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Abstract

This paper proposes the use of the integrated likelihood for inference on the mean effect

in small sample meta-analysis for continuous outcomes. The method eliminates the nuisance

parameters given by variance components through integration with respect to a suitable

weight function, with no need to estimate them. The integrated likelihood approach takes

into proper account the estimation uncertainty of within-study variances, thus providing

confidence intervals with empirical coverage closer to nominal levels than standard likelihood

methods. The improvement is remarkable when either i) the number of studies is small to

moderate or ii) the small sample size of the studies does not allow to consider the within-

study variances as known, as common in applications. Moreover, the use of the integrated

likelihood avoids numerical pitfalls related to the estimation of variance components which

can affect alternative likelihood approaches. The proposed methodology is illustrated via

simulation and applied to a meta-analysis study in nutritional science.

Key words: Frequentist inference; Integrated likelihood; Meta-analysis; Nuisance parame-

ters; Small sample inference.
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1 Introduction

Meta-analysis is a diffuse approach to combine evidence from different studies about the

same issue of interest. The usage of meta-analysis pervades almost any area of research, such

as, for example, biological sciences, medicine, epidemiology and, more recently, economics

and behavioral investigations (Roberts, 2005; Sutton & Higgins, 2008).

Meta-analysis is typically performed by specifying an appropriate random effects model,

with the random component associated to the different studies providing summary infor-

mation about the common issue of interest. Inference is then carried out by relying on the

procedure by DerSirmonian & Laird (1986), traditionally, or on more recent likelihood ap-

proaches developed either from a frequentist or a Bayesian perspective (van Houwelingen et

al., 2002). The reliability of the inferential conclusions is strictly related to the amount of

information available from the meta-analysis studies. This paper investigates the problem of

small sample inference as a consequence of small sample size for the studies included in the

meta-analysis or as a consequence of a small number of studies recruited in the meta-analysis.

A common strategy in meta-analysis assumes that the within-study variances provided

by each study are known and equal to the variances associated to the estimates of the mean

effect (van Houwelingen et al., 2002, Section 3). The justification is that the sample size of

each study is large enough to guarantee a good estimate of the true within-study variance,

with little or no impact on the results. Actually, such an assumption is justifiable in case of

large studies, as, for example, many medical or epidemiological investigations. Conversely,

standard inference performed on studies of small sample size can provide misleading results,

if the uncertainty related to variance estimation is not properly taken into account. Several

authors pointed out the relevance of the problem, e.g., Hardy & Thompson (1996), Brock-

well & Gordon (2001), Sidik & Jonkman (2007), Sánchez-Meca & Maŕın-Mart́ınez (2008),

with the suspicion that consequences could affect the variance estimator of the mean effect

and related inferential procedures. Simulations by Böhning et al. (2002) illustrate that the

DerSimonian and Laird estimator of the between-study variance can be prone to consider-
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able bias when estimates of the within-study variances are employed and Jackson & Bowden

(2009) show that changes in the distribution of the within-study variances can notably af-

fect the performance of the quantile approximation method by Brockwell & Gordon (2007).

Several solutions have been proposed in the literature to face the problem. Böhning et al.

(2002) rely on population-averaged study specific variances, although this is not generally

applicable. For meta-analysis of standardized differences, Malzahn et al. (2000) take into

account within-study variance estimates when proposing a nonparametric estimation of the

between-study variance, while Di Gessa (2008) investigates the use of shrinkage approaches

for variance estimation. Johnson & Huedo-Medina (2013) show the advantages of using the

standardized mean difference in place of the unstandardized version as a tool to incorporate

within-study variances directly in the effect measure. The problem of the estimation of the

within-study variances has been recently faced by Sharma & Mathew (2011) with reference

to the consensus mean in inter-laboratory studies. Although Sharma & Mathew (2011) never

directly refer to meta-analysis and related terminology, the framework they focus on is anal-

ogous. For the purpose of investigation on the consensus mean in inter-laboratory studies,

Sharma & Mathew (2011) propose to improve on likelihood results by applying higher-order

asymptotics via second-order likelihood ratio statistic (Skovgaard, 1996). Nevertheless, the

approach can suffer from some computational problems, as illustrated in this paper, requiring

a lot of care for its application.

Small sample inference in meta-analysis can also arise as consequence of the limited

number of studies recruited, a concern which has been raised by several authors in the

literature (e.g., Hardy & Thompson, 1996; Normand, 1999; van Houwelingen et al., 2002).

Within a likelihood-based approach, for example, the small number of studies can give rise

to inaccurate inferential conclusions when relying on first-order approximations, such as the

χ2 distribution for the likelihood ratio statistic. Guolo (2012) exploits the theory of higher-

order asymptotics (Severini, 2000) to refine first-order likelihood solutions in meta-analysis,

when the within-study variances are assumed to be known. The attention is paid to the
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Skovgaard’s second-order statistic, which is implemented within the R (R Core Team, 2015)

package metaLik (Guolo & Varin, 2012).

In this paper we consider the problem of small study inference in meta-analysis for con-

tinuous outcomes when information is available as summary data. We suggest to perform the

meta-analysis by using the integrated likelihood (Severini, 2000, Section 8.4). The approach

replaces the elimination of the nuisance parameters given by variance components through

maximization with their elimination by integration. We show that this method provides a

good accuracy of inferential results and it is free of numerical pitfalls. The proposed ap-

proach is evaluated through a simulation study covering scenarios of practical interest and

it is applied to a meta-analysis study in nutritional science.

2 Likelihood inference

Consider a meta-analysis of n independent studies about a common effect β. Let Yi be the

summary measure of β obtained from study i, i = 1, . . . , n, such as, for example, the mean

difference. The classical model for meta-analysis is the random effects model (DerSirmonian

& Laird, 1986)

Yi = βi + εi, εi ∼ Normal(0, σ2
i ),

where βi is the random effects component associated to each study,

βi = β + ui, ui ∼ Normal(0, τ 2).

Variance components are the within-study variances σ2
i , i = 1, . . . , n, and the between-study

variance τ 2. Thus, marginally, Yi ∼ Normal(β, σ2
i + τ 2). The traditional approach to meta-

analysis is based on the assumption that each within-study variance σ2
i is known and equal

to the variance estimate reported in the i-th study. This assumption is justifiable when

the sample size of each study included in the meta-analysis is large. Otherwise, inference

can provide misleading results, if the uncertainty related to the variance estimation is not

properly taken into account. Let S2
i denote the measure of the within-study variance σ2

i
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obtained from study i having fi degrees of freedom, with S2
i following a scaled chi-square

distribution, S2
i fi/σ

2
i ∼ χ2

fi
. For example, fi is equal to ni − 1 where ni is the sample size

of each study, in case of a single group or a paired t test, or fi is equal to ni1 + ni2 − 2 in

case of a two-group comparison, with ni1 and ni2 denoting the sample size of each group in

study i. When the outcome is derived from the analysis of covariance, then fi = ni− pi− 1,

if the number of observations ni and the number of covariates pi for study i are available.

According to the specifications above, the log likelihood function for the (n + 2)-

dimensional parameter vector θ = (β, τ, σ1, . . . , σn)T is

`(θ) =
n∑
i=1

{
−1

2
log(σ2

i + τ 2)− 1

2

(yi − β)2

σ2
i + τ 2

− fi
2

logσ2
i −

fis
2
i

2σ2
i

}
. (1)

Inferential interest is usually focused on the mean effect β, while variance components are

considered as nuisance parameters. Accordingly, we can partition θ into θ = (β,λ)T , where

λ = (τ, σ1, . . . , σn)T . Let θ̂ = (β̂, λ̂)T denote the maximum likelihood estimate (MLE) of θ

and let λ̂β denote the constrained MLE of λ for a given value of β. Let `P(β) indicate the

corresponding profile log likelihood for β, `P(β) = `(β, λ̂β). Inference on β can be based on

the signed profile log likelihood ratio statistic

rP(β) = sgn(β̂ − β)

√
2
{
`P(β̂)− `P(β)

}
,

which is asymptotically distributed as a standard normal up to first-order error, under mild

regularity conditions (Severini, 2000, Section 4.4).

Despite the feasibility, a serious drawback of first-order asymptotic results is that they

can be inaccurate in case of large dimension of the nuisance parameter λ compared to the

available information. In meta-analysis, this corresponds to either small study sizes, which

leads to imprecise estimation of the within-study variances, or to a small number of studies,

which leads to imprecise estimation of the between-study variance. To face the problem, it

is preferable to resort to the theory of likelihood asymptotics (Severini, 2000), which makes

several solutions available for the task.
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Skovgaard (1996) proposes to base inference on a scalar component of interest on statistic

r∗P(β) = rP(β) +
1

rP(β)
log

u(β)

rP(β)
, (2)

which is asymptotically standard normally distributed up to second-order error. The compo-

nent u(β) included in (2) is a function of the observed and the expected information matrices

and of covariances of likelihood quantities, evaluated at the MLE and the constrained MLE.

Skovgaard’s statistic is well defined for a wide class of sufficiently regular parametric models

and it is invariant with respect to interest-respecting re-parameterizations. Guolo (2012)

investigates the applicability of Skovgaard’s statistic in meta-analysis and meta-regression

problems, following the convention of assuming known within-study variances. The approach

is satisfactory in improving on the accuracy of standard first-order likelihood analysis when

the sample size n is small to moderate. Sharma & Mathew (2011) examine the performance of

Skovgaard’s statistic in inter-laboratory studies where interest relies on the consensus mean,

assuming unknown different within-laboratory variances. The simulation studies performed

highlight a better accuracy of results based on r∗P with respect to its first-order counter-

part. The computational difficulties and numerical instabilities encountered by Skovgaard’s

approach in case of small sample sizes (see Section 5) are mainly due to the fact that the

nuisance parameters are eliminated via maximization. The same difficulty is also shared

by alternative solutions like the modified profile likelihood (Severini, 2000, Chapter 9). For

an illustration, see Vangel & Rukhin (1999), where an example of the profile likelihood for

(β, τ)T exhibiting some local maxima is provided.

A different route is provided by the integrated likelihood (Severini, 2007), which elim-

inates the nuisance parameters by integration of the likelihood with respect to a weight

function. For the model of interest here, the integrated log likelihood function for β is

`Int(β) = log

∫
Λ

L(θ)π(λ|β)dλ,

where L(θ) = exp{`(θ)}, π(λ|β) denotes a weight function for λ for fixed β and λ ∈ Λ. Once

the integrated log likelihood is obtained, it can be used as a standard log likelihood function
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for inference. For example, let β̄ be the estimate of β obtained from the maximization of

`Int(β). Then, inference on β can be performed via the signed integrated log likelihood ratio

statistic (Severini, 2010)

rInt(β) = sgn(β̄ − β)
√

2
{
`Int(β̄)− `Int(β)

}
. (3)

Advantages of the integrated likelihood approach include better accuracy of the inferential

results if compared with those from rP as well as reduced numerical instabilities in case

of large dimension of λ (Severini, 2010). The main drawback is the specification of the

weight function π(λ|β). Severini (2007) provides several suggestions about how to choose

the weight function in order to make the integrated likelihood share the frequentist properties

of a genuine likelihood function and be suitable for non-Bayesian inference. Possible choices

are discussed in Section 3.

3 Integrated likelihood in meta-analysis

In our context, the parameter space for λ = (τ, σ1, . . . , σn)T is Λ = [0,∞)× (0,∞)n, and

the integrated log likelihood has the following form

`Int(β) = log

∫ ∞
0

∫ ∞
0

· · ·
∫ ∞

0︸ ︷︷ ︸
n times

L(β, τ, σ1, . . . , σn)π(τ, σ1, . . . , σn|β)dσ1 · · · dσndτ. (4)

The usage of (4) requires to overcome two main obstacles. The first one is the choice of

the weight function for the nuisance parameter vector λ, for fixed β. The second obstacle

pertains to the computation of `Int(β).

For the choice of the weight function for λ, we can follow the recommendations by Sev-

erini (2007, 2010). He advocates the use of an orthogonal parameterization of the nuisance

parameters and the consequent choice of the weight function for λ free of β. From a fre-

quentist perspective, he shows that the best inferential results are achieved when the model

parameterization is expressed so that the nuisance parameter is strongly unrelated to β. A
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nuisance parameter φ is strongly unrelated to β if

E{`λ(β,λ); β0,λ0}
∣∣
(β0,λ0)=(β̂,φ)

= 0,

where `λ is the score vector for λ and the expected value is computed before the evaluation

at (β0,λ0)T = (β̂,φ)T . The function φ = φ(β,λ; β̂) defines a data-dependent parameteriza-

tion and φ is called the zero-score-expectation parameter. When such a parameterization is

employed, the resulting integrated likelihood is a high-order approximation to the modified

profile likelihood (Severini, 2000, Section 9.3), which achieves optimal elimination of the nui-

sance parameters (Severini, 2007). With the zero-score-expectation parameterization, the

choice of the weight function for the nuisance parameter becomes largely inconsequential.

With reference to model (1), the nuisance parameter vector λ is orthogonal to β, i.e., the

corresponding βλ-block of the expected Fisher information is nil. Moreover, parameters β

and σi are also strongly unrelated; indeed, σ̂2
i
.
= s2

i . Let φ = (ζ, δ1, . . . , δn)T , then

τ 2 = ζ2 + (β̂ − β)2, (5)

δi = σi, i = 1, . . . , n.

Details about the derivation of the zero-score-expectation parameterization are reported in

the Supporting Information.

Once a strongly unrelated parameterization for the nuisance parameters is obtained, the

weight function for ζ and σ1, . . . , σn can be chosen with some liberty. A simple choice is

given by separate weights for all the components of φ, with π(ζ) ∝ 1 and π(σi) ∝ 1/σki , for

fixed k. In the following, we set k = 1, after checking that different choices of k would lead

to similar results. The choice of the weight function, coupled with the algebraic form of the

score function for β, `β(β,λ), implies that the signed integrated log likelihood ratio statistic

rInt(β) in (3) is asymptotically standard normally distributed with high accuracy (Severini,

2010, Section 5). The latter property is shared also by the integrated likelihood computed

using the original parameterization, provided that similar weights, free of β, are adopted.
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Computation of `Int(β) is less demanding than it might seem at first sight. Indeed,

under the assumption of independent meta-analysis information, L(β, τ, σ1, . . . , σn) in (4)

is the product of n similar terms, which can be readily recovered from formula (1). The

aforementioned choice of the weight function for φ with separate components implies that

`Int(β) can be written as

`Int(β) = log

∫ ∞
0

{
n∏
i=1

gi(β, ζ)

}
π(ζ)dζ, (6)

where gi(β, ζ) =
∫∞

0
L(β, ζ, σi)π(σi)dσi and L(β, ζ, σi) is the likelihood term for study i. In

other words, each of the n integrals gi(β, ζ) as well as the main integral in (6) amount to

one-dimensional integrals, that can be approximated via standard numerical methods. In

our study, the inner integrals for gi(β, ζ) in (6) is computed by adaptive Gauss-Kronrod

quadrature, using the C function Rdqags, which is the port to the R library of C functions

of the QUADPACK routine dqags (Piessens et al., 1983). The outer integral is computed by

a standard Gaussian quadrature. The resulting integrated log likelihood is quite a smooth

function of β in all the experiments performed and its maximization by means of a derivative-

free optimizer is usually not an issue.

4 Cocoa intake and blood pressure reduction

Increasing consumption of sources of polyphenols is recommended by physicians as coad-

jutant therapy to face hypertension and prevent cardiovascular risks. Taubert et al. (2007)

perform a meta-analysis of randomized controlled studies to evaluate blood pressure-lowering

effects of cocoa and tea intake, which represent a high proportion of total polyphenol intake

in Western countries. We focus on a portion of the data about the effectiveness on lowering

diastolic blood pressure after two-weeks of cocoa consumption. Data refer to five studies,

with sample size ranging from 21 to 41. The estimate of the effect provided by each study

is the mean difference in diastolic blood pressure before and after the cocoa consumption.

Figure 1, left panel, reports the forest plot of the data, that is, a graphical display of the
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information provided by each study in the meta-analysis. Information includes the estimated

mean difference from each study together with the associated 95% confidence interval. The

summary estimate obtained from the likelihood analysis based on rP is added.

Figure 1 here

Likelihood approach provides an estimate of the treatment effect equal to -2.799 (s.e. 1.009),

which is found to be significant, given the P -value equal to 0.030 associated to rP. The asso-

ciated 95% confidence interval for the parameter is (−5.262,−0.397). A comparable result

is obtained by the standard likelihood approach assuming known within-study variances.

The integrated likelihood approach based on the zero-score-expectation parameterization

suggests a non-significant effect of cocoa consumption on lowering diastolic blood pressure,

with the estimate of the treatment effect equal to -2.805 (s.e. 1.270) and the P -value for the

effectiveness of the treatment equal to 0.071. The integrated likelihood accounts for the vari-

ability of the estimated within-study variances and the associated 95% confidence interval

for the parameter is wider, equal to (−6.027, 0.349). The profile log likelihood function and

the integrated log likelihood function are compared in Figure 1, right panel.

5 Simulation studies

The performance of the integrated likelihood has been investigated via simulation.

5.1 Experiment based on the design of cocoa data

As a first experiment, we consider the same setting of the cocoa data and generate 10,000

data sets from the model of Section 2, with parameters equal to the maximum likelihood

estimates, namely, β = −2.8, τ 2 = 4.27, (σ2
1, . . . , σ

2
5)T = (0.34, 0.86, 1.37, 1.38, 0.29)T . Infer-

ence on β is based on the signed profile log likelihood ratio statistic rP, Skovgaard’s statistic

r∗P and their counterparts assuming known within-study variances, rP,k and r∗P,k, respec-

tively. The solutions are compared to the following specifications of the signed integrated
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log likelihood ratio statistic:

• rInt, based on (4) expressed in the original parameterization, with π(τ) ∝ 1 and π(σi) ∝

1/σi;

• r̃Int, based on the re-parameterized model using the zero-score-expectation parameter

φ, with π(ζ) ∝ 1 and π(σi) ∝ 1/σi;

• r̄Int, based on the re-parameterized model using the zero-score-expectation parameter

φ, with π(ζ) ∝ 1 and π(σi) ∝ 1/σi. Here β̂ in ζ is replaced by the maximizer of (4)

expressed in the original parameterization.

The latter choice has the virtue of not requiring the MLE of β, thus bypassing all the

numerical problems related to likelihood maximization.

The simulation studies evaluate the empirical one-sided rejection rates for the competing

approaches according to different nominal levels. Results are reported in Table 1.

Table 1

The standard first-order statistic rP provides empirical one-sided rejection rates which are far

from the target levels, with coverages of confidence intervals substantially below the nominal

level. An improvement over first-order results is provided by Skovgaard’s statistic, although

such an amelioration is not free of pitfalls. From a practical point of view, the evaluation of

r∗P suffers from numerical instabilities when estimating the between-study variance in about

10% of the simulation trials. In most of these cases, either the MLE or the constrained MLE

of τ is close to zero and the λλ-part of the observed Fisher information matrices entering the

definition of the adjustment u(β) in (2) fails to be definite positive. In such cases r∗P is not

computable. The same problems are also experienced by Sharma & Mathew (2011) when

applying Skovgaard’s statistic in inter-laboratory studies with unknown within-laboratory

variances. They suggest some practical measures to face the computational difficulties related

to the evaluation of r∗P in case of limited data. For example, the observed information matrix,
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when not positive definite, can be substituted with a positive quantity, e.g., the expected

information matrix. After such a careful computation, the resulting statistic is always well

defined, though the theoretical consequences of the various modifications are not clear. As

a final note, the r∗P statistic can be unstable when the value under testing is close to β̂, thus

requiring some further adjustments. See, for example, the discussion in Fraser et al. (2003).

The results provided by r∗P,k are much more satisfactory than those from rP and rP,k,

showing that for study size between 21 and 41 the effect of taking the within-study variances

as fixed is minor.

The use of the integrated likelihood approach provides a substantial improvement of the

results accuracy with respect to rP, and overall it is the most accurate solution. Moreover, the

application of the approach is not affected by any computational inconvenience, especially

when r̄Int is employed. Empirical rejection rates are close to the target levels, with no

appreciable difference among the integrated likelihood specifications, see Table 1.

5.2 Experiments based on a planned design

For a more systematic investigation, we design a study with three experimental factors,

namely, i) the number of studies n ∈ {5, 20}; ii) the study degrees of freedom fi ∈ {9, 24};

iii) the between-study variance τ 2 ∈ {0.1, 0.5, 2}. For each combination of the experimental

factors, 10,000 data sets are generated following the model specification given in Section 2

with parameters β = 1 and σ2
i generated from a Uniform variable on [0.1, 2.0]. Inference

on β is performed using statistics rP, r∗P,k and the three statistics based on the integrated

likelihood introduced in §5.1. Skovgaard’s statistic r∗P is not used for comparison because

of the overwhelming percentage of datasets with numerical problems encountered in the

simulation (up to over 70% for some of the experiments), which makes the results unreliable.

Statistic rP,k is not considered as well, as in the previous simulation study the adjusted version

r∗P,k turned out to be uniformly preferable. The simulation study evaluates the empirical

coverages of the confidence intervals at nominal level 0.95 for the competing approaches, see
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Figure 2.

Figure 2

A notable result from the simulation study is the crucial role of the number of studies and the

true value of the between-study variance τ 2 in determining the performance of the various

methods. The liberal behaviour of rP is apparent across different settings. Skovgaard’s

statistic r∗P,k assuming known within-study variances provides a remarkable improvement,

although it underestimates the nominal level for small number of studies and large values

of τ 2. The integrated likelihood is the most satisfactory solution overall. A conservative

performance is experienced for small values of τ 2 and small number of studies. Results from

r̃Int and r̄Int essentially overlap, so that only the latter are displayed. The two solutions are

both preferable to rInt, with a coverage of confidence intervals which tends to be close to

0.95 or slightly higher.

6 Concluding remarks

This paper considers small sample inference in meta-analysis of normally distributed

measures of the effect of interest. Instead of assuming the within-study variances as known,

we considered an integrated likelihood approach to account for the additional uncertainty

related to the estimation of the within-study variances. The methodology is shown to pro-

vide accurate inferential results when the sample size of the studies or the number of studies

included in the meta-analysis is limited. In the meanwhile, the method avoids the com-

putational difficulties related to the large number of nuisance parameters. Typically, the

usage of the integrated likelihood proposed here would lead to more cautious inferences, a

commendable result in several settings with limited sample information.

The focus of the paper is on meta-analysis of summary data. When individual patient

data are available, the small sample size of meta-analysis studies is typically not a drawback

and appropriate hierarchical models are commonly adopted for inference. The small number
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of studies, instead, can still represent a source of inaccurate inference to deal with.

The estimation of the within-study variances for binary data differs from the case of

normally distributed outcomes examined in this paper since the available information is

analogous to that from individual patient data. For this situation, several approaches in the

literature have been proposed, which mainly focus on hierarchical models, e.g., Smith et al.

(1995), Turner et al. (2000), Hamza et al. (2008). The integrated likelihood for binary data

maintains an interesting analogy with that examined in this paper under the normal case,

despite obtaining a weight function for the nuisance components is less immediate. Details

about the binary data case are reported in the Supporting Information.

From the methodological side, the problem studied in this paper is an instance of two-

index asymptotics (Sartori, 2003), meaning that the available sample information grows with

both the observations within each study and the number of studies. Although we did not

formally cast the study of the available methodology within the two-index setting, it seems

worth mentioning that recent results presented in De Bin et al. (2014) substantiate the good

properties of the integrated likelihood using the zero-score-expectation parameterization for

general statistical models within two-index asymptotics.

Albeit the methodology discussed here is embedded in a frequentist approach, an exten-

sion to a full Bayesian formulation is possible. In fact, the integrated likelihood (4) can be

used along with an a priori distribution for β to obtain a marginal posterior distribution.

Although the paper considers the integrated likelihood approach within the meta-analysis

context, the extension to the meta-regression case is straightforward. Deriving the ex-

plicit form of the zero-score-expectation parameterization, however, requires to assume equal

within-study variances. Details are reported in the Supporting information.

Supporting information

Additional information for this article is available online. The additional information

includes details about the derivation of the zero-score-expectation parameterization, the



15

illustration of the integrated likelihood approach for binary data and a description of the

integrated likelihood within the meta-regression context.
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Figure 1: Cocoa data. Left panel: forest plot reporting the estimated mean difference from

each study and the associated 95% confidence interval. Right panel: profile log likelihood

function (solid line) and integrated log likelihood function (dashed line).
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Table 1: Empirical one-sided rejection rates for the signed profile log likelihood ratio statistic

rP, Skovgaard’s statistic r∗P, their counterparts rP,k and r∗P,k assuming known within-study

variances, and different specifications of the signed integrated log likelihood ratio statistic,

rInt, r̃Int, and rInt, based on 10,000 replicates. Maximum simulation standard error smaller

than 0.001.

Rejection rates rP r∗P rP,k r∗P,k rInt r̃Int rInt

Lower
0.010 0.030 0.018 0.023 0.016 0.013 0.010 0.010

0.025 0.055 0.032 0.049 0.032 0.034 0.026 0.026

0.050 0.086 0.056 0.082 0.058 0.066 0.050 0.050

0.100 0.139 0.102 0.136 0.102 0.115 0.092 0.091

Upper

0.900 0.850 0.892 0.852 0.890 0.875 0.904 0.904

0.950 0.910 0.941 0.914 0.939 0.932 0.946 0.946

0.975 0.942 0.965 0.948 0.965 0.964 0.971 0.972

0.990 0.968 0.980 0.974 0.982 0.984 0.989 0.988
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Figure 2: Empirical coverages of confidence intervals at nominal level 0.95 for increasing

values of τ 2 and different combinations of number of studies n and degrees of freedom fi.

Lines correspond to rP (solid line), r∗P,k (dotted line), rInt (dashed line), r̄Int (long dashed line).

The solid grey horizontal line corresponding to the 0.95 confidence level is superimposed.
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