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IRT Equating Coefficients

Michela Battauz
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via Tomadini 30/A, 33100 Udine, Italy

Knowing the effect of the factors that can influence the variability of the equating

coefficients is an important tool for the development of the linkage plans. This

paper explores the effect of various factors on the variability of IRT equating coef-

ficients. The factors studied are the sample size, the number of common items, the

length of the chain and the possibility of averaging the equating transformations

related to different paths that connect the same two forms. Both asymptotic and

simulations results are provided.

Keywords and Phrases: accuracy, bisector, double linking, equating, multiple link-

ing, Rasch, standard errors.

1 Introduction

Equating is a process that permits the comparison of scores obtained on different test

forms. In this paper, item response theory (IRT) methods for test equating will be con-

sidered under the common-item nonequivalent groups design (Kolen & Brennan, 2004).
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IRT equating methods provide a linear transformation of person and item parameters

and the coefficients of this function are called equating coefficients. The equating coef-

ficients are subject to sampling variation because they are estimated on the basis of the

item parameter estimates. In order to obtain reliable equatings, it is then important to

limit the variability of the equating coefficients.

Several factors are expected to influence the variability of the equating coefficients.

Considering just two forms, some factors are the sample size, the number of common

items or the equating method chosen, where the sample size is defined as the number of

examinees used for the calibration of the item parameters in a test. However, many test-

ing programs equate test forms across several administrations, thus introducing complex

linkage plans that include chains and the connection of forms through different paths.

Two further factors that can influence the variability of the equating coefficients are

then the length of the chain linking two forms and the opportunity of averaging the

scale conversions deriving from different paths. Knowing the impact of these factors on

the variability of the equating coefficients is important in order to design the linkage

plan.

In recent years, asymptotic standard errors of the equating coefficients were derived

(Ogasawara, 2000, 2001; Battauz, 2013b). These works contain simulation results that

provide some insight on the factors that affect the variability of the equating coefficients.

However, analytic results on the factors that have an impact on the variance of the

equating coefficients and simulation studies that investigate in a systematic manner the

effect of these factors are missing in the literature.

This paper investigates the effect of various factors on the variability of equating

coefficients, providing both asymptotic and simulation results. The factors studied are

the sample size, the number of common item, the length of the chain, and averaging the

transformations obtained from different paths. Asymptotic results apply to any IRT

model or equating method used. In simulations, the IRT models considered are the
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Rasch and the two-parameter logistic models, while the equating methods used are the

mean-mean (Loyd & Hoover, 1980) and the Haebara (Haebara, 1980) methods.

The paper is structured as follows. Section 2 summarizes IRT equating methods,

Section 3 provides some asymptotic results on the impact of the factors mentioned on

the standard deviation of the equating coefficients and Section 4 contains the results of

several simulation studies. Finally, a discussion is given in Section 5.

2 IRT test equating

In the three-parameter logistic model (van der Linden & Hambleton, 1997), the proba-

bility of a positive response on item j for a person with ability θ is given by

pj(θ; aj, bj, cj) = cj + (1− cj)
exp {Daj(θ − bj)}

1 + exp {Daj(θ − bj)}
, (1)

where aj is the item discrimination parameter, bj is the item difficulty parameter, cj

is the item guessing parameter and D is a constant typically set to 1.7. Setting the

guessing parameters to zero yields the two-parameter logistic (2PL) model. The Rasch

model is obtained by also fixing the discrimination parameters to one.

When different forms are not administered to the same population, item parameter

and person ability estimates are not comparable because they are expressed on different

measurement scales. The equating process permits the comparison of estimates obtained

from different populations by expressing them on the same measurement scale. The

following equations permit the transformation of parameters of form g − 1 to the scale

of form g

θg = Ag−1,g θg−1 +Bg−1,g, ag =
ag−1
Ag−1,g

and bg = Ag−1,g bg−1 +Bg−1,g, (2)

where Ag−1,g and Bg−1,g are the equating coefficients. These coefficients can be estimated
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by using moments of item parameters (Kolen & Brennan, 2004, §6.3.2), or response

function methods (Kolen & Brennan, 2004, §6.3.3).

Suppose that two forms are linked through a chain of forms that present common

items in pairs. Define the path from form 1 to form l as p = {1, . . . , l}. According to

Battauz (2013b), the equating coefficients transforming the scale of θ1 to that of θl are

given by

A(p) = A1,...,l =
l∏

g=2

Ag−1,g and B(p) = B1,...,l =
l∑

g=2

Bg−1,g Ag,...,l , (3)

where Ag,...,l =
∏l

h=g+1Ah−1, h is the coefficient that links form g to form l.

When two forms are linked through more than one path, scale conversions can be

averaged in order to obtain a single equating relationship. To this end, the symmetry

property, which requires that the inverse function of the average equating function equals

the average of the inverse functions, is a desirable property. However, the mean does

not satisfies this property that is instead satisfied by the bisector method (Holland &

Strawderman, 2011; Battauz, 2013b). The bisector method yields a weighted average of

the equating coefficients

A∗1l =
P∑
p=1

A(p)wp and B∗1l =
P∑
p=1

B(p)wp, (4)

where

wp =
np(1 + A2

(p))
−1/2∑P

b=1 nb(1 + A2
(b))
−1/2

, (5)

P is the number of paths that link forms 1 and l, and np are optional weights associated

with each path. Note that, for the Rasch model, the bisector method is equivalent to

the (weighted) mean because the coefficients A(p) are all equal to 1.

Standard errors of equating coefficients can be computed by using the delta method.

See Ogasawara (2000) and Ogasawara (2001) for direct equating coefficients and Battauz
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(2013b) for chain and bisector equating coefficients.

3 Asymptotic results

In this section some asymptotic results on the influence of the factors affecting the

variability of the equating coefficients will be derived. Only the equating coefficient

B will be considered in this section, because analogous results can be derived for the

equating coefficient A. The sample size will be denoted by n and the number of common

items will be denoted by m. Hence, the number of item parameters that should be

equated between two forms is 2m, as they include both discrimination and difficulty

parameters. For the sake of simplicity, n and m will be assumed constant across forms,

and the length of the chains, l, will be assumed constant for different paths. Let αg be

the vector of item parameters of form g. When item parameters are estimated by using

the marginal maximum likelihood method (Bock & Aitkin, 1981), standard likelihood

theory can be applied. Then, the elements of the asymptotic variance-covariance matrix

of the estimate α̂g, are of order O(n−1).

Consider a chain of forms related to path p = {1, . . . , l}. Let α(p) = (α>1 , . . . ,α
>
l )>

be the vector containing all the item parameters related to the forms that compose the

path and acov(α̂(p)) the asymptotic variance-covariance matrix of the estimate α̂(p).

The j-th item parameter of form g will be denoted by αgj The order of the partial

derivatives of the chain equating coefficients with respect to the item parameters,
∂B(p)

∂αgj
,

can be derived from the formulas given in Ogasawara (2000), Ogasawara (2001) and

Battauz (2013b), and they are either of order O(m−1) or zero. Then, the asymptotic
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order of the variance of the chain equating coefficient is

avar(B̂(p)) =
∂B(p)

∂α>(p)
acov(α̂(p))

∂B(p)

∂α(p)

(6)

=
l∑

g=1

2m∑
j=1

(
∂B(p)

∂αgj

)2

avar(α̂gj) +
l∑

g=1

2m∑
j=1

2m∑
k=1
k 6=j

∂B(p)

∂αgj

∂B(p)

∂αgk
acov(α̂gj, α̂gk) (7)

= O(l)O(m−1)O(n−1) +O(l)O(n−1) (8)

= O(l)O(n−1). (9)

This result shows that the order of the variance of the equating coefficient increases

with the length of the chain and decreases with the sample size. Instead, the number of

common items does not decrease the asymptotic order of the variance of the equating

coefficient. When m tends to infinity, just the first term in equation (7) tends to zero. So,

the asymptotic variance of the equating coefficient tends to the second term in equation

(7), which is a weighted mean of the covariances. However, since the covariances are

smaller than the product of the corresponding standard deviations, the variance of the

equating coefficient is expected to diminish when m augments. This point will be further

investigated by simulation studies in the next section.

The asymptotic order of the variance of direct equating coefficients are a special case

of chain equating coefficients with l = 2.

In case of average equating coefficients, let α = (α(p))p=1,...,P be the vector containing

all the item parameters entering in at least one of the paths averaged, and acov(α̂) the

asymptotic variance-covariance matrix of the estimate α̂. The j-th item parameter of

the g-th form in path p will be denoted by α(p)gj. From the formulas given in Battauz

(2013b), it can be derived that the derivatives
∂B∗

1l

α(p)gj
are either of order O(P−1m−1)

or zero, provided that wp is of order O(P−1). The asymptotic variance of the average
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equating coefficient is then given by

avar(B̂∗1l) =
∂B∗1l
∂α>

acov(α̂)
∂B∗1l
∂α

(10)

=
P∑
p=1

l∑
g=1

2m∑
j=1

(
∂B∗1l
∂α(p)gj

)2

avar(α̂(p)gj)+

P∑
p=1

P∑
b=1

l∑
g=1

l∑
h=1

2m∑
j=1

2m∑
k=1
k 6=j

∂B∗1l
∂α(p)gj

∂B∗1l
∂α(b)hk

acov(α̂(p)gj, α̂(b)hk) (11)

= O(P−1)O(l)O(m−1)O(n−1) +O(l)O(n−1) (12)

= O(l)O(n−1). (13)

The second term of equation (11) of is of order O(l)O(n−1) and not O(l2)O(n−1)

because acov(α̂(p)gj, α̂(b)hk) is not zero only when form g of path p and form h of path b

are the same. In most cases, two paths share only the first and the last form. Analogously

to the previous case, the order of the variance is affected by the length of the chain and

the sample size, while the number of common items does not affect the order of the

variance. The effect of the number of paths averaged is similar to the effect of the

number of common items. Increasing the number of paths averaged does not affect

the asymptotic order of the average equating coefficient. When P tends to infinity the

variance tends to the second term in equation (11), that is a weighted mean of the

covariances of the item parameters. However, since the covariances are smaller than the

product of the corresponding standard deviations, the variance of the equating coefficient

is expect to diminish for increasing values of m and P . The reduction will be stronger

when the correlation between the item parameter estimates is small.
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4 Simulation results

The variability of the equating coefficients was also investigated by means of several

simulations studies. The factors that were considered are the sample size, the number

of common items, the length of the chain, the equating method used, and averaging

the equating coefficients by using the bisector method. Three different linkage plans

were designed to understand the effect of these factors on the variability of the equating

coefficients and they are represented in Figure 1.

[Figure 1 about here.]

Data were generated according to the Rasch and the 2PL models. The sample size

considered for each form was n=250, 500, 1000, 2000, 4000 and 8000, and was taken

constant across forms in the same simulation study. The number of common items were

5, 10, 15 or 20, while the length of the chain linking two forms varies from 2 to 10.

The equating methods used were the mean-mean and the Haebara methods. Since the

two methods gave very similar results (the lowest value of the correlation coefficient

of the equating coefficients estimates is 0.96), only the results obtained with the mean-

mean method are shown here. For each setting, 500 data sets were generated. Data were

generated using the R software (R Development Core Team, 2013). The item parameters

were estimated using the R package ltm (Rizopoulos, 2006) and the equating coefficients

were computed using the R package equateIRT (Battauz, 2013a). In the following, the

results obtained for each linkage plan will be presented.

Results for the linkage plan 1. The linkage plan 1 (Figure 1a) is intended to study

the effect of all factors mentioned on the variability of the equating coefficients for a

single chain. There are 10 forms and each form is composed by 40 items and presents

5, 10, 15 or 20 items in common with adjacent forms. Person ability parameters were

generated from a normal distribution with mean equal to -0.25 for odd forms and 0.25 for
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even forms. The standard deviation was taken equal to 1 for the Rasch model, while for

the 2PL model the standard deviation was set to 1 for odd forms and 1.2 for even forms.

In order to obtain items with difficulties aligned with person abilities, item parameters

were assigned equispaced values in the range obtained by adding and subtracting 0.5

from the mean of person parameters. The discrimination parameters, in the 2PL model,

were generated from the uniform distribution with range [0.8, 1.2]. Form 1 was equated

to forms 2, 4, 6, 8 and 10 to produce equatings with different lengths of the chain.

Figures 2 and 3 represent the standard deviation of the estimated B equating coeffi-

cient for the Rasch model. Figure 2 shows that increasing the number of common items

the standard deviation of the estimated B equating coefficient decreases and that the

reduction is larger when the number of common items is small. Figure 3 shows that the

length of the chain is positively correlated with the standard deviation of the equating

coefficient. Nevertheless, both figures show that the stronger effect can be imputed to

the sample size. In fact, the lowest values of the standard deviation of the equating

coefficient can be achieved only when the sample size is large. Furthermore, with large

samples the effect of the number of common items and the length of the chain is strongly

reduced.

The effects of these factors are consistent with the findings of Section 3, confirming

that increasing the number of common items and the sample size reduces the variability

of the equating coefficients, while augmenting the lenght of the chain yield larger vari-

ability. Simulations confirm also that the number of common items has a limited effect

on the standard deviation of the equating coefficients and that increasing this factor

does not reduce the variability to zero.

[Figure 2 about here.]

[Figure 3 about here.]

To better understand the influence of these factors on the variability of the estimated
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B coefficient, some regression models were estimated. The dependent variable is the

standard deviation of the equating coefficient, while the independent variables were the

number of common items and the length of the chain. A different regression model

was fitted for each sample size. Despite the number of observations for each regression

is small, and equals to 20, the analysis comply with the purpose of quantifying the

average effect of each factor. The number of common items was transformed using the

inverse function in order to better represent the behavior of this factor. In order to

make the results more meaningful, the length of the chain was centered at 2, so that the

intercept represents the standard deviation of the equating coefficient when m tends to

infinity and l = 2. Table 1 shows the regression coefficients estimates. The results of

the regression models confirm that the sample size presents the biggest influence and

that the effect of the other factors disappears for very large samples. For example, the

effect of the number of common items, m, when the chain length, l, is equal to 2, is

given by 0.2059/m for n = 250. This means that, keeping l = 2, when m = 1 the

standard deviation is expected equal to 0.0938 + 0.2059 = 0.2997, when m = 2 the

standard deviation is 0.0938 + 0.2059/2 = 0.1968, when m = 3 the standard deviation

is 0.0938 + 0.2059/3 = 0.1624 and so on. Increasing the sample size from 200 to 8000

this effect is reduced, varying from 0.2059 to 0.0385. The effect of l is instead linear.

This means that, for m tending to infinity, every form added to a chain leads to an

average increment of 0.0039 to the standard deviation, when n = 250. Increasing the

sample size to 8000, this effect is gradually reduced from 0.0039 to 0.0009. The positive

value of the interaction between 1/m and l − 2 indicates that the effect of m is higher

for larger values of l and that the effect of l is higher for smaller values of m. Consider

for example the case n = 250. The effect of m is (0.2059 + 0.0833 · (l − 2))/m, while

the effect of l is (0.0039 + 0.0833/m) · (l − 2). The lowest value of the coefficients of

determination of the regression models is 0.97, indicating a very good fit, though this

value should be considered taking into account the small number of observations.
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[Table 1 about here.]

Figures 4, 5, 6 and 7 represent the standard deviation of the A and B equating

coefficients for the 2PL model with respect to the number of common items and the

length of the chain. The results of the regression models, analogous to those fitted

for the previous case, are given in Tables 2a and 2b. The graphs and the regression

model estimates show that the influence of the factors studied on the standard deviation

of the equating coefficients for a 2PL model is very similar to what emerged for the

Rasch model. In particular, the regression coefficients estimated for the B equating

coefficient are very similar to those obtained for the B equating coefficient for the Rasch

model. Comparing the coefficients obtained for the A and B equating coefficients, the

intercept is smaller while the other parameters tend to be greater for coefficient A. This

indicates that the effect of the number of common items and the length of the chain is

slightly higher for the A equating coefficient, thus permitting to reach lower values of the

standard deviation. Anyway, these findings confirm that the number of common items

and the sample size present a negative effect on the standard deviation of the equating

coefficients, while the length of the chain presents a positive effect. The effect of n and

m is stronger for smaller values of them, while l presents a linear effect. The effect of

all these factors is attenuated when the standard deviation of the equating coefficient is

reduced by the effect of another factor.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Table 2 about here.]
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Results for the linkage plans 2 and 3. The linkage plans 2 and 3 (Figure 1b

and 1c) are designed to observe the effect of averaging scale conversions obtained from

different paths.

Relative to the second linkage plan, the person parameters were generated from a

normal distribution with mean equal to -0.25 for form 1, equal to 0 for forms from 2

to 5, and equal to 0.25 for form 6. The standard deviation was equal to 1 for every

form for the Rasch model, while for the 2PL model the standard deviation was equal

to 1 for forms from 1 to 5 and equal to 1.2 for form 6. Each form is composed by

80 items and item parameters were generated with the same mechanism used in the

previous simulation study. The parameters of form 1 were converted to the scale of

form 6 through the four different paths going through forms 2, 3, 4 or 5. Average

equating coefficients were obtained using the bisector method. In this case, weighting

the paths as proposed in Battauz (2013b) gives the same results of the unweighted

bisector because the various paths are perfectly symmetric. For this reason only the

results obtained with the unweighted bisector are reported.

Figure 8 regards the Rasch model. On the top of the figure we can find a plot of

the standard deviations of the B equating coefficient with 5 common items for path

{1, 2, 6} against the standard deviations of the B coefficient with 10, 15 and 20 common

items for the same path. On the bottom of the figure the standard deviations of a single

path are plotted against the standard deviations of the average B coefficient obtained

by using 2, 3 or 4 paths. For each plot there are 6 points, relative to the various sample

sizes. For each plot, a regression model with intercept forced to zero was fitted. The

regression line is drown on the plot and the estimated coefficient β̂ is reported.

Comparing the regression coefficients on the top of the figure with those on the bot-

tom of the figure, it is possible to observe very similar values. This shows that increasing

the number of common items in a given chain, or averaging the equating coefficients

obtained from different chains, yield very similar results in terms of reduction of the
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standard deviation of the equating coefficient, thus confirming the results presented in

Section 3. In fact, the asymptotic results obtained showed that the number of com-

mon items and the number of chains averaged have the same effect on the order of the

asymptotic variance of the equating coefficients.

Figure 9 represents the regression coefficients estimates obtained by regressing the

standard deviation of the average equating coefficient on the standard deviation of a

single equating coefficient. The regression coefficients are plotted against the number

of common items and different lines refer to the number of chains averaged. The values

represented for 5 common items are those reported on Figure 8. The goodness of fit was

very good as indicated by the coefficients of determination that were all very close to

one. The figure shows that the relative reduction of the standard deviations is larger for

smaller values of the common items. It shows also that increasing the number of chains

averaged produces smaller standard deviations, but this effect is attenuated when the

number of common items is high.

[Figure 8 about here.]

[Figure 9 about here.]

Figures 10 and 11 represent the plots of the standard deviations of the A and B

equating coefficients for the 2PL model. Analogously to Figure 8, on the top of the

figures the standard deviations for a single path obtained with 5 common items are

plotted against the standard deviations with 10, 15 and 20 common items. On the

bottom of the figures the standard deviations for a single path obtained with 5 common

items are plotted against the standard deviations of the average coefficients using 2, 3 or

4 chains and 5 common items. The regression lines with zero intercept are drown on the

figures and the regression coefficient is reported. The figures show that the reduction of

the standard deviation of the equating coefficients obtained by adding common items or

by averaging the coefficients from different paths is extremely similar. Furthermore, it
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is possible to observe that the equating coefficient A presents a larger gain with respect

to the equating coefficient B.

The regression coefficients reported on the bottom of Figures 10 and 11 for the

average coefficients are represented in Figure 12, together with those obtained for 10, 15

and 20 common items. These figures show that coefficient A presents a larger reduction

and that the gain is attenuated for greater values of the common items.

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

In the third linkage plan, form 3 is connected to form 1 directly or using a chain

going through form 2. So, the parameters of form 1 were converted to the scale of form

3 using the direct and the indirect links. The equating coefficients obtained were then

averaged using the bisector and the weighted bisector method. Weights were determined

as proposed in Battauz (2013b). In this linkage plan, every form is composed by 40 items

and shares 5, 10, 15 or 20 items in common with all other forms. Person parameters

were generated from a normal distribution with means equal to -0.25, 0 and 0.25 for

forms from 1 to 3 and standard deviations equal to 1 for the Rasch model and equal to 1,

1 and 1.2 for the 2PL model. Figures 13 and 14 show the results obtained. These figures

represent the regression coefficients obtained by regressing the standard deviations of

average equating coefficients on the standard deviations of the direct equating coefficient.

For each regression, the intercept was forced to zero and the fitting was extremely good

(the coefficients of determination were very close to one). It is possible to observe that

the B equating coefficient presents very similar results for the Rasch model (Figure 13)

and the 2PL model (right panel of Figure 14). Consistently with the previous findings,

the A equating coefficient presents a larger gain (left panel of Figure 14). All figures
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show that the weighted bisector produces an higher reduction, though the difference is

not very important. This is due to the fact that the two paths that were averaged do

not present equating coefficients with very different variability.

[Figure 13 about here.]

[Figure 14 about here.]

Comparing the second and the third linkage plans, it is possible to observe that the

relative reduction of the standard deviation of the equating coefficients is smaller for

the latter. This is due to the fact that the relative reduction is computed with respect

to the direct link in the third linkage plan. The first linkage plan already showed that

for direct links (l = 2) the reduction that can be attained is small (see for example

Figure 2). Furthermore, in the third linkage plan the gain is even smaller because the

direct link was averaged with a chain of length 3, that presents larger variability than

the direct link.

5 Discussion

This paper provides asymptotic and simulations results on the effect of the factors that

can influence the variability of the IRT equating coefficients. These findings constitute a

useful information for the development of linkage plans, so that the sampling variability

can be controlled together with the other practical issues that should be taken into

account.

This work focuses on the standard deviation of the equating coefficients and does

not consider the bias. An alternative option would have been the determination of the

mean square error of the equating coefficients. Since the equating coefficients obtained

with the mean-mean and the Haebara methods are nearly unbiased (see for example

Ogasawara, 2001), in this paper it was preferred to show only the results on variability.
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According to the findings of this article, in order to obtain very precise equating

coefficients, it is necessary to have large samples. With small samples, the number of

common items and the length of the chain can assume a substantial role. The effect

of adding a new path to link two forms and averaging the scale conversions was found

similar to the effect of adding further common items to an existing path. Anyway, both

these factors present a limited effect and the increment of them cannot make the stan-

dard deviation of the equating coefficients tend to zero. However, the simulations shown

here do not account for departures from model assumptions. For example, the effect

of item parameter drift was studied in Wells et al. (2002), who found that increasing

the percentage of drifting items yields larger differences in person parameter estimates.

In this respect, having a larger number of common items can attenuate the effect of

fluctuations of a subset of item parameters. Further simulation studies, not presented

here, show that the same effect can be achieved by averaging the scale conversions of

different paths. In fact, the effect of item parameters drift in one path can be attenuated

by the information provided by other paths that link the same forms. Adding further

connections between two forms can be favorable because some cause of item parameter

drift, like security breaches or changes in examinees demographics, are likely to interest

more than one item in the same administration, while a new path could be unaffected

by these problems. In conclusion, although the number of common items has a limited

effect on the variability of equating coefficients, it is fundamental to maintain a certain

number of common items to ensure robustness to departures from assumptions. Fur-

thermore, it should be taken in consideration the fact that the number of common items

have an important effect on the variability of the equating coefficients when the sample

size is small, especially with long chains.
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Figure 1: Linkage plans of the simulation studies.

(a) Linkage plan 1.

(b) Linkage plan 2. (c) Linkage plan 3.
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Figure 2: Standard deviation of equating coefficient B against the number of common

items for the Rasch model.
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Figure 3: Standard deviation of equating coefficient B against the length of the chain

for the Rasch model.
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Figure 4: Standard deviation of equating coefficient A against the number of common

items for the 2PL model.
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(Â
)

● ● ● ●

●
● ● ●

●

● ● ●

●

● ● ●

●

●
● ●

5 10 15 20

0.
05

0.
15

0.
25

n = 4000

m

S
D

(Â
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Figure 5: Standard deviation of equating coefficient A against the length of the chain

for the 2PL model.
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Figure 6: Standard deviation of equating coefficient B against the number of common

items for the 2PL model.
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Figure 7: Standard deviation of equating coefficient B against the length of the chain

for the 2PL model.
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Figure 8: Comparison of the reduction of the standard deviation of the B equating

coefficient for the Rasch model obtained by increasing the number of common items (on

the top) and by averaging different chains with the bisector method (on the bottom).
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The solid line represents the regression line with estimated coefficient β̂.

26



Figure 9: Estimated coefficients β̂ representing the reduction of the standard deviation

of the B equating coefficient for the Rasch model obtained by averaging different chains

with the bisector method for the second linkage plan.
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Lines refer to different number of chains averaged: dashed line = 2, dotted line = 3, dotdash line = 4.
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Figure 10: Comparison of the reduction of the standard deviation of the A equating

coefficient for the 2PL model obtained by increasing the number of common items (on

the top) and by averaging different chains with the bisector method (on the bottom) for

the second linkage plan.
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The solid line represents the regression line with estimated coefficient β̂.
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Figure 11: Comparison of the reduction of the standard deviation of the B equating

coefficient for the 2PL model obtained by increasing the number of common items (on

the top) and by averaging different chains with the bisector method (on the bottom) for

the second linkage plan.
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Figure 12: Estimated coefficients β̂ representing the reduction of the standard deviation

of the equating coefficients for the 2PL model obtained by averaging different chains

with the bisector method for the second linkage plan.
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Figure 13: Estimated coefficients β̂ representing the reduction of the standard deviation

of the B equating coefficient for the Rasch model obtained by averaging different chains

with the bisector method in the third linkage plan.

●

●
●

●

5 10 15 20

0.
92

0.
94

0.
96

0.
98

m

S
D

(B̂
b

is
)

S
D

(B̂
1,

 3
)

●

●

●

●
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Figure 14: Estimated coefficients β̂ representing the reduction of the standard deviation

of the equating coefficients for the 2PL model obtained by averaging different chains

with the bisector method in the third linkage plan.

●

●

●

●

5 10 15 20

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

m

S
D

(Â
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Table 1: Regression coefficients for the standard deviation of the B coefficient for the

Rasch model.

n 250 500 1000 2000 4000 8000
Intercept 0.0938 0.0649 0.0490 0.0345 0.0235 0.0167
1/m 0.2059 0.1796 0.0903 0.0606 0.0510 0.0385
l − 2 0.0039 0.0018 0.0018 0.0013 0.0015 0.0009
1/m · (l − 2) 0.0833 0.0606 0.0393 0.0282 0.0159 0.0125

Table 2: Regression coefficients for the standard deviation of the equating coefficients

for the 2PL model.

(a) equating coefficient A

n 250 500 1000 2000 4000 8000
Intercept 0.0594 0.0420 0.0312 0.0204 0.0153 0.0103
1/m 0.3172 0.2255 0.1276 0.1165 0.0796 0.0535
l − 2 0.0060 0.0050 0.0026 0.0026 0.0012 0.0013
1/m · (l − 2) 0.0884 0.0536 0.0459 0.0243 0.0219 0.0117

(b) equating coefficient B

n 250 500 1000 2000 4000 8000
Intercept 0.0975 0.0668 0.0442 0.0346 0.0231 0.0176
1/m 0.2024 0.1569 0.1276 0.0551 0.0519 0.0253
l − 2 0.0036 0.0023 0.0021 0.0013 0.0005 0.0003
1/m · (l − 2) 0.0755 0.0538 0.0344 0.0231 0.0215 0.0156
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