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Engineered nanoscale materials (ENMs) are considered emerging contaminants since
they are perceived as a potential threat to the environment and the human health. The
reactions of living organisms when exposed to metal nanoparticles (NPs) or NPs of
different size are not well known. Very few studies on NPs–plant interactions have been
published, so far. For this reason there is also great concern regarding the potential
NPs impact to food safety. Early genotoxic and phytotoxic effects of cerium oxide NPs
(nCeO2) and titanium dioxide NPs (nTiO2) were investigated in seedlings of Hordeum
vulgare L. Caryopses were exposed to an aqueous dispersion of nCeO2 and nTiO2

at, respectively 0, 500, 1000, and 2000 mg l−1 for 7 days. Genotoxicity was studied
by Randomly Amplified Polymorphism DNA (RAPDs) and mitotic index on root tip
cells. Differences between treated and control plants were observed in RAPD banding
patterns as well as at the chromosomal level with a reduction of cell divisions. At cellular
level we monitored the oxidative stress of treated plants in terms of reactive oxygen
species (ROS) generation and ATP content. Again nCeO2 influenced clearly these two
physiological parameters, while nTiO2 were ineffective. In particular, the dose 500 mg
l−1 showed the highest increase regarding both ROS generation and ATP content; the
phenomenon were detectable, at different extent, both at root and shoot level. Total Ce
and Ti concentration in seedlings was detected by ICP-OES. TEM EDSX microanalysis
demonstrated the presence of aggregates of nCeO2 and nTiO2 within root cells of
barley. nCeO2 induced modifications in the chromatin aggregation mode in the nuclei of
both root and shoot cells.

Keywords: barley, cerium oxide nanoparticles, titanium oxide nanoparticles, genotoxicity, oxidative stress

INTRODUCTION

It is estimated that by 2020 about six million people will be employed worldwide in industries that
use nanotechnologies, which will have the potential to produce goods for a market of more than
3,000 billion dollars (Roco, 2011). There is therefore a tumultuous development of new materials
justified by a rapid growth of technological and commercial applications. Model simulations
demonstrated that flows of engineered nanomaterials (ENMs) are able to reach several natural
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ecosystems (Colman et al., 2013). Cerium oxide nanoparticles
(NPs; nCeO2) and titanium oxide NPs (nTiO2) are among the
top ten most produced ENMs by mass (Keller et al., 2013)
and used in cosmetics industries, in solar cells, paints, cements,
coatings, in agriculture and the food industry (Gogos et al., 2012;
Piccinno et al., 2012; Parisi et al., 2015). nCeO2 and nTiO2
were included in the list of ENMs of priority for immediate
testing by the Organization for Economic Cooperation and
Development (OECD, 2010). From point sources (e.g., discharges
of wastewaters from industries or landfills), such materials
will tend to accumulate in sediments and soils, exposing the
organisms inhabiting these environments to potential risks (Liu
and Cohen, 2014).

Plants are able to assimilate metal nanoparticles (MeNPs)
largely depending on the type of plant and the size of MeNPs
(Rico et al., 2011). In addition, the primary particle size of MeNPs
is relevant for their bioavailability and therefore their toxicity
(Van Hoecke et al., 2009), also raising questions on the potential
for MeNPs exposure of crops and food safety (Hong et al., 2013).
Experimental evidences were reported by Zhang et al. (2011)
which studied the nCeO2 uptake and translocation in cucumber,
reporting an higher Ce assimilation in plants treated with 7 nm
Ce than 25 nm ones. Clément et al. (2013) reported similar
results for nTiO2 on rapeseed plantlets treated with 14–25 nm
particles. Another functional property that influences the MeNPs
plant assimilation is the agglomeration/aggregation status that in
turn is influenced directly by the zeta-potential (Navarro et al.,
2008). Song et al. (2013a) demonstrated a negative correlation
between nTiO2 agglomeration/aggregation and assimilation in
tomato. A similar behavior could be hypothesized also for
nCeO2.

Although there are potential positive applications of ENMs
in agriculture (Parisi et al., 2015), studies on the toxicity of
MeNPs have shown early negative consequences on crops due to
genotoxic and phytotoxic effects (Miralles et al., 2012; Gardea-
Torresdey et al., 2014). From an ecological point of view, this
raises questions about potential risks due to the input of MeNPs
in the food chain. Early plant MeNPs toxicity can be measured
observing seed germination, root elongation, DNA mutations
(López-Moreno et al., 2010a; Atha et al., 2012) or changes in
biochemical parameters (Rico et al., 2013; Schwabe et al., 2013).

The aims of this study were to determine the early phytotoxic
and genotoxic effects of nCeO2 and nTiO2 on barley (Hordeum
vulgare L.) plants. The FAO ranks barley fourth in the top
five cereals in the world ordered based on production tonnage
(FAOSTAT, 2014) and the cereal is one of the major crops grown
worldwide for human and animal consumption. Suspensions of
nCeO2 and nTiO2 were prepared at 0, 500, 1000, and 2000 mg
l−1. Phytotoxicity of NPs was determined through percentage
of germination and root elongation, ATP and ROS generation
in root and leaf cells. Genotoxicity was investigated by the
mitotic index and RAPDs. Ce and Ti uptake and translocation
within seedling tissues were determined by inductively coupled
plasma-optical emission spectroscopy (ICP-OES), while nCeO2
and nTiO2 within plant cells were detected by transmission
electronic microscope and energy dispersive x-ray spectrometer
(TEM–EDX).

MATERIALS AND METHODS

Nanoparticles Characterization
The cerium(IV) oxide (nCeO2) and titanium(IV) oxide anatase
(nTiO2) powders with a nominal average particle size <25 nm
were purchased from Sigma–Aldrich (Milwaukee,WI, USA). The
specific surface area of the nCeO2 and nTiO2 was measured by
the Brunauer–Emmett–Teller (BET)method by using the Surface
Area and Pore Size Analyzer SA 3100 plus (Beckman Coulter,
USA).

The nCeO2 and nTiO2 powders were suspended in deionized
water at a concentration of 1000 mg l−1 and sonicated
at 60◦C for 30 min. The suspensions were characterized
for Z-average size, measured as hydrodynamic diameter, zeta
potential, via electrophoretic mobility, and polydispersity index
(PDI), calculated from the signal intensity, by the dynamic
light scattering (DLS) method using the Nano ZS90 (Malvern
Instruments, UK). The nCeO2 and nTiO2 powder suspensions
at three different concentrations (500, 1000, and 2000 mg l−1)
were prepared in MilliQ R© water by sonication for 30 min at
room temperature and then stirred for 15 min. The range of
concentrations (0, 500, 1000, and 2000 mg L−1) was chosen
according to Yang and Watts (2005), Lin and Xing (2007), and
López-Moreno et al. (2010a).

Seed Germination and Root Elongation
Caryopses of H. vulgare L. var. Tunika were provided by S.I.S.
Società Italiana Sementi (San Lazzaro di Savena, Bologna, Italy).
The caryopses were sterilized by orbital agitation with 70%
ethanol for 2 min and then with 5% sodium hypochlorite plus
some drops of Tween 80 for 30 min. They were rinsed six times
with sterilized MilliQ R© water. All caryopses were transferred in
sterile conditions into 15 mm Petri dishes containing filter paper
(Ø 90 mm Whatman No. 1) soaked with 8 ml of MilliQ R© water
(control treatment) or 8 ml of nCeO2 or nTiO2 suspensions at
different concentrations. The Petri dishes were taped and placed
in the dark at 21◦C for 3 days. The germination percentage was
calculated as the ratio of germinated seeds out the total seeds of
each Petri dish. A second set of caryopses were treated for 7 days
in the same conditions to evaluate root elongation and Ce and Ti
uptake. The seedlings were photographed and Image J software
(Schneider et al., 2012) was used to measure roots length. Root
elongation was calculated as the average or the sum of all roots
emerged from each seed. The experiments were performed in
triplicate.

Mitotic Index
The germinated seedlings with actively growing roots (2.5 cm in
length) were placed in the nCeO2 and nTiO2 suspensions (0, 500,
1000, 2000 mg l−1) for 24 h. After treatment the root tips were
fixed in 3:1 alcohol : acetic acid and then, kept in 70% ethanol
at 4◦C. The root tips were rinsed in deionized water for 5 min,
hydrolyzed in 1N HCl for 8 min at 60◦C, rinsed in deionized
water for 5 min, stained in leuco-basic-fuchsine for 45 min and
washed in tap water for 5 min. The root tips were then transferred
to 45% acetic acid for 1 to 5 min, root caps were removed, and
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the roots were dissected to release the meristematic cells. Ten tips
per treatment were evaluated and each treatment was replicated
three times, for a total of about 10,000 cell observations. The
mitotic index was evaluated in Feulgen stained preparations as
the percentage of dividing cells out of the total number of cells
scored.

Random Amplified Polymorphic DNA
(RAPD) Analysis
The genotoxicity of nCeO2 and nTiO2 was investigated by
observing the band profile after a random amplified polymorphic
DNA (RAPD) assay on six replicates per treatment obtained from
seedlings exposed as for mitotic index experiment. Plant genomic
DNA was extracted from root tips using the DNeasy Plant Mini
Kit (QIAGENR©) according to manufacturer’s protocol. PCR
reactions were performed with 30 ng of genomic DNA as a
template using six primer pairs: OPA04 (AATCGGGCTG),
OPA10 (GTGATCGCAG), OPB01 (GTTTCGCTCC), OPB03
(CATCCCCCTG), OPB12 (CCTTGACGCA), and OPB20
(GGACCCTTAC). The PCR conditions consisted of an initial
Taq polymerase activation at 95◦C for 5 min, followed by 45
cycles of denaturation (95◦C, 1 min), annealing (35◦C, 1 min),
and extension (72◦C, 1 min) with a final extension for 10 min
at 72◦C. The PCR products were subjected to electrophoresis
on 1.6% agarose in TBE 0.5%, for 2 h at 60 V/cm stained with
GelRed R© and photographed for band scoring.

Evaluation of ATP Content
ATP content was determined by means of the luciferin–luciferase
luminometric assay (Lundin, 1984). Root and shoot of each
seedling were separated, frozen with liquid nitrogen and ground
to a fine powder. Tissue powder (100 ± 20 mg FW) was
suspended in 1 ml of 50 mM Tris-HCl (pH 7.5), 0.05% (w/v)
Triton X-100 and immediately kept at 95◦C for 3 min to
inactivate any possible hydrolytic activity. After cooling, samples
were centrifuged to obtain the cellular soluble fraction in the
supernatant. The sample assays were performed in a 96-well
plate with ATPlite Luminescence ATP Detection Assay System,
(PerkinElmer) according to manufacturer’s protocol. Aliquots
(20µl) of soluble fraction weremixed with 20µl of ATPlite buffer
in 130 µl of 50 mM Tris-HCl (pH 7.5) and 5 mMMgCl2. Signals
were detected by a Multilabel Counter (WALLAC, model 1420,
PerkinElmer, Waltham, MA, USA). Actual ATP concentration of
each experiment (expressed as nmol ATP g−1 f. w.) was calculated
by a calibration curve obtained with commercially purchased
ATP (Sigma, USA) in a 8–100 nM range.

Reactive Oxygen Species (ROS)
Determination
The generation of ROS was monitored by the method of
Wang and Joseph (1999), using 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCFDA) as a probe. Tissue powder (0.5 g f. w.)
obtained from both roots and shoots was extracted in 2.5 ml
cold acetone and incubated for 4 h at 4◦C. After centrifugation
at 1000 g for 10 min, the pellet was homogenized in 1 ml of
50 mM Tris-HCl (pH 7.5), 0.4 M sucrose and 1 mM EDTA by

Turrax device. The sample was again centrifuged for 15 min
and the supernatant stored at –80◦C until analysis. Aliquots of
sample (20 µl) were incubated in 96-well microplate with 5 µM
H2DCFDA and 180 µl of 50 mM Tris-HCl (pH 7.5). Detection
was performed by fluorimetric assay using Multilabel Counter
(WALLAC, model 1420, PerkinElmer) with orbital shaking and
reading for 1.75 h at 5 min intervals with excitation filter set at
485 ± 10 nm and the emission filter set at 530 ± 10 nm. Values
of relative fluorescence (RFU) were expressed as RFU mg−1

protein. Protein concentration was estimated by the Bradford
(1976) method.

Cerium and Titanium in Seedling Tissues
The seedlings were washed by agitation with 0.01 M HNO3 for
30 min and rinsed three times by agitation with MilliQ R© water
for 15 min. The seedling roots and shoots were then oven-dried
at 105◦C for 24 h and 0.5 g material was digested using 10 ml of
HNO3 in a microwave oven (CEM, MARS Xpress) according to
the USEPA 3052 method (USEPA, 1995). After mineralization,
the plant extracts were filtered (0.2 µm PTFE), diluted and
analyzed. Total content of Ce and Ti was determined by an ICP-
OES (Varian Inc., Vista MPX). The accuracy of the analytical
procedure adopted for ICP-OES analysis was checked by running
standard solutions every 20 samples. Yttrium was used as the
internal standard.

TEM Observations and X-ray
Microanalysis
The morphology of NPs was assessed by direct observation of
suspension of nCeO2 or nTiO2 NPs under the TEM. Drops
of suspensions (prepared as described above) were placed on
carbon–formvar coated nickel grids, dried at room temperature
and observed under a Philips CM 10 (FEI, Eindhoven, The
Netherlands) TEM, operating at 80 kV.

For microscopic analyses in planta, tissues from seedlings
treated with nCO2 or nTiO2 at 1000 and 2000 mg l−1

were sampled as in the root elongation experiment were
sampled. Roots and shoots were excised, cut into small portions
(2 mm × 3 mm) and fixed for 2 h at 4◦C in 0.1% (w/vol)
buffered sodium phosphate and 3% (w/v) glutaraldehyde at pH
7.2. They were then post-fixed with 1% osmium tetroxide (w/v)
in the same buffer for 2 h, dehydrated in an ethanol series, and
embedded in Epon/Araldite epoxy resin (Electron Microscopy
Sciences, Fort Washington, PA, USA). For conventional TEM
observations, serial ultrathin sections from embedded leaf tissues
were cut with a diamond knife, mounted on uncoated 200 mesh
copper grids (Electron Microscopy Sciences, Fort Washington,
PA, USA), stained in uranyl acetate and lead citrate, and then
observed under TEM as reported above.

For X-ray microanalysis, unstained ultrathin sections were
placed on formvar/carbon-coated 200 mesh nickel grids and
dried at room temperature. The nature of NPs observed in
plant tissues was determined by a TEM (PHILIPS CM 12,
FEI, Eindhoven, The Netherlands) equipped with an EDS-
X-ray microanalysis system (EDAX, AMETEK, Mahwah NJ,
USA, software EDAX Genesis). The images were recorded by
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a Megaview G2 CCD Camera (Olympus; software iTEM FEI,
Analysis Image Processing).

Data Analysis
One-way analysis of variance (ANOVA) was conducted to test
differences in the plants’ behavior. Tukey’s Multiple Comparison
test at 0.05 p level were used to compare means. Statistical
analyses were performed using the SPSS program (SPSS Inc.,
Chicago, IL, USA, ver. 17). Principal Coordinate Analysis (PCoA)
was computed based on the binary genetic distance option in
GenAlEx v. 6.501 software (Peakall and Smouse, 2012). Graphics
were produced using CoPlot (CoHort ver. 6.204, Monterey, CA,
USA).

RESULTS

Nanoparticles Characterization
The specific surface values obtained by BET measurements were
46.1m2 g−1 for nCeO2 and 61.6m2 g−1 for nTiO2. The Z-average
sizes of the nCeO2 and nTiO2 suspended in deionized water
were 174 ± 1.2 nm and 925 ± 105 nm, respectively, these
values result remarkable higher respect the declared producer
dimensions. The zeta potentials were 0.027 ± 0.064 mV for
nCeO2 and 19.9± 0.55mV nTiO2. These parameter values put in
evidence their instability, in fact for both NP types are included
in the range of the NP instability (–30 mV ÷ +30 mV) and
justify the differences between the declared dimension and the
measured ones. The PDI of nCeO2 and nTiO2 were 0.339± 0.011
and 0.841 ± 0.173, respectively. These values indicate a narrow
dimensional distribution of nCeO2 respect to nTiO2.

Caryopses Germination and Root
Elongation
Effects of nCeO2 and nTiO2 on caryopses germination and
root growth are shown in Table 1. Since there was not a
statistically significant effect of concentrations for nCeO2 and
nTiO2, our results demonstrate that, even at the highest level
of concentration, caryopses germination is not affected by
nCeO2 or nTiO2 (Table 1). At the end of our experiment the
barley seedlings had reached coleoptile emergence. At this stage
typically has between six and seven seminal roots (Knipfer and
Fricke, 2011). In our experiment the number of seminal roots was
not affected by nCeO2 and nTiO2 (Table 1). On the contrary, in

both cases the development of root tissues was influenced in a
similar manner by the treatments. In fact, there was a significant
effect of both nCeO2 (p < 0.05) and nTiO2 (p < 0.05) on the
average length of the seminal roots. Post hoc comparison tests
indicated that root elongation in seedlings treated with 500 mg
l−1 nCeO2 and nTiO2 was significantly lower than controls (–
24.5 and –14.8%, respectively). At higher nCeO2 and nTiO2
concentrations we would have expected to see a further reduction
in the development of seminal roots. However, this did not occur
since the average length of seminal roots was similar to controls
(Table 1).

Cerium and Titanium in Plant Tissues
Although without visible symptoms of phytotoxicity, the
concentration of total Ce and Ti in the tissues of barley
seedlings showed (i) a dose-response and (ii) a different
magnitude of accumulation between Ce and Ti. Table 2
shows the concentration of Ce and Ti in the fractions of
barley seedlings. As expected Ce and Ti accumulated much
more within root tissues than in the shoot (p < 0.05). Ce
concentration in the roots increased significantly (p < 0.05) as
the concentration of nCeO2 in the growth medium increased
(Table 2). A statistically significant effect of treatments in Ce
accumulation in the shoots (p < 0.001) was verified. Mean
comparisons showed differences among the treatments. Ce
concentration in shoots did not significantly differ between the
500 and 1000 mg l−1 Ce treatment (38.3 and 98.1 mg Ce
kg−1 DW, respectively), whereas at 2000 mg nCeO2 L−1 a
Ce concentration of 622 mg Ce kg−1 DW was observed in
the shoots, which is significantly different from other values
(Table 2).

Titanium concentrations in barley roots and shoots were one–
two orders of magnitude lower compared to Ce. However, also
in this case a statistically significant dose dependent increase
was also observed. With the lowest nTiO2 treatment (500 mg
l−1) Ti concentration in roots was negligible and no Ti was
detected in shoots (Table 2). At the intermediate nTiO2 treatment
(1000 mg l−1) the root tissues had 37.2 mg Ti kg−1 DW which is
significantly lower (p = 0.0001) than 413 mg Ti kg−1 DW found
at highest nTiO2 treatment (Table 2). Finally, we verified that also
Ti concentration in the shoots also responded positively to the
treatments (p < 0.001). The mean Ti concentration detected in
barley shoots were 7.83 mg kg−1 DW and 26.2 mg kg−1 DW for
1000 and 2000 mg nTiO2 l−1, respectively (Table 2).

TABLE 1 | Germination percentage of seeds, number of seminal roots and root length in barley seedlings treated with 0, 500, 100, and 2000 mg l−1 of
nCeO2 and nTiO2.

Treatment nCeO2 nTiO2

Germination (%) Seminal roots (n) Root length (mm) Germination (%) Seminal roots (n) Root length (mm)

Ctrl 87 ± 1.76 a 5.2 ± 0.18 a 52.7 ± 4.13 a 88 ± 1.20 a 6.6 ± 0.34 a 53.3 ± 3.03 a

500 mg l−1 83 ± 2.03 a 5.5 ± 0.22 a 39.8 ± 2.24 b 87 ± 1.76 a 6.1 ± 0.27 a 45.4 ± 2.85 b

1000 mg l−1 80 ± 2.08 a 5.2 ± 0.26 a 45.8 ± 17.8 ab 85 ± 1.45 a 6.5 ± 0.22 a 53.9 ± 3.13 a

2000 mg l−1 79 ± 1.86 a 4.9 ± 0.25 a 43.8 ± 1.72 ab 87 ± 1.76 a 6.4 ± 0.13 a 58.5 ± 2.97 a

Values are mean ± SE (n = 3). Different letters indicate statistical difference between treatments at Tuckey’s test (p < 0.05).
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TABLE 2 | Concentration of total Ce and Ti in roots and shoots of barley seedlings treated with 0, 500, 100, and 2000 mg l−1 of nCeO2 and nTiO2.

Treatment Ce roots (mg kg−1 DW) Ce coleoptile (mg kg−1 DW) Ti roots (mg kg−1 DW) Ti coleoptile (mg kg−1 DW)

Ctrl <d.l. <d.l. <d.l. <d.l.

500 mg l−1 579 ± 168 b 38.3 ± 5.77 b <d.l. <d.l.

1000 mg l−1 5262 ± 1751 b 98.1 ± 40.2 b 35.2 ± 17.3 b 7.83 ± 3.3 b

2000 mg l−1 20,714 ± 5722 a 622 ± 95.1 a 412 ± 127 a 26.2 ± 8.71 a

Values are mean ± SE (n = 3). Different letters indicate statistical difference between treatments at Tuckey’s test (p < 0.05).

Ce and Ti Nano-aggregates in Plant
Tissues
The morphology of nCeO2 and nTiO2 NPs is visible in
Figures 1A,B, respectively. Transmission electron microscopy
analysis demonstrated that CeO2 particles exhibited an
approximate equi-axes shape with sharp edges (Figure 1A),
while particle sharp edges are less evident in TiO2. To assess the
possible uptake of nCeO2 or nTiO2 from the culture medium
to the root tissues and the translocation to the different parts
of the plantlets, we performed ultrastructural analyses on
roots and shoot tissues. Several clusters of NPs were found in
cortical parenchymal tissues of roots, both in the case of nCeO2
(Figure 2A) and nTiO2 treatment, at all concentrations. Clusters
were also observed in the xylem, even if in to lesser extent
(Figure 2B). EDS-X ray microanalysis allowed the identification
of the clusters as aggregates of Ce and Ti nanoparticles.

NoNPs were detected in the shoots of nCeO2 or nTiO2 treated
plantlets. The ultrastructure of all observed tissues appeared
preserved. No necrosis or damage to membranes, nor cell
modifications were detected. In general, the cell compartments
were not significantly affected by treatments, except for the nuclei
of parenchymal cells of root and shoot of seedlings treated
with nCeO2 (1000 and 2000 mg l−1), which showed compact
chromatin (Figures 3A–D).

ATP and ROS
The evaluation of ATP concentration aimed to evidence the
energetic status in different fractions of barley seedlings exposed
to nCeO2 and nTiO2. The different concentrations of nCeO2
induced a statistically significant effect (Figure 4), with a trend
of values peaking at 500 and 1000 mg l−1, in root and lowering
at 2000 mg l−1 in shoot samples. The highest nCeO2 (2000 mg
l−1) reached a low concentration of ATP in roots, statistically
comparable to control samples. On the contrary, nTiO2 induce
no significant changes of ATP concentration, since different
nTiO2 doses were similar to the controls in both roots and shoots
(Figure 4).

The measurement of ROS was performed as marker for
oxidative stress. Similarly to ATP content, nCeO2 were able to
induce an increase of a ROS formation at all the concentrations
assayed (Figure 5), in comparison with the control, although no
statistically significant differences were observed. Also for this
parameter, a trend with a peak at 500 mg l−1 was present in both
roots and shoots. In the case of nTiO2 (Figure 5), the treatments
did not show any difference, if compared with the control in
roots, whereas a decrease of ROS level was observed at the higher
dose (2000 mg l−1) in shoots.

Mitotic Index and RAPDs
The mitotic index was significantly reduced by nCeO2 2000 mg
l−1 (from 4 ± 1.2% in the control to 2.4 ± 1.2%). Instead, the
nCeO2 500 and 1000 mg l−1 treatments with mean values of
4 ± 1.3% were very similar to the control (Figure 6A). The
treatments with nTiO2 with values of 6.2 ± 3.2%, 4.6 ± 3.2%,
4.9 ± 2.5% for the concentration at 500, 1000, and 2000 mg
l−1, respectively, were not significantly different from the control
(4.9 ± 2.8%; Figure 6A).

The six primers used for the RAPD analysis amplified for
a total of 40 representative bands in controls with a variable
number of 3 to 9 (9, 5, 6, 3, 9, 8, bands, respectively, for OPA04,
OPB01, OPA10, OPB20, OPB12, and OPB03). Amplification was
highly reproducible since the same RAPD profile was observed
within control replicates. A concentration effect was observed for
the nCeO2 treatments on the RAPD profiles. The same banding
pattern as controls was obtained for the nCeO2 500 mg l−1

treatment, whereas new profiles at 1000 mg l−1 were observed
and three additional bands appeared and eight disappeared. Even
greater variability was observed at nCeO2 2000 mg l−1 with a
total of 20 differences (appearing and disappearing bands) in
treated plants (Figures 6B,C). The results were summarized by
Principal Coordinates Analysis (PCoA), with almost 94% of the
total variability explained by the two axes (Figure 6D). The
overlap of the control and 500 mg l−1 treatments is notable,
while the treatments at 1000 and 2000 mg l−1 are well separated
in different quadrants. The band polymorphism in the different
replicates at the higher concentration (2000 mg l−1) can be
noticed by the point cloud (Figure 6D). In a similar way to what
was observed fro the mitotic index, the nTiO2 treatments at each
concentration have no effect on the RAPD profiles (Figure 6D).

DISCUSSION

Since plant nanotoxicology is a new field of investigation, specific
ecotoxicological methods for the estimation of toxicity of ENPs
have not yet been developed (Jośko and Oleszczuk, 2014).
According to OECD guidelines, the acute effects of MeNPs
on plant physiology are currently investigated by adapting the
methods already used for traditional contaminants (Kühnel and
Nickel, 2014). Evidence of MeNPs plant uptake and toxicity are
still scarce and contradictory (Etheridge et al., 2013). This is
likely because, compared to their bulk counterparts, MeNPs show
particular properties, which are subjected to transformations
(e.g., redox reactions, aggregation or agglomeration, and
dissolution) according to different environmental factors. These
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FIGURE 1 | Transmission electron microscope images of 1000 mg l−1 suspensions of (A) nCeO2 and (B) nTiO2.

changes might modify the ecotoxicological properties of
MeNPs and thus, their interactions with the biota (Nowack
et al., 2012; Maurer-Jones et al., 2013). However, despite
these limitations, the experimental results obtained so far
offer early indications on MeNPs phytotoxicity (Li et al.,
2015; Rico et al., 2015a). Our data suggests that also in
very simple experimental conditions, nTiO2, as expected
taking into account their intrinsic properties, forms bigger
agglomerates with a wider dimensional distribution than
nCeO2.

nCeO2 and nTiO2 Affects Seed
Germination and Seedling Development
Previous studies carried out in controlled conditions reported
that the toxicity of MeNPs in the early stages of plant growth
is likely due to the following factors: (i) chemical and physical
properties which influence the release of ions or the aggregation
of particles in more stable forms and (ii) the size and shape of
the particles, which determine the specific surface area of MeNPs
(Yang and Watts, 2005; Lin and Xing, 2007).

In agreement with Rico et al. (2015b), we found that
germination of barley was unaffected by 500–2000 mg l−1

nCeO2. This is in contrast with the results provided by
López-Moreno et al. (2010a) who reported that suspensions of
2000 mg l−1 nCeO2 significantly reduced seed germination in
maize, cucumber, tomato, and soybean. Possible explanations
could be the greater Ce tolerance of barley to the treatment
if compared to other species and/or to the very small
size of Ce NPs they used (7 nm). Another explanation
could be related to the chemical and physical properties of
nCeO2, in particular his zeta potential value. This parameter
is the cause of the agglomeration behavior of the nCeO2
that brings to a low bioavailability and the absence of
phytotoxic effects on the treated seeds regards the germination
percentage.

Another important issue that plays a role on seed/NP
interaction, is the methodology adopted for seed treatment. In
fact, following Lin and Xing (2007), we prepared the barley
seeds for germination trials by soaking them in distilled water
before starting treatments, whereas López-Moreno et al. (2010a)
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FIGURE 2 | Representative images of electron dense precipitates recovered in root tissues of Hordeum vulgare exposed to 1000 mg l−1 of (A) nCeO2

and (B) nTiO2 and X-ray spectra of elements recovered in. Insets represent enlarged regions where X-ray microanalyses have been performed. Presence of C,
Os were due to sample preparation, Cu to the grids used as section support.

soaked the seeds directly in the nCeO2 suspensions. This different
experimental approach could result in a different exposure of
germinating seeds to nCeO2.

As regards Ti, there is a substantial agreement in literature on
the fact that suspensions of nTiO2 do not affect seed germination,
with few exceptions, as reported by Zheng et al. (2005) and Feizi
et al. (2012). Our results are in accordance with those reported by
other authors on rice, lettuce, radish, cucumber, tomato, and pea
(Boonyanitipong et al., 2011; Wu et al., 2012; Song et al., 2013a;
Fan et al., 2014).

Besides the germination percentage, we observed a negative
influence of the treatments with nCeO2 and nTiO2 on root
elongation in barley seedlings. However, this did not occur in

seedlings treated with nCeO2 at the highest concentration, in
which the root length was very similar to controls. In addition,
in this case the literature reports contradictory evidence. López-
Moreno et al. (2010a) reported that the root growth in maize
and cucumber seedlings was significantly promoted by nCeO2
(up to 4000 mg l−1) whereas the same treatments resulted in
a negative effect on root development in alfalfa and tomato.
An inhibitory effect of nTiO2 on root elongation in cucumber
was reported by Mushtaq (2011). A decrease in the number of
secondary lateral roots in pea seedlings was verified by Fan et al.
(2014), whereas Boonyanitipong et al. (2011) did not record any
effect on root length in rice seedlings exposed to nTiO2. In our
case, the different effect of the nCeO2 and nTiO2 on the root
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FIGURE 3 | Representative micrographs of nuclei (N) from shoot (A–C) and root (D) parenchymal cells of Hordeum vulgare. (A) Control untreated shoot:
nucleus presents regular shape, nuclear membranes are intact (arrows), nucleolus (Nu) and chromatin (Chr) appear normally dispersed. (B,C) 1000 mg nCeO2 l−1-
treated shoot and (D), 1000 mg nCeO2 l−1- treated root: nuclei still present normal shape and apparently undamaged membranes, while chromatin shows
condensation. Ch, chloroplasts; m, mitochondrion.

elongation is likely due to their different grade of agglomeration
demonstrated by the z-average size and PDI values of nTiO2 that
results significantly higher than nCeO2.

It might happen that the quantification analysis of trace metals
in plant roots is disturbed by external contamination. In this case,
the concentration of the element in the plant tissues could be
significantly overestimated due to a fraction of metal, which is not
taken up but simply adsorbed onto the external root surface. In
our experiment, a concentration of Ce about 60 times greater than
Ti, was found in barley root tissues. This substantial difference
indicates that the procedures for preparation of the samples were
conducted properly; otherwise, we would also have very high
concentrations also for Ti.

Our results showed that the exposure of H. vulgare to nCeO2,
which are smaller and less aggregated than nTiO2, resulted in a
greater total Ce concentration in roots compared to Ti. In can
therefore be assumed that, for some still unknown reasons, the

model of root uptake of the two elements could differ, depending
in part on the intrinsic properties of solubility and agglomeration
properties of nCeO2 and nTiO2. On the other hand, this is
in agreement with the findings by Zhang et al. (2011), who
verified that cucumber roots absorbed higher amounts of 7 nm
nCeO2 than 25 nm ones. On the other, some studies pointed out
the possibility of interactions between the root metabolism and
MeNPs. Lin and Xing (2007) demonstrated that root exudates
such as proteins, phenolic acids, and aminoacids have a role in
the adsorption of ZnO NPs to the root surface of perennial rye-
grass. More recently, Schwabe et al. (2015) observed that root
uptake of dissolved Ce(III) was promoted by the dissolution of
nCeO2 at the medium-root interface in hydroponically growth
sunflower and maize. A further confirmation about the role of
root exudates on the adsorption of MeNPs was provided by Lv
et al. (2015) and Ma et al. (2015), respectively, for nCeO2 and
nZnO, respectively. However, Lv et al. (2015) reported that a
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FIGURE 4 | Determination of ATP concentration in extracts obtained from plantlets of barley roots and shoots, grown on wet paper filters, in the
presence of different concentrations of nCeO2 and nTiO2.

FIGURE 5 | Evaluation of reactive oxygen species (ROS) evolution in extracts obtained from plantlets of barley roots and shoots, grown on wet paper
filters, in the presence of different concentrations of nCeO2 and nTiO2. The analysis was performed by means of a fluorimetric probe.

Frontiers in Plant Science | www.frontiersin.org 9 November 2015 | Volume 6 | Article 1043

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Mattiello et al. Ce and Ti NPs Influence Barley Growth

FIGURE 6 | (A) Mitotic index (%; mean ± SE) observed in root tips of seedlings of barley treated with 0–2000 mg l−1 of nCeO2 and nTiO2. Different letters indicate
statistical difference between treatments at Tuckey’s test (p < 0.05). (B,C) Representative RAPD profiles from the roots of barley seedlings treated with nCeO2 (B) or
nTiO2 (C) at control, 500-2000 mg l−1. The shown RAPD profiles were generated using primer OPA04 for nCeO2 (it is shown an enlargement around polymorphic
zone) and OPB12 for nTiO2. The first line is a 1 kb DNA marker (M). (D) Principal coordinate analysis (PCoA) based on RAPD profiles from the barley roots with
nCeO2. Values on axes indicate the variance explained.

possible access of nZnO to the root tissues could be through the
root apex or the meristematic zone to the lateral root system
where the Casparian strip is not yet developed.

Root-to-shoot translocation of nCeO2 has been previously
described in soybean (Priester et al., 2012), tomato (Wang
et al., 2012), cucumber (Zhao et al., 2013), and cotton (Van
Nhan et al., 2015) after treatments with nCeO2 suspensions.
Different observations have been made on nCeO2 root-to-
shoot translocation in graminaceous crops. Schwabe et al.
(2013) reported that wheat does not translocate nCeO2 into the
aerial tissues, whereas Rico et al. (2013, 2015a) reported the
translocation of nCeO2 from roots to rice grains and maize
kernels, respectively. According to Rico et al. (2015b), we report
evidence of Ce translocation from roots to the aerial part of
barley. As regards Ti uptake and translocation, fewer data are
available in the literature compared. However, our data are
consistent with the findings reported by Song et al. (2013b) on
tomato seedlings exposed to Ti at concentrations ranging from
50 to 5000 mg l−1.

Finally, we reported that root length in barley seedlings treated
with 500 mg nCeO2 l−1 was significantly shorter than controls.
This apparent dose-effect was not confirmed at higher nCeO2

concentrations, since the root length was similar to that of
controls. Similar evidence was reported by López-Moreno et al.
(2010a). According to Nascarella and Calabrese (2012) and Bell
et al. (2014), such unexpected results might be interpreted as a
hormetic effect of nCeO2 on root elongation in barley seedlings.

Plant Stress Induced by Nanoparticle
Treatments
Within the plants, NPs may interact with the host cells,
causing different effects, ranging from cell death (if the host is
sensitive) to not relevant cell modifications (in the case of host
tolerance), depending on their type, shape, and concentration
(Rico et al., 2011; Gardea-Torresdey et al., 2014). Themicroscopic
observations on barley seedlings indicated that both nCeO2
and nTiO2, at the used concentrations used, were able to
enter the root tissues, being detected in the parenchymal
cells and xylem vessels. Even though we did not observe
Ce and Ti crystalline aggregates in the shoots, ICP analyses
suggested a root-to-shoot mobilization of Ce and Ti ions. At
histological level the accumulation of such elements induced
limited injuries. On the contrary, important differences in the
effects of treatments were obtained at nuclear level, where
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only the nCeO2 treatments induced visible modifications in
the chromatin aggregation in the nuclei of root and shoot
parenchymal cells.

Condensed chromatin and fragmented nuclei are described
as part of the programmed cell death (PCD), occurring
in response to different environmental stimuli and stresses,
induced by pathogens (Lam et al., 2001) and by diverse
abiotic factors (White, 1996; Kratsch and Wise, 2000) including
the exposition to nanomaterials (Shen et al., 2010). PCD
plays an important role in mediating plant adaptation to
the environment. In cells that undergo programmed death,
chromatin condenses into masses with sharp margins, and
DNA is hydrolyzed into a series of fragments (Gladish et al.,
2006). Dynamic compaction of chromatin is an important
step in the DNA-damage response, because it activates DNA-
damage-repair signaling (Burgess et al., 2014) in response to
injuries.

The hypothesis of Ce-induced DNA damage in treated
seedlings finds further support in the results obtained with
the RAPD test. RAPD can potentially detect a broad range
of DNA damage and mutations, so it is suitable for studying
MeNPs genotoxicity (Atienzar and Jha, 2006). The RAPD
modified patterns at high concentrations of nCeO2 (1000–
2000 mg l−1) indicated a genotoxic effect, which could directly
influence the cell cycle. This is further confirmed by the
reduced mitotic index recorded in the samples treated with
nCeO2 2000 mg l−1, which clearly demonstrated the negative
effect of high nCeO2 concentrations on the cell cycle. Our
results are in agreement with López-Moreno et al. (2010b),
who demonstrated nCeO2 genotoxicity on soybean plants
subjected to treatments similar to those reported in our
work.

It is still far too early to conclude if the observed effects were
direct or indirect consequences of the treatments, since nCeO2
were not found in the nucleus. As it is known that increasing
oxidative stress leads to DNAdamage, the higher presence of ROS
in treated samples could cause modification in RAPD patterns.
However, as our analysis on ROS indicated a peak at 500 mg
nCeO2 l−1, it can be rationalized that lower concentrations
triggered an initial oxidative signal, while only higher nCeO2
doses were able to induce damage at nuclear level. The oxidative
stress peak at 500 mg l−1 dose and could be rationalized by the
well-known SOD mimetic activity attributable to nCeO2, which
could cause a dismutation of superoxide anions into H2O2. Since
a similar pattern is also found for ATP measured in nCeO2
treated tissues, it is suggested that the oxidative burst induced
by the more effective dose of nCeO2 could be associated to
a stimulation of cellular respiration and a consequent increase
in ATP production. This could be due to a defense response
signal or an increased requirement for energy (Vranová et al.,
2002).

On the contrary, the nTiO2 treatments did not influence
either the mitotic index or RAPD pattern. This is in
contrast to Moreno-Olivas et al. (2014) who observed
nTiO2-induced genotoxicity in hydroponically cultivated
zucchini. As the size of nTiO2 they reported is comparable
to that used in our work, the different results obtained

can be explained by (i) the different cultivation systems
(Petri dishes vs. full nutrient solution in hydroponics) and
(ii) the nTiO2 concentration used by Moreno-Olivas et al.
(2014; 10-fold smaller). The latter potentially prevents
the formation of big NP agglomerates, making them more
bioavailable.

CONCLUSION

Although investigations into the effects of NPs in plants
continue to increase, there are still many unresolved issues
and challenges, in particular at the biota-nanomaterial interface
(Nowack et al., 2015). In this multidisciplinary work, we
studied the phytotoxic and genotoxic impact of nCeO2
and nTiO2 cerium and titanium oxide NP suspensions
on the early growth of barley. Seed germination was not
affected by the nCeO2 and nTiO2 suspensions, indicating
that nCeO2 and nTiO2 are not allowed to enter the seed
coatings. However, we verified that the concentration of Ce
and Ti in the seedling fractions, as well as the root-to-
shoot translocation, were dose-dependent. Then, we found
signals of genotoxicity (RAPD banding patterns and mitotic
index) and phytotoxicity in root cells (oxidative stress and
chromatin modifications) resulting in a shortage of root
elongation.

The different magnitude of bioaccumulation of Ce and
Ti suggests a different uptake mechanism, likely due to the
different behavior of nCeO2 and nTiO2. Recent studies have
shown that plant toxic effects of nanomaterials are not merely
due to the particle size and concentration of a suspension.
Phytotoxicity of metal oxide NPs is related both to the direct
adsorption of particles onto the root structures and to the
aptitude of the metal ion to dissolve, possibly mediated by
binding molecules produced by plants in the medium-root
interface.

Our study had not the objective to investigate the details of
the mechanisms by which the NPs entering within the roots.
However, we verified the presence of both nCeO2 and nTiO2 into
the root cells where an increase in oxidative stress occurred. More
research needs to be conducted to verify whether germination can
be affected by smaller nCeO2 and nTiO2. In addition, we need to
understand if modification of the physical–chemical properties of
NPs at the root interface can foster the plant uptake of Ce and Ti
forms.
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