig. 1: SCARA robot structure. 

 

 

performing a pick-and-place operation. In addition, a trajectory planning approach for energy 

saving of a redundant robotic cell has been designed in [4], whereas in [8] several point-to-point 

trajectories based on standard primitives have been adopted in order to reduce the energy 

consumption of 1 d.o.f. mechatronic systems. Other works [18, 20], focus on the enhancement of 
energetic efficiency of industrial manipulators by reducing the actuator effort thorough motion 

design. 

From the literature it can be seen that several performance measures have been analyzed to 

characterize the behavior of industrial robots and can be divided in global and local measures. An 

example concerning the local measures is presented in [19], where a graphical visualization of 

several indexes computed for a SCARA manipulator is provided, whereas in [7] the optimal robot 

position is determined by defining and using task-dependent and direction-selective performance 

indexes for a parallel industrial robot executing a pick-and-place task. 

The importance of these studies relies on the fact that local performance indexes can be useful to 

describe the relationship between the robot and the task definition, providing several guidelines in 

the choice of the areas of the workspace in which the performance of the robot increases [16]. This 
performance can be quantified by means of some measurement of dexterity, force or speed 

exertion capability, or manipulability, but currently there are, to the best of Authors' knowledge, 

no performance indexes strictly focusing on energy consumption.  

With this final goal in mind, the aim of this paper is to provide a novel approach to the analysis of 

the energetic performance of a 3 d.o.f. SCARA robot. The energetic impacts of the path and 

trajectory planning are evaluated for a particular task, i.e. a common pick-and-place operation, as 

presented in [5, 6]. On the basis of the dynamic model and electro-mechanical model of the 

manipulator, the effects of the location of the task within the robot workspace on the overall 

energy consumption, as well as of the choice of motion profile, are investigated. For each motion 

law considered, numerical results provide energy consumption maps that are used to evaluate the 

energetic performance of the robot and to determine the optimal location of the task. Since this is a 

preliminary analysis, further and more detailed models will be implemented as well as actual data 
will be provided in future works in order to increase the reliability of the results obtained. 

 

 

 



 

 
 

Table 1: Kinetic and dynamic properties of the SCARA robot. 

 

Parameter Joint 1 Joint 2 Joint 3 

Link length                 

Link mass                

Gear ratio                

Motor inertia                                     

Viscous friction coefficient                                              

Coulomb friction force                               

Motor winding resistance                      

Motor back-emf constant                                     

Motor torque constant                               

 

 
 

2. DYNAMIC AND ELECTRO-MECHANICAL MODEL 

 

The industrial manipulator under analysis in this work is a 3 d.o.f. SCARA robot, which is 

composed of two revolute joints and one prismatic joint (Fig. 1). The inertial properties of each 

link, motor and gear are reported in Table 1. The dynamic equation of motion, which represents 

the relation between joint torques   ,        -
  and joint variables   ,        -

 , are obtained 
by using the Lagrangian formalism, leading to the following expression: 

 

   ( ) ̈   (   ̇) ̇     ̇        ( ̇) (1) 

 

where  ( ) is the mass matrix, the matrix  (   ̇) accounts for Coriolis and centrifugal forces,    
is the diagonal matrix of viscous friction coefficient, and    is the diagonal matrix of Coulomb 

friction forces. Assuming that brushless motors are used as in [4, 17], the relation between motor 

torques vector   ( )  and motor current armature vector  ( ) assumes the following form: 

 

  ( )      ( ) (2) 

 

in which    in the diagonal matrix of the motor torque constants. Then, by using the motor 

armature model, the voltage drop  ( ) across the stator windings can be represented as a function 

of the current  ( ) and motor speed vector  ̇ ( ) as: 
 

 ( )    ( )     ̇ ( ) (3) 

 

in which   and    are the diagonal matrices of the stator resistance and the back-emf constants of 

each actuator, respectively. Finally, integrating the instantaneous electrical power over the time 

interval   ,     -, the total energy        absorbed by the robot motor during the execution of a 

generic operation in such time interval can be found: 



 

 
 

Fig. 2: Graphical representation of the parameters used to define the path. 
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where the two integrals on the right highlight the Joule energy and the electro-mechanical energy. 

This second integral shows the most significant variations with respect to changes of the path 

parameters defined in the next section, whereas the first is far less sensitive to variations but has a 

higher impact. It has to be noted that, by varying properly the parameters of this model, several 

types of losses can be taken into account. For example, it is possible to increase the resistance 

values so as to include inverter losses, since these losses are proportional to the current. Similarly, 

the iron losses that depend on the motor speed can be considered by varying the viscous friction 

coefficient.  

Since Eq. (4) represents the net energy balance of the robot within the time frame ,     -, the 

current-voltage product can instantaneously take both positive and negative values, i.e. the electric 

power flow can be directed either from the grid to the motors or from the motors to the grid. 

However, this condition can be considered realistic only in the case of robots equipped with 

regenerative devices, which is a very uncommon situation for the most industrial manipulators. As 

a matter of fact, industrial robots are equipped with breaking resistors that are used to dissipate the 

excess of energy. Accordingly, the integral in Eq. (4) is computed taking into account only 

positive values of the instantaneous electrical power. 

 

3. ENERGETIC IMPACT OF TASK POSITIONING 

 
The dynamic model presented in the previous section is now used to analyze the relation between 

the positioning of the task in the operative space and the energy consumption related to the 

execution of that task. This analysis concerns a basic but common task, typically performed in 

pick-and-place operations, i.e. the point-to-point translation of the robot end-effector either along a 

straight line or an arc in the *   + plane, depending on the motion law adopted, as explained 

below. Referring to Fig. 2, such a task is represented by a vector that connects the starting point    
to the final point   . The base of the robot performing that task is set on the origin   of the *   + 

reference frame. Then,  given a fixed  execution time and the total displacement   , the task can be 
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Fig. 3: Energy consumption maps: third (a) and fifth (b) order motion profile in the joint space. 

 

 

(c) 

 

 

(d) 

Fig. 4: Energy consumption maps: third (c) and fifth (d) order motion profile in the operation space. 

 

performed in infinite ways, as long as the initial point    and final point    are left free. Moreover, 

the choice of the task gains another degree of freedom if the motion law is left free as well.  

Under these assumptions the path of the end-effector of the robot can be parameterized by three 

values: the real positive value   and the angle  , which are the polar coordinates of the mid-point 

of the trajectory, and  , which measures the orientation of the task within the workspace. Actually, 

on account of the angular isotropy of the SCARA, the parameter   can be fixed to an arbitrary 

value, e.g.    , without affecting the energy consumption. Therefore, the parameterization can 

be limited to the distance   and the orientation   of the path only. According to the dimensions of 

the links,  the limits of the joints and  the  radial symmetry of  the robotic configuration, the 

distance   ranges from       to      , and the direction   varies between   and   radiants. For all 

experiments the total displacement is set to        and the execution time is set to      .  
Concerning the motion law, four well-known algorithms are considered: the third and the fifth-

degree polynomial profiles in the operation space, and the third and the fifth-degree polynomial 



profiles in the joint space [2]. In these last two cases the trajectory does not follow a straight line 

but instead an arc. The length of this arc has to be limited so as to avoid extreme deviations from  

the straight line length, which could lead to unreasonable energy consumption. In order to do this, 

a maximum arc length value related to the Euclidean distance between initial and final point is 

defined and the trajectories exceeding that value are considered unfeasible. At this point, the 

energy is calculated simulating the motion of the manipulator and varying the parameters  ,   in 

the ranges defined above. The values obtained are then collected in four maps, which correspond 

to the four motion laws, as shown in Fig. 3 and 4. Figure 3(a) shows a contour plot of the total 

energy absorbed by the robot when moving according to the third order polynomial profile in the 

joint  space:  each  point  of  the  map  corresponds  to  specific  values  of     and     and  the  total 

energy is expressed in Joule. Brighter colors are associated with tasks that require a lower energy 

to be performed, whereas white areas represent tasks which are unfeasible either because of 

workspace limitations or in case the relative trajectory exceeds joint position, speed and 

acceleration limitations as well as length limit. The analysis is repeated by using a fifth degree 

polynomial profile for computing the map in Fig. 3(b), and then by using the same profiles in the 

operation space to compute the contour plot in Fig. 4(a) and Fig. 4(b), respectively.  

In each map the small black circle indicates the minimum energy consumption point: for all the 

maps this minimum is located away from the base of the robot and its position changes slightly 

between joint and operation space planning. Overall, the minimum lays in the area near         

and        . According to the task parameterization already shown in Fig. 2,         

corresponds to a radial motion from the base of the robot to the outer part of the workspace, 

whereas           corresponds to a motion along the tangential direction. The comparison 

between the maps in Fig. 2 and 3 shows that the differences in the motion profile results in 

different energy absorption, as expected. In particular, for both the joint space and the operation 

space, the third order polynomial profile is the most effective as far as energy saving is concerned. 

Furthermore, planning in the joint space lead to more efficient trajectories, despite of the major 

length, and allows to extend the space of feasible solutions, given that the white area is slightly 

smaller. Regardless the small differences between the absolute values of energy consumption and 

 
 

Fig. 5: Optimal path disposition varying the distance from the base; the absolute minimum energy 
path positioning is shown in blue. 

  



the dimensions of the unfeasible area, all maps present similar shapes, showing that both the most 

efficient points and the less efficient points are located roughly in the same areas of *   + space. 
Therefore, it can be inferred that the total consumption related to a particular task is more heavily 

affected by the choice of the parameters of the path rather than by the specific design of the motion 

profile. As consequence, the location of the task within the workspace should be carefully defined 

whenever the choice is made available and the energy consumption of the robot is a critical 

parameter of the robotic operation.  

The effect of the motion direction is more clearly understood by looking at Fig. 5: the red arrows 

represent the optimal path location for 13 distances from the base of the robot, and the blue arrow 

shows the overall optimal solution, which corresponds to            and            . Each 

arrow connects the initial point    to the final point    of the trajectory and refers to the third 

degree motion law in the operation space. According to the results of the analysis of energy 

consumption maps reported in Fig. 3 and 4, Fig. 5 suggests that a tangential motion is the best 

choice when operating in the outer part of the workspace, whereas a radial motion is the best 

choice when operating close to the base of the robot. 

 

 

4. CONCLUSIONS 

 
In this work a novel approach to the energetic analysis considering a 3 d.o.f. industrial robot has 

been presented. This analysis focuses on the estimation of the energy consumption of the robot in 

relation to the choice of the motion profile both in the operation space and in the joint space as 

well as the positioning of the task within the workspace. Firstly, the dynamical and electro-

mechanical models have been defined. Secondly, given a planar translation task, two main 

parameters of the path have been defined and four motion profiles have been chosen. Next, the 
motion of the manipulator during the execution of the task has been simulated for each pair of 

parameters, computing the relative energy consumption by means of the previously defined model. 

Repeating this procedure for each motion profile, four energy consumption maps have been 

obtained. Analyzing these maps, it has been inferred that the positioning of the task has a more 

relevant impact on the energy absorption with respect to the choice of the motion profile. 

Therefore, the maps can be used to easily determine the optimal positioning of the task within the 

workspace in order to reduce energy consumption. Further developments of this work will also 

consider a more detailed model and experimental data to confirm the results obtained here. 
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