

# Università degli studi di Udine

# Application of multi-pass high pressure homogenization under variable temperature regimes to induce autolysis of wine yeasts

 Original

 Availability:

 This version is available http://hdl.handle.net/11390/1098512
 since 2020-03-26T16:59:55Z

 Publisher:

 Published

 DOI:10.1016/j.foodchem.2016.12.038

 Terms of use:

 The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The aim is to enable open access to all the world.

Publisher copyright

(Article begins on next page)

Chemistry

Elsevier Editorial System(tm) for Food

Manuscript Draft

Manuscript Number:

Title: Application of multi-pass high pressure homogenization under variable temperature regimes to induce autolysis of wine yeasts

Article Type: Research Article (max 7,500 words)

Keywords: high pressure homogenization; Saccharomyces; autolysis; wine; inactive dry yeasts

Corresponding Author: Dr. Piergiorgio Comuzzo, Ph.D.

Corresponding Author's Institution: Università degli Studi di Udine

First Author: Piergiorgio Comuzzo, Ph.D.

Order of Authors: Piergiorgio Comuzzo, Ph.D.; Sonia Calligaris; Lucilla Iacumin; Federica Ginaldi; Sabrina Voce; Roberto Zironi

Abstract: The effects of the number of passes and processing temperature management (controlled vs uncontrolled) were investigated during high pressure homogenization-induced autolysis of Saccharomyces bayanus wine yeasts, treated at 150 MPa. Both variables were able to affect cell viability, and the release of soluble molecules (free amino acids, proteins and glucidic colloids), but the effect of temperature was averagely more evident. S. bayanus cells were completely inactivated in 10 passes without temperature control (corresponding to a processing temperature of 75 °C). The two processing variables also affected the volatile composition of the autolysates produced: in particular, higher temperatures led to a lower concentration of volatile compounds. The management of the operating conditions, may allow to modulate the compositional characteristics of the products obtained, making them suitable for different winemaking applications.

# **Cover Letter**

Yeast derivatives (YDs) are perhaps the most used enological products in the wineries, after active dry yeasts. They are basically inactive dry yeasts or yeast autolysates, promoted by the suppliers for a wide series of applications: fermentation enhancers, flavor and aroma modulators, mouthfeel enhancers, scavengers against undesired compounds and antioxidant preparations.

Despite their wide utilization, very few commercial YDs are specifically tailored for winemaking use and winemakers are often forced to use formulations developed for other food products. One of the most critical points is that, in food industry, these additives are generally used as flavoring and aromatizing agents, so that they may release off-flavors when they are added into the wine. These off-flavors are mostly connected with the thermal treatments that occur during manufacturing (e.g. compounds from Maillard reaction or oxidative breakdown of lipids). For this reason, the development of non-thermal alternative processes for the obtainment of such products may open new opportunities for the production of commercial preparations suitable for winemaking use.

In a previous paper, we have demonstrated the potential of high pressure homogenization (HPH) for inducing autolysis of wine yeasts. This manuscript aims to investigate the effects of the number of passes and processing temperature management (controlled vs not controlled) on yeast autolysis induction, as well as on the characteristics of the yeast autolysates produced (e.g. release of free amino acids, colloids, and volatile compounds).

HPH demonstrated to be an interesting technique from this point of view, because it may allow different winemaking applications, such as the production of specific preparations of yeast derivatives, to be used either as yeast nutrient supplement, or for wine storage and ageing, depending on the processing conditions. Moreover, HPH appeared also a promising tool, for the direct application in the wineries, with the purpose of shortening the time needed for *sur lie* maturation. As far as we know, this is currently one of the few papers dealing with these aspects.

# Highlights

Number of passes and process temperature affect HPH-induced autolysis of wine yeasts *S. bayanus* cells were inactivated in 10 passes without temperature control at 75 °C Temperature control more effective than multi-pass for release of soluble molecules Lower temperatures led to higher concentration of ethyl esters and aroma compounds Different operating conditions allow to modulate the composition of the autolysates

# 1 Application of multi-pass high pressure homogenization

# 2 under variable temperature regimes to induce autolysis of

# 3 wine yeasts

- 4 Piergiorgio Comuzzo\*, Sonia Calligaris, Lucilla Iacumin, Federica Ginaldi, Sabrina
- 5 Voce, Roberto Zironi
- 6
- 7 Università degli Studi di Udine, Dipartimento di Scienze Agroalimentari, Ambientali ed
- 8 Animali, via Sondrio 2/A, 33100 Udine Italy
- 9
- 10 \* Corresponding Author
- 11 Piergiorgio Comuzzo
- 12 Tel: + 39 0432 55 8166
- 13 Fax: + 39 0432 55 8130
- 14 e-mail: piergiorgio.comuzzo@uniud.it
- 15
- 16 Abbreviated running title
- 17 Yeast autolysis by different high pressure homogenization conditions
- 18

### 19 Abstract

20 The effects of the number of passes and processing temperature management (controlled vs 21 uncontrolled) were investigated during high pressure homogenization-induced autolysis of Saccharomyces bayanus wine yeasts, treated at 150 MPa. Both variables were able to affect 22 23 cell viability, and the release of soluble molecules (free amino acids, proteins and glucidic 24 colloids), but the effect of temperature was averagely more evident. S. bayanus cells were completely inactivated in 10 passes without temperature control (corresponding to a 25 26 processing temperature of 75 °C). The two processing variables also affected the volatile composition of the autolysates produced: in particular, higher temperatures led to a lower 27 28 concentration of volatile compounds. The management of the operating conditions, may allow 29 to modulate the compositional characteristics of the products obtained, making them suitable 30 for different winemaking applications.

31

32 KEYWORDS: high pressure homogenization; *Saccharomyces*; autolysis; wine; inactive
 33 dry yeasts

#### 35 **1 Introduction**

36 Inactive dry yeasts (IDY) and yeast autolysates (also known as yeast derivatives) are a group 37 of important winemaking additives, used for different purposes, including their ability to 38 provide substances which are naturally released into the wine, during the traditional practice 39 of sur-lie maturation (Pozo-Bayón, Andújar-Ortiz, & Moreno-Arribas, 2009). As well known, during ageing on the lees, natural yeast autolysis occurs and wine progressively enriches in 40 41 important compounds, such as peptides, sterols, amino acids and mannoproteins (Pérez-42 Serradilla & Luque de Castro, 2008). Despite these interesting modifications, sur-lie 43 maturation is a slow process and during the several months required for wine evolution, wine 44 itself may be subjected to non-negligible risks of microbiological spoilage and sensory 45 modifications (Pozo-Bayón et al., 2009).

The ability of yeast derivatives to increase wine colloidal content (Pozo-Bayón et al., 2009), 46 47 their capacity to interact with aroma compounds modulating their volatility (Comuzzo, Tat, Fenzi, Brotto, Battistutta, & Zironi, 2011) and their claimed antioxidant capacity (Rodríguez-48 49 Bencomo et al., 2014; Comuzzo, Battistutta, Vendrame, Páez, Luisi, & Zironi, 2015b) suggest 50 the use of these products as potential alternatives of sur-lies ageing. Unfortunately, 51 commercial IDYs may often negatively affect wine sensory characters, by releasing off-52 flavors (Comuzzo, Tat, Tonizzo, & Battistutta, 2006), formed because of the high 53 temperatures to which they are subjected during manufacturing (Münch, Hofmann, & 54 Schieberle, 1997). For this reason, a process allowing to speed up yeast autolysis, reducing 55 the heating during manufacturing, may be helpful for the production of yeast derivatives 56 specifically tailored for winemaking use and to limit the release of such off-flavors into the 57 wine.

High pressure homogenization (HPH) is a mechanical processing method, used since different
decades to extract intracellular components (i.e. proteins and enzymes) from

60 microorganisms, including Saccharomyces cells (Follows, Hetherington, Dunnill, & Lilly, 1971; Hetherington, Follows, Dunnill, & Lilly, 1971). It is known that HPH may induce cell 61 62 disruption, through cavitation, shear and turbulence phenomena that occur when yeast 63 suspension is forced through the narrow gap of the homogenizer valve (Popper & Knorr, 1990). Despite the ability of HPH in promoting Saccharomyces cell breakdown is well 64 documented, very few publications deal with the effects of such technology in inducing the 65 66 autolysis of wine yeasts (Patrignani et al., 2013), or with its use for the production of yeast 67 derivatives (Comuzzo, Calligaris, Iacumin, Ginaldi, Palacios Paz, & Zironi, 2015a).

68 In a recent paper (Comuzzo et al., 2015a), the potential of HPH for the production of 69 autolysates for winemaking use, was examined. In particular, the study focused on the effects of pressure level (from 0 to 150 MPa) on the viability of yeast cells, the release of soluble 70 71 molecules and colloids in wine-like solution (indices of autolysis occurrence), and the volatile 72 composition of the autolysates produced. Results showed the good potentialities of this technique to obtain yeast derivatives with interesting volatile composition. At the same time, 73 74 the tested conditions did not allow the complete inactivation of yeast cells leading to the need 75 of a processing optimization.

In the present research, the effects of the number of HPH passes at 150 MPa and processing temperature (controlled vs not controlled) on the characteristics of a yeast autolysate were investigated. In particular, cell viability, the content of glucidic colloids (e.g. mannoproteins), free amino acids and soluble proteins as well as the volatile composition of the autolysates obtained were determined, with the purpose of finding evidences on how HPH processing variables may potentially affect the composition and the performances in wine of the products obtained.

# 83 2 Materials and Methods

### 84 2.1 Reagents and materials

85 Bacteriological peptone and Malt Extract Agar were purchased from Oxoid (Basingstoke, UK). Sodium hydroxide, boric acid, sodium chloride, copper sulfate pentahydrate, sodium 86 87 tartrate, sodium carbonate, tartaric acid and ethanol (96 % v/v) were from Carlo Erba 88 Reagents (Milan, Italy). Bovine serum albumin (BSA) fraction V, o-phthaldialdehyde, N-89 acetyl-L-cysteine, Folin-Ciocalteu's phenol reagent and HPLC grade isoleucine (Ile) were 90 obtained from Sigma-Aldrich (St. Louis, MO, USA). Milli Q grade water was produced by a 91 Milli-Q Advantage A10 apparatus (Merck Millipore, Billerica, MA, USA) and microfiltered at 0.2 92 µm before use. Commercial Saccharomyces bayanus (Mycoferm Cru-05 active dry yeast 93 preparation) was from EverIntec (Pramaggiore, VE, Italy).

#### 94 2.2 High pressure homogenization treatments

95 Aliquots of 40 g of active dry yeast preparation (ADY) were suspended in 400 ml of Milli Q 96 grade water, in sterile Erlenmeyer flasks. After 10 min, to allow the yeast rehydration, the 97 samples were processed by using a two stage high pressure homogenizer (Panda PLUS 2000, 98 Gea Niro Soavi, Parma, Italy) provided with two cylindrical tungsten carbide homogenizing 99 valves. The first one, was set at 150 MPa, whereas the second was fixed at 5 MPa. Samples (400 ml) were homogenized at 150 MPa and a flow rate of 10.0 l h<sup>-1</sup>, *via* 1, 4, 6 and 10 passes. 100 101 Two different sets of experiments were carried out: the first one was without any temperature 102 control, whereas in the second, the homogenizer inlet and outlet were connected to a heat 103 exchanger (Julabo F70, Julabo GmbH, Seelbach, Germany) set at 4 °C, to avoid the heating of 104 the suspensions during processing. Sample temperature was measured before and after 105 homogenization, by a copper-constantan thermocouple (Ellab, Hillerød, Denmark) connected 106 to a portable data logger (mod. 502A1, Tersid, Milan, Italy). All the experiments were carried 107 out in three repetitions.

Before each homogenization treatment, the equipment was subjected to three different washing steps in order to avoid the presence of residual (viable) yeast cells and reduce the risk of cross contamination between the different samples. The first washing cycle was a rinsing with microfiltered Milli Q grade water (1 l), then a mixture of water: ethanol 1:1 v/v (1 l) was circulated, and subsequently, a final rinsing with microfiltered Milli Q water (1 l) was carried out. The operating conditions used for such three washing steps have been determined to not have any viable cell detectable in the water collected after the final rinse.

115 After homogenization, 10 ml of each treated suspension were collected in sterile Falcon tubes 116 and subjected to microbiological analysis as reported below. The remaining part of the 117 suspension was collected in food-grade aluminum trays (approx. in a 1 cm layer), frozen at -118 20 °C, and freeze-dried by using a pilot plant model Mini Fast 1700 (Edwards Alto Vuoto, 119 Milan, Italy). At the end of the process, the samples were finally ground in a ceramic mortar 120 and stored in 50 ml sterile Falcon tubes (0/+4 °C), until chemical and GC-MS analyses. As a 121 reference sample, the active dry yeast preparation used for the trials, was subjected to the 122 same analytical determinations reported below.

#### 123 2.3 Microbiological analyses

One (1) ml of each sample was mixed with 9 ml of saline-peptone water (8 g  $\Gamma^{-1}$  sodium chloride, 1 g  $\Gamma^{-1}$  bacteriological peptone) in a sterile Falcon tube and vortexed for 1.5 min using a VWR vortex mixer (International PBI, Milan, Italy). Additional decimal dilutions were made in the same solution, and yeast cells were plated in three repetitions on Malt Extract Agar. Plates were then incubated at 25°C for 48-72 h under aerobic conditions and colonies were counted.

### 130 2.4 Glucidic colloids

131 The glucidic colloids soluble in wine-like medium were assessed by ethanol precipitation, by 132 a modified version of the method published by Usseglio-Tomasset & Castino (1975); 1.00 g 133 of freeze-dried powder was suspended in 10 ml of hydroalcoholic-tartaric buffer (12.00 % v/v 134 ethanol in 33 mM tartaric acid, pH 3.20). After 10 min, the suspension was centrifuged (5000 135 rpm for 10 min) and 5 ml of the supernatant was mixed with 25 ml of ethanol 96 % v/v and 136 kept for 24 h at 0/+4 °C. The precipitate of glucidic colloids was separated by vacuum 137 filtration on a 0.45 µm nylon membrane (Albet-Hahnemühle, Barcelona, Spain) and then 138 determined by weighing, after complete evaporation of ethanol (carried out at 50 °C, until 139 constant weight). Results were expressed in mg of total colloids per g of freeze-dried powder.

#### 140 2.5 Soluble proteins

141 Soluble proteins were analyzed according to the Lowry assay as reported by Regenstein & 142 Regenstein (1984). One (1.00) g of freeze-dried powder was suspended in 100 ml of 143 hydroalcoholic-tartaric buffer (12.00 % v/v ethanol in 33 mM tartaric acid, pH 3.20). After 10 144 min, the suspension was centrifuged (5000 rpm for 10 min) and 400 µl of the limpid 145 supernatant was transferred in a 10 mm optical path length glass cuvette. A mixture of 2 % 146 w/v sodium carbonate in 0.1 M sodium hydroxide solution (1.96 ml), 1 % w/v copper sulfate 147 pentahydrate (20 µl) and 2 % w/v sodium tartrate (20 µl) was added, and the sample was 148 carefully homogenized. After 10 min at ambient temperature, 200 µl of Folin-Ciocalteu's 149 reagent was introduced and the content of the cuvette was further mixed. After additional 30 150 min, the absorbance of the sample was measured at 750 nm, reading against a blank obtained by replacing the supernatant with 400  $\mu$ l of Milli Q grade water. Results were given in mg g<sup>-1</sup> 151 152 of freeze-dried powder, according to a calibration line prepared with increasing amounts of 153 bovine serum albumin.

155 Free amino acids were determined by OPA derivatization, according to the method published 156 by Dukes & Butzke (1998). Two aliquots (50 µl each) of the same supernatant used for the 157 analysis of soluble proteins (see Section 2.5) was subdivided in two 10 mm optical path 158 length quartz cuvettes. The first one (cuvette A) was diluted in 3 ml of a solvent mix containing ethanol (100 ml  $l^{-1}$ ), sodium hydroxide (3.837 g  $l^{-1}$ ), boric acid (8.468 g  $l^{-1}$ ) and N-159 acetyl-L-cysteine (0.816 g l<sup>-1</sup>). The second (cuvette B) was mixed with the same solvent 160 buffer, additionally containing 0.671 g  $l^{-1}$  of *o*-phthaldialdehyde. After 10 min, the absorbance 161 of both cuvettes was measured at 335 nm, reading against Milli Q grade water. The net 162 163 absorbance of the sample was calculated by subtracting the absorbance of cuvette A, (reference) from that of cuvette B (derivatized sample); the results were expressed in mg  $g^{-1}$ 164 165 of freeze-dried powder, on the basis of a calibration line obtained with isoleucine (Ile).

#### 166 2.7 SPME-GC-MS analyses

167 The characterization of the volatile composition of the headspace of the freeze-dried powders 168 was carried out by solid-phase microextraction and gas chromatography. The equipment used 169 was a GC-17A gas chromatograph, coupled with a QP-5000 mass spectrometer (both from 170 Shimadzu, Kyoto, Japan). Two (2.00) g of each freeze-dried sample were introduced in 50 ml 171 amber glass vials and sealed with PTFE/silicone septa. SPME was carried out by a 2 cm 172 length 50/30 µm DVB/Carboxen/PDMS fiber (from Supelco, Bellefonte, PA, USA), at 40 °C 173 for 15 min. To allow the thermal equilibration of the sample, the vials were pre-conditioned 174 for 15 min before microextraction.

GC separation was carried out on a J&W DB-Wax capillary column, 30 m x 0.25 mm i.d.,
0.25 µm film thickness (Agilent Technologies Inc., Santa Clara, CA, USA), according to the
conditions reported by Comuzzo et al. (2015a). Electron impact mass spectra were recorded at
70 eV and the identification of volatile compounds was carried out by comparison of their<sub>o</sub>

179 mass spectra and retention times with those of standard compounds, or by comparison of 180 mass spectrum, with those reported in the mass spectrum libraries Wiley 6 and NIST 107. 181 Linear retention indices were also calculated on the basis of the retention times of *n*-alkanes, 182 and compared with those reported in literature.

#### 183 2.8 Statistical analyses

184 Statistical elaborations were carried out by using the specific software Statistica for Windows, Version 8.0 (StatSoft, Tulsa, OK, USA). The values collected for the different parameters 185 186 analyzed and the absolute areas of the volatile compounds detected in the headspace of the 187 freeze-dried powders were processed by One-way ANOVA and Tukey HSD Test. Significant 188 differences between the samples were assessed at p < 0.05. Additionally, concerning SPME-189 GC-MS analyses, aroma compounds were grouped, sample by sample, according to their 190 chemical class and total absolute areas obtained for each chemical group were analyzed by 191 Principal Component Analysis (PCA).

192

# 2 **3** Results and Discussion

# 193 *3.1 Effect of HPH treatment on yeast viability*

194 The effects of the different operating conditions on yeast viability are reported in Fig. 1. The 195 number of passes affected the microbial population in both controlled and uncontrolled temperature conditions. However, when the temperature remained below 32°C, the number of 196 viable microorganisms was slightly reduced, and more than 6.0 Log CFU g<sup>-1</sup> of viable cells 197 198 was detected after 10 passages of the yeast suspension into the homogenizer (Fig. 1a). In such 199 conditions, the reduction of yeast population may be attributed mainly to the mechanical 200 stress suffered during the passage of the suspensions through the homogenization values. The 201 resistance of Saccharomyces cells towards high pressure treatments is in agreement with the 202 data reported by Patrignani et al. (2013) and Comuzzo et al. (2015a). 9

203 Contrary, an intense and progressive reduction of viable yeasts was evident when the 204 temperature was not controlled during processing and increased up to 75 °C (Fig. 1b). It is well known that HPH treatments may provoke an increase of the temperature, in the products 205 206 subjected to homogenization (Popper & Knorr, 1990). The temperature raise was able to 207 promote an intense cell death, and as it reached values close to 70 °C (6 and 10 passes), the number of viable cells became lower than 2 Log CFU g<sup>-1</sup>. This correspond to the maximum 208 209 value recommended by the World Organization of Vine and Wine (O.I.V.), for what concerns 210 the presence of viable cells in the yeast autolysate preparations for winemaking use 211 (Resolution Oeno 496/2013, 2013).

Considering the flow rate of the process  $(10 \ l \ h^{-1})$ , the volumes treated (200 ml) and the 212 213 number of passes (up to 10), the extent of the heating carried out in the present experiment 214 (75 °C as maximum value for the processing with 10 passes) was, anyway, less intense and 215 prolonged than those normally applied in other thermolytic processes, during which 216 temperatures higher than 75-80 °C were held for some hours (Peat, 1961; Halasz & Lasztity, 217 1991; de la Torre, Flores, & Chong, 1994). The reduction of processing temperature is 218 expected to improve the quality characteristics of the autolysates, which might be less 219 subjected to thermal degradation and production of off-odors deriving from Maillard reaction 220 and lipid oxidation (Ames & McLeod, 1985; Nagodawithana, 1992).

Due to the negligible impact of the management conditions (controlled vs uncontrolled) on product temperature, after processing the suspensions via single pass (Fig. 1), the analytical determinations described below were carried out, for samples 1P, only on the three repetitions obtained without temperature conditioning.

# 225 *3.2 Release of proteins and free amino acids in wine-like solution*

226 To study the performances of HPH-yeast autolysates after processing, they were freeze-dried

and suspended in wine-like solution (ethanol 12.00 % v/v, pH 3.20), to assess the release ofsoluble compounds.

Figure 2 reports the average values of soluble proteins and free amino acids, released by the 229 230 freeze-dried autolysates; as control, data regarding ADY were also reported. In comparison 231 with the levels detected in the ADY preparation, the amount of proteins released in the 232 medium (Fig. 2a) increased significantly, just after the first HPH pass. A further increase of 233 the number of passes, did not determined any statistical difference on protein solubilization, 234 independently on the type of applied temperature regime. Anyway, the samples derived from 235 no temperature controlled process showed a content in soluble proteins, slightly lower than 236 the corresponding samples obtained with temperature control. This can be attributed to the 237 higher extent of heating (Fig. 1), which might have determined a more intense protein 238 denaturation. In terms of concentration, however, the values reported in Fig 2a are quite low. 239 and this might be positive for what concerns the potential use of these autolysates in 240 winemaking, because proteins are reported to bind wine aroma compounds, reducing their 241 volatility and perception (Voilley, Beghin, Charpentier, & Peyron, 1991).

242 The behavior of free amino acids (FAA) reflects that of proteins (Fig. 2b), with some minor 243 differences. The amount of FAA released in model wine increased from a value close to 2 mg  $g^{-1}$  in the ADY preparation, to about 4-6 mg  $g^{-1}$  in the samples processed without temperature 244 245 control, with no significant effects given by the number of passes. Contrary, in the products 246 obtained with thermal conditioning, the number of passes caused a significant increase of 247 FAA release above the fourth passage through the homogenizer valve. This approximately 248 double concentration of soluble amino acids detected in the autolysates produced in controlled 249 temperature conditions, might be linked with their minor involvement in Maillard reaction, as 250 a consequence of the lower extent of heating registered for this set of samples (Ashoor & 251 Zent, 1984). This observation is interesting, because it seems clear that the opportunity to control or not the processing temperature may affect the composition of the yeast 252

autolysates obtained by HPH: for instance, when the IDY preparation is requested as nutrient supplement to be used during alcoholic fermentation, the processing with temperature control might be advisable for increasing FAA content. Contrary, a high level of free amino acids might be negative in the attempt of using IDYs during wine ageing, because such molecules might become substrate for the growth of unwanted microorganisms, such as wild lactic acid bacteria strains or *Brettanomyces* spp.

# 259 3.3 Release of glucidic colloids in wine-like solution

260 The release of soluble glucidic colloids (SGC) reflects the same general behavior found for 261 free amino acids and proteins (Fig. 3). As previously reported, this group of macromolecules 262 represents basically yeast glycoproteins (Comuzzo, Tat, Liessi, Brotto, Battistutta, & Zironi, 263 2012), and they are considered to positively contribute to wine structure and composition. SGC increased from less than 50 mg  $g^{-1}$  in the ADY preparation, to values higher than 150 264 mg g<sup>-1</sup> after one homogenization passage, confirming the capacity of HPH processing to 265 266 promote cell autolysis (Comuzzo et al. 2015a). The increase of the number of passes 267 determined a progressive increment of the SGC solubilized, particularly in conditions of 268 controlled temperature. Anyway, differently respect to what observed for amino acids and 269 soluble proteins (where the effects of heating seemed more efficient than the number of 270 passes in promoting solubilization), the role of temperature conditioning, on the release of 271 glucidic colloids, appeared less important, and the increase of the number of passages showed 272 a non-negligible effect in promoting the solubilization of these macromolecules. As shown in Fig. 3, the highest concentration detected was higher than 200 mg  $g^{-1}$ ; this means that, 273 considering the amounts normally used for inactive dry yeast supplementation in winemaking 274 275 (200-400 mg l<sup>-1</sup>), the yeast derived product manufactured by HPH in the present conditions, might be able to increase wine colloidal content of 40-80 mg  $l^{-1}$ . 276

### 277 *3.4 Volatile composition of the freeze-dried powders*

Fifty volatile compounds were tentatively identified in the headspace of the autolysatesobtained by multi-pass HPH, under different temperature regimes (Table 1).

280 Concerning their origin, some of them are well known yeast metabolites (e.g. alcohols, short-281 chain fatty acids and ethyl esters); others may arise from the thermal and oxidative 282 degradation of the lipid fraction ( $\gamma$ - and  $\delta$ -lactones, hexanal, nonanal and certain carboxylic 283 acids) (Nawar, 1969; Grosch, 1987). However, it should be pointed out that the development 284 of Maillard reaction between sugar and proteins is expected to be the main critical factor able 285 to affect the formation of odor compounds in yeast derivatives (Ames & McLeod, 1985; 286 Münch et al., 1997). In effects, some of the compounds reported in Table 1 (furaldehyde, pyrazines and 2-methyl-thiazolidine) may derive exactly from Maillard reaction 287 288 (Nagodawithana, 1992). Aldehydes, such as 2- and 3-methylbutanal, may be produced from 289 the Strecker degradation of isoleucine and leucine, respectively. Such aldehydes may be 290 oxidized to 3-methylbutanoic and 2-methylpropanoic acid (Ames & McLeod, 1985), which 291 have been detected as some of the most abundant compounds in the volatile composition of 292 yeast derivatives, and may be responsible of off-flavors perceivable in wine (Comuzzo et al., 293 2006).

294 The results of Principal Components Analysis (PCA), carried out after grouping all the aroma 295 compounds on the basis of their chemical class, are reported in Fig. 4. The projections of 296 variables and cases highlight that ADY preparation was different respect to the yeast 297 autolysates obtained after HPH. Moreover, among high pressure treated samples, it was 298 possible to distinguish two different groups, depending on the mode of temperature 299 management. In particular, the powders obtained under controlled temperature conditions 300 (4P\_TC, 6P\_TC, 10P\_TC) and the sample 1P, appeared richer in alkyl-pyrazines, alcohols 301 and esters. Contrary, samples processed without thermal control (4P, 6P, 10P) had a less intense volatile profile, closer to that shown by the original ADY preparation, and this<sub>13</sub> 302

303 might be due to a more intense volatilization connected to the higher extent of heating304 registered for these samples.

305 ANOVA results confirm these considerations (Table 2); the main differences among the 306 treatments were related for the most, to alcohols, ethyl esters, alkyl-pyrazines, fatty acids and 307 carbonyl compounds. Higher Alcohols were not present in significant concentrations in the 308 active dry yeast, whereas their content increased even after a single-pass treatment. This is 309 likely connected with the ability of HPH to induce autolysis (Comuzzo et al., 2015a), 310 promoting in such a way the release of these compounds. ANOVA and Tukey HSD Test well 311 highlighted the differences among the samples. In particular, the content of alcohols showed a 312 tendential decrease, as the temperature and the number of passes increased, and the powders 313 obtained without thermal conditioning had a lower concentration of such molecules in their 314 headspace. This might be due to volatilization phenomena, or to their thermal degradation, 315 both induced by heating. Exceptions to this trend were represented by 1-hexanol and 2-ethyl-316 1-hexanol, whose concentration appeared to be greater in ADY and in some of the samples 317 processed without thermal control.

318 Ethyl esters were tentatively identified in the products obtained by single-pass treatment, 319 confirming that these compounds may be released during the autolytic process (Alexandre 320 and Guilloux-Benatier, 2006). The samples obtained with temperature control did not show 321 any significant difference from the sample 1P, while the powders produced without thermal 322 conditioning were characterized by a statistically lower content of esters. According to this 323 trend, the esters concentration appeared to be more affected by heating, rather than by the 324 number of homogenization passes, even if a certain reduction of the average values was 325 observed, as the number of cycles increased (Table 2).

326 The concentrations found for alkyl-pyrazines also highlighted some minor differences among

327 the samples. Pyrazines were not detected in ADY preparation, while they were found in HPH

328 treated samples, for most of them, even after one single pass. The increase of the number of

329 passes did not significantly modify their amount, while the effect of processing temperature 330 on such heterocyclic compounds was more evident, and it was similar to that observed for 331 alcohols and esters. In fact, even if without broad statistical confirmations, pyrazines were 332 averagely present in greater extent in the samples produced with thermal conditioning, and in 333 lower amounts in those obtained without temperature control. This behavior, became 334 statistically significant in the case of 2,3,5-trimethylpyrazine (the most abundant, tentatively 335 identified in the former group of samples but not in the latter), while it was not found for 3-336 ethyl-2,5-dimethylpyrazine, the sole among such compounds which did not follow this trend. 337 The lower presence of pyrazines in the samples not thermally controlled might be connected 338 with the fact that they might be further involved in subsequent steps of Maillard reaction itself 339 during processing. The same phenomena did not occur in the samples produced by controlling 340 temperature.

341 Few differences were found concerning fatty acids composition. From the statistical point of 342 view, no significant differences were marked among the samples, for the most of the 343 compounds detected, neither as a function of the number of passes, nor depending on the way 344 of temperature management during the process. Unlike, significant differences among the 345 autolysates produced with and without temperature conditioning, were found in the case of 2-346 ethylhexanoic and octanoic acid. These two compounds were both present in high 347 concentration in the samples obtained with thermal control probably due to the effect of 348 heating on the degradation of lipid components. This trend was found also for hexanoic acid, 349 even if without any statistical confirmation.

The carbonyl compounds detected in the powders can be divided in two subgroups: the first one is represented by acetoin, a well known yeast metabolite, while the second includes compounds that are reported as oxidation products of lipids (e.g. hexanal, heptanal or nonanal) (Grosh, 1982) or breakdown derivatives of carotenoids (e.g. 6-methyl-5-heptene-2-

354 one) (Schreier, Drawert, & Junker, 1977). Acetoin level did not show any significant 15

modification induced by varying the processing variables, and the compound was found to be present in higher amounts in the ADY preparation. Contrary, significant differences were found for all the compounds included in the second group of volatiles, highlighting, for all of them, a greater concentration in the powders obtained without temperature conditioning. The number of passes, instead, did not modify substantially the content of such molecules.

### 360 4 Conclusions

In conclusion, high pressure homogenization confirmed its ability to induce autolysis of wine yeasts and its potential to be applied in the production of inactive dry yeasts for winemaking. Both the number of passes and processing temperature were able to affect yeast viability and the release of soluble molecules (glucidic colloids, proteins and free amino acids), but the latter appeared more powerful for tailoring the compositional characteristics of the IDYs produced.

367 In the conditions of the present experiment, suitable levels of viable cell inactivation (in 368 compliance with the limits recommended by the O.I.V. in inactive dry yeasts and yeast 369 autolysates for winemaking - Resolution Oeno 496/2013, 2013), were achieved with 6-10 370 homogenization passes, under uncontrolled temperature regime, with a temperature of the 371 yeast suspension after processing, which raised up to 70-75 °C. Such conditions are quite 372 difficult to be scaled-up at industrial level, due to the high number of homogenization steps 373 required, but these results suggest that HPH may anyhow be used in the manufacturing of 374 inactive dry yeasts (e.g. in combination with natural or added enzymes), for making the 375 natural autolytic process faster and more rational.

The management of processing temperature could also be a suitable tool for tailoring the composition of the yeast derivatives produced by HPH. An interesting observation, connected to the opportunity to control or not the processing temperature, is related to the release of soluble macromolecules (glucidic colloids in particular) and free amino acids. Being equal the number of passes, higher temperatures only slightly affected the levels of soluble colloids, but the heating led to reduced concentrations of soluble amino acids in the autolysates. This information may be important for the production of IDYs to be used as fermentation enhancers, for which a higher content of soluble amino acids is required: for such application, a suitable temperature control might be recommended.

385 Finally, temperature and number of passes also affected the volatile composition of the yeast 386 derivatives produced; even in this case, the former variable gave effects that were averagely 387 more evident. The autolysates obtained without cooling were less characterized from the point 388 of view of their volatile composition; such minor concentration in aroma molecules could be 389 interesting when IDY supplementation is required for increasing wine colloidal content (e.g. 390 during ageing), without affecting wine sensory profile with the release of exogenous aromas. 391 Contrary, the higher concentration in ethyl esters, detected in the samples obtained with 392 temperature control, may represent an interesting opportunity to simulate the natural 393 enrichment of wine itself in these molecules, during ageing on the lees.

Further investigations will be required to assess the potential effects of such yeast autolysates produced by HPH on the colloidal and volatile composition of the wines, in comparison with traditionally produced IDY preparations as well as with commercial IDY products.

#### 397 **References**

Acree, T., & Arn, H. (2016). Flavornet and human odor space. Gas chromatography olfactometry (GCO) of natural products. URL http://www.flavornet.org/flavornet.html,
Accessed 19.04.2016.

- 401 Alexandre, A., & Guilloux-Benatier, M. (2006). Yeast autolysis in sparkling wine. A review.
- 402 Australian Journal of Grape and Wine Research, 12, 119-127.
- 403 Ames, J.M., & McLeod, G.M. (1985). Volatile components of a yeast extract composition.
- 404 Journal of Food Science, 50, 125-135.

- 405 Ashoor, S.H., & Zent, J.B. (1984). Maillard reaction of common amino acids and sugars.
  406 *Journal of Foof Science*, 49, 1206-1207.
- Baek, H.H., & Cadwallader, K.R. (1999). Contribution of free and glycosidically bound
  volatile compounds to the aroma of muscadine grape juice. *Journal of Food Science*, *64*, 441409 444.
- 410 Comuzzo, P., Tat, L., Tonizzo, A., & Battistutta, F. (2006). Yeast derivatives (extracts and
- 411 autolysates) in winemaking: Release of volatile compounds and effects on wine aroma
  412 volatility. *Food Chemistry*, *99*, 217-230.
- 413 Comuzzo, P., Tat, L., Fenzi, D., Brotto, L., Battistutta, F., & Zironi, R. (2011). Interactions
- 414 between yeast autolysates and volatile compounds in wine and model solution. Food
- 415 *Chemistry*, *127*, 473-480.
- 416 Comuzzo, P., Tat, L., Liessi, A., Brotto, L., Battistutta, F., & Zironi, R. (2012). Effect of
- 417 different lysis treatments on the characteristics of yeast derivatives for winemaking. Journal
- 418 *of Agricultural and Food Chemistry*, 60, 3211-3222.
- 419 Comuzzo, P., Calligaris, S., Iacumin, L., Ginaldi, F., Palacios Paz, A.E., & Zironi, R. (2015a).
- 420 Potential of high pressure homogenization to induce autolysis of wine yeasts. *Food*421 *Chemistry*, 185, 340-348.
- 422 Comuzzo, P., Battistutta, F., Vendrame, M., Páez, M.S., Luisi, G., & Zironi, R. (2015b).
- 423 Antioxidant properties of different products and additives in white wine. *Food Chemistry*,
  424 *168*, 107–114.
- 425 Culleré, L., Escudero, A., Cacho, J., & Ferreira, V. (2004). Gas chromatography-olfactometry
- 426 and chemical quantitative study of aroma of six premium quality spanish aged red wines.
- 427 Journal of Agricultural and Food Chemistry, 52, 1653-1660.
- 428 Davies, N.W. (1990). Gas chromatographic retention indices of monoterpenes and 429 sesquiterpenes on methyl silicone and Carbowax 20M phases. *Journal of Chromatography*,
- 430 503, 1-24.

- 431 de la Torre, M., Flores, L.B., & Chong, E. (1994). High cell density yeast production: process
- 432 synthesis and scale-up. In E. Galindo, & O.T. Ramirez (Eds.), *Advances in Bioprocess*433 *Engineering* (pp. 67-74). Dordrecht, The Nederlands: Springer Science + Business Media.
- 434 Dukes, B.C., & Butzke, C.E. (1998). Rapid determination of primary amino acids in grape
- 435 juice using an o-phtaldialdehyde / N-acetyl-L-cysteine spectrophotometric assay. American
- 436 *Journal of Enology and Viticulture*, 49, 125-134.
- 437 Follows, M., Hetherington, P.J., Dunnill, P., & Lilly, M.D. (1971). Release of enzymes from
- 438 bakers' yeast by disruption in an industrial homogenizer. *Biotechnology and Bioengineering*,
  439 13, 549-560.
- 440 Gonzalez-Rios, O., Suarez-Quiroz, M.L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.P.,
- 441 & Schorr-Galindo, S. (2007). Impact of "ecological" post-harvest processing on coffee aroma:
- 442 II. Roasted coffee. Journal of Food Composition and Analysis, 20, 297-307.
- 443 Goodner, K.L. (2008). Practical retention index models of OV-101, DB-1, DB-5, and DB-
- 444 Wax for flavor and fragrance compounds. *LWT Food Science and Technology*, *41*, 951-958.
- 445 Grosch, W. (1987). Reactions of hydroperoxides-products of low molecular weight. In H.W.-
- 446 S. Chan, Autoxidation of unsaturated lipids (pp. 95-140). London: Academic Press.
- 447 Halasz, A., & Lasztity, R. (1991). Use of yeast biomass in food production. Boca Raton,
- 448 USA: CRC Press, (Chapter 9).
- 449 Hetherington, P.J., Follows, M., Dunniil, P., & Lilly, M.D. (1971). Release of protein from
- 450 baker's yeast (Saccharomyces cerevisiae) by disruption in an industrial homogeniser.
- 451 Transactions of the Institution of Chemical Engineers, 49, 142-148.
- 452 Jennings, W., & Shibamoto, T. (1980). Qualitative analysis of flavor and fragrance volatiles
- 453 by glass capillary gas chromatography. New York, USA: Academic Press.
- 454 Lopez, R., Ferreira, V., Hernandez, P., & Cacho, J. (1999). Identification of impact odorants
- 455 of young red wines made with Merlot, Cabernet Sauvignon and Grenache grape varieties: a
- 456 comparative study. *Journal of the Science of Food and Agriculture*, 79, 1461-1467.

- 457 Madruga, M.S., & Mottram, D.S. (1998). The effect of pH on the formation of volatile
- 458 compounds by heating a model system containing 5'-IMP and cysteine. *Journal of Brazilian*459 *Chemical Society*, 9, 261-271.
- 460 Münch, P., Hofmann, T., & Schieberle, P. (1997). Comparison of key odorants generated by
- 461 thermal treatment of commercial and self-prepared yeast extracts: influence of the amino acid
- 462 composition on odorant formation. Journal of Agricultural and Food Chemistry, 45, 1338-
- 463 1344.
- 464 Nagodawithana, T. (1992). Yeast-derived flavors and flavor enhancers and their probable
  465 mode of action. *Food Technology*, 46, 138-144.
- 466 Nawar, W.W. (1969). Thermal degradation of lipids: a review. Journal of Agricultural and
- 467 *Food Chemistry*, 17, 18-21.
- 468 Organisation Internationale de la Vigne et du Vin, O.I.V. (2013). *Monograph on yeast*469 *autolysates*. Resolution Oeno, 496/2013.
- 470 Patrignani, F., Ndagijimana, M., Vernocchi, P., Gianotti, A., Riponi, C., Gardini, F., &
- 471 Lanciotti, R. (2013). High-pressure homogenization to modify yeast performance for
- 472 sparkling wine production according to traditional methods. American Journal of Enology
- 473 *and Viticulture*, 64, 258-267.
- 474 Peat, S., Whelan, W.J., & Edwards, T.E. (1961). Polysaccharide of baker's yeast. Part 4.
- 475 Mannan. Journal of the Chemical Society (London), 1, 28-35.
- 476 Pérez-Serradilla, J.A., & Luque de Castro, M.D. (2008). Role of lees in wine production: A
- 477 review. Food Chemistry, 111, 447–456.
- 478 Popper, L., & Knorr, D. (1990). Application of high pressure homogenization for food
- 479 preservation. *Food Technology*, 44, 84–89.
- 480 Pozo-Bayón, M.Á., Andújar-Ortiz, I., & Moreno-Arribas, M.V. (2009). Scientific evidences
- 481 beyond the application of inactive dry yeast preparations in winemaking. Food Research
- 482 International, 42, 754-761.

- 483 Regenstein, J.M., & Regenstein, C.E. (1984). *Food protein chemistry*. New York, USA:
  484 Academic Press.
- 485 Rodríguez-Bencomo, J.J., Andujar-Ortiz, I., Moreno-Arribas, M.V., Simò, C., Gonzales, J.,
- 486 Chana, A., Davalos, J., & Pozo-Bayon, M.A. (2014). Impact of glutathione-enriched inactive
- 487 dry yeast preparations on the stability of terpenes during model wine aging. Journal of
- 488 Agricultural and Food Chemistry, 62, 1373-1383.
- 489 Schreier, P., Drawert, F., & Junker, A. (1977). The quantitative composition of natural and
- 490 technologically changed aromas of plants. IV. Enzymic and thermal reaction products formed
- 491 during the processing of tomatoes. Zeitschrift fuer Lebensmittel-Untersuchung und-
- 492 Forschung, 165, 23-27.
- 493 Usseglio-Tomasset, L., & Castino, M. (1975). I colloidi solubili di natura glucidica dei mosti
- 494 e dei vini. Parte I. *Rivista di Viticoltura ed Enologia*, 28, 374-391.
- 495 Voilley, A., Beghin, V., Charpentier, C., & Peyron, D. (1991). Interaction between aroma
- 496 substances and macromolecules in a model wine. *Lebensmittel-Wissenschaft und* 497 *Technologie*, 24, 469-472.
- 498 Welke, J.E., Manfroi, V., Zanus, M., Lazarotto, M., & Alcaraz Zini, C. (2012).
- 499 Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two
- 500 dimensional gas chromatography time-of-flight mass spectrometric detection. Journal of
- 501 *Chromatography A*, *1226* (124-139).
- 502 Wong, J.M., & Bernhard, R.A. (1988). Effect of nitrogen source on pyrazine formation.
- 503 Journal of Agricultural and Food Chemistry, 36, 123-129.
- 504 Yeo, H.C.H., & Shibamoto, T. (1991). Microwave-induced volatiles of the Maillard model
- 505 system under different pH conditions. Journal of Agricultural and Food Chemistry, 39, 370-
- 506 373.

# 508 Figure Captions

**Fig. 1.** Viable yeasts in the active dry yeast preparation (ADY) and in the samples obtained by HPH treatment (150 MPa), as a function of the number of passes (1P, 4P, 6P, 10P), in controlled (a) and not controlled temperature conditions (b). Different letters mark significant differences among yeast counts, according to ANOVA and Tukey HSD test (p < 0.05). Vertical bars represent standard deviation. For the sample 10P, data are reported in CFU g<sup>-1</sup> (<10 CFU g<sup>-1</sup>).

514

**Fig. 2.** Soluble proteins (a) and free amino acids (b) in the active dry yeast preparation (ADY) and in the freeze-dried powders obtained by HPH treatment (150 MPa), as a function of the number of passes (1P, 4P, 6P, 10P), in controlled and not controlled temperature conditions. Different letters mark significant differences according to ANOVA and Tukey HSD test, at p < 0.05. Vertical bars represent standard deviations.

520

**Fig. 3.** Soluble glucidic colloids in the active dry yeast preparation (ADY) and in the freeze-dried powders obtained by HPH treatment (150 MPa), as a function of the number of passes (1P, 4P, 6P, 10P), in controlled and not controlled temperature conditions. Different letters mark significant differences according to ANOVA and Tukey HSD test, at p < 0.05. Vertical bars represent standard deviations.

526

Fig. 4. Results of PCA carried out on the absolute areas of the volatile compounds detected by
SPME-GC-MS, and grouped basing on their chemical class. The projection of both cases (samples)
(a) and variables (chemical groups) (b) on the factor plane is reported. ADY: active dry yeast; 1P,
4P, 6P, 10P: HPH treatments (1, 4, 6 and 10 passes at 150 MPa) without temperature control;
4P\_Tc, 6P\_Tc, 10P\_Tc: HPH treatments (4, 6 and 10 passes at 150 MPa) with temperature control.









# 621 **Table 1**

622 Volatile compounds tentatively identified by SPME-GC-MS, in the headspace of the samples

- analyzed.
- 624

|    | Compound                                                   | Ir <sup>a</sup> | b<br>Ir <sub>(lit)</sub> | Ref. <sup>c</sup>          | IM <sup>d</sup> |
|----|------------------------------------------------------------|-----------------|--------------------------|----------------------------|-----------------|
| 1  | ethyl acetate                                              |                 |                          |                            | MS              |
| 2  | ethanol                                                    | 936             | 929                      | Acree & Arn, 2016          | MS, RI          |
| 3  | ethyl butanoate                                            | 1.038           | 1.034                    | Baek & Cadwallader, 1999   | MS, RI          |
| 4  | ethyl 2-methylbutanoate                                    | 1.053           | 1.051                    | Baek & Cadwallader, 1999   | MS, RI          |
| 5  | ethyl 3-methylbutanoate                                    | 1.069           | 1.082                    | Cullere et al., 2004       | MS, RI          |
| 6  | hexanal                                                    | 1.080           | 1.084                    | Jennings & Shibamoto, 1980 | MS, RI, S       |
| 7  | 2-methyl-1-propanol                                        | 1.093           | 1.096                    | Lopez et al., 1999         | MS, RI          |
| 8  | 1-butanol                                                  | 1.149           | 1.145                    | Baek & Cadwallader, 1999   | MS, RI, S       |
| 9  | β-myrcene                                                  | 1.162           | 1.166                    | Davies, 1990               | MS, RI          |
| 10 | heptanal                                                   | 1.182           | 1.184                    | Goodner, 2008              | MS, RI          |
| 11 | 2- and 3-methyl-1-butanol                                  | 1.212           | 1.210                    | Baek & Cadwallader, 1999   | MS, RI, S       |
| 12 | ethyl hexanoate                                            | 1.237           | 1.234                    | Baek & Cadwallader, 1999   | MS, RI, S       |
| 13 | unknown                                                    | 1.252           |                          |                            |                 |
| 14 | 3-hydroxy-2-butanone (acetoin)                             | 1.281           | 1.290                    | Baek & Cadwallader, 1999   | MS, RI, S       |
| 15 | 2,6-dimethyl-pyrazine                                      | 1.326           | 1.325                    | Jennings & Shibamoto, 1980 | MS, RI          |
| 16 | 6-methyl-5-hepten-2-one                                    | 1.333           | 1.336                    | Comuzzo et al., 2015       | MS, RI          |
| 17 | ethyl heptanoate                                           | 1.333           | 1.325                    |                            | MS, S           |
| 18 | ethyl lactate                                              | 1.341           | 1.358                    | Acree & Arn, 2016          | MS, RI          |
| 19 | 1-hexanol                                                  | 1.359           | 1.359                    | Lopez et al., 1999         | MS, RI, S       |
| 20 | 2-ethyl-6-methylpyrazine                                   | 1.382           | 1.384                    | Comuzzo et al., 2006       | MS, RI          |
| 21 | nonanal                                                    | 1.388           | 1.382                    | Jennings & Shibamoto, 1981 | MS, RI          |
| 22 | 2-butoxyethanol                                            | 1.400           |                          |                            | MS              |
| 23 | 2,3,5-trimethylpyrazine                                    | 1.401           | 1.408                    | Comuzzo et al., 2006       | MS, RI          |
| 24 | 2-methyl-thiazolidine                                      | 1.420           | 1.415                    | Yeo & Shibamoto, 1991      | MS, RI          |
| 25 | ethyl octanoate                                            | 1.432           | 1.435                    | Baek & Cadwallader, 1999   | MS, RI, S       |
| 26 | 3-ethyl-2,5-dimethylpyrazine                               | 1.445           | 1.464                    | Comuzzo et al., 2006       | MS, RI          |
| 27 | acetic acid                                                | 1.448           | 1.451                    | Baek & Cadwallader, 1999   | MS, RI, S       |
| 28 | 2-furaldehyde (furfural)                                   | 1.452           | 1.475                    | Lopez et al., 1999         | MS, RI, S       |
| 29 | 2,3,5,6-tetramethylpyrazine                                | 1.474           | 1.458                    | Ames & McLeod, 1985        | MS, RI          |
| 30 | 2-ethyl-1-hexanol                                          | 1.493           | 1.490                    | Madruga & Mottram, 1998    | MS, RI, S       |
| 31 | benzaldehyde                                               | 1.542           | 1.528                    | Baek & Cadwallader, 1999   | MS, RI, S       |
| 32 | ethyl 3-hydroxybutanoate                                   | 1.514           |                          |                            | MS              |
| 33 | propanoic acid                                             | 1.530           | 1.528                    | Münch et al., 1997         | MS, RI, S       |
| 34 | 2,3-butandiol                                              | 1.545           | 1.545                    | Baek & Cadwallader, 1999   | MS, RI          |
| 35 | 2-methylpropanoic acid                                     | 1.567           | 1.548                    | Münch et al., 1997         | MS, RI, S       |
| 36 | 1,2-propandiol                                             | 1.582           | 1594                     | Wong & Bernhard, 1988      | MS, RI          |
| 37 | dihydro-5-methyl-2(3 <i>H</i> )-furanone (γ-valerolactone) | 1.595           | 1617                     | Jennings & Shibamoto, 1981 | MS              |
| 38 | dihydro-2(3 <i>H</i> )-furanone ( $\gamma$ -butyrolactone) | 1.618           | 1.632                    | Jennings & Shibamoto, 1981 | MS, RI, S       |
| 39 | butanoic acid                                              | 1.627           | 1.612                    | Münch et al., 1997         | MS, RI, S       |
| 40 | ethyl decanoate                                            | 1.635           | 1.634                    | Lopez et al., 1999         | MS, RI, S       |
| 41 | 2-furanmethanol                                            | 1.655           | 1.673                    | Comuzzo et al., 2006       | MS, RI          |
| 42 | 3-methylbutanoic acid                                      | 1.669           | 1.672                    | Baek & Cadwallader, 1999   | MS, RI, S       |
| 43 | diethyl succinate                                          | 1.676           | 1.642                    | Jennings & Shibamoto, 1980 | MS              |

# 625 Table 1 Continued

|    | Compound                              | Ir <sup>a</sup> | Ir <sub>(lit)</sub> b | Ref. <sup>c</sup>          | IM <sup>d</sup> |
|----|---------------------------------------|-----------------|-----------------------|----------------------------|-----------------|
| 44 | 5,6-dihydro-2H-pyran-2-one            | 1.688           |                       |                            | MS              |
| 45 | 3-(methylthio)-1-propanol (methionol) | 1.711           | 1714                  | Lopez et al., 1999         | MS, RI          |
| 46 | hexanoic acid                         | 1.848           | 1854                  | Lopez et al., 1999         | MS, RI, S       |
| 47 | 2-phenylethanol                       | 1.902           | 1.922                 | Baek & Cadwallader, 1999   | MS, RI, S       |
| 48 | 1,4-butandiol                         | 1.924           | 1861                  | Jennings & Shibamoto, 1980 | MS              |
| 49 | 2-ethylhexanoic acid                  | 1.947           | 1974                  | Welke et al., 2012         | MS, RI          |
| 50 | octanoic acid                         | 2.059           | 2060                  | Lopez et al., 1999         | MS, RI, S       |

a Ir: Retention index

b  $Ir_{(lit)}$ : Retention index from literature

c Ref.: bibliografic reference

d IM: *S* comparison of mass spectra and retention time with those of standard compounds; *RI* comparison of order of elution with those reported in literature; *MS* comparison of mass spectra with those reported in Wiley 6 and NIST 107 mass spectrum libraries

626

# 628 **Table 2**

629 Effect of HPH treatments (150 MPa) on the volatile composition of the freeze-dried powders. ADY: active dry yeast; 1P, 4P, 6P, 10P: HPH treatments (1, 4, 6

630 and 10 passes) without temperature control; 4P\_Tc, 6P\_Tc, 10P\_Tc: HPH treatments (4, 6 and 10 passes) with temperature control. Different letters mark

631 significant differences according to ANOVA and Tukey HSD test, at p < 0.05. SD: standard deviation.

|                                                               | Absolute area / 1000 |                        |      |                  |        |       |      |                |    |                        |     |                         |     |                         |           |                 |    |        |                          |        |
|---------------------------------------------------------------|----------------------|------------------------|------|------------------|--------|-------|------|----------------|----|------------------------|-----|-------------------------|-----|-------------------------|-----------|-----------------|----|--------|--------------------------|--------|
| Compound                                                      | Rt <sup>a</sup>      | ADY                    |      | 11               | Р      |       |      | 4P_Tc          |    | 6P_Tc                  |     | 10P_Tc                  |     | 4P                      |           | 6P              |    |        | 10P                      |        |
|                                                               |                      | Mean <u>+</u> SD       |      | Mean <u>+</u>    | SD     |       | Mean | <u>+</u> SD    |    | Mean <u>+</u> SD       |     | Mean <u>+</u> SD        |     | Mean <u>+</u> SD        | Mean      | <u>+</u> SD     |    | Mean   | <u>+</u> SC              | 1      |
| Acids                                                         |                      |                        |      |                  |        |       |      |                |    |                        |     |                         |     |                         |           |                 |    |        |                          |        |
| acetic acid                                                   | 16,8                 | 181798 <u>+</u> 7266   | b    | 58372 <u>+</u>   | 29767  | a g   | 8544 | <u>+</u> 53522 | ab | 83105 <u>+</u> 30705   | а   | 58724 <u>+</u> 21995    | а   | 56272 <u>+</u> 10607    | a 41548   | <u>+</u> 9280   | а  | 73617  | <u>+</u> 49              | 072 a  |
| 2-methylpropanoic acid                                        | 20,5                 | 118098 <u>+</u> 113510 | a    | 177846 <u>+</u>  | 76090  | a 13  | 0535 | <u>+</u> 38677 | a  | 136560 <u>+</u> 30376  | а   | 128831 <u>+</u> 26163   | а   | 144347 <u>+</u> 52402   | a 129336  | <u>+</u> 38840  | a  | 182951 | ± 11                     | 6161 a |
| butanoic acid                                                 | 22,2                 | 27063 <u>+</u> 26176   | a    | 16997 <u>+</u>   | 11016  | a     | 9653 | <u>+</u> 5902  | a  | 12725 <u>+</u> 4531    | а   | 11645 <u>+</u> 3266     | а   | 9970 <u>+</u> 4509      | a 8803    | <u>+</u> 3585   | а  | 16040  | <u>+</u> 12              | 987 a  |
| 3-methylbutanoic acid                                         | 23,5                 | 66043 <u>+</u> 77127   | a    | 149490 <u>+</u>  | 87686  | a 10  | 9432 | <u>+</u> 60460 | а  | 131037 <u>+</u> 41831  | а   | 111916 <u>+</u> 35724   | а   | 88601 <u>+</u> 44662    | a 75083   | <u>+</u> 35185  | а  | 146391 | <u>+</u> 11              | 5190 a |
| hexanoic acid                                                 | 28,4                 | 3235 <u>+</u> 3239     | a    | 3405 <u>+</u>    | 2122   | a     | 1976 | <u>+</u> 259   | а  | 1393 <u>+</u> 1224     | а   | 2433 <u>+</u> 786       | а   | 0 <u>+</u> 0            | a 0       | <u>+</u> 0      | а  | 606    | <u>+</u> 68              | 8 a    |
| 2-ethylhexanoic acid                                          | 31,0                 | 0 <u>+</u> 0           | a    | 0 <u>+</u>       | 0      | a     | 711  | <u>+</u> 631   | ab | 1554 <u>+</u> 283      | b   | 1085 <u>+</u> 969       | ab  | $0 \pm 0$               | a 0       | <u>+</u> 0      | а  | 0      | <u>+</u> 0               | а      |
| octanoic acid                                                 | 33,8                 | $0 \pm 0$              | а    | 14960 <u>+</u>   | 11716  | b     | 0    | <u>+</u> 0     | a  | 1680 <u>+</u> 2910     | a   | 787 <u>+</u> 1363       | а   | 0 <u>+</u> 0            | a 0       | <u>+</u> 0      | a  | 132    | <u>+</u> 22'             | Э a    |
| Alcohols                                                      |                      |                        |      |                  |        |       |      |                |    |                        |     |                         |     |                         |           |                 |    |        |                          |        |
| ethanol                                                       | 3,3                  | 122445 <u>+</u> 28115  | a 11 | 1217247 <u>+</u> | 96244  | e 97  | 0939 | <u>+</u> 39987 | cd | 946836 <u>+</u> 8793   | cd  | 932973 <u>+</u> 14120   | bcd | 811894 <u>+</u> 25910   | b 837218  | <u>+</u> 39074  | bc | 845959 | <u>+</u> 59              | 638 bc |
| 2-methyl-1-propanol                                           | 6,2                  | 31173 <u>+</u> 53992   | a i  | 361173 <u>+</u>  | 122000 | c 29  | 9241 | <u>+</u> 33400 | bc | 174116 <u>+</u> 28157  | ab  | 127623 <u>+</u> 20666   | а   | 112491 <u>+</u> 43891   | a 101455  | <u>+</u> 26006  | а  | 106295 | <u>+</u> 50 <sup>°</sup> | 009 a  |
| 2- and 3-methyl-1-butanol                                     | 9,5                  | 208380 <u>+</u> 360925 | a 1  | 1620151 <u>+</u> | 244887 | c 163 | 3470 | <u>+</u> 75973 | с  | 1330683 <u>+</u> 83097 | bc  | 1179959 <u>+</u> 109112 | bc  | 1029730 <u>+</u> 211711 | bc 983472 | <u>+</u> 181846 | b  | 934591 | <u>+</u> 30              | 2713 b |
| 1-hexanol                                                     | 14,0                 | 5402 <u>+</u> 2924     | bc   | 8489 <u>+</u>    | 702    | с     | 1048 | <u>+</u> 393   | а  | 1037 <u>+</u> 899      | а   | 2177 <u>+</u> 749       | ab  | 2078 <u>+</u> 330       | ab 1820   | <u>+</u> 256    | ab | 2390   | <u>+</u> 21              | 76 ab  |
| 2-ethyl-1-hexanol                                             | 18,3                 | 8058 <u>+</u> 902      | b    | 3272 <u>+</u>    | 1402   | a     | 1566 | <u>+</u> 586   | а  | 1919 <u>+</u> 557      | а   | 3036 <u>+</u> 1416      | а   | 2437 <u>+</u> 919       | a 3134    | <u>+</u> 283    | а  | 3935   | <u>+</u> 27              | 96 а   |
| 2-phenylethanol                                               | 29,9                 | 5070 <u>+</u> 2563     | а    | 53863 <u>+</u>   | 32661  | bc 5  | 8792 | <u>+</u> 20303 | c  | 32896 <u>+</u> 12835   | abc | 24147 <u>+</u> 9953     | abc | 8905 <u>+</u> 4417      | a 7595    | <u>+</u> 3892   | a  | 13933  | <u>+</u> 85              | 54 ab  |
| <u>Carbonyls</u>                                              |                      |                        |      |                  |        |       |      |                |    |                        |     |                         |     |                         |           |                 |    |        |                          |        |
| hexanal                                                       | 5,9                  | $0 \pm 0$              | a    | 5596 <u>+</u>    | 1503   | b     | 129  | <u>+</u> 223   | a  | 0 <u>+</u> 0           | а   | 0 <u>+</u> 0            | а   | 4197 <u>+</u> 1105      | b 4370    | <u>+</u> 1456   | b  | 4055   | <u>+</u> 24              | 51 b   |
| heptanal                                                      | 8,6                  | 0 <u>+</u> 0           | a    | 14272 <u>+</u>   | 2434   | с     | 0    | <u>+</u> 0     | a  | 0 <u>+</u> 0           | а   | 0 <u>+</u> 0            | а   | 6494 <u>+</u> 2398      | b 6929    | <u>+</u> 2819   | b  | 8230   | <u>+</u> 21              | 24 b   |
| 3-hydroxy-2-butanone (acetoin)                                | 11,6                 | 95462 <u>+</u> 62134   | b    | 30859 <u>+</u>   | 24727  | ab 2  | 0374 | <u>+</u> 6536  | а  | 9843 <u>+</u> 3682     | а   | 4894 <u>+</u> 1933      | а   | 7837 <u>+</u> 3816      | a 7383    | <u>+</u> 1663   | а  | 8816   | <u>+</u> 64              | 10 a   |
| 6-methyl-5-hepten-2-one                                       | 13,2                 | 0 <u>+</u> 0           | a    | 0 <u>+</u>       | 0      | a     | 0    | <u>+</u> 0     | а  | 0 <u>+</u> 0           | а   | 1717 <u>+</u> 2973      | ab  | 6239 <u>+</u> 1015      | c 5151    | <u>+</u> 902    | bc | 3618   | <u>+</u> 21              | 05 abc |
| nonanal                                                       | 15,0                 | 0 <u>+</u> 0           | а    | 6211 <u>+</u>    | 1133   | bcd   | 3650 | <u>+</u> 631   | b  | 4372 <u>+</u> 1114     | bc  | 3729 <u>+</u> 596       | b   | 6816 <u>+</u> 1161      | cde 7364  | <u>+</u> 1405   | de | 9390   | <u>+</u> 15              | )6 e   |
| Heterocyclic compounds                                        |                      |                        |      |                  |        |       |      |                |    |                        |     |                         |     |                         |           |                 |    |        |                          |        |
| 2-methyl-thiazolidine                                         | 16,0                 | 0 <u>+</u> 0           | a    | 0 <u>+</u>       | 0      | a     | 6222 | <u>+</u> 9679  | а  | 3363 <u>+</u> 3355     | а   | 0 <u>+</u> 0            | а   | 0 <u>+</u> 0            | a 0       | <u>+</u> 0      | а  | 0      | <u>+</u> 0               | а      |
| dihydro-5-methyl-2(3 <i>H</i> )-furanone<br>(γ-valerolactone) | 21,4                 | 0 <u>+</u> 0           | а    | 7722 <u>+</u>    | 4214   | a     | 3322 | <u>+</u> 4557  | а  | 7069 <u>+</u> 1234     | a   | 6038 <u>+</u> 1314      | a   | 3438 <u>+</u> 5954      | a 1349    | <u>+</u> 2336   | а  | 6424   | <u>+</u> 55              | 89 a   |
| dihydro-2(3 <i>H</i> )-furanone<br>(γ -butyrrolactone)        | 22,0                 | 30431 <u>+</u> 10759   | b    | 10780 <u>+</u>   | 5016   | a     | 8349 | <u>+</u> 2512  | a  | 8443 <u>+</u> 1482     | a   | 7959 <u>+</u> 1074      | a   | 8551 <u>+</u> 3344      | a 7957    | <u>+</u> 1498   | а  | 9990   | <u>+</u> 46              | 55 a   |
| 5,6-dihydro-2H-pyran-2-one                                    | 24,1                 | 2390 <u>+</u> 2073     | ab   | 4053 <u>+</u>    | 1194   | b     | 0    | <u>+</u> 0     | а  | $0 \pm 0$              | а   | 659 <u>+</u> 1142       | а   | 994 <u>+</u> 239        | a 867     | <u>+</u> 266    | а  | 541    | <u>+</u> 50              | 3 а    |

|                                       |                 |                      |                          | Absolute area / 1000 |                   |                          |                          |                        |                        |                        |  |  |  |
|---------------------------------------|-----------------|----------------------|--------------------------|----------------------|-------------------|--------------------------|--------------------------|------------------------|------------------------|------------------------|--|--|--|
| Compound                              | Rt <sup>a</sup> | ADY                  | 1P                       |                      | 4P_Tc             | 6P_Tc                    | 10P_Tc                   | 4P                     | 6P                     | 10P                    |  |  |  |
|                                       |                 | Mean <u>+</u> SD     | Mean <u>+</u> SD         | Mean                 | $\pm$ SD          | Mean <u>+</u> SD         | Mean <u>+</u> SD         | Mean <u>+</u> SD       | Mean <u>+</u> SD       | Mean <u>+</u> SD       |  |  |  |
| Dist                                  |                 |                      |                          |                      |                   |                          |                          |                        |                        |                        |  |  |  |
|                                       | 40.0            |                      |                          |                      |                   |                          | 100.51                   |                        |                        |                        |  |  |  |
| 2,3-butandiol                         | 19,8            | 22793 <u>+</u> 14276 | a 22037 <u>+</u> 11445   | a 21827              | <u>+</u> 2950 a   | 16581 <u>+</u> 3363 a    | 10856 <u>+</u> 1600 a    | 8403 <u>+</u> 1818 a   | 7418 <u>+</u> 2850 a   | 13595 <u>+</u> 5020 a  |  |  |  |
| 1,2-propandiol                        | 20,9            | 9553 <u>+</u> 6907   | ab 12755 $\pm$ 5017      | abc 13930            | $\pm$ 4052 abc    | 22285 <u>+</u> 2986 c    | $18070 \pm 4449$ bc      | $7892 \pm 2741$ ab     | 1692 <u>+</u> 586 a    | $6394 \pm 5526$ ab     |  |  |  |
| 1,4-butandiol                         | 30,4            | $0 \pm 0$            | a $0 \pm 0$              | a 1211               | <u>+</u> 168 b    | 1212 <u>+</u> 280 b      | 894 <u>+</u> 452 ab      | $1103 \pm 110$ b       | 1534 <u>+</u> 284 b    | 686 <u>+</u> 795 ab    |  |  |  |
| <u>Esters</u>                         |                 |                      |                          |                      |                   |                          |                          |                        |                        |                        |  |  |  |
| ethyl acetate                         | 2,8             | $0 \pm 0$            | a 0 <u>+</u> 0           | a 169376             | <u>+</u> 60706 d  | 111520 <u>+</u> 17077 cd | 72708 <u>+</u> 26615 bc  | 26011 <u>+</u> 7142 ab | 30946 <u>+</u> 5759 ab | 15428 <u>+</u> 4701 ab |  |  |  |
| ethyl butanoate                       | 4,9             | $0 \pm 0$            | a 76065 <u>+</u> 4671    | b 66828              | <u>+</u> 28331 b  | 69142 <u>+</u> 21649 b   | 51437 <u>+</u> 15886 bc  | 0 <u>+</u> 0 a         | $0 \pm 0$ a            | 0 <u>+</u> 0 a         |  |  |  |
| ethyl 2-methylbutanoate               | 5,3             | $0 \pm 0$            | a 17092 <u>+</u> 202     | b 16281              | <u>+</u> 8888 b   | 14378 <u>+</u> 13225 b   | 2808 <u>+</u> 4864 b     | 0 <u>+</u> 0 a         | $0 \pm 0$ a            | $0 \pm 0$ a            |  |  |  |
| ethyl 3-methylbutanoate               | 5,6             | $0 \pm 0$            | a 12311 <u>+</u> 6100    | b 7955               | <u>+</u> 4209 b   | 8515 <u>+</u> 4657 b     | 6295 <u>+</u> 3190 b     | 0 <u>+</u> 0 a         | $0 \pm 0$ a            | $0 \pm 0$ a            |  |  |  |
| ethyl hexanoate                       | 10,2            | 0 + 0                | a 55528 <u>+</u> 10108   | b 98161              | <u>+</u> 29681 b  | 72522 <u>+</u> 14668 b   | 73791 <u>+</u> 29887 b   | 1245 <u>+</u> 1467 a   | 0 <u>+</u> 0 a         | 570 <u>+</u> 987 a     |  |  |  |
| ethyl heptanoate                      | 13,2            | $0 \pm 0$            | a 16211 <u>+</u> 1618    | b 12898              | <u>+</u> 3690 b   | 12141 <u>+</u> 1792 b    | 8624 <u>+</u> 7847 ab    | 0 <u>+</u> 0 a         | $0 \pm 0$ a            | 0 <u>+</u> 0 a         |  |  |  |
| ethyl lactate                         | 13,5            | $0 \pm 0$            | a 16623 <u>+</u> 6946    | b 5560               | <u>+</u> 2847 a   | 5357 <u>+</u> 3939 a     | 4830 <u>+</u> 3792 ab    | 0 <u>+</u> 0 a         | $0 \pm 0$ a            | 0 <u>+</u> 0 a         |  |  |  |
| ethyl octanoate                       | 16,3            | 13870 <u>+</u> 5378  | a 1042294 <u>+</u> 83438 | b 1038839            | <u>+</u> 237474 b | 931907 <u>+</u> 301368 b | 935959 <u>+</u> 359645 b | 43077 <u>+</u> 17782 a | 15083 <u>+</u> 5607 a  | 23177 <u>+</u> 26642 a |  |  |  |
| ethyl 3-hydroxybutanoate              | 18,9            | 0 + 0                | a 2375 <u>+</u> 1077     | a 606                | <u>+</u> 1050 a   | 1204 <u>+</u> 1383 a     | 747 <u>+</u> 772 a       | 0 <u>+</u> 0 a         | 219 <u>+</u> 379 a     | 2565 <u>+</u> 3806 a   |  |  |  |
| ethyl decanoate                       | 22,5            | 8902 <u>+</u> 2604   | a 93992 <u>+</u> 12175   | b 102659             | <u>+</u> 30056 b  | 92958 <u>+</u> 26716 b   | 96502 <u>+</u> 41188 b   | 2388 <u>+</u> 784 a    | 985 <u>+</u> 516 a     | 2249 <u>+</u> 2262 a   |  |  |  |
| diethyl succinate                     | 23,7            | $0 \pm 0$            | a 75487 <u>+</u> 40743   | b 14778              | <u>+</u> 2450 b   | 6749 <u>+</u> 569 b      | 8755 <u>+</u> 7963 b     | $0 \pm 0$ b            | 0 <u>+</u> 0 b         | 0 <u>+</u> 0 b         |  |  |  |
| <u>Pyrazines</u>                      |                 |                      |                          |                      |                   |                          |                          |                        |                        |                        |  |  |  |
| 2,6-dimethyl-pyrazyne                 | 13,0            | 0 <u>+</u> 0         | a 2987 <u>+</u> 2024     | a 1773               | <u>+</u> 263 a    | 6452 <u>+</u> 6440 a     | 7572 <u>+</u> 5665 a     | 983 <u>+</u> 992 a     | 1118 <u>+</u> 564 a    | 1093 <u>+</u> 1893 a   |  |  |  |
| 2-ethyl-6-methylpyrazyne              | 14,8            | 0 <u>+</u> 0         | a 3376 <u>+</u> 1987     | a 1505               | <u>+</u> 1501 a   | 2880 <u>+</u> 1587 a     | 2099 <u>+</u> 1116 a     | 742 <u>+</u> 516 a     | 656 <u>+</u> 568 a     | 1188 <u>+</u> 1280 a   |  |  |  |
| 2,3,5-trimethylpyrazyne               | 15,4            | 0 <u>+</u> 0         | a 10609 <u>+</u> 5485    | b 10949              | <u>+</u> 2852 b   | 10941 <u>+</u> 4430 b    | 7929 <u>+</u> 3456 ab    | 0 <u>+</u> 0 a         | 0 <u>+</u> 0 a         | 0 <u>+</u> 0 a         |  |  |  |
| 3-ethyl-2,5-dimethylpyrazyne          | 16,7            | 0 <u>+</u> 0         | a 0 <u>+</u> 0           | a 1071               | <u>+</u> 1855 ab  | 1873 <u>+</u> 1683 ab    | 3165 <u>+</u> 223 b      | 2732 <u>+</u> 848 ab   | 1939 <u>+</u> 630 ab   | 2394 <u>+</u> 1113 ab  |  |  |  |
| 2,3,5,6-tetramethylpyrazyne           | 17,7            | $0 \pm 0$            | a 0 <u>+</u> 0           | a 268                | <u>+</u> 465 a    | 523 <u>+</u> 688 a       | 1221 <u>+</u> 1058 a     | 979 <u>+</u> 1288 a    | 0 <u>+</u> 0 a         | 250 <u>+</u> 432 a     |  |  |  |
| Others                                |                 |                      |                          |                      |                   |                          |                          |                        |                        |                        |  |  |  |
| β-myrcene                             | 8,0             | 0 + 0                | a 177243 + 28048         | b 4112               | + 1998 a          | 10701 + 765 a            | 6701 + 2535 a            | 9834 + 8019 a          | 9918 + 6492 a          | 4550 + 1737 a          |  |  |  |
| unknown                               | 10,6            |                      | a 40652 <u>+</u> 3264    | a 36154              | <u>+</u> 62620 a  | 46507 <u>+</u> 18478 a   |                          | 10617 <u>+</u> 2328 a  |                        |                        |  |  |  |
| benzaldehyde                          | 18,7            | 0 <u>+</u> 0         | a 13408 <u>+</u> 12939   | a 1892               | <u>+</u> 1903 a   | 2971 <u>+</u> 1531 a     | 2576 <u>+</u> 957 a      | 2046 <u>+</u> 580 a    | 2031 <u>+</u> 540 a    | 4019 <u>+</u> 2892 a   |  |  |  |
| 3-(methylthio)-1-propanol (methionol) | 24,7            | 0 <u>+</u> 0         | a 3459 <u>+</u> 2405     | bc 5828              | <u>+</u> 1014 c   | 3661 <u>+</u> 1371 bc    | 2324 <u>+</u> 1012 ab    | 711 <u>+</u> 423 ab    | 579 <u>+</u> 198 ab    | 1016 <u>+</u> 1002 ab  |  |  |  |

<sup>a</sup> Rt: retention time