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Reviewer #1: The study proposes a new method to determine mineral oil in some types of foods 

allowing to achieve lower quantification and detection limits, making use of microwave assisted 

saponification, never used before to this purpose. The optimization and validation of the method have 

been performed and explained clearly in the manuscript.  In my opinion there are only some minor 

changes and amendments to be done to make the manuscript acceptable for publication. 

 

1)      One of the strength points of the proposed method regards the improved sensitivity allowed, thus 

it could be interesting  to show to the readers a comparison (and a related discussion) with values of 

LOD and LOD obtained in other methods proposed in literature for the determination of mineral oil; 

Information about LOD and LOQ values reported by other authors by applying direct on-line LC-

GChave been added in the introduction. As already reported, and now better evidenced in the 

discussion, the sensitivity improvement depends on the sample fat content.MAS eliminates the fat so 

higher concentration factors can be applied. 

 

2)      Terms use for explaining RSD are not homogeneous: e.g. in the abstract (line 32) it is used 

"…relative standard deviation (RSD)…" while in the text (e.g. line 291),"…residual standard deviation 

(RSD)…". Please check and correct in all the text and tables. 

“Residual standard deviation” has been corrected in “relative standard deviation” 

 

3)      Line 324: The paragraph number should be 3.3. This paragraph discusses results on comparison 

between methods; the discussed data should be reported in a table or in a chart (figure 3 only shows 

chromatograms). 

The paragraph number has been corrected.A comment on data obtained for unspiked bread sample of 

figure 3, extracted using both overnight extraction with hexane and MAS, has been added in the text. 

Other results concerning method comparison are commented. 

 

4)      Lines 337: please substitute "weekend" with the number of hours (or insert it after "weekend" in 

brackets). 

The number of hours has been added in the text for both “over-weekend” and “overnight” 

 

5)      Lines 370-373: please reformulate the sentence (Currently it is: "Figure 4 shows…while figure 4 

shows…"). 

The sentence has been reformulated. 

 

6)      Line 375: The paragraph number should be 3.4. 

The paragraph number has been corrected. 

 

7)      Lines 440-441: please cite the reference for the mentioned ordinance (even if previously cited). 

The reference to the German ordinance has been inserted. 

 

8)      Please use italics "n" in "n-Cx" (when indicating linear alkanes) also in figures, figure legends and 

tables. 
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“n-Cx” has been corrected in “n-Cx” also in figures and tables. 

 

9)      In the legend of Figure 5 the explanation for "RVP" is not reported. 

The explanation of “RPV” has been added in the legend of figure 5. 

 

10)     Table 1:  There are some lacks of homogeneity: in the decimal data sometimes is used the dot, 

sometimes the comma; please uniform it with dot (also in the y-axis of figure 5). 

Wrong decimal data have been corrected replacing the comma with the dot. 

 

11)     Fig.2 is not so clear: maybe instead of reporting overlaid chromatograms it could be better to 

report them aligned. 

We tried to remake the figure by reporting the 5chromatograms aligned but we personally prefer to 

leave it as it is. The enlargement on the right site of the figurehelp the reader to see that for each 

fortification levels there are 2overlapped traces: oneconcerning the added standard,and the other one 

concerning the fortified sample.To be more clear, some labels on the figure have been modified. 

 

 

Reviewer #2: A well described and improved method for the determination of MOSH and MOAH. You 

may wish to consider the following comments: 

 

It would be useful to include the MOAH data in the abstract as well as the MOSH. 

A paragraph,which reassumes MOAH results,has been added at the end of the abstract. 

 

 

For the samples section it would be useful to indicate here how long the products have been in the 

packaging. 

The products purchased from the supermarket hadvariable lifetime, not exceeding their shelf life: on 

average 6 months for pasta, 1-2 days for fresh bread and 2-6 months for biscuits and bakery products. 

This information has been added in the text. 

 

 

How was the homogeneity of the samples demonstrated? Line 152 says the samples were "accurately 

homogenised". 

The homogeneity of the samples was demonstrated by replicate analyses (n= 4-6) of the same sample, 

which, as reported in the text (paragraph 3.2 on “Method performance”), gave always RSD<10% 

 

 

In line 250 it is said that loss of CyCy occurs, could you explain why only this substance is lost 

We have no solidexplanation for this behavior, so we did not comment it in the text. Probably some 

matrices contain compounds possibly reacting with CyCy.  We know from literature that similar 

reactions have been observed for other analytes in the presence of the matrix, when using microwave 

extraction. 

 

 

Looking at Figure 5 many of the samples contained MOSH at levels below the spiking concentrations 

used in the validation. What confidence do you have that the method performance was equally 

satisfactory at the concentrations measured. How have you accounted for the uncertainty in the 

integration of the "hump" and removal of the areas of the interferences and their effect on the 

uncertainty. 



If we consider both MOSH and MOAH,spiking concentrations used for method validation range from 

0.36 to 25 mg/kg. Some of the sampleshave contamination levels below the spiking level, but most of 

them have concentrations close to the fortification levels. 

Due to the particularity of this analysis (we measure the area of a hump and not of a single peak), it is 

difficult to evaluate the confidence of the method at low concentration, because it strongly depends on 

the sample type, sources of contamination (enlarged humps give more problem), presence of interfering 

compounds. Of course the lower the measured concentration, the higher the uncertainty.  

 

 

Did you investigate in-house reproducibility of the method, i.e. using a second analyst? If so what was 

the performance? 

We investigated repeatability using the same apparatus and the same analysts. Anyways, based on our 

experience on other samples, no appreciable differenceshave been noted when changing the analyst. 

 

It would also be useful to add whether or not the levels found in the samples are toxicologically 

significant in terms of exposure related to food consumption data as well as comparison with the BFR 

limits. 
A comment on the toxicological relevance of reported data has been added in the text (section 3.4) 
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Abstract  24 

 25 

A high throughput, high-sensitivity procedure, involving simultaneous microwave assisted 26 

extraction (MAS) and unsaponifiable extraction, followed by on-line liquid chromatography (LC)-27 

gas chromatography (GC), has been optimised for rapid and efficient extraction and analytical 28 

determination of MOSH and MOAH in cereal-based products of different composition. MAS has 29 

the advantage of eliminating fat before LC-GC analysis, allowing to increase the amount of sample 30 

extract injected, and hence its sensitivity. The proposed method gave practically quantitative 31 

recoveries and good repeatability (relative standard deviation lower than 10). Among the different 32 

cereal-based products analysed (dry semolina and egg pasta, bread, biscuits, and cakes), egg pasta 33 

packed in direct contact with recycled paperboard had on average the highest total MOSH level 34 

(15.9 mg kg
-1

), followed by cakes (10.4 mg kg
-1

) and bread (7.5 mg kg
-1

). About 50% of the pasta 35 

and bread samples and 20% of the biscuits and cake samples had detectable MOAH amounts. The 36 

highest concentrations were found in an egg pasta in direct contact with recycled paperboard (3.6 37 

mg kg
-1

) and in a milk bread (3.6 mg kg
-1

). 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

Keywords: Microwave assisted saponification (MAS), mineral oil saturated hydrocarbons (MOSH), 47 

mineral oil aromatic hydrocarbons (MOAH), cereal-based products, food contamination, on-line 48 

LC-GC. 49 

50 



1. Introduction 51 

 52 

Mineral oils are complex mixtures of hydrocarbons of petrogenic origin comprising two major 53 

classes of compounds of different toxicological relevance: mineral oil saturated hydrocarbons 54 

(MOSH) and mineral oil aromatic hydrocarbons (MOAH).  55 

MOAH comprise carcinogenic compounds for whom it is not possible to establish an acceptable 56 

daily intake (ADI) and, therefore, should be not present in foods (EFSA, 2012). The toxicity of 57 

MOSH has not been fully elucidated and data supporting the establishment of ADIs covering the 58 

different molecular weight (MW) ranges of MOSH possibly contaminating food is still lacking. 59 

Based on bioaccumulation data on animals, the German Federal Institute for Risk Assessment (BfR) 60 

recommended temporary limits of 12 mg kg
-1

 food for the hydrocarbons C10-C16 and of 4 mg kg
-1

 61 

for the adjacent fraction n-C17-C20 (BfR, 2013). The German Federal Ministry of Food, 62 

Agriculture and Consumers has recently presented a new draft ordinance (22
nd

 ordinance amending 63 

the food contact material regulation for paperboard made of recycled fibres) establishing a specific 64 

migration limit of 2 mg kg
-1

 for MOSH from n-C20 up to n-C25 (or n-C35 in the case of wet 65 

contact), and a limit of 0.5 mg kg
-1

 for MOAH n-C16-C35. Barp et al. (2014) have recently 66 

demonstrated how the use of animal data may underestimate accumulation in humans, and they 67 

found strong accumulation in different human tissues, mainly in the range above n-C21. 68 

Mineral oils occur in food at various concentrations depending on the food nature and the source of 69 

contamination. Environmental contamination (Neukom, Grob, Biedermann and Noti, 2002; Moret, 70 

Populin, Conte, Grob, and Neukom, 2003), food grade mineral oils widely used for different 71 

purposes in many processed foods (Tennant, 2004), and food contact materials (Moret, Grob and 72 

Conte, 1997; Droz and Grob, 1997; Biedermann and Grob, 2012) represent important sources of 73 

contamination. Special attention has been paid over the last years on contamination from printing 74 

inks and packaging made of recycled fibres, responsible for the high contamination levels found in 75 



many dry foods packaged in direct contact or with an inner barrier bag (Vollmer et al., 2011; EFSA, 76 

2012).  77 

According to the EFSA Opinion (EFSA, 2012), cereal-based products such as bread, rolls and fine 78 

bakery wares, are among the most important contributors to dietary MOSH exposure , mainly due 79 

to the use of food grade mineral oils as release or spraying agents.  80 

Different methods based on off-line solid phase extraction (SPE)- gas chromatography (GC)- flame 81 

ionisation detector (FID) (Moret, Barp, Grob and Conte, 2011; Moret, Barp, Purcaro and Conte, 82 

2012; Fiselier et al, 2013) and on-line liquid chromatography (LC)-GC-FID (Biedermann, Fieseler 83 

and Grob, 2009; Tranchida et al., 2011; Barp, Purcaro, Moret and Conte, 2013) are currently 84 

available for mineral oil determination in foods.  Direct on-line LC-GC has the advantage to reduce 85 

sample manipulation and solvent consumption thus enhancing reproducibility of the method, but 86 

has the disadvantage to not allow for fat removal before GC analysis, which is mandatory to lower 87 

the detection limit. Detection (LOD) and quantification (LOQ) limits around 3 and 8 mg kg
-1

 were 88 

reported for oil samples by employing direct on-line LC-GC (Biedermann, Fiselier and Grob, 89 

2009). Lower detection limits were obtained for other food items, depending on their fat content, by 90 

concentrating the sample without exceeding the capacity of the LC-column (20 mg of fat). A slight 91 

sensitivity increase was later also obtained by Barp, Purcaro, Moret and Conte (2013) by applying a 92 

rapid temperature increase during GC analysis. 93 

Depending on the food composition, different extraction procedures, mainly based on classical 94 

solvent extraction (EFSA, 2012), have been applied in mineral oils extraction from cereal and 95 

cereal-based products. In the case of dry foods with a low fat content, solvent extraction with 96 

hexane was first applied in extraction of superficial contamination, such as that migrated from the 97 

packaging (Vollmer et al., 2011). In the case of wet samples, solvent extraction (with hexane 98 

overnight) was preceded by a dehydration step (preferably carried out with anhydrous sodium 99 

sulphate). Later, it was recognized that overnight extraction with hexane did not allow for complete 100 

extraction of the mineral oil, also in some dry foods. In 2011, Biedermann-Brem and Grob 101 



described a solvent-based approach for exhaustive extraction of mineral oil from wet samples. It 102 

involved sample equilibration (1 h) with ethanol (added in amount at least 10-fold that of the water 103 

present in the sample), followed by overnight extraction with hexane after ethanol removal. As the 104 

ethanol extract contains some mineral hydrocarbons, it was then recombined with the hexane 105 

extract and added with water (twice the hexane volume) to separate the hexane from the ethanol-106 

water mixture.  107 

The same method, preceded by soaking in hot water to make the matrix swell, was also applied in 108 

exhaustive extraction of mineral oil from dry pasta samples. As an alternative, pressurized liquid 109 

extraction (PLE) has been recently proposed for complete extraction of mineral oil from dry pasta 110 

and grain cereals (Moret, Scolaro, Barp, Purcaro, Sander and Conte, 2014), and later applied for 111 

MOH determination in dry pasta stored in different packaging material over the shelf life (Barp, 112 

Suman, Lambertini and Moret, 2015a; Barp, Suman, Lambertini and Moret, 2015b). 113 

When processing high-fat content foods with non polar solvents, mineral oils are co-extracted with 114 

the fat. Since the LC column has a limited capacity to retain fat (20 mg), an additional purification 115 

step aiming at reducing or eliminating fat (passage through a bed of activated silica) is therefore 116 

required to reach higher sensitivity. As an alternative, to eliminate high amounts of fat before LC-117 

GC analysis, the sample can be saponified. Traditional saponification followed by unsaponifiable 118 

extraction has been previously applied for determination of mineral oil or endogenous n-alkanes in 119 

different food samples (Castle, Kelly and Gilbert, 1993; Koprivniak, Procida and Favretto, 1997). 120 

Traditional saponification has the advantage that it can be applied to all food types, avoiding the 121 

need to remove water before the extraction step, but it has the disadvantage of being solvent- and 122 

time-consuming.  123 

Microwave assisted saponification (MAS), applied by different authors for extraction of polycyclic 124 

aromatic hydrocarbons (PAHs) from different food matrices (García Falcón, Simal Gándara, Carril 125 

Gonzáles and Barros 2000; Hernández-Borges, Rodríguez-Delgado and Garcia- Montelongo., 2006; 126 

Pena, Pensado, Casais, Mejuto, Phan-Tan-Luu and Cela., 2006, Akpambang, Purcaro, Lajide, 127 



Amoo, Conte and Moret., 2009, Moret Purcaro and Conte, 2010) represents an interesting 128 

alternative to conventional saponification. It allows for rapid extractions on a large number of 129 

samples, depending on the kind of apparatus.  130 

The aim of this work was to explore the applicability of the MAS for high-throughput and high-131 

sensitivity determination of mineral oil in cereal-based products with different fat and water 132 

content. Performance characteristics of the optimized procedure have been evaluated and the 133 

obtained results on selected samples were compared to those obtained by applying solvent-based 134 

extraction procedures. Finally, the optimised method was applied on a wide number of different 135 

cereal based products from the Italian market. 136 

 137 

2. Materials and methods  138 

 139 

2.1. Reagents and standards 140 

 141 

All the solvents were purchased from Sigma-Aldrich (Milan, Italy). Hexane, acetone and 142 

dichloromethane were distilled before use. Ethanol was of HPLC grade. Water was purified with a 143 

Milli-Q System (Millipore, Bedford, MA, USA).  144 

Internal standards were purchased from Supelco (Milan, Italy). The working standard solution was 145 

prepared by mixing 5-α-cholestane (Cho, 0.6 mg mL
-1

), n-C11 (0.3 mg mL
-1

), n-C13 (0.15 mg mL
-

146 

1
), cyclohexyl cyclohexane (CyCy, 0.3 mg mL

-1
), n-pentyl benzene (5B, 0.30 mg mL

-1
), 1-methyl 147 

naphthalene (1-MN, 0.30 mg mL
-1

), 2-methylnaphthalene (2-MN, 0.30 mg mL
-1

), tri-tert-butyl 148 

benzene  (TBB, 0.3 mg mL
-1

) and perylene (Per, 0.6 mg mL
-1

) in toluene.  149 

The standard mixture of n-alkane C10-C40 (50 mg L
-1

 each) and the paraffin oil used for recovery 150 

tests were purchased from Sigma-Aldrich (Milan, Italy), while the printing ink solvent containing 151 

9% of MOAH was kindly provided by a producer.  152 



All the glassware was carefully washed and rinsed with distilled solvents (acetone and hexane) 153 

before use. 154 

 155 

2.2. Samples 156 

Different cereal-based foodstuffs were selected and analyzed with the proposed method: dry 157 

semolina, egg pasta, and various bakery products with different fat and moisture content (bread, 158 

biscuits and cakes). The products purchased from the supermarket had variable life time (not exceeding 159 

their shelf life): on average 6 months for pasta, 1-2 days for fresh bread and 2-6 months for biscuits and 160 

bakery products.  161 

 162 

2.3. Microwave assisted saponification (MAS) 163 

A microwave extractor (Mars, CEM Corporation, Matthews, NC, USA) able to process up to 14 164 

samples simultaneously, was used to extract mineral oil from different cereal-based products.  165 

The samples were accurately homogenized and finely ground with a laboratory mill (IKA A10 166 

analytical mill). The extraction was carried out by applying the method described for PAH 167 

extraction from fish tissue (Akpambang et al., 2009) and propolis samples (Moret et al. 2010), with 168 

few modifications. Briefly, 5 g of the sample were weighed in a Teflon-lined vessel (Green Chem 169 

plus, CEM Corporation), added with 5 µL of the internal standard solution, 10 mL of saturated 170 

methanolic potassium hydroxide (KOH), and 10 ml of n-hexane. For high-fat content samples 171 

(more than 25% of fat), the amount of saturated methanolic KOH was increased to 20 mL. 172 

Microwave assisted saponification and simultaneous extraction was carried out at 120 °C for 20 173 

min. Since microwave heating is sample dependent and the microwave instrument allowed pressure 174 

and temperature control only in a pilot vessel, to ensure uniform extraction conditions, only samples 175 

of the same type were processed together within each extraction cycle.  176 

Depending on the food type, a sample post-treatment was sometimes required after MAS. The pasta 177 

and bread samples did not require any sample post-treatment and were injected directly into the LC-178 



GC system (after reconcentration of the hexane extract). On the other hand, the biscuits and cakes 179 

required a sample post-treatment and, after MAS, the sample extract was transferred into a 180 

separatory funnel, washed with successive aliquots of water and little amounts of methanol 181 

(avoiding agitation of the sample during the first wash in order to prevent formation of stable 182 

emulsions) until obtaining clear extracts and good phase separation. As an alternative, once cooled, 183 

the vessels were opened and added with about 20 mL of water and 3-4 mL of methanol  (without 184 

mixing), and left to rest for about 20 min at -20 °C. An aliquot of the hexane extract was then 185 

washed with a double volume of water in a screw-cap vial (vortex 1 min). The hexane extract was 186 

directly used for LC-GC injection or an aliquot (5 mL) was concentrated to 1 mL before injection, 187 

using an evaporation system consisting of a centrifuge (Univapo 100 H, Uniequip System; 188 

Martinsrieder, Munich, Germany) and a vacuum pump. 189 

To remove interfering olefins (eluting in the MOAH fraction) some biscuits and cake samples were 190 

epoxidized prior to LC-GC determination. After MAS and wash with water, an aliquot of the 191 

sample was added with 100 mg of a clean vegetable oil and it underwent epoxidation according to 192 

the procedure described by Biedermann et al. in 2009. 193 

 194 

2.4. Standard addition for recovery tests 195 

A printing ink solvent (containing 91% of MOSH and 9% of MOAH in the n-C14-C20 range) 196 

and/or a paraffin oil (100% MOSH in the n-C24-C40 range) were used for recovery tests. The 197 

recoveries were calculated by comparing the chromatographic area of the spiked sample subtracted 198 

from the area obtained for the unspiked sample (with no detectable contamination or with low 199 

contamination levels), with that of the same amount of standard used to spike the sample. 200 

The pasta samples as well as biscuits and plum-cakes were finely ground, weighed directly into the 201 

extraction vessel (5 g), added with mineral oil standards dissolved in 5-10 mL of pentane, and 202 

gently stirred for 30 min to uniformly distribute the added mineral oil (the added solvent evaporated 203 

during stirring) and was left to age for 3 days before MAS.  204 



The bread samples for recovery tests were prepared using a bread machine (Severin, mod. BM 205 

3981) to knead 400 g of flour type “0”, 280 g of tap water, 16 g of extra virgin olive oil and 4 g of 206 

yeast. The mineral oil standard was added to the extra virgin olive oil used to make the bread. After 207 

kneading and leavening, the dough was baked according to the machine program. Two bread 208 

samples were prepared: one prepared with the unspiked extra virgin olive oil and the other with the 209 

same oil spiked with a known amount of printing ink solvent and paraffin oil. 210 

 211 

2.5. LC-GC determination 212 

 213 

The on-line LC-GC instrument (LC-GC 9000, Brechbühler, Zurich, Switzerland) consisted of a 214 

Phoenix 40 with three syringe LC pumps and four switching valves and an UV/VIS detector (UV-215 

2070 Plus, Jasco, Japan). The autosampler was a PAL LHS2-xt Combi PAL (Zwingen, 216 

Switzerland). The LC column was a 25 cm × 2.1 mm i.d Lichrospher Si 60, 5 μm (DGB, 217 

Schlossboeckelheim, Germany). The GC was a Trace GC Ultra from Thermo Scientific (Milan, 218 

Italy). 219 

A gradient, starting with hexane (0.1 min) and reaching 30% of dichloromethane (at 300 µL/min) in 220 

0.5 min, was used to elute the MOSH (from 2.0 to 3.5 min) and the MOAH (from 4 to 5.5 min) as 221 

described by Biedermann et al. (2009).  222 

LC-GC transfer occurred through the Y-interface based on the retention gap technique and partially 223 

concurrent eluent evaporation. A 10 m × 0.53 mm i.d. uncoated, deactivated precolumn was 224 

connected by a steel T-piece union to the solvent vapor exit (SVE) and a 15 m × 0.25 mm i.d. 225 

separation column coated with a 0.15 μm film of PS-255 (1% Vinyl, 99% Methyl Polysiloxane) 226 

(Mega, Italy). A rapid oven gradient (40 °C min
-1

) starting from 55 °C up to 350 °C was used for 227 

GC analysis (Barp et al., 2013). The FID and the SVE were heated at 360 °C and 140 °C, 228 

respectively. After the transfer, the LC column was backflushed (dichloromethane) and 229 

reconditioned prior to the subsequent injection.  230 



The data were acquired and processed by the ExaChrom software (Brechbühler, Switzerland). The 231 

MOSH area was determined by the integration of the whole hump of largely unresolved peaks, 232 

subtracted from the endogenous n-alkanes. All sharp peaks standing at the top of the MOAH hump 233 

were subtracted from the total area. Quantification was based on internal standards or on external 234 

standard, when the presence on sample components co-eluting with the standards was suspected. 235 

 236 

3. Results and discussion 237 

 238 

3.1. MAS procedure  239 

Simultaneous microwave assisted saponification and unsaponifiable extraction was first applied to 240 

pasta samples and later to other cereal-based products with different moisture and fat content.  241 

With respect to the conditions used by Akpambang et al. (2009) for PAH extraction from fish and 242 

meat tissues (400 mg of lyophilized sample added with 1.6 mL of water, 8 mL of saturated 243 

methanolic KOH and 20 mL of n-hexane), a higher amount of sample (5 g) was processed in order 244 

to achieve higher sensitivity. The amount of saturated methanolic KOH was slightly increased to 10 245 

mL, while the amount of n-hexane used was reduced from 20 to 10 mL to limit organic solvent 246 

consumption and to obtain a more concentrated extract. Since an excess of KOH is required to 247 

ensure complete fat hydrolysis (Pena et al. 2006), when processing samples with more than 25% of 248 

fat, the volume of the saturated methanolic KOH solution was increased to 20 mL. Under these 249 

conditions fat hydrolysis was complete (no fat traces were found in the residue obtained after 250 

evaporation of the hexane extract), and an excess of KOH remained in the aqueous extract.  251 

Comparative trials carried out in triplicate on different aliquots of the same dry sample (semolina 252 

pasta) added and not with water (2 mL) before the MAS, demonstrated that the water content of the 253 

sample does not significantly affect the results. Nevertheless, to obtain similar water content and 254 

uniform extraction conditions, dry foods, such as pasta and biscuits, were added with 2 mL of 255 

water. For what concerns extraction temperature and time, the same conditions (120 °C for 20 min) 256 



previously used for PAH determination in fish and meat tissue (Akpambang et al., 2009) and later 257 

for propolis samples (Moret et al., 2010) were utilised. 258 

The effect of the MAS treatment was preliminary investigated on C10-40 n-alkanes mixture, 259 

internal standard mixture, paraffin oil and printing ink solvent, which were analysed in duplicate.  260 

No appreciable differences in the chromatographic areas were observed with respect to the same 261 

standards which did not underwent the MAS procedure, demonstrating that MAS does not 262 

determine analyte losses or artefacts formation in absence of the matrix. The same results were 263 

obtained in the presence of the matrix, with the exception of CyCy (the internal standard usually 264 

used for MOSH quantification), for which some losses were sometimes noticed, especially when 265 

processing pasta samples, indicating a possible interaction with some food components. For this 266 

reason, quantification of the MOSH for these samples was based on C13 and/or on the external 267 

standard.  268 

The pasta and bread samples did not require any sample post-treatment before LC-GC injection 269 

(except for reconcentration, depending on the sensitivity required). The alkalinity of the sample 270 

extract so obtained did not seem to affect column performance even after a number of analyses. 271 

Nevertheless, a rapid wash with water, which takes less than 4 min per sample, was performed 272 

during routine analysis to eliminate residual alkalinity (6 mL of the extract were washed with 12 273 

mL of water). For the samples such as biscuits and cakes, a washing step was mandatory to avoid 274 

formation of emulsion and gels. It was performed in a separatory funnel as described in 2.3, but 275 

later it was found that the sample can be more conveniently added with water directly in the MAS 276 

extraction tube and left at -20 °C for 20 min, before concentration and LC-GC analysis. 277 

 278 

3.2. Method performance 279 

The method performance was assessed by checking linearity in a matrix-matched calibration curve, 280 

by evaluating LOD and LOQ, as well as selectivity, accuracy and precision.  281 



Linearity of the analytical method, previously verified by Barp et al. (2013) for a mixture of 282 

paraffin oil and offset printing ink in n-hexane (in the range 1-50 µg mL
-1

 each), was confirmed 283 

also in the presence of the food matrix. To this purpose a blank pasta sample (with no detectable 284 

mineral oil) was spiked with increasing amounts of printing ink solvent (9% of MOAH) in the 285 

range between 0.20 and 25.0 mg kg
-1

 food (corresponding to 0.18-22.75 mg kg
-1

 of MOSH and 286 

0.02-2.25 mg kg
-1

 of MOAH). The analyses were performed in duplicate at 4 different fortification 287 

levels. The slopes of the calibration curves built using the printing ink standard in n-hexane and the 288 

one built analyzing the fortified pasta sample were compared running a t-test at the 5% significance 289 

level to confirm the absence of any matrix effect (p>0.05). The least squares method was used to 290 

estimate the regression line and linearity and the goodness of the curve was confirmed using lack-291 

of-fit and Mandel's fitting tests (Fcalc < Ftab) (Draper and Smith, 1981).   292 

The matrix-matched calibration curve was linear within the concentration range tested (R
2
>0.997  293 

Although detection and quantification limits in mineral oil analysis are closely related to the 294 

molecular weight distribution of the contamination (width of the “hump”), an approximate 295 

estimation of these limits was made by considering 3 and 10 times the signal to noise ratio, 296 

respectively. A LOD of 0.03 mg kg
-1

 and a LOQ of 0.1 mg kg
-1

 of food sample was obtained when 297 

processing 5 g of sample with 10 mL of hexane and concentrating 5 mL of the extract to 1 mL 298 

before injection (100 µL). 299 

Method selectivity was verified by analysing uncontaminated samples with MAS and verifying the 300 

absence of artefacts with respect to the traces obtained for the same sample by applying classical 301 

solvent extraction or PLE. 302 

Method repeatability for different food types was tested by replicate analyses of the same spiked or 303 

unspiked sample (n = 4-6). Good repeatability with relative standard deviation (RSD) always lower 304 

than 9 was found for all the product types.  305 

Since no certified reference material (with known amount of mineral oil) is commercially available, 306 

method accuracy was assessed with recovery tests performed on 4 different cereal-based foodstuffs 307 



of different composition (dry pasta, bread, biscuits and plum cake), using the standard addition 308 

procedure described in 2.4.  309 

Table 1 reports the amounts of MOSH and MOAH added, average MOSH and MOAH recoveries, 310 

and RSD. The average recoveries ranged from 89 to 104 for the MOSH and from 85 to 108% for 311 

the MOAH with RSD lower than 10. 312 

More in detail, for the semolina pasta recoveries obtained (4 replicate analyses) for MOSH and 313 

MOAH at 2 different fortification levels were practically quantitative, with RSD lower than 8.  314 

Concerning the bread samples, the standard addition was performed on the extra virgin olive oil 315 

used to prepare the bread as described in 2.4. The amount added is expressed on the whole product 316 

(before cooking). For recovery calculation, the loss of water occurred during cooking was also 317 

considered. The sample prepared with the unspiked oil presented a little contamination coming from 318 

the flour which, for recovery calculation (3 replicates), was subtracted from the contamination of 319 

the spiked sample. Extraction yields over 90% were obtained also in this case.  320 

The biscuit sample used for recovery test was a baby food product containing 8% of fat (extra 321 

virgin olive oil). Figure 1 reports MOSH and MOAH traces of the unspiked and spiked samples, 322 

and of the printing ink solvent and paraffin oil standards used for the fortification. As is visible from 323 

the figure, the unspiked sample had no detectable contamination (natural n-alkanes are visible in the 324 

trace). The MOAH trace evidenced the presence of squalene as typical for extra virgin olive oil. 325 

Average recoveries, calculated on 5 replicate analyses, ranged from 97 to 103% with RSD < 5. 326 

Figure 2 shows MOSH and MOAH overlays of the LC-GC-FID traces obtained for the plum-cake 327 

sample before and after fortification with the printing ink solvent standard (two different 328 

fortification levels) and for the added printing ink standard directly injected. Since the unspiked 329 

sample was contaminated with MOSH in the same molecular mass range of the paraffin oil, it was 330 

not fortified with this kind of standard for the recovery test. As is visible from the MOAH traces, 331 

the presence of olefins from palm oil interfered slightly with MOAH detection in the fortified 332 

samples, but did not prevent recovery calculation. 333 



Method accuracy was also confirmed comparing the LC-GC traces obtained for some selected 334 

samples by applying other extraction methods, as described in 3.3. 335 

 336 

3.3. Comparison with other extraction methods 337 

Concerning semolina pasta, previous tests demonstrated how overnight extraction with n-hexane 338 

allows for complete extraction of superficial contamination such as that migrated from the 339 

packaging, but does not lead to a complete extraction of deep contamination from different sources, 340 

which, instead, can be achieved using PLE as described by Moret et al. (2014) or the procedure 341 

described by Biedermann-Brem and Grob (2011). Complete extraction was also achieved when 342 

applying MAS on selected samples with different contamination profiles, as confirmed by the 343 

perfect overlay of the LC-GC traces with those obtained by applying the procedure described by 344 

Biedermann-Brem and Grob (2011) or PLE. 345 

In the case of egg pasta, mineral oil migrated from the packaging rapidly diffuses into the whole 346 

matrix (Barp et al., 2015), and “overnight” extraction (16 h) with hexane allows for an almost 347 

complete mineral oil extraction, independently of the contamination sources. Complete extraction, 348 

comparable to that obtained using MAS, was also obtained by prolonging solvent extraction over 349 

the “weekend” (62 h) or using PLE and extracting the unground sample with hexane at 100 °C for 1 350 

hour. LC-GC-FID traces obtained for different samples under these different extraction conditions 351 

overlaid perfectly with those obtained with MAS. When applying solvent extraction, mineral oil 352 

was co-extracted with the fat, which in the case of dry egg pasta required relatively long time to 353 

diffuse from the whole product into the solvent: lower extraction times gave lower fat extraction 354 

yields and hence incomplete mineral oil extraction. MAS has also the advantage of avoiding fat co-355 

extraction, which, although present in little amount (egg pasta contains approximately 4% of fat) 356 

can rapidly overload the LC column, negatively affecting its performance and making frequent 357 

washing necessary to restore it. 358 



The results obtained for bread samples evidenced how overnight extraction with n-hexane often 359 

underestimates the total mineral oil contamination present in the product (also when adding 360 

anhydrous sodium sulphate to remove the water before extraction). Particularly, it was found that 361 

after cooking, part of the contamination present in the ingredients becomes less easily extractable 362 

with n-hexane, but can be quantitatively extracted with MAS. Figure 3 displays an overlay of the 363 

LC-GC traces obtained by applying MAS and overnight extraction with n-hexane in both the spiked 364 

and the unspiked bread. Concerning the unspiked sample, overnight extraction with hexane enabled 365 

extraction of 40% of the MOSH extracted with MAS (1.0 mg kg
-1

). This behaviour, already 366 

observed in Melba toast (unpublished data), seems to indicate that after cooking, part of the 367 

contamination remains firmly enclosed into the product and cannot be easily extracted with n-368 

hexane overnight, but can be completely extracted after MAS. 369 

Differently from semolina pasta and bread, complete extraction of mineral oil from the biscuit 370 

samples proved to be less difficult and was achieved also when using overnight extraction. During 371 

routine analysis a large number of biscuits with different fat content was analysed in duplicate by 372 

applying both MAS and overnight extraction with n-hexane (not all data are reported in this work). 373 

In all cases the results obtained were comparable, indicating that quantitative mineral oil extraction 374 

does not represent a difficult task for this type of samples characterized by a high fat content 375 

(typically ranging from 8 up to 25%) and a low moisture content (1-5%). 376 

With respect to solvent extraction which co-extracts also the fat, MAS allows to eliminate the fat 377 

before LC-GC analysis, with the advantage that higher sensitivity can be reached because the 378 

sample extract can be concentrated before injection without exceeding the capacity of the LC 379 

column (20 mg). The higher the fat content of the sample, the higher the sensitivity increase reached 380 

by using MAS prior to on-line LC-GC. Furthermore, co-extracted fat injected into the LC column is 381 

not completely eliminated during the backflush with dichloromethane and slowly accumulates into 382 

the column decreasing progressively its capacity. For this reason, after a number of fat injections, an 383 



intense wash of the LC column with isopropanol and/or methyl tert buthyl ether is required, which 384 

can be performed less frequently when using MAS.  385 

Figure 4  shows the LC-GC trace of a biscuit sample (5 g) with 25% of fat, extracted overnight with 386 

hexane (10 mL) and directly injected (100 µL), without previous reconcentration to not exceed the 387 

column capacity. It also displays the trace of the same biscuit sample processed with MAS and 388 

injected after a 5-fold reconcentration to reach higher sensitivity (LOQ around 0.1 mg kg
-1

).  389 

 390 

 391 

3.4. Mineral oil content in the analysed samples 392 

Figure 5 summarises the total mineral oil contamination found in a number of cereal-based products 393 

from the Italian market, such as dry egg and semolina pasta, and different bakery products (bread, 394 

biscuits, cakes) with different fat, sugar and moisture content. MOSH data were divided into three 395 

ranges of volatility: MOSH from n-C10 to n-C16, from n-C16 to n-C25, and from n-C25 to n-C35, 396 

while MOAH were quantified in the range n-C10-C35. MOSH from n-C16 to n-C35 are the most 397 

relevant from a toxicological point of view since they accumulate in human tissues, while MOSH 398 

and MOAH up to n-C25 are often an index of the presence of mineral oil migrated via gas-phase 399 

from recycled paperboard packaging (EFSA, 2012). 400 

The dry semolina and egg pasta in direct contact with recycled paperboard presented always a 401 

MOSH contamination in the range n-C10-C25, generally centred on n-C17-18 and accompanied by 402 

10-25% of MOAH in the same range of volatility, as is typical for products contaminated with 403 

mineral oils (from printing ink residues present in recycled fibres) and migrated to food via gas-404 

phase. The highest contamination levels were found in an egg pasta packed in direct contact with 405 

recycled paperboard (23.4 and 3.6 mg kg
-1

 of MOSH and MOAH up to n-C25, respectively) and in 406 

an egg pasta packed in a paperboard tray made of recycled fibres covered with a thin layer of virgin 407 

paper and wrapped with a plastic film (14.6 and 2.0 mg kg
-1

 of MOSH and MOAH up to n-C25, 408 

respectively), while the lowest concentrations were found in semolina pasta packed in plastic film: 409 



0.1 - 2.8 mg kg
-1 

of saturated hydrocarbons up to n-C25, mainly due to migration of polyolefin 410 

oligomeric saturated hydrocarbons (POSH) from the plastic packaging. The egg pasta packed in 411 

virgin paperboard boxes or in trays made of virgin paperboard and wrapped in a plastic film had 412 

intermediate contamination levels (MOSH up to n-C25 comprised between 1.0 and 3.0 mg kg
-1

). As 413 

previously reported by Barp, Suman, Lambertini and Moret (2015), due to its lower fat content, 414 

semolina pasta is less subject to hydrocarbons migration and hence had maximum MOSH amounts 415 

around 4.0 mg kg
-1

 even when packed in direct contact with recycled paperboard. The GC profile of 416 

some of the egg and semolina pasta revealed the presence of further contamination sources giving 417 

“humps” centred on higher molecular weights, generally not accompanied by the presence of 418 

MOAH. Contamination in the range from n-C25 to C35 varied from 0.1 to 2.7 mg kg
-1

. 419 

Bread samples were purchased from different supermarkets with their own bakery and were 420 

packaged mainly in paperboard bags (sometimes with a plastic window) or in plastic film. The 421 

analysed samples presented variable contamination levels (MOSH up to n-C35 ranged from 0.7 to 422 

26.4 mg kg
-1

) from different sources, as confirmed by the LC-GC traces, characterized by the 423 

presence of one or more humps comprising hydrocarbons of different molecular weight, centred on 424 

n-C17-C19, n-C28, n-C30 and n-C33. Particularly, the most contaminated was a sample whose LC-425 

GC profile evidenced a POSH contamination up to n-C25 (5.7 mg kg
-1

) and a MOSH contamination 426 

in the range from about n-C25 to about n-C45, centred on n-C33 (20.7 mg kg
-1

 of MOSH from n-427 

C25 to C35) with no detectable MOAH. About half of the samples contained detectable amounts of 428 

MOAH in the same range of hump volatility centred around n-C18 as typical for mineral oil 429 

migrated from packaging made with recycled fibres. The most contaminated one was a sample of 430 

milk bread with 2.2 mg kg
-1

 di MOAH in the range n-C10-35.  431 

Most of the biscuit samples were packed in contact with plastic film or an aluminium layer. The 432 

analysed samples had contamination levels ranging from 0.9 to 10.5 mg kg
-1

 of MOSH up to n-C35 433 

(on average 3.6 mg kg
-1

), but only the most contaminated sample (packed in plastic film with a 434 

secondary packaging made of recycled paperboard) had detectable amounts of MOAH (0.3 mg kg
-

435 



1
). The LC-GC traces of many biscuits revealed the presence of palm oil used as an ingredient, 436 

which was probably responsible for most of the MOSH contamination observed in these samples, 437 

characterized by a large hump centred on n-C36, without  MOAH. 438 

The cake samples comprised plum cakes, brioches and typical Italian Christmas cakes (Panettone 439 

and Pandoro) having 15-30% of moisture and a fat content comprised between 10 and 25%. With 440 

the exception of traditional Christmas cakes, packed in plastic film and recycled paperboard 441 

(secondary packaging), the other products were packed in plastic film only. MOSH contamination 442 

up to n-C35 ranged from 1.0 to 19.9 mg kg
-1

 (on average 10.4 mg kg
-1

) and was mainly centred on 443 

n-C33 and n-C36. 444 

About 50% of the pasta and bread samples had MOSH and MOAH levels above 2 and 0.5 mg kg
-1

, 445 

respectively (limits recently proposed in the 22
nd

 ordinance amending the food contact material 446 

regulation for paperboard made of recycled fibres). Considering food consumption data, these 447 

results clearly indicate a toxicological concern towards cereal based products, particularly pasta 448 

packaged in direct contact with recycled paperboard and bread.  449 

All the samples in direct contact with a plastic packaging presented a POSH contamination, which 450 

was higher in samples with higher fat content (biscuits and cakes).  451 

 452 

4. Conclusions 453 

 454 

A MAS procedure allowing for rapid extraction of mineral oil contamination present in cereal-455 

based products of different water and fat content, has been optimized and validated. The proposed 456 

method allows to perform simultaneous saponification and extraction of up to 14 samples, with 457 

minimal sample manipulation and solvent consumption. Since MAS eliminates the fat, it is 458 

particularly advantageous for high-fat-content samples for which sensitivity is limited by the 459 

maximum amount of fat than can be injected into the LC column. Furthermore, it allows to avoid 460 

frequent washing of the LC column. Cereal-based products analysed with MAS showed relatively 461 

high contamination levels, often exceeding the limits proposed in the 22
nd

 ordinance amending the 462 



food contact material regulation for paperboard made of recycled fibres for MOH migrated from 463 

packaging.  464 

 465 
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Figure 1. LC-GC traces of a biscuit sample used for recovery calculation. The figure displays MOSH and 547 

MOAH traces before and after fortification with a printing ink solvent and a paraffin oil. 548 

 549 

Figure 2. LC-GC traces of a plum-cake sample used for recovery calculation. The figure displays MOSH and 550 

MOAH traces before (unspiked plum-cake) and after (spiked plum-cake) fortification with a printing ink 551 

solvent (added standard).  552 

 553 

Figure 3. Comparison between MAS and overnight extraction. The figure displays MOSH traces of a sample 554 

prepared with unspiked extra virgin olive oil (control bread) and of a sample prepared with the same extra 555 

virgin olive oil spiked with printing ink solvent. 556 

 557 

Figure 4. Comparison between MOSH traces of a biscuit sample, containing 25% of fat, analysed after 558 

overnight extraction (injecting into the LC column an amount of extract corresponding to 50 mg of sample) 559 

or after MAS and a 5-fold concentration (injecting an amount of extract corresponding to 250 mg of sample 560 

containing more than 70 mg of fat). 561 

 562 

Figure 5. MOSH and MOAH content (mg kg
-1

) of cereal-based products analysed with MAS. MOSH data 563 

are divided into 3 ranges of volatility (n-C10-C16, n-C16-25, n-C25-35). The type of packaging in contact 564 

with the food is also indicated: Pl, plastic; VP, virgin paperboard; RP, recycled paperboard; RVP, 565 

recycled/virgin paper; Al, aluminium. 566 

 567 



Table 1.Recovery tests:amounts of MOSH and MOAH added, average MOSH and MOAH 

recoveries, and residual standard deviation (RSD) 

Sample 

Number     

of 

replicates 

Added 

MOSH from 

paraffin oil 

(mg kg-1) 

% 

Recovery 

(mean) 

RSD   

Added MOSH 

from printing ink 

solvent (mg kg-1) 

% 

Recovery 

(mean) 

RSD 

Added MOAH 

from printing ink 

solvent (mg kg-1) 

% 

Recovery 

(mean) 

RSD 

Dry pasta  4 5.0-25 94-103 5.2  3.6-18.2 93-104 6.7-4.9 0.36-1.8 92-108 7.7-4.3 

Bread 3 20 90 8.5 14.6 94 9.3 1.4 89 7.9 

Biscuit 5 20 99 5.0 14.6 103 4.6 1.4 97 3.8 

Plum-cake 4       3.6-18.2 93-101 6.2-7.2 0.36-1.8 95 8.7-5.6 
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