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aUniversità Ca’ Foscari Venezia, Italy
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Abstract

Markovian process algebras and stochastic automata are rigorous formalisms
with well defined semantics that allow one to describe and verify both quantita-
tive and qualitative properties of concurrent interacting systems. The analysis
of such models is usually based on equivalence relations on the state space which
are used to abstract from unwanted details and to identify those systems that
exhibit the same behaviour for an external observer. In this paper we consider
two relations over stochastic automata, named lumpable bisimulation and ex-
act equivalence, that induce a strong and an exact lumping, respectively, on
the underlying Markov chains. We show that an exact equivalence over the
states of a non-synchronising automaton is indeed a lumpable bisimulation for
the corresponding reversed automaton and then it induces a strong lumping on
the time-reversed Markov chain underlying the model. This property allows us
to prove that the class of quasi-reversible models is closed under exact equiva-
lence. Quasi-reversibility is a pivotal property to study product-form models,
i.e., models whose equilibrium distribution can be efficiently computed as the
product of the equilibrium distribution of their sub-components opportunely
parametrised. Hence, exact equivalence turns out to be a theoretical tool to
prove the product-form of models by showing that they are exactly equivalent
to models which are known to be quasi-reversible. Algorithms for computing
both lumpable bisimulation and exact equivalence are introduced. Case studies
as well as performance tests are also presented.
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1. Introduction

Stochastic models play a key role in reliability and performance analysis
providing a sound framework for real improvements of software and hardware
architectures, including telecommunication systems. Continuous Time Markov
Chains (CTMCs) constitute the underlying semantics model of a plethora of
modelling formalisms such as Stochastic Petri nets [29], Stochastic Automata
Networks (SAN) [32], queueing networks [5] and a class of Markovian process
algebras (MPAs), e.g., [18, 16]. The aim of these formalisms is to provide a high-
level description language for complex real-time systems and automatic analysis
techniques. Modularity in the model specification is an important feature of
both MPAs and SANs that allows one to describe large systems in terms of
interactions of simpler components. Nevertheless, one should notice that a
modular specification does not lead to a modular analysis, in general. Thus,
although the intrinsic compositional properties of such formalisms are extremely
helpful in the specification of complex systems, in many cases carrying out
an exact analysis for those models (e.g., those required by quantitative model
checking) may be extremely expensive from a computational point of view.

The use of equivalence relations for quantitative models is an important
formal approach that allows one to compare different systems as well as to
improve the efficiency of some analysis [22, 13, 12]. To give an example, if we
can prove that a model P is in some sense equivalent to Q and Q is much simpler
than P , then we can carry out an analysis of the simplest component to derive
the properties of the original one.

Bisimulation based relations on stochastic systems inducing the notions of
ordinary (or strong) and exact lumpability for the underlying Markov chains
have been studied in [8, 2, 18, 11, 34]. In this paper, we first recall the notions
of lumpable bisimulation [19] and exact equivalence [10, 11] which have been
both proved to be a congruence for Markovian process algebras and stochastic
automata whose synchronisation semantics is defined as the master/slave syn-
chronisation of the Stochastic Automata Networks (SAN) and comply with the
ordinary and exact, respectively, lumping for Markov processes.

Interestingly, we show that an exact equivalence over a non-synchronising
stochastic automaton is indeed a lumpable bisimulation on the reversed au-
tomaton (see [26] for a similar result in the context of Markov chains instead of
stochastic automata) and then it induces a strong lumping on the time-reversed
Markov chain underlying the model. This important property, allows us to prove
that the class of quasi-reversible [20] stochastic networks is closed under exact
equivalence. Quasi-reversibility is one of the most important and widely used
characterisations of product-form models, i.e., models whose equilibrium distri-
bution can be expressed as the product of functions depending only on the local
state of each component. Informally, we can say that product-forms project
the modularity in the model definition to the model analysis, thus drastically
reducing the computational costs of the derivation of the quantitative indices.
Basically, a composition of quasi-reversible components whose underlying chain
is ergodic has a product-form solution, meaning that one can check the quasi-
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reversibility modularly for each component, without generating the whole state
space.

In this paper we provide a new methodology to prove or disprove that a
stochastic automaton is quasi-reversible: it is sufficient to show that a model
is exactly equivalent to another one which is known to be (or to be not)
quasi-reversible. In practice, this approach is useful because proving the quasi-
reversibility of a model may be a hard task since it requires one to reverse
the underlying CTMC and check some conditions on the reverse process, see,
e.g., [20, 14, 27, 25]. Conversely, by using exact equivalence, one can prove or
disprove the quasi-reversibility property by considering only the forward model,
provided that it is exactly equivalent to another (simpler) quasi-reversible model
known in the wide literature of product-forms. Moreover, while automatically
proving quasi-reversibility is in general unfeasible, checking the exact equiva-
lence between two automata can be done algoritmically by exploiting a par-
tition refinement strategy, similar to that of Paige and Tarjan’s algorithm for
bisimulation [30].

We prove that both the notion of lumpable bisimulation and that of exact
equivalence can be reduced to a labeled weighted compatibility problem and we
generalize the algorithm for compatibility presented in [36] in order to deal with
labels without increasing its computational complexity.

This paper is an extended version of the work published in [24]. We extended
our previous work by presenting rigorous proofs for all the results stated in
the paper and proposing an efficient algorithm for computing both lumpable
bisimulations and exact equivalences. Moreover, we introduce two case studies
and show a set of performance tests for an implementation of the algorithms.

The paper is structured as follows. Section 2 introduces the notation and
recalls the basic definitions on Markov chains. In Section 3 we give the definition
of stochastic automata and specify their synchronisation semantics. Section 4
presents the definition of quasi-reversibility for stochastic automata. Lumpable
bisimulation and exact equivalence are introduced in Section 5. In this section
we prove that the class of quasi-reversible automata is closed under the exact
equivalence relation. Algorithms for computing lumpable bisimulation and exact
equivalence are presented in Section 6. In Section 7 we describe two case studies
and present some performance tests. Finally, Section 8 concludes the paper.

2. Markov chains, reversibility and lumpability

In this section we review the theoretical background on continuous-time
Markov chains and the concepts of reversibility and lumpability.

2.1. Continuous-Time Markov Chains

A Continuous-Time Markov Chain (CTMC) is a stochastic process X(t)
for t ∈ R+ taking values into a descrete state space S such that (1) X(t) is
stationary, i.e., (X(t1), X(t2), . . . , X(tn)) has the same distribution as (X(t1 +
τ), X(t2+τ), . . . , X(tn+τ)) for all t1, t2, . . . , tn, τ ∈ R+; (2) X(t) has the Markov
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property, i.e., the conditional (on both past and present states) probability dis-
tribution of its future behaviour is independent of its past evolution until the
present state:

Prob(X(tn+1) = sn+1 | X(t1) = s1, X(t2) = s2, . . . , X(tn) = sn) =

Prob(X(tn+1) = sn+1 | X(tn) = sn).

A CTMC X(t) is said to be time-homogeneous if the conditional probability
Prob(X(t + τ) = s | X(t) = s′) does not depend upon t, and is irreducible if
every state in S can be reached from every other state. A state in a Markov
process is called recurrent if the probability that the process will eventually
return to the same state is one. A recurrent state is called positive-recurrent if
the expected number of steps until the process returns to it is finite. A CTMC
is ergodic if it is irreducible and all its states are positive-recurrent. In the case
of finite Markov chains, irreducibility is sufficient for ergodicity.

An ergodic CTMC possesses an equilibrium (or steady-state) distribution,
that is the unique collection of positive real numbers π(s) with s ∈ S such that

lim
t→∞

Prob(X(t) = s | X(0) = s′) = π(s) .

We denote by q(s, s′) the transition rate between two states s and s′, with s 6= s′.
The infinitesimal generator matrix Q of a CTMC X(t) with state space S is
the |S| × |S| matrix whose off-diagonal elements are the q(s, s′)’s and whose
diagonal elements are the negative sum of the extra diagonal elements of each
row. Any non-trivial vector of real numbers µ satisfying the system of global
balance equations (GBEs)

µQ = 0 (1)

is called invariant measure of the CTMC. For an irreducible CTMC X(t), if
µ1 and µ2 are two invariant measures of X(t), then there exists a constant
k > 0 such that µ1 = kµ2. If the CTMC is ergodic, then there exists a unique
invariant measure π whose components sum to unity, i.e.,

∑
s∈S π(s) = 1 . In

this case π is the equilibrium or steady-state distribution of the CTMC.

2.2. Reversibility

It is well-known that the solution of the system of global balance equations
in (1) is often unfeasible when the CTMC underlying a real system model has
a large number of states. However, the analysis of an ergodic CTMC in equilib-
rium can be greatly simplified if it satisfies the property that when the direction
of time is reversed the stochastic behaviour of the process remains the same.

Given a stationary CTMC X(t) with t ∈ R+, we say that X(t) is re-
versible if it is stochastically identical to its reversed process, i.e., the process
(X(t1), . . . , X(tn)) has the same distribution as (X(τ − t1), . . . , X(τ − tn)) for
all t1, . . . , tn, τ ∈ R+ [20].

In the following we denote by XR(t) the reversed process of X(t). It can be
shown that if X(t) is stationary then also XR(t) is stationary [20].
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For a stationary Markov process there exists a necessary and sufficient con-
dition for reversibility expressed in terms of the equilibrium distribution π and
the transition rates (see [20]).

Proposition 2.1. (Transition rates and probabilities of reversible processes) A
stationary CTMC with state space S and infinitesimal generator Q is reversible
if there exists a vector of positive real numbers π summing to unity, such that
for all s, s′ ∈ S with s 6= s′,

π(s)q(s, s′) = π(s′)q(s′, s) .

In this case π is the equilibrium distribution of the CTMC.

The reversed process XR(t) of a Markov process X(t) can always be defined
even when X(t) is not reversible. In [20, 14] the authors show that XR(t) is a
CTMC and its transition rates are defined according to the following proposi-
tion.

Proposition 2.2. (Transition rates of reversed processes) Given the stationary
CTMC X(t) with state space S and infinitesimal generator Q, the transition
rates of the reversed process XR(t), forming its infinitesimal generator QR, are
defined as follows: for all s, s′ ∈ S,

qR(s′, s) =
µ(s)

µ(s′)
q(s, s′) , (2)

where qR(s′, s) denotes the transition rate from s′ to s in the reversed process
and µ is an invariant measure of X(t).

The forward and the reversed processes share all the invariant measures and in
particular they possess the same equilibrium distribution π.

In the following, for a given CTMC with state space S and for any state
s ∈ S we denote by q(s) (resp., qR(s)) the quantity

∑
s′∈S,s6=s′ q(s, s

′) (resp.,∑
s′∈S,s6=s′ q

R(s, s′)).

2.3. Lumpability

The notion of lumpability allows one to generate an aggregated Markov pro-
cess that is smaller than the original one and then easier to solve. The concept
of lumpability can be formalized in terms of equivalence relations over the state
space of the Markov chain. Any such equivalence induces a partition on the state
space of the Markov chain and aggregation is achieved by clustering equivalent
states into macro-states, thus reducing the overall state space. In general, when
a CTMC is aggregated the resulting stochastic process will not have the Markov
property. However, if the partition can be shown to satisfy the so-called strong
lumpability condition [21, 1], then the Markov property is preserved and the
equilibrium solution of the aggregated process may be used to derive an exact
solution of the original one.

Strong lumpability has been introduced in [21] and further studied in [10, 35].
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Definition 2.1. (Strong lumpability) Let X(t) be a CTMC with state space S
and ∼ be an equivalence relation over S. We say that X(t) is strongly lumpa-
ble with respect to ∼ (resp., ∼ is a strong lumpability for X(t)) if ∼ induces a
partition on the state space of X(t) such that for any equivalence class Si, Sj ∈
S/ ∼ with i 6= j and s, s′ ∈ Si,∑

s′′∈Sj

q(s, s′′) =
∑
s′′∈Sj

q(s′, s′′) .

Thus, an equivalence relation over the state space of a Markov process is
a strong lumpability if it induces a partition into equivalence classes such that
for any two states within an equivalence class their aggregated transition rates
to any other class are the same. Notice that every Markov process is strongly
lumpable with respect to the identity relation, and also with respect to the
trivial relation having only one equivalence class.

A probability distribution π is said to be equiprobable with respect to a par-
tition of the state space S of an ergodic Markov process if for all the equivalence
classes Si ∈ S/ ∼ and for all s, s′ ∈ Si, π(s) = π(s′).

In [33] the notion of exact lumpability is introduced as a sufficient condition
for a distribution to be equiprobable with respect to a partition.

Definition 2.2. (Exact lumpability) Let X(t) be a CTMC with state space S
and ∼ be an equivalence relation over S. We say that X(t) is exactly lumpa-
ble with respect to ∼ (resp., ∼ is an exact lumpability for X(t)) if ∼ induces
a partition on the state space of X(t) such that for any Si, Sj ∈ S/ ∼ and
s, s′ ∈ Si, ∑

s′′∈Sj

q(s′′, s) =
∑
s′′∈Sj

q(s′′, s′) .

An equivalence relation is an exact lumpability if it induces a partition on
the state space such that for any two states within an equivalence class the
aggregated transition rates into such states from any other class are the same.

Proposition 2.3. Let X(t) be an ergodic CTMC with state space S and ∼ be
an equivalence relation over S. If X(t) is exactly lumpable with respect to ∼
(resp., ∼ is an exact lumpability for X(t)) then for all s, s′ ∈ S such that s ∼ s′,
µ(s) = µ(s′), where µ is an invariant measure for X(t).

3. Stochastic Automata

Many high-level specification languages for stochastic discrete-event systems
are based on Markovian process algebras [18, 8, 17] that are characterized by
powerful composition operators and timed actions whose delay is governed by
independent random variables with a continuous-time exponential distribution.
The expressivity of such languages allows the specification of both qualitative
and quantitative properties in a single framework. In this paper we consider
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stochastic concurrent automata with an underlying continuous time Markov
chain as common denominator of a wide set of Markovian stochastic process al-
gebra. Stochastic automata are equipped with a composition operation by which
a complex automaton can be constructed from simpler components. Our model
draws a distinction between active and passive action types, and in forming the
composition of automata only active/passive synchronisations are permitted.
An analogue semantics is proposed for Stochastic Automata Networks in [32].

Definition 3.1. (Stochastic Automaton (SA)) A stochastic automaton P is a
tuple (SP , TP ,;P , qP ) where

• SP is a denumerable set of states called state space of P ,

• TP is a denumerable set of action types, partitioned into disjoint sets AP
of active types, PP of passive types and the set {τ} of the unknown or
internal type,

• ;P ⊆ (SP × SP × TP ) is a transition relation such that for all s ∈ SP ,
(s, s, τ) /∈;P ,1

• qP is a function from ;P to R+ such that ∀s1 ∈ SP and ∀a ∈ PP ,∑
s2:(s1,s2,a)∈;P

qP (s1, s2, a) ≤ 1.

We denote by→P the relation containing all the tuples of the form (s1, s2, a, q)
where (s1, s2, a) ∈;P and q = qP (s1, s2, a). For a ∈ AP ∪ {τ}, we say that
qP (s, s′, a) ∈ R+ is the rate of the transition from state s to s′ with type a. No-
tice that this is indeed the apparent transition rate from s to s′ relative to a. If
a is passive then qP (s, s′, a) ∈ (0, 1] denotes the probability that the automaton
synchronises on type a with a transition from s to s′. In the following, we assume
that qP (s, s′, a) = 0 whenever there are no transitions with type a from s to s′.
If s ∈ SP , then for all a ∈ TP we write qP (s, a) =

∑
s′∈S qP (s, s′, a). Moreover

we denote by qP (s, s′) =
∑
a∈TP qP (s, s′, a) and qP (s) =

∑
a∈TP qP (s, a). We

say that P is closed if PP = ∅. We use the notation s1
a
;P s2 to denote the

tuple (s1, s2, a) ∈;P ; we denote by s1
(a,r)−−−→P s2 (resp., s1

(a,p)−−−→P s2) the tuple
(s1, s2, a, r) ∈→P (resp., (s1, s2, a, p) ∈→P ).

The CTMC underlying a closed stochastic automaton is defined as follows.

Definition 3.2. (CTMC underlying a closed SA) The CTMC underlying a
closed stochastic automaton P , denoted XP (t), is defined as the CTMC with
state space SP and infinitesimal generator matrix Q defined as: for all s1 6=
s2 ∈ SP ,

q(s1, s2) =
∑

a,r:(s1,s2,a,r)∈→P

r .

1Notice that τ self-loops do not affect the equilibrium distribution of the CTMC underlying
the automaton. Moreover, the choice of excluding τ self-loops will simplify the definition of
automata synchronisation.
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For ergodic chains, we denote an invariant measure and the equilibrium distri-
bution of the CTMC underlying P by µP and πP , respectively.

We say that an automaton is irreducible if for each pair of states there exists
a sequence of transitions connecting them. We say that a closed automaton P
is ergodic if its underlying CTMC is ergodic.

The synchronisation operator between two stochastic automata P and Q is
defined in the style of the master/slave synchronisation of SANs [32] based on
the Kronecker’s algebra.

We define the synchronisation operator ⊗
L

that is an indexed family of op-
erators, one for each possible set of action types L. Set L represents the action
types on which the components must synchronise (the unknown action type,
τ , may not appear in any cooperation set). We assume that each component
proceeds independently with any transition whose type does not occur in L.
However, any transition with action type in set L requires the simultaneous
involvement of both components.

Definition 3.3. (SA synchronisation) Given two stochastic automata P and
Q and a set of action types L ⊆ TP ∪TQ such that L = (PP ∩PQ)∪ (AP ∩PQ)∪
(PP ∩AQ) we define the automaton P ⊗

L
Q = (S

P ⊗
L
Q
, T
P ⊗

L
Q
,;

P ⊗
L
Q
, q
P ⊗

L
Q

)

as follows:

• S
P ⊗

L
Q

= SP × SQ,

• A
P ⊗

L
Q

= AP ∪ AQ and P
P ⊗

L
Q

= (PP ∪ PQ) \ (AP ∪ AQ),

• ;
P ⊗

L
Q

and q
P ⊗

L
Q

are defined according to the rules for −→
P ⊗

L
Q

de-

picted in Table 1: indeed, the relation −→
P ⊗

L
Q

contains all the tuples

((sp1 , sq1),(sp1 , sq2), a, q) such that ((sp1 , sq1),(sp1 , sq2), a) ∈;
P ⊗

L
Q

and

q = q
P ⊗

L
Q

((sp1 , sq1), (sp1 , sq2), a).

Given a closed stochastic automaton P we can define its reversed automaton
PR in the style of [6], that is a stochastic automaton whose underlying CTMC
XPR(t) is identical to XR

P (t). In the following, for the sake of readability, we
denote by sR the state of the reversed stochastic automaton corresponding to s
in the forward one.

Definition 3.4. (Reversed SA [6]) Let P be a closed stochastic automaton with
an underlying irreducible CTMC and let µP be an invariant measure. Then we
define the stochastic automaton PR = (SPR , TPR ,;PR , qPR) reversed of P as
follows:

• SPR = {sR | s ∈ SP },

• TPR = APR ∪ {τ} with APR = AP and PPR = PP = ∅,

8



sp1
(a,q)−−−→P sp2

(sp1 , sq1)
(a,q)−−−→

P ⊗
L
Q

(sp2 , sq1)
(a 6∈ L)

sq1
(a,q)−−−→Q sq2

(sp1 , sq1)
(a,q)−−−→

P ⊗
L
Q

(sp1 , sq2)
(a 6∈ L)

sp1
(a,r)−−−→P sp2 sq1

(a,p)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−−→

P ⊗
L
Q

(sp2 , sq2)
(a ∈ AP , a ∈ PQ)

sp1
(a,p)−−−→P sp2 sq1

(a,r)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−−→

P ⊗
L
Q

(sp2 , sq2)
(a ∈ PP , a ∈ AQ)

sp1
(a,p)−−−→P sp2 sq1

(a,p′)−−−→Q sq2

(sp1 , sq1)
(a,pp′)−−−−→

P ⊗
L
Q

(sp2 , sq2)
(a ∈ PP , a ∈ PQ)

Table 1: Operational rules for SA synchronisation

• ;PR= {(sR1 , sR2 , a) : (s2, s1, a) ∈;P , a ∈ AP ∪ {τ}},

• qPR(sR1 , s
R
2 , a) = µP (s2)/µP (s1)qP (s2, s1, a).

It can be easily proved that for any invariant measure (including the equilibrium
distribution) µP for P there exists an invariant measure µPR for PR such that
for all s ∈ SP it holds µP (s) = µPR(sR), and vice versa.

4. Quasi-Reversible Automata

In this section we review the definition of quasi-reversibility given by Kelly
in [20] by using the notation of stochastic automata. We first introduce a closure
operation over stochastic automata that allows us to assign to all the transitions
with the same passive type the same rate λ. Coherently with Definition 3.4, we
denote by sc the state of the closure of a stochastic automaton corresponding
to s in the original one.

Definition 4.1. (SA closure) The closure of a stochastic automaton P with
respect to a passive type a ∈ PP and a rate λ ∈ R+, written P c = P{a ← λ},
is the automaton defined as follows:

• SP c = {sc | s ∈ SP },
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• TP c = AP c ∪ PP c ∪ {τ} with AP c = AP and PP c = PP r {a},

• ;P c= {(sc1, sc2, b)| (s1, s2, b) ∈;P , a 6= b} ∪ {(sc1, sc2, τ)| (s1, s2, a) ∈;P },

• qP c is defined as:

qP c(sc1, s
c
2, b) =

{
qP (s1, s2, b) if b 6= a, τ

qP (s1, s2, a)λ+ qP (s1, s2, τ) if b = τ

where we assume that qP (s1, s2, b) = 0 if (s1, s2, b) /∈;P .

Notice that for a closure P c of a stochastic automaton P with respect to all
its passive types in PP we can compute the equilibrium distribution, provided
that the underlying CTMC is ergodic (see Definition 3.2).

The notion of quasi-reversibility can be formalized as follows [20, 28].

Definition 4.2. (Quasi-reversible SA) An irreducible stochastic automaton P
with PP = {a1, . . . , an} and AP = {b1, . . . bm} is quasi-reversible if

• for all a ∈ PP and for all s ∈ SP ,
∑
s′∈SP qP (s, s′, a) = 1,

• for each closure P c = P{a1 ← λ1} . . . {an ← λn} with λ1, . . . , λn ∈ R+

there exists a set of positive real numbers {kb1 , . . . , kbm} such that for each
s ∈ SP c and 1 ≤ i ≤ m

kbi =

∑
s′∈SPc

µP c(s′)qP c(s′, s, bi)

µP c(s)
, (3)

where µP c denotes any non-trivial invariant measure of the CTMC un-
derlying P c.

Notice that in the definition of quasi-reversibility we do not require the
closure of P with respect to all its passive types to give rise to a stochastic
automaton with an ergodic underlying CTMC because we assume µP c to be an
invariant measure, i.e., we do not require that

∑
s∈SPc

µP c(s) = 1. However,
the irreducibility of the CTMC underlying the automaton ensures that all the
invariant measures differ by a multiplicative constant, hence Equation (3) is
independent of the choice of the invariant measure.

Theorem 4.1 states that a network of quasi-reversible stochastic automata
exhibits a product-form invariant measure and, if the joint state space is ergodic,
a product-form equilibrium distribution. For the sake of simplicity, we state the
theorem for two synchronising stochastic automata although the result holds for
any finite set of automata which synchronise pairwise [20, 14, 28]. In the theorem
below we assume that the synchronisation set contains all the passive types of
the enabled activities. This property ensures that the automaton obtained by
the composition does not have passive types and hence it is closed and has an
underlying CTMC.
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Figure 1: Stochastic automaton underlying a Jackson’s queue.

Theorem 4.1. (Product-form solution based on quasi-reversibility) Let P and
Q be two quasi-reversible automata and L be a set of action types such that
PP ∪ PQ ⊆ L. Assume that PP ⊆ AQ, PQ ⊆ AP , and there exists a set of
positive real numbers {ka : a ∈ AP ∪ AQ} such that if we define the following
automata P c = P{a ← ka} for each a ∈ PP and Qc = Q{a ← ka} for each
a ∈ PQ it holds:

ka =

∑
s′∈SPc

µP c(s′)qP c(s′, s, a)

µP ′(s)
∀s ∈ SP c , a ∈ AP ∩ L

ka =

∑
s′∈SQc

µQ′(s′)qQc(s′, s, a)

µQc(s)
∀s ∈ SQc , a ∈ AQ ∩ L .

Then, given the invariant measures µP c and µQc it holds that

µ
P ⊗

L
Q

(s1, s2) = µP c(sc1)µQc(sc2)

is an invariant measure for all the positive-recurrent states (s1, s2) ∈ S
P ⊗

L
Q

where sc1 and sc2 are the states in SP c and SQc corresponding to s1 ∈ SP and
s2 ∈ SQ according to Definition 4.1. In this case we say that P and Q have a
quasi-reversibility based product-form.

Notice that the closure of the joint model is a necessary condition for the
existence of underlying Markov chain and of its invariant measure.

Example 4.1. (Product-form solution of Jackson networks) Jackson networks
provide an example of models having a product-form solution. A network con-
sists of a collection of exponential queues with state-independent probabilistic
routing. Jobs arrive from the outside at each queuing station in the network
according to a homogeneous Poisson process. It is well-known that the queues
of Jackson networks are quasi-reversible and hence the product-form is a conse-
quence of Theorem 4.1. Figure 1 shows the automaton underlying a Jackson’s
queue where a is an active type while b is a passive one. It is worth noting that
also the queues considered in [7, 23] are quasi-reversible. 2
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5. Lumpable Bisimulation and Exact Equivalence

In this section we introduce two coinductive definitions, named lumpable
bisimulation and exact equivalence, over stochastic automata which provide a
sufficient condition for strong and exact lumpability of the underlying CTMCs.

The definitions of lumpable bisimulation and exact equivalence as well as the
algorithms presented in Section 6 refer to the entire class of stochastic automata,
while the results we present in this section hold only for irreducible stochastic
automata.

Lumpable bisimulation is developed in the style of Larsen and Skou’s bisim-
ulation [22] where transition rates are used analogously to probabilities in the
probabilistic process algebra. We recall here the definition presented in [19].

In the following we denote by q[s, S, a] the term
∑
s′′∈S q(s, s

′′, a), with
S ⊆ SP .

Definition 5.1. (Lumpable bisimulation) Let P be a stochastic automaton.
An equivalence relation R ⊆ SP × SP is a lumpable bisimulation if whenever
(s, s′) ∈ R then for all a ∈ TP and for all C ∈ SP /R such that

• either a 6= τ ,

• or a = τ and s, s′ 6∈ C,

it holds
q[s, C, a] = q[s′, C, a] .

It is clear that the identity relation is a lumpable bisimulation. In [19] we
proved that the transitive closure of a union of lumpable bisimulations is still
a lumpable bisimulation. Hence, the maximal lumpable bisimulation, denoted
∼s, is defined as the union of all the lumpable bisimulations and it is an equiv-
alence relation. For any stochastic automaton P , ∼s induces a partition on
the state space of the underlying Markov process that is a strong lumping (see
Definition 2.1).

In order to extend the lumpable bisimulations to pairs of stochastic automata
we need to consider the following definition of union between two stochastic
automata.

Definition 5.2. (Union Automaton) Let P and Q be two stochastic automata.
The union of P and Q is the stochastic automaton P ∪Q defined as follows:

• SP∪Q = SP ] SQ is the disjoint union of the state spaces,

• AP∪Q = AP ∪ AQ is the union of the active types,

• PP∪Q = PP ∪ PQ is the union of the passive types,

• s1
(a,q)−−−→P∪Q s2 if and only if either s1

(a,q)−−−→P s2 or s1
(a,q)−−−→Q s2.
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Given two stochastic automata P and Q and two states sp ∈ SP and sq ∈ SQ
with a slight abuse of notation we write sp ∼s sq to denote that sp and sq are
lumpable bisimilar in the union automaton P ∪ Q. Moreover, we say that P
and Q are equivalent according to the lumpable bisimulation relation, denoted
P ∼s Q, if there exists sp ∈ SP and sq ∈ SQ such that sp ∼s sq.

We now introduce the notion of exact equivalence for stochastic automata.
This equivalence, mentioned as exact performance equivalence, has been intro-
duced in [10] and studied in [11]. An equivalence relation over SP is an exact
equivalence if for any action type a ∈ TP , the total conditional transition rates
from two equivalence classes to two equivalent states, via activities of this type,
are the same. Moreover, for any type a, equivalent states have the same appar-
ent conditional exit rate.

Hereafter we denote by q[S, s, a] the term
∑
s′′∈S q(s

′′, s, a), with S ⊆ SP .

Definition 5.3. (Exact equivalence) Let P be a stochastic automaton. An
equivalence relation R ⊆ SP ×SP is an exact equivalence if whenever (s, s′) ∈ R
then for all a ∈ TP and for all C ∈ SP /R it holds

• q(s, a) = q(s′, a),

• q[C, s, a] = q[C, s′, a].

The transitive closure of a union of exact equivalences is still an exact equiv-
alence. Hence, the maximal exact equivalence, denoted ∼e, is defined as the
union of all exact equivalences and it is an equivalence relation.

Given two stochastic automata P and Q and two states sp ∈ SP and sq ∈ SQ
with a slight abuse of notation we write sp ∼e sq to denote that sp and sq are
exactly equivalent in the union automaton P ∪Q. Moreover, we say that P and
Q are exactly equivalent, denoted P ∼e Q, if there exists sp ∈ SP and sq ∈ SQ
such that sp ∼e sq.

Example 5.1. Let us consider a queueing model of a system with two identical
processors, named κ1 and κ2. Each job is assigned to one of the processors which
are assumed not to work in parallel. At each service completion event of proces-
sor κi, the next job is assigned to κj , for i 6= j, with probability p, and is assigned
to processor κi with probability 1 − p. Automaton P underlying this model is
depicted in Figure 2 where state nκi, for n > 0 and i = 1, 2, denotes the state in
which processor κi is being used and there are n customers waiting to be served.
State 0κi denotes the empty queue. It is easy to prove that the equivalence rela-
tion ∼ obtained by the reflexive and symmetric closure of {(nκ1, nκ2) : n ∈ N}
is an exact equivalence over the state space of P . Let us consider the automaton
Q depicted in Figure 1, then it holds that the equivalence relation given by the
symmetric and reflexive closure of ∼′=∼ ∪{(nκ1, n), (n, nκ2) : n ∈ N}, where
each n denotes a state of Q, is still an exact equivalence. 2

In [11] the author proves that, for any stochastic automaton P , ∼e induces
an exactly lumpable partition on the state space of the Markov process under-
lying P .
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Figure 2: Queue with alternating servers.

Proposition 5.1. (Exact lumpability) Let P be a closed, irreducible, stochastic
automaton with state space SP and XP (t) its underlying Markov chain with in-
finitesimal generator matrix Q. Then for any equivalence class Si, Sj ∈ SP / ∼e
and s, s′ ∈ Si, ∑

s′′∈Sj

q(s′′, s) =
∑
s′′∈Sj

q(s′′, s′) ,

i.e., ∼e is an exact lumpability for XP (t).

The next theorem plays an important role in studying the product-form of
exactly equivalent automata. Informally, it states that the exact equivalence
preserves the invariant measure of equivalent states. The proof follows from the
results presented in [11].

Theorem 5.1. Let P and Q be two closed, irreducible, stochastic automata
and µP and µQ be two invariant measures of P and Q, respectively. Then,
there exists a positive constant K such that for each s1 ∈ SP and s2 ∈ SQ with
s1 ∼e s2 it holds that µP (s1)/µQ(s2) = K.

Corollary 5.1. Let P and Q be two closed, irreducible, stochastic automata
and πP and πQ be the stationary distributions of P and Q, respectively. Then,
for all s1, s2 ∈ SP and s′1, s

′
2 ∈ SQ such that si ∼e s′i for i = 1, 2, it holds that

πP (s1)/πP (s2) = πQ(s′1)/πQ(s′2).

Finally, the next proposition states that both lumpable bisimulation and
exact equivalence are congruences for SA synchronisation.

Proposition 5.2. (Congruence) Let P, P ′, Q,Q′ be irreducible stochastic au-
tomata.

• If P ∼s P ′ and Q ∼s Q′ then P ⊗
L
Q ∼s P ′⊗

L
Q′ for any set of action

types L.
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• If P ∼e P ′ and Q ∼e Q′ then P ⊗
L
Q ∼e P ′⊗

L
Q for any set of action

types L.

Proof. The proof that ∼s is a congruence for SA synchronization is similar to
the one in [18, 19].

The proof that ∼e is a congruence for SA synchronization can be derived
from the results presented in [11]. 2

The next theorem provides a crucial result for our contributions. It states
that any exact equivalence between two stochastic automata induces a lumpable
bisimulation between the corresponding reversed automata.

Theorem 5.2. (Exact equivalence and lumpable bisimulation) Let P and Q be
two closed, irreducible, stochastic automata, PR and QR be the corresponding
reversed automata defined according to Definition 3.4 and ∼ be an exact equiva-
lence over P∪Q. Then ∼′= {(sR1 , sR2 ) ∈ (SPR]SQR)×(SPR]SQR)| (s1, s2) ∈∼}
is a lumpable bisimulation over PR ∪QR.

Proof. Let ∼⊆ (SP ] SQ) × (SP ] SQ) be an exact equivalence, s1 ∈ SP
and s2 ∈ SQ such that s1 ∼ s2. We prove that ∼′= {(sR1 , sR2 ) ∈ (SPR ] SQR)×
(SPR]SQR)| (s1, s2) ∈∼} is a lumpable bisimulation. For all C ∈ (SP ]SQ)/ ∼,
let CR = {(sR1 , sR2 )| (s1, s2) ∈ C} ∈ (SPR ] SQR)/ ∼′. We prove that for all
a ∈ TP ∪ TQ and for all CR ∈ (SPR ] SQR)/ ∼′,

qPR [sR1 , C
R, a] = qPR [sR2 , C

R, a] .

By Definition 3.4,

qPR(sR1 , s
R, a) =

µP (s)

µP (s1)
qP (s, s1, a).

From the fact that for all s1, s2 ∈ C, µP (s1) = µP (s2) we have

qPR [sR1 , C
R, a] =

∑
sR∈CR

qPR(sR1 , s
R, a) =

µP (s)

µP (s1)

∑
s∈C

qP (s, s1, a) =
µP (s)

µP (s2)

∑
s∈C

qP (s, s1, a).

Finally, from the fact that ∼ is an exact equivalence and s1 ∼ s2 we have

qP [C, s1, a] = qP [C, s2, a] .
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Hence,

qPR [sR1 , C
R, a] =

∑
sR∈CR

qPR(sR1 , s
R, a) =

∑
s∈C

µP (s)

µP (s2)
qP (s, s2, a) =

∑
sR∈CR

qPR(sR2 , s
R, a) = qPR [sR2 , C

R, a].

2

As a consequence any exact equivalence over the state space of a stochas-
tic automaton P induces a lumpable bisimulation over the state space of the
reversed automaton PR.

Corollary 5.2. Let P be a closed, irreducible, stochastic automaton and ∼⊆
SP × SP be an exact equivalence. Then the relation ∼′= {(sR1 , sR2 ) ∈ SPR ×
SPR | (s1, s2) ∈∼} is a lumpable bisimulation.

The following lemma provides a characterization of quasi-reversibility in
terms of lumpable bisimulation. Informally, it states that an automaton is
quasi-reversible if and only if for each closure its reversed automaton is lumpable
bisimilar to an automaton with a single state.

Lemma 5.3. (Quasi-reversibility and lumpable bisimulation) An irreducible sto-
chastic automaton P is quasi-reversible if and only if the following properties
hold for every closure P c of P with reversed automaton P cR:

• if sR ∈ SP cR , then [sR]∼s
= SP cR ,

• if a ∈ PP then qP (s, a) = 1 for all s ∈ SP .

Proof. (⇒) Let P be quasi-reversible, PP = {a1, . . . , an} andAP = {b1, . . . bm}.
Then for all a ∈ PP and for all s ∈ SP ,

∑
s′∈SP qP (s, s′, a) = qP (s, a) = 1. More-

over, for each closure P c = P{a1 ← λ1} . . . {an ← λn} with λ1, . . . , λn ∈ R+

there exists a set of positive real numbers {k1, . . . , km} such that for each s ∈ SP c

and 1 ≤ i ≤ m

kbi =

∑
s′∈SPc

µP c(s′)qP c(s′, s, bi)

µP c(s)
,

where µP c denotes any non-trivial invariant measure of the CTMC underlying
P c. Now observe that for all s ∈ SP c and 1 ≤ i ≤ m,

kbi = qP cR(sR, bi) =
∑

s′∈SPcR

qP cR(sR, s′, bi) ,

where sR is the state of SP cR corresponding to s according to Definition 3.4,
i.e., for all sR ∈ SP cR , [sR]∼s = SP cR .
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(⇐) Assume that for every closure P c of P and for every sR ∈ SP cR it holds
[sR]∼s = SP cR . Then for every type a 6= τ there exists a constant ka such that

ka = qP cR(sR, a) =

∑
s′∈SPc

µP c(s′)qP c(s′, s, a)

µP c(s)
,

where µP c denotes any non-trivial invariant measure of the CTMC underlying
P c and sR is the state of SP cR corresponding to s according to Definition 3.4.
In particular the property holds for every type bi ∈ AP . 2

The following proposition states that both lumpable bisimulations and exact
equivalences are invariant with respect to the closure of automata where any
closure P c of P is defined according to Definition 4.1.

Proposition 5.3. Let P and Q be two irreducible stochastic automata with
AP = AQ, PP = PQ = {a1, . . . , an} and ∼ be an exact equivalence (resp.,
a lumpable bisimulation) over P ∪ Q. Then for every closure P c = P{a1 ←
λ1} . . . {an ← λn} and Qc = Q{a1 ← λ1} . . . {an ← λn} the relation ∼′=
{(sc1, sc2) ∈ (SP c ] SQc) × (SP c ] SQc)| (s1, s2) ∈∼} is an exact equivalence
(resp., a lumpable bisimulation) over P c ∪Qc.

Proof. Let P and Q be two stochastic automata with AP = AQ, PP = PQ =
{a1, . . . , an} and ∼⊆ (SP]SQ)×(SP]SQ) be a lumpable bisimulation. Then for
every closure P c = P{a1 ← λ1} . . . {an ← λn} and Qc = Q{a1 ← λ1} . . . {an ←
λn} the relation ∼′= {(sc1, sc2) ∈ (SP c ]SQc)×(SP c ]SQc)| (s1, s2) ∈∼} is also a
lumpable bisimulation. Let Cc = {(sc1, sc2)| (s1, s2) ∈ C} for all C ∈ (SP ] SQ).

Indeed for all a ∈ TP ∪ TQ, (s1, s2) ∈∼ and for all C ∈ (SP ] SQ)/ ∼ such
that either a 6= τ or a = τ and s1, s2 6∈ C, it holds

q[s1, C, a] = q[s2, C, a] .

If a ∈ AP = AQ is an active type then, by Definition 4.1, qP (s1, s2, a) =
qP c(sc1, s

c
2, a) for all s1, s2 ∈ SP and qQ(s1, s2, a) = qQc(sc1, s

c
2, a) for all s1, s2 ∈

SQ. Hence for all a 6= τ , a ∈ TP ∪TQ, (sc1, s
c
2) ∈∼′ and for all Cc ∈ (SP ]SQ)/ ∼′

it holds
q[sc1, C

c, a] = q[sc2, C
c, a] .

Moreover, by Definition 4.1, qP c(sc1, s
c
2, τ) =

∑n
i=1 qP (s1, s2, ai)λi+ qP (s1, s2, τ)

for all sc1, s
c
2 ∈ SP c and qQc(sc1, s

c
2, τ) =

∑n
i=1 qQ(s1, s2, ai)λi + qQ(s1, s2, τ) for

all sc1, s
c
2 ∈ SQc Let sc1 ∼′ sc2 and sc1, s

c
2 6∈ Cc. Hence s1, s2 6∈ C and s1 ∼ s2.
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Then

q[sc1, C
c, τ ] =

∑
sc∈Cc

q(sc1, s
c, τ) =

∑
s∈C

((
n∑
i=1

q(s1, s, ai)λi

)
+ q(s1, s, τ)

)

=
∑
s∈C

(
n∑
i=1

q(s1, s, ai)λi

)
+
∑
s∈C

q(s1, s, τ)

=

n∑
i=1

(∑
s∈C

q(s1, s, ai)λi

)
+
∑
s∈C

q(s1, s, τ)

=

n∑
i=1

(∑
s∈C

q(s2, s, ai)λi

)
+
∑
s∈C

q(s2, s, τ)

=
∑
s∈C

(
n∑
i=1

q(s2, s, ai)λi

)
+
∑
s∈C

q(s2, s, τ)

=
∑
s∈C

((
n∑
i=1

q(s2, s, ai)λi

)
+ q(s2, s, τ)

)
=
∑
sc∈Cc

q(sc2, s
c, τ) = q[sc2, C

c, τ ].

Let us now assume that ∼⊆ (SP ]SQ)×(SP ]SQ) is a exact equivalence. Hence
for all a ∈ TP ∪ TQ, (s1, s2) ∈∼ and for all C ∈ (SP ] SQ)/ ∼ we have

• q(s1, a) = q(s2, a),

• q[C, s1, a] = q[C, s2, a].

Let a ∈ AP = AQ be an active type. Then, for all (sc1, s
c
2) ∈∼′,

q(sc1, a) =
∑

Cc∈SP /∼′

∑
sc∈Cc

q(sc1, s
c, a) =

∑
C∈SP /∼

∑
s∈C

q(s1, s, a) = q(s1, a)

= q(s2, a) =
∑

C∈SQ/∼

∑
s∈C

q(s2, s, a) =
∑

Cc∈SQ/∼′

∑
sc∈Cc

q(sc2, s
c, a) = q(sc2, a)

and

q[Cc, sc1, a] =
∑
sc∈Cc

q(sc, sc1, a) =
∑
s∈C

q(s, s1, a)

=
∑
s∈C

q(s, s2, a) =
∑
sc∈Cc

q(sc, sc2, a) = q[Cc, sc2, a] .

Moreover, for PP = PQ = {a1, . . . , an}, it holds:
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q(sc1, τ) =
∑

Cc∈SP /∼′

∑
sc∈Cc

q(sc1, s
c, τ)

=
∑

C∈SP /∼

∑
s∈C

((
n∑
i=1

q(s1, s, ai)λi

)
+ q(s1, s, τ)

)

=
∑

C∈SP /∼

∑
s∈C

(
n∑
i=1

q(s1, s, ai)λi

)
+
∑
s∈C

q(s1, s, τ)

=
∑

C∈SP /∼

n∑
i=1

(∑
s∈C

(q(s1, s, ai)λi

)
+
∑
s∈C

q(s1, s, τ)

=
∑

C∈SQ/∼

n∑
i=1

(∑
s∈C

(q(s2, s, ai)λi

)
+
∑
s∈C

q(s2, s, τ)

=
∑

C∈SQ/∼

∑
s∈C

(
n∑
i=1

q(s2, s, ai)λi

)
+
∑
s∈C

q(s2, s, τ)

=
∑

C∈SQ/∼

∑
s∈C

((
n∑
i=1

q(s2, s, ai)λi

)
+ q(s2, s, τ)

)

=
∑

Cc∈SQ/∼′

∑
sc∈Cc

q(sc2, s
c, τ) = q(sc2, τ)

and

q[Cc, sc1, τ ] =
∑
sc∈Cc

q(sc, sc1, τ) =
∑
s∈C

((
n∑
i=1

q(s, s1, ai)λi

)
+ q(s, s1, τ)

)

=
∑
s∈C

(
n∑
i=1

q(s, s1, ai)λi

)
+
∑
s∈C

q(s, s1, τ)

=

n∑
i=1

(∑
s∈C

q(s, s1, ai)λi

)
+
∑
s∈C

q(s, s1, τ)

=

n∑
i=1

(∑
s∈C

q(s, s2, ai)λi

)
+
∑
s∈C

q(s, s2, τ)

=
∑
s∈C

(
n∑
i=1

q(s, s2, ai)λi

)
+
∑
s∈C

q(s, s2, τ)

=
∑
s∈C

((
n∑
i=1

q(s, s2, ai)λi

)
+ q(s, s2, τ)

)
=
∑
sc∈Cc

q(sc, sc2, τ) = q[Cc, sc2, τ ].

19



2

We are now in position to prove that the class of quasi-reversible stochastic
automata is closed under exact equivalence.

Theorem 5.4. Let P and Q be two irreducible stochastic automata such that
P ∼e Q. If Q is quasi-reversible then also P is quasi-reversible.

Proof. We have to prove that:

1. The outgoing transitions for each passive type a ∈ PP sums to unity.

2. For each closure P c = P{a1 ← λ1} . . . {an ← λn} of P with λ1, . . . , λn ∈
R+ there exists a set of positive real numbers {k1, . . . , km} such that for
each s ∈ SP c and 1 ≤ i ≤ m, Equation (3) is satisfied.

The first claim follows immediately from the first item of Definition 5.3. Now ob-
serve that, by Definition 5.3, if P ∼e Q then PP = PQ and AP = AQ. Let PP =
PQ = {a1, . . . , an} and AP = AQ = {b1, . . . , bm}. By Proposition 5.3, for any
closure P c = P{a1 ← λ1} . . . {an ← λn} and Qc = Q{a1 ← λ1} . . . {an ← λn}
the relation ∼′= {(sc1, sc2) ∈ (SP c]SQc)×(SP c]SQc)| (s1, s2) ∈∼ and (s1, s2) ∈
(SP ] SQ) × (SP ] SQ)} is an exact equivalence. By Theorem 5.2, the re-
lation ∼′′= {(scR1 , scR2 ) ∈ (SP cR ] SQcR) × (SP cR ] SQcR)| (s1, s2) ∈∼′} is a
lumpable bisimulation. By Lemma 5.3 since Q is quasi-reversible then for all
sR ∈ SQcR it holds [sR]∼s

= SQcR , i.e., there exists a set of positive real numbers
{kb1 , . . . , kbm} such that for each sR ∈ SQcR and 1 ≤ i ≤ m

kbi =
∑

s′∈SQcR

qQcR(sR, s′, bi) =

∑
s′∈SQc

µQc(s′)qQc(s′, s, bi)

µQc(s)
,

which can be written as

kbi =

∑
C∈SQc/∼e

∑
s′∈C

µQc(s′)qQc(s′, s, bi)

µQc(s)
.

By Proposition 5.1, ∼e induces an exact lumping on the CTMC underlying Qc

and, by Proposition 2.3, for all s and s′ in the same equivalence class µQc(s) =
µQc(s′). Hence we can write

kbi =

∑
C∈SQc/∼e

µQc(C)
∑
s′∈C

qQc(s′, s, bi)

µQc(s)
.

where µQc(C) denotes µQc(s) for an arbitrary state s ∈ C. Now from the fact
that P c ∼e Qc, we have that for each class C ∈ SQc/ ∼e there exists a class C ′ ∈
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SP c/ ∼e such that all the states s ∈ C are equivalent to the states in C ′. More-
over, by Definition 5.3, we have

∑
s′∈C qQc(s′, s1, bi) =

∑
s′∈C′ qP c(s′, s2, bi) for

every state s1 ∼e s2 with s1 ∈ Qc and s2 ∈ P c. Therefore, we can write:

kbi =

∑
C∈SQc/∼e

µQc(C)
∑
s′∈C

qQc(s′, s1, bi)

µQc(s1)

=

∑
C∈SQc/∼e

µQc(C)
∑
s′∈C

qP c(s′, s2, bi)

µQc(s1)

=

∑
C′∈SPc/∼e

KµP c(C ′)
∑
s′∈C′

qP c(s′, s2, bi)

KµP c(s2)

=

∑
s′∈SPc

µP c(s′)qP c(s′, s2, bi)

µP c(s2)
,

whereK is the positive constant given by Theorem 5.1. Summing up, since every
closure Qc of Q corresponds to a closure P c for P and Qc satisfies Equation (3)
for all states s and active types bi, then the set of positive rates {kbi} defined
for Qc are the same that satisfy Equation (3) for P c. Therefore, P is also
quasi-reversible. 2

Example 5.2. Let us consider the automata Q and P depicted in Figure 1
and Figure 2, respectively. We already observed in Example 5.1 that there
exists an exact equivalence ∼′ such that n, nκ1 and nκ2 belong to the same
equivalence class, where n is a state of Q and nκi belongs to the state space of
P . Then, since Q is well-known to be quasi-reversible, by Theorem 5.1 also P is
quasi-reversible. As a consquence, the queueing station modelled by P can be
embedded in quasi-reversible product-form queueing networks maintaining the
property that the equilibrium distribution is separable. 2

Theorem 5.4 provides a method to prove that a stochastic automaton is
quasi-reversible but it can be also used to disprove that a model is quasi-
reversible: it is sufficient to show that it is exactly equivalent to another model
which is not quasi-reversible.

Corollary 5.3. Let P and Q be two irreducible stochastic automata such that
P ∼e Q. If Q is not quasi-reversible then also P is not quasi-reversible.

Proof. Let P ∼e Q and Q be not quasi-reversible. By contradiction, suppose
that P is quasi-reversible. From the fact that P ∼e Q and ∼e is an equivalence
relation, we have Q ∼e P . By Theorem 5.4, the fact that Q ∼e P and P is
quasi-reversible implies that Q is quasi-reversible leading to a contradiction. 2
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Figure 3: Stochastic automaton strongly equivalent to a Jackson queue.

The next example shows that, differently from exact equivalence, lumpable
bisimulation does not preserve quasi-reversibility.

Example 5.3. Consider the automaton R depicted in Figure 3. It is easy to
prove that R is lumpable bisimilar to Jackson’s queue Q depicted in Figure 1.
However, R is not quasi-reversible, i.e., the corresponding reversed automaton
is not lumpable bisimilar to a single-state automaton. More precisely, one can
observe that in the reversed automaton there are two type a transitions exiting
from state 0R but there is no type a transition from state 1′R. This is sufficient
to claim that states 0R and 1′R cannot belong to the same equivalence class. 2

The following result is an immediate consequence of Theorems 4.1 and 5.4.

Corollary 5.4. Let P , P ′, Q, Q′ be irreducible stochastic automata such that
P ∼e P ′ and Q ∼e Q′. If P and Q have a quasi-reversibility based product-form
then also P ′ and Q′ are in product-form.

6. Algorithms for Lumpable Bisimulation and Exact Equivalence

In [36], Valmari and Franceschinis proposed an algorithm solving the compat-
ibility problem over directed weighted graphs. In particular, this algorithm can
be used to compute lumpability over Markov chains. The algorithm exploits
a partition refinement strategy, similar to that of Paige-Tarjan’s algorithm for
bisimulation [30], enriched with a sorting of classes. In this section we ex-
ploit Valmari and Franceschinis’ algorithm to design procedures for computing
lumpable bisimulations and exact equivalences.

First in Section 6.1 we introduce the label-compatibility problem over di-
rected labeled weighted graphs. Then in Section 6.2 we show how the lumpable
bisimulation over a stochastic automaton P can be computed by solving a label-
compatibility problem over a directed labeled weighted graph LP induced by
P . Similarly, in Section 6.3 we show that also the problem of computing the
exact equivalence over P can be reduced to a label-compatibility problem over a
different graph IP . Both graphs can be computed in linear time from P , hence
we only need an efficient algorithm for label-compatibility over directed labeled
weighted graphs. Such an algorithm is described in Section 6.4.
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6.1. Labeled Compatibility Problem

We recall the definition of directed labeled weighted graphs.

Definition 6.1. (Directed labeled weighted graph) A directed labeled weighted
graph is a tuple G = (S, T,→, w) where:

• S is a finite set of nodes (states);

• T is a finite set of labels;

• →⊆ S × S × T is a finite set of labeled edges;

• w : E → R is a weighting function that associates a real number to each
edge.

Given S′ ⊆ S, we denote by w(s, S′, t) the sum of the weights of the edges
from s to S′ having label t.

The following definition of compatibility extends that of [36] to directed
labeled weighted graphs.

Definition 6.2. (Label-Compatibility) Let G = (S, T,→, w) be a directed la-
beled weighted graph and R ⊆ S × S be an equivalence relation over S. R is
said to be label-compatible with G if for each t ∈ T , for each C,C ′ ∈ S/R, and
for each s, s′ ∈ C it holds that w(s, C ′, t) = w(s′, C ′, t).

We are ready to introduce the compability problem we are interested in.

Definition 6.3. (Label-compatibility Problem) Let G = (S, T,→, w) be a di-
rected labeled weighted graph and R ⊆ S × S be an equivalence relation over
S the labeled weighted compatibility problem over G and R requires to compute
the largest equivalence relation R′ included in R and label-compatible with G.

The following lemma ensures that the label-compatibility problem always
has a unique solution.

Lemma 6.1. Let G be a labeled weighted graph and R ⊆ S × S be an equiv-
alence relation over S. There exists a unique largest equivalence relation R′

included in R and label-compatible with G.

Proof. The identity relation is always label-compatible and it is included in
R, hence there exists at least one label-compatible relation included in R.

It is easy to prove that if R1, R2 ⊆ R are two equivalence relations included in
R and label-compatible with G, then R1 tR2, the smallest equivalence relation
such that R1, R2 ⊆ R1 tR2, is included in R and label-compatible with G. 2

As a consequence of the above lemma we also get that if we consider the
total relation Tot = S × S, there exists a unique largest equivalence relation
compatible with G, i.e., the solution of the label-compatibility problem over
G and Tot. Hence, when we simply refer to the label-compatibility problem
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Figure 4: Lumping graph of the Stochastic automaton in Figure 1.

over G without providing an equivalence relation, we tacitly assume that we are
considering the label-compatibility problem over G and Tot.

Notice that a stochastic automaton is nothing but a directed labeled weighted
graph with additional conditions. However, in order to reduce lumpable bisim-
ulation and exact equivalence computation to label-compatibility problems it is
necessary to map a SA into two different directed labeled weighted graphs, as
we see in the next two sections.

6.2. Lumpable Bisimulation as Label-compatibility Problem

Let P = (SP , TP ,;P , qP ) be a stochastic automaton. As above, we denote
the term

∑
s′′∈S q(s, s

′′, a) with S ⊆ SP by q[s, S, a]. We are now ready to define
the lumping graph induced by a stochastic automaton. Intuitively, the lumping
graph of P is a directed labeled weighted graph that coincides with P apart
from the introduction of weighted τ self-loops.

Definition 6.4. (Lumping Graph) Let P = (SP , TP ,;P , qP ) be a stochastic
automaton. The lumping graph of P is the directed labelled weighted graph
LP = (SP , TP ,→P , wlP ), where:

• →P is the set of labeled edges

→P=;P ∪{(s, s, τ) | s ∈ SP }

• wlP is the function which associates the value

wlP (s1, s2, a) =

{
q(s1, s2, a) if a 6= τ ∨ s1 6= s2

−q[s1,SP \ {s1}, a] otherwise

with each edge in →P .

Example 6.1. Let us consider the automaton underlying a Jackson’s queue
represented in Figure 1. Its lumping graph is depicted in Figure 4. Since the
automaton has no τ labeled transitions, all the τ self-loops introduced in the
lumping graph have weight 0.

The following result shows that the problem of computing the lumpable
bisimulation∼s over a stochastic automaton P is equivalent to the label-compati-
bility problem over the lumping graph LP .
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Theorem 6.2. (Lumpable bisimulation as label-compatibility) Let P be a stochas-
tic automaton and LP be its lumping graph. The largest relation label-compatible
with LP is ∼s.

Proof. Let R be the largest relation label-compatible with LP we prove that
R =∼s by proving that R ⊆∼s and ∼s⊆ R.

In order to prove that R ⊆∼s it is sufficient to prove that R is a lumpable
bisimulation. Let (s1, s2) ∈ R and C ∈ SP /R. If a 6= τ , then

∑
s′∈C q(s1, s

′, a) =
q[s1, C, a] = wlP (s1, C, a) = wlP (s2, C, a) = q[s2, C, a] =

∑
s′∈C q(s1, s

′, a).
Similarly, if a = τ and s1, s2 6∈ C we get the thesis, since si 6∈ C implies
q[si, C, τ ] = wlP (si, C, τ), for i = 1, 2.

In order to prove that ∼s⊆ R it is sufficient to prove that ∼s is label-
compatible. Let s1 ∼s s2, and C ∈ SP / ∼s, we have to prove that wlP (s1, C, a) =
wlP (s2, C, a), for each a ∈ TP . The only interesting case is the case a = τ and
s1, s2 ∈ C. In this case wlP (s1, C, τ) =

∑
s′∈C,s′ 6=s1 q(s1, s

′, τ) − q[s1,SP \
{s1}, τ ] = −

∑
s′ 6∈C q(s1, s

′, τ) = −
∑
C′ 6=C wlP (s1, C

′, τ). Since, neither s1 nor
s2 belongs to any of the classes C ′ involved in this last sum, from the other cases
we get −

∑
C′ 6=C wlP (s1, C

′, τ) = −
∑
C′ 6=C wlP (s2, C

′, τ) and now reasoning on
s2 this last is wlP (s2, C, τ). 2

6.3. Exact Equivalence as Label-compatibility Problem

Given a stochastic automaton P , the directed labeled weighted graph that
allow us to reduce the exact equivalence computation to a label-compatibility
problem is simply the graph that we obtain reversing all the edges of P .

Definition 6.5. (Inverse Graph) Let P = (SP , TP ,;P , qP ) be a stochastic
automaton. The inverse graph of P is the directed labeled weighted graph
IP = (SP , TP , ;P , wiP ), where:

• ;P is the set of labeled edges

;P = {(s1, s2, a) | (s2, s1, a) ∈;P }

• wiP is the function which associates the value

wiP (s1, s2, a) = q(s2, s1, a)

with each tuple in ;P .

Example 6.2. Let us consider again the automaton in Figure 1. Its inverse
graph is depicted in Figure 5.

Differently from the case of lumpable bisimulation, where the total rela-
tion over the lumping graph was considered, for exact equivalence we need to
introduce an equivalence relation.
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Figure 5: Inverse graph of the Stochastic automaton in Figure 1.

Definition 6.6. (Initial Equivalence) Let P be a stochastic automaton. The
initial equivalence of P is the equivalence relation IEP ⊆ SP × SP defined as
follows:

(s1, s2) ∈ IEP iff q(s1, a) = q(s2, a) for each a ∈ TP .

Example 6.3. In the automaton of Figure 1 the initial equivalence is

IEP = {(0, 0)} ∪ {(i, j) | i > 0 and j > 0}.

This means that 0 is not equivalent to any other state, while all the other states
are initially equivalent.

The following result shows the equivalence between the problem of com-
puting the exact equivalence ∼e over a stochastic automaton P and the label-
compatibility problem over IP and IEP .

Theorem 6.3. (Exact equivalence as label-compatibility) Let P be a stochastic
automaton, IP be its inverse graph, and IEP be its initial equivalence. The
largest relation included in IEP label-compatible with IP is ∼e.

Proof. Let R be the largest relation included in IEP label-compatible with
IP . We prove that R =∼e by proving that R ⊆∼e and ∼e⊆ R.

In order to prove that R ⊆∼e it is sufficient to prove that R is an ex-
act equivalence. Let (s1, s2) ∈ R and C ∈ SP /R. Since R ⊆ IEP we have
that q(s1, a) = q(s2, a), for each a ∈ TP . Moreover,

∑
s′∈C q(s

′, s1, a) =
wiP (s1, C, a) = wiP (s2, C, a) =

∑
s′∈C q(s

′, s1, a).
In order to prove that ∼e⊆ R it is sufficient to prove that ∼e is included

in IEP and label-compatible. Let s1 ∼e s2. It holds that for each a ∈ TP
q(s1, a) = q(s2, a), hence (s1, s2) ∈ IEP .

Moreover, let C ∈ SP / ∼e, we prove that wiP (s1, C, a) = wiP (s2, C, a), for
each a ∈ TP . Indeed wiP (s1, C, a) =

∑
s′∈C q(s

′, s1, a) =
∑
s′∈C q(s

′, s2, a) =
wiP (s1, C, a). 2

6.4. Efficient Label-compatibility Algorithm

Given a stochastic automaton P , the lumping graph, the inverse graph,
and the initial equivalence can be computed in linear time with respect to the
number of states and edges of P , hence, the results in the previous sections
allow us to focus on an algorithmic efficient solution for the label-compatibility
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problem in order to get efficient algorithms for both lumpable bisimulation and
exact equivalence.

As is common in bisimulation and lumpability algorithms, instead of working
with equivalence relations, we work on the corresponding partitions over S, i.e.,
R is the initial partition and we are looking for the coarsest refinement of R
label-compatible with G.

Our algorithm works exactly as the one in [36] except that we need to deal
with labels on edges. The basic idea in Algorithm 1 is that we start with an
initial partition P and each iteration of the main while loop at line 7 refines P
by splitting blocks. At the end of the computation P is the desired partition.
UB stands for Unused Blocks and contains the blocks of P which have not yet
been used as splitters. TB stands for Touched Blocks and contains the blocks
of P that could be split in the current iteration. The array w records for each
s ∈ S the total weight of the t-edges from s to the current splitter block C.
TS stands for Touched States and contains the states of S that reach through
t-edges the splitter C. Hence, at line 19 w[s] has a numerical value if and only
if s is in TS. For each s in the splitter C, the for loop at lines 10-11 stores in
pre[s, t] the pre-image of s with respect to t-edges. This is necessary since we
process many labels. The splitter itself could get split with respect to a label
t. In this case we need to ensure that for all the labels processed after t we
still refer to the entire pre-image of C. This pre-computation will guarantee
the correctness of the “exclude-the-largest” policy at line 36. The for loop at
lines 12-37 takes care of using C as splitter with respect to each label. The
operations performed inside this loop coincide with that of the algorithm in
[36]. In particular, the splits are performed inside the while loop at lines 23-
36. The key ingredient for obtaining a time performant algorithm is line 36: if
block B, which has just been split, has already been used as splitter, then the
largest of the sub-blocks of B is not included in the list UB of future splitters.
The notation [B, ]? –inherited from [36]– means that B is considered only if
it is different from B1. The skip instructions at lines 3 and 9 are nothing but
placeholders for the commented instructions which are useful for the correctness
proof. In particular, the commented instructions at lines 3 and 9 take care of
storing a partition O (old) which is always coarser than P. The block OC of
O is the one that includes the block C of P. Intuitively, this is the partition of
super-blocks. At each iteration the partition P will be “stable” with respect to
O in the following sense:

∀t ∈ T ∀B ∈ P ∀O ∈ O ∀s1, s2 ∈ B (w(s1, O, t) = w(s2, O, t)) .

It is quite easy to prove that Algorithm 1 always terminates.

Lemma 6.4. (Termination) LWC(G,R) terminates.

Proof. We only have to prove that the while loop at line 7 terminates. Let
UBi (Pi) be the value of UB (P, respectively) at the i-th iteration of the while
loop. We have that for each i it holds that |UBi| is always finite and |Pi| ≤ |S|.

27



Algorithm 1 Algorithm for Labeled Weighted Compatibility

1: function LWC(G = (S, T,→, w),R)
2: P = R
3: skip . O = {S ∪ {s⊥}}
4: UB = P
5: TB = ∅
6: w[s] = unused for every s ∈ S
7: while UB 6= ∅ do
8: C = Pop(UB)
9: skip . O = (O \ {OC}) ∪ {C,OC \ C}

10: for t ∈ T for s′ ∈ C do
11: pre[s′, t] = (→� t)−1(s′)

12: for t ∈ T do
13: TS = ∅
14: for s′ ∈ C for s ∈ pre[s′, t] do
15: if w[s] == unused then
16: TS = TS ∪ {s}
17: w[s] = w(s, s′, t)
18: else w[s] = w[s] + w(s, s′, t)

19: for s ∈ TS if w[s] 6= 0 do
20: B = GetBlockOf(s)
21: if B contains 0 marked states then TB = TB ∪ {B}
22: mark s in B
23: while TB 6= ∅ do
24: B = Pop(TB)
25: B1 = marked states in B
26: B = remaining states in B
27: if B == ∅ then give the identity of B to B1 in P
28: else make B1 a new block in P
29: y = pmc(w[s]) for s ∈ B1

30: B2 = {s ∈ B1 | w[s] 6= y}
31: B1 = B1 \B2

32: if B2 == ∅ then ` = 1
33: else sort and partition B2 according to w[s], yielding B2, ..., B`

34: make each of B2, ..., B` a new block in P
35: if B ∈ UB then add B1, ..., B` except B in UB
36: else add [B, ]?B1, ..., B` except largest in UB

37: for s ∈ TS do w[s] = unused

38: return P

We prove that if |UBi+1| ≥ |UBi|, then |Pi+1| > |Pi|. We extract one
block from UB at line 8, hence to get |UBi+1| ≥ |UBi| we should insert at least
one block in it. This implies that at least one split has been performed, i.e.,
|Pi+1| > |Pi|.

Hence, since for each i it holds that |Pi| ≤ |S|, there exists j such that
for each k > j we have |Pk+1| = |Pk|. So by contraposition, we get that for
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each k > j it holds that |UBk+1| < |UBk|. As a consequence the while loop
terminates. 2

We claim that Algorithm 1 solves the label-compatibility problem. Our proof
of correctness extends to the labeled case the one in [36].

First we prove that we can safely modify the input without substantially
changing the result. In particular, we move from G = (S, T,→, w) to G′ =
(S′, T,→′, w′), where

• S′ = S ∪ {s⊥};

• →′=→ ∪{(s, t, s⊥) | s ∈ S, t ∈ T};

• w′(s, s′, t, ) = w(s, s′, t, ) for each s′ ∈ S, while w′(s, s⊥, t) = −W (s, S, t).

Hence, for each label t we have w′(s, S′, t) = 0. Given a partition X over S we
denote by X ′ the partition X ∪ {{s⊥}} over S′. It is immediate to prove that
P is a refinement of R label-compatible with G if and only if P ′ is a refinement
of R′ label-compatible with G′.

Lemma 6.5. P is a refinement of R label-compatible with G if and only if P ′
is a refinement of R′ label-compatible with G′.

Moreover, we can safely uncomment line 3 and line 9 without changing the
behaviour of the algorithm, i.e., the common variables have the same values
at each step. We denote by LWC′( , ) the variant of LWC( , ) with the skips
replaced by the comments.

Lemma 6.6. (Algorithm enrichment) LWC(G,R) and LWC’(G,R) are equiv-
alent on common variables at each step.

Proof. The set O of super-blocks that is initializied and updated in the un-
commented lines is never used elsewhere in the algorithm, hence these lines have
not effect on the remaining computation. 2

Finally, the following lemma allow us to replace G and R with G′ and R′,
respectively.

Lemma 6.7. (Graph enrichment) It holds that LWC(G,R) is correct if and
only if LWC(G′,R′) is correct.

Proof. From Lemma 6.5 we have that P is the coarsest refinement of R label-
compatible with G if and only if P ′ is the coarsest refinement of R′ label-
compatible with G′.
⇒) By hypothesis the output P of Algorithm 1 on G is the coarsest re-

finement of R label-compatible with G. The algorithm on input (G′,R′) uses
{s⊥} both as splitter and as block to be split, since it is in R′. However, {s⊥}
cannot be split since it contains only one element. Hence, we only have to
prove that if two elements s1 and s2 end in different blocks in the computa-
tion on G′, because of a split is caused by {s⊥}, then they end in different
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blocks also in the computation on G. If s1 and s2 end in different blocks in
G′ because of {s⊥}, then there exists t such that −w(s1, S, t) 6= −w(s2, S, t),
i.e.,

∑
C∈P w(s1, C, t) 6=

∑
C∈P w(s2, C, t), so there exists C ∈ P such that

w(s1, C, t) 6= w(s2, C, t). Since P is label-compatible, s1 and s2 belong to dif-
ferent blocks in P.
⇐) Similar to the other direction. 2

Hence, by Lemma 6.7 and Lemma 6.6 it is sufficient for us to prove that
LWC′(G′,R′) is correct. To avoid confusion in LWC′(G′,R′) we replace the
variable P with P ′.

We first prove that the output of the algorithm is coarser than the coarsest
refinement of R′ label-compatible with G′. Notice that at this stage we do not
prove that the output is label-compatible with G′.

Lemma 6.8. (Necessity of splits) Let P ′ be the output of LWC′(G′,R′). If s1
and s2 belong to different blocks in P ′, then in each label-compatible refinement
of R′ the elements s1 and s2 belong to different blocks.

Proof. It is equivalent to prove that s1 and s2 belong to different blocks in Q′
the coarsest refinement of R′ label-compatible with G′. Let P ′i be the partition
computed by LWC′(G′,R′) before the i+ 1-th repetition of the main while loop
(line 7). We prove by induction on i that Q′ is always a refinement of P ′i.

Base: i = 0. We have P ′0 = R′ hence the thesis holds since Q′ is by definition
a refinement of R′.

Inductive step: we assume that the thesis holds for i < j and we prove that
Q′ is a refinement of P ′j . By inductive hypothesis Q′ is a refinement of P ′j−1.

Let s1 and s2 be such that s1 ∈ Bj1 ∈ P ′j and s2 ∈ Bj2 ∈ P ′j with Bj1 6= Bj2,

while s1, s2 ∈ Bj−1 ∈ P ′j−1. We have to prove that s1 and s2 belong to different
blocks also in Q′. By the hypothesis we get that there exist t ∈ T and B′ ∈ P ′j−1
such that w(s1, B

′, t) 6= w(s2, B
′, t). Since B′ ∈ P ′j−1 and Q′ is a refinement of

P ′j−1 we have that there exists Q1, . . . , Qk ∈ Q′ such that B′ = Q1 ∪ · · · ∪Qk.
Hence

k∑
h=1

w(s1, Qh, t) = w(s1, B
′, t) 6= w(s2, B

′, t) =

k∑
h=1

w(s1, Qh, t) .

This implies that there exists k′ such that w(s1, Qk1, t) 6= w(s2, Qk′ , t). Hence,
since Q′ is label-compatible with G′, s1 and s2 cannot belong to the same block
of Q′. 2

It is immediate to see that the output of the algorithm is a refinement of
R′. Hence, it only remains to prove that the output of the algorithm is label-
compatible with G′.

We now prove that at each iteration the current partition is “stable” with
respect to the super-blocks partition. This is the only result in which we really
exploit both the super-blocks partition and the new element s⊥.
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Lemma 6.9. (Stability invariant) During the execution of LWC′(G′,R′) it is
always true that for each t ∈ T , for each B ∈ P ′, for each O ∈ O, for each
s1, s2 ∈ B it holds that w(s1, O, t) = w(s2, O, t).

Proof. We recall that in the algorithm OC is the block of O which includes
the block C of P ′. It is immediate to see that O is always coarser than P ′.
Hence OC is correctly defined.

Let P ′i and Oi be the partitions computed by LWC′(G′,R′) before the i+ 1-
th repetition of the main while loop (line 7). We prove the thesis by induction
on i.

Base: i = 0. The thesis is true since for each t ∈ T it holds that w′(s, S ∪
{s⊥}, t) = 0.

Inductive step: we assume that the thesis holds for i < j and we prove
it for j. If we consider a block in Oj that was also in Oj−1, then the thesis
trivially holds by inductive hypothesis. Let C and OC \ C be the two new
blocks in Oj not in Oj−1. These have been added to Oj during the j − 1th
execution of the while loop. During this step all the blocks of P ′j−1 have been
split with respect to C leading to P ′j . Hence, for each t ∈ T , for each B ∈ P ′j ,
and for each s1, s2 ∈ B it holds that w′(s1, C, t) = w′(s2, C, t). Moreover, as
far as OC \ C is concerned w′(s1, OC \ C, t) = w′(s1, OC , t)− w′(s1, C, t). This
last by inductive hypothesis and since w′(s1, C, t) = w′(s2, C, t), is equal to
w′(s2, OC , t)− w′(s2, C, t) = w′(s2, OC \ C, t). 2

Another invariant on super-blocks is useful to prove correctness.

Lemma 6.10. (Cardinality invariant) During the execution of LWC′(G′,R′)
it is always true that for each O ∈ O, if O is the union of k blocks of P, then
the list UB contains at least k − 1 of such blocks.

Proof. Let P ′i, Oi, and UBi be the variables before the i + 1-th repetition of
the main while loop (line 7). We prove the thesis by induction on i.

Base: i = 0. We have that UB0 contains all the blocks that are in O0.
Inductive step: we assume that the thesis holds for i < j and we prove it for

j. For all the blocks that are included in a block O of Oj−1 and are in UBj−1
all their sub-blocks are added to UBj . For all the blocks that are included in a
block O of Oj−1 and are not in UBj−1 all their sub-blocks but one are added to
UBj . Hence, the thesis holds. 2

We are now ready to prove the correctness of our algorithm.

Theorem 6.11. (Correctness) LWC′(G′,R′) returns the coarsest refinement of
R′ compatible with G′.

Proof. By Lemma 6.8 we have that LWC′(G′,R′) returns a partition which is
coarser than any refinement of R′ label-compatible with G′.

By Lemma 6.10 we get that when LWC′(G′,R′) terminates, since UBj is
empty it must be P ′ = O. Hence, by Lemma 6.9 P ′ is label-compatible with
G′. 2
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As far as the complexity is concerned we can prove that our algorithm has
the same time and space complexities of the one in [36].

Lemma 6.12. LWC(G,R) requires time O(|S|+ | → | log |S|) without consid-
ering the cost of the sorting operations at line 33.

Proof. We start proving the thesis in the case in which G is connected, i.e.,
|S| = O(| → |).

The initialization instructions before line 7 requires time Θ(|S|).
Let us consider one iteration of the main loop at line 7. The for loop at line

10 requires time Θ(|C|+| →−1 (C)|), where→−1 (C) is the set of edges reaching
C with any possible label. For a given label t, the for loop at line 12 without
considering the sorting operations requires time Θ(|(→� t)−1(C)|). Hence, the
main loop without considering the sorting operations costs Θ(|C|+ | →−1 (C)|).
Notice that in order to obtain this result which does not depend on |T | one
should compute just before line 10 the set TC of labels involved in the preimage
of C. This can be done again at a cost of Θ(|C| + | →−1 (C)|). Then the for
loops at lines 10 and 12 should range over TC instead of T .

The complexity Θ(|C|+ | →−1 (C)|) can be distributed over the elements of
C considering a cost of Θ(1 + | →−1 (s′)|) for each s′ ∈ C.

Globally over all the executions of the main while loop a node s′ can belong
to a splitter block C at most Θ(log|S|) times since once the block in which s′

originally belongs is removed from UB, the largest sub-block is never reinserted
in UB. Hence, every time s′ belongs to a splitter the size of the splitter is at
least half of the previous time that s′ was in a splitter. So, s′ is in a splitter
O(log |S|) times, which gives us a complexity of O(

∑
s′∈S((log |S|)(1 + | →−1

(s′)|))) = O((|S|+ | → |) log |S|) = O(| → | log |S|).
In the general case, i.e., if G is not connected, we can split the complexity

over its connected components obtaining a cost of O(|S|+ | → | log |S|), where
the additional O(|S|) takes into consideration all the initialization steps that are
present even if | → | log |S| < |S|. 2

Lemma 6.13. The sorting operations in LWC(G,R) runs in O(| → | log |S|).

Proof. The proof proceeds exactly as in [36]. 2

As a direct consequence of Lemma 6.12 and Lemma 6.13 we get the following
result.

Theorem 6.14. LCW(G,R) requires time O(|S| + | → | log |S|) and space
O(|S|+ | → |).

Notice that the models considered in this paper generate strongly connected
graphs with |S| = O(| → |), hence the time complexity of our algorithm can be
simplified into O(| → | log |S|), while the space complexity becomes O(| → |).
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Figure 6: Queue with 2 alternating servers and capacity 3.

7. Case Studies and Performance Tests

In the first part of this section we show the application of the proposed
algorithm for the decision of the quasi-reversibility of a queueing model with
finite capacity. Queueing models with finite capacity have been widely studied in
the literature and find applications especially in the analysis of packet switching
telecommunication networks. In the second part we focus on the performance
of the algorithm and we apply it for a case study that has been previously
considered in the literature. In practice, we study a system consisting of a web
server cluster and a certain number of users, we evaluate the time required by
the algorithm to reduce the state space, and compare the state space reduction
obtained with previous algorithms with that obtained by the applications of
ours.

7.1. Product-form in queues with finite capacity and rejection or skipping

Queues with finite capacity have been widely studied thanks to their applica-
tion for the analysis of packet switching networks [3]. Various product-form so-
lutions have been proposed in the literature and in [4] the authors propose a uni-
fying theory for their analysis. Let us consider the role of quasi-reversibility in
determining the product-form of queueing networks with finite capacity. Quasi-
reversible finite capacity queues lead to two different ways of handling the event
of a customer arrival at a saturated queue. The first, assumes that the new
arrival is simply discarded, the second forces the customer to immediately join
another queue that may be non-saturated (for a detailed description of the
skipping mechanism see [31]).

Let us consider the queueing station depicted in Figure 6 with two alternating
servers and the station with a single server presented in Figure 7. It is known
that the second one is not quasi-reversible, indeed this can be easily derived by
observing that state 3 has not any incoming arc labelled a. By Theorem 5.4
we can prove that also the model in Figure 6 is not quasi-reversible by proving
that it is exactly equivalent to that in Figure 7.

33



0 1 2 3

(b,1) (b,1)

(a,µ)

(b,1)

(a,µ) (a,µ)

(b,1)

Figure 7: Queue with single server and capacity 3.
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Figure 8: The inverse graph of the union of the automata of Figure 7 and 6.

First we need to consider the union of the two automata and to compute
the inverse graph and the initial equivalence. The inverse graph of the union is
drawn in Figure 8.

The initial equivalence IEP over the automaton obtained as union the au-
tomata in Figures 6 and 7 is the equivalence relation that induces the initial
partition R = {A1, A2}, where the blocks A1 and A2 are defined as:

A1 = {0κ1, 0κ2, 0} A2 = {1κ1, 2κ1, 3κ1, 1κ2, 2κ2, 3κ2, 1, 2, 3}.

As a matter of facts, all the 0’s states have no outgoing edge with label a and
their outgoing edges with label b have sum of weights 1. Similarly, all the other
states are equivalent since they all have outgoing edges with label a and sum of
weights µ and outgoing edges with label b and sum of weights 1.

The algorithm applied to the graph in Figure 8 with initial partition R ini-
tializes both P and UB as R. The computation proceeds selecting a block
in UB. Let us assume that the block A1 is selected. We have that 1κ1,
1κ2, and 1 all reach A1 through a b transition with weight 1, while the other
states in A2 do not. Hence, A2 is split into A1

2 = {1κ1, 1κ2, 1} and A2
2 =
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{2κ1, 3κ1, 2κ2, 3κ2, 2, 3} and UB becomes {A1
2, A

2
2}. Let us now assume that

the block A1
2 is selected from UB. This has the effect of splitting A2

2 into
A3

2 = {2κ1, 2κ2, 2} and A4
2 = {3κ1, 3κ2, 3}, since the elements of A3

2 all reach
A1

2 through a b transition with weight 1, while the elements of A4
2 do not. UB

becomes {A3
2, A

4
2}. We select A3

2 as splitter and nothing happens, then we se-
lect A4

2 as splitter and again nothing changes. Hence, the algorithm terminates
with the partition P = {A1, A

1
2, A

3
2, A

4
2}. Since there exists at least one class

in P that contains both elements of the single queue and of the queue with
alternating servers, we can conclude that the two are exactly equivalent. So,
by Theorem 5.4, since the single queue is not quasi-reversible, the queue with
alternating servers is also not quasi-reversible.

Now, assume that the automaton of Figure 7 has a self-loop on state 3
labelled a with a certain rate γ. With the right choice of γ (see [4, 15]) the
model is quasi-reversible and is the building block for obtaining the product-
forms of queueing networks with finite capacity and skipping studied in [31].
Provided that states 3κ1 and 3κ2 of the automaton of Figure 6 have the same
self-loop, we can newly apply the algorithm and show that since the two models
are exactly equivalent and one of them is known to be quasi-reversible, then also
the queue with alternating servers and the active self-loops in the final states is
quasi-reversible.

7.2. The web server cluster case study

In Section 6 we presented an algorithm for computing lumpable bisimulations
and exact equivalences. This algorithm allows us both to automate the recog-
nition of product-form models based on exact equivalences, and to efficiently
compute aggregations of state spaces of complex models although possibly not
in product-form. In this section, we apply our algorithm for the performance
evaluation of a web server system with the following aims:

• Evaluate the execution time of the algorithm once it is applied to real-
world scenarios

• Compare the state space reduction obtained by applying the results pro-
posed here with those obtainable with previous aggregation techniques

Notice that, in contrast with the previous example, in this case product-forms
are not considered. Yet, the algorithm described in Section 6 are applica-
ble also with the aim of reducing the state space of a complex model. The
algorithms for lumpable bisimulation and exact equivalence described in Sec-
tion 6 have been integrated in the PEPA Eclipse plug-in which is available at
https://github.com/Bakuriu/PEPA-Eclipse-Plug-in.

As discussed in Section 3, the synchronisation semantics of stochastic au-
tomata can be seen as the active/passive synchronisation in PEPA. In particu-
lar, stochastic automata can be easily translated into PEPA components having
the same semantics.

In this section we consider a case study, taken from [9], consisting of a web
server cluster interacting with a set of clients. Specifically, the server cluster
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provides content to users and allows content creators to add new contents on the
servers. The system is meant to satisfy certain quality of service requirements
regarding availability and response-time. In order to meet such requirements
the system skews the prioritisation for fast reads over writes, so that writes
are buffered and only processed at a time when there are only few reads. The
consequence is that a reader may not be able to read the latest updates, although
high availability is maintained.

Each server can fail, and be repaired, independently. If all the servers fail a
special recovery mechanism is triggered which recovers the whole cluster.

7.2.1. The server model

Each server receives read requests, which, before being satisfied, cause a
read lookup by the server. In order to successfully complete a write request it is
necessary that no server is performing a read lookup (i.e., no server should be in
the state ServerRead below), so that all servers can perform the write operation
simultaneously.

The server can fail, and during the failure time no read request can be
accepted. We assume that write actions occuring during the server failure time
are ignored; when the server will be restarted it will be re-synchronised with
the other servers in the cluster.

The SA representing a single server is depicted in Figure 9.

(fail, rf )

(recover, rr)

(recoverAll, 1)

(write, 1)(write, 1)

(readReqi, 1)
(readLookup1, rl)

(readLookupR, rl)

Server ServerFail

ServerRead

Serveri

Figure 9: The SA for a server.

7.2.2. The server cluster model

The cluster of servers is able to witness the failures of the server and trig-
ger their recovery. When all servers have failed the whole cluster is restarted,
recovering all failures simultaneously.

The SA for the cluster of servers is represented in Figure 10.

With this definition we can represent the cluster of S servers as:

Servers
def
=
(

Server1⊗
L

Server2⊗
L
. . . ⊗

L
ServerS

)
⊗
L′ Cluster
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...

Cluster

(recover, 1)(recover, 1)

(recoverAll, r)

(fail, 1)(fail, 1)(fail, 1)
Cluster0 Cluster1 Cluster2 ClusterS

Figure 10: The SA for the cluster.

with L = {write, recoverAll} and L′ = {recoverAll, recover, fail}.

7.2.3. The model for buffered writes

The write requests that the system receives are buffered and performed only
when no server is reading its database. The read buffer can hold up to B buffered
writes. Whenever all the servers are available to perform a write operation we
assume that all of the buffered writes are performed.

The SA for the buffered write is represented in Figure 11.

...

Buffer

(write, rw)

(write, rw)
(write, rw)

(bWrite1, rbw)(bWrite1, rbw)(bWrite1, rbw)

(bWriteW , rbw)(bWriteW , rbw)(bWriteW , rbw)

WriteBuffer0

WriteBuffer1 WriteBuffer2

WriteBufferB

Figure 11: The SA for the buffered write.

7.2.4. The model for the users

The system has two different kind of users: authors, who publish content to
the servers by triggering the write requests, and readers, who trigger the read
requests from the servers. We assume that the number of readers is higher than
the number of writers, and as such we have prioritized reads over writes.

We consider a fixed time period in which W write and R read requests occur.
At the end of this time period the writers and readers are reset and another
W write and R read requests occur. This assumption is reasonable for a stable
system, for example an online newspaper which publishes everyday a specific
number of articles and has a mostly constant number of views in a month.

The authors of content cannot trigger a server write operation, but can only
write to the buffer as represented in Figure 12.

The Writers SA is the composition of W content authors of the system:

Writers
def
= Writer1⊗

K
Writer2⊗

K
. . . ⊗

K
WriterW

where K = {resetAll}.
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Writeri

(resetAll, 1)

(bWritei, 1)
Writer WriterDone

Figure 12: The SA for a writer.

The readers send read requests and wait for the lookup by the servers as
illustrated in Figure 13.

Readeri

(resetAll, 1)

(readReq1, rrr)

(readReqS , rrr)

(readLookupi, 1)

Reader

ReaderDone

Figure 13: The SA for a reader.

Again the Readers SA is the synchronization of R readers of the system:

Readers
def
= Reader1⊗

K
Reader2⊗

K
. . . ⊗

K
ReaderR

The system will always contain a component dedicated to triggering the reset
of the readers and writers, as represented in Figure 14.

(resetAll, rres)

RWReset

Figure 14: The SA for the RWreset.

38



7.2.5. The complete system

We are finally able to define the SA that represents the whole system.

Environment
def
= Writers⊗

K
Readers⊗

K
RWReset

WebCluster
def
= Servers ⊗

{write}
Buffer

System
def
= Environment⊗

N
WebCluster

where N = {bWrite1, bWrite2, . . . , bWriteW , readReq1, readReq2 . . . , readReqS ,
readLookup1, readLookup2, . . . , readLookupR}.

7.2.6. Performance tests

We considered the performance of our algorithms for different values of pa-
rameters S,B,R,W of the system, where we recall that S is the number of
servers, B the buffer size, R the number of readers and W the number of writ-
ers. The tests were run on a Acer Aspire 5742G machine, which is equipped
with a quad core Intel Core i5 M 480 2.67GHz, 4GB of RAM memory.

The first two columns of Table 2 contain the results obtained without using
any aggregation technique, and it shows that it is not possible to perform the
steady-state analysis even for moderate values of the parameters due to memory
errors.

The columns labeled L.B. of Table 2 show the results obtained using con-
textual lumpability [19]. In this case we were able to compute the steady-state
distribution for the aggregated state space in all cases.

The last two columns (E.E.) of Table 2 contain the results obtained us-
ing exact equivalence. In this case study, exact equivalence and contextual
lumpability do not coincide, as is easily verified comparing the aggregated state
space sizes. The exact equivalence produces a finer aggregation, which is to be
expected since it enforces that all states lumped together have the same steady-
state probability. The reduction in the state space sizes is thus significantly
worse than the contextual lumpability case, achieving a 13-fold reduction in
the number of both states and transitions, and our machine failed to compute
the steady-state distribution over the aggregated state space for the parameters
4, 3, 3, 4 and 3, 3, 3, 6. On the other hand, if one desires to derive the steady-state
distribution of the non aggregated automaton given that of the aggregated, we
have to consider that this is much more computationally efficient in the case of
an aggregation based on exact equivalence with respect to an aggregation based
on contextual lumpability [19].

An important aspect of this case study is that the aggregations we have
achieved are not possible to achieve using only the aggregating arrays or other
syntactical means, since the repeated components are not in a plain parallel
composition, but cooperate over some action types.
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8. Conclusion

In this paper we have studied the relations between exact equivalence [10, 11]
and the notion of lumpable bisimulation that has been introduced in [19]. We
proved that any exact equivalence over a non-synchronising stochastic automa-
ton is indeed a lumpable bisimulation on the corresponding reversed automaton
and then it induces a strong lumping on the underlying time-reversed CTMC.
We show that this fact has important implications not only from a theoretical
point of view but also in reducing the computational complexity of the analysis
of cooperating models in equilibrium. Indeed, the class of quasi-reversible au-
tomata, whose composition is known to be in product-form and hence analysable
efficiently, is closed under the exact equivalence. This leads to a new approach
for proving the quasi-reversibility of a stochastic component which does not re-
quire to study the time-reversed underlying CTMC but to find a model exactly
equivalent to the considered one that is already known to be (or to be not)
quasi-reversible, or whose quasi-reversibility can be decided easier.

We considered the labeled weighted compatibility problem and proved that
both lumpable bisimulation and exact equivalence can be efficiently reduced to
it. Then, we proposed an algorithm for the computation of the labeled weighted
compatibility problem, that generalizes the one presented in [36] to the many
labels case without increasing its time and space complexities. This immediately
provides us algorithms for lumpable bisimulation and exact equivalence having
the same complexities of the one in [36]. While the case of exact equivalence was
not considered in [19], in the case of lumpable bisimulation the new algorithm
improves the time complexity of the one in [19].
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