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Abstract

We show how modified profile likelihood methods, developed in the statistical

literature, may be effectively applied to estimate the structural parameters of econo-

metric models for panel data, with a remarkable reduction of bias with respect to

ordinary likelihood methods. Initially, the implementation of these methods is illus-

trated for general models for panel data including individual-specific fixed effects and

then, in more detail, for the truncated linear regression model and dynamic regres-

sion models for binary data formulated along with different specifications. Simulation

studies show the good behavior of the inference based on the modified profile likeli-

hood, even when compared to an ideal, although infeasible, procedure (in which the

fixed effects are known) and also to alternative estimators existing in the econometric

literature. The proposed estimation methods are implemented in an R package that

we make available to the reader.
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Perugia, Italy, bart@stat.unipg.it
†Dipartimento di Scienze Economiche e Statistiche, Università di Udine, via Tomadini, 30, I-33100
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1 Introduction

Panel data models usually include individual-specific fixed-effects parameters accounting

for unobserved heterogeneity. Several solutions have been proposed to cope with the en-

suing incidental parameters problem (Neyman and Scott, 1948). See Arellano and Hahn

(2007) for a comprehensive review.

In estimating the structural parameters, which typically correspond to the parameters

of interest, fixed effects may be removed when a marginal or conditional likelihood is

available for these parameters (see e.g., Severini, 2000, Ch. 8). A well-known example

is the conditional likelihood for the static logit model. However, the existence of these

likelihoods depends on the assumptions of the model and is not guaranteed in general.

For instance, a conditional likelihood is not available for the dynamic logit model, which

includes the lagged response variable among the regressors, or for general probit models.

Several alternative solutions to the ones mentioned above have been developed in the

literature; some of them are model-specific (e.g., Honoré and Kyriazidou, 2000, Bartolucci

and Nigro, 2012) and some are of wider applicability. Here we focus on this second class

of solutions. In their interesting review, Arellano and Hahn (2007) classify these general

methods among: (i) those based on a bias correction of the maximum likelihood estimator,

(ii) those based on a correction of the estimating equation, and (iii) those based on a cor-

rection of the target function, which typically is the profile (or concentrated) log likelihood

function for the parameters of interest. Among the more recent contributions, we consider

Fernández-Val (2009) and Fernández-Val and Vella (2011) for the first approach, Carro

(2007) for the second, and Pace and Salvan (2006) and Bester and Hansen (2009) for the

third. A common effect of the above corrections is that they lead to a reduction of the

bias of the estimator of the parameters of interest from O(T−1) to O(T−2), where T is the

number of time occasions.

Among the most effective solutions proposed in the statistical literature, there is the

modified profile likelihood, which falls in class (iii) above and originates from the work of

Barndorff-Nielsen (1980, 1983); see Severini (2000, Ch. 9) for an updated account. The

properties of the modified profile likelihood and its approximations have been studied in
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detail by Sartori (2003) in a two-index asymptotic setting (in N , the sample size, and in

T ), which is a natural framework for panel data models. In particular, under fairly general

conditions, a sufficient condition for the usual χ2-asymptotic distribution of Wald, score,

and likelihood ratio statistics is that N = o(T 3), whereas it is that N = o(T ) for the profile

likelihood.

Aim of the present paper is to show how a convenient version of the modified pro-

file likelihood (Severini, 1998) may be effectively applied to estimate fixed-effects versions

of some important econometric models for panel data. In particular, we illustrate its

use in truncated linear regression and in dynamic logit and probit models, and we pro-

vide an assessment of its properties through a series of simulations. An R code for the

methods used in this paper is included in the package panelMPL, which is available at

http://www.dies.uniud.it/index.php/software-bellio.html.

The paper is organized as follows. In the next section we describe the modified profile

likelihood, which is then applied to some relevant cases in Section 3. Some final remarks

are given in Section 4.

2 Modified profile likelihood

2.1 Background and notation

With reference to a sample of N units observed at T occasions, let yit denote the response

variable and let xit denote the column vector of covariates observed for sample unit i at

occasion t, with i = 1, . . . , N and t = 1, . . . , T . The covariates are considered strictly

exogenous, with a possible exception being that of the lag of the endogenous variable in-

cluded among the covariates. Let also f(yit|xit; θ, αi) denote the probability mass or density

function of yit given xit. It is assumed that, given xit, yit is conditionally independent of

yi1, . . . , yi,t−1, or it is independent of yi1, . . . , yi,t−h for a suitable h for dynamic models in

which yi,t−h+1, . . . , yi,t−1 are included in xit. The vector of structural parameters is denoted

by θ, whereas α1, . . . , αN are, without loss of generality, scalar incidental parameters.
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Likelihood inference about θ is based on the profile, or concentrated, log likelihood

`P (θ) =
∑
i

`i(θ, α̂i(θ)),

where `i(θ, αi) =
∑

t log f(yit|xit; θ, αi) is the log likelihood contribution for sample unit i,

i = 1, . . . , N , and α̂i(θ) is the constrained maximum likelihood estimate of αi for fixed θ,

that is,

α̂i(θ) = arg max
αi

`i(θ, αi),

which is typically the solution of `αi
(θ, αi) = ∂`(θ, αi)/∂αi = ∂`i(θ, αi)/∂αi = 0. Through-

out the paper we use the convention that when the range of the sum is not explicitly

indicated it is equal to 1, . . . , N (for the sums in i) or it is equal to 1, . . . , T (for the sums

in t). Note that maximizing the profile log likelihood `P (θ) leads to the same solution as

maximizing the overall log likelihood, that is,

`(θ, α) =
∑
i

`i(θ, αi),

with respect to θ and α, where α is the vector of all individual-effects, with elements

α1, . . . , αN .

Typically, maximization of `P (θ) is performed numerically, obtaining in this way the

maximum likelihood estimator θ̂; see, for instance, Greene (2004). Moreover, standard

output of optimization routines provides the Hessian of `P (θ) at θ̂, which produces asymp-

totically correct estimates of the standard errors.

2.2 Severini (1998)’s modified profile likelihood

The maximum likelihood estimator θ̂ is in general asymptotically biased, with bias of

order O(T−1). A substantial reduction of this bias may be obtained by the estimator

which maximizes the modified profile log likelihood, which has the general form

`M(θ) = `P (θ) +M(θ), (1)
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where, because of the independence of the sample units, the adjustment function M(θ) has

the additive form

M(θ) =
∑
i

Mi(θ). (2)

Each term Mi(θ) is of order Op(1) under repeated sampling, so that the total adjustment

to the profile log likelihood is of order Op(N) when both T and N tend to infinity. We will

denote by θ̂M the estimator based on the maximization of `M(θ).

The first version of (1) that has been developed is the modified profile log likelihood of

Barndorff-Nielsen (1980, 1983), introduced with the aim of obtaining an accurate approxi-

mation of a marginal or a conditional log likelihood, when either exists. The computation

of this version of the modified profile likelihood requires the specification of an exact, or

approximate, ancillary statistic; see Severini (2000, Ch. 6). This is usually straightforward

in full exponential or composite group families. See Brazzale et al. (2007) for an overview.

The drawback of the original formulation of the modified profile likelihood is that it may

be difficult to compute in most models which do not belong to full exponential or composite

group families. However, several approximations are available which maintain the same

asymptotic properties; for a review, see Severini (2000, Sec. 9.3). These approximations

are to a large extent equivalent in terms of accuracy.

When θ and α are orthogonal, that is, when the corresponding block of the expected

information matrix has all elements equal to 0, the generic term of the modification (2)

can be taken equal to

Mi(θ) = −1

2
log | −`αiαi

(θ, α̂i(θ)) | .

This modification gives the approximate conditional likelihood of Cox and Reid (1987);

see Lancaster (2002) for applications to panel data models. Although leading to a strong

simplification, an orthogonal parameterization may be difficult to find or even it could not

exist when θ is multidimensional. Moreover, the Cox and Reid approximate conditional

likelihood is not invariant under interest-preserving reparameterizations, that is, under

one-to-one functions from (θ, α) to (φ(θ), ψ(θ, α)).

Different approximations of the modified profile log likelihood are available which over-

come these difficulties and avoid the specification of an ancillary statistic (see Severini,
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2000, Sec. 6.7, for a review). Here, in particular, we focus on the version proposed by

Severini (1998), which relies on modification (2) with

Mi(θ) =
1

2
log | −`αiαi

(θ, α̂i(θ)) | − log | Iαiαi
(θ̂, α̂i; θ, α̂i(θ)) |, (3)

where

Iαiαi
(θ0, αi0; θ1, αi1) = Eθ0,αi0

(`αi
(θ0, αi0)`αi

(θ1, αi1)) . (4)

Example 1 First order autoregressive model. Consider the model

yit − µi = (yi,t−1 − µi)ρ+ εitσ, i = 1, . . . , N, t = 2, . . . , T, (5)

with the error terms εit independent and normally distributed with mean zero and variance

σ2, and with ρ ∈ (−1, 1) and µi ∈ IR, i = 1, . . . , N . Note that, when ρ = 0, this model

simplifies to the classic example of Neyman and Scott (1948). As for the initial condition,

we assume that

yi1 ∼ N

(
µi,

σ2

1− ρ2

)
.

Equation (5) can also be written in the form

yit = δi + yi,t−1ρ+ εitσ, (6)

where δi = µi(1 − ρ) is an individual-specific intercept. Specifications (5) and (6) are

equivalent for the inference problems considered here. In particular, we consider θ = (ρ, σ2)

as the structural parameter, whereas the vector of individual-specific effects α = µ, with

µ = (µ1, . . . , µN), will be treated as a nuisance parameter.

Profile likelihood and modifications are better expressed using matrix notation. There-

fore, we let yi = (yi1, . . . , yiT )>, with yi ∼ NT (αi1T ,Ω), where 1T is a vector of ones of

length T and the matrix Ω = Ω(θ) has generic element ωtu = σ2ρ|t−u|/(1 − ρ2), with
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t, u = 1, . . . , T . The inverse of Ω is

Ω−1 = σ−2



1 −ρ 0 · · · 0 0

−ρ 1 + ρ2 −ρ · · · 0 0

0 −ρ 1 + ρ2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 + ρ2 −ρ

0 0 0 · · · −ρ 1


.

Then, we have

`i(θ, αi) = −1

2
log |Ω| − 1

2
(yi − αi1T )>Ω−1(yi − αi1T ) ,

where |Ω| = (σ2)T/(1− ρ2), and

`αi
(θ, αi) = (yi − αi1T )>Ω−11T ,

so that

α̂i(θ) =
y>i Ω−11T
1>TΩ−11T

.

The contribution of the ith unit to `P (θ) is given by

`i(θ, α̂i(θ)) = −1

2
log |Ω| − 1

2
y>i Ψyi ,

with

Ψ = Ω−1
[
IT − 1T (1>TΩ−11T )−11>TΩ−1

]
,

and IT being the identity matrix of order T .

It is straightforward to verify that

−`αiαi
(θ, α̂i(θ)) = Iαiαi

(θ̂, α̂i; θ, α̂i(θ)) = 1>TΩ−11T
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giving

`M(θ) = `P (θ)− N

2
log |1>TΩ−11T | .

Note that α and θ orthogonal and in this case `M(θ) coincides with the approximate

conditional log likelihood of Cox and Reid (1987).

A marginal likelihood for θ is available for this model, see Cruddas, Reid and Cox (1989)

and the references therein. Its ith contribution is proportional to the marginal density of

di = yi − 1T ȳi, with ȳi = T−11>T yi, and its expression is most easily obtained as

Lmarg(θ; di) =

∫ +∞

−∞
Li(θ, αi)dαi ;

see, for instance, Barndorff-Nielsen and Cox (1994), Sec. 2.8. It is easily checked that, for

this model,
∑

i logLmarg(θ; di) is equivalent to `M(θ), so that the latter provides a consistent

estimator as N diverges, even with fixed T . On the contrary, the profile likelihood has the

usual problems, especially related to the bias and the ensuing poor coverage of confidence

intervals, as proved by simulation results that are not reported here; these results also

confirm the extremely accurate behavior of `M(θ).

Covariates may be added to the model by considering yi ∼ NT (µi1T +Xiβ,Ω), with Xi

being a covariate matrix with T rows, still giving that `M(θ) is equivalent to a marginal like-

lihood, where now θ also includes β. 2

2.3 Computational aspects

Typically, the estimate θ̂M which maximizes `M(θ) is obtained through numerical opti-

mization. Evaluation of standard errors is obtained by using the second derivative of

`M(θ) at the maximum, which is a standard output of most numerical algorithms. This is

what we implemented in the R package panelMPL. The estimate θ̂M and the correspond-

ing estimated standard error can be used to compute Wald confidence intervals, based

on asymptotic normality of the estimator. In general, intervals based on the likelihood

ratio statistic constructed using `M(θ) would be preferable for various reasons, including

equivariance under reparameterizations. However, given that the information is of order

O(NT ), for large N , both profile and modified profile likelihood are well approximated by
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a quadratic function in a neighborhood of the maximum and, therefore, Wald confidence

intervals are almost indistinguishable from those based on the likelihood ratio statistic.

Regarding the computation of Severini (1998)’s version of `M(θ), analytical calculation

of (4) is fairly simple in a number of important models as those in Example 1 and Section

3.1; see also Bellio and Sartori (2006). Exact computation by enumeration is feasible in

discrete models for moderate T , while Monte Carlo calculation offers a general solution

(Pierce and Bellio, 2006); both alternatives are used in the following Section 3.2.

If observations within units are independent, as in static models, an asymptotically

equivalent version of (3) is obtained by replacing Iαiαi
(θ̂, α̂i; θ, α̂i(θ)) by its empirical ana-

logue

Îαiαi
(θ̂, α̂i; θ, α̂i(θ)) =

∑
t

∂ log f(yit|xit; θ̂, α̂i)
∂αi

∂ log f(yit|xit; θ, α̂i(θ))
∂αi

;

see Severini (1999; 2000, Sec. 9.5.5). A similar empirical approximation is considered by

Di Ciccio and Stern (1993) and DiCiccio et al. (1996); see also Arellano and Hahn (2007)

that, apart a constant term, found the following expression

Mi(θ) =
1

2
log | −`αiαi

(θ, α̂i(θ)) | −
1

2
log
∑
t

[
∂ log f(yit|xit; θ, α̂i(θ))

∂αi

]2
.

However, adjustments involving model based quantities are typically superior to their em-

pirical counterparts, in particular when the unit sample size is small (see, for instance,

Severini, 1999, and Bester and Hansen, 2009).

3 Examples

We illustrate the application of the methods outlined in Section 2 to some models of inter-

est. In particular, we consider the truncated linear regression model and dynamic regression

models for binary data. We also show the results of a set of simulations performed, under

different scenarios, along the same lines as in Honoré and Kyriazidou (2000) and Carro

(2007) among others. Based on these simulation results, the performance of the estimators

of the parameters of interest are measured in terms of bias (B), median bias (MB), root

mean squared error (RMSE), and median absolute error (MAE). For these estimators, we
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also report the standard deviation (SD) and the ratio SE/SD, where SE stands for the aver-

age over simulations of likelihood based estimates of the standard error, and the empirical

coverage of 0.95 confidence intervals constructed assuming the asymptotic normality of the

corresponding estimator. Moreover, in order to measure the actual improvement of the

modified profile likelihood estimator (MPL estimator for short) over the estimator based

on the standard profile likelihood (ML estimator), we compute for each simulation scenario

the index

∆(B) =
|B(ML)| − |B(MPL)|
|B(ML)| − |B(IL)|

, (7)

where B(IL) stands for the bias of the infeasible likelihood estimator (IL estimator), which

uses the fixed effects as one of the explanatory variables and treats the corresponding

regression coefficient as unknown; see Honoré and Kyriazidou (2000). Indices analogous to

(7) are also computed for MB, RMSE, and MAE and are denoted by ∆(MB), ∆(RMSE),

and ∆(MAE), respectively. An additional comparison with other proposals in the literature

is considered for the dynamic logit model in Section 3.2.

3.1 Truncated linear regression model

Let yit be distributed as y∗it conditionally on y∗it > 0, with

y∗it = ηit + εit, i = 1, . . . , N, t = 1, . . . , T, (8)

where ηit = ηit(αi, β) is a linear predictor of the form

ηit = αi + x>itβ, i = 1, . . . , N, t = 1, . . . , T,

with parameters αi ∈ IR, i = 1, . . . , N , β ∈ IRp. The errors εit are assumed to be indepen-

dent and normally distributed with mean zero and variance σ2. Then, yit has density

f(yit|xit; β, σ, αi) =
1

σ
φ

(
yit − ηit

σ

)/
Φ
(ηit
σ

)
,
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where φ(·) is the density function of the standard normal distribution and Φ(·) is the

corresponding cumulative distribution function. We consider θ = (β>, σ) as the parameter

of interest, whereas α = (α1, . . . , αN) is treated as a vector of nuisance parameters.

The full log likelihood for model (8) is

`(θ, α) = −NT log σ − 1

2σ2

∑
i

∑
t

(yit − ηit)2 −
∑
i

∑
t

log Φ
(ηit
σ

)
;

the profile log likelihood for θ has the same expression with every αi substituted by α̂i(θ),

which is the solution with respect to αi of the equation

1

σ

∑
t

(yit − ηit) =
∑
t

φ
(ηit
σ

)/
Φ
(ηit
σ

)
.

Simulation results in Greene (2004, Sec. 3.2), with N = 1000 and T ranging from 2 to

20, show that θ̂ has a non-negligible negative bias. In particular, negative biases are

accompanied by extremely poor coverage of the confidence intervals. These results are

confirmed by our simulation study described below.

We compute the modified profile log likelihood given by (1) and (2) using expression (3)

for Mi(θ). The quantities needed for the adjustment term Mi(θ) are

`αiαi
(θ, α̂i(θ)) = − 1

σ2

[
T −

∑
t

(
φ(η̃it/σ)

Φ(η̃it/σ)

)2

− 1

σ

∑
t

φ(η̃it/σ)

Φ(η̃it/σ)
η̃it

]
,

Iαiαi
(θ̂, α̂i; θ, α̂i(θ)) =

1

σ2

[
T −

∑
t

(
φ(η̂it/σ̂)

Φ(η̂it/σ̂)

)2

− 1

σ̂

∑
t

φ(η̂it/σ̂)

Φ(η̂it/σ̂)
η̂it

]
,

where η̃it = ηit(α̂i(θ), β) and η̂it = ηit(α̂i, β̂). Thus, discarding additive terms that do not

depend on θ, we have

`M(θ) = `P (θ) +N log σ +
1

2

∑
i

log

[
T −

∑
t

(
φ(η̃it/σ)

Φ(η̃it/σ)

)2

− 1

σ

∑
t

φ(η̃it/σ)

Φ(η̃it/σ)
η̃it

]
.

In order to assess the accuracy of the inference based on `M(θ) in short panels with

many sample units, we implement a simulation experiment based on 5000 random samples

with N = 250, 500, 1000 and T = 4, 8. Under this model, β = σ = 1, whereas, for each pair

11



(T,N), covariates xit are generated from a standard normal distribution and the values of

the incidental parameters αi are chosen as follows:

αi =
√
T x̄i + ui, i = 1, . . . , N,

where x̄i = T−1
∑

t xit and ui ∼ N(0, 1).

Tables 1 and 2 report the results for β and ω = log σ, respectively. The latter parame-

terization was chosen for numerical convenience.

[Table 1 about here.]

[Table 2 about here.]

Bias and median bias are approximately equal in all cases and MPL gives a substantial

improvement over ML. As expected, the bias decreases as T increases, whereas it does not

depend on N . On the other hand, the root mean square error depends both on T and on

N . Again, this was expected, since the variance of the estimator is of order O(1/(NT )).

Notice that all the ∆ indices are larger than 0.73, and often larger than 0.90. For instance,

with N = 1000 and T = 8 we get ∆(RMSE) = 0.898, implying that MPL produces about

90% of the RMSE reduction from ML to the infeasible estimator. Coverage properties of

MPL confidence intervals are excellent. The improvement over ML is remarkable and this is

largely due to bias reduction. There is also a curvature correction, being SE/SD for MPL

much closer to one than for ML. Unreported simulation results confirm that confidence

intervals based on the likelihood ratio statistics are indistinguishable from Wald confidence

intervals, as commented in Section 2.3.

3.2 Dynamic regression models for binary data

Let yit be observations from Bernoulli variables with success probabilities G(ηit), where

G(·) is a given continuous cumulative distribution function on IR with density g(·) and ηit

is a linear predictor including a dynamic effect, that is,

ηit = αi + x>itβ + yit−1ρ, i = 1, . . . , N, t = 2, . . . , T, (9)
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with parameters αi ∈ IR, i = 1, . . . , N , β ∈ IRp, and ρ ∈ IR. Typical choices of G(·) are the

logistic distribution and the normal distribution, leading to the logistic regression model

and the probit regression model, respectively. We assume that the initial observation yi1

is a fixed non-stochastic constant for unit i, as in Carro (2007) and Fernández-Val (2009),

among others.

Honoré and Kyriazidou (2000) proposed an estimator that for T = 4 is based on a par-

ticular weighted likelihood, whereas for T > 4 it is based on a pairwise weighted likelihood.

In either case, their solution provides a consistent estimator but it has some limitations,

such as the impossibility of estimating the effects of time dummies or other categorical

covariates. See Bartolucci and Nigro (2010, 2012) for more specific comments and alter-

native approaches based on the conditional likelihood. Hahn and Kuersteiner (2011) and

Fernández-Val (2009) provided formulas for removing the O(T−1) leading term of the bias

of the maximum likelihood estimator. Carro (2007) removed the leading term of the bias

of the profile score for θ = (β>, ρ). The dynamic logit model is also one of the examples

considered by Bester and Hansen (2009) for their approach based on penalization.

Under assumption (9), the profile log likelihood for θ = (β>, ρ) is

`P (θ) =
∑
i

∑
t>1

[yit logG(η̃it) + (1− yit) log (1−G(η̃it))] ,

where η̃it = α̂i(θ) + x>itβ + yit−1ρ is the constrained maximum likelihood estimate of ηit for

the ith unit.

The computation of the adjustment terms Mi(θ) given by (3) requires

−`αiαi
(θ, α̂i(θ)) =

∑
t>1

[
g(η̃it)

2

G(η̃it) (1−G(η̃it))
− C(η̃it)

]
,

with

C(η̃it) = (yit −G(η̃it))

[
g′(η̃it)

G(η̃it) (1−G(η̃it))
− g(η̃it)

2 (1− 2G(η̃it))

G(η̃it)2 (1−G(η̃it))
2

]
and Iαiαi

(θ̂, α̂i; θ, α̂i(θ)), which does not have a closed-form expression and cannot be com-

puted by the recursive computation employed by Carro (2007). A feasible approach is
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based on the fact that the sample space Y of all the possible vectors (yi2, . . . , yiT ) has

cardinality 2T−1. Therefore, for moderate values of T it is possible to explore all Y for

computing Iαiαi
(θ̂, α̂i; θ, α̂i(θ)). In other words, letting s = (s2, . . . , sT ) ∈ Y , we compute

p(s; θ̂, α̂i) = p(s2, . . . , sT ; θ̂, α̂i) =
∏
t>1

G(η̂it)
st(1−G(η̂it))

1−st ,

Iαiαi
(θ̂, α̂i; θ, α̂i(θ)) =

∑
s∈Y

[∑
t>1

g(η̂it)(st −G(η̂it))

G(η̂it)(1−G(η̂it))

][∑
t>1

g(η̃it)(st −G(η̃it))

G(η̃it)(1−G(η̃it))

]
p(s; θ̂, α̂i) .

For t > 2, the estimated linear predictors are η̂it = α̂i+x
>
it β̂+ ρ̂st−1 and η̃it = α̂i(θ)+x>itβ+

ρst−1, while for t = 2 they are η̂i2 = α̂i+x
>
i2β̂+ρ̂yi1 and η̃i2 = α̂i(θ)+x>i2β+ρyi1. With larger

values of T , say T > 10, full exploration of Y may become computationally costly. An

alternative strategy relies on a Monte Carlo approximation, that is, Iαiαi
(θ̂, α̂i; θ, α̂i(θ))

.
=

I∗αiαi
(θ̂, α̂i; θ, α̂i(θ)), with

I∗αiαi
(θ̂, α̂i; θ, α̂i(θ)) =

1

R

R∑
r=1

[∑
t>1

g(η̂∗it)(y
∗
r,it −G(η̂∗it))

G(η̂∗it)(1−G(η̂∗it))

][∑
t>1

g(η̃∗it)(y
∗
r,it −G(η̃∗it))

G(η̃∗it)(1−G(η̃∗it))

]
,

where y∗r,i = (yr,i2, . . . , yr,iT ), r = 1, . . . , R, is generated from the model with θ = θ̂ and

αi = α̂i. The linear predictors η̂∗it and η̃∗it involve the simulated data as lagged variables, but

are otherwise computed using the parameter estimates (θ̂>, α̂i) and α̂i(θ), respectively. The

computation of I∗αiαi
(θ̂, α̂i; θ, α̂i(θ)) only requires the score function `αi

(θ, αi) and simulation

from the model, without any additional fitting; therefore, it is easily applicable in wide

generality. This solution, used for the results in Tables 7 and 8, has also the advantage of

having a moderate computational cost, which is only slightly affected by the value of T . In

our experience, values of R even lower than 1000 may be sufficient for reasonable accuracy

in most cases, though in specific applications this fact may require some trial and error with

more than one value of R. We note that computation of `M(θ) using I∗αiαi
(θ̂, α̂i; θ, α̂i(θ)) is

only partially akin to simulated maximum likelihood, as Monte Carlo computation is used

for computing part of the adjustment term, rather than the entire likelihood function.

Nonetheless, it is advisable to generate observations employing the same set of random
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draws during the maximization of `M(θ), as customary in simulated maximum likelihood

(i.e., Hajivassiliou, 2000).

Tables 3–6 summarize results for the logit and probit models in simulations where xit ∼

N(0, π2/3) and αi = T−1
∑T

i=1 xit, with the inclusion of the lagged response among the

covariates. The regression parameter in the probit model has been set equal to that of the

logit parameter divided by 1.6, in order to make the two regression functions approximately

equivalent. The initial conditions yi1 were generated using the linear predictor (9) with

ρ = 0. As noted by Carro (2007), and analogously to the static case, units with no variation

in the response do not contribute to the profile or the modified profile likelihood, hence

the actual sample size is reduced.

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

The relative behavior of the profile and modified profile likelihood inference is quite

similar to that observed in the simulation study for the truncated regression model and

most of the comments to Tables 1 and 2 apply here as well, with ∆ indices close to 0.90 or

even higher. However, the finite sample properties of the maximum likelihood estimator

are so poor that the adjustment provided by `M(θ) is at times only partially successful,

that is, the O(T−2) bias of θ̂M can be at times not negligible and the curvature correction is

less good than in the static case (ρ = 0), simulation results for which are not reported here.

This fact can be observed in some of the entries of Tables 3–6, with notable undercoverage

particularly for T = 4. At any rate, the results based on `M(θ) are in line with the

best proposals in the literature. For the logit case, which is the most analyzed by other

authors, the setting of this paper is very similar to that in Honoré and Kyriazidou (2000),

Carro (2007), Bester and Hansen (2009), Fernández-Val (2009), and Hahn and Kuersteiner

(2011). In particular, all these studies report the results for T = 8 and N = 250. Among

the more general large T -consistent estimators, the solution proposed here is comparable
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with the best performing ones, that are Carro (2007) (MML) and Fernández-Val (2009)

(BC), which are also included in the simulation studies summarized in Tables 3 and 4.

With T = 4, MPL outperforms the other methods, with BC showing a very poor behavior.

On the other hand, when T = 8, BC is quite good, even slightly better than MPL. Both

are preferable to MML.

Finally, Tables 7 and 8 show a comparison for T = 11 and T = 16 of MPL with BC and

MML. Here, computation of (4) needed for MPL has been performed using Monte Carlo

with R = 500 replications. We note that all methods are quite accurate in all cases, giving

very small biases and empirical coverages of confidence intervals close to the nominal level.

As a check of the accuracy of the Monte Carlo version of MPL we also ran simulations

in the case T = 8. Results are almost indistinguishable from those of the exact version

reported in Tables 3 and 4, and therefore are not reported here.

[Table 7 about here.]

[Table 8 about here.]

4 Conclusions

We study the application of modified profile likelihood methods to econometric models

for panel data. These methods have been mainly developed in the statistical literature,

starting from the fundamental work of Barndorff-Nielsen (1980, 1983), and are specially

tailored to deal with models with incidental parameters (Sartori, 2003); see also Severini

(2000, Ch. 9). Thus, we establish a bridge between the statistical and the econometric

literature regarding inference for incidental parameters models. Modified profile likelihood

is not only general and interpretable, but also quite effective for inference about structural

parameters. Our results also indicate that it is highly competitive with existing estimation

methods developed in the econometric literature.

The implementation of the modified profile likelihood in general models can be quite

straightforward, in particular if a Monte Carlo version is considered to compute certain
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quantities required for the implementation. An R package panelMPL for the models used

in the paper is available to the reader.

In this paper, we focus on estimation of structural parameters, while we have not explic-

itly considered marginal or partial effects. These are typically function of all parameters in

the model. One way to estimate these effects is to use θ̂M and α̂1(θ̂M), . . . , α̂N(θ̂M), where,

as before, α̂i(θ) is the constrained maximum likelihood estimate of αi for fixed θ. This is

the same approach considered in Carro (2007), which proved to be quite satisfactory.

Finally, we note that a possible extension to estimating equations could be obtained

using the approach of Severini (2002), as done in the context of generalized estimating

equations by Wang and Hanfelt (2008).
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N T Method B MB SD RMSE MAE SE/SD 0.95 CI
250 4 ML -0.117 -0.118 0.058 0.130 0.118 0.847 0.362

MPL -0.005 -0.007 0.068 0.069 0.046 0.980 0.943
IL 0.000 0.000 0.049 0.049 0.034 0.993 0.949
∆ 0.957 0.941 - 0.753 0.857 - -

8 ML -0.064 -0.065 0.042 0.076 0.065 0.932 0.599
MPL -0.001 -0.003 0.046 0.046 0.031 0.999 0.948
IL 0.000 0.000 0.035 0.035 0.023 1.004 0.951
∆ 0.984 0.954 - 0.732 0.810 - -

500 4 ML -0.122 -0.123 0.039 0.128 0.123 0.881 0.095
MPL -0.006 -0.006 0.047 0.047 0.032 1.016 0.949
IL -0.001 -0.001 0.034 0.034 0.023 1.018 0.956
∆ 0.959 0.959 - 0.862 0.910 - -

8 ML -0.064 -0.064 0.030 0.070 0.064 0.932 0.369
MPL -0.001 -0.002 0.032 0.032 0.022 1.001 0.951
IL 0.000 0.000 0.024 0.024 0.017 1.004 0.953
∆ 0.984 0.969 - 0.826 0.894 - -

1000 4 ML -0.121 -0.121 0.029 0.124 0.121 0.860 0.008
MPL -0.005 -0.006 0.034 0.035 0.023 0.999 0.946
IL 0.000 0.000 0.025 0.025 0.017 1.007 0.955
∆ 0.957 0.950 - 0.899 0.942 - -

8 ML -0.063 -0.063 0.020 0.066 0.063 0.936 0.116
MPL -0.002 -0.002 0.022 0.022 0.015 1.008 0.953
IL 0.000 0.000 0.017 0.017 0.012 1.005 0.953
∆ 0.968 0.968 - 0.898 0.941 - -

Table 1: Inference on β for the truncated regression model. Simulation results with 5,000
replications, β = 1.
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N T Method B MB SD RMSE MAE SE/SD 0.95 CI
250 4 ML -0.204 -0.204 0.042 0.208 0.204 0.847 0.001

MPL -0.008 -0.009 0.045 0.046 0.031 0.980 0.940
IL -0.001 -0.001 0.022 0.022 0.015 0.993 0.949
∆ 0.966 0.961 - 0.871 0.915 - -

8 ML -0.097 -0.097 0.029 0.101 0.097 0.932 0.063
MPL -0.003 -0.003 0.030 0.030 0.020 0.999 0.945
IL -0.001 -0.001 0.015 0.015 0.010 1.004 0.952
∆ 0.979 0.979 - 0.826 0.885 - -

500 4 ML -0.205 -0.205 0.029 0.207 0.205 0.881 0.000
MPL -0.007 -0.008 0.032 0.033 0.023 1.016 0.941
IL -0.001 0.000 0.015 0.015 0.010 1.018 0.955
∆ 0.971 0.961 - 0.906 0.882 - -

8 ML -0.097 -0.097 0.021 0.099 0.097 0.932 0.002
MPL -0.002 -0.002 0.022 0.022 0.015 1.001 0.944
IL 0.000 0.000 0.011 0.011 0.007 1.004 0.948
∆ 0.979 0.979 - 0.875 0.911 - -

1000 4 ML -0.205 -0.205 0.021 0.206 0.205 0.860 0.000
MPL -0.006 -0.006 0.023 0.024 0.016 0.999 0.933
IL 0.000 0.000 0.011 0.011 0.007 1.007 0.948
∆ 0.971 0.971 - 0.933 0.955 - -

8 ML -0.097 -0.097 0.014 0.098 0.097 0.936 0.000
MPL -0.003 -0.002 0.015 0.015 0.010 1.008 0.948
IL 0.000 0.000 0.008 0.008 0.005 1.005 0.952
∆ 0.969 0.979 - 0.922 0.946 - -

Table 2: Inference on ω = log σ for the truncated regression model. Simulation results
with 5,000 replications, σ = 1.
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N T Method B MB SD RMSE MAE SE/SD 0.95 CI
250 4 ML 0.759 0.729 0.265 0.804 0.729 0.699 0.012

MML -0.045 -0.047 0.075 0.087 0.063 1.459 0.980
BC -1.321 -1.182 0.570 1.438 1.182 0.157 0.000
MPL -0.032 -0.034 0.079 0.085 0.061 1.230 0.969
IL 0.009 0.005 0.089 0.089 0.060 0.987 0.950
∆ 0.969 0.960 - 1.006 0.999 - -

8 ML 0.249 0.246 0.083 0.263 0.246 0.857 0.063
MML 0.015 0.013 0.059 0.061 0.040 1.019 0.952
BC -0.015 -0.016 0.054 0.056 0.038 1.086 0.958
MPL 0.016 0.014 0.059 0.061 0.040 1.016 0.951
IL 0.004 0.003 0.054 0.054 0.036 1.002 0.949
∆ 0.951 0.955 - 0.967 0.981 - -

500 4 ML 0.791 0.777 0.189 0.813 0.777 0.708 0.000
MML -0.063 -0.063 0.049 0.080 0.064 1.522 0.941
BC -1.413 -1.337 0.401 1.469 1.337 0.150 0.000
MPL -0.056 -0.057 0.051 0.076 0.058 1.308 0.911
IL 0.005 0.002 0.062 0.063 0.042 0.995 0.949
∆ 0.935 0.929 - 0.983 0.978 - -

8 ML 0.263 0.260 0.060 0.270 0.260 0.836 0.001
MML 0.018 0.016 0.042 0.045 0.030 0.998 0.936
BC -0.016 -0.016 0.038 0.041 0.029 1.067 0.943
MPL 0.019 0.017 0.042 0.046 0.031 1.002 0.938
IL 0.003 0.002 0.038 0.038 0.026 0.993 0.948
∆ 0.938 0.942 - 0.966 0.979 - -

1000 4 ML 0.764 0.759 0.130 0.775 0.759 0.721 0.000
MML -0.067 -0.067 0.035 0.076 0.067 1.532 0.842
BC -1.314 -1.277 0.250 1.337 1.277 0.157 0.000
MPL -0.061 -0.062 0.036 0.071 0.062 1.315 0.793
IL 0.002 0.001 0.043 0.043 0.029 1.010 0.950
∆ 0.923 0.920 - 0.962 0.955 - -

8 ML 0.253 0.253 0.042 0.257 0.253 0.852 0.000
MML 0.017 0.016 0.029 0.034 0.023 1.011 0.922
BC -0.011 -0.011 0.027 0.030 0.020 1.065 0.941
MPL 0.017 0.017 0.029 0.034 0.023 1.012 0.920
IL 0.001 0.001 0.027 0.027 0.018 0.995 0.950
∆ 0.937 0.937 - 0.970 0.979 - -

Table 3: Inference on β for the dynamic logit model. Simulation results with 5,000 repli-
cations, β = 1.
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N T Method B MB SD RMSE MAE SE/SD 0.95 CI
250 4 ML -2.688 -2.653 0.582 2.750 2.653 0.813 0.000

MML -0.574 -0.575 0.224 0.616 0.575 1.437 0.589
BC 0.968 0.797 0.696 1.192 0.797 0.414 0.231
MPL -0.208 -0.209 0.211 0.296 0.218 1.438 0.964
IL 0.001 -0.001 0.146 0.146 0.099 1.002 0.955
∆ 0.923 0.922 - 0.942 0.953 - -

8 ML -0.713 -0.714 0.178 0.735 0.714 0.944 0.013
MML -0.100 -0.101 0.151 0.181 0.128 1.026 0.911
BC -0.054 -0.056 0.143 0.153 0.104 1.075 0.953
MPL -0.085 -0.086 0.154 0.175 0.122 1.018 0.925
IL -0.002 -0.002 0.091 0.091 0.061 0.999 0.949
∆ 0.883 0.882 - 0.870 0.907 - -

500 4 ML -2.481 -2.462 0.398 2.512 2.462 0.815 0.000
MML -0.540 -0.538 0.158 0.563 0.538 1.423 0.263
BC 0.863 0.774 0.410 0.955 0.774 0.484 0.041
MPL -0.201 -0.202 0.150 0.251 0.203 1.417 0.928
IL 0.001 0.000 0.107 0.107 0.072 0.993 0.948
∆ 0.919 0.918 - 0.940 0.945 - -

8 ML -0.712 -0.712 0.124 0.722 0.712 0.952 0.000
MML -0.089 -0.089 0.105 0.138 0.099 1.031 0.874
BC -0.045 -0.045 0.099 0.109 0.074 1.084 0.950
MPL -0.071 -0.072 0.106 0.128 0.089 1.029 0.907
IL 0.000 -0.001 0.064 0.064 0.043 1.011 0.954
∆ 0.900 0.899 - 0.903 0.931 - -

1000 4 ML -2.457 -2.446 0.284 2.474 2.446 0.807 0.000
MML -0.550 -0.549 0.116 0.562 0.549 1.376 0.017
BC 0.757 0.718 0.251 0.798 0.718 0.547 0.002
MPL -0.239 -0.240 0.110 0.263 0.240 1.387 0.706
IL -0.001 0.001 0.076 0.076 0.052 0.989 0.947
∆ 0.903 0.902 - 0.922 0.921 - -

8 ML -0.725 -0.725 0.088 0.730 0.725 0.946 0.000
MML -0.093 -0.093 0.075 0.119 0.093 1.022 0.777
BC -0.047 -0.047 0.071 0.085 0.059 1.077 0.922
MPL -0.077 -0.076 0.076 0.108 0.081 1.017 0.841
IL 0.000 0.000 0.045 0.045 0.030 0.998 0.948
∆ 0.894 0.895 - 0.908 0.927 - -

Table 4: Inference on ρ for the dynamic logit model. Simulation results with 5,000 repli-
cations, ρ = 0.5.
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N T Method B MB SD RMSE MAE SE/SD 0.95 CI
250 4 ML 0.487 0.465 0.181 0.519 0.465 0.640 0.010

MPL -0.041 -0.042 0.042 0.059 0.045 1.404 0.944
IL 0.007 0.005 0.054 0.054 0.036 0.995 0.950
∆ 0.929 0.920 - 0.989 0.979 - -

8 ML 0.162 0.159 0.052 0.170 0.159 0.827 0.043
MPL 0.007 0.005 0.035 0.035 0.023 1.029 0.953
IL 0.002 0.001 0.032 0.032 0.021 0.990 0.946
∆ 0.969 0.975 - 0.978 0.986 - -

500 4 ML 0.507 0.497 0.125 0.523 0.497 0.665 0.000
MPL -0.062 -0.062 0.026 0.067 0.062 1.558 0.715
IL 0.003 0.002 0.038 0.038 0.026 0.992 0.949
∆ 0.883 0.879 - 0.940 0.924 - -

8 ML 0.167 0.167 0.037 0.171 0.167 0.821 0.000
MPL 0.008 0.007 0.024 0.025 0.017 1.025 0.951
IL 0.000 0.000 0.022 0.022 0.015 0.995 0.952
∆ 0.952 0.958 - 0.980 0.987 - -

1000 4 ML 0.483 0.478 0.084 0.490 0.478 0.686 0.000
MPL -0.064 -0.064 0.018 0.066 0.064 1.586 0.337
IL 0.001 0.001 0.026 0.026 0.018 1.009 0.955
∆ 0.869 0.868 - 0.914 0.900 - -

8 ML 0.163 0.162 0.025 0.165 0.162 0.839 0.000
MPL 0.009 0.008 0.017 0.019 0.013 1.034 0.936
IL 0.000 0.000 0.015 0.015 0.010 1.020 0.960
∆ 0.945 0.951 - 0.973 0.980 - -

Table 5: Inference on β for the dynamic probit model. Simulation results with 5,000
replications, β = 1/1.6.
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N T Method B MB SD RMSE MAE SE/SD 0.95 CI
250 4 ML -1.556 -1.531 0.387 1.603 1.531 0.779 0.001

MPL -0.137 -0.137 0.137 0.194 0.143 1.490 0.971
IL -0.001 0.000 0.092 0.092 0.063 1.004 0.953
∆ 0.913 0.911 - 0.932 0.946 - -

8 ML -0.424 -0.425 0.115 0.439 0.425 0.927 0.029
MPL -0.058 -0.058 0.097 0.113 0.077 1.009 0.916
IL -0.001 -0.001 0.057 0.057 0.039 0.987 0.947
∆ 0.865 0.866 - 0.853 0.902 - -

500 4 ML -1.424 -1.417 0.263 1.448 1.417 0.785 0.000
MPL -0.128 -0.128 0.095 0.159 0.129 1.470 0.939
IL 0.001 0.002 0.067 0.067 0.045 1.008 0.954
∆ 0.911 0.911 - 0.933 0.939 - -

8 ML -0.424 -0.424 0.078 0.431 0.424 0.948 0.001
MPL -0.052 -0.053 0.066 0.084 0.059 1.031 0.894
IL 0.001 0.001 0.040 0.040 0.027 1.008 0.952
∆ 0.879 0.877 - 0.887 0.919 - -

1000 4 ML -1.415 -1.409 0.183 1.427 1.409 0.806 0.000
MPL -0.160 -0.160 0.067 0.173 0.160 1.503 0.713
IL 0.000 0.001 0.048 0.048 0.032 0.994 0.946
∆ 0.887 0.887 - 0.909 0.907 - -

8 ML -0.433 -0.433 0.057 0.437 0.433 0.926 0.000
MPL -0.055 -0.055 0.049 0.074 0.057 1.001 0.796
IL 0.000 0.001 0.028 0.028 0.018 1.009 0.954
∆ 0.873 0.875 - 0.888 0.906 - -

Table 6: Inference on ρ for the dynamic probit model. Simulation results with 5,000
replications, ρ = 0.5/1.6.
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N T Method B MB SD RMSE MAE SE/SD 0.95 CI
250 11 ML 0.158 0.156 0.060 0.169 0.156 0.883 0.164

MPL 0.010 0.008 0.049 0.050 0.033 0.975 0.943
MML 0.010 0.008 0.049 0.049 0.033 0.976 0.942
BC 0.003 0.001 0.048 0.048 0.032 0.984 0.948

16 ML 0.099 0.098 0.042 0.107 0.098 0.942 0.649
MPL 0.005 0.004 0.037 0.037 0.025 1.000 0.950
MML 0.005 0.004 0.037 0.037 0.025 1.001 0.950
BC 0.003 0.002 0.036 0.037 0.025 1.002 0.953

500 11 ML 0.161 0.161 0.041 0.166 0.161 0.907 0.008
MPL 0.010 0.010 0.033 0.034 0.023 1.002 0.947
MML 0.009 0.009 0.033 0.034 0.023 1.003 0.949
BC 0.002 0.002 0.032 0.032 0.022 1.012 0.954

16 ML 0.097 0.097 0.029 0.102 0.097 0.961 0.479
MPL 0.005 0.005 0.025 0.026 0.017 1.019 0.951
MML 0.005 0.005 0.025 0.026 0.017 1.019 0.951
BC 0.003 0.003 0.025 0.026 0.017 1.021 0.953

1000 11 ML 0.157 0.156 0.030 0.160 0.156 0.890 0.000
MPL 0.009 0.008 0.024 0.026 0.017 0.983 0.936
MML 0.009 0.008 0.024 0.025 0.017 0.983 0.937
BC 0.002 0.001 0.024 0.024 0.016 0.988 0.949

16 ML 0.097 0.096 0.021 0.099 0.096 0.952 0.220
MPL 0.004 0.003 0.018 0.018 0.012 1.009 0.947
MML 0.004 0.003 0.018 0.018 0.012 1.010 0.948
BC 0.002 0.002 0.018 0.018 0.012 1.011 0.951

Table 7: Inference on β for the dynamic logit model, T = 11, 16. Simulation results with
5,000 replications, β = 1.
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N T Method B MB SD RMSE MAE SE/SD 0.95 CI
250 11 ML -0.466 -0.467 0.130 0.484 0.467 0.970 0.048

MPL -0.035 -0.035 0.120 0.125 0.085 1.006 0.943
MML -0.040 -0.039 0.119 0.126 0.086 1.012 0.941
BC -0.026 -0.027 0.113 0.116 0.078 1.062 0.958

16 ML -0.287 -0.286 0.097 0.303 0.286 0.984 0.090
MPL -0.013 -0.012 0.093 0.093 0.062 1.005 0.951
MML -0.014 -0.013 0.092 0.094 0.062 1.007 0.953
BC -0.015 -0.014 0.089 0.090 0.060 1.046 0.958

500 11 ML -0.466 -0.466 0.094 0.476 0.466 0.955 0.000
MPL -0.035 -0.035 0.086 0.093 0.063 0.992 0.934
MML -0.040 -0.040 0.086 0.094 0.064 0.997 0.928
BC -0.025 -0.025 0.082 0.085 0.058 1.046 0.954

16 ML -0.290 -0.291 0.068 0.298 0.291 0.987 0.004
MPL -0.013 -0.014 0.065 0.066 0.045 1.007 0.952
MML -0.014 -0.015 0.065 0.067 0.045 1.008 0.952
BC -0.014 -0.015 0.062 0.064 0.044 1.050 0.959

1000 11 ML -0.464 -0.464 0.065 0.469 0.464 0.961 0.000
MPL -0.035 -0.034 0.060 0.069 0.047 0.996 0.912
MML -0.040 -0.039 0.060 0.072 0.050 1.004 0.899
BC -0.024 -0.023 0.057 0.062 0.041 1.050 0.939

16 ML -0.288 -0.289 0.049 0.292 0.289 0.976 0.000
MPL -0.014 -0.014 0.047 0.048 0.033 0.998 0.939
MML -0.015 -0.015 0.046 0.049 0.033 1.001 0.938
BC -0.014 -0.015 0.045 0.047 0.032 1.038 0.946

Table 8: Inference on ρ for the dynamic logit model, T = 11, 16. Simulation results with
5,000 replications, ρ = 0.5.
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