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*Detailed Response to Reviewers



 HPH is a promising technology for okara valorization  

 HPH favours the release of okara proteins and soluble fibers  

 Above 50 MPa HPH, physically stable okara dispersions are obtained 

 HPH at 150 MPa for 5 passes leads to 90% protein extraction yield 

 

 

*Highlights (for review)



  

1 

 

Impact of high pressure homogenization on physical properties, extraction yield and biopolymer 1 

structure of soybean okara 2 

  3 

Goly FAYAZ, Stella PLAZZOTTA*, Sonia CALLIGARIS, Lara MANZOCCO, Maria Cristina 4 

NICOLI 5 

 6 

Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 7 

Italy 8 

 9 

*e-mail: stella.plazzotta@uniud.it; Tel: +39 0432-558137 10 

Abstract 11 

The effect of high pressure homogenization (HPH) on soy okara was studied. To this purpose, 12 

okara dispersions (10 g/100 g) were subjected to 1 pass at 50, 100 and 150 MPa and to 5 passes 13 

at 150 MPa. Samples were analyzed for stability, particle size, microstructure, and viscosity. 14 

Results highlighted that the increase of HPH intensity was associated with the structural 15 

disruption of okara particles, leading to physically stable homogenates having increasing 16 

viscosity. This was mainly attributed to an increase in okara solubility, due to fibre and protein 17 

release. The latter resulted almost complete, reaching values up to 90% of the protein originally 18 

entrapped in okara matrix. Absorbance at 280 nm, SH groups and dimension of proteins revealed 19 

that HPH treatments favoured the extraction of the main protein fractions even if, at the higher 20 

intensity level, extracted proteins probably underwent conformational changes and reassembling 21 

phenomena.  22 
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Keywords: Soybean residue, Vegetable by-products, Waste valorization, Protein, Fiber.  23 

1. Introduction 24 

Okara is a general term defining the by-products obtained after milling and extraction of the 25 

aqueous fraction of soybeans. Every kilogram of processed soybeans intended for the production 26 

of soy milk and tofu generates about 1.1-1.2 kg of wet okara (containing about 80 g/100 g of 27 

water) (O’Toole, 1999). Thus, large quantities of okara are today produced and treated as 28 

industrial waste with high management costs and related issues (Rado & Dimi, 2010). However, 29 

soy okara still contains various valuable components, mainly fibres (14.5-55.4 g/100 g on dry 30 

matter basis), proteins (24.5-37.5 g/100 g) and lipids (9.3-22.3 g/100 g) (Jiménez-Escrig, Alaiz, 31 

Vioque, & Rupérez, 2010). Okara can be considered an always-available and cheap source of 32 

nutrients rather than waste and might be thus turned into a value-added ingredient by the 33 

application of proper valorization strategies (Vong & Liu, 2016). On this regard, air-drying of 34 

okara is one of the main solutions proposed. The resulting products are ambient stable flours that 35 

can be exploited in the production of functional baked goods, cereal products and snacks 36 

(Grizotto, Rufi, Yamada, & Vicente, 2010; O’Toole, 1999; Rado & Dimi, 2010). Nevertheless, 37 

being water removal a costly process (Vong & Liu, 2016), other valorization strategies should be 38 

developed.   39 

Recently, the application of unconventional technologies has been proposed as an effective tool 40 

to steer the functional properties of plant-based materials. In this context, high pressure 41 

homogenization (HPH) has been shown as promising technology able to induce cell disruption, 42 

particle size reduction and modification of macromolecule structure in vegetable matrices 43 

(Lopez-Sanchez, Svelander, Bialek, Schumm, & Langton, 2011; Tan & Kerr, 2015). These 44 

changes are associated with the intense mechanical stresses suffered by the product during the 45 
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process. In particular, in the homogenizer, a fluid is pumped through a narrow gap valve by 46 

means of a pressure intensifier, undergoing intense mechanical forces and elongational stresses 47 

at the valve entrance and in the valve gap. On the other hand, turbulence cavitation and impact 48 

with the solid surface is expected to occur at the valve outlet (Floury, Bellettre, Legrand, & 49 

Desrumaux, 2004). Cell disruption and modification of biopolymer physical properties are 50 

reported to be highly dependent on matrix characteristics and HPH intensity in term of operating 51 

pressure and number of passes through the homogenization valve (Augusto, Ibarz, & Cristianini, 52 

2013). 53 

Based on these considerations, the use of HPH on okara dispersions might have different 54 

advantages comprising: (i) extraction of proteinaceous and fibrous materials as a consequence of 55 

cell disruption and (ii) increase of functionality resulting from biopolymer structure modification 56 

and development of novel particle interactions and networking. Preece, Hooshyar, Krijgsman, 57 

Fryer and Zuidam (2017) observed an improvement of the extraction yield of proteins from soy 58 

okara dispersions after homogenization at 100 MPa for 1 pass. Besides these data, to our 59 

knowledge, no information is available on the effect of HPH on okara biopolymer structure and 60 

interactions.  61 

The aim of the present study was to explore the potentialities of HPH in releasing protein and 62 

fibre constituents from soy okara and turn this by-product into an added-value ingredient for the 63 

food industry. To this aim, okara dispersions were subjected to HPH treatments and analyzed for 64 

physical properties, protein and fibre extractability, and biopolymer structural changes. 65 

2. Materials and methods 66 

2.1. Material 67 
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A batch of soy okara (1 kg) was kindly provided by a local food processing industry engaged in 68 

the production of soy derivatives based on the application of the “Japanese method” (O’Toole, 69 

1999). Okara was frozen at -18 °C before using in the experiments. 70 

2.2. Preparation of okara dispersion 71 

Soy okara was dispersed in deionized water at 10 g/100 g concentration under magnetic stirring 72 

for 30 min at 20 ºC and subsequently pre-homogenized with a high-speed blender (Polytron, PT 73 

3000, Littau, Swiss) at 8000 rpm for 1 min to increase the homogeneity of okara distribution in 74 

aqueous phase as well as avoiding valve clogging during the subsequent high pressure 75 

homogenization. 76 

2.3. High pressure homogenization (HPH) 77 

Okara dispersion was treated by a continuous lab-scale high-pressure homogenizer (Panda Plus 78 

2000, GEA Niro Soavi, Parma, Italy) supplied with two Re+ type tungsten carbide 79 

homogenization valves, with a flow rate of 10 L/h. Aliquots of 150 mL of okara dispersion at 20 80 

°C were subjected to single-pass at a pressure of 50, 100 and 150 MPa and at 5 passes at 150 81 

MPa. Sample temperature was measured immediately after HPH treatment (Ellab, Hillerød, 82 

Denmark). After treatments, all the samples were cooled at room temperature (20 ºC) by 83 

immersion into an ice bath under gentle mixing. Untreated okara dispersion was used as control. 84 

2.4. Chemical composition 85 

Moisture, fat, protein and ash content of fresh okara were analyzed by the reference AOAC 86 

(1997). Soluble (SDF) and insoluble dietary fibre (IDF) of fresh okara, untreated dispersion and 87 

HPH-treated okara dispersions were also analyzed according to AOAC method using a total 88 

dietary fibre (TDF) assay kit (TDF-100A, Sigma-Aldrich, St. Louis, Missouri, USA). The 89 

SDF/TDF and IDF/TDF ratio were reported as g/100 g fibre. Total polyphenolic content (TPC) 90 
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was determined according to Singleton and Rossi (1965) method by using Folin-Ciocalteau 91 

reagent. The absorbance was read at 750 nm using UV-Vis spectrophotometer (Shimadzu UV-92 

2501PC, UV-Vis recording spectrophotometer, Shimadzu Corporation, Kyoto, Japan). Results 93 

were expressed as mg of gallic acid equivalents (GAE) per 100 g of sample. 94 

2.5. Physical Stability 95 

To monitor the physical stability of okara dispersion treated by HPH, samples were transferred 96 

into a 20 mL glass tube and stored up to 30 days at 4 °C. Images were acquired using an image 97 

acquisition cabinet (Immagini & Computer, Bareggio, Italy) equipped with a digital camera 98 

(EOS 550D, Canon, Milan, Italy). Images were saved in jpeg format resulting in 3456×2304 99 

pixels. 100 

2.6. pH measurement 101 

The pH of samples was recorded at 20 ºC by using a Basic 20 pH meter (Crison Instruments, 102 

S.A., Barcelona, Spain).  103 

2.7. Particle size distribution  104 

The particle size distribution of samples was measured by using the dynamic light scattering 105 

instrument Zetasizer Nano ZS (Malvern, Milan, Italy). Samples were diluted (1 mL/10 mL) in 106 

deionized water prior to the analysis to avoid multiple scattering effects. Observation angle, 107 

solution refractive index and viscosity were set at 173º, 1.333 and 0.00088 Pa∙s, respectively, 108 

corresponding to the values of pure water at 25 °C. Mean particle size diameter and peak area 109 

corresponding to intensity distribution were measured. 110 

2.8. Optical and polarized light microscopy 111 

One drop of okara dispersion was placed on a glass slide, covered with a cover slide and 112 

observed at 20 °C using a Leica DM 2000 optical microscope (Leica Microsystems, Heerbrugg, 113 

https://www.google.it/search?rlz=1C1SAVO_enIT657IT666&q=Heerbrugg&spell=1&sa=X&ved=0ahUKEwjwyOD4ncjhAhW9DGMBHW6qAl0QkeECCCkoAA
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Switzerland). The images were taken at 200× magnification using a Leica EC3 digital camera 114 

and elaborated with the Leica Suite Las EZ software (Leica Microsystems, Heerbrugg, 115 

Switzerland). 116 

2.9. Viscosity 117 

Viscosity determination was performed at 20 °C by a Haake Rheostress 6000 (Thermo 118 

Scientific, Rheostress, Haake, Germany), connected to a thermostatic controller. The flow 119 

behaviour of samples was measured using concentric cylinder geometry by recording apparent 120 

viscosity against shear rate from 0.1 to 200 s
−1

. The relationship between apparent viscosity and 121 

the shear rate was described by Ostwald-de-Waele model, (eq. 1): 122 

                         eq. 1 123 

where      is the apparent viscosity (Pa·s);   , the shear rate (s
−1

); K, the consistency index (Pa· 124 

s
n
) and n, the flow behaviour index (dimensionless). Model fitting was performed using the 125 

software Haake Rheowin v.4.60.0001 (Thermo Fisher Scientific). 126 

2.10. Protein extraction yield 127 

Okara dispersions were centrifuged at 12000 × g for 10 min at 4 °C (Beckman, Avanti TM J-25, 128 

Palo Alto, CA, USA). The protein content of the supernatant was determined by the Kjeldahl 129 

method (AOAC, 1997). Protein extraction yield (g/100 g protein) was calculated as the ratio 130 

between the proteins in the supernatant and the total protein content. 131 

2.11. Absorbance at 280 nm 132 

Okara dispersions were centrifuged at 12000 × g for 10 min at 4 ºC. The supernatant was 133 

collected, diluted (1 mL/200 mL) and UV absorbance was measured at 280 nm using UV-2501 134 

PC UV-VIS spectrophotometer (Shimadzu, Kyoto, Japan).  135 

2.12. Determination of free sulfhydryl group content 136 

https://www.google.it/search?rlz=1C1SAVO_enIT657IT666&q=Heerbrugg&spell=1&sa=X&ved=0ahUKEwjwyOD4ncjhAhW9DGMBHW6qAl0QkeECCCkoAA
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The concentration (µmolL
-1

g
-1

) of free sulfhydryl groups (SH) of the okara dispersions was 137 

determined using Ellman’s reagent (5′,5-dithiobis (2-nitrobenzoic acid), DTNB) (Sigma–138 

Aldrich, Milan, Italy) according to the method of Panozzo, Manzocco, Lippe and Nicoli (2016).  139 

2.13. HPLC-gel permeation analysis 140 

Okara dispersions were analyzed using an HPLC system Varian ProStar (model 230, Varian 141 

Associates Ltd., Walnut Creek, CA, USA) equipped with a UV/VIS detector. Two columns were 142 

used: BioSep-SEC-S 3000, 30 cm length, 7.80 mm internal diameter and BioSep-SEC-S 2000, 143 

30 cm length, 7.80 mm internal diameter, 5 μm granulometry, 125 Å porosity with separation 144 

range among 5 and 670 kDa. Samples were filtered on 0.2 μm porosity filters (Econofilters, 145 

Cenusco sul Naviglio, Italy). Injection volume was 20 μL and the mobile phase, delivered at a 146 

flow rate of 0.6 mL min
-1

, was 1 mol/L potassium phosphate buffer pH 7.0 in isocratic 147 

conditions. The detection wavelength was 220 nm. Catalase (250 kDa), glucose oxidase (160 148 

kDa), lipoxidase (108 kDa), lysozyme (14.3 kDa) and insulin (5.8 kDa) (Sigma-Aldrich, USA) 149 

were used as calibration standards. Peaks integration was performed by CHROM-CARD 150 

software (v. 1.19). 151 

2.14. Data analysis 152 

All determinations were expressed as the mean ± standard deviation (SD) of at least three 153 

repeated measurements from two experiment replicates (n = 2). Statistical analysis was 154 

performed by using R v. 2.15.0 (The R Foundation for Statistical Computing). Bartlett's test was 155 

used to check the homogeneity of variance, one-way ANOVA was carried out and the Tukey test 156 

was used to determine statistically significant differences among means (p<0.05). 157 

3. Results and discussion 158 
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Table 1 shows the chemical composition of okara obtained from the waste stream of soy milk 159 

processing. Okara presented a high moisture content and was particularly rich in insoluble fibre, 160 

proteins and lipids. Interestingly, it also contained significant amounts of polyphenols. Obtained 161 

compositional data are in the range of proximal composition analysis reported in the literature 162 

(Vong & Liu, 2016). The compositional variability of okara can be associated with the soybean 163 

starting material characteristics used in the production of soy derivatives as well as to the process 164 

applied during the soy milk production. In any case, significant quantities of valuable 165 

compounds still remain in this by-product, mainly entrapped in the fibrous cellular material.  166 

A 10 g/100 g okara aqueous dispersion was subjected to HPH by applying pressures up to 150 167 

MPa and number of passes up to 5. Sample temperature increased with the treatment intensity up 168 

to 63 °C (Supplementary Table S1), due to the mechanical stresses suffered by the sample during 169 

the passage through the homogenization valve (Hayes & Kelly, 2003). 170 

The visual observation of the samples revealed that the physical stability of HPH-treated 171 

dispersions was higher than that of the untreated one, which immediately separated after 172 

preparation. By contrast, after 1 day-storage, HPH-treated dispersions showed no evident phase 173 

separation, with the only exception of the samples treated at 50 MPa, which showed a beginning 174 

of phase separation (Supplementary Figure S1). However, all samples gradually revealed phase 175 

separation within 30 days, except for the okara sample subjected to 5 passes at 150 MPa. Thus, 176 

the stability of okara dispersion increased with the HPH intensity. These results can be attributed 177 

to HPH-induced modifications of okara constituent structure.  178 

To study HPH-induced modifications, the particle size distribution of samples was determined 179 

(Figure 1). Dispersions treated at 50 MPa showed a trimodal distribution, with about 71%, 26% 180 

and 3% of the particles presenting a mean diameter around 200 nm, 750 nm and 5000 nm, 181 



  

9 

 

respectively (Supplementary Table S2). The application of increasing pressure led to a 182 

progressive particle downsizing with the disappearance of the intermediate peak, a reduction of 183 

the largest particles and a concomitant increase of particles with 350 nm mean diameter. These 184 

results agree with literature data (Augusto, Ibarz, & Cristianini, 2012; Song, Zhou, Fu, Chen, & 185 

Wu, 2013) and can be attributed to the intense mechanical stresses delivered by HPH, able to 186 

disrupt soy components. The disruptive ability of HPH can be well noted observing the 187 

microscopy images of samples (Figure 2). Untreated okara dispersion showed a dense 188 

microstructure with colloidal material dispersed throughout the aqueous environment. A portion 189 

of this material is represented by partially denatured proteins. Okara is actually produced by 190 

heating soybeans at 80 °C, which is a temperature higher than that required for thermal 191 

denaturation of the main soy storage protein β-conglycinin (74-77 °C) (Wang, Qin, Sun, & Zhao, 192 

2014). Untreated okara also showed clearly visible aggregates of fragmented fibrous cell 193 

material. As reported by Preece et al. (2015), okara is composed of intact cotyledon cells, walls 194 

of disrupted cells and other protein-polysaccharide agglomerated materials. In agreement with 195 

literature data, these materials partially retained the original crystalline structures, as well 196 

highlighted by polarized light microscopy images (Liu, Chien, & Kuo, 2013).  197 

HPH treatment at 50 MPa induced the breakage of these large aggregates into smaller ones, 198 

resulting in a more homogeneous particle dispersion (Figure 2). The further increase of 199 

homogenization pressure caused a progressive reduction of dimension, number and crystallinity 200 

of particles, possibly due to an increase of their solubility upon HPH (Figure 2).  201 

To study the macroscopic effect of these microstructural changes, flow curves of okara 202 

dispersions were determined. Data were elaborated with the Ostwald-de-Waele model (R>0.94) 203 

and the estimated parameters are reported in Table 2. Except from sample treated at 50 MPa, all 204 
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samples exhibited a shear thinning flow behaviour (n<1) and the application of more intense 205 

treatments increased both consistency index (K) and apparent viscosity (ƞ 100). Samples treated at 206 

150 MPa for 5 passes revealed an apparent viscosity about 3 times higher than that of the sample 207 

treated at 100 MPa. This result can be due to different phenomena. From one side, sample 208 

viscosity can rise as a consequence of the increased system crowding, associated with the 209 

progressively higher number of small particles; from the other side HPH-induced cell breakage is 210 

expected to promote extraction of okara components, leading to a higher content of soluble 211 

materials in the dispersions (Preece et al., 2017). To confirm this hypothesis and better 212 

understand the nature of the extracted material, samples were analyzed for total (TDF), insoluble 213 

(IDF) and soluble (SDF) dietary fibre (Table 3). TDF content decreased with the increase of 214 

HPH intensity. A concomitant increase in the ratio between SDF and TDF was also observed. 215 

The redistribution of fibres in favour of the soluble fraction has been reported for different 216 

vegetable matrices subjected to homogenization treatments. To this regard, Chau et al. (2007) 217 

and Hu, Zhang, Adhikari and Liu (2015) reported an increase in soluble/insoluble fibre ratio of 218 

carrot pomace and wheat bran upon the application of microfluidization and high pressure 219 

homogenization at 80 and 100 MPa, respectively. The observed changes in fibre content and 220 

solubility (Table 3) can be attributed to the progressive rupture of the fibrous aggregates upon 221 

HPH, favouring the solubilization of okara polysaccharides. This structure breakage was also 222 

associated with a progressive pH decrease, which can be attributed to the release of organic acids 223 

and polyphenols originally held in cotyledon cells (Table 3).  224 

Moreover, protein extraction yield dramatically increased from 11 to about 90 g/100 g protein 225 

with the increase of HPH pressure and number of passes (Table 4). Okara proteins are 226 

represented by proteins that were not extracted during the soy milk process, due to their 227 
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entrapment in soybean cells or engagement in protein-fibre complexes. It is thus likely that HPH 228 

allowed the release of proteins, due to the physical rupture of both cells and polymeric 229 

complexes. Proteins were analyzed for conformational changes by determining the absorbance at 230 

280 nm and free sulfhydryl (SH) group content (Table 4). Absorbance at 280 nm and free SH 231 

groups of proteins in okara dispersions significantly increased with HPH pressure. This increase 232 

is consistent with the change in protein content and conformation, resulting in increased 233 

exposure of aromatic and SH groups of amino acids on the protein surface and in the rupture of 234 

S-S bonds within protein molecules. However, the application of the most intense treatment (5 235 

passes at 150 MPa) was associated with a decrease in both these indexes. This is generally 236 

associated with reassembling phenomena of extracted proteins, probably by both inter- and intra-237 

molecular interactions (Yu, 2018). To confirm this hypothesis, okara dispersions were analyzed 238 

by HPLC-gel permeation analysis (Table 4). The chromatogram relevant to untreated okara 239 

dispersion showed 4 main protein fractions (19, 70, 110, 290 kDa). The most abundant protein 240 

fraction (70 kDa) can be attributed to α and α’ subunits of β-conglycinin (Cole & Cousin, 1994; 241 

Stanojevic, Barac, Pesic, & Vucelic-Radovic, 2012). The fraction corresponding to 19 kDa can 242 

be associated with the basic polypeptide of glycinin. The largest protein fraction (290 kDa) was 243 

represented by soy 11S globulin which is made up of acid and alkaline sub-units (Chen, Liu, Wu, 244 

& Ma, 2015). Finally, lipoxygenase was also present (110 kDa) (Cole & Cousin, 1994; 245 

Stanojevic et al., 2012). HPH treatments resulted in a progressive area increase of peaks 246 

corresponding to β-conglycinin, lipoxygenase and globulin, supporting the hypothesis of protein 247 

release from the fibrous matrix upon HPH. However, in the samples subjected to 150 MPa for 1 248 

and 5 passes, the polypeptide band of glycinin was no more present, suggesting its embedding 249 

into multimeric aggregates. This result might be consistent with the occurrence of a new peak, 250 
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not observed in the untreated sample (166 kDa), probably resulting from protein reassembling, as 251 

also suggested by the decrease in SH groups and absorbance at 280 nm. 252 

4. Conclusions  253 

Results obtained in this study highlighted that HPH can be used as an efficient tool to induce a 254 

progressive disruption of okara native structure, leading to the release of entrapped proteins and 255 

soluble fibres. HPH might thus be applied as a pretreatment to favour extraction of proteins and 256 

fibres, allowing okara by-product to be turned into added-value ingredients for the food industry. 257 

Moreover, the possibility to directly exploit HPH-treated okara dispersions to develop physically 258 

stable soy-based beverages cannot be underestimated. The valorization of okara by its complete 259 

re-use in novel functional products could actually represent an interesting market opportunity. 260 

Although the case here presented was relevant to soy okara, obtained results could be easily 261 

extended to by-products deriving from vegetable sources other than soybeans, largely broaden 262 

their applicability and impact. This effort is worth making considering that HPH is being 263 

increasingly introduced as processing operation in different industrial contexts, showing good 264 

feasibility and cost-effectiveness.  265 
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Figure Captions 347 

Figure 1. Particle size distribution of 10 g/100 g okara aqueous dispersions subjected to HPH 348 

treatments at 50, 100, 150 MPa pressures and 150 MPa with 5 passes. 349 

 350 

Figure 2. Optical and polarized light microscopy of 10 g/100 g untreated okara aqueous 351 

dispersion and samples subjected to HPH treatments at 50, 100, 150 MPa pressures and 150 MPa 352 

with 5 passes. 353 
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Table 1. Chemical composition of soy okara 

 

 

 

  

 

 

 

  

Parameter Amount  

Moisture (g/100 g) 76.22 ± 0.40 

Protein (g/100 g) 6.53 ± 0.01 

Lipid (g/100 g) 1.57 ± 0.06 

Total dietary fiber (g/100 g)  12.50 ± 0.05 

Insoluble fiber (g/100 g) 12.19 ± 0.04 

Soluble fiber (g/100 g) 0.31 ± 0.01 

Total phenolic content (mg GAE/g dry matter) 1.92 ± 0.04 

Ash (g/100 g) 0.59 ± 0.05  

Table
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Table 2. Flow behavior index (n), apparent viscosity at 100 s
-1

 (    ), consistency index (K) of 10 

g/100 g okara aqueous dispersions subjected to HPH treatments at 50, 100, 150 MPa pressures and 150 

MPa with 5 passes. 

HPH treatment n      (Pa
.
s) K (Pa

.
s

n
) 

Untreated n.a.   

50 MPa 1.054 ± 0.031
a
 0.001 ± 0.00

c
 0.001 ± 0.0

c
 

100 MPa 0.512 ± 0.022
b
 0.010 ±0.001

b
 0.111 ±0.020 

b
 

150 MPa 0.494 ± 0.001
b
 0.012± 0.000

b
 0.140 ± 0.003

b
 

150 MPa-5 passes 0.309 ± 0.025
c
 0.029 ± 0.000

a
 0.803 ± 0.104

a
 

Data points Means ± SD (n = 2); n.a. not analyzed since immediately separating;
 a, b, c

 In the same 

column, means indicated by different letters are significantly different (p<0.05).   
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Table 3. pH, total dietary fiber (TDF), insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) 

/TDF ratio and total phenolic compounds (TDC) of 10 g/100 g untreated okara aqueous dispersion and 

samples subjected to HPH treatments at 50, 100, 150 MPa pressures and 150 MPa with 5 passes. 

HPH treatment pH 

TDF IDF/TDF SDF/TDF TPC 

(g/100 g dm) (g/100 g fiber) (g/100 g fiber) (mg GAE/ g dm) 

Untreated 8.29 ± 0.06
a
 52.57 ± 0.18

a
 97.51 ± 0.061

a
 2.49 ± 0.06

c
 2.58 ± 0.03

c
 

50 MPa 8.22 ± 0.02
a
 51.49 ± 2.45

a
 96.37 ± 0.30

ab
 3.63 ± 0.30

bc
 5.08 ± 0.06

b
 

100 MPa 8.11 ± 0.04
a
 45.82 ± 1.06

ab
 94.77 ± 0.99

b
 5.23 ± 0.99

b
 5.11 ± 0.05

b
 

150 MPa 7.90 ± 0.05
b
 47.56 ± 3.14

ab
 94.93 ± 0.42

b
 5.07 ± 0.42

b
 5.31 ± 0.05

b
 

150 MPa-5 passes 7.67 ± 0.02
c
 41.82 ± 2.52

b
 89.28 ± 0.32

a
 10.72 ± 0.32

a
 8.08 ± 0.35

a
 

Data points Means ± SD (n = 2); 
a, b, c, d

 In the same column, means indicated by different letters are 

significantly different (p<0.05).  
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Table 4. Protein extraction yield, absorbance at 280 nm, free sulfhydryl groups and peak areas relevant to proteins with a molecular 

weight of 19, 70, 110, 166 and 290 kDa of 10 g/100 g untreated okara aqueous dispersion and samples subjected to HPH treatments at 50, 

100, 150 MPa pressures and 150 MPa with 5 passes. 

HPH 

treatment 

Protein extraction yield 

(g/100 g protein)  

Absorbance at 

280 nm 

Free sulfhydryl groups 

(μmolL
-1

g
-1

) 

Peak area of proteins with different MW (arbitrary absorbance unit × 10
4
) 

19 kDa 70 kDa 110 kDa 166 kDa 290 kDa 

Untreated 11.49 ± 0.19
d
 0.224 ± 0.014

d
 15.77 ± 0.47

c
 51.7 ± 16.5

b
 189.7 ± 31.0

b
 53.1 ± 0.3

c
 n.d. 54.9 ± 0.2

d
 

50 MPa 37.11± 1.09
c
 0.428 ± 0.002

c
 51.42 ± 2.93

a
 886.8 ± 96.81

a
 168.1 ± 42.7

b
 200.4 ± 42.7

bc
 n.d. 321.1 ± 8.3

bc
 

100 MPa 61.14 ± 1.16
b
 0.653 ± 0.004

a
 51.67 ± 3.74

a
 672.6 ± 54.9

a
 63.9 ± 29.9

b
 125.4 ± 33.4

c
 n.d. 182.9 ± 76.5

cd
 

150 MPa 65.94 ± 2.70
b
 0.646 ± 0.006

a
 47.49 ± 0.87

a
 n.d. 290.4 ± 82.4

b
 374.7 ± 82.4

b
 111.3 ± 15.5

a
 433.8 ± 64.4

b
 

150 MPa-5 passes 89.69 ± 2.24
a
 0.577 ± 0.002

b
 20.70 ± 1.13

b
 n.d. 830.9 ± 3.3

a
 620.3 ± 3.3

a
 907.7 ± 11.9

a
 831.0 ± 63.0

a
 

Data points Means ± SD (n = 2); MW molecular weight; n.d. not detected; 
a, b, c, d

 In the same column, means indicated by different letters 

are significantly different (p<0.05).  
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