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1. Introduction 

Nanosensors are gathering attention in the last decade due to the necessity of measuring physical and chemical 
properties in industrial or biological systems in the sub-micron scale, see, among other contributions, Arash and 
Wang (2013). One of the most representative examples of down-scaling in sensoring systems is the nanomechanical 
resonator, which typically consists in a one-dimensional vibrating structure with remarkable performance in 
detecting small adherent masses, see Rius and Pérez-Múrano (2016). The mass sensing principle for these systems is 
based on using the resonant frequency shifts caused by unknown additional mass attached on the surface of the 
sensor as data for the reconstruction of the mass variation. In spite of its important application, few studies are 
available on this inverse problem. The identification of a single point mass in a nanorod, modelled within the 
modified strain gradient theory to account for microstructure and size effects, see Lam et al. (2003) and Kong et al. 
(2009), was considered in Morassi et al. (2017) and Dilena et al. (2019a) by using minimal resonant frequency data. 

The above cited works consider concentrated masses attached to the base system. However, the consideration of 
distributed added mass seems to be more realistic in real applications. In this respect, Hanay et al. (2015) proposed 
an inertial imaging method to determine the first N moments of the unknown mass distribution in terms of the 
frequency shifts in the first N resonant frequencies. Under the assumption of small global mass change, the obtained 
results using a classical clamped-clamped beam model to describe the transverse vibrations of a nanobeam were 
compared with experimental ones. 

In this paper we have developed a method for the reconstruction of a distributed mass variation on an initially 
uniform nanobeam which uses the first N natural frequencies of the free bending vibration under supported end 
conditions. We refer to Barnes (1991) for a deep mathematical analysis of the main features of the inverse 
eigenvalue problems with finite data. Our method is based on an iterative procedure based on first-order Taylor 
expansion of the eigenvalues. The procedure determines an approximation of the unknown mass distribution by 
means of a generalized Fourier partial sum of order N, whose coefficients are calculated from the first N eigenvalues 
shifts. To avoid trivial non-uniqueness due to the symmetry of the initial configuration of the nanobeam, it is 
assumed that the mass variation has support contained in half of the axis interval. Moreover, the mass variation is 
supposed to be small with respect to the total mass of the initial nanobeam. As in previous works, the modified strain 
gradient theory has been used to account for the microstructure and size effects.  An extended series of numerical 
examples shows that the method is efficient and gives good results with N less than 10 in case of smooth, e.g., 
continuous, mass variations. The determination of discontinuous coefficients exhibits no negligible oscillations near 
the discontinuity points, and requires more spectral data to obtain accurate reconstructions, typically N=15-20. 
Surprisingly enough, in spite of its local character, the identification method performs well even for not necessarily 
small mass changes.  

2. Inverse problem and reconstruction method 

The infinitesimal free vibration at radian frequency √𝜆𝜆 of the unperturbed uniform nanobeam, of length L and 
under supported end conditions, is governed by the eigenvalue problem  (see Kong et al. (2009)) 
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where   is the eigenvalue and ( )xuu =  is the associated eigenfunction. In equation (1), 0 =const, 00  , is the 
mass density per unit length, and S, K are positive constant coefficients which take into account both the mechanical 
properties and the length scale parameters of the nanobeam, see Agköz and Civalek (2011). The eigenpairs of (1) are
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0 = , n≥1, where the eigenfunctions are normalized 
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with respect to the mass density 0 . Suppose that the mass density 0  changes, and denote by ( ) )(0 xrx  +=  the 
mass density per unit length of the perturbed nanobeam. The mass variation )(xr  is such that 

(𝐿𝐿−1 ∫ 𝑟𝑟𝜀𝜀(𝑥𝑥)𝑑𝑑𝑥𝑥)𝐿𝐿
0

1/2
= 𝜀𝜀𝜌𝜌0,  𝑟𝑟𝜖𝜖(𝑥𝑥) ∈ 𝐿𝐿∞(0, 𝐿𝐿),  0 < 𝜌𝜌− ≤ 𝜌𝜌(𝑥𝑥) ≤ 𝜌𝜌+  in [0,L], where 0 < 𝜀𝜀 ≤ 𝜀𝜀𝜌𝜌, for a given small 

number 𝜀𝜀𝜌𝜌, and 𝜌𝜌−,  𝜌𝜌+ are given constant. Moreover, we assume that support of the mass variation )(xr  is a subset 

compactly contained in [0,L/2]. We denote by  (𝜆𝜆𝑛𝑛(𝜌𝜌), 𝑢𝑢𝑛𝑛(𝑥𝑥))𝑛𝑛=1
𝑁𝑁

 , n≥1, the nth eigenpair of the problem (1) with 

0  replaced by ( )x .  
Our goal is the determination of an approximation to )(x , or, equivalently, to )(xr , using a finite amount of 
spectral data {𝜆𝜆𝑛𝑛(𝜌𝜌)}𝑛𝑛=1

𝑁𝑁 , where N is a given integer. The proposed reconstruction method is based on an iterative 
procedure which, at every step, uses a linearized Taylor approximation of the eigenvalue in terms of the unknown 
mass variation. We first present the linearization in a neighborhood of the unperturbed nanobeam, next we shall 
introduce the iteration. A key mathematical tool is the explicit expression of the first order change of an eigenvalue 
with respect to the smallness parameter ε. With reference to the initial uniform nanobeam, we have 
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n=1,…,N. The family  = 1)( nn x  is a basis of the square integrable functions defined on the interval [0, L/2]. 
Therefore, we look for an N-dimensional approximation of the mass variation of the type 
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Generalized Fourier Coefficients of the mass variation ( ) )(0 xr . Replacing the expression (3) in (2), we obtain the 
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A direct calculation shows that the linear system (4) admits a unique solution, which implies the following closed-
form expression for the first order mass variation:  
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see Dilena et al. (2019c). A better estimation of the mass variation )(xr  can be obtained by iterating the above 

procedure. Let us denote by  N
n

EXP
n 1=  the target values of the eigenvalues ( ) N

nn 1= . The mass coefficient )(x  is 
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Fig. 1. Reconstruction of mass variation as in (6), with s/L=0.35, t=0.80, s1/L=0.35, t1=0.20. N=6 (a), N=9 (b), N=12 (c), N=15 (d). 
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number  . We refer to Dilena et al. (2019c) for a complete description of the procedure. 
The convergence of the iterative procedure can be studied by adapting the arguments used in Dilena et al. (2019b), 
to study the analogous mass identification problem for nanobeams under axial vibration. Referring to this paper for 
more details, here we simply recall the main result in case of small and smooth mass variation. There exists a 
positive number 𝜀𝜀𝜌𝜌, 𝜀𝜀𝜌𝜌 only depending on the a priori data of the inverse problem, such that if 𝜀𝜀 ≤ 𝜀𝜀𝜌𝜌, then the 
iterative reconstruction procedure converges uniformly to a continuous function in [0,L/2] with the wished spectral 

properties, provided that ( )( ) 1
2

1

0 
=

N

n
n .  

3. Applications 

In order to validate the reconstruction method, we developed a numerical code based on a finite element model of 
the nanobeam, with five-degree Hermite polynomial approximation of the transverse displacement of the nanobeam 
in each finite element. The spatial mesh consists of Ne equally spaced finite elements, and the mass coefficient is 
approximated by a continuous piecewise linear function. A preliminary series of tests suggests to assume a mesh 
with Ne=200 to manage cases with N up to 15, and to adopt Ne=400 for N=20, 25. The test specimen was selected as 
in Dilena et al. (2019a), with rectangular equivalent cross-section with thickness h=50 μm and width b=2h, and 
length L=20h. The three material length scale parameters li, i=0,1,2, were assumed to be equal to 17.6 μm, see 
Agköz and Civalek (2011). The mechanical and inertial properties of the material were chosen so that the 
coefficients S, K, ρ0 are equal to 91036.4 −  Nm2, 191071.4 −  Nm4, 6105 −  kg/m, respectively. 
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number  . We refer to Dilena et al. (2019c) for a complete description of the procedure. 
The convergence of the iterative procedure can be studied by adapting the arguments used in Dilena et al. (2019b), 
to study the analogous mass identification problem for nanobeams under axial vibration. Referring to this paper for 
more details, here we simply recall the main result in case of small and smooth mass variation. There exists a 
positive number 𝜀𝜀𝜌𝜌, 𝜀𝜀𝜌𝜌 only depending on the a priori data of the inverse problem, such that if 𝜀𝜀 ≤ 𝜀𝜀𝜌𝜌, then the 
iterative reconstruction procedure converges uniformly to a continuous function in [0,L/2] with the wished spectral 

properties, provided that ( )( ) 1
2

1

0 
=

N

n
n .  

3. Applications 

In order to validate the reconstruction method, we developed a numerical code based on a finite element model of 
the nanobeam, with five-degree Hermite polynomial approximation of the transverse displacement of the nanobeam 
in each finite element. The spatial mesh consists of Ne equally spaced finite elements, and the mass coefficient is 
approximated by a continuous piecewise linear function. A preliminary series of tests suggests to assume a mesh 
with Ne=200 to manage cases with N up to 15, and to adopt Ne=400 for N=20, 25. The test specimen was selected as 
in Dilena et al. (2019a), with rectangular equivalent cross-section with thickness h=50 μm and width b=2h, and 
length L=20h. The three material length scale parameters li, i=0,1,2, were assumed to be equal to 17.6 μm, see 
Agköz and Civalek (2011). The mechanical and inertial properties of the material were chosen so that the 
coefficients S, K, ρ0 are equal to 91036.4 −  Nm2, 191071.4 −  Nm4, 6105 −  kg/m, respectively. 
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Fig. 2. Reconstruction of mass variation as in (6), with s/L=0.15, t=0.50, s1/L=0.25, t1=0.50. N=12 (a), N=15 (b), N=20 (c), N=25 (d). 

We first consider free-error data, namely, only errors induced by the numerical approximation are included in the 
analysis. Among a large number of simulations, some representative results are presented here for the following 
mass density: 
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where  2/,2/ cscs +−  and  111 ,scs −  belong to (0,L/2). Depending on the values of the parameters c, c1, s, s1, t, 
t1, the definition (6) allows to obtain a large family of mass densities, including regular (e.g., continuous in [0, L/2]) 
or discontinuous (with jump discontinuity at x=s1) functions. To simplify the presentation of the results, the 
condition c=c1=0.2L has been chosen in this analysis.  
The identification of regular mass variations leads to good results. Figure 1 shows a typical reconstruction. We see 
that the identified mass variation agrees well with the target function, and accuracy of reconstruction rapidly 
improves as N increases. Few iterations are sufficient to satisfy the convergence criterion with γ=10-5, typically less 
than five iterations.  
The determination of discontinuous mass coefficients is more problematic, since the pointwise reconstruction based 

on the family of regular functions ( ) N
n

j
n x 1)( =  is expected to fail near a jump discontinuity. Figures 2 and 3 show 

that spurious oscillations around the target coefficient occur near the discontinuity point, at x=s1. These results, and 
also the results of other simulations performed for different discontinuous mass profiles, show that the maximum 
amplitude of the spurious oscillations is approximately proportional to the intensity of the jump, and the discrepancy 
decays far from the discontinuity. As a consequence, in presence of large jumps in the mass density, the induced 
oscillatory character of the identified coefficient may compromise the accuracy of the reconstruction in the whole, 
or at least in a significant portion of the interval [0, L/2]. Numerical results also show that a large number of first 
eigenfrequencies (typically N=20-25) and more iterations (up to 10-15) are needed to get reasonable accuracy in 
presence of large discontinuities. These cases has been developed with Ne=400 equally spaced finite elements. It  
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Fig. 3. Reconstruction of mass variation as in (6), with s/L=0.15, t=0.10, s1/L=0.35, t1=0.50. N=12 (a), N=15 (b), N=20 (c), N=25 (d). 

should be noted that the undesired oscillations occurring near the discontinuities can be significantly reduced by 
using an optimization post-filtering based on a least squares-based minimization of the Euclidean norm between 
experimental and analytical eigenvalues. We refer to Dilena et al. (2019c) for more details. 
To test the robustness of the method to errors on the data, the identification was performed by perturbing the target 

noise-free resonant frequencies corresponding to the eigenvalues  N
n

EXP
n 1=  as n

EXP
n

errEXP
n  +=− , where n  is a 

random Gaussian variable with vanishing mean and standard deviation   such that =  23 . Here,   is the 
maximum admitted error. A selected, though representative, set of results are presented in Figure 4, for smooth and 
discontinuous mass coefficients, respectively. A thousand of simulations was performed for each case, with 

100=  Hz and 200=  Hz. Each subfigure, besides the exact mass profile, contains  three curves, namely the 
curve of the mean value and the two curves obtained by adding 3  to the mean value. The three curves are almost 
indistinguishable for 100=  Hz, and the reconstruction is quite stable for 200=  Hz. 

4. Conclusions 

In this paper we have presented a reconstruction method for determining additional distributed mass on a 
supported nanobeam from finite number of natural frequencies and under the assumption that the mass is given on 
half of the nanosensor axis. To the authors' knowledge, this is the first quantitative study on the identification of 
distributed mass attached on nanobeams in bending vibration modelled within generalized continuum mechanics 
theories by using finite eigenvalue data. The extension of the method to the identification of general added mass 
distribution, e.g., not necessarily supported on half of the axis interval, is currently under investigation.  

Acknowledgements 

The authors from Universidad Carlos III de Madrid wish to acknowledge Ministerio de Economía y 
Competitividad de España for the financial support, under Grants DPI2014-57989-P and PGC2018-098218-B-I00.   

 



 Antonino Morassi  et al. / Procedia Structural Integrity 17 (2019) 98–104 103
 Author name / Structural Integrity Procedia 00 (2019) 000–000  5 

 

 
Fig. 2. Reconstruction of mass variation as in (6), with s/L=0.15, t=0.50, s1/L=0.25, t1=0.50. N=12 (a), N=15 (b), N=20 (c), N=25 (d). 

We first consider free-error data, namely, only errors induced by the numerical approximation are included in the 
analysis. Among a large number of simulations, some representative results are presented here for the following 
mass density: 

( ) ( ) ( )
 











 −−







 −

+= −




 +− 111 ,

1

11
1

2
,

2

2
00  ,cosmax scscscs c

csxt
c

sxtx  ,  (6) 

where  2/,2/ cscs +−  and  111 ,scs −  belong to (0,L/2). Depending on the values of the parameters c, c1, s, s1, t, 
t1, the definition (6) allows to obtain a large family of mass densities, including regular (e.g., continuous in [0, L/2]) 
or discontinuous (with jump discontinuity at x=s1) functions. To simplify the presentation of the results, the 
condition c=c1=0.2L has been chosen in this analysis.  
The identification of regular mass variations leads to good results. Figure 1 shows a typical reconstruction. We see 
that the identified mass variation agrees well with the target function, and accuracy of reconstruction rapidly 
improves as N increases. Few iterations are sufficient to satisfy the convergence criterion with γ=10-5, typically less 
than five iterations.  
The determination of discontinuous mass coefficients is more problematic, since the pointwise reconstruction based 

on the family of regular functions ( ) N
n

j
n x 1)( =  is expected to fail near a jump discontinuity. Figures 2 and 3 show 

that spurious oscillations around the target coefficient occur near the discontinuity point, at x=s1. These results, and 
also the results of other simulations performed for different discontinuous mass profiles, show that the maximum 
amplitude of the spurious oscillations is approximately proportional to the intensity of the jump, and the discrepancy 
decays far from the discontinuity. As a consequence, in presence of large jumps in the mass density, the induced 
oscillatory character of the identified coefficient may compromise the accuracy of the reconstruction in the whole, 
or at least in a significant portion of the interval [0, L/2]. Numerical results also show that a large number of first 
eigenfrequencies (typically N=20-25) and more iterations (up to 10-15) are needed to get reasonable accuracy in 
presence of large discontinuities. These cases has been developed with Ne=400 equally spaced finite elements. It  

6 Author name / Structural Integrity Procedia  00 (2019) 000–000 

 

 
Fig. 3. Reconstruction of mass variation as in (6), with s/L=0.15, t=0.10, s1/L=0.35, t1=0.50. N=12 (a), N=15 (b), N=20 (c), N=25 (d). 

should be noted that the undesired oscillations occurring near the discontinuities can be significantly reduced by 
using an optimization post-filtering based on a least squares-based minimization of the Euclidean norm between 
experimental and analytical eigenvalues. We refer to Dilena et al. (2019c) for more details. 
To test the robustness of the method to errors on the data, the identification was performed by perturbing the target 

noise-free resonant frequencies corresponding to the eigenvalues  N
n

EXP
n 1=  as n

EXP
n

errEXP
n  +=− , where n  is a 

random Gaussian variable with vanishing mean and standard deviation   such that =  23 . Here,   is the 
maximum admitted error. A selected, though representative, set of results are presented in Figure 4, for smooth and 
discontinuous mass coefficients, respectively. A thousand of simulations was performed for each case, with 

100=  Hz and 200=  Hz. Each subfigure, besides the exact mass profile, contains  three curves, namely the 
curve of the mean value and the two curves obtained by adding 3  to the mean value. The three curves are almost 
indistinguishable for 100=  Hz, and the reconstruction is quite stable for 200=  Hz. 

4. Conclusions 

In this paper we have presented a reconstruction method for determining additional distributed mass on a 
supported nanobeam from finite number of natural frequencies and under the assumption that the mass is given on 
half of the nanosensor axis. To the authors' knowledge, this is the first quantitative study on the identification of 
distributed mass attached on nanobeams in bending vibration modelled within generalized continuum mechanics 
theories by using finite eigenvalue data. The extension of the method to the identification of general added mass 
distribution, e.g., not necessarily supported on half of the axis interval, is currently under investigation.  

Acknowledgements 

The authors from Universidad Carlos III de Madrid wish to acknowledge Ministerio de Economía y 
Competitividad de España for the financial support, under Grants DPI2014-57989-P and PGC2018-098218-B-I00.   

 



104 Antonino Morassi  et al. / Procedia Structural Integrity 17 (2019) 98–104

 Author name / Structural Integrity Procedia 00 (2019) 000–000  7 

 

 
 

 
Fig. 4. Noise effects on identification. Upper row: mass variation as in (6), with s/L=0.35, t=0.80, s1/L=0.35, t1=0.20. Lower row: mass variation 
as in (6), with s/L=0.15, t=0.50, s1/L=0.25, t1=0.50. 
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