
10 April 2024

Università degli studi di Udine

Original

Parameter Uncertainty in Shallow Rainfall-triggered Landslide Modeling at
Basin Scale: A Probabilistic Approach

Publisher:

Published
DOI:10.1016/j.proeps.2014.06.003

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:

Elsevier

This version is available http://hdl.handle.net/11390/1170188 since



 

Available online at www.sciencedirect.com 

 

Procedia Earth and Planetary Science00 (2014) 000–000  

 www.elsevier.com/locate/procedia 

 

1878-5220© 2014 The Authors. Published by Elsevier B.V. 

Selection and peer-review under responsibility of Dipartimento di Ingegneria Civile, Design, Edilizia e Ambiente, Seconda Universit di Napoli. 

The Third Italian Workshop on Landslides 

Parameter Uncertainty in Shallow Rainfall-Triggered Landslide 

Modeling at Basin Scale: a Probabilistic Approach 

E. Arnone
a,b

*, Y.G. Dialynas
b
, L.V. Noto

a
, R.L. Bras

b
 

aDipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Universita’ degli Studi di Palermo, Viale delle Scienze ed. 8, 

Palermo, 90128, Italy 
bSchool of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, Atlanta, GA, 30332,USA 

Abstract 

This study proposes a methodology to account for the uncertainty of hydrological and mechanical parameters in coupled 

distributed hydrological-stability models for shallow landslide assessment. A probabilistic approach was implemented in an 

existing eco-hydrological and landslide model by randomizing soil cohesion, friction angle and soil retention parameters. The 

model estimates the probability of failure through an assumed theoretical Factor of Safety (FS) distribution, conditioned on soil 

moisture content. The time-dependent and spatially distributed FS statistics are approximated by the First Order Second Moment 

(FOSM) method. The model was applied to the Rio Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico. 
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1. Introduction 

The use of coupled distributed hydrological-stability models for shallow landslide hazard assessment at 

catchment scale is common in the literature. The practice is to utilize the basin hydrological response, evaluated in 

terms of soil moisture and groundwater fields, to assess a spatially distributed Factor of Safety (FS) by using the 
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infinite slope model [1-5]. Mechanical and hydrological soil properties play a crucial role in such an evaluation, and 

the importance of appropriately modeling soil water dynamics has been clearly demonstrated in some studies [6, 7]. 

 

The inability to fully characterize hydrological and geotechnical behavior of soil may have a significant impact 

on model results. Spatial variation of parameters is difficult to describe accurately, and measurement errors can also 

increase the natural variability of parameters. To account for this uncertainty, FS can be computed within a 

probabilistic framework, by considering soil parameters as random variables and thus, assigning them probability 

distributions instead of deterministic values. This practice has received considerable attention in the geotechnical 

engineering literature, which proposes different methodologies for modeling and analyzing the uncertainty related 

to the shear strength parameters (i.e. soil cohesion and friction angle) at hillslope scale [8-10]. Based on similar 

approaches, some studies have been conducted for basin scale applications within coupled hydrological-stability 

models [5, 11-13]; in such applications, the probability of FS, conditioned to the soil moisture, is dynamically 

estimated across the basin, whereas the probability distributions of the shear strength parameters are time 

independent. However, the uncertainty of soil hydrological properties, which may be predominant in case of 

unsaturated conditions, is still neglected in most published literature. In particular, soil retention curve parameters 

are the most significant in determining the contribution of the soil matric suction to the equilibrium.  

 

The probability distribution of FS can be derived numerically, analytically or through analytical approximations. 

The Monte Carlo simulation method uses independent sets of soil properties, generated through a priori assigned 

probability distributions [8, 10] at fixed topographic (i.e. slope) and hydrological (i.e. soil moisture) conditions to 

obtain a solution. However, such an approach may have significant computational cost for basin scale applications, 

since the above mentioned conditions change in time and space. The FS probability distribution can be analytically 

derived in the case where solely geotechnical parameters (i.e., cohesion and friction angle) are considered as 

random variables (e.g., for saturated conditions) and the infinite slope model is used for the slope stability analysis 

[8, 10]. When the soil retention curve parameters are also assumed to be random (e.g. for unsaturated conditions), 

analytical derivation of FS distribution is not tractable [8, 10]. In this case, the First Order Second Moment (FOSM) 

method [14] is commonly used to estimate analytical approximations of the spatio-temporal FS statistics (i.e. mean 

and variance), to finally fit a theoretical probability distribution for FS and estimate the spatio-temporal dynamics 

of probability of failure. 

 

In order to systematically account for the parameter uncertainty, we propose a probabilistic approach for coupled 

distributed hydrological-stability models based on the FOSM method, which was implemented in the tRIBS-

VEGGIE (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation 

Generator for Interactive Evolution) - Landslide module [7]. The proposed methodology was applied to the Rio 

Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico, where previous landslide analyses 

have been carried out. The main purpose of the application is to demonstrate the model capabilities and highlight 

further possible improvements.  

2. Methodology 

2.1. Model Overview 

tRIBS-VEGGIE-landslide module [7] is built upon the eco-hydrological model tRIBS-VEGGIE, which consists 

of a spatially distributed physically based hydrological model coupled to a model of plant physiology and spatial 

dynamics [15]. Basin hydrological response is simulated on an irregular spatial mesh which allows for the use of 

variable computational elements to describe the basin topography, by increasing the accuracy only in the most 

critical areas of the basin [16]. The model explicitly considers the spatial variability in land-surface descriptors and 

the corresponding moisture dynamics, stressing the role of topography in lateral redistribution. The infiltration 

module is responsible of the moisture fields computation and is based on a numerical approximation of the one 

dimensional Richards’ equation [17]. The dynamics of each computational element are simulated separately, but 

spatial dependencies are introduced by considering the surface and subsurface moisture transfers among the 
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elements along the direction of steepest descent, based upon the unsaturated hydraulic conductivity of the receiving 

cell. The soil retention and the unsaturated hydraulic conductivity are related to soil-moisture content through the 

Brooks and Corey [18] (BC) parameterization scheme [19], as a function of saturated hydraulic conductivity in the 

normal to the soil surface direction, air entry bubbling pressure, and pore-size distribution index. Vegetation affects 

the soil moisture dynamics mainly by extracting soil water for the purposes of transpiration, considered as soil 

moisture sink. 

The landslide module is based on the assessment of the Factor of Safety (FS) by applying the limit equilibrium 

analysis within the infinite slope model. The model dynamically computes FS across the study area through the 

following equation [7]: 
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where c’ is the effective soil cohesion, s is the total unit weight of soil (varying with soil moisture), w is the water 

unit weight, zn is the soil depth measured along the normal direction to the slope; is the slope angle,  is the soil 

friction angle, b is the air entry bubbling pressure, is the pore-size distribution index, w is the volumetric water 

content, and r and s are the residual and saturated soil moisture contents, respectively. b, r and s are the BC 

[18] parameters used to model the soil retention curve. As a result of the multi-layer representation of soil moisture 

within tRIBS-VEGGIE, the final product of the module is a spatially distributed vertical dynamic FS profile that 

takes into account the local moisture and soil conditions within each computational element. 

2.2. FS distribution  

The implemented probabilistic framework for FS includes the analytical approximation of FS statistical 

properties (i.e., mean and variance), variant in time and space, by using the FOSM method, and fitting a theoretical 

probability distribution function for FS (see section 3.3).  

 

The FOSM method applies the first order Taylor expansion, from which first and second order moments are 

derived. More precisely, if we consider a function of several random variables, X1,…,Xn: Y=y(X1,…,Xn), taking the 

Taylor series expansion about the mean μX1, …, μXn, and retaining terms up to first order leads to the following 

expressions of first and second moments [20]: 
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where E(Y) and Var(Y) are the mean and the variance, respectively, of the dependent variable Y, n is the number of 

random variables, Var(Xi) is the variance of random variables Xi, and Cov (Xi, Xj) is the covariance between Xi and 

Xj, which is known given the corresponding correlation coefficient, ρXiXj. Analytical expressions of y derivatives 

with respect to the random variables require that y is continuously differentiable. 

 

In this analysis, the soil parameters c’, tan, r, s ,b, and of the FS formulation (Eq.1) are assumed as random 

variables. Eq. 1 is thus continuously differentiable with respect to each random variable. Given the marginal 

statistics of the above mentioned parameters it is possible to estimate the temporally and spatially variant mean and 

variance of FS, i.e., E[FS] and Var(FS), respectively. Then, an assumed theoretical distribution function is used to 

estimate the probability of FS. At this point, Monte Carlo experiments are required to identify the best fit theoretical 

distribution of FS (see Section 3.3).  
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Under saturated conditions, it is possible to obtain the analytical solution of the FS probability distribution and 

the use of the FOSM method is not necessary. In fact, the soil retention curve parameters do not directly affect the 

FS formulation, which results in a linear function of random variables c’ and tan. In this case, the distribution of 

FS can be analytically derived, assuming that cohesion and friction angle are uncorrelated normal random variables 

[5, 8, 10]. Consequently, FS follows a normal distribution, and the associated statistics (i.e., mean and variance of 

FS) are estimated analytically. 

 

The procedure has been implemented into the tRIBS-VEGGIE-Landslide model to dynamically evaluate the 

probability of landslide occurrence. For each timestep and at each layer (i) of the soil column cell, the model 

computes the probability that FS is equal or lower than 1 (implying failure, PrFi) assuming independent events 

among different layers. The probability that a landslide occurs somewhere in the soil column cell is evaluated as the 

probability of the union of events for the entire column (PrFC). The most probable depth of failure or, equivalently, 

the probability that the plane of failure at the given column is located at a certain depth, is given by the joint 

probability of FS being equal or lower than 1 at a certain depth, while there is no failure above (PrPFi). As a result, 

the model is capable of providing the spatial distribution of PrFC, and the maximum value of PrPFi along with the 

corresponding depth, which constitutes the most probable landslide depth. Moreover, the model allows for the 

visualization, at any selected cell, of the temporal and vertical profile of PrFi and PrPFi. 

3. Case Study 

3.1. Basin Description 

The Rio Mameyes basin, located in the Luquillo Experimental forest (LEF) in the island of Puerto Rico, was 

selected for testing the model. The LEF is part of both the Long-Term Ecological Research (LTER) and the Critical 

Zone Observatory (CZO) networks and has been a focal point for studies of landslide impacts on ecology, 

geomorphology, biology, disturbance and recovery of vegetation [21-24].The basin has been modeled for dynamic 

landslide analysis previously by Lepore et al. [7] using the tRIBS-VEGGIE-Landside model. 

 

 

Fig. 1. Major characteristics of the Rio Mameyes Basin: (a) Digital Elevation Model, drainage system and meteorological station. The red 

polygon delineates the area where model validation was conducted based on soil moisture data (Lepore et al. [7]); (b) soil type distribution and 

Clay-Loam element selected for the analysis; (c) slope distribution. Modified from Lepore et al. [7]. 
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The basin has an area of 16.7 km
2
 and it is characterized by a strong gradient in elevation, which ranges from 

104.2 m to 1046 m across a horizontal distance of 3 km (see Digital Elevation Model, DEM, in Fig.1a). Because of 

the strong gradient in elevation, meteorological variables (e.g. rainfall and temperature) vary consistently 

throughout the basin [25, 26]. The mean annual precipitation (MAP) varies from approximately 3000 mm, 

measured at an elevation of 352 m (Bisley Tower), to 5000 mm at higher elevations [27] resulting in one of the 

wettest basins on the island. The analysis of the slope distribution (see Fig. 1d) reveals 10% of the basin area being 

characterized by slopes greater than 30°, and 30% of the basin area with slopes greater than 25°. In terms of 

vegetation, the Luquillo forest is characterized by a combination of lower montane wet tropical, wet subtropical 

and rain forest [28]. The predominant vegetation type of the basin is the Tabonuco forest (Dacryodes excelsa), 

present in the wet subtropical and subtropical rain forest life zones, typically within the 150-600 m elevation range. 

Further details on description of the area and available data are provided by Lepore et al. [7].  

3.2. Data and Model Parameters 

The model inputs used in this study (i.e., meteorological forcing, soil properties, and model parameters) are the 

same as defined in Lepore et al. [7]. In particular, the hydrological soil properties have been set and tuned through a 

validation/confirmation procedure based on soil moisture data. Final values of the main soil parameters are given in 

Table 1. Moreover, the case of anisotropy ratio (i.e., the ratio of the saturated hydraulic conductivities in the 

directions parallel to the slope and normal to the slope) equal to 100 is analyzed. Meteorological data (wind speed 

and direction, air temperature, cloud cover, relative humidity, rainfall, incoming shortwave radiation) are obtained  

from the Bisley meteorological tower (lat. 18.31, long. 65.74, 352 m) (see Fig. 1a), which has been working 

continuously since 2002, with the exception of brief interruptions. In particular, the model was forced using a 

continuous series for the year 2008, during which a significant rainfall event was recorded between the 27
th

 and 28
th
 

April, 2008 with a peak rainfall intensity of 100 mm/hr. 

Table 1.Hydrological and mechanical soil properties and their statistics. 

Parameter Description Units Clay – Loam Sandy – Loam Silty - Clay Clay 

Ks Saturated hydraulic conductivity [mm/hr] 50.0 50.0 50.0 10.0 

S Mean of saturated soil moisture,S [mm3/mm3] 0.56 0.55 0.55 0.53 

R Mean of residual soil moisture,R [mm3/mm3] 0.075 0.041 0.051 0.09 

 Mean of pore-size distribution index, [-] 0.200 0.322 0.127 0.130 

b Mean of air entry bubbling pressure,b [mm] -250 -150 -340 -370 

c’ Mean of soil effective cohesion, c’ [N/m2] 3000 3000 3000 3000 

 Mean of soil friction angle, [°] 25 25 25 25 

c’ Standard deviation of c’ [N/m2] 1200 1200 1200 1200 

 Standard deviation of  [°] 2.5 2.5 2.5 2.5 

b Standard deviation of b [mm] 290 210 390  600 

S Standard deviation of S [mm3/mm3] 0.054 0.076 0.064  0.048 

R Standard deviation of R [mm3/mm3] 0.007 0.004 0.022  0.011 

 Standard deviation of  [-] 0.113 0.145 0.094 0.098 

b-S Coefficient of correlation b-S [-] 0 0 0 -0.216 

b-R Coefficient of correlation b-R [-] 0.203 0 0 0.154 

b- Coefficient of correlation b- [-] 0.151 0.274 0 0.128 

S-R Coefficient of correlation S-R [-] 0.307 0 0 0 

S- Coefficient of correlation S- [-] 0.168 0 0 0 

R- Coefficient of correlation R- [-] 0.429 0.518 0.476 0.442 

 

Several studies have provided a comprehensive description of parameter distributions and statistical properties 

for different soil types belonging to the USDA soil classification system. Lumb [29] studied four typical soil 

formations and concluded  that the Gaussian or a closely related distribution can adequately describe natural soils in 

terms of cohesion and friction angle, which agrees with Wu and Kraft [30], and Langejan [31]. In general, the 

normality assumption for c’ and tan has been used in several studies [5, 8, 10-12, 32, 33]. Statistical properties of 

geotechnical parameters are given in literature by Lumb [34], Fredlund and Dahlman [35], Schultze [36], among 
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others. Moreover, Matsuo and Kuroda [37] and Lumb [34] showed that cohesion and friction angle display 

negligible correlation, and hence statistical independence between c and tanφ has been assumed in several studies 

[8, 10, 38-40]. Therefore, independence between geotechnical parameters was assumed in the present study. 

 

Statistical properties of the BC [18] soil retention parameters are given in literature as well. Brakensiek et al. 

[41] analysed 1,085 sets of soil retention data from reports by Rawls [42] and Holtan [43] and suggest 

transformations of the BC parameters that allow their characterization as normal distributions and give their 

statistical properties (i.e., means, variances and cross-correlation coefficients) for different soil types in the USDA 

soil classification. McCuen et al. [44] analysed the same data-set and provided BC parameters statistics and 

demonstrated the parameter variation across different soil textural classes. Rawls et al. [45] analyzed a total of 

5,350 soil samples from a 1978 soil survey, and provided BC parameters marginal statistics. Carsel and Parrish [46] 

analysed approximately 5,700 samples from a soil database compiled by Carsel et al. [47] and provide statistics of  

van Genuchten [48] soil retention parameter statistics and corresponding transformations to normality. Their results 

were used by Meyer et al. [49], who applied parameter equivalencies to numerically derive BC parameter statistics 

and marginal distributions. Schaap and Leij [50]  three data bases [51-53] (to a total size of 2,130 samples), and 

provided with Van Genuchten’s (VG) soil retention parameter statistics. Flores et al. [54] used the Schaap and Leij 

[49] results and the same data sets to fit marginal distributions to BC parameters by transforming VG to BC 

parameters.  

 

In this study, the Brakensiek et al. [41] results are used, since they provided marginal and joint statistics of the 

BC parameters, and suggested parameter transformations to normality (and thus, supporting the use of joint normal 

distribution for BC parameters) without using  any VG – BC parameter equivalencies. The values of standard 

deviation of the residual soil moisture are, those given by McCuen et al. [44]. According to the Brakensiek et al. 

[41] statistical description of BC parameters, λ can reach values very close to zero. However, as  FS0 , 

and ddFS , which can be unacceptable since the implemented FOSM method requires ddFS and in 

general, may not be efficient in the presence of highly non-linear relationships. Therefore, the distribution of λ was 

truncated at a lower limit for λ (λmin), and the corresponding statistics were computed. Values of soil parameters and 

statistical properties are reported in Table 1.  

3.3. Monte Carlo experiments 

Monte Carlo experiments were conducted to numerically derive empirical distributions of FS, with given 

hydrological and topographical conditions, and identify the best fit of analytical distribution functions. The 

empirical FS distributions were obtained for different hydrological and topographic conditions, i.e. soil depths, 

slope and soil moisture, and for the four soil types of the study area, i.e. clay, clay-loam, silty-clay, sandy loam. 

The fit of several theoretical distributions was evaluated. Here we show the comparison of three theoretical 

distributions (i.e., Normal, Gamma and Lognormal) against the empirical FS distribution (Fig. 2) numerically 

obtained for a set of values of slope, depth of failure surface and volumetric water content equal to 43°, 500 mm 

and 0.3 mm
3
/mm

3
 respectively, and for the statistical parameters reported in Table 1. 

 

In all cases, the lognormal distribution (red line) seems to more appropriately describe the FS distribution. In 

particular, the lognormal better reproduces the positive skewness of the empirical FS distribution, and thus more 

efficiently captures the probability of failure, whereas the normal distribution tends to overestimate the occurrence 

of high values of FS. This is also supported by the results reported by Frattini et al. [11], who demonstrated that the 

lognormal function properly describes the FS distribution for different soil formations. Similar results were 

obtained for different hydrological and topographic conditions.  

 

Based on the Monte Carlo experiments results, the lognormal distribution was implemented to model the FS 

distribution within tRIBS-VEGGIE-Landslide and evaluate the probability of failure across the basin. However, it is 

worth pointing out that the best fit distribution may vary for different sets of soil parameter statistics. Therefore, the 

results shown here are valid only for the set of parameters given in Table 1.  
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Fig. 2. Comparison between FS empirical (numerically derived) pdf,  Lognormal (red), Gamma (blue), and Normal (yellow) theoretical fits for  

(a) clay, (b) clay loam, (c) sandy loam, and (d) silty clay. The used values of slope, depth of failure surface and volumetric water content are 

equal to 43°, 500 mm and 0.3 mm3/mm3 respectively, while the used values of statistical parameters are reported in Table 1. 

3.4. Model results 

In this section the results from the model application are described and discussed. As explained in section 2.2., 

the model output includes: the spatial distribution of the probability that failure occurs at any depth within a given 

element-soil column (PrFC), for specified maximum soil thickness; the spatial distribution of the most probable 

depth of failure; at selected elements and each layer, the probability that FS≤1 (PrFi); and finally the probability 

that the plane of failure is located at the corresponding depth (PrPFi).  

 

Fig. 3 illustrates screenshots of PrFC at the time of the maximum rainfall intensity (t1, 103 mm/hr), and two 

hours later (t2, 24.4 mm/hr) (Fig.3a and b, respectively). The likelihood of failure occurrence is particularly high 

(Fig.3a, red regions) in the steepest part of the basin (see slope distribution in Fig. 1d), with 10% of the basin area 

resulting in a PrFC higher than 0.8, as depicted by the frequency distribution reported in Fig.4a.  Values higher than 

0.5 correspond to 19% of the basin (8.5% is between PrFC of 0.2 and 0.5, Fig.4a). Note that in the south-eastern 

region, the PrFC rarely reaches values less than 0.2. This part of the basin is characterized by clayey soil 

corresponding to higher variation coefficient of BC parameter b, which increases suction uncertainty. This leads to 

greater FS variance and higher uncertainty around stability, which in turn results in higher probability of failure. 

PrFC between 0.2 and 0.5 (yellow class in Fig.3a and b) characterizing 13% of total area (Fig.4a), is spread across 

the basin. At t2 (Fig.3b and Fig.4a), the percentage of basin with high PrFC (8.8%) does not decrease significantly. 

The percentage of the area corresponding to PrFC between 0.2 and 0.5 drops to 7.5%, with a decrease in PrFC 

especially in the central and the north-eastern part of the basin. No significant changes between t1 and t2 are 

observed for clayey soils, characterized by lower soil moisture dynamics. In general, at t2 lower values of PrFC are 

more frequent compared to t1, since soil moisture reduces across the basin. 

 

Fig.3 c, d report maps of the depth of the most probable plane of failure, obtained by excluding the portion of the 

basin with PrFC lower than 0.5, at t1 and t2, respectively. The corresponding relative frequency distribution is 

shown in Fig.4b. The most frequent depth for the former case (Fig.3c) corresponds to the range of 200-600 mm, 

mainly distributed in the upstream north-central part of the basin. This is followed by the range of 850-1250 mm, 

most of which occur in the clayey area (south-east). That is, because steeper slopes at high soil moisture conditions 

can be prone to failure at shallower depths. Only in a few cases (0.04 of total, see Fig.4b) the most probable plane 
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of failure corresponds to deeper depths. At t2 (Fig.3d), the probability that failure is initiated at shallower depths 

decreases, and landslides tend to occur at deeper depths (i.e. 1250-1500 mm) with higher frequency. This can be 

given to soil moisture reduction at t2, which decreases destabilizing forces. Thus, greater soil weight is required for 

landslide initiation, which sets the most probable plane of failure deeper, compared to t1. 

 

 

 

Fig. 3.Spatial distribution of PrFC (a) at the time of the maximum rainfall intensity (t1,103 mm/hr) and (b) two hours later (t2, 24.4 mm/hr). 

Spatial distribution of the corresponding depth of the most probable plane of failure (c) and (d). 

 

Fig. 4. (a) Frequency distribution of the probability of failure of soil column across the basin (PrFC); (b) frequency distribution of depth of the 

most probable plane of failure across the basin, for PrFC> 0.5. 

The temporal evolution of landslide likelihood is analysed at element scale for a selected element within the 

Clay-Loam soil type (CL) with a slope of 52° (see Fig.1b). Fig.5 shows the profiles in time and depth, of soil 

moisture (Fig.5b), and the probability that the plane of failure at the given element is located at certain depth, PrPFi 

(Fig.5c) as a response to the rainfall forcing shown in Fig.5a. Around the rainfall peak (t1) higher values of soil 

moisture are reached at shallow depths. The green closed region in panel c depicts the peak of PrPFi, located 

between 350-450 mm, at the time of the heavy rainfall. Thus, green color (Fig.5c) indicates the area of most 

probable depth and time of landslide occurrence. The profile can also be interpreted as the temporally variant 

probability function of landslide depth, which has its maximum within the range of 300-500 mm, consistently with 
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the characteristics of the shallow landslides. 

 

 

Fig. 5.Time varying model output at selected cell: (a) rainfall forcing; (b) soil moisture profile; (c) probability of plane of failure profile (i.e. 

probability that plane of failure at the given element is located at certain depth. Clay-Loam, slope 52°. 

4. Conclusions 

Natural variability of soil parameters significantly affects the hydrological and geomorphological modeling and 

a fully soil characterization cannot commonly be reproduced. Here we proposed a probabilistic approach for 

rainfall-induced landslide modeling which takes into account geotechnical and hydrological parameter uncertainty. 

The methodology considers soil strength and retention curve parameters as random variables, and approximations 

of FS statistics are estimated by means of the First Order Second Moment (FOSM) method.  

 

 The procedure was implemented into the tRIBS-VEGGIE-Landslide model and applied to the Rio Mameyes 

Basin, Luquillo Experimental Forest in Puerto Rico, as a demonstration of the model capabilities and required 

improvements. The model output provides a dynamic hazard classification of the basin in terms of probability of 

failure initiation conditioned on soil moisture. Moreover, the location and the timing of the most probable plane of 

failure are estimated by computing the joint probability of FS being less than 1 at each depth, while shallower soil 

layers remain stable. The use of the proposed probabilistic approach is able to reveal and quantify landslide risk at 

slopes assessed as stable by simpler deterministic methods. 

 

Future developments of this work may include further investigations on soil characterization in terms of 

mechanical and statistical properties. A sensitivity analysis of the model to statistical parameters will improve our 

understanding of model behavior as soil characteristics change, along with additional Monte Carlo experiments to 

evaluate how the FS distribution changes with varying parameter statistics. Furthermore, future developments may 

also involve the analysis of the effect of the gradient in precipitation on landslide hazard evaluation, which strongly 

characterizes the basin under study. 
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