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Abstract. This work investigates the cyclic response and low-cycle fatigue behaviour of a 

CuAg alloy used in crystallizer for continuous casting lines. Therefore isothermal strain-based 

fatigue tests are first performed on CuAg specimens at different temperature levels (20 
o
C, 250 

°C, 300 °C). The evolution of stress-strain loops recorded during the cyclic tests is used for the 

parameter identification of several nonlinear hardening models (nonlinear kinematic, nonlinear 

isotropic). Cyclic stress-strain data from experiments are compared with results from numerical 

simulations with the identified material parameters, showing a satisfying agreement. Critical 

examination of numerical results from different models is also performed. Finally, the strain-

life fatigue curves estimated from experimental data are compared with approximate strain-life 

equations (Universal Slopes Equation, 10% Rule) which are obtained from simple tensile tests. 

The material parameters determined in this work can conveniently be used as inputs in a elasto-

plastic finite element simulations of a crystallizer. 

1.  Introduction 

Mechanical components in steel-making plants are often exposed to cyclic thermo-mechanical 

loadings and then exhibit a cyclic elasto-plastic behaviour and fatigue damage. In continuous casting 

lines, a typical example is the crystallizer, which is a long hollow component where the molten steel 

starts to solidify. Thermo-mechanical finite element (FE) analysis requires suitable models to properly 

simulate the cyclic elasto-plastic material response of the crystallizer as well as other components 

under thermo-mechanical loading (e.g. anode of electric arc furnace). The cyclic stresses and strains 

calculated by FE simulations are then compared to the experimentally obtained fatigue lives in order 

to estimate the component service life. 

Over the last fifty years several theories to describe the elasto-plastic and viscoplastic material 

behaviour (plasticity, creep, relaxation) have been developed and further improved [1-3]. Some of 

them have become readily available in commercial finite element software and are used for every-day 

industrial design.  

The capability of a material model to correctly represent a material behaviour observed in experiments 

is the first criterion for model selection. Material models generally depend on several parameters, 

which have to be calibrated on experimental results. By increasing the model complexity the number 
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of material parameters usually increases as well. Complex numerical algorithms are often used to 

identify multiple parameters simultaneously and optimisation routines are recommended [4-6].  

Sometimes it may be difficult, especially for non-experienced engineers, to understand which model is 

most suitable for their application or which parameters do really affect the material response. The 

choice of the material model for FE simulations, especially in industrial applications, often is the result 

of a trade-off among various needs, such as model complexity, computation time and experimental 

data available for parameter identification.  

As a contribution to material modelling and parameter identification this work presents the results of a 

research activity aimed at experimental testing and parameter identification of a CuAg alloy used for 

crystallizers of continuous casting lines. Isothermal strain-based low-cycle fatigue (LCF) tests are 

performed at different temperatures (20 
o
C, 250 °C, 300 °C). Experimental stress-strain loops are used 

for parameter identification of nonlinear kinematic (Armstrong-Frederick, Chaboche) and nonlinear 

isotropic hardening models. Numerical simulations with the identified material parameters are then 

compared with experimental data, showing that the considered material models are adequate to 

represent the elasto-plastic behaviour of the CuAg alloy. Strain-life fatigue lines estimated from 

experimental data are finally compared with some approximate analytical equations (Universal Slopes 

Equation, 10% Rule), which are estimated from simple tensile tests. 

2.  Nonlinear hardening models: theoretical background  

The combined material model (nonlinear kinematic + nonlinear isotropic) is able to capture elasto-

plastic behaviour of a material under cyclic loading. In the case of combined hardening, the yield 

surface can both translate and expand as shown in Figure 1. The von Mises yield criterion is given by: 

     0'':''
2

3
0  Rf ασασ  (1) 

where σ´ and α´ are the deviatoric parts of the stress and the back stress tensor, respectively, σ0 is the 

initial yield stress and R is the drag stress. Kinematic part is controlled by α (translation of the yield 

surface), while the isotropic part is related to R (expansion of the yield surface). The simplest 

kinematic model is the linear kinematic hardening model developed by Prager (1949), which assumes 

that the evolution of α is collinear with the plastic strain tensor: 

 pld
3

2
d εα C  (2) 

where C is the initial hardening modulus. Armstrong and Frederick (1966) modified Prager’s model 

by adding a recall term, which introduces a fading memory effect to the strain path. The recall term is 

called dynamic recovery. As a result, the nonlinear evolution of α is obtained [1]: 

 accpl,pl dd
3

2
d εC αεα   (3) 

where γ defines the rate at which hardening modulus starts to decrease as the plastic strain develops. 

Chaboche further extended the Armstrong-Frederick model by superimposing two or more nonlinear 

kinematic hardening models:  

 accpl,pl dd
3

2
d   ;   εC iiii

i

i αεααα   (4) 
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The integration of equation (3) with respect to εpl, for uniaxial loading, leads to:  

   pl,0pl0 exp 





 









CC
 (5) 

where ψ=±1 indicates the flow direction, εpl,0 and α0 are the initial values of plastic strain and back 

stress, respectively, at the beginning of the considered loading branch. Assuming tension (ψ=1) and 

zero initial plastic strain and back stress, equation (5) becomes:  

   pl0 exp1 


 
C

 (6) 

Equation (6) is proposed to estimate material parameters C and γ from a single stabilized stress-strain 

loop [1, 7]. Analytical integration of (5), for tension and compression, gives the relation between the 

stress amplitude and the plastic strain amplitude for the stabilized cycle [1, 7]: 

  
apl,0a tanh 




C
  (7) 

or in the form of Chaboche model:  

  



1

apl,0a tanh
i

i

i

iC



  (8) 

where σa is the stress amplitude and εpl,a is the plastic strain amplitude. Equation (7) and (8) are 

suitable to estimate parameters from several stabilized stress-strain curves [1]. 

 
Figure 1. Schematic evolution of the combined hardening model: a) in 

stress space and b) in uniaxial tension. 

The nonlinear isotropic hardening is expressed by the following equation [1]:  

   accpl,dd RRbR    (9) 

where R∞ is the saturation value of the yield surface, b is the speed of stabilization and εpl,acc is the 

accumulated plastic strain. R∞ can be either positive or negative, giving rise to cyclic hardening or 

softening, respectively. The relation between R and εpl,acc is obtained after integration:  

   accpl,exp1 bRR    (10) 
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3.  Experimental testing 

Isothermal low cycle fatigue (LCF) tests were performed to characterize the cyclic stress-strain 

behaviour and fatigue life of CuAg alloy at three temperature levels (20 
o
C, 250 

o
C, 300 

o
C). Several 

specimens were tested at different strain ranges for each temperature. All isothermal LCF tests were 

carried out in strain controlled mode with a triangular loading waveform and with a fully reversed 

strain ratio Rε=-1. The examined strain rate was 0.01 s
-1

. Tests were interrupted before specimen 

failure when the maximal stress decreased by 80%. LCF testing at 20 
o
C were performed on the servo-

hydraulic Instron-Schenck test rig with a nominal force ±250 kN, while the Instron extensometer with 

a gauge length of 12.5 mm and a range of ±5 mm was used to measure elongation during testing. The 

specimens were clamped by mechanical clamping grips. LCF testing at 250 
o
C and 300 

o
C were 

performed on the Instron test rig with a nominal force of ±100 kN. The temperature was applied by the 

induction heating system with a 10 kW medium frequency generator, Hüttinger TIG 10/300. The 

temperature was measured within the gauge length with a pre-stressed type K loop thermocouple. To 

measure an elongation at high temperatures an MTS extensometer, model 632.53F-14 with a gauge 

length of 12.6 mm and a range of ±1.8 mm was used. Test specimens were clamped by water cooled 

hydraulic clamping grips. Results of experimental tests are used for model calibration and estimation 

of the strain-life equations, as shown in the next paragraphs. 

  

Figure 2. Mechanical clamping jaws with 

extensometer for room temperature. 

Figure 3. Hydraulic clamping jaws, HT 

extensometer and heating apparatus. 

4.  Identification of material parameters 

Firstly, the Young’s modulus and the yield stress were estimated as they define the elastic region. The 

Young’s modulus was determined by using both the tensile portion of the first hysteresis loop (E1) and 

the stabilized stress-strain loop (Es). As shown in Table 1, the Young’s modulus is a function of the 

temperature and it also seems to depend on the applied strain amplitude (εa). Furthermore, the Young’s 

modulus seems to slightly decrease during the applied cyclic loading. 

Table 1. Estimated values of the Young’s modulus. 

Temp.

(oC) 

εa=0.3% εa=0.4% εa=0.5% εa=0.7% Average values 

E
1
 

(MPa) 

E
s 

 (MPa) 

E
1 

 (MPa) 

E
s  

(MPa) 

E
1  

(MPa) 

E
s  

(MPa) 

E
1  

(MPa) 

E
s  

(MPa) 

E
1  

(MPa) 

E
s  

(MPa) 

20  119700 116900 119900 115900 118200 113500 118800 114900 119080 110900 

250  108500 93760 108600a 98530a 105400 90140 103900 85100 106600 94758 

300  105600 97930 104300 98820 101900 95770 103400 87690 103800 94792 

a εa=0.35% 

The initial yield stress (σ
0
) was identified as a point on the tensile portion of the first hysteresis loop 

where plastic strain occurs; the actual yield stress (σ
0*

) was measured by using the stabilized stress-

strain loop (at half number of cycles to failure). The evolution of the yield stress with increasing 
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number of cycles enabled to determine the hardening or softening characteristics of the material, as 

can be seen in Table 2. In all evaluated cases σ
0*

< σ
0
, confirming a softening behaviour of the material. 

Table 2. Estimated values of the yield stress. 

Temp.

(oC) 

εa=0.3% εa=0.4% εa=0.5% εa=0.7% Average values 

σ
0
 

(MPa) 

σ
0* 

(MPa) 

σ
0
 

(MPa) 

σ
0* 

(MPa) 

σ
0
 

(MPa) 

σ
0* 

(MPa) 

σ
0
 

(MPa) 

σ
0* 

(MPa) 

σ
0
 

(MPa) 

σ
0* 

(MPa) 

20  121.64 87.95 138.76 91.44 117.97 84.25 154.94 114 130 86 

250  111.34a 51.71a 103.46 50.86 140.31 50.98 80.68 53.47 113 50 

300  124 44.7 103.3 48.23 116.37 40.49 122.5 43.48 110 45 
a εa=0.35% 

The estimation procedure of nonlinear kinematic parameters (Ci, γi) and nonlinear isotropic parameters 

(R∞, b) could be performed separately. In fact, for fully-reversed symmetrical stress cycles the 

kinematic model stabilizes after a single cycle. As the contribution of the isotropic model in the first 

cycle is actually small, it could be neglected [1]. Similarly the kinematic model does not influence 

significantly the subsequent cycles. 

 
Figure 4. Curve fitting by the least squares method, using data 

of 6 hysteresis loops (T=20 
o
C). 

Nonlinear kinematic hardening material parameters, Ci and γi were estimated after the determination of 

Young’s modulus and yield stress. One and two pairs of material parameters were estimated using 

only the plastic regions of each stabilized cycle obtained under imposed εa. For a given stress-strain 

loop, the stress amplitude (σa), the plastic strain amplitude (εpl,a) and the actual yield stress (σ0*) were 

measured at a stabilized cycle (half-life cycle) and plotted as in Figure 4. The procedure was repeated 

at each strain amplitude. Equations (7) and (8) were fitted to the measured points to obtain one and 

two pairs of material parameters Ci, γi, respectively. The material parameters obtained by the method 

here described are suitable to be used for different εa values. 

  
Figure 5. Stress amplitude vs. number of cycles. Figure 6. Fitting of Eq. (13) to find parameter b. 
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Nonlinear isotropic parameters were finally estimated. The maximum stress (σmax) was measured for 

each stress-strain cycle and plotted against the number of applied cycles (N), see Figure 5, showing a 

softening behaviour. The procedure was repeated for each imposed strain amplitude and temperature. 

The saturation stress (R∞) was determined as the difference in the maximum stress of the first cycle 

(σmax,1) and the stabilized one (σmax,s). Figure 5 shows that the saturation stress (R∞) depends also on the 

applied strain amplitude; this behaviour was also observed in [4] for a nickel base superalloy. For each 

temperature an average R∞ is calculated, see Table 3. The speed of stabilization (b) is estimated by 

fitting to experimental data (see Figure 6) the following expression proposed by [1]: 

    Nbb
R

Ri

placcpl,

1max,smax,

1max,max,
2exp1exp1 












 (11) 

where σmax,i is the current maximum stress for the N
th
 cycle. Equation (11) is shown in Figure 6. A 

reasonable correlation is obtained, although a modification of the evolution rule of R seems necessary. 

Estimated material parameters used in numerical simulations are shown in Table 3. 

Table 3. Estimated material parameters used in numerical simulations. 

     
One pair 

 
Two pairs 

Temp.     

(oC) 

E         

(MPa) 

σ0 

(MPa) 

R∞ 

(MPa) 

b 

 

C1 

(MPa) 

γ1 

 
 

C1 

(MPa) 

γ1 

 

C2 

(MPa) 

γ2 

 

20 119080 130 -75.7 2.352 46250 617.2  38160 505.7 679.5 274 

250 106600 113 -80.2 3.894 45340 820.9  290600 8699 8772 349.5 

300 103800 110 -76.6 5.293 40080 832.8  27530 894.9 12760 731.1 

5.  Numerical simulation 

Figure 7 a)-c) shows a comparison between experimental data and results of numerical simulations for 

a uniaxial cyclic loading. Simulations are performed with the material parameters identified in the 

previous Section. The nonlinear kinematic model uses both one and two pairs of (Ci, γi) parameters, 

estimated at 20 
o
C, 250 

o
C and 300 

o
C. A better agreement between experimental and simulated data is 

obtained with only one pair of parameter at 20 
o
C, 250 

o
C; while at 300 

o
C one and two pairs give 

quite the same shape of stress-stain loops.  

The comparison between experimental and simulated stress-strain loops is also performed at different 

strain amplitudes (εa) to confirm that the estimated material parameters are suitable to be used over a 

wider interval of strain ranges. As can be seen in Figure 8, all three simulations are in good accordance 

with the experimental data. Based on the obtained results, a kinematic model with only one pair is 

used in the following simulations. 

Finally, the combined kinematic and isotropic material model is used to simulate 50 cycles at strain 

amplitude εa=0.5%. Material parameters used in the simulation are taken from Table 3. Comparison 

between experimental stress-strain loops (1
st
 and stabilized cycle) and simulated loops (every 5

th
 cycle 

is plotted for a better overview) is shown in Figure 9. It has to be noted, however, that the small value 

of b does not allow the material to reach the stabilized state within the simulated 50 cycles.  
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Figure 7. Comparison between experimental and 

simulated stress-strain loops obtained with one 

and two (Ci, γi) pairs at different temperatures. 

Figure 8. Comparison between experimental and 

simulated stress-strain loops for different values 

of εa.  

 

 

 
Figure 9. Comparison between experimental and simulated stress strain loops for 

combined material model.  
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6.  Strain-life fatigue curves 

The Manson–Coffin-Basquin equation is used to relate the cycles to failure Nf to the strain amplitude 

[8]:  

    ce
NN

E
fff

fplel 2'2
'

222












 (12) 

where Δε, Δεel, Δεpl are total, elastic and plastic strain ranges, respectively. The fatigue strength 

coefficient (σ´f), fatigue strength exponent (e), fatigue ductility coefficient (ε´f) and fatigue ductility 

exponent (c) are estimated from isothermal LCF data at different temperature, see Table 4. 

Table 4. Estimated material parameters used in numerical simulations. 

Temp.  

(oC) 

σ’f   

(MPa) 

e 

 

ε’f 

 

c 

 

20  359.1 -0.1031 0.07689 -0.3942 

250  253.6 -0.1018 0.2942 -0.5311 

300  240.4 -0.1068 0.4258 -0.5708 

Approximate methods are often used to estimate the strain-life curve from static strength data. An 

example is the Universal Slopes (US) equation, which assumes that, for all materials, elastic and 

plastic lines have unique slopes 0.12 and 0.6, respectively: 

 
6.0

f

6.012.0

f
uts

plel 5.3


 NDN
E


  (13) 

where σuts is the ultimate tensile strength and D is the ductility, which is related to the cross-area 

reduction in a tensile test. Although the US equation was originally proposed for steel at room 

temperature [9], an attempt is made here to apply it to CuAg alloy at 20 
o
C and 250 

o
C.  

Influence of high temperatures and creep can reduce fatigue life by up to 90%. Therefore, 10% Rule 

assumes that at high temperature, only 10% of the life estimated by the US equation will actually be 

achieved. The upper bound of time life is then given by the US equation, while the lower bound of 

time life is given by the 10% Rule. 

 
Figure 10. Comparison of strain-life curves.  

Figure 10 shows a comparison of strain-life curves, estimated by different methods. The US equation 
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C - upper bound) seems to be under conservative compared to the US (250 

o
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on US (250 
o
C). It is worth noting how the 10% Rule seems to be over conservative, at least for this 

alloy at this temperature. 

7.  Conclusions 

This work investigates the cyclic response and the fatigue life of a CuAg alloy. Isothermal low-cycle 

fatigue tests have been performed at different temperatures (20 
o
C, 250 °C, 300 °C) to determine the 

stress-strain response and the experimental fatigue life. Several material models (nonlinear kinematic, 

nonlinear isotropic) have been then calibrated with experimental results. In particular, parameters for 

the nonlinear kinematic model (one and two pairs of Ci, γi) have been estimated from LCF 

experimental data, as well as parameters for nonlinear isotropic model (R∞, b). Numerical simulations 

for uniaxial loading with the identified material parameters have been compared with experimental 

results, showing a quite good agreement. Finally, the strain-life curves estimated from experimental 

data have been also compared with approximate methods (Universal Slopes Equation, 10% Rule), 

which estimate the strain-life curve from static strength data of a tensile test. A satisfactory agreement 

has been observed. 

The results presented in this work would thus permit/allow one to perform an effective service life 

assessment of steel-making components made of CuAg alloy, when a design approach based on Finite 

Element modelling and elasto-plastic analysis have to be followed. 
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