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Abstract: In every hypergroup, the equivalence classes modulo the fundamental relation β are the
union of hyperproducts of element pairs. Making use of this property, we introduce the notion of
height of a β-class and we analyze properties of hypergroups where the height of a β-class coincides
with its cardinality. As a consequence, we obtain a new characterization of 1-hypergroups. Moreover,
we define a hierarchy of classes of hypergroups where at least one β-class has height 1 or cardinality 1,
and we enumerate the elements in each class when the size of the hypergroups is n ≤ 4, apart from
isomorphisms.
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1. Introduction

The term algebraic hyperstructure designates a suitable generalization of a classical algebraic
structure, like a group, a semigroup, or a ring. In classical algebraic structures, the composition of two
elements is an element, while in an algebraic hyperstructure the composition of two elements is a set.
In the last few decades, many scholars have been working in the field of algebraic hyperstructures,
also called hypercompositional algebra. In fact, algebraic hyperstructures have found applications in
many fields, including geometry, fuzzy/rough sets, automata, cryptography, artificial intelligence and
probability [1], relational algebras [2], and sensor networks [3].

Certain equivalence relations, called fundamental relations, introduce natural correspondences
between algebraic hyperstructures and classical algebraic structures. These equivalence relations have
the property of being the smallest strongly regular equivalence relations such that the corresponding
quotients are classical algebraic structures [4–11]. For example, if (H, ◦) is a hypergroup, then
the fundamental relation β is transitive [12–14] and the quotient set H/β is a group. Moreover,
if ϕ: H → H/β is the canonical projection, then the kernel ωH = ϕ−1(1H/β) is a subhypergroup,
which is called the heart of (H, ◦). The heart of a hypergroup (H, ◦) plays a very important role in
hypergroup theory because it gives detailed information on the partition of H determined by the
relation β, since β(x) = ωH ◦ x = x ◦ωH for all x ∈ H.

In this work, we focus on the fundamental relation β in hypergroups, and we introduce a new
classification of hypergroups in terms of the minimum number of hyperproducts of two elements
whose union is the β-class that contains these hyperproducts. Our main aim is to deepen the
understanding of the properties of the fundamental relation β in hypergroups and to enumerate
the non-isomorphic hypergroups fulfilling certain conditions on the cardinality of the hearth. This task
belongs to an established research field that deals with fundamental relations and enumerative
problems in hypercompositional algebra [5,6,13–15]. The plan of this article is the following: After
introducing some basic definitions and notations to be used throughout this article, in Section 3, we
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define the notion of height h(β(x)) of an equivalence class β(x). We give examples of hypergroups
with infinite size where the height of all β-classes is finite. Denoting cardinality by | · |, if (H, ◦) is
a hypergroup with a β-class of finite size such that |β(x)| = h(β(x)), then |a ◦ y| = |y ◦ a| = 1, for
all a ∈ ωH and y ∈ β(x). Moreover, when ωH is finite, we prove that |ωH | = h(ωH) if and only if
(H, ◦) is a 1-hypergroup. In Section 4, we use the notion of height of a β-class to introduce new classes
of hypergroups. We enumerate the elements in each class when the size of the hypergroups is not
larger than 4, apart from isomorphisms. In particular, we prove that there are 4023 non-isomorphic
hypergroups of size n ≤ 4 with a β-class of size 1. Moreover, excluding the hypergroups (H, ◦) with
|H| = 4 and |H/β| = 1, there exist 8154 non-isomorphic hypergroups of size n ≤ 4 with h(ωH) = 1.

2. Basic Definitions and Results

Let H be a non-empty set and let P∗(H) be the set of all non-empty subsets of H. A hyperoperation
◦ on H is a map from H × H to P∗(H). For all x, y ∈ H, the set x ◦ y is called the hyperproduct
of x and y. The hyperoperation ◦ is naturally extended to subsets as follows: If A, B ⊆ H, then
A ◦ B =

⋃
x∈A,y∈B x ◦ y.

A semihypergroup is a non-empty set H endowed with an associative hyperproduct ◦, that is,
(x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H. A semihypergroup (H, ◦) is a hypergroup if for all x ∈ H
we have x ◦ H = H ◦ x = H; this property is called reproducibility. A non-empty subset K of a
semihypergroup (H, ◦) is called a subsemihypergroup of (H, ◦) if it is closed with respect to ◦ that is,
x ◦ y ⊆ K for all x, y ∈ K. A non-empty subset K of a hypergroup (H, ◦) is called a subhypergroup if
x ◦ K = K ◦ x = K, for all x ∈ K. If a subhypergroup is isomorphic to a group, then we say that it is a
subgroup of (H, ◦).

Given a semihypergroup (H, ◦), the relation β∗ of H is the transitive closure of the relation
β = ∪n≥1βn, where β1 is the diagonal relation in H and, for every integer n > 1, βn is defined
as follows:

xβny ⇐⇒ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊆ z1 ◦ z2 ◦ . . . ◦ zn.

The relations β and β∗ are among the so-called fundamental relations [16]. Their relevance
in semihypergroup and hypergroup theory stems from the following facts [17]: If (H, ◦) is a
semihypergroup (resp., a hypergroup), the quotient set H/β∗ equipped with the operation β∗(x)⊗
β∗(y) = β∗(z) for all x, y ∈ H and z ∈ x ◦ y, is a semigroup (resp., a group). The canonical projection
ϕ : H → H/β∗ is a good homomorphism, that is, ϕ(x ◦ y) = ϕ(x)⊗ ϕ(y) for all x, y ∈ H. If (H, ◦)
is a hypergroup, then H/β∗ is a group and the kernel ωH = ϕ−1(1H/β∗) of ϕ is the heart of (H, ◦).
Moreover, if |ωH | = 1, then (H, ◦) is called 1-hypergroup.

Let A be a non-empty subset of a semihypergroup (H, ◦). We say that A is a complete part of (H, ◦)
if, for every n ∈ N− {0} and (x1, x2, . . . , xn) ∈ Hn,

(x1 ◦ · · · ◦ xn) ∩ A 6= ∅ =⇒ (x1 ◦ · · · ◦ xn) ⊆ A.

Clearly, the set H is a complete part, and the intersection C(X) of all the complete parts containing
a non-empty set X is called the complete closure of X. If X is a complete part of (H, ◦) then C(X) = X.

If (H, ◦) is a semihypergroup and ϕ : H → H/β∗ is the canonical projection, then, for every
non-empty set A ⊆ H, we have C(A) = ϕ−1(ϕ(A)). Moreover, if (H, ◦) is a hypergroup, then

C(A) = ϕ−1(ϕ(A)) = A ◦ωH = ωH ◦ A.

A hypergroup (H, ◦) is said to be complete if x ◦ y = C(x ◦ y), for all (x, y) ∈ H2. If (H, ◦) is a
complete hypergroup, then

x ◦ y = C(a) = β∗(a),

for every (x, y) ∈ H2 and a ∈ x ◦ y.
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A subhypergroup K of a hypergroup (H, ◦) is said to be conjugable if it satisfies the following
property: for all x ∈ H, there exists x′ ∈ H such that xx′ ⊆ K. The interested reader can find all
relevant definitions, many properties, and applications of fundamental relations, even in more abstract
contexts, also in [18–28].

For later reference, we collect in the following theorem some classic results of hypergroup theory
from [12,17,26].

Theorem 1. Let (H, ◦) be a hypergroup. Then,

1. The relation β is transitive, which is β = β∗;
2. β(x) = x ◦ωH = ωH ◦ x, for all x ∈ H;
3. a subhypergroup K of (H, ◦) is conjugable if and only if it is a complete part of (H, ◦);
4. the heart of (H, ◦) is the smallest conjugable subhypergroup (or complete part) of (H, ◦), that is, ωH is

the intersection of all conjugable subhypergroups (or complete part) of (H, ◦).

3. Locally Finite Hypergroups

Let (H, ◦) be a hypergroup and let ∼ be the following equivalence relation on the set H × H:
(x, y) ∼ (z, w) ⇔ x ◦ y = z ◦ w. Let T be a transversal of the equivalence classes of the relation ∼.
For every x ∈ H, there exists a non-empty set A ⊆ T such that β(x) =

⋃
(a,b)∈A a ◦ b. In fact, by

reproducibility of (H, ◦), if y ∈ β(x), then there exist z, w ∈ H such that y ∈ z ◦ w. Clearly, we have
z ◦ w ∩ β(x) 6= ∅ and z ◦ w ⊆ β(x) because β(x) is a complete part of H. Moreover, there exists
(a, b) ∈ T such that (z, w) ∼ (a, b) and y ∈ z ◦ w = a ◦ b. Hence, there exists a non-empty set A ⊆ T
such that β(x) ⊆ ⋃

(a,b)∈A a ◦ b and a ◦ b∩ β(x) 6= ∅ for all (a, b) ∈ A. The other inclusion follows from
the fact that β(x) is a complete part of (H, ◦).

In conclusion, each β-class is the union of hyperproducts of pairs of elements that can be chosen
within a transversal of ∼. This fact suggests the following definitions.

Definition 1. Let (H, ◦) be a hypergroup and let T be a transversal of the equivalence classes of the relation
∼. For every x ∈ H, the class β(x) is called locally finite if there exists a finite set A ⊆ T such that
β(x) =

⋃
(a,b)∈A a ◦ b. If a class β(x) is not locally finite, we say that it is locally infinite.

Definition 2. Let β(x) be a β-class of a hypergroup (H, ◦). If β(x) is locally finite, then the minimum positive
integer m such that there is a non-empty set M ⊆ T such that |M| = m and β(x) =

⋃
(a,b)∈M a ◦ b is called

height of β(x), and we write h(β(x)) = m. If β(x) is locally infinite, we write h(β(x)) = ∞.

Definition 3. A hypergroup (H, ◦) is locally finite if all β-classes are locally finite. In particular, (H, ◦) is
called locally n-finite if h(β(x)) ≤ n for every x ∈ H, and there is at least one element y ∈ H such that
h(β(y)) = n. Moreover, (H, ◦) is strongly locally n-finite if h(β(x)) = n for every x ∈ H.

Clearly, (H, ◦) is locally 1-finite if and only if (H, ◦) is strongly locally 1-finite. Examples of
hypergroups locally 1-finite are the complete hypergroups. Indeed, if (H, ◦) is a complete hypergroup,
then, for every x ∈ H, there exist y, z ∈ H such that x ∈ y ◦ z and β(x) = y ◦ z.

Example 1. In the set H = {1, 2, 3, 4, 5, 6}, consider the hyperproducts defined by the following tables:

◦1 1 2 3 4 5 6
1 1, 2 1, 3 2, 3 4, 5, 6 4, 6 5, 6
2 2, 3 1, 2 1, 3 5, 6 4, 5, 6 4, 6
3 1, 3 2, 3 1, 2 4, 6 5, 6 4, 5, 6
4 4, 5 4, 6 5, 6 1, 2 1, 3 2, 3
5 5, 6 4, 5 4, 6 2, 3 1, 2 1, 3
6 4, 6 5, 6 4, 5 1, 3 2, 3 1, 2

◦2 1 2 3 4 5 6
1 1, 2 1, 3 2, 3 4, 5 4, 6 5, 6
2 2, 3 1, 2 1, 3 5, 6 4, 5 4, 6
3 1, 3 2, 3 1, 2 4, 6 5, 6 4, 5
4 4, 5 4, 6 5, 6 1, 2 1, 3 2, 3
5 5, 6 4, 5 4, 6 2, 3 1, 2 1, 3
6 4, 6 5, 6 4, 5 1, 3 2, 3 1, 2
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Then, (H, ◦1) and (H, ◦2) are hypergroups such that |H/β| = 2. In particular, (H, ◦1) is a locally
2-finite hypergroup since h(ωH) = 2 and h(β(4)) = 1, while (H, ◦2) is a strongly locally 2-finite hypergroup
because h(ωH) = h(β(4)) = 2.

Example 2. Let (H, ◦) be a hypergroup and Aut(H) the automorphism group of H. If f ∈ Aut(H), let 〈 f 〉
be the subgroup of Aut(H), generated by f . In H × 〈 f 〉, we define the following hyperproduct: For all
(a, f m), (b, f n) ∈ H × 〈 f 〉, let

(a, f m) ? (b, f n) = {(c, f m+n) | c ∈ a ◦ f m(b)} = (a ◦ f m(b))× { f m+n}.

Firstly, we show that (H × 〈 f 〉, ?) is a hypergroup. Then, we describe its β-classes and the heart. As a
consequence, we obtain that (H, ◦) is a locally n-finite hypergroup (resp., strongly locally n-finite hypergroup,
complete hypergroup, or 1-hypergroup) if and only if (H× 〈 f 〉, ?) is a locally n-finite hypergroup (resp., strongly
locally n-finite hypergroup, complete hypergroup, or 1-hypergroup).

1. The hyperproduct ? on H × 〈 f 〉 is associative. In fact, if (a, f m), (b, f n), (c, f r) ∈ H × 〈 f 〉, then
we obtain:

((a, f m) ? (b, f n)) ? (c, f r) = ((a ◦ f m(b)× { f m+n}) ? (c, f r)

=
⋃

z∈a◦ f m(b)

(z, f m+n) ? (c, f r)

=
⋃

z∈a◦ f m(b)

(z ◦ f m+n(c))× { f m+n+r}

= (a ◦ f m(b)) ◦ f m+n(c)× { f m+n+r}
= a ◦ ( f m(b) ◦ f m+n(c))× { f m+n+r}
= a ◦ ( f m(b ◦ f n(c))× { f m+n+r}
=

⋃
w∈b◦ f n(c)

(a ◦ f m(w))× { f m+n+r}

=
⋃

w∈b◦ f n(c)

(a, f m) ? (w, { f n+r})

= (a, f m) ? ((b ◦ f n(c))× { f n+r}) = (a, f m) ? ((b, f n) ? (c, f r)).

Consequently, we have that

(a, f m) ? (b, f n) ? (c, f r) = (a ◦ f m(b) ◦ f m+n(c))× { f m+n+r}.

By induction, if (a1, f n1), (a2, f n2), . . . , (ar, f nr ) are elements in H × 〈 f 〉, then the hyperproduct
(a1, f n1) ? (a2, f n2) ? . . . ? (ar, f nr ) is the set

(a1 ◦ f n1(a2) ◦ f n1+n2(a3) ◦ · · · ◦ f n1+n2+...+nr−1(ar))× { f n1+n2+...+nr}.

2. The hyperproduct ? is reproducible. Indeed, we have (b, f m) ? (H × 〈 f 〉) ⊆ H × 〈 f 〉, for all elements
(b, f m) ∈ H × 〈 f 〉. On the other hand, if (a, f n) ∈ H × 〈 f 〉, then, by reproducibility of (H, ◦), there
exists x ∈ H such that a ∈ b ◦ x. Now, if we consider ( f−m(x), f n−m), then (a, f n) ∈ (b, f m) ?

( f−m(x), f n−m) because a ∈ b ◦ x = b ◦ f m( f−m(x)) and f m f n−m = f n. Hence, H× 〈 f 〉 ⊆ (b, f m) ?

(H × 〈 f 〉). Thus, we have

(b, f m) ? (H × 〈 f 〉) = H × 〈 f 〉, for all (b, f m) ∈ H × 〈 f 〉.

In the same way, one shows that (H × 〈 f 〉) ? (b, f m) = H × 〈 f 〉.
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3. From 1 and 2, (H × 〈 f 〉, ?) is a hypergroup. If β′ and β are the fundamental relations in (H × 〈 f 〉, ?)
and (H, ◦) respectively, we have

β′(x, f n) = β(x)× { f n},

for all (x, f n) ∈ H × 〈 f 〉. Indeed, if (y, f n) ∈ β′((x, f m)), then there exist r ∈ N − {0} and
(a1, f n1), (a2, f n2), . . . , (ar, f nr ) ∈ H × 〈 f 〉 such that

{(y, f n), (x, f m)} ⊆ (a1, f n1) ? (a2, f n2) ? . . . ? (ar, f nr ).

By point 1, we have {y, x} ⊆ a1 ◦ f n1(a2) ◦ f n1+n2(a3) ◦ . . . ◦ f n1+n2+...+nr−1(ar) and f n =

f n1+n2+...+nr = f m. Hence, y ∈ β(x), f n = f m and (y, f n) ∈ β(x)× { f n}. Thus, β′((x, f m)) ⊆
β(x) × { f n}. On the other hand, if (y, f n) ∈ β(x) × { f n}, then yβx and there exist r ∈ N − {0}
and a1, a2, . . . ar ∈ H such that {x, y} ∈ a1 ◦ a2 ◦ . . . ◦ ar. Now, if in H × 〈 f 〉 we consider
(a1, f 0), (a2, f 0), . . . , (ar−1, f 0), (ar, f n), we obtain

{(x, f n), (y, f n)} ⊆ (a1, f 0) ? (a2, f 0) ? . . . ? (ar−1, f 0) ? (ar, f n),

and we have (y, f n) ∈ β′((x, f n)). Hence, β(x)× { f n} ⊆ β′((x, f n)).
4. The set ωH × { f 0} is a subhypergroup of (H × 〈 f 〉, ?). In fact, if (a, f 0) ∈ ωH × { f 0}, we have

(a, f 0) ? (ωH × { f 0}) =
⋃

b∈ωH

(a, f 0) ? (b, f 0)

=
⋃

b∈ωH

(a ◦ f 0(b))× { f 0}

=
⋃

b∈ωH

(a ◦ b)× { f 0}

= (a ◦ωH)× { f 0} = ωH × { f 0}.

Hence, (a, f 0) ? (ωH × { f 0}) = ωH × { f 0}, for all (a, f 0) ∈ ωH × { f 0}. In the same way one proves
that (ωH × { f 0}) ? (a, f 0) = ωH × { f 0}, so ωH × { f 0} is a subhypergroup.

5. The subhypergroup ωH × { f 0} is the heart ωH×〈 f 〉 of (H × 〈 f 〉, ?).

Indeed, for all (a, f n) ∈ H× 〈 f 〉, there exists b ∈ H such that a ◦ b ⊆ ωH . If we consider ( f−n(b), f−n),
then (a, f n) ? ( f−n(b), f−n) = (a ◦ f n( f−n(b))× { f 0} = (a ◦ b)× { f 0} ⊆ ωH × { f 0}, so ωH ×
{ f 0} is conjugable. From point 4 of Theorem 1, we obtain that ωH×〈 f 〉 ⊆ ωH × { f 0}. Finally, since
ωH×〈 f 〉 and ωH × { f 0} are β′-classes, we deduce that ωH×〈 f 〉 = ωH × { f 0}.

Proposition 1. Let (H, ◦) be a hypergroup. Then, h(β(y)) ≤ |β(x)|, for all x, y ∈ H.

Proof. Let x, y ∈ H. By reproducibility of H, there exists b ∈ H such that y ∈ x ◦ b and so we have

β(y) = ωH ◦ y ⊆ ωH ◦ x ◦ b = β(x) ◦ b =
⋃

a∈β(x)

a ◦ b.

Clearly, for every z ∈ β(y), there exists az ∈ β(x) such that z ∈ az ◦ b. Moreover, since β(y) is a
complete part of H, we have az ◦ b ⊆ β(y). Hence, there exists a non-empty subset A of β(x) such that
β(y) =

⋃
a∈A a ◦ b and so we obtain h(β(y)) ≤ |A| ≤ |β(x)|.

By the previous proposition, we have the following results:

Corollary 1. Let (H, ◦) be a hypergroup. Then, h(β(x)) ≤ min{|ωH |, |β(x)|}, for every x ∈ H.



Symmetry 2020, 12, 168 6 of 14

Corollary 2. Let (H, ◦) be a hypergroup. If there exists a β-class of size 1, then (H, ◦) is a strongly locally
1-finite hypergroup.

Proposition 2. Let (H, ◦) be a hypergroup. If x ∈ H is such that β(x) is finite and |β(x)| = h(β(x)), then
|a ◦ y| = |y ◦ a| = 1 for all a ∈ ωH and y ∈ β(x).

Proof. Let n = |β(x)|. For all a ∈ ωH and y ∈ β(x), we have a ◦ y ⊆ ωH ◦ y = β(y) = β(x). If
|a ◦ y| = |β(x)|, then a ◦ y = β(x) and so n = |β(x)| = h(β(x)) = 1. Hence, |a ◦ y| = 1. Now,
let |a ◦ y| 6= |β(x)| and by contradiction we suppose that 2 ≤ |a ◦ y| = k < n. Let β(x)− a ◦ y =

{x1, x2, . . . , xn−k}, by reproducibility of H, there exist y1, y2, . . . , yn−k ∈ H such that xi ∈ a ◦ yi for
all i ∈ {1, 2, . . . , n− k}. Since β(x) is a complete part of H and a ◦ yi ∩ β(x) 6= ∅, we deduce that
a ◦ yi ⊆ β(x), for all i ∈ {1, 2, . . . , n − k}. Therefore, β(x) = a ◦ y ∪ a ◦ y1 ∪ . . . ∪ a ◦ yn−k and so
n = h(β(x)) ≤ n − k + 1 < n, impossible. Thus, |a ◦ y| = 1, for all a ∈ ωH and y ∈ β(x). In an
analogous way, we have that |y ◦ a| = 1, for every y ∈ β(x).

An immediate consequence of the previous proposition is the following corollary:

Corollary 3. Let (H, ◦) be a hypergroup. If ωH is finite and |ωH | = h(ωH), then ωH is a subgroup of (H, ◦).

In the preceding corollary, the finiteness of ωH is a critical hypothesis. Indeed, in the next example,
we show a hypergroup where |ωH | = h(ωH) = ∞ and ωH is not a group.

Example 3. Let (Z,+) be the group of integers. In the set H = Z×Z, we define the following hyperproduct:

(a, b) ? (c, d) = {(a, b + d), (c, b + d)}.

Routine computations show that (H, ?) is a hypergroup and (Z× {0}, ?) is a subhypergroup of (H, ?).
Hereafter, we firstly describe the core ωH , then we compute h(ωH).

To prove that ωH = Z× {0}, we will show that Z× {0} is the smallest conjugable subhypergroup of
(H, ?). For every element (x, y) ∈ H, we can consider the element (0,−y). We obtain (x, y) ? (0,−y) =

{(x, 0), (0, 0)} ⊂ Z × {0}, hence Z × {0} is a conjugable subhypergroup. Now, let K be a conjugable
subhypergroup of (H, ?) and let (a, 0) ∈ Z × {0}. Since K is conjugable, there exists (x, y) ∈ H such
that (a, 0) ? (x, y) ⊆ K, and so {(a, y), (x, y)} ⊆ K. By reproducibility of K, there exists (x′, y′) ∈ K
such that (a, y) ∈ (x, y) ? (x′, y′) = {(x, y + y′), (x′, y + y′)} ⊆ K. Clearly, y′ = 0 because y = y + y′

and (x′, 0) ∈ K. Since (x′, 0), (a, y) ∈ K, there exists (z, w) ∈ K such that (x′, 0) ∈ (a, y) ? (z, w) =

{(a, y + w), (z, y + w)} ⊆ K. Consequently, we have y + w = 0 and (a, 0) ∈ K. Hence, Z× {0} ⊆ K and
ωH = Z× {0} since Z× {0} is conjugable. Obviously, |ωH | = |Z|.

Finally, we prove that h(ωH) = |Z|. By Proposition 1, we have h(ωH) ≤ |ωH | = |Z|. If h(ωH) < |Z|,
then there exist n hyperproducts (ai, bi) ? (ci, di) of elements in H such that

Z× {0} = ωH =
n⋃

i=1

(ai, bi) ? (ci, di) =
n⋃

i=1

{(ai, bi + di), (ci, bi + di)}.

This result is impossible since
⋃n

i=1{ai, ci} 6= Z.

Now, we give two examples of hypergroups (H, ◦) whose heart is a group and |ωH | ≥ 2.
In particular, we have that |H/β| = 2, h(ωH) = 1 and h(β(a)) = |ωH |, if a ∈ H −ωH .

Example 4. Consider the group (Z,+) and a set A = {ai}i∈Z such that Z∩ A = ∅. In the set H = Z∪ A,
we define the following hyperproduct:

• m ◦ n = {m + n} if m, n ∈ Z;
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• m ◦ an = an ◦m = {am+n} if m ∈ Z and an ∈ A;
• a ◦ b = Z if a, b ∈ A.

Routine computations show that (H, ◦) is a hypergroup. We have H/β ∼= Z2, ωH = Z and β(a) = A if
a ∈ A. Clearly, we have h(ωH) = 1 and h(β(a)) = |β(a)| = |Z| because m ◦ a is a singleton, for all m ∈ Z
and a ∈ A.

Example 5. Let (G, ·) be a group of size n ≥ 2 and let G = {g1, g2, . . . , gn}. Moreover, let σ be a n-cycle
of the symmetric group defined over X = {1, 2, . . . , n}. If A = {a1, a2, . . . , an} is a set disjoint with G,
in H = G ∪ A, we can define the following hyperproduct:

• gh ◦ gk = {ghgk},
• gh ◦ ak = ak ◦ gh = {aσh(k)},
• a ◦ b = G if a, b ∈ A.

Then, (H, ◦) is a hypergroup such that H/β ∼= Z2, ωH = G and β(a) = A if a ∈ A. Moreover, we have
h(ωH) = 1 and h(β(a)) = |β(a))| = |G|.

In the next theorem, we characterize the locally n-finite hypergroups such that |ωH | = h(ωH).

Theorem 2. Let (H, ◦) be a hypergroup such that |ωH | is finite. The following conditions are equivalent:

1. (H, ◦) is an 1-hypergroup that is |ωH | = 1;
2. |ωH | = h(ωH).

Proof. The implication 1. ⇒ 2. is trivial, hence we prove that 2. ⇒ 1. Let n a positive integer such
that |ωH | = h(ωH) = n. By Corollary 3, the heart ωH is a subgroup of (H, ◦). Let e be the identity
of ωH . If there exist a, b ∈ H such that a ◦ b = ωH , then we have |ωH | = h(ωH) = 1 and ωH = {e}.
Now, by contradiction, we suppose that a ◦ b 6= ωH , for all a, b ∈ H, and let x be an element of H. By
reproducibility of (H, ◦), there exists x′ ∈ H such that e ∈ x ◦ x′. Clearly, we have x ◦ x′ ⊂ ωH , since
ωH is a complete part of (H, ◦). Therefore, there exists an integer k, with 1 ≤ k < n, and n− k elements
of ωH such that ∅ 6= ωH − x ◦ x′ = {a1, a2, . . . , an−k}. Hence, we obtain

ωH = x ◦ x′ ∪ {a1, a2, . . . , an−k} = x ◦ x′ ∪ e ◦ a1 ∪ e ◦ a2 ∪ . . . ∪ e ◦ an−k,

and so k = 1 because n = h(ωH) ≤ n − k + 1. Therefore, we obtain x ◦ x′ = {e} and so {e} is a
conjugable subhypergroup of (H, ◦). Consequently, we have {e} = ωH = e ◦ e, a contradiction.

The following result is an immediate consequence of Theorem 2.

Corollary 4. Let (H, ◦) be a finite hypergroup, then (H, ◦) is a group if and only if |β(x)| = h(β(x)), for all
x ∈ H.

Proof. The implication ⇒ is obvious. On the other hand, if we suppose that |β(x)| = h(β(x)) for
all x ∈ H, then we have |ωH | = h(ωH) and so |ωH | = 1, by Theorem 2. From Corollary 1 and the
hypothesis, we have |β(x)| = h(β(x)) = 1. Hence, (H, ◦) is a group.

4. Hypergroups with at Least One β-Class of Height Equal to 1

From Theorem 2, the 1-hypergroups are characterized by the fact that h(ωH) = |ωH | = 1. In this
section, we use the notion of height of a β-class to introduce new classes of hypergroups. We enumerate
the elements in each class when the size of hypergroups is n ≤ 4, apart from isomorphisms. We give
the following definition:
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Definition 4. Let (H, ◦) be a hypergroup. We say that

a. (H, ◦) is a (1, β)-hypergroup if there exists x ∈ H such that |β(x)| = 1;
b. (H, ◦) is a locally 1-finite hypergroup if h(β(x)) = 1, for all x ∈ H;
c. (H, ◦) is a 1-weak hypergroup if h(ωH) = 1;
d. (H, ◦) is a weakly locally 1-finite hypergroup if there exists x ∈ H such that h(β(x)) = 1;

In the following, we denote by U, A, B, C and D the classes of 1-hypergroups, (1, β)-hypergroups,
locally 1-finite hypergroups, 1-weak hypergroups, and weakly locally 1-finite hypergroups, respectively.
By Definition 4 and Corollary 2, we have the inclusions U ⊆ A ⊆ B ⊆ C ⊆ D. Actually, these inclusions
are strict, as shown in the following example.

Example 6. In this example, we show four hypergroups (A, ◦), (B, ◦), (C, ◦) and (D, ◦) such that

1. (A, ◦) ∈ A and (A, ◦) 6∈ U,
2. (B, ◦) ∈ B and (B, ◦) 6∈ A,
3. (C, ◦) ∈ C and (C, ◦) 6∈ B,
4. (D, ◦) ∈ D and (D, ◦) 6∈ C.

They are the following:

1. A = {1, 2, 3} with the hyperproduct

◦ 1 2 3
1 1 2 3
2 2 1 3
3 3 3 1, 2

2. B = {1, 2, 3, 4} with the hyperproduct

◦ 1 2 3 4
1 1 1, 2 3, 4 3, 4
2 1, 2 1, 2 3, 4 3, 4
3 3, 4 3, 4 1, 2 1, 2
4 3, 4 3, 4 1, 2 1, 2

3. C = {1, 2, 3, 4} with the hyperproduct

◦ 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1, 2 1, 2
4 4 3 1, 2 1, 2

4. D = {1, 2, 3, 4, 5} with the hyperproduct

◦ 1 2 3 4 5
1 1, 2 2, 3 1, 3 4, 5 4, 5
2 2, 3 1, 3 1, 2 4, 5 4, 5
3 1, 3 1, 2 2, 3 4, 5 4, 5
4 4, 5 4, 5 4, 5 1, 2 2, 3
5 4, 5 4, 5 4, 5 2, 3 1, 2
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4.1. (1, β)-Hypergroups of Size n ≤ 4

In [26], Corsini introduced the class of 1-hypergroups and listed the 1-hypergroups of size n ≤ 4,
apart from isomorphisms. In this subsection, our interest is to study the hypergroups in class A and, in
particular, to determine their number, apart from isomorphisms. Since the class of 1-hypergroups is a
subclass of A, we recall the result proved by Corsini in [26].

Theorem 3. If (H, ◦) is a 1-hypergroup with |H| ≤ 4, then (H, ◦) is a complete hypergroup. Moreover, (H, ◦)
is isomorphic to either a group or one of the hypergroups described in the following three hyperproduct tables:

◦ 1 2 3
1 1 2, 3 2, 3
2 2, 3 1 1
3 2, 3 1 1

◦ 1 2 3 4
1 1 2, 3, 4 2, 3, 4 2, 3, 4
2 2, 3, 4 1 1 1
3 2, 3, 4 1 1 1
4 2, 3, 4 1 1 1

◦ 1 2 3 4
1 1 2, 3 2, 3 4
2 2, 3 4 4 1
3 2, 3 4 4 1
4 4 1 1 2, 3

Therefore, there exist eight 1-hypergroups of size |H| ≤ 4.

Now, we study the hypergroups (H, ◦) ∈ A− U of size n ≤ 4. Clearly, |ωH | and |H/β| can take
the values 2 or 3 and so we distinguish the following cases:

1. |H| = 3, |ωH | = 2 and |H/β| = 2;
2. |H| = 4, |ωH | = 2 and |H/β| = 3;
3. |H| = 4, |ωH | = 3 and |H/β| = 2.

1. In this case, we can suppose H = {a, b, x}, ωH = {a, b} and β(x) = {x}. Clearly, since H/β ∼= Z2,
for reproducibility of H, we have the following partial hyperproduct table of (H, ◦):

◦ a b x
a x
b x
x x x a, b

To complete this table, the undetermined entries must correspond to the hyperproduct table of
the subhypergroup ωH . Apart from isomorphisms, there are eight hypergroups of size 2. Their
hyperproduct tables were determined in [29] and are reproduced here below:

W1:
◦ a b
a a b
b b a

W2:
◦ a b
a a b
b b a, b

W3:
◦ a b
a a a, b
b b a, b

W4:
◦ a b
a a, b a, b
b a b

W5:
◦ a b
a a a, b
b a, b b

W6:
◦ a b
a a a, b
b a, b a, b

W7:
◦ a b
a a, b a, b
b a, b a

W8:
◦ a b
a a, b a, b
b a, b a, b

Hence, in this case, we have eight hypergroups.
2. Without loss of generality, we suppose that H = {a, b, x, y}, ωH = {a, b}, β(x) = {x} and

β(y) = {y}. Since H/β ∼= Z3, we have the following partial hyperproduct table of (H, ◦):

◦ a b x y
a x y
b x y
x x x y a, b
y y y a, b x
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As in the previous case, the entries that are left empty must be determined so that ωH is a
hypergroup of order 2. Hence, also in this case, we have eight hypergroups.

3. Let H = {a, b, c} and β(x) = {x}. We have the following partial hyperproduct table:

◦ a b c x
a x
b x
c x
x x x x a, b, c

In this case, it is straightforward to see that we get as many hypergroups as there are of size three,
apart from isomorphisms. In [30], this number is found to be equal to 3999.

From Theorem 3 and the preceding arguments, we summarize the number of non-isomorphic
(1, β)-hypergroups with |H| ≤ 4 in Table 1.

Table 1. The number of non-isomorphic (1, β)-hypergroups with |H| ≤ 4.

|H| = 1 |H| = 2 |H| = 3 |H| = 4

1 1 10 4011

Result 1. There are 4023 non-isomorphic (1, β)-hypergroups of size n ≤ 4.

4.2. Locally 1-Finite Hypergroups of Size n ≤ 4

In this subsection, we focus on hypergroups (H, ◦) ∈ B− A with |H| ≤ 4. By Definition 4,
we have that |β(x)| ≥ 2, for all x ∈ H.

If |H| = 2, then |H/β| = 1 and (H, ◦) is isomorphic to one of the hypergroups (Wi, ◦) listed in
the previous subsection, for i = 2, 3, . . . , 8.

If |H| = 3, then |H/β| = 1, otherwise at least one β-class has size 1 and (H, ◦) ∈ A. Hence,
to determine the hypergroups in (H, ◦) ∈ B−A of size 3, we must assume that there exist a, b ∈ H
such that a ◦ b = H. With the help of computer-assisted computations, we found that in this case there
are exactly 3972 hypergroups, apart from isomorphisms.

If |H| = 4, then there are two possible cases, namely |H/β| = 1 and |H/β| = 2. In the first case,
the only information we can deduce about (H, ◦) is that there are at least two elements a, b ∈ H such
that a ◦ b = H. The number of hypergroups having that property is huge, and at present we are not able
to enumerate them because the computational task exceeds our available resources. A detailed analysis
of this case is challenging and may be the subject of further research. In the other case, if x ∈ H −ωH ,
then we have |ωH | = |β(x)| = 2 with h(ωH) = h(β(x)) = 1. Moreover, ωH is isomorphic to one
of the hypergroups (Wi, ◦) for i = 1, 2, . . . , 8 listed beforehand, and there exist a, b ∈ H such that
a ◦ b = β(x). On the basis of the information gathered from the preceding arguments, we are able
to perform an exhaustive search of all possible hyperproduct tables with the help of a computer
algebra system. In Table 2, we report the number of the hypergroups such that |ωH | = |β(x)| = 2 and
h(ωH) = h(β(x)) = 1, depending on the structure of ωH , apart from isomorphisms.

Table 2. The number of non-isomorphic hypergroups in B−A with |H| = 4, according to the structure
of ωH .

W1 W2 W3 W4 W5 W6 W7 W8

3 25 17 17 31 26 12 20
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Since the hypergroups corresponding to the cases in which the heart is one of the W2, W3, . . . , W8

are quite a few, we list hereafter only those whose heart is isomorphic to W1. Apart from isomorphisms,
we have the following hyperproduct tables:

◦ a b x y
a a b x y
b b a y x
x x, y x, y a, b a, b
y x, y x, y a, b a, b

◦ a b x y
a a b x, y x, y
b b a x, y x, y
x x y a, b a, b
y y x a, b a, b

◦ a b x y
a a b x, y x, y
b b a x, y x, y
x x, y x, y a, b a, b
y x, y x, y a, b a, b

On the basis of the previous arguments, the number of hypergroups (H, ◦) belonging to B−A is
summarized in Table 3, in relation to the size of H:

Table 3. The number of non-isomorphic hypergroups in B−A, depending on their size.

|H| = 2 |H| = 3 |H| = 4 and |H/β| = 2

7 3972 151

Finally, since there are 4023 hypergroups in class A, see Result 1, we obtain the following result:

Result 2. Excluding the hypergroups (H, ◦) such that |H| = 4 and |H/β| = 1, there are 8153 non-isomorphic
locally 1-finite hypergroups of size n ≤ 4.

4.3. 1-Weak Hypergroups of Size n ≤ 4

In this subsection, we determine the hypergroups (H, ◦) ∈ C of size n ≤ 4, apart from
isomorphisms. We observe that, if (H, ◦) ∈ C−B, then there is at least one β-class of height different
from 1. Moreover, since A ⊂ B, we have |β(x)| > 1, for all x ∈ H. Hence, if (H, ◦) ∈ C−B, then
|H| ≥ 4 and |H/β| ≥ 2.

Lemma 1. Let (H, ◦) be a hypergroup in C−B such that |H| = 4, then ωH is isomorphic to the group Z2.

Proof. By hypotheses, we have |H/β| = 2 and |ωH | = 2. By Proposition 1, if β(x) is the class different
from ωH , then h(β(x)) = 2 = |β(x)|. Moreover, for Proposition 2, we have |a ◦ y| = |y ◦ a| = 1, for
all a ∈ ωH and y ∈ β(x). Now, if by contradiction we suppose that there exist a, b ∈ ωH such that
|a ◦ b| 6= 1, then a ◦ b = ωH and |b ◦ x| = |a ◦ (b ◦ x)| = 1 because b ◦ x ⊂ β(x), a ◦ (b ◦ x) ⊂ β(x) and
h(β(x)) = 2. This fact is impossible since a ◦ (b ◦ x) = (a ◦ b) ◦ x = ωH ◦ x = β(x) and |β(x)| = 2.
Hence, |a ◦ b| = 1, for all a, b ∈ ωH , and so ωH ∼= Z2.

Theorem 4. Let (H, ◦) be a hypergroup such that the heart ωH is isomorphic to a torsion group. If ε is the
identity of ωH , then x ∈ ε ◦ x ∩ x ◦ ε, for all x ∈ H −ωH .

Proof. Let x ∈ H − ωH . By reproducibility of H, there exists e ∈ H such that x ∈ x ◦ e. Clearly
e ∈ ωH ; moreover, we have x ∈ x ◦ e ⊆ (x ◦ e) ◦ e = x ◦ (e ◦ e) = x ◦ e2 and so x ∈ x ◦ e2. Obviously,
by induction, we obtain x ∈ x ◦ en, for all n ∈ N− {0}. Finally, since ωH is isomorphic to a torsion
group, there exists m ∈ N − {0} such that em = ε, hence x ∈ x ◦ ε. In the same way, we have
x ∈ ε ◦ x.

By reproducibility, Lemma 1, and Theorem 4, the hypergroups (H, ◦) in C−B with |H| = 4 have
the following partial hyperproduct table, apart from isomorphisms:
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◦ a b x y
a a b x y
b b a y x
x x y
y y x

Since h(ωH) = 1, we have ωH ∈ {x ◦ x, x ◦ y, y ◦ x, y ◦ y}. Now, we prove that ωH = x ◦ x =

x ◦ y = y ◦ x = y ◦ y. In fact, if we suppose that ωH = x ◦ y, then we have:

x ◦ x = x ◦ (y ◦ b) = (x ◦ y) ◦ b = ωH ◦ b = ωH ;

y ◦ x = (b ◦ x) ◦ (y ◦ b) = b ◦ (x ◦ y) ◦ b = b ◦ωH ◦ b = ωH ;

y ◦ y = (b ◦ x) ◦ y = b ◦ (x ◦ y) = b ◦ωH = ωH .

We obtain the same result also if we suppose that ωH = x ◦ x or ωH = y ◦ x or ωH = y ◦ y. Hence,
in class C−B, there is only one hypergroup of size 4, apart from isomorphisms. Its hyperproduct
table is the following:

◦ a b x y
a a b x y
b b a y x
x x y a, b a, b
y y x a, b a, b

We note that this hypergroup is a special case of the hypergroup described in Example 5. The
group (G, ·) is Z2 and the cycle σ is a transposition.

Result 3. Excluding the hypergroups (H, ◦) such that |H| = 4 and |H/β| = 1, in the class C there are 8154
hypergroups of size n ≤ 4, apart from isomorphisms.

We complete this section by showing a result concerning the weakly locally 1-finite hypergroups.

Theorem 5. If (H, ◦) ∈ D− C, then |H| ≥ 5.

Proof. By hypothesis, there is a class β(x) different from ωH such that h(β(x)) = 1 and h(ωH) ≥ 2.
Because of the inclusions U ⊂ A ⊂ C, we have |ωH | ≥ 2 and |β(x)| ≥ 2, otherwise (H, ◦) ∈ C. Now,
if we suppose that |ωH | = 2, by Proposition 1, we obtain 2 ≤ h(ωH) ≤ |ωH | = 2 and so h(ωH) =

|ωH | = 2. Consequently, with the help of Theorem 2, we have the contradiction (H, ◦) ∈ U ⊂ C.
Hence, |ωH | ≥ 3, |β(x)| ≥ 2 and |H| ≥ 5.

Recall that the hypergroup (D, ◦) shown in Example 6 belongs to D but not to C due to the
previous theorem that the hypergroup has the smallest cardinality, among all hypergroups sharing
that property.

5. Conclusions

In hypergroup theory, the relation β is the smallest strongly regular equivalence relation whose
corresponding quotient set is a group. If (H, ◦) is a hypergroup and ϕ : H → H/β is the canonical
projection, then the kernel ωH = ϕ−1(1H/β) is the hearth of (H, ◦). If the hearth is a singleton, then
(H, ◦) is a 1-hypergroup. We remark that the hearth is a β-class and also a subhypergroup of (H, ◦).
In particular, if ωH = {e}, then we have ωH = e ◦ e. More generally, every β-class is the union
of hyperproducts of pairs of elements of H. In this work, we defined the height of a β-class as the
minimum number of such hyperproducts. This concept yields a new characterization of 1-hypergroups,
see Theorem 2, and allows us to introduce new hypergroup classes, depending on the relationship
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between height and cardinality of the β-classes; see Definition 4. These classes include 1-hypergroups
as particular cases. Apart from isomorphisms, we were able to enumerate the elements of those classes
when |H| ≤ 4, with only one exception. In fact, the problem of enumerating the non-isomorphic
hypergroups where |H| = 4, |H/β| = 1 and h(ωH) = 1 remains open.

In conclusion, as a direction for further research, we point out that many hypergroups that arose in
the analysis of the hypergroup classes introduced in the present work are join spaces or transposition
hypergroups [15,31]. For example, the 10 hypergroups of size three in Table 1 are transposition
hypergroups. Transposition hyperstructures are very important in hypercompositional algebra. Hence,
it would be interesting to enumerate the join spaces or the transposition hypergroups belonging to the
hypergroup classes introduced in Definition 4, at least for small cardinalities. Another question that
is stimulated by the concept of height concerns the height of the β-classes of the coset hypergroups,
i.e., the hypergroups that are quotient of a non-commutative group with respect to a non-normal
subgroup [32]. We leave these observations and suggestions as a possible subject for new works.
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3. Novák, M.; Křehlík, Š.; Ovaliadis, K. Elements of hyperstructure theory in UWSN design and data
aggregation. Symmetry 2019, 11, 734. [CrossRef]

4. Davvaz, B., Salasi, A. A realization of hyperrings. Commun. Algebra 2006, 34, 4389–4400. [CrossRef]
5. De Salvo, M.; Fasino, D.; Freni, D.; Lo Faro, G. Fully simple semihypergroups, transitive digraphs, and

Sequence A000712. J. Algebra 2014, 415, 65–87. [CrossRef]
6. De Salvo, M.; Fasino, D.; Freni, D.; Lo Faro, G. A family of 0-simple semihypergroups related to sequence

A00070. J. Mult. Valued Log. Soft Comput. 2016, 27, 553–572.
7. De Salvo, M.; Fasino, D.; Freni, D.; Lo Faro, G. Semihypergroups obtained by merging of 0-semigroups with

groups. Filomat 2018, 32, 4177–4194.
8. De Salvo, M.; Freni, D.; Lo Faro, G. Fully simple semihypergroups. J. Algebra 2014, 399, 358–377. [CrossRef]
9. De Salvo, M.; Freni, D.; Lo Faro, G. Hypercyclic subhypergroups of finite fully simple semihypergroups.

J. Mult. Valued Log. Soft Comput. 2017, 29, 595–617.
10. De Salvo, M.; Freni, D.; Lo Faro, G. On hypercyclic fully zero-simple semihypergroups. Turk. J. Math. 2019, 4,

1905–1918. [CrossRef]
11. De Salvo, M.; Lo Faro, G. On the n∗-complete hypergroups. Discret. Math. 1999, 208/209, 177–188. [CrossRef]
12. Freni, D. Une note sur le cœur d’un hypergroup et sur la clôture transitive β∗ de β. Riv. Mat. Pura Appl. 1991,

8, 153–156.
13. Freni, D. Strongly transitive geometric spaces: Applications to hypergroups and semigroups theory. Commun.

Algebra 2004, 32, 969–988. [CrossRef]
14. Gutan, M. On the transitivity of the relation β in semihypergroups. Rendiconti del Circolo Matematico di

Palermo 1996, 45, 189–200. [CrossRef]
15. Tsitouras, C.; Massouros, C.G. On enumeration of hypergroups of order 3. Comput. Math. Appl. 2010, 59,

519–523. [CrossRef]
16. Vougiouklis, T. Fundamental relations in hyperstructures. Bull. Greek Math. Soc. 1999, 42, 113–118.

http://dx.doi.org/10.3390/math7100885
http://dx.doi.org/10.3390/sym11060734
http://dx.doi.org/10.1080/00927870600938316
http://dx.doi.org/10.1016/j.jalgebra.2014.05.033
http://dx.doi.org/10.1016/j.jalgebra.2013.09.046
http://dx.doi.org/10.3906/mat-1904-14
http://dx.doi.org/10.1016/S0012-365X(99)00071-0
http://dx.doi.org/10.1081/AGB-120027961
http://dx.doi.org/10.1007/BF02844485
http://dx.doi.org/10.1016/j.camwa.2009.06.013


Symmetry 2020, 12, 168 14 of 14

17. Koskas, H. Groupoïdes, demi-hypergroupes et hypergroupes. J. Math. Pures Appl. 1970, 49, 155–192.
18. De Salvo, M.; Lo Faro, G. A new class of hypergroupoids associated with binary relations. J. Mult. Valued

Log. Soft Comput. 2003, 9, 361–375.
19. Fasino, D.; Freni, D. Fundamental relations in simple and 0-simple semi-hypergroups of small size. Arab. J.

Math. 2012, 1, 175–190. [CrossRef]
20. Freni, D. Minimal order semi-hypergroups of type U on the right. II. J. Algebra 2011, 340, 77–89. [CrossRef]
21. Hila, K.; Davvaz, B.; Naka, K. On quasi-hyperideals in semihypergroups. Commun. Algebra 2011, 39,

4183–4194. [CrossRef]
22. Naz, S.; Shabir, M. On soft semihypergroups. J. Intell. Fuzzy Syst. 2014, 26, 2203–2213. [CrossRef]
23. Antampoufis, N.; Spartalis, S.; Vougiouklis, T. Fundamental relations in special extensions. In Algebraic

Hyperstructures and Applications; Vougiouklis, T., Ed.; Spanidis Press: Xanthi, Greece, 2003; pp. 81–89.
24. Davvaz, B. Semihypergroup Theory; Academic Press: London, UK, 2016.
25. Changphas, T.; Davvaz, B. Bi-hyperideals and quasi-hyperideals in ordered semihypergroups. Ital. J. Pure

Appl. Math. 2015, 35, 493–508.
26. Corsini, P. Prolegomena of Hypergroup Theory; Aviani Editore: Tricesimo, Italy, 1993.
27. Davvaz, B.; Leoreanu-Fotea, V. Hyperring Theory and Applications; International Academic Press: Palm Harbor,

FL, USA, 2007.
28. De Salvo, M.; Freni, D.; Lo Faro, G. On further properties of fully zero-simple semihypergroups. Mediterr. J.

Math. 2019, 16, 48. [CrossRef]
29. De Salvo, M.; Freni, D. Semi-ipergruppi e ipergruppi ciclici. Atti Sem. Mat. Fis. Univ. Modena 1981, 30, 44–59.
30. Nordo, G. An algorithm on number of isomorphism classes of hypergroups of order 3. Ital. J. Pure Appl.

Math. 1997, 2, 37–42.
31. Jantosciak, J. Transposition hypergroups: Noncommutative join spaces. J. Algebra 1997, 187, 97–119.

[CrossRef]
32. Eaton, J.E. Theory of cogroups. Duke Math. 1940, 6, 101–107. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s40065-012-0025-2
http://dx.doi.org/10.1016/j.jalgebra.2011.05.015
http://dx.doi.org/10.1080/00927872.2010.521932
http://dx.doi.org/10.3233/IFS-130894
http://dx.doi.org/10.1007/s00009-019-1324-z
http://dx.doi.org/10.1006/jabr.1997.6789
http://dx.doi.org/10.1215/S0012-7094-40-00609-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Definitions and Results
	Locally Finite Hypergroups
	Hypergroups with at Least One -Class of Height Equal to 1
	(1, )-Hypergroups of Size n 4
	Locally 1-Finite Hypergroups of Size n 4 
	1-Weak Hypergroups of Size n 4 

	Conclusions
	References

