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1. Introduction and Scope

The situation in which a component or structure is maintained at high temperature under the
action of cyclic thermal and/or mechanical loadings represents, perhaps, one of the most demanding
engineering applications—if not, in fact, the most demanding one. Examples can be found in many
industrial fields, such as automotive (cylinder head, engine, disk brakes), steel-making (hot rolling),
machining (milling, turning), aerospace (turbine blades), and fire protection systems (fire doors).

The presence of high temperatures usually induces some amount of material plasticity or creep
deformation in the most stressed regions of the structure. Plasticity, if combined with the action of
cyclic loading variation, may lead to low-cycle fatigue (LCF) failure.

In order to estimate the component fatigue life in such demanding operative condition, it is often
necessary to characterize the high-temperature material behavior under cyclic loading, in terms, for
example, of cyclic stress–strain response, strain hardening or softening, creep behavior, experimental
fatigue strength under isothermal and/or non-isothermal conditions. Moreover, it is also necessary
to develop a reliable structural durability approach that is able to include experimental results in
numerical and/or predictive models (e.g., plasticity models, fatigue strength curves).

The choice of the most appropriate material model to be used in simulations, or even calibrating
the model to experimental data, often represents the most critical step in the whole design approach.
Experimental techniques and modeling have to be properly managed to guarantee the reliability of the
estimated fatigue life.

2. Contributions

As a part of this Special Issue, researchers were invited to submit their innovative research papers
aimed at providing a state-of-the-art knowledge on the topic of metal plasticity, creep deformation
and fatigue strength of metals operating at high temperatures, with emphasis on both experimental
characterization and numerical modeling of material behavior. A total of eleven research papers were
published [1–11].

Problems correlated with the creep phenomenon have been investigated in [1,2]. The paper by
Liu et al. [1] presents an explicit fatigue-creep model which develops one formulation that covers the
full range of conditions: from pure fatigue, to creep-fatigue up to pure creep. Kloc et al. [2] study a
complex phenomenological creep model with particular attention focused on transient effects in the
creep behavior of the Sanicro 25 steel.

In the paper by Aigner et al. [3] a model based on the
√

area concept proposed by Murakami is
extended to elevated temperature by introducing an additional exponent.

Poulain et al. [4] examine the dependence and interaction between the effect of pressurized water
reactors environment, strain rate and shape of loading waveform on the LCF resistance of a 304L steel
in terms of stress-strain response, crack growth, fatigue life and fracture surfaces morphology.
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Thermo-mechanical fatigue (TMF) is studied in [5–7]. The paper written by Szmytka et al. [5]
provides an overview of a TMF design protocol through the analysis of the specific case of a cylinder
head, which summarizes the studies led by the authors over the last five years. Four typical issues in
high-temperature design—loading identification, aging and constitutive models, TMF criteria, and
validation tests—are addressed and critically analyzed, while some improvements are proposed. In [6],
Wagner et al. work on the identification of a criterion for crack initiation to provide the basis for a
nondestructive quality control of TMF-loaded porous components with improved statistical safety.
The paper by Ghodrat et al. [7] presents an adapted version of Paris’ fatigue crack-growth law where
cyclic plastic strains at the crack tip are considered as the parameter that controls crack growth. Finally,
it is found that the modified Paris’ law is able to assess TMF lifetimes of spheroidal graphite iron
(SGI) very well for all constraint levels with a single set of parameters. Crack initiation life models are
studied in [8], where three approaches (one based on Weibull distributed crack initiation life, the other
two based on probabilistic Schmid factor) are presented.

The effect of ageing temperature, initial stress levels and pre-strains on the stress-relaxation ageing
behavior of aluminium alloy AA7150-T7751 are investigated through a series of experiments and
presented in the work of Cai et al. [9]. The authors discuss a stress relaxation constitutive model with
the ability to reproduce stress relaxation curves under different process conditions. The paper by
Testa et al. [10] describes a model to estimate the yield stress at different strain rates and temperatures
for metals with body-centered-cubic (bcc) structure. Srnec Novak et al. [11] develop a new isotropic
model to describe the cyclic hardening/softening plasticity behavior of metals. The proposed model
is described with three parameters which were calibrated based on LCF experimental data of CuAg
alloy. An improvement is observed with respect to another nonlinear isotropic model generally used
in the literature.

Papers in this Special Issue addressed different types of material, from stainless steel studied
by [1,2,4,10], to aluminum alloys investigated by [3,6,9], Ni-based supper alloy in [8], spheroidal
graphite iron by [7], and copper alloy discussed in [11].

The developed constitutive methods have, in most cases, been compared to experimental data
obtained with tensile tests [3], fatigue tests [3,4,8], TMF tests [6,7], creep tests [2], and stress relaxation,
aging tests presented in [9].

3. Conclusions

This Special Issue presents a collection of research articles covering the relevant topics in the
field of metals plasticity, creep and fatigue at high temperature. As Guest Editors, we hope that these
articles may be useful to scientists working in this field to deepen or widen their research.
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