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Abstract

This paper concerns a class of model selection criteria based on cross-validation techniques and

estimative predictive densities. Both the simple or leave-one-out and the multifold or leave-m-out

cross-validation procedures are considered. These cross-validation criteria define suitable estimators

for the expected Kullback-Liebler risk, which measures the expected discrepancy between the fitted

candidate model and the true one. In particular, we shall investigate the potential bias of these

estimators, under alternative asymptotic regimes for m. The results are obtained within the general

context of independent, but not necessarily identically distributed, observations and by assuming

that the candidate model may not contain the true distribution. An application to the class of

normal regression models is also presented and simulation results are obtained in order to gain

some further understanding on the behaviour of the estimators.
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1 Introduction

Let us suppose that the observations y = (y1, . . . , yn), n ≥ 1, are available for selecting a model from

a given collection of plausible statistical models. A class of useful model selection criteria is based

on cross-validation techniques and suitable predictive densities. The idea behind cross-validation is

simple. It involves a split of the data y into two parts. The first one contains n−m data points, with

m ∈ {1, . . . , n−1}, and it is called training set, since it is used for fitting the model which is considered.

The second one, containing the remaining m data points, is used for assessing the predictive ability

of the model under consideration and it is called validation set. All the splits of the data have to be

potentially considered. The simplest version of cross-validation consists of leaving out one observation

at a time, that is m = 1, and it is called simple or leave-one-out cross-validation. Whenever m > 1

observations are left out at a time, we have a multifold or a leave-m-out cross-validation procedure.

Discussion on the properties and the applicability of simple cross-validation procedures, in various

situations usually related to model selection, may be found in a number of papers; see, for example,

Allen (1974), Stone (1974, 1977a, 1977b), Geisser (1975) and Efron (1983, 1986). The leave-m-out

cross-validation methods, with m > 1, first appear in Geisser (1975) and some subsequent develop-

ments may be found, for example, in Herzberg and Tsukanov (1986). Papers by Li (1987), Zhang

(1993) and Shao (1993, 1997) investigate, from a theoretical point of view, the asymptotic properties

of various multifold cross-validation criteria, principally applied to the case of alternative linear re-

gression models. With regard to non-asymptotic properties, few results are available (see Arlot, 2008)

and they are essentially based on the comparison with the so called oracle model, namely the model

one would choose if the distribution of the observations were known.

The popularity and the attractiveness of cross-validation methods come from the fact that they

are based on a simple and intuitive idea and that they can be applied to a variety of different model

selection problems. In particular, cross-validation is used in the regression framework, usually with

regard to the variable selection problem, in order to estimate a suitable notion of prediction error

with the aim of choosing the appropriate predictors (see, for example, Burman, 1989, and Picard and

Cook, 1984). Further interesting applications may be found in the density estimation context with

the objective of assessing the accuracy of alternative density estimators (see, for example, the recent

contribution by Celisse, 2014).

An extensive review on cross-validation procedures for model selection is given by Arlot and Celisse

(2010), where a general classification is presented with the aim of emphasizing the performances of the
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cross-validation methods in various model selection frameworks. However, even if many applied and

theoretical contributions on cross-validation can be found in the literature, there are many important

issues not completely understood, regarding in particular the multifold procedures, which need to be

considered in more detail.

In this paper, following Geisser and Eddy (1979), we shall consider general cross-validation methods

for model selection based on frequentist predictive densities, with particular reference to the estimative

predictive density. As in Konishi and Kitagawa (1996), Burnham and Anderson (2002) and Fujikoshi,

Noguchi, Ohtaki and Yanagihara (2003), we use cross-validation criteria in order to define suitable

estimators for the expected Kullback-Liebler information, and in particular for the Kullback-Liebler

risk, which measures the discrepancy between the fitted candidate model and the true one. Burman

(1989) addresses the problem of risk estimation in the regression framework and finds asymptotic

expansions for the mean and the variance of risk estimators based on alternative multifold cross-

validation techniques. An estimator, which is a good solution according to the bias-variance trade-off

criterion, is proposed. Recent results concerning the potential bias of these estimators may be found

in Fushiki (2011), Yanagihara, Tonda and Matsumoto (2006) and Yanagihara and Fujisawa (2012).

The contribution of the present paper concerns the computation of the first-order bias term of

both the simple and the multifold cross-validation selection statistics, by assuming alternative asymp-

totic regimes for m. These results are obtained within the general context of independent, but not

necessarily identically distributed, observations and by assuming that the alternative models may not

necessarily contain the true distribution. Thus, the framework is usually different from those ones

considered in the above mentioned papers. Moreover, parameter estimation is done by maximum like-

lihood inferential procedures and connections with the Akaike’s information criterion are emphasized.

Besides the evaluation of the potential bias of the estimators, the asymptotic expansions derived

in this paper may be also considered for defining asymptotic equivalent expressions for the cross-

validation selection statistics. This can be extremely useful from the applied point of view, since the

application of multifold cross-validation criteria is usually computationally demanding. Finally, an

application of these results to model selection involving normal regression models is presented, giving

results similar to those obtained by Zhang (1993) when the model contains the true distribution.

A simple simulation study is also considered in order to gain some further understanding on the

behaviour of these cross-validation estimators.
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2 Assumptions and preliminary results

2.1 Preliminaries

Let us assume that the data y = (y1, . . . , yn), n ≥ 1, are a realization of the random vector Y =

(Y1, . . . , Yn), with an unknown joint probability density function g(y), with respect to a suitable

dominating measure. The marginal random variables Y1, . . . , Yn are supposed to be independent, so

that we include both the simple case with independent, identically distributed, observations and the

more general situation where the random variables are independent, but not identically distributed,

such as within linear and generalized linear models. We consider as a plausible candidate statistical

model for Y a parametric family of probability density functions, with respect to a common dominating

measure, defined as f(y;ω), ω ∈ Ω ⊆ Rd , d ≥ 1, where ω is an unknown parameter. Since these family

may not necessarily contain the true density g(y), the model could be misspecified for Y . We assume

that f(y;ω) is a smooth function, so that, for every fixed ω ∈ Ω, f(y;ω) is a measurable function in

y and, for every fixed y, f(y;ω) is a function at least continuously differentiable of order two on Ω.

In a prediction-based model selection framework, the aim is to choose the model which offers the

most satisfactory predictive explanation to the observed sample y. More precisely, we select the model

which presents the best predictive ability, with respect to the available data y, considered as potential

future observations. Under this respect, the expected Kullback-Liebler divergence between the true

and the candidate models defines a suitable measure of the associated mean prediction error. Indeed,

since this prediction error is in fact unknown, the best model is determined as that one minimizing

a suitable estimator for the Kullback-Liebler risk. An interesting class of model selection criteria,

which constitutes the focus of the present paper, is based on cross-validation estimators. Alternative

loss functions could be considered instead of the Kullback-Liebler one, as emphasized in the review

paper by Arlot and Celisse (2010). A popular loss function, frequently used in the regression context,

is the quadratic loss function which, for linear Gaussian models, defines a model selection criterion

equivalent to that one based on the Kullback-Liebler risk.

As emphasized in Section 1, cross-validation criteria require the split of the random vector Y into

two disjoint parts: the first part plays the role of an observable random vector and the second one

is viewed as a future random vector. The idea behind cross-validation is to validate the predictive

ability of the candidate model, with respect to the observed data y, by means of the following general

criterion.
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Definition 2.1 Let Y = (Y1, . . . , Yn) be a random vector as defined before and let q denote a subset

of {1, . . . , n} of fixed size m ∈ {1, . . . , n − 1}. Let us define Yq = (Yi, i ∈ q) and Y(q) = (Yi, i 6∈ q),

with yq and y(q) the associated observed values. The cross-validation selection procedure points to the

model maximizing the selection statistic

ΨCV (m)(Y ) =
1

(n−1
m−1

)
∑

q

log f(Yq; ω̂(q)), (2.1)

where ω̂(q) = ω̂(Y(q)) is the maximum likelihood estimator of ω based on Y(q). The summation is over

all possible subsets q of size m.

Note that ΨCV (m)(Y ) involves the plug-in estimator of the density function f(yq;ω), which corresponds

to the estimative predictive density for Yq obtained by substituting ω with ω̂(q). Hereafter we consider

maximum likelihood estimators for the parameter ω, even if any alternative asymptotic equivalent

estimator for ω may be taken into account. Indeed, we shall adopt the notation f(u;ω) for the density

of a random vector U , as indicated by the argument of function f(·;ω).

The selection statistic (2.1), with m > 1, defines a multifold or a leave-m-out cross-validation

procedure. Whenever m = 1, we have, as a particular case, a simple or a leave-one-out cross-validation

procedure, with selection statistic given by ΨCV (1)(Y ). Geisser and Eddy (1979) call this simple

selection procedure predictive sample reuse quasi-likelihood method. Although the distinction between

m = 1 and m > 1 has an intuitive motivation, we will show in Section 3 that the asymptotic properties

of ΨCV (m)(Y ), with a fixed m, not increasing with n, are equivalent to those of ΨCV (1)(Y ). Thus,

a more realistic distinction would be between cross-validation procedures with m fixed and cross-

validation procedures with m increasing with n.

Furthermore, we assume that for each n ≥ 2, m ∈ {1, . . . , n− 1} is such that n−m = O(nγ) and

m = O(nδ), as n → +∞, with γ ∈ (0, 1] and δ ∈ [0, 1]. Consequently, we state that both the case

with a fixed m not increasing with n, which includes the simple cross-validation procedure, and the

case with m increasing with n may be considered in this framework. If m is fixed, γ = 1 and δ = 0.

Note that we exclude the value γ = 0, which corresponds to the situation with n−m not increasing

with n. On the other hand, it is possible to have γ = 1 and δ = 1. This happens, for example, when

m/n = λ+ o(1), as n → +∞, with λ ∈ (0, 1); that is, when the observations left out constitute nearly

a fixed proportion λ of the whole sample. Moreover, ω̂ corresponds to ω̂(q), with m = 0.

In the sequel, we shall emphasize the properties of these general model selection criteria, viewed

as estimators of the expected Kullback-Liebler divergence, with particular attention to the potential
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bias of the inferential procedure.

2.2 Basic assumptions

Let us consider the maximum likelihood estimators for ω under the candidate model. In particular,

we consider the estimators ω̂ and ω̂(q) based, respectively, on the full sample Y and on the sub-sample

Y(q) defined as

ω̂ = argmax
ω

ℓ(ω;Y ) = argmax
ω

n∑

i=1

ℓ(ω;Yi),

ω̂(q) = argmax
ω

ℓ(ω;Y(q)) = argmax
ω

∑

i 6∈q

ℓ(ω;Yi),

with ℓ(ω;Yi) = log f(Yi;ω), ℓ(ω;Y ) = log f(Y ;ω) and ℓ(ω;Y(q)) = log f(Y(q);ω) the associated loglike-

lihood functions.

In order to achieve the asymptotic results presented in the following sections, we implicitly require

the regularity assumptions for the existence and the validity of the standard likelihood asymptotic

results, under potentially misspecified statistical models (see, for example, White, 1994, Chapters 3

and 6). In particular, let us consider the sequence of values {ω∗
n}n≥1, called pseudo-true parameter

values, minimizing with respect to ω the Kullback-Leibler divergence between g(y) and f(y;ω)

In(g, f ;ω) = EY

{
log

g(Y )

f(Y ;ω)

}
= EY {log g(Y )} − EY {log f(Y ;ω)},

where the expectations are with respect to the true distribution of Y . According to White (1994,

Definition 3.3), this sequence is required to be unique and such that ω∗
n ∈ int(Ω) uniformly in n. These

values may also be viewed as the maximizers of EY {log f(Y ;ω)}, n ≥ 1. Note that, if Y1, . . . , Yn are

identically distributed, we have that ω∗
n ≡ ω∗, where ω∗ ∈ int(Ω) is the minimizer of the Kullback-

Leibler divergence between the marginal densities g(yi) and f(yi;ω), i = 1, . . . , n.

Hereafter, we consider the special case where the maximum likelihood estimators ω̂ and ω̂(q) are

defined as the solutions to the equations

n∑

i=1

∂rℓ(ω̂;Yi) = 0, r = 1, . . . , d, (2.2)

∑

i 6∈q

∂rℓ(ω̂(q);Yi) = 0, r = 1, . . . , d, (2.3)

where ∂rℓ(ω̂;Yi) and ∂rℓ(ω̂(q);Yi), i = 1, . . . , n, are ∂rℓ(ω;Yi) = ∂ℓ(ω;Yi)/∂ωr evaluated at ω = ω̂ and

ω = ω̂(q), respectively. Indeed, ωr, r = 1, . . . , d, is the r-th component of vector ω. Moreover, the
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pseudo-true parameter values {ω∗
n}n≥1 are such that, for n ≥ 1,

EY {∂rℓ(ω
∗
n;Y )} = 0, r = 1, . . . , d, (2.4)

where ∂rℓ(ω
∗
n;Y ) is ∂rℓ(ω;Y ) = ∂ℓ(ω;Y )/∂ωr evaluated at ω = ω∗

n.

We shall restrict our attention to statistical models where the maximum likelihood estimators ω̂ and

ω̂(q) are weakly consistent for ω∗
n and ω∗

n−m, respectively; that is, ω̂−ω∗
n → 0 in probability, as n → +∞,

such that ω̂ − ω∗
n = Op(n

−1/2), and analogously for ω̂(q), with ω̂(q) − ω∗
n−m = Op(n

−γ/2). Moreover,

under proper conditions, as specified in White (1994, Chapter 6), ω̂ and ω̂(q) are asymptotically

normally distributed. The asymptotic covariance matrix of ω̂ is such that

EY {(ω̂r − ω∗
r )(ω̂s − ω∗

s)} = νt,ui
rtius + o(n−1), r, s = 1, . . . , d, (2.5)

where ω̂r and ω∗
r , r = 1, . . . , d, are the r-th components of vectors ω̂ and ω∗

n, respectively, with n

omitted to simplify the notation. Here, νr,s = EY {∂rℓ(ω
∗
n;Y )∂sℓ(ω

∗
n;Y )} and νrs = EY {∂rsℓ(ω

∗
n;Y )},

where ∂rsℓ(ω
∗
n;Y ) is ∂rsℓ(ω;Y ) = ∂ℓ(ω;Y )/∂ωr∂ωs, evaluated at ω = ω∗

n. Indeed, irs is the (r, s)-

element of the inverse of the expected information matrix [irs] = [−νrs]. An analogous result holds for

ω̂(q), with an error term of order o(n−γ). In order to derive formula (2.5), we consider the fact that

∂rsℓ(ω
∗
n;Y )− νrs = Op(n

1/2), r, s = 1, . . . , d. (2.6)

Hereafter we adopt the Einstein summation convention so that, whenever an index appears more than

once in a single term, summation over that index is understood. The convention is suppressed for

indices related to the observations.

In the particular case when the assumed model is correctly specified, that is when g(y) = f(y;ω0),

for some ω0 ∈ int(Ω), we have that In(g, f ;ω), n ≥ 1, attains its minimum at ω = ω0 and then ω∗
n ≡ ω0,

with ω0 the true parameter value. Moreover, the well-known information identity νrs = −νr,s holds

and we obtain the usual formula

EY {(ω̂r − ω0r)(ω̂s − ω0s)} = irs + o(n−1), r, s = 1, . . . , d,

with ω0r the r-th component of vector ω0.

2.3 Expansions for maximum likelihood estimators

Since the cross-validation procedures, considered in this paper, require the computation of the maxi-

mum likelihood estimators based on Y(q), with different choices for q, it can be useful, both from the
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theoretical and the computational point of view, to investigate the asymptotic relationship between

ω̂(q) and ω̂.

Proposition 2.1 Under the assumptions stated in Section 2.2, if δ 6= 1, the maximum likelihood

estimators ω̂(q) and ω̂ are such that

ω̂(q)r = ω̂r + ∂sℓ(ω̂;Yq)∂
rsℓ(ω̂;Y ) + op(n

δ−1), r = 1, . . . , d, (2.7)

where ∂sℓ(ω̂;Yq) =
∑

i∈q ∂sℓ(ω̂;Yi), ∂
rsℓ(ω̂;Y ) is the (r, s)-element of the inverse of matrix [∂rsℓ(ω̂;Y )]

and ω̂(q)r is the r-th components of vector ω̂(q).

The proof of Proposition 2.1 is deferred to the Appendix. Notice that if m is fixed, then γ = 1,

δ = 0 and it is easy to see that ω̂(q) − ω̂ = Op(n
−1). In particular, when m = 1 and q = {i},

i ∈ {1, . . . , n}, (2.7) particularizes to

ω̂(q)r = ω̂r + ∂sℓ(ω̂;Yi)∂
rsℓ(ω̂;Y ) + op(n

−1), r = 1, . . . , d.

Furthermore, it can be useful to emphasize that if δ = 1, then m = O(n) and a result similar to

(2.7) can not be achieved. The point is that the main term and the remainder in the right hand side

of (A.2), specified in the proof of Proposition 2.1, have the same asymptotic order and they both have

to be considered in the expansion for ∂rℓ(ω̂(q);Yq). Thus, the inversion procedure can not be applied

and a simple explicit relation linking ω̂ and ω̂(q) is not available.

Finally, equation (2.7) may be useful in the calculation of the cross-validation criterion, in order

to reduce the computational burden, since it is possible to define ω̂(q) as a suitable function of ω̂,

eventually with an error term of a low asymptotic order. Thus, the evaluation of the selection statistic

(2.1) will require only one fit of the model, instead of the
(n
m

)
fits needed in principle.

3 Asymptotic bias of cross-validation criteria based on the estima-

tive predictive density

3.1 Predictive information criterion for model selection

In this section, adopting the framework previously introduced, we shall study the cross-validation

selection statistic (2.1), viewed as a suitable estimator for a target value measuring the predictive

ability of a given parametric statistical model for the random vector Y . Following Konishi and
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Kitagawa (1996) and Burnham and Anderson (2002), the goodness of a given model may be judge by

considering the following indicator based on the Kullback-Leibler divergence.

As mentioned in Section 2.1, alternative divergences or loss functions may be considered for eval-

uating the predictive ability of a given model or, more generally, of a given statistical algorithm (see

Arlot and Celisse, 2010). The choice of the loss function depends on the objective of the selection pro-

cedure and on the particular type of models or statistical algorithms taken into account. In this paper

we focus on the Kullback-Leibler divergence and the associated logarithmic score function, which are

usually considered whenever the aim is to select a density function viewed as a suitable estimator

for the true density. The AIC-type model selection criteria, and more generally those ones based on

modifications of the maximized loglikelihood, are usually defined in this framework.

Definition 3.1 Let us consider an observable random vector Y = (Y1, . . . , Yn) and a future random

vector Z = (Z1, . . . , Zn), with the same distribution as Y ; Y and Z are supposed to be independent.

Under the assumptions stated in Section 2, the expected Kullback-Leibler divergence (Kullback-Leibler

risk) between the true density for Z, given by g(z), and the estimative predictive density f̂(z) = f(z; ω̂)

under the candidate model is

EY {In(g, f̂ ;ω)} = EY [EZ{log g(Z)}]− EY [EZ{log f(Z; ω̂)}], (3.1)

where the expectations are with respect to the common true distribution of Y and Z, ω̂ = ω̂(Y ) and

In(g, f̂ ;ω) is the Kullback-Liebler divergence between g(z) and f(z; ω̂).

The associated selection criterion, which points to the model minimizing the expected Kullback-

Leibler risk (3.1), is equivalent to that one selecting the model maximizing the expected predictive

loglikelihood

η(g, f̂) = EY [EZ{log f(Z; ω̂)}].

Note that, if the components of vectors Y and Z are independent and identically distributed, η(g, f̂) =

nEY [EZi
{log f(Zi; ω̂)}], namely n times the expected predictive loglikelihood for the marginal random

variable Zi, i = 1, . . . , n. Konishi and Kitagawa (1996) consider this simple case, using functional-type

estimators for ω.

Since the expected predictive loglikelihood depends on the true unknown distribution, we aim to

define, as a model selection statistic, a suitable estimator Ψ(Y ) for η(g, f̂). In particular, we shall

study the potential bias of these estimators for η(g, f̂), focusing on the situation where, exactly or
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approximately, EY {Ψ(Y )} = η(g, f̂). Under this respect, the following proposition may be useful,

since it provides asymptotic approximations for the target value η(g, f̂) and for the expectation of

ℓ(ω̂;Y ) = log f(Y ; ω̂), which is the maximized loglikelihood associated to the candidate model. In the

following, we usually consider ω∗ instead of ω∗
n, omitting n in order to simplify the notation.

Proposition 3.1 Under the assumptions stated before, we have that

η(g, f̂) = EY {log f(Y ;ω∗)} −
1

2
νt,ri

rt +O(n−1), (3.2)

EY {ℓ(ω̂;Y )} = EY {log f(Y ;ω∗)}+
1

2
νt,ri

rt +O(n−1). (3.3)

The proof of Proposition 3.1 is deferred to the Appendix. A comparison between (3.2) and (3.3)

shows that, to the relevant order of approximation, ℓ(ω̂;Y ) is usually an upwardly biased estimator

for η(g, f̂). A motivation is related to the fact that, in this case, the same data are used to fit the

model and to asses its predictive ability. A first order bias-corrected modification of the maximized

loglikelihood is ℓ(ω̂;Y ) − νt,ri
rt. In the particular case with independent, identically distributed,

observations, we obtain that EY {log f(Y ;ω∗)} = nEYi
{log f(Yi;ω

∗)} and νt,ri
rt = ν̄t,r ı̄

rt, where the

expected likelihood quantities ν̄t,u, ı̄
rt are related to a single component Yi. If the model contains the

true distribution, νt,ri
rt = d and the modification of the maximized loglikelihood corresponds to the

AIC, namely the Akaike Information Criterion (Akaike, 1973).

3.2 Simple and multifold cross-validation procedures

In this section we shall consider simple and multifold cross-validation procedures, based on the estima-

tive predictive density, with selection statistic ΨCV (m)(Y ) given by (2.1), with m ≥ 1. An interesting

interpretation for this selection statistic may be given by the following equivalent expression

ΨCV (m)(Y ) =
n∑

i=1

1
(n−1
m−1

)
∑

b(i)

log f(Yi; ω̂b(i)), (3.4)

where b(i) denotes a subset of {1, . . . , i − 1, i + 1, . . . , n} of dimension n − m and ω̂b(i) = ω̂(Yb(i))

is the maximum likelihood estimator for ω based on Yb(i) = (Yj , j ∈ b(i)). The summation is over

all the
( n−1
n−m

)
=
(n−1
m−1

)
subsets b(i) of size n − m. Thus, ΨCV (m)(Y ) may be viewed as an estima-

tor for η(g, f̂) =
∑n

i=1EY [EZi
{log f(Zi; ω̂)}], given by the sum of suitable estimators for each term

EY [EZi
{log f(Zi; ω̂)}], i = 1, . . . , n, based on the

( n−1
n−m

)
samples b(i) of size n−m. Note that, if m = 1,

10



each estimator involves a single sample b(i) of dimension n− 1 and, as expected, (3.4) corresponds to

ΨCV (1)(Y ).

It is known that, since cross-validation procedures separate the data used to fit the model and

the data used to define the prediction rule, the selection statistic (2.1) does not lead to substantial

overfitting. With regard to the choice between simple and multifold criteria, an intuitive motivation

for using ΨCV (m)(Y ), with m > 1, is that, leaving out groups of observations, rather than single ob-

servations, may avoid the potential problems of high variability related to ΨCV (1)(Y ). This statement

may be motivated by comparing the case m = 1 and the case m > 1, with regard to the alternative

formulation for ΨCV (m)(Y ) given by relation (3.4). However, as noted by Davison and Hinkley (1997)

for linear models, multifold cross-validation procedures present a reduced variance but, usually, at the

cost of an increasing bias.

In the sequel, we shall investigate the asymptotic bias of cross-validation criteria based on the

estimative predictive density, viewed as estimators for the expected predictive loglikelihood η(g, f̂).

It is well-known that a number of papers concerns the study of the potential bias of model selection

statistics and proposes various bias-corrected solutions. With regard to cross-validation criteria, Bur-

man (1989) considers the υ-fold cross-validation criterion and the repeated learning-testing method

as less computationally demanding alternatives to the simple cross-validation. He specifies a target

quantity which generalizes η(g, f̂) and derives useful first-order expansions for both the mean and

the variance of the estimators taken into account. Finally, he proposes a solution which accounts

for the bias-variance trade-off and it is less computational expensive than the simple cross-validation.

Furthermore, recent contributions by Fushiki (2011), Yanagihara, Tonda and Matsumoto (2006) and

Yanagihara and Fujisawa (2012) adopt a framework quite similar to that one considered in the present

paper and aim at defining first-order bias corrected cross-validation criteria.

The following two theorems, which represent the main original contribution of this paper, derive

suitable asymptotic approximations for the expectation of ΨCV (m)(Y ), with respect to the true distri-

bution of Y . The first one, with the associated corollary, concerns the case where δ 6= 1 and it includes

the simple cross-validation and the situation with m > 1 fixed. The second one regards the case where

δ ∈ (0, 1], γ ∈ (1/2, 1] and it includes the case where δ = γ = 1. These results, although focussed

only on the bias of the estimators, are obtained by assuming alternative asymptotic regimes for m

and emphasize some interesting theoretical features of cross-validation criteria, not yet considered in

the literature, useful as well for applications.
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Theorem 3.1 Under the assumptions stated before, if δ 6= 0, 1, the selection statistic (2.1) is such

that

EY {ΨCV (m)(Y )} = EY {log f(Y ;ω∗)}+
1

2
νt,ri

rt −
1

(n−1
m−1

)
∑

q

νq;r,si
rs

+
1

2

1
(n−1
m−1

)
∑

q

νq;rsνq;t,ui
trius + O(n−1), (3.5)

where νq;r,s = EYq
{∂rℓ(ω

∗;Yq)∂sℓ(ω
∗;Yq)} and νq;rs = EYq

{∂rsℓ(ω
∗;Yq)}, for r, s = 1, . . . , d, with

∂rℓ(ω
∗;Yq) =

∑
i∈q ∂rℓ(ω

∗;Yi) and ∂rsℓ(ω
∗;Yq) =

∑
i∈q ∂rsℓ(ω

∗;Yi).

The proof of Theorem 3.1 is deferred to the Appendix. For the case δ = 0, namely when m is

fixed, the following corollary holds. The proof is analogous to that of Theorem 3.1, with the additional

simplification that the third term in the right hand side of equation (A.3), as given in the Appendix,

is of order Op(n
−1) and therefore included in the error term.

Corollary 3.1 If m is fixed, the selection statistic (2.1) is such that

EY {ΨCV (m)(Y )} = EY {log f(Y ;ω∗)}+
1

2
νt,ri

rt −
1

(n−1
m−1

)
∑

q

νq;r,si
rs + O(n−1). (3.6)

As a simple application of this last result, it is easy to see that the expansion for the case with m = 1,

which corresponds to the simple cross-validation procedure, is

EY {ΨCV (1)(Y )} = EY {log f(Y ;ω∗)}+
1

2
νt,ri

rt −
n∑

i=1

νi;r,si
rs + O(n−1)

= EY {log f(Y ;ω∗)} −
1

2
νt,ri

rt −
n∑

i=1

νi;rνi;si
rs + O(n−1).

Here νi;r,s = EYi
{∂rℓ(ω

∗;Yi)∂sℓ(ω
∗;Yi)}, νi;r = EYi

{∂rℓ(ω
∗;Yi)}, r, s = 1, . . . , d, and it is easy to show

that
∑n

i=1 νi;r,s = νr,s+
∑n

i=1 νi;rνi;s. Note that, in the particular situation with independent identically

distributed observation, νi;r = 0, r = 1, . . . , d, exactly or to the relevant order of approximation. Thus,

ΨCV (1)(Y ) is a first-order unbiased estimator for η(g, f̂) and νt,ri
rt = ν̄t,r ı̄

rt. Except this simple case,

the first-order unbiasedness holds only if the model is true. Indeed, when the model is true, we can

prove that ΨCV (1)(Y ) = ℓ(ω̂;Y ) − d + Op(n
−1/2), which corresponds to the AIC, in accordance with

Stone’s (1977a) result. The same conclusions are valid for the case with m > 1 fixed.

On the other hand, if m increases with n, so that m = o(n), the expected behaviour of ΨCV (m)(Y )

differs. In particular, with independent identically distributed observations, we have that

12



1
(n−1
m−1

)
∑

q

νq;r,si
rs =

(n
m

)
(n−1
m−1

)
mν̄r,sı̄

rs

n
= ν̄r,sı̄

rs,

1
(n−1
m−1

)
∑

q

νq;rsνq;t,ui
trius =

(n
m

)
(n−1
m−1

)
m2 ν̄rsν̄t,uı̄

tr ı̄us

n2
= −

m

n
ν̄t,r ı̄

rt,

where the expected likelihood quantity ν̄rs is related to a single component Yi. Thus, (3.5) particu-

larizes to

EY {ΨCV (m)(Y )} = EY {log f(Y ;ω∗)}+
1

2
ν̄t,r ı̄

rt − ν̄t,r ı̄
rt −

1

2

m

n
ν̄t,r ı̄

rt +O(n−1)

= EY {log f(Y ;ω∗)} −
1

2

(
1 +

m

n

)
ν̄t,r ı̄

rt +O(n−1). (3.7)

Note that, in this case, ΨCV (m)(Y ) is an unbiased estimator for η(g, f̂) to order o(1). The additional

bias term −mν̄t,r ı̄
rt/(2n) is of order O(nδ−1), so that it is negligible for large n. Moreover, if the model

contains the true distribution, we have that ν̄t,r ı̄
rt = d and, from (A.3), we may prove that ΨCV (m)(Y )

is asymptotically equivalent to a suitable modification of the AIC. More precisely, if δ ∈ (0, 1/2] we

find that ΨCV (m)(Y ) = ℓ(ω̂;Y ) − d + Op(n
−1/2), whereas, if δ ∈ (1/2, 1), we have to consider an

additional term of order O(nδ−1), so that ΨCV (m)(Y ) = ℓ(ω̂;Y )− d{1 +m/(2n)}+Op(n
−1/2).

Theorem 3.2 Under the assumptions stated before, if δ ∈ (0, 1] and γ ∈ (1/2, 1], the selection statistic

(2.1) is such that

EY {ΨCV (m)(Y )} = EY {log f(Y ;ω∗)}+
1

2

1
(n−1
m−1

)
∑

q

ν(q);t,u i
rt
(q) i

us
(q) νq;rs +O(n1−2γ), (3.8)

where ν(q);r,s = EY(q)
{∂rℓ(ω

∗;Y(q))∂sℓ(ω
∗;Y(q))}, ν(q);rs = EY(q)

{∂rsℓ(ω
∗;Y(q))} and irs(q) is the (r, s)-

element of the inverse of the matrix [i(q);rs] = [−ν(q);rs]. Here, ∂rℓ(ω
∗;Y(q)) =

∑
i 6∈q ∂rℓ(ω

∗;Yi),

∂rsℓ(ω
∗;Y(q)) =

∑
i 6∈q ∂rsℓ(ω

∗;Yi) and the expectations are with respect to the true distribution of

Y(q).

The proof of Theorem 3.2 is deferred to the Appendix. Note that Theorem 3.2 can not be applied

when m is fixed or γ ∈ (0, 1/2]. However, it is useful for the case when δ = 1, which is excluded

in Theorem 3.1. In fact, the proof does not involve the asymptotic relationship between ω̂(q) and ω̂,

which holds for δ 6= 1, and it is similar to that considered for the approximation of the target value

η(g, f̂), given in Proposition 3.1.

Finally, we emphasize that, with independent, identically distributed observations, we obtain
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1
(n−1
m−1

)
∑

q

ν(q);t,u i
rt
(q) i

us
(q) νq;rs =

(n
m

)
(n−1
m−1

)
m(n−m) ν̄t,uν̄rsı̄

rtı̄us

(n−m)2
= −

n

(n−m)
ν̄t,r ı̄

rt

and (3.8) particularizes to

EY {ΨCV (m)(Y )} = EY {log f(Y ;ω∗)} −
1

2

n

(n−m)
ν̄t,r ı̄

rt +O(n1−2γ). (3.9)

Whenever m = o(n), we have γ = 1 and n/(n−m) = 1+m/n+O(n2(δ−1)), so that (3.9) corresponds

to (3.7), as expected. By means of suitable expansions, we can prove that, whenever γ ∈ (2/3, 1],

ΨCV (m)(Y ) = ℓ(ω̂;Y )−
1

2

{
1 +

n

(n−m)

}
ν̄t,r ı̄

rt +Op(n
1−3γ/2). (3.10)

Indeed, if the model contains the true distribution, we have that ν̄t,r ı̄
rt = d and (3.10) turns out to be

a suitable modification of the AIC.

4 Comments

The theorems and the corollary, presented in the previous section, enable the calculation of the first-

order bias term for both the simple and the multifold cross-validation estimators, under different

assumptions on the model and on the dimension m of the validation set. These terms are obtained by

simply comparing equations (3.5), (3.6) and (3.8) with the asymptotic approximation for the target

value η(g, f̂) given by (3.2). These original results may be useful for understanding some theoretical

aspects of the cross-validation procedures and for choosing an appropriate strategy, for a given model

selection problem.

As a summary of the results presented in Section 3.2, we recall that the simple and the multifold

cross-validation procedures, with m fixed, define a first-order unbiased estimator for η(g, f̂) in the

particular case of independent, identically distributed, observations. However, this result holds in

a more general context of non independent observations only if the candidate model is correctly

specified. On the other hand, the multifold cross-validation procedure, when m increases with n,

usually corresponds to a biased estimator for the expected predictive loglikelihood η(g, f̂) and the

bias term turns out to be asymptotically negligible for large n provided that m = o(n). An intuitive

motivation, supporting this conclusion, concerns the fact that the second term in the right hand side

of (3.8) is, in some sense, similar to the the second term in the right hand side of (3.2), which, recalling

the proof of Proposition 3.1, corresponds to
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1

2
EY {(ω̂r − ω∗

r )(ω̂s − ω∗
s)}EZ{∂rsℓ(ω

∗;Z)} =
1

2
νt,ui

rtiusνrs = −
1

2
νt,ri

rt.

The term ν(q);t,u i
rt
(q) i

us
(q) νq;rs in equation (3.8) is similar to νt,ui

rtiusνrs, since Y(q) and Yq, for each

subset q ⊆ {1, . . . , n} of size m, play the role of the observable random vector Y and future random

vector Z, respectively. Thus, ΨCV (m)(Y ), with m = O(nδ), δ ∈ (0, 1], aims to mimic η(g, f̂), where

the dimension of both Y and Z increases with n.

As an additional comments on the results, we have to emphasized that we essentially obtain first-

order approximations, where the remainder is usually expected to vanish as n increases. However, it

may happen that the error term turns out to be be substantial even for a large dimension n of the

observed sample. As a matter of fact, it may be heavily influenced by the dimensionm of the validation

set, by the underlying model, and in particular by the number of unknown parameters which could

also increases with n, and by the fact that there might be a non-finite number of alternative models.

Thus, if we go beyond a standard model selection framework, the behaviour of the cross-validation

estimator may differ from that of its first-order approximation.

In this paper we focus on the potential bias of various cross-validation estimators, however, in

order to properly evaluate their performances, a further study on the stability of the estimates should

be required. A deep analysis, similar to that one performed by Burman (1989), giving the expansions

for the variance of the υ-fold cross-validation and the repeated learning-testing criteria, could be

useful for classifying the cross-validation estimators according to the bias-variance trade-off criterion.

Nevertheless this analysis is beyond the scope of the present paper, even if some preliminary hints on

the variability issue may be deduced from the simulation study presented in Section 6.

A further comment concerns the computational cost of the cross-validation procedures which may

become unbearable when n and eventually m are large. To simplify the calculations, we may consider

equation (A.3), which is used in the proof of Theorem 3.1 presented in the Appendix. This relation

holds for δ ∈ (0, 1), and, without the third term in the right hand side, for δ = 0, that is with m fixed.

From (A.3) we may obtain a first-order asymptotically equivalent expression for ΨCV (m)(Y ), based

on the maximum likelihood estimator ω̂ and defined as a modification of the maximized loglikelihood

ℓ(ω̂;Y ). This can be useful for applications, since the computation of the selection statistic is in fact

greatly simplified. These simplified formulas for the cross-validation estimators will be specified in

Section 5 for the problem of variable selection in linear regression models.

A final interesting point to be discussed regards the usefulness of the above mentioned results
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in the general context of model selection strategies. Although, as noted by Fushiki (2011), a better

estimator for the prediction error, and in particular a bias-corrected version, does not necessarily

correspond to a better model selection criterion, the findings on the first-order bias term of the

cross-validation estimators may be useful as well in this more challenging context to understand the

inferential properties of the estimators.

It is widely known that cross-validation is frequently considered for model selection, pointing to

the model with the smallest estimated risk, however the validity of the selection procedure depends on

the specific goal of the model selection. Under this respect, for density estimation purposes, Celisse

(2014) shows that the performance of alternative cross-validation criteria varies according to the

objective of the procedure, namely risk estimation or model selection in a strict sense. This distinction

is emphasized in the review paper by Arlot and Celisse (2010), where, considering a more general

framework, they speak about model selection for identification and model selection for estimation. In

the first case, we assume that the true model exists and it belongs to the set of candidate model, and

the aim is to identify it, or that the true model exists but it does not belong to the collection, and then

we look for the candidate model closest to the true one. Here, the performance of the model selection

procedures is usually evaluated in terms of model selection consistency. In the second case, we do not

necessarily assume the existence of a true model and the aim is to find the model which minimizes a

suitable estimated risk. The performance of the model selection procedures is then evaluated in terms

of model selection efficiency, with respect to an ideal model which minimizes the true risk. With regard

to the regression framework, an interesting contribution on the conflict between model identification

and model estimation is Yang (2005), while Yang (2007) presents a deep analysis on the conditions

assuring model selection consistency for cross-validation selection criteria.

Since we assume the existence of a true model, belonging or not to the collection of candidate

models, the cross-validation estimators studied in present paper can be ideally employed for defin-

ing model selection criteria designed for the goal of model identification, where the best candidate

model is specified as that one minimizing the estimated Kullback-Liebler risk. However, the original

contribution of this paper does not regard the optimality issues concerning model selection, since the

focus is mainly on first-order bias evaluation, which could be a preliminary task for understanding

the behaviour of the alternative selection criteria. In the simulation study of Section 6, we presents

a preliminary analysis of how the cross-validation estimators, used as model selection statistics in

the variable selection framework, behave with respect to different choices for m, obtaining results in
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accordance with the theoretical findings of Shao (1997) and Yang (2007).

5 Applications

5.1 Normal regression models

Let us assume that the candidate model for the observations y = (y1, . . . , yn)
T , n ≥ 1, is specified by

the family of joint density functions f(y;ω), ω ∈ Ω ⊆ Rd , d > 1, for a random vector Y = (Y1, . . . , Yn)
T

such that

Yi = µi + εi, i = 1, . . . , n,

with µi = η−1(βTxi). Here, β = (β1, . . . , βd−1)
T is a (d−1)-dimensional vector of unknown parameters,

xi = (xi1, . . . , xid−1)
T is a (d−1)-dimensional vector of known covariates and ε = (ε1, . . . , εn)

T follows

a multivariate normal distribution Nn(0, σ
2I), with 0 the null vector, I the identity matrix and σ2 > 0

an unknown parameter. Thus, Y1, . . . , Yn are independent Gaussian random variables such that Yi

follows a N(µi, σ
2) distribution, i = 1, . . . , n. Indeed, η(·) is a suitable monotonic differentiable link

function with inverse η−1(·). The simplified model with µi = η−1(βTxi) = βTxi is obtained whenever

the canonical link function η(u) = u is considered and corresponds to the linear Gaussian regression

model. Moreover, the unknown parameter is ω = (ω1, . . . , ωd)
T = (β1, . . . , βd−1, σ

2)T = (βT , σ2)T

and, whenever g(y) = f(y;ω0), ω0 ∈ int(Ω), that is, when the model contains the true distribution,

ω∗ equals the true parameter value ω0 = (βT
0 , σ

2
0)

T .

In this context, the assumptions introduced in Section 2.2 are fulfilled. Indeed, we introduce

the following additional assumptions regarding the covariates: the n × (d − 1)-dimensional matrix

X = [xir], i = 1, . . . , n, r = 1, . . . , d− 1, is such that

(XTX)−1 = Σn−1 +O(n−2),

with Σ = [Σrs], r, s = 1, . . . , d − 1, a known (d − 1) × (d − 1)-dimensional matrix; the matrices

X(q) = [xir], i 6∈ q, r = 1, . . . , d− 1, and Xq = [xir], i ∈ q, r = 1, . . . , d− 1, are such that

(XT
(q)X(q))

−1 = Σ(n−m)−1 +O((n−m)−2), (XT
q Xq)

−1 = Σm−1 +O(m−2),

whenever n−m and m increase with n.
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The maximum likelihood estimators for ω correspond to ω̂ = (β̂1, . . . , β̂d−1, σ̂
2)T = (β̂T , σ̂2)T and

ω̂(q) = (β̂(q)1, . . . , β̂(q)d−1, σ̂
2
(q))

T = (β̂T
(q), σ̂

2
(q))

T , defined as the solutions, with respect to ω, to (2.2)

and (2.3), respectively, with

∂rℓ(ω;Yi) =
(Yi − µi)xir
σ2η ′(µi)

, r = 1, . . . , d− 1,

∂rℓ(ω;Yi) = ∂σ2ℓ(ω;Yi) =
1

2σ4
{(Yi − µi)

2 − σ2}, r = d,

where η ′(·) is the first derivative of function η(·). In the canonical case we have that η ′(µi) = 1.

Note that σ̂2 = n−1∑n
i=1(Yi − µ̂i)

2 and σ̂2
(q) = (n − m)−1∑

j 6∈q(Yj − µ̂(q)j)
2, with µ̂i = η−1(β̂Txi)

and µ̂(q)j = η−1(β̂T
(q)xj); in particular, if q = {i}, σ̂2

(q) = σ̂2
(i) = (n − 1)−1∑

j 6=i(Yj − µ̂(i)j)
2, with

µ̂(i)j = η−1(β̂T
(i)xj).

In this framework, the cross-validation selection statistic corresponds to

ΨCV (m)(Y ) = −
n

2
log(2π)−

m

2
(n−1
m−1

)
∑

q

log σ̂2
(q) −

1

2
(n−1
m−1

)
∑

q

∑

i∈q

(Yi − µ̂(q)i)
2

σ̂2
(q)

,

and, for the leave-one-out case, it simplifies to

ΨCV (1)(Y ) = −
n

2
log(2π)−

1

2

n∑

i=1

log σ̂2
(i) −

1

2

n∑

i=1

(Yi − µ̂(i)i)
2

σ̂2
(i)

.

These formulas require the computation of the maximum likelihood estimator ω̂(q) for all the subsets

Y(q) of vector Y . In order to reduce the computations, we may use the relation linking ω̂(q) and ω̂,

derived in the following corollary of Proposition 2.1.

Corollary 5.1 Under the assumptions stated in Section 2.2 with δ 6= 1, if we consider a normal

regression model with link function η(·), we have that

β̂(q)u = β̂u +
∑

j∈q

(Yj − µ̂j)xjr
σ̂2η ′(µ̂j)

∂ruℓ(ω̂;Y ) + op(n
δ−1), u = 1, . . . , d− 1,

σ̂2
(q) = σ̂2 +

m

n
σ̂2 −

1

n

∑

j∈q

(Yj − µ̂j)
2 + op(n

δ−1),

where ∂ruℓ(ω̂;Y ) is the (r, u)-element of the inverse of matrix [∂ruℓ(ω̂;Y )], r, u = 1, . . . , d− 1, defined

by (A.5).
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The proof of Corollary 5.1 is deferred to the Appendix. It may be useful to emphasize that

these relations hold for δ 6= 1, that is when m is fixed or m = o(n). The formulas for β̂(i) and

σ̂2
(i), useful within the simple cross-validation procedure, may be obtained by setting m = 1 and

q = {i}. Note that, if the canonical link function is considered, the expansion for β̂(q)u simplifies, since

∂ruℓ(ω̂;Y ) = −σ̂−2∑n
i=1 xirxiu and ∂ruℓ(ω̂;Y ) = −σ̂2Σrun

−1 +O(n−2), r, u = 1, . . . , d− 1, so that

β̂(q)u = β̂u −
1

n

∑

j∈q

(Yj − µ̂j)xjrΣ
ru +Op(n

−2), u = 1, . . . , d− 1.

In order to speed up the computation of ΨCV (m)(Y ), we may also consider some asymptotically

equivalent expressions based on the maximum likelihood estimator ω̂ and derived from relation (A.3),

obtained in the proof of Theorem 3.1. Whenever m is fixed, the third term in the right hand side of

(A.3) has to be included in the error term and we get

ΨCV (m)(Y ) = −
n

2

{
log(2πσ̂2) + 1

}
−

1

2σ̂4n
(n−1
m−1

)
∑

q

∑

i∈q

(Yi − µ̂i)
4 +

1

σ̂2n
(n−1
m−1

)
∑

q

∑

i∈q

(Yi − µ̂i)
2

−
1

2
+

1

σ̂4
(n−1
m−1

)
∑

q




∑

i∈q

(Yi − µ̂i)xir
η ′(µ̂i)

∑

j∈q

(Yj − µ̂j)xjs
η ′(µ̂j)



 ∂rsℓ(ω̂;Y ) +Op(n

−1)

= −
n

2

{
log(2πσ̂2) + 1

}
−

1

2σ̂4n

n∑

i=1

(Yi − µ̂i)
4 +

1

2

+
1

σ̂4
(n−1
m−1

)
∑

q




∑

i∈q

(Yi − µ̂i)xir
η ′(µ̂i)

∑

j∈q

(Yj − µ̂j)xjs
η ′(µ̂j)



 ∂rsℓ(ω̂;Y ) +Op(n

−1).

This final expression is obtained by noticing that
∑

q

∑
i∈q(Yi − µ̂i)

τ =
(n−1
m−1

)∑n
i=1(Yi − µ̂i)

τ , with

τ = 2, 4. In particular, if m = 1 and q = {i} we have that

ΨCV (1)(Y ) = −
n

2

{
log(2πσ̂2) + 1

}
−

1

2σ̂4n

n∑

i=1

(Yi − µ̂i)
4 +

1

2

+
1

σ̂4

n∑

i=1

[
(Yi − µ̂i)

2xirxis
{η ′(µ̂i)}2

]
∂rsℓ(ω̂;Y ) +Op(n

−1).

Moreover, if m = o(n), we may derive a suitable asymptotic expansion for ΨCV (m)(Y ), which cor-

responds to that one given for m fixed, with an additional term based on ∂rℓ(ω̂;Yq), ∂rsℓ(ω̂;Yq),

∂rsℓ(ω̂;Y ). In the canonical case, all these formulas are in fact simplified. Finally, if m = O(n)

analogous results are not available.
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Concerning the evaluation of the potential bias of ΨCV (m)(Y ), we need to compute the expecta-

tion of the selection statistic under the true distribution, approximated by means of the asymptotic

relations given in Section 3. These approximations require the calculation of some expected likelihood

quantities, with respect to the true distribution of Y , related to the candidate model and to the pseudo-

true parameter value ω∗. Unless a suitable assumption on the true distribution is considered, these

quantities are not explicitly known and they may be eventually estimated by using non-parametric

bootstrap techniques. In the following, we shall derive explicitly these expressions for the special case

of a linear Gaussian regression model.

5.2 Variable selection in linear regression models

In this section, we focus on the problem of variable selection under a linear Gaussian regression model,

namely a Gaussian regression model with a canonical link function. In particular, we assume that the

true model has d0 − 2, with d0 ≥ 2, covariates; namely, Y = (Y1, . . . , Yn)
T is such that

Yi = µ0i + ε0i, i = 1, . . . , n,

where µ0i = βT
0 x0i, with β0 = (β01, . . . , β0d0−1)

T , x0i = (xi1, . . . , xid0−1)
T and ε0 = (ε01, . . . , ε0n)

T

follows a multivariate normal distribution Nn(0, σ
2
0I), with σ2

0 > 0. Let us consider the candidate

model as defined in Section 5.1, with η(u) = u. Two different situations have to be considered. In

the first case, d ≥ d0 so that the model is correct. However, unless we have d = d0, the model may

be inefficient, because of its unnecessarily large size. In the second case, d < d0 so that the model is

incorrect, since some relevant covariates are not taken into account.

Let us consider the first situation, where the model is correct but it may include some redundant

terms in the linear predictor βTxi. In this case, the true parameter value β0 may be specified as the

(d− 1)-dimensional vector β0 = (β01, . . . , β0d0−1, 0, . . . , 0)
T , with, eventually, d− d0 null components;

indeed, ω∗ = ω0 = (βT
0 , σ

2
0)

T . The following proposition provides the first-order asymptotic expansions

for the target quantity η(g, f̂) and for the expectation EY {ΨCV (m)(Y )}, by considering alternative

asymptotic regimes.

Proposition 5.1 Under the assumptions recalled in Section 5.1, with m = O(nδ) and n−m = O(nγ),

if we consider a linear Gaussian regression model with d ≥ d0, we have that

η(g, f̂) = −
n

2

{
log(2πσ2

0) + 1
}
−

d

2
+O(n−1), (5.1)
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EY {ΨCV (m)(Y )} = −
n

2

{
log(2πσ2

0) + 1
}
−

d

2

(
1 +

m

n

)
+O(n−1), (5.2)

for δ ∈ (0, 1), γ ∈ (0, 1],

EY {ΨCV (m)(Y )} = −
n

2

{
log(2πσ2

0) + 1
}
−

d

2

n

(n−m)
+O(n1−2γ), (5.3)

for δ = 1, γ ∈ (1/2, 1].

The proof of Proposition 5.1 is deferred to the Appendix. It is easy to see that, whenever m is fixed

and, in particular, for the leave-one-out case, we have δ = 0 and γ = 1 and the expectation is simply

obtained by (5.2), neglecting the term m/n. Moreover, in the special case when m/n = λ + o(1),

with λ ∈ (0, 1), we may substitute 1/(1 − λ) + o(1) for n/(n −m) in equation (5.3). Thus, as far as

linear Gaussian regression models are concerned, the simple cross-validation selection statistic and,

in general, the multifold cross-validation selection statistics with m fixed, are first order unbiased

estimators for η(g, f̂). However, this conclusion requires the key, but rarely plausible, assumption that

the model is correctly specified. On the other hand, if m increases with n, ΨCV (m)(Y ) is a biased

estimator for η(g, f̂), unless γ = 1 and δ ∈ (0, 1), so that m = o(n).

Finally, we can prove that the same asymptotic relations linking the cross-validation selection

statistics and the AIC, presented in Section 3 for the the case of independent, identically distributed,

observations, maintain as well when we consider a (correctly specified) linear Gaussian regression

model. In particular, we find that, if m/n = λ + o(1), as n → +∞, with λ ∈ (0, 1), since δ = 1 and

γ = 1, ΨCV (m)(Y ) = ℓ(ω̂;Y )−d(2−λ)/{2(1−λ)}+Op(n
−1/2). This result is in accordance with that

one given by Zhang (1993), with regard to the problem of selecting among alternative linear regression

models, whenever the model is the correct one and σ2 is supposed to be known.

Let us consider the second situation where the model is not correctly specified, since some rel-

evant covariates are lacking. In this case, d < d0 and the true parameter values are σ2
0 and β0 =

(βT
A0, β

T
B0)

T = (β01, . . . , β0d0−1)
T , with βA0 = (β01, . . . , β0d−1)

T , βB0 = (β0d, . . . , β0d0−1)
T , while

β = (β1, . . . , βd−1)
T is the (d − 1)-dimensional parameter specified by the assumed model. The

vectors including all the relevant covariates are x0i = (xTAi, x
T
Bi)

T = (xi1, . . . , xid0−1)
T , i = 1, . . . , n,

with xAi = xi = (xi1, . . . , xid−1)
T the covariate vector defining the model under consideration and

xBi = (xid, . . . , xid0−1)
T . We state a further assumption on the covariates, assuring that the n×(d−1)-

dimensional matrix X = XA = [xir], i = 1, . . . , n, r = 1, . . . , d − 1, and the n × (d0 − d)-dimensional

matrix XB = [xir], i = 1, . . . , n, r = d, . . . , d0 − 1, are such that
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XTXB = XT
AXB = nΓ +O(1), XT

BXB = n∆+O(1),

with Γ = [Γrs], r = 1, . . . , d − 1, s = 1, . . . , d0 − d, a known (d − 1) × (d0 − d)-dimensional matrix

and ∆ = [∆tu], t, u = 1, . . . , d0 − d, a known (d0 − d)× (d0 − d)-dimensional matrix. These additional

requirements on the covariates are rather mild and, together with the assumptions made on X at

the beginning of Section 5.1, assure that the usual asymptotic results hold whenever the model is

misspecified.

Moreover, by solving equation (2.4) with respect to ω = (βT , σ2)T , we find that ω∗
n = (β∗T

n , σ∗2
n )T ,

n ≥ 1, and ω∗ = (β∗T , σ∗2)T are such that ω∗
n = ω∗ +O(n−1) , with

β∗ = βA0 +ΣΓβB0, σ∗2 = σ2
0 + βT

B0(∆− ΓTΣΓ)βB0 +O(n−1) = σ2
0(1 + ρ/n) +O(n−1).

Here,

ρ = σ−2
0

n∑

i=1

(βT
0 x0i − β∗T

n xi)
2 = σ−2

0 {βT
B0(∆− ΓTΣΓ)βB0}n+O(1)

is the non centrality parameter for the chi-squared distributed random variable nσ̂2/σ2
0, with n−d+1

degrees of freedom.

The following proposition provides the first-order asymptotic expansions for the target quantity

η(g, f̂) and for the expectation EY {ΨCV (m)(Y )}, assuming m fixed and m increasing with n.

Proposition 5.2 Under the assumptions stated before, with m = O(nδ) and n − m = O(nγ), if we

consider a linear Gaussian regression model with d < d0, we have that

η(g, f̂) = EY {log f(Y ;ω∗)} −
1

2

{
d

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
+O(n−1), (5.4)

EY {ΨCV (m)(Y )} = η(g, f̂)− (d− 1)
ρ/n

1 + ρ/n
+O(n−1), (5.5)

for δ = 0, γ = 1 (m fixed),

EY {ΨCV (m)(Y )} = η(g, f̂)−
1

2

m

(n−m)

{
d

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
+O(n1−2γ), (5.6)

for δ ∈ (0, 1], γ ∈ (1/2, 1].

The proof of Proposition 5.2 is deferred to the Appendix. It is almost immediate to see that when

d = d0, that is when the model is correct, we have ρ = 0 and the above results equals those ones

obtained in Proposition 5.1.
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Whenever m is fixed, since ρ = O(n), ΨCV (m)(Y ) could be a downwardly biased estimator for the

expected predictive loglikelihood. Note that, to the relevant order of approximation, this result does

not depend on m, so that the same conclusion is valid for m = 1, namely for the simple cross-validation

selection statistic ΨCV (1)(Y ). With regard to the AIC, it is easy to see that

EY {ℓ(ω̂;Y )− d} = EY [log f(Y ;ω∗)] +
1

2

{
d

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
− d+O(n−1)

= η(g, f̂)− d
ρ/n

1 + ρ/n
+

ρ/n

(1 + ρ/n)2
+O(n−1),

so that it turns out to be even more biased than ΨCV (m)(Y ).

Furthermore, for the case where δ ∈ (0, 1], γ ∈ (1/2, 1], ΨCV (m)(Y ) is still a biased estimator for

η(g, f̂). However, if γ = 1 and δ ∈ (0, 1), so that m = o(n), the first-order bias term is asymptotically

negligible. In the special case when m/n = λ + o(1), λ ∈ (0, 1), we may substitute λ/(1 − λ) + o(1)

for m/(n −m). In this situation, if λ → 0, we obtain a first order unbiased estimator for the target

mean value.

Finally, as for the case with a correctly specified model, we may derive asymptotically equivalent

expressions for ΨCV (m)(Y ), defined as a suitable modifications of the maximized loglikelihood ℓ(ω̂;Y ).

More precisely, if m is fixed, we obtain that

ΨCV (m)(Y ) = ℓ(ω̂;Y )−

{
d

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
− (d− 1)

ρ/n

1 + ρ/n
+Op(n

−1/2)

= ℓ(ω̂;Y )−

{
d+ (d− 1)ρ/n

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
+Op(n

−1/2).

Indeed, if m increases with n, assuming δ ∈ (0, 1] and γ ∈ (1/2, 1], we get

ΨCV (m)(Y ) = ℓ(ω̂;Y )−
1

2

{
d

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}

−
1

2

n

(n−m)

{
d

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
+O(n1−3γ/2)

= ℓ(ω̂;Y )−
1

2

(
1 +

n

n−m

){
d

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
+Op(n

1−3γ/2). (5.7)

In particular, when m/n = λ+ o(1), λ ∈ (0, 1), we have δ = γ = 1 and the term 1+n/(n−m) can be

substituted by (2 − λ)/(1 − λ). In both cases, ΨCV (m)(Y ) may be viewed as a suitable modification

of the AIC. Note that, if d = d0, we have ρ = 0 and all these results equal those ones obtained in the

case where the model is correct.
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6 A simulation study

We close the paper with a simple simulation study based on the STEAM data provided by Draper and

Smith (1998, Appendix 1). The response variable corresponds to the pounds of steam used monthly,

with regard to the steam plant which is part of an industry; there are 9 explanatory variables and the

number of observations is 25. The observed design matrix is extended in order to account for at most

n = 200 observations; the additional 175 values for each covariate are obtained by random sampling

of the 25 observed values.

We consider the following two situations. In the first case, the true model is the linear Gaussian

regression model with d0 = 6 parameters, namely β01, . . . , β05, σ
2
0, which equal the fitted parameter

values obtained from the STEAM data. Indeed, the candidate model is correct but it includes 3

further redundant covariates, so that d = 9. In the second case, the true model is the linear Gaussian

regression model with d0 = 11 parameters, namely β01, . . . , β010, σ
2
0, which equal the fitted parameter

values obtained from the complete STEAM dataset. Now the candidate model is incorrect since it

includes only the first 5 covariates, so that d = 7. In both cases, β01 is the intercept parameter.

The aim of the study is to estimate the bias and the standard deviation of ΨCV (m)(Y ), interpreted

as a suitable estimator for the target quantity η(g, f̂), with n = 25, 50, 100 and m = 1, 3, 5, 10, 20.

The estimates for η(g, f̂) are obtained using a double Monte Carlo procedure based on 500 × 500

n-dimensional simulated samples from the true models for Y and Z, respectively. The mean and the

standard deviation of ΨCV (m)(Y ) are estimated by considering 1, 000 n-dimensional simulated samples

from the true model for Y . Whenever m > 1, for reducing the amount of computation involved, we

consider the approximation to ΨCV (m)(Y ) proposed by Zhang (1993, Equation 1.3).

The estimated values are presented in Table 1, for the case where the model is true, and in Table

2, for the situation where the model is not correct. It is immediate to see that, in both situations,

the case where n = 25 presents unstable results and the estimates for n = 25 and m = 20 are, as

expected, not available. Indeed, it is interesting to note that, for m fixed, the bias of ΨCV (m)(Y )

tends to vanish as n increases only when the candidate model is correct (Table 1). On the other hand,

when the model is not correctly specified (Table 2), ΨCV (m)(Y ) seems to be a biased estimator for the

expected predictive loglikelihood η(g, f̂). This is in accordance with the theoretical findings presented

in Section 5, regarding incorrect candidate models and m fixed. Finally, the standard deviation of

ΨCV (m)(Y ), which is also influenced by the dimension of the target quantity η(g, f̂), is always higher

when the model is correct and overparametrized. We presume that this phenomenon is related to the
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n 25 50 100

η(g, f̂) -51.969 -90.883 -175.061

Bias SD Bias SD Bias SD

m

1 -6,270 8,511 -1,839 6,025 -0,554 7,038
3 -10,898 9,531 -2,484 6,238 -1,115 7,533
5 -17,243 11,335 -3,070 6,238 -0,559 7,398
10 -70,561 20,350 -5,568 5,948 -1,428 7,662
20 -14,487 7,112 -2,303 7,084

Table 1: Monte Carlo estimates for the bias and the standard deviation of ΨCV (m)(Y ), viewed as

estimator for η(g, f̂), with n = 25, 50, 100 and m = 1, 3, 5, 10, 20. The target η(g, f̂) is estimated by a

double Monte Carlo procedure. Simulations of n-dimensional samples from the true linear Gaussian

regression model with d0 = 6 parameters estimated from the STEAM dataset. The candidate model

is correct but it includes 3 unnecessary covariates.

n 25 50 100

η(g, f̂) -39.917 -98.644 -211.399

Bias SD Bias SD Bias SD

m

1 -10,876 3,587 -7,919 2,428 -7,222 2,733
3 -14,043 4,118 -8,264 2,380 -7,313 2,838
5 -18,683 4,562 -8,712 2,497 -7,391 2,847
10 -43,519 8,664 -10,321 2,333 -7,793 2,841
20 -16,103 2,673 -8,664 2,950

Table 2: Monte Carlo estimates for the bias and the standard deviation of ΨCV (m)(Y ), viewed as

estimator for η(g, f̂), with n = 25, 50, 100 and m = 1, 3, 5, 10, 20. The target η(g, f̂) is estimated

by a double Monte Carlo procedure. Simulations of n-dimensional samples from the true linear

Gaussian regression model with d0 = 11 parameters estimated from the complete STEAM dataset.

The candidate model is incorrect since it includes only the first 5 covariates.

fact that overfitting usually produces unstable predictive results.

In order to analyze the usefulness of the alternative cross-validation procedures for the specific aim

of model identification, we perform an additional simulation experiment to evaluate the probability

of correct selection, with alternative choices for the dimension m of the validation set. In this case

we assume that the true model is that one with the first 5 covariates, which corresponds to the
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linear Gaussian regression model with d0 = 7 parameters, namely β01, . . . , β06, σ
2
0, set equal the fitted

parameter values obtained from the original dataset. The candidate regression models are nested and

they have covariates ranging from 1 to 9, according to the order specified in the STEAM data.

The aim here is to estimate the probability of selecting the 9 candidate models using the selection

statistic ΨCV (m)(Y ), with n = 50, 100, 200 and m = 1, 5, 10, 20, 30, 50, 70, 100, 150. The estimates

are obtained by considering 1, 000 n-dimensional simulated samples from the true model. Instead

of calculating ΨCV (m)(Y ) using the definition (2.1), which could be computationally demanding, we

employ the first-order approximation defined by (5.7).

The estimated values are presented in Tables 3-5, for n = 50, 100, 200, respectively. We do not

report the values for m nearly equal to n, since as expected we obtain unstable results. It is immediate

to note that the probability of choosing the correct model is always the higher, whatever the value of

m. However, even if the probability of correct selection increases with n, it is quite clear that, for a

fixed n, the chance of choosing the correct model greatly increases withm. These findings, even though

related to the particular case of variable selection in linear regression models, confirm the theoretical

results of Shao (1997) and Yang (2007). In particular, they find that, at least for linear model selection,

multifold cross-validation procedures are asymptotically consistent whenever m/n → 1, as n increases.

Moreover, this fact support the statement that the usefulness of a selection criterion depends on the

objective of the model selection procedure, namely estimation or identification as recalled in Section

4, and that an unbiased selection statistic does not necessarily define an optimal criterion for model

identification.

d− 2

n m 1 2 3 4 5 6 7 8 9

50 1 0.000 0.002 0.029 0.016 0.714 0.117 0.067 0.039 0.016
5 0.000 0.004 0.031 0.016 0.730 0.106 0.064 0.035 0.014
10 0.000 0.005 0.040 0.017 0.752 0.095 0.053 0.028 0.010
20 0.000 0.008 0.085 0.025 0.766 0.069 0.029 0.014 0.004
30 0.000 0.014 0.186 0.023 0.732 0.032 0.010 0.003 0.000

Table 3: Monte Carlo estimates for the probability of selecting alternative models using ΨCV (m)(Y ),

with n = 50 and m = 1, 5, 10, 20, 30. Estimates based on n-dimensional simulated samples from the

true linear Gaussian regression model with 5 covariates. The candidate regression models are nested

and they have a number d− 2 of covariates ranging from 1 to 9.
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d− 2

n m 1 2 3 4 5 6 7 8 9

100 1 0.000 0.000 0.000 0.000 0.765 0.119 0.051 0.035 0.030
5 0.000 0.000 0.000 0.000 0.777 0.113 0.049 0.033 0.028
10 0.000 0.000 0.000 0.000 0.787 0.115 0.047 0.029 0.022
20 0.000 0.000 0.000 0.000 0.810 0.109 0.040 0.025 0.016
30 0.000 0.000 0.000 0.000 0.839 0.097 0.034 0.018 0.012
50 0.000 0.000 0.000 0.000 0.904 0.069 0.021 0.004 0.002
70 0.000 0.000 0.000 0.000 0.977 0.022 0.001 0.000 0.000

Table 4: Monte Carlo estimates for the probability of selecting alternative models using ΨCV (m)(Y ),

with n = 100 and m = 1, 5, 10, 20, 30, 50, 70. Estimates based on n-dimensional simulated samples

from the true linear Gaussian regression model with 5 covariates. The candidate regression models

are nested and they have a number d− 2 of covariates ranging from 1 to 9.

d− 2

n m 1 2 3 4 5 6 7 8 9

200 1 0.000 0.000 0.000 0.000 0.757 0.109 0.052 0.047 0.035
5 0.000 0.000 0.000 0.000 0.759 0.109 0.051 0.046 0.035
10 0.000 0.000 0.000 0.000 0.763 0.110 0.048 0.045 0.034
20 0.000 0.000 0.000 0.000 0.774 0.107 0.045 0.043 0.031
30 0.000 0.000 0.000 0.000 0.787 0.104 0.042 0.040 0.027
50 0.000 0.000 0.000 0.000 0.819 0.102 0.031 0.032 0.016
70 0.000 0.000 0.000 0.000 0.850 0.088 0.027 0.020 0.015
100 0.000 0.000 0.000 0.000 0.895 0.069 0.021 0.008 0.007
150 0.000 0.000 0.000 0.000 0.978 0.020 0.002 0.000 0.000

Table 5: Monte Carlo estimates for the probability of selecting alternative models using ΨCV (m)(Y ),

with n = 200 and m = 1, 5, 10, 20, 30, 50, 70, 100, 150. Estimates based on n-dimensional simulated

samples from the true linear Gaussian regression model with 5 covariates. The candidate regression

models are nested and they have a number d− 2 of covariates ranging from 1 to 9.

A Appendix

Proof of Proposition 2.1. By means of a stochastic Taylor expansion for ∂rℓ(ω̂(q);Y ), r = 1, . . . , d,

around ω̂(q) = ω̂ we have that, up to terms of lower asymptotic order,

∂rℓ(ω̂(q);Y )
.
= ∂rℓ(ω̂;Y ) + (ω̂(q)s − ω̂s)∂rsℓ(ω̂;Y ).
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Multiplication of both sides by ∂ruℓ(ω̂;Y ) gives

(ω̂(q)u − ω̂u) = ∂rℓ(ω̂(q);Yq)∂
ruℓ(ω̂;Y ) + op(n

δ−1), u = 1, . . . , d, (A.1)

with ∂rℓ(ω̂(q);Yq) =
∑

i∈q ∂rℓ(ω̂(q);Yi). This simplified expression is obtained since ω̂ and ω̂(q) satisfy

(2.2) and (2.3), respectively.

Let us consider the following expansion for the term ∂rℓ(ω̂(q);Yq) in equation (A.1)

∂rℓ(ω̂(q);Yq)
.
= ∂rℓ(ω̂;Yq) + (ω̂(q)s − ω̂s)∂rsℓ(ω̂;Yq), r = 1, . . . , d,

where terms of lower order are not taken into account. Since ∂rsℓ(ω̂;Yq) =
∑

i∈q ∂rsℓ(ω̂;Yi) = Op(n
δ),

with δ ∈ (0, 1), we state that

∂rℓ(ω̂(q);Yq) = ∂rℓ(ω̂;Yq) + op(n
δ) (A.2)

and substitution of equation (A.2) in (A.1) completes the proof. ✷

Proof of Proposition 3.1. Let us start with the proof of (3.2). By expanding log f(Z; ω̂) in a Taylor

series around ω̂ = ω∗ we obtain that

log f(Z; ω̂) = log f(Z;ω∗) + (ω̂r − ω∗
r )∂rℓ(ω

∗;Z) +
1

2
(ω̂r − ω∗

r )(ω̂s − ω∗
s)∂rsℓ(ω

∗;Z) +Op(n
−1/2).

Since EZ{log f(Z;ω∗)} is equal to EY {log f(Y ;ω∗)} and, by considering (2.4), EZ{∂rℓ(ω
∗;Z)} = 0,

exactly or to the relevant order of approximation, we state that

EZ{log f(Z; ω̂)} = EY {log f(Y ;ω∗)}+
1

2
(ω̂r − ω∗

r )(ω̂s − ω∗
s)EZ{∂rsℓ(ω

∗;Z)}+Op(n
−1/2).

Taking expectations term by term, with respect to the true distribution of Y , and using relation (2.5),

we get the final expansion

η(g, f̂) = EY {log f(Y ;ω∗)}+
1

2
νt,ui

rtiusνrs +O(n−1)

= EY {log f(Y ;ω∗)} −
1

2
νt,ri

rt +O(n−1).

In order to prove (3.3), we derive the following Taylor series around ω̂ = ω∗

ℓ(ω̂;Y ) = ℓ(ω∗;Y ) + (ω̂r − ω∗
r )∂rℓ(ω

∗;Y ) +
1

2
(ω̂r − ω∗

r )(ω̂s − ω∗
s)∂rsℓ(ω

∗;Y ) +Op(n
−1/2)

and around ω∗ = ω̂

∂rℓ(ω
∗;Y ) = ∂rℓ(ω̂;Y ) + (ω∗

s − ω̂s)∂rsℓ(ω̂;Y ) +Op(1).
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Using the fact that ∂rsℓ(ω̂;Y ) = ∂rsℓ(ω
∗;Y )+Op(n

1/2) and that, from (2.2), ∂rℓ(ω̂;Y ) = 0, we obtain

ℓ(ω̂;Y ) = ℓ(ω∗;Y )−
1

2
(ω̂r − ω∗

r )(ω̂s − ω∗
s)∂rsℓ(ω

∗;Y ) +Op(n
−1/2).

Since (ω̂r −ω∗
r ) = ∂tℓ(ω

∗;Y )irt+Op(n
−1), r = 1, . . . , d, (see Barndorff-Nielsen and Cox, 1994, Section

5.3, under the assumption previously outlined), taking expectations term by term, yields

EY {ℓ(ω̂;Y )} = EY {log f(Y ;ω∗)} −
1

2
νrs,t,ui

rtisu +O(n−1),

with νrs,t,u = EY {∂rsℓ(ω
∗;Y )∂tℓ(ω

∗;Y )∂uℓ(ω
∗;Y )}. Finally, as a consequence of relation (2.6), we

have that νrs,t,u = νrsνt,u + O(n), so that νrs,t,ui
rtisu = −νt,ri

rt + O(n−1), and this completes the

proof. ✷

Proof of Theorem 3.1. By expanding log f(Yq; ω̂(q)) in a Taylor series around ω̂(q) = ω̂, we obtain

the following asymptotic relation

ΨCV (m)(Y ) = ℓ(ω̂;Y ) +
1

(n−1
m−1

)
∑

q

(ω̂(q)r − ω̂r)∂rℓ(ω̂;Yq)

+
1

2

1
(n−1
m−1

)
∑

q

(ω̂(q)r − ω̂r)(ω̂(q)s − ω̂s)∂rsℓ(ω̂;Yq) +Op(n
−1).

In this case, ∂rsℓ(ω̂;Yq) = Op(m) = Op(n
δ), so that we consider the expansion up to the third term,

which is of order Op(n
δ−1). Indeed, since δ 6= 1, relation (2.7), linking ω̂(q) and ω̂, is valid and we

state that ΨCV (m)(Y ) corresponds to the following modification of the the maximized loglikelihood

ΨCV (m)(Y ) = ℓ(ω̂;Y ) +
1

(n−1
m−1

)
∑

q

{∂rℓ(ω̂;Yq)∂sℓ(ω̂;Yq)} ∂
rsℓ(ω̂;Y )

+
1

2

1
(n−1
m−1

)
∑

q

{∂tℓ(ω̂;Yq)∂uℓ(ω̂;Yq)∂rsℓ(ω̂;Yq)} ∂trℓ(ω̂;Y )∂usℓ(ω̂;Y )+Op(n
−1). (A.3)

The associated expected value is, using expansion (3.3),

EY {ΨCV (m)(Y )} = EY {log f(Y ;ω∗)}+
1

2
νt,ri

rt

+
1

(n−1
m−1

)
∑

q

EY {∂rℓ(ω
∗;Yq)∂sℓ(ω

∗;Yq)∂
rsℓ(ω∗;Y )}

+
1

2

1
(n−1
m−1

)
∑

q

EY {∂tℓ(ω
∗;Yq)∂uℓ(ω

∗;Yq)∂rsℓ(ω
∗;Yq)∂trℓ(ω

∗;Y )∂usℓ(ω
∗;Y )}

+ O(n−1),

where ω∗ is substituted for ω̂ in the second and in the third terms of the right hand side of (A.3).

As a consequence of (2.6), we have that ∂rsℓ(ω∗;Y ) = −irs + Op(n
−3/2). Finally, since δ 6= 0, a
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relation analogous to (2.6) holds for ∂rsℓ(ω
∗;Yq), so that EY {∂tℓ(ω

∗;Yq)∂uℓ(ω
∗;Yq)∂rsℓ(ω

∗;Yq)} =

νq;rsνq;t,u +O(nδ) and this completes the proof. ✷

Proof of Theorem 3.2. By expanding log f(Yq; ω̂(q)) in a Taylor series around ω̂(q) = ω∗, we have

that

ΨCV (m)(Y ) = log f(Y ;ω∗) +
1

(n−1
m−1

)
∑

q

(ω̂(q)r − ω∗
r )∂rℓ(ω

∗;Yq)

+
1

2

1
(n−1
m−1

)
∑

q

(ω̂(q)r − ω∗
r )(ω̂(q)s − ω∗

s)∂rsℓ(ω
∗;Yq) +Op(n

1−3γ/2). (A.4)

Since m increases with n, that is δ 6= 0, we have that EYq
{∂rℓ(ω

∗;Yq)} = 0, exactly or to the relevant

order of approximation. Indeed, a result analogous to (2.5) may be considered for ω̂(q) and then, taking

the expectation terms by terms in (A.4), with respect to the true density of Y , we obtain relation

(3.8). ✷

Proof of Corollary 5.1. For a Gaussian regression model we have that ∂ruℓ(ω̂;Y ) = ∂rσ2ℓ(ω̂;Y ) = 0,

r = 1, . . . , d− 1, u = d, ∂ruℓ(ω̂;Y ) = ∂σ2σ2ℓ(ω̂;Y ) = −n/(2σ̂4), r, u = d, and

∂ruℓ(ω̂;Y ) = −
1

σ̂2

[
n∑

i=1

xirxiu
{η ′(µ̂i)}2

+
n∑

i=1

(Yi − µ̂i)xirxiuη
′′(µ̂i)

{η ′(µ̂i)}3

]
, r, u = 1, . . . , d− 1, (A.5)

with η ′′(·) the second derivative of η(·). Substitution in (2.7) completes the proof. ✷

Proof of Proposition 5.1. Equation (5.1) derives from (3.2), since for a linear Gaussian regression

model it is easy to see that EY {log f(Y ;ω0)} = −n
{
log(2πσ2

0) + 1
}
/2. Furthermore, d ≥ d0 assures

that the model contains the true distribution, so that νt,ri
rt = d.

Moreover, since in this case

νq;r,s =

∑
i∈q xirxis

σ2
0

, r, s = 1, . . . , d− 1, νq;r,σ2 = 0, r = 1, . . . , d− 1, νq;σ2,σ2 =
m

2σ4
0

,

νq;rs = −

∑
i∈q xirxis

σ2
0

, r, s = 1, . . . , d− 1, νq;rσ2 = 0, r = 1, . . . , d− 1, νq;σ2σ2 = −
m

2σ4
0

,

irs = σ2
0Σrs +O(n−2), r, s = 1, . . . , d− 1, irσ

2
= 0, r = 1, . . . , d− 1, iσ

2σ2
=

2σ4
0

n
,

using equation (3.5), we prove that the expected value of ΨCV (m)(Y ), with m = O(nδ) and n−m =

O(nγ), δ ∈ (0, 1), γ ∈ (0, 1], corresponds to (5.2).
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Finally, in order to compute the mean value of ΨCV (m)(Y ) for the case when m = O(n) and

n−m = O(nγ), γ ∈ (1/2, 1], we have to use the alternative expansion (3.8) and to consider that

ν(q);r,s =

∑
i 6∈q xirxis

σ2
0

, r, s = 1, . . . , d− 1, ν(q);r,σ2 = 0, r = 1, . . . , d− 1, ν(q);σ2,σ2 =
n−m

2σ4
0

,

irs(q) = σ2
0Σrs +O(n−2γ), r, s = 1, . . . , d− 1, irσ

2

(q) = 0, r = 1, . . . , d− 1, iσ
2σ2

(q) =
2σ4

0

n−m
.

✷

Proof of Proposition 5.2. Since

irs =
σ∗2Σrs

n
+O(n−2), r, s = 1, . . . , d− 1, irσ

2
= 0, r = 1, . . . , d− 1, iσ

2σ2
=

2σ∗4

n
,

νr,s =
σ2
0

∑n
i=1 xirxis
σ∗4

, r, s = 1, . . . , d− 1, νσ2,σ2 =
nσ4

0

2σ∗8
+

σ4
0ρ

σ∗8
+O(1),

using (3.2), we find that the target mean value is

η(g, f̂) = EY {log f(Y ;ω∗)} −
1

2

(
σ2
0

∑n
i=1 xirxisΣrs

nσ∗2
+

σ4
0

σ∗4
+

2σ4
0ρ

σ∗4n

)
+O(n−1),

which, after simple calculations, gives (5.4).

With regard to the expectation of ΨCV (m)(Y ), for δ = 0, γ = 1, we prove that, being m fixed,

νq;r,s =
σ2
0

∑
i∈q xirxis

σ∗4
+

1

σ∗4

∑

i∈q

∑

j∈q

(βT
0 x0i − β∗Txi)(β

T
0 x0j − β∗Txj)xirxijs, r, s = 1, . . . , d− 1,

νq;σ2,σ2 =
mσ4

0

2σ∗8
+

σ2
0

σ∗8

∑

i∈q

(βT
0 x0i − β∗Txi)

2 +
1

4σ∗8

∑

i∈q

∑

j∈q

(βT
0 x0i − β∗Txi)

2(βT
0 x0j − β∗Txj)

2

+
m

2σ∗6

(
σ2
0

σ∗2
− 1

)
∑

i∈q

(βT
0 x0i − β∗Txi)

2 +
m2

4σ∗4

(
σ4
0

σ∗4
− 2

σ2
0

σ∗2
+ 1

)
.

Moreover,

1
(n−1
m−1

)
∑

q

νq;r,s = νr,s +
1

σ∗4
(n−1
m−1

)
∑

q

∑

i∈q

∑

j∈q

(βT
0 x0i − β∗Txi)(β

T
0 x0j − β∗Txj)xirxjs, r, s = 1, . . . , d− 1,

1
(n−1
m−1

)
∑

q

νq;σ2,σ2 = νσ2,σ2 +
1

4σ∗8
(n−1
m−1

)
∑

q

∑

i∈q

∑

j∈q

(βT
0 x0i − β∗Txi)

2(βT
0 x0j − β∗Txj)

2

+
m

2σ∗6

(
σ2
0

σ∗2
− 1

)
n∑

i=1

(βT
0 x0i − β∗Txi)

2 +
nm

4σ∗4

(
σ4
0

σ∗4
− 2

σ2
0

σ∗2
+ 1

)
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and, using formula (3.6), we obtain

EY {ΨCV (m)(Y )} = EY {log f(Y ;ω∗)} −
1

2

{
d+ 2(d− 1)ρ/n

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
+O(n−1),

which corresponds to (5.5).

Finally, when δ ∈ (0, 1] and γ ∈ (1/2, 1], we have that σ∗2 = σ2
0{1 + ρ/(n−m)}+O(n−γ), where

ρ = σ−2
0

∑
i 6∈q(β

T
0 x0i − β∗T

n−mxi)
2, and ρ/(n − m) equals, neglecting the additional terms of order

O(n−γ), the quantity ρ/n . Indeed, since both m and n−m increase with n,

irs(q) =
σ∗2Σrs

n−m
+O(n−2γ), r, s = 1, . . . , d− 1, irσ

2

(q) = 0, r = 1, . . . , d− 1, iσ
2σ2

(q) =
2σ∗4

n−m
,

ν(q);r,s =
σ2
0

∑
i 6∈q xirxis

σ∗4
, r, s = 1, . . . , d− 1, ν(q);σ2,σ2 =

(n−m)σ4
0

2σ∗8
+

σ4
0ρ

σ∗8
+O(1),

νq;rs = −

∑
i∈q xirxis

σ∗2
, r, s = 1, . . . , d− 1, νq;σ2σ2 = −

m

2σ∗4
+O(1).

Thus, it is immediate to see that

1

2

1
(n−1
m−1

)
∑

q

ν(q);t,u i
rt
(q) i

us
(q) νq;rs = −

1

2

m

(n−m)

1
(n−1
m−1

)
∑

q

ν(q);t,r i
rt
(q)

= −
1

2

m

(n−m)

(n
m

)
(n−1
m−1

)
{

d

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
+O(n1−2γ)

and, using (3.8), we find that

EY {ΨCV (m)(Y )} = EY {log f(Y ;ω∗)} −
1

2

n

(n−m)

{
d

1 + ρ/n
+

ρ/n

(1 + ρ/n)2

}
+O(n1−2γ),

which equals (5.6).

✷
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