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A B S T R A C T

The mitochondrial F-ATP synthase is responsible for coupling the transmembrane proton gradient, generated
through the inner membrane by the electron transport chain, to the synthesis of ATP. This enzyme shares a basic
architecture with the prokaryotic and chloroplast ones, since it is composed of a catalytic head (F1), located in
the mitochondrial matrix, a membrane-bound part (FO), together with a central and a peripheral stalk. In this
review we compare the structural and functional properties of F-ATP synthase in plant mitochondria with those
of yeast and mammals. We also present the physiological impact of the alteration of F-ATP synthase in plants,
with a special regard to its involvement in cytoplasmic male sterility. Furthermore, we show the involvement of
this enzyme in plant stress responses. Finally, we discuss the role of F-ATP synthase in shaping the curvature of
the mitochondrial inner membrane and in permeability transition pore formation.

1. Introduction

Mitochondrial oxidative phosphorylation is the energy-conserving
process that represents the main source of ATP for virtually all eu-
karyotic cells. Plant mitochondria are essential for supporting bio-en-
ergetic demand in heterotrophic organs and in green tissues exposed to
dark/low light conditions. In addition, they play a critical role during
photosynthesis, since they catalyse the biosynthesis of carbon skeletons
necessary for carbon fixation and for several cofactors. In C3 photo-
synthetic metabolism, mitochondria are involved in the photorespira-
tion pathway improving the CO2/O2 ratio and act as a sink for recycling
the exceeding reducing power synthetized by chloroplasts
(Schwarzländer et al., 2012). Plant mitochondria are also the central
processing units during programmed cell dismantling and senescence,
responsible for coordination of the active and energy-requiring events
leading to cell death (Pastore et al., 2007).

The mitochondrial electron transport chain (mETC, Complexes I-IV)
generates a transmembrane proton gradient across the inner mi-
tochondrial membrane (IMM), and the FOF1-ATP synthases (F-ATP
synthase or Complex V) is able to couple the flow of protons towards
the matrix to the synthesis of ATP. This review compares the subunits of
the mitochondrial F-ATP synthase, which have been characterized and
classified in yeast and mammals, with those identified in plants,

discussing the components that have been suggested to be plant spe-
cific. Furthermore, the consequences of alterations of some F-ATP
synthase subunits are discussed to evaluate the involvement of this
enzyme in some physiological features, including cytoplasmic male
sterility and stress responses in vascular plants. Finally, we cover the
structural and functional roles of F-ATP synthase in its dimeric form.

2. Overall subunit organization and catalytic mechanism of F-ATP
synthase

The complex structure of the F-ATP synthase is at the basis of its
unique functional mechanism, which has been extensively studied in
some prokaryotes and eukaryotes, but not yet sufficiently in plants. For
this reason, hereafter we describe the known structures and mechan-
isms so far proposed in bacteria, Saccharomyces cerevisiae and mammals
that, considering the conserved structure, would be shared by plant F-
ATP synthase.

In all energy-converting membranes, the F-ATP synthase complex
consists of a water-soluble, catalytic F1 head and a membrane-em-
bedded FO sub-complex. The latter is connected by a peripheral stalk,
which is structurally part of the FO moiety, while the central stalk is
related to the F1 sector (Fig. 1).

In its simplest form, in the bacterial plasma membrane and
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chloroplast thylakoid membrane, the FO sector consists of a ring of 9–17
copies of subunit c, two copies of subunit b constituting the peripheral
stalk, and one copy of subunit a. The latter is organized into a four-helix
horizontal bundle wrapping around the c-ring, thus forming two aqu-
eous semi-channels accessible to H+ (Morales-Rios et al., 2015). Eu-
karyotic FO sector comprises a smaller ring of 8 or 10c subunits (ATP9)
in metazoans and S. cerevisiae, respectively (Watt et al., 2010), and a
sub-complex of 6 conserved subunits: a (ATP6), b (ATP4), 8 (A6L in
mammals, ATP8), f (ATP17), g (ATP20) and e (ATP21). Additional
subunits have been identified, namely 6.8PL (ATP5MPL) and DAPIT
(ATP5MD) in vertebrates and subunits i/j (ATP18) and k (ATP19) in
yeast (Kühlbrandt, 2019) (Table 1), the homology of which is still de-
bated (Gu et al., 2019; He et al., 2018). In yeast, subunits e, g and k are
defined “dimer-specific” because they are only present in the dimeric
form of the complex (Paumard et al., 2002) (see below). Conversely, in
mammals, subunits e and g remain associated also with the monomeric
form (Zhou et al., 2015). The FO proteins are products of either nuclear
or mitochondrial genes. In yeast, the three FO core proteins a, 8 and c
are encoded in the mitochondrial DNA, while in mammals only sub-
units a and A6L are encoded in the mitochondrial genome (Kühlbrandt,
2019).

As for FO sector, the eukaryotic peripheral stalk is more complex. Its
membrane distal part is constituted by one copy of subunits b (ATP4), h
(ATP14, F6 in mammals), d (ATP7) and OSCP (oligomycin sensitivity
conferring protein, ATP5) (Rees et al., 2009), while its base also com-
prises the C-terminal region of subunit 8, the N-terminal domain of
subunit f (Guo et al., 2017) and the subunit i/j in yeast (Srivastava
et al., 2018).

The F1 sector is always composed of three αβ dimers (ATP1 and
ATP2) and the central stalk. Each αβ dimer contains a catalytic nu-
cleotide binding site on the subunit β and surrounds the central stalk
comprising the subunit γ (ATP3) (Abrahams et al., 1994), which is
associated at the foot with subunits δ (ATP16) and ε (ATP15) in all
eukaryotes (Bason et al., 2015). All the F1 and peripheral stalk subunits
are nuclear gene products in yeast and mammals, implying a complex
assembly process that involves coordinated expression of the nuclear
and mitochondrial genomes, as well as protein import into mitochon-
dria. The enzyme assembly proceeds via intermediates, which appear to

be slightly variable in different organisms (He et al., 2018), and re-
quires accessory factors that have been well defined in yeast (Artika,
2019).

The FO and F1 parts form two nanomotors linked by a rotor. Proton
translocation through the two half-channels of FO powers the rotation
of the c-ring that is firmly attached to the central stalk (Kühlbrandt,
2019). The rotation of subunit γ within the α3β3 sub-complex is not
continuous, but rather proceeds in 120° steps, comprising sub-steps that
are different depending on the organism. Rotation forces each of the
three catalytic sites into three major functional conformations. Such
configurations are denoted βE (empty), βDP (bound to ADP) and βTP
(bound to ATP), and account for the synthesis of three Mg2+-ATP
molecules during each 360° rotation (Futai et al., 2012; Noji et al.,
2017). The peripheral stalk acts as a stator to counter the tendency of
the static parts in FO and F1 to follow the rotation of the central stalk
(Rees et al., 2009). The synthetic motor can work in reverse, driving the
rotor backwards with energy from ATP hydrolysis and generating a
membrane potential. In both directions, a metal cofactor is essential for
catalysis, which requires the nucleotide to be complexed with either the
most abundant Mg2+ or with metal ions, such as Mn2+ or Ca2+ (Nesci
et al., 2017; Papageorgiou et al., 1998). However, unlike other metal
ions, Ca2+ only sustains ATP hydrolysis not coupled to generation of a
proton gradient (De Col et al., 2018; Papageorgiou et al., 1998), in spite
of its ability to induce the rotation of subunit γ (Tucker et al., 2004).

Measurement of the H+/ATP ratio in a bacterial complex excluded
“slip” of the rotor, i.e. rotation without carrying a proton, revealing that
the F-ATP synthase exerts a “perfect chemo-mechanical coupling” be-
tween proton translocation, rotary motion, and ATP synthesis/hydro-
lysis (Soga et al., 2017). On the other hand, the existence of two step-
ping motors (FO and F1), which differ in the number of steps during the
catalytic cycle, poses a challenge to efficient energy conversion
(Kühlbrandt, 2019). While it is widely accepted that cooperation be-
tween the FO and F1 motors is smoothed by elastic power transmission
(Junge et al., 2009), it is still debated which sub-complex is most
flexible. In Escherichia coli it has been proposed that the elastic buffer is
located in the rotor, namely where the globular portions of subunits γ
and ε contact the c-ring (Sielaff et al., 2008), or in the coiling of the two
helix bundle in subunit γ (Martin et al., 2018). However, the cryo-

Fig. 1. Structures of the monomeric F-
ATP synthase. The molecular structure of
the complexes from Escherichia coli (A) and
Saccharomyces cerevisiae (B) are built from
available structures provided by (Sobti
et al., 2016) and (Srivastava et al., 2018),
respectively. In the upper part, F1 is always
shown with the alternating subunits α
(yellow) and β (red), and the central stalk
(CS) connecting subunits α/β to the c-ring in
the membrane, which includes subunits γ
(cyan) and ε (ice blue) in E. coli and also
subunit δ (blue) in S. cerevisiae. The mem-
brane-embedded c-ring is always composed
of identical subunits c (purple) and is in
contact with subunit a (light blue in E. coli
and light red in S. cerevisiae). In both com-
plexes the peripheral stalk (PS) includes
subunit b (blue) and, located on top of F1 in
green, subunit δ in E. coli or OSCP in S.
cerevisiae, respectively. PS includes subunits
h (pink) and d (orange) and, in the lower
part within the IMM, subunits f (light grey),
i/j (red) and 8 (light green), mostly covered

by other subunits. C) Schematic structure of F-ATP synthase in plants, drawn according to the localization of the homologous subunits in yeast. F1 is composed by 3
copies of subunits α and β; CS comprises subunits γ, δ and ε; FO possesses subunits a, b, 8, f and g; subunits i/j and k (yeast specific) are not present in plants; the
actual number of subunit c copies in plants is still unknown. PS consists of subunits b, d, and OSCP; subunit h has not been identified in plants and the presence of
subunit e has still to be confirmed. The location of subunits FAd and 6 kDa, which have been reported to be plant specific, is still uncertain.(For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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electron microscopy (cryo-EM) structures of the F-ATP synthase from
mammals (Zhou et al., 2015), E. coli (Sobti et al., 2016) and the green
alga Polytomella spp. (Murphy et al., 2019), which have greatly con-
tributed to clarify the architecture of the FO sector and thus the me-
chanisms of proton translocation, have also revealed that the central
stalk rotates as a rigid body. The flexible coupling between F1 and FO
sub-complexes appears therefore to be primarily mediated by the inter-
domain hinge of the conserved subunit OSCP (Murphy et al., 2019), a
well-established target of physiologically important F-ATP synthase
inhibitors, including cyclophilin D (CyPD), a mitochondrial im-
munophilin possessing peptidyl-prolyl cis–trans isomerase activity
(Giorgio et al., 2019).

The catalytic activity of F-ATP synthase is modulated by numerous
effectors, among which the inhibitory factor 1 (IF1) plays a funda-
mental role (Esparza-Moltó et al., 2017). This protein has been initially
described in bovine heart mitochondria in the 1960s (Pullman and
Monroy, 1963) and then in other mammals (Cintrón and Pedersen,

1979; Di Pancrazio et al., 2004; Rouslin and Pullman, 1987), Cae-
norhabditis elegans (Ichikawa et al., 2006), yeast (Cabezón et al., 2002)
and plants (Norling et al., 1990). Site-directed mutagenesis and crystal
structure studies have established that the IF1 N-terminal domain in-
teracts with five of the nine F1 subunits, fully inhibiting ATP hydrolysis
(Bason et al., 2011). Its binding is essential to prevent ATP waste when
mitochondria face a decrease in transmembrane potential, such as
under hypoxic and ischemic conditions (Di Pancrazio et al., 2004). At
low pH, in both mammals and yeast, the active form of IF1 is dimeric,
whereas at higher pH only the bovine IF1 oligomerizes (Cabezón et al.,
2002). In bovine IF1, His49 is responsible for its tetramerization and
inactivation at high pH (Cabezón et al., 2001). In yeast, two additional
regulators are present, i.e. the F1 inhibitor stabilizing factor1 (STF1),
which tends to form dimers and inhibit F1 at higher pH; and STF2,
which interacts with FO, to facilitate binding of IF1 and STF1 to F1
(Cabezón et al., 2002). A central role of IF1 in cellular homeostasis has
been highlighted by the finding that IF1 is overexpressed in human

Table 1
Composition of ATP synthase subunits in Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana. * from (Kühlbrandt, 2019) and (Cabezón et al.,
2002). STF1 and STF2 are in brackets because they are yeast-specific proteins. ** for Homo sapiens, new symbols, according to Human Gene Nomenclature Database
(HGNC), have been used. In bold, the subunits encoded by mitochondrial DNA. 1 “A stretch of 270 kb of the mitochondrial genome is duplicated within the
centromere of chromosome 2 resulting in the duplication of the gene. The expression of this duplicated gene (AT2G07698) has not been demonstrated. It is also
probably not RNA edited and therefore differs in all the positions known to be edited.” The same for AT2G07741 (from the National Center for Biotechnology
Information, NCBI, https://www.ncbi.nlm.nih.gov/). 2 “The atp6 gene is located on the border of one of the mitochondrial DNA repeats resulting in two identical
copies of the mature protein with different propeptide extensions.” (from Uniprot, https://www.uniprot.org/). 3 To be confirmed. a, (Kruft et al., 2001); b, (Werhahn
and Braun, 2002); c, (Heazlewood et al., 2004); d, (Meyer et al., 2008); e, (Taylor et al., 2011); f, (Klodmann et al., 2011); g, (Brugière et al., 2004); h, (Heazlewood
et al., 2003b); i, (Senkler et al., 2017); j, (Eubel et al., 2003); k, (Sabar et al., 2003); l, (Nakazono et al., 2000). n.d.: not detected in plants.

S. cerevisiae* H. sapiens** A. thaliana

Primary function Symbols AGI References

F1 head
α (ATP1) ATP5F1A Structural, catalytic α (ATP1) ATMG01190 a, b, c, d, e, h, i

AT2G076981 f, i
β (ATP2) ATP5F1B Catalytic β (ATP2) AT5G08670 a, b, c, d, e, f, g, h, i

AT5G08680 c, d, f, h
AT5G08690 a, b, c, d, f, h, i

Central stalk
γ (ATP3) ATP5F1C Torque transmission γ (ATP3) AT2G33040 c, d, e, f, g, h, i
δ (ATP16) ATP5F1D Connection to c-ring δ (ATP16) AT5G47030 a, b, c, d, e, f, g, h, i
ε (ATP15) ATP5F1E Connection to c-ring ε (ATP15) AT1G51650 c, d, f, h, i
Peripheral stalk
b (ATP4) ATP5PB Stator, F1-F0 link b (ORF25, ATP4) ATMG00640 c, d, f, h, i
OSCP (ATP5) ATP5PO Flexible hinge OSCP (ATP5) AT5G13450 a, b, c, d, e, f, g, h, i
d (ATP7) ATP5PD d (ATPQ, ATP7) AT3G52300 a, b, c, d, e, f, g, h, i
h (ATP14) ATP5PF (F6) n.d.
FO motor
a (ATP6) MT-ATP6 a-1 (ATP6-1) ATMG004102 d, f

a-2 (ATP6-2) ATMG011702 d, f, i
AT2G077411

c (ATP9) ATP5MC1 c-ring in FO c (ATP9) ATMG01080 d, g, h
ATP5MC2
ATP5MC3

e (TIM11, ATP21) ATP5ME e (ATP21) AT5G153203 i
g (ATP20) ATP5MG g (ATP20) AT2G19680 f, i

AT4G26210 f, i
AT4G29480 e, f, j, i

f (ATP17) ATP5MF f (ATP17) AT4G30010 d, f, i
j (I, ATP18) n.d.
k (ATP19) n.d.
8 (ATP8) MT-ATP8 (A6L) 8 (ORFB, ATP8) ATMG00480 c, d, h, k, f, i

ATP5MD (DAPIT) n.d.
ATP5MPL (6.8PL) n.d.

“Plant specific”
6 kDa AT3G46430 d, f, g

AT5G59613 d, f, i
FAd (24 kDa) AT2G21870 a, b, c, d, e, f, g, h, i

Inhibitory factor
IF1 ATP5IF1 IF1-1 AT5G04750 b, l, h, i

IF1-2 AT2G27730 a, c, l, i
(STF1) n.d.
(STF2) n.d.
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carcinomas, where it exerts a metabolic rewiring to an enhanced gly-
colysis by activating ROS-dependent signaling pathways and, possibly,
by inhibiting ATP synthesis by the FOF1 complex (Esparza-Moltó et al.,
2017). Whether IF1 could also inhibit ATP synthesis in mammals is still
matter of debate (Boreikaite et al., 2019).

A remarkable feature of mitochondrial ATP synthases is that they all
form dimers in the membrane, as initially detected by mild detergent
extraction followed by Blue-Native PAGE (Paumard et al., 2002). The
first structural characterization by electron microscopy and single
particle analysis was performed on a stable ATP synthase dimer purified
from the alga Polytomella that revealed the existence of specific inter-
action of the FO sectors (Dudkina et al., 2005). Later analyses by cryo-
EM showed that in animals and yeast the dimers are V shaped (type I)
with an angle of ∼86° between the two central stalks (Davies et al.,
2011; Hahn et al., 2016; Kühlbrandt, 2019) and the peripheral stalks
turning away from one another. The dimers self-assemble into long
rows of oligomers localized at the cristae edges to maintain the typical
IMM morphology (Paumard et al., 2002). While the dimerization in-
terface is made up of several FO subunits (Guo et al., 2017), the inter-
actions between the dimers are less constrained. Interestingly, using a
single-particle cryo–EM method, the porcine tetrameric ATP synthase
structure was shown to consist of the two antiparallel dimers linked by
two IF1 dimers that induce an inhibited state (Gu et al., 2019) (Fig. 2).
In each dimer the two monomers are in two states, E and DP, differing
in the subunit γ direction, α3β3 conformation and peripheral stalk po-
sition, while in the tetramer the diagonal protomers adopt similar
conformations thus forming an H-shaped F-ATP synthase tetramer, as
viewed from the matrix.

3. Structural properties of F-ATP synthase in plant mitochondria

Plant F-ATP synthase shares the basic structure of the enzyme
complexes described above. Nevertheless, the composition of FO in
plant mitochondria has not been completely defined, but homologues
for all subunits except ATP18 and ATP19 have been found (Table 1).
The identity of subunit e (ATP21) in Arabidopsis has still to be con-
firmed because the protein At5g15320 identified by mass spectrometry
in Arabidopsis mitochondria does not cluster with F-ATP synthase
subunits even if it represents a suitable candidate (Senkler et al., 2017).

Proteomic analyses identified two proteins associated with FO,
subunits FAd and 6 kDa, which have been tentatively described as
“plant specific”, since there are no corresponding proteins in mammals
or yeast (Table 1). In soybean, the subunit FAd gene has been initially
characterized and the corresponding 179-aa protein possesses a clea-
vable N-terminal sequence representing its mitochondrial targeting
sequence (Smith et al., 1994), which contains hydrophobic residues
critical for the correct import process (Lee and Whelan, 2004). This
subunit has been later identified in mitochondria from Arabidopsis
(Kruft et al., 2001; Millar et al., 2001), pea (Bardel et al., 2002), rice
(Heazlewood et al., 2003a) and potato (Salvato et al., 2014). The lack of
direct biochemical and structural evidence still poses some doubts

about the actual involvement of FAd in F-ATP synthase assembly and/or
catalysis.

Subunit 6 kDa has been proposed as an FO component in potato
(Jänsch et al., 1996; Salvato et al., 2014), rice (Heazlewood et al.,
2003a) and Arabidopsis (Brugière et al., 2004; Klodmann et al., 2011;
Meyer et al., 2008). In rice, subunit 6 kDa consists of 58 aa, possesses a
mitochondrial targeting sequence and a single transmembrane region
(Zhang et al., 2006). This subunit represents a further source of un-
certainty about F-ATP synthase composition in higher plants, since it
has sometimes ambiguously been reported as MtATP6 (Li et al., 2013;
Moghadam et al., 2013; Zhang et al., 2006). To avoid confusion, we
suggest that this subunit should be clearly distinguished from subunit a,
which is actually classified as ATP6 in yeast and consistently also in
plants (Table 1). Thus we propose to name it unequivocally as “subunit
6 kDa”. As for FAd, direct evidence about structure and function of
subunit 6 kDa and its actual presence in F-ATP synthase is still scarce.

In higher plants, each subunit of the peripheral stalk has a homo-
logue, except for subunit h, ATP14 (Table 1). We suspect that the FAd
subunit represents the equivalent of the peripheral stalk subunit h, even
if alignment of subunit h sequences from mammals or yeast with FAd
does not give significant results. Further structural and functional stu-
dies are needed to confirm this hypothesis.

Regarding the plant F1 sector, in contrast to yeast and mammals,
subunit α is encoded in the mitochondrial genome (Clifton et al., 2004;
Dubinin et al., 2011; Heazlewood et al., 2003a; Rao et al., 2017)
(Table 1). In Arabidopsis, three highly-conserved isoforms for subunit β
encoded in a small multigene family (β1-3, ATP2.1–3) are present
(Table 1). In Nicotiana sylvestris and Petunia hybrida, ATP2.1 and ATP2.2
are expressed in all vegetative tissues, whereas ATP2.3 has been found
only in pollen (Lalanne et al., 1998; Paepe et al., 1993). The putative
mature sequences of ATP2.1–3 share a very high similarity with the
corresponding bovine subunit (approx. 91.1%), but a low similarity in
the putative mitochondrial targeting signal (between 57.1 and 59.3%).
It has been proposed that, since the three β1-3 precursors differ mainly
in their signal peptide amino acid sequence (Fig. 3) and possibly in their
expression levels, the mature complexes might be either homogeneous
(i.e. α3β13, α3β23, or α3β33) or heterogeneous (i.e. α3β1β2β3 or other
combinations), probably affecting their activity or stability (Lalanne
et al., 1998).

As shown above, subunit α is the only component of F1 encoded in
the plant mitochondrial genome, raising a question about the co-
ordinate expression with the nuclear-encoded subunit β for the correct
assembly of this sub-complex. Indeed, cell cultures of Arabidopsis
subjected to sucrose starvation exhibited changes in nuclear gene ex-
pression, but no significant change in mitochondrial gene expression
(Giegé et al., 2005). This resulted in decrease of about 40% for subunit
β, whereas no change was observed for subunit α. This coordination
might be post-translational, occurring at the assembly level among
proteins, maintaining the stoichiometry of the complexes and leading to
an excess of unassembled subunits encoded by the mitochondrial
genome (Giegé et al., 2005).

Fig. 2. F-ATP synthase supercomplexes shaping
the mitochondrial cristae. Views from side (A) and
from matrix (B) of pig heart F-ATP synthase tetramer
built from available cryo-EM structure (Gu et al.,
2019). Two ATP synthase dimers are linked by two
IF1 dimers (dark silver) and form an H-shaped tet-
ramer. Subunit e is in silver, subunit f in light gray,
subunit g in light orange, DAPIT in green and subunit
8 (A6L) in dark green. The other subunit color codes
are as in Fig. 1. IMS, intermembrane space.(For in-
terpretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article.)
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In Arabidopsis, similarly to what described in yeast (Rak et al.,
2011; Rühle and Leister, 2015), the turnover of soluble F1 in the mi-
tochondrial matrix is higher than FO, supporting a modular model of
complex assembly (Li et al., 2012; Meyer et al., 2019). This model in-
dicates that the F1 and FO complexes are independently assembled, the
former in the matrix and formed by complexation of subunits α, β, γ
and δ. Then, the F1 associates to the IMM with FO, to be later stabilized
by the addition of the subunits of the peripheral stalk (Li et al., 2012).

In plants, IF1 has been initially described in potato mitochondria as
an 8.3 kDa protein that is heat-stable, trypsin-sensitive and able to
stoichiometrically inhibit ATPase activity of the F-ATP synthase com-
plex (Norling et al., 1990). Later, the actual molecular mass of potato
IF1 was determined to be about 6.7 kDa by protein sequencing
(Polgreen et al., 1995). IF1 is poorly conserved between mammals,
yeast and plants, but these proteins share the “minimal inhibitory se-
quence” that has been identified in residues 14–47 of bovine IF1 (van
Raaij et al., 1996). This sequence corresponds to a region that shows
high similarity between the two plant IF1 isoforms, namely IF1-1 from
potato, rice and Arabidopsis, and IF1-2 from rice and Arabidopsis
(Table 1) (Nakazono et al., 2000).

F-ATP synthase complex in plants represents a significant amount of
total mitochondrial proteins, estimated in Arabidopsis to be present in
about 8.4% of the area of the IMM, a value similar to the one shown for
the area occupied by complexes I–IV (9.7%) (Fuchs et al., 2020). A
single mitochondrion contains an average of 6426F-ATP synthase par-
ticles, which could produce a remarkable 1 million molecules of ATP
per second, corresponding to about 150 ATP molecules synthesized per
second by each F-ATP synthase complex (Fuchs et al., 2020), a value
consistent with the ATP synthesis rate estimated in non-plant mi-
tochondria (Gu et al., 2019). Like the other eukaryotic enzymes, plant
F-ATP synthase might be organized in super-complex structures. Single-
particle electron microscopy has revealed that F-ATP synthase from
potato mitochondria (Bultema et al., 2009) exhibits a small angle be-
tween the monomers. Later, cryo-EM of F-ATP synthase dimers from
potato mitochondria showed a broad angle between monomers, around
108° (Davies et al., 2011), but new evidence has confirmed that the
plant dimers have a small angle, comparable to animal and fungi
complexes (K.M. Davies, personal communication).

The detection of the dimeric form of plant F-ATP synthase after
Blue-Native PAGE was achieved only in the presence of low con-
centrations of detergent, such as Triton X-100 (Eubel et al., 2003, 2004)
or digitonin (De Col et al., 2018; Krause et al., 2004), a problem that
may depend either on low stability of the dimers in the presence of high
concentration of detergents or on their low density. Based on the
number of F-ATP synthase present in a single Arabidopsis organelle
proteome, it is estimated that Complex V might form about 3000 di-
mers, involved in the formation of up to 18 cristae sheets in each mi-
tochondrion (Fuchs et al., 2020). Nevertheless, plant IMM might con-
tain fewer cristae and therefore a higher number of monomers or more
complex structures, possibly composed of F-ATP tetramers (Fuchs et al,
2020).

4. Physiological impact of F-ATP synthase alterations in plants

More than fifty years have passed since Lynn Margulis Sagan pro-
posed that mitochondria and plastids were products of the symbiosis of
living prokaryotes, an α proteobacterium and a cyanobacterium
(Margulis Sagan, 1967; for a recent overview see Gray, 2017) with a

proto-eukaryotic host cell. A revised phylogenomic analysis suggests
that such proto-eukaryotic cell would be evolved from an Archaea,
which initially engulfed a bacterial endosymbiont (Williams et al.,
2020). After the broad acceptance of Lynn Margulis’ theory, it was clear
that the symbiosis was based on a coordinate cross-talk and interactions
between the genomes of organelle and nucleus. During evolution, this
has led to the progressive transfer of mitochondrial genes to the nucleus
and to the development of complex systems in the outer mitochondrial
membrane (OMM) and IMM, respectively named translocase of the
outer membrane (TOM) and translocase of the inner membrane (TIM),
to facilitate the acquisition of cytosol-encoded proteins into the mi-
tochondrion (Wiedemann and Pfanner, 2017). This has happened also
for some F-ATP synthase subunits, which are mostly encoded by nuclear
genes and possess N-terminal targeting signal for the correct mi-
tochondrial localization. It is noteworthy that the subunits encoded in
the mitochondrial genome are just two in mammals (a and A6L), three
in S. cerevisiae (a, c and 8-A6L) (Kühlbrandt, 2019) and five in most
land plants (α, ORF25 equivalent to b, a, c, and ORFB equivalent to 8/
A6L, Table 1). This feature is not unexpected, since the number of
proteins encoded by mitochondrial DNA in mammals is smaller than in
land plants (Chase, 2007; Gray, 2015).

Complex maturation steps have been described for all the five
subunits of F-ATP synthase encoded by plant mitochondrial genomes, in
particular RNA editing (Chase, 2007). This is an interesting feature of
plant mitochondria, which consists of post-transcriptional conversion,
typically of cytosine to uracil, insertion and/or deletion of nucleotides
in mitochondrial mRNA. This results in mature mRNAs that could be
modified in codons for some amino acids or for the presence of new
initiation or termination codons (Chateigner-Boutin and Small, 2011;
Takenaka et al., 2008; and in this Special Issue, Takenaka et al., 2020).

Modifications of RNA editing have consequences for several phy-
siological processes, including the development of cytoplasmic male
sterility (CMS), a phenomenon in which the male reproductive struc-
tures do not develop correctly, leading to the production of little or no
pollen (Carlsson et al., 2008; Chase, 2007; Hanson and Bentolila, 2004;
Horn et al., 2014; Yang et al., 2009). CMS has been utilized extensively
in agriculture as a selective approach to produce hybrid lines, since it
represents a useful tool to eliminate the need of hand or mechanical
emasculation (Kaul, 1988). Besides alteration of mRNA editing, two
more routes to CMS have been proposed: i) mitochondrial DNA re-
combination and nuclear interaction, which could generate new chi-
meric sequences; ii) production of specific proteins, which could be
toxic through interference with the mitochondrial membrane structure
and its selective permeability (Chen et al., 2017).

Dysfunction of ATP synthesis is a feature often observed in CMS
plants. Although this might be tolerated in many vegetative organs, it
leads to failure of pollen production because of the high-energy re-
quirements during the development process (Carlsson et al., 2008;
Chase, 2007; Hanson and Bentolila, 2004). Nevertheless, the compar-
ison between respiratory mutants and CMS lines have raised some
questions about the actual role of decrease in ATP synthesis as the main
cause for CMS (Touzet and Meyer, 2014). An intriguing alternative
hypothesis suggests that CMS might be associated with the impairment
of oxidative phosphorylation, which would lead to programmed cell
death during the development of anthers, with the involvement of F-
ATP synthase through a still unknown mechanism (Balk and Leaver,
2001; Sabar et al., 2003).

Hereafter we focus on the involvement of the F-ATP synthase

Fig. 3. Multiple alignment of the first 67–70
amino acids of the three isoforms of ATP2 (sub-
unit β) in Arabidopsis. The multiple alignment was
performed using the program Clustal Omega at
UniProt (https://www.uniprot.org/align/). *, iden-

tity; :, residues with strongly similar properties; ., residues with weakly similar properties. The arrow indicates the putative cleavage site of the mitochondrial target
peptide, predicted by the program TargetP-2.0 (http://www.cbs.dtu.dk/services/TargetP/). The following amino acids in the three sequences are identical.
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subunits in some crucial physiological processes in plants, with special
regard to CMS (Table 2).

4.1. Subunit α (ATP1)

In some plants, e.g. sunflower (Siculella and Palmer, 1988), cybrids
between Raphanus sativus and Brassica napus (Sakai and Imamura,
1992), sugar beet (Kubo et al., 1999; Senda et al., 1993), stem mustard
(Brassica juncea) (Yang et al., 2009; Yu et al., 2010) and upland cotton
(Gossypium harknessii) (Wu et al., 2011), rearrangements of the gene
encoding for subunit α have been linked to CMS. Nevertheless, in radish
(Makaroff et al., 1990), sunflower (Köhler et al., 1991) and sugar beet
(Xue et al., 1994), the involvement of this gene in CMS has been
questioned. In tobacco, co-transcript of a novel reading frame orf274
with atp1 was found in both fertile and CMS plants (Bergman et al.,
2000). A lower ATP/ADP ratio in floral buds of CMS plants was also
observed, suggesting that the accumulation of the orf274-atp1 co-tran-
scripts might lead to CMS by interference with the expression of other
mitochondrial genes (Bergman et al., 2000). A recent analysis of the
wheat mitochondrial proteome revealed that a complex protein net-
work is involved in the manifestation of CMS in wheat (Wang et al.,
2015). Indeed, in such plants, a high proportion of proteins involved in
mETC and in ATP synthesis is downregulated. In particular, the abun-
dance of subunits β and δ, as well as subunit α is lowered, leading to
impaired F-ATP synthase assembly and catalysis (Wang et al., 2015).

The importance of RNA editing of atp1 was demonstrated in
Arabidopsis, where the mutant for OTP87 gene, which encodes for an
editing factor belonging to the pentatricopeptide repeat (PPR) protein
family, shows slow growth and delayed development (Hammani et al.,
2011). This PPR protein is involved in the recognition and editing of at
least two sites, namely nad7-C24, resulting in an unaltered protein se-
quence for subunit NAD7 in Complex I, and atp1-C1178. The editing of
the latter site converts a Ser to Leu in subunit α and the loss-of-function
of OTP87 in mutated plants is related to an altered phenotype with
drastic reduction in F-ATP synthase assembly (Hammani et al., 2011).
In cotton (Gossypium hirsutum), RNA editing of atp1 mRNA is also
crucial for the energy requirements during fiber cell elongation: the
absence of editing at C1292 and C1415 in Ghatp1 is related to a de-
crease in F-ATP synthase activity and ATP content (He et al., 2018).
This effect has been ascribed to the presence in the unedited subunit α
of a Pro rather than a Leu, which is located in a conserved α helix. Such
a non–conservative mutation has a dramatic effect on the subunit
structure, probably because it destabilizes the α helix, leading to al-
teration of protein stability and assembly (He et al., 2018). A similar
scenario was recently described in maize, where a novel PPR protein
EMP21 was reported to be involved in mitochondrial RNA editing
(Wang et al., 2019). The loss-of-function mutant Emp21 is impaired in
C-to-U conversion at five sites, among which are atp1-1292 and atp8-
437. Whereas the change seems not to be relevant in the latter for the
synthesis and stability of subunit 8, in the former it leads to the same
Leu/Pro substitution described above for the cotton subunit α, with
consequent severe alteration of embryogenesis and endosperm devel-
opment (Wang et al., 2019).

4.2. Subunit b (ORF25, ATP4)

In Arabidopsis, the atp4 transcript is edited at site 89 by the RNA
editing factor MEF3, which belongs to a subgroup of PPR proteins
(Verbitskiy et al., 2012). In maize, the defective kernel mutant dek36 is
characterized by small and collapsed kernels, associated with altera-
tions of embryo and seedling (Wang et al., 2017). It has been shown
that DEK36 encodes a PPR protein that is necessary for the correct
editing, besides nad7 (Complex I) and ccmFN (Complex III), of atp4 at
position 59, leading to substitution of Ser with Phe. Surprisingly, the
lack of editing in the mutant dek36 affects only slightly ATP4 function,
since the abundance of F-ATP synthase resembles that of the wild type

(Wang et al., 2017). However, these authors did not measure F-ATP
synthase activity in either mutant or wild type.

4.3. Subunit a (ATP6)

The atp6 gene is one of the most rearranged genes in the plant
mitochondrial genome. CMS has been linked to rearrangements in mi-
tochondria in sugar beet, where four new transcribed ORFs, which are
absent in normal mtDNA and include Satp6, have been characterized
(Satoh et al., 2004). Recently, a new open reading frame orf1287, a
chimeric form of atp6 gene, was shown to be associated with CMS in
sunflower (Makarenko et al., 2019). Furthermore, the atp6 gene has
been proposed to be responsible for CMS in pepper: in male fertile
plants, two copies of atp6 are present, while in sterile plants, Ψatp6-2 is
a pseudogene resulting from mitochondrial genome rearrangements
(Kim and Kim, 2006). In CMS pepper, Ψatp6-2 is highly expressed in the
anthers and correlates with enhanced hydrolysis of ATP (Ji et al.,
2013). When the Ψatp6-2 gene is silenced, fertility is restored and ATP
hydrolysis is reduced (Ji et al., 2014). These authors speculated that the
pseudogene could either have no protein function or encode a novel
altered ATP6, which would promote ATP hydrolysis. Alternatively, we
propose that, as subunit a is involved in the structure of FO, its altera-
tion might have significant consequences for F-ATP synthase, probably
resulting in the increase of free F1 sub-complex in the matrix, similar to
that observed in maize (Li et al., 2019, see below). Free F1, once not
connected to the membrane sub-complex, might be responsible for the
enhancement of ATP hydrolysis and therefore for the low energy pro-
duction in CMS pepper.

Altered RNA editing of subunit a has been linked to CMS also in
sorghum (Howad and Kempken, 1997), maize (Wang et al., 2009) and
rice (Hu et al., 2013). Recently, it was shown in maize that EMP18, a
mitochondrial DYW-PPR (a subclass of PPR), is crucial for RNA editing
of the subunit a. In the emp18 mutant, a change of amino acid in ATP6
from Leu212 to Pro causes the disruption of an αhelix and induces a
strong decrease of F-ATP synthase assembly and activity, with a con-
sequent accumulation of F1 in the matrix. This results in altered seed
formation, due to inhibition of development in the embryo and en-
dosperm (Li et al., 2019).

In Arabidopsis, the mitochondrial ATP-dependent metalloproteases
AtFtsH3 and AtFtsH4, present on the IMM and facing the matrix and the
intermembrane space, respectively, are necessary for the correct as-
sembly and stability of F-ATP synthase (Kolodziejczak et al., 2007).
Accordingly, the mutant ftsh4 contains a reduced amount of ATP6,
probably because this unassembled subunit is degraded by matrix
proteases, and exhibits impairment of mitochondria and chloroplasts,
as well as alteration of leaf morphology (Gibala et al., 2009).

4.4. Subunit c (ATP9)

The mRNA for this subunit is extensively edited, causing amino acid
changes and, in presence of a new termination codon, a shortened
mature protein in Oenothera (Schuster and Brennicke, 1990), wheat
(Bégu et al., 1990), potato (Dell’Orto et al., 1993) and in the moss
Physcomitrella patens (Ichinose et al., 2013). The alteration of mRNA
editing in atp9 leads to CMS manifestation in stem mustard (Brassica
juncea var. tumida) (Yang et al., 2007), soybean (Jiang et al., 2011),
ramie (Boehmeria nivea) (Liu et al., 2012) and rice (Hu et al., 2013).
Furthermore, when transgenic plants of tobacco are transformed with
atp9 from wheat, the presence of the unedited version of such a gene
induces a significant number of plants showing CMS, while the plants
possessing the edited atp9 are fertile (Hernould et al., 1993). Restora-
tion of fertility of CMS transgenic tobacco was obtained by antisense
RNA (as-atp9), which inhibits unedited atp9 gene expression (Zabaleta
et al., 1996). Alterations of atp9 due to gene rearrangements have also
been associated with CMS in carrot (Mandel et al., 2012; Szklarczyk
et al., 2000, 2014), Brassica napus (Dieterich et al., 2003) and sunflower
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(Makarenko et al., 2018; Reddemann and Horn, 2018).

4.5. Subunit 8 (ORFB, ATP8)

In sunflower, where ORFB is the equivalent of subunit 8 (ATP8), the
editing of orfB transcript converts cytosine to uracil at nucleotide po-
sitions 47, 58 and 452, leading to changes in amino acid residues Ser16
to Leu, Leu21 to Phe, and Phe151 to Leu, respectively (Sabar et al.,
2003). In CMS sunflower, the aberrant chimeric ORF522 protein, which
shares similarity with ORFB/ATP8 in the N-terminus, competes with
ORFB inducing an impairment in the composition or assembly of F-ATP
synthase (Balk and Leaver, 2001), as confirmed by the decrease in
ATPase activity in sterile lines (Sabar et al., 2003). In rice, the unedited
orfB gene transcript is responsible for male sterility and is associated
with the decrease in ATP synthase activity (Das et al., 2010). The
unedited rice ORFB has a Leu instead of a Phe at position 58, which
alters the hydrophobicity of the protein and thus its correct position in
the FO complex in the IMM (Chakraborty et al., 2015).

4.6. Subunit δ (ATP16)

In cotton, ATP production by mitochondria is essential for the
elongation process of the fibre cells and positively correlates with an
upregulation of GhATPδ1 (Pang et al., 2010). The expression of func-
tional GhATPδ1 in S. cerevisiae atp16Δ mutant, which lacks ATP16 and
is impaired in ATP production, restores ATP synthesis to levels com-
parable to the wild type (Pang et al., 2010). Consistently, in Arabidopsis
the subunit δ gene is highly expressed in pollen, ovules and floral pri-
mordia, all tissues characterized by a high-energy requirement (Geisler
et al., 2012). Arabidopsis atpδ-1 mutant, obtained by T-DNA insert in
the intron of such a gene, shows a reduced production of pollen, with
severe alteration in germination capacity. Furthermore, down-
regulation of subunit δ gene by RNA interference (δRNAi) induces a
decrease in the amount of F-ATP synthase and the modified plants ex-
hibit stunted growth and male sterility. Unexpectedly, the levels of ATP
in δRNAi lines are comparable to wild type, suggesting a possible
compensation of ATP production by glycolysis. The retarded growth in
δRNAi lines has been attributed to metabolic adjustments rather than
energy deficiency in vegetative tissues, but flower and pollen devel-
opment are compromised because of their high-energy requirements
(Geisler et al., 2012).

4.7. OSCP (ATP5)

The insertion of T-DNA in the ATP5 gene in Arabidopsis is game-
tophyte lethal (Moore et al., 2003) and transgenic Arabidopsis plants, in
which the expression of either OSCP (ATP5) or subunit γ (ATP3) has
been lowered, show similar altered phenotype (Robison et al., 2009). In
particular, during germination in the light, anti-atp3 or anti-atp5 in-
duction by a dexamethasone-inducible promoter causes the death of the
seedlings soon after emergence. When the induction is provided after
germination, the plants show slow growth, alterations in development,
as well as in leaf and inflorescence morphology. Similarly to the atpδ-1
mutant, ATP content increases in induced transgenic etiolated seedlings
grown with sucrose or in soil-grown transgenic plants in the light. This
observation suggests that, similarly to what described above for subunit
δ, when mitochondria are defective, other sources for ATP production,
such as photophosphorylation or increase in glycolysis, might at least
partially support the cellular energy requirements (Robison et al.,
2009).

4.8. Subunit FAd

The role of subunit FAd has been linked to the correct development
of anther in wheat, where the expression of TaFAd is repressed in sterile
plants (Xu et al., 2008). In Arabidopsis, the MALE GAMETOPHYTE

DEFECTIVE 1 (MGP1) gene, which encodes subunit FAd, is highly ex-
pressed in pollen during the late developmental stages. The mutant
mgp1/+ shows altered mitochondrial morphology during the dehy-
dration phase of pollen, causing their degeneration (Li et al., 2010).

4.9. Subunit 6 kDa

In chili pepper, the mitochondrial protein Orf507 has been proposed
as a candidate for CMS (Li et al., 2013). These authors suggested that
the mechanism leading to CMS is due to the interaction of the N-ter-
minus and middle regions of Orf507 with the subunit 6 kDa, causing the
decrease in F-ATP synthase activity and the subsequent decrease in ATP
content observed in defective pollen grains (Li et al., 2013).

5. How environmental stress affects F-ATP synthase

Mitochondria are recognized as one of the central units for the re-
ception of stress signals and the arrangement of the immediate re-
sponses (Rasmusson and Møller, 2011), especially in the case of toler-
ance development in plants (Pastore et al., 2007). The high energetic
demand required by each strategy to counteract the stress is further
evidence for the pivotal role of mitochondria and particularly of the F-
ATP synthase (Manatt and Chandra, 2011). ATP availability is essential
to support the synthesis and translocation of osmolytes to be used
during several types of stress that ultimately result in an imbalance of
the osmotic potential. This is observed under conditions of salt excess,
drought and low temperatures. The contribution of F-ATP synthase to
ATP production, therefore, is crucial not only in the dark, but even in
the light, when energetic support for ex novo biosynthetic activities,
transport and creation of electrochemical gradients are required for an
adequate response to stresses (Jacoby et al., 2018). Since plants are
sessile organisms, they must withstand changing environmental con-
ditions, and the analysis of plant responses to temperature stress re-
presents a good model to study these events (Kerbler et al., 2019).

5.1. Temperature stress

Temperature variations do not only concern day/night and seasonal
alternations, but also affect the above-ground organs and the roots
differently, as the latter benefit from more constant temperature con-
ditions. Low, but not freezing, temperatures induce a decrease in F-ATP
synthase activity, lowering of the ADP/O ratio and lowering of the
amount of ATP. This enzyme is more markedly inhibited than the other
components of the mETC (Rurek et al., 2018). A specific physiological
response of plants to cold consists of induction and activation of al-
ternative oxidase (Rurek et al., 2018; Vanlerberghe, 2013, 2020, in this
Special Issue), but a minimum synthesis of ATP is maintained, thanks to
the proton transport still exerted by Complex I (Vianello et al., 1997). In
contrast, at high temperatures (e.g. above 35 °C for mesothermal
plants), adenylate restriction and changes in substrate supply become
the limiting factors (Kerbler et al., 2019).

The effects due to cold and warm environmental conditions are
different also regarding the proteomic and transcriptomic profiles, as
verified in a study carried out on cauliflower (Brassica oleracea var.
botrytis) curds. In particular, the proteomic analysis revealed significant
quantitative effects at high temperatures only, during which the ex-
pression of F-ATP synthase subunit b was enhanced and subunit γ was
decreased, showing a completely distinct pattern if compared to cold
stress. When normal conditions were restored, during the recovery
phase following heat stress, the subunit γ was still underexpressed,
decreasing the stability of F-ATP synthase and impairing its assembly.
Consequently, the enzymatic activity decreased both during the heat
treatments and during the recovery phase (Rurek et al., 2015). In a
subsequent study, these authors showed that during heat stress the
abundance of subunits α and d increased to a different extent, while
during the recovery phase both subunits decreased. It was therefore
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suggested that the enhanced ATP requirement during heat stress in-
duces the overexpression of selected subunits, favoring assembly of F-
ATP synthase complexes, which nevertheless are labile during the fol-
lowing recovery phase (Rurek et al., 2018, 2015).

Heat stress affects germination of oat seeds, previously treated
during storage period by high temperature and two different moisture
levels, and modulates the expression of the F-ATP synthase subunits α
and δ (Chen et al., 2016). Subunit α is progressively down-regulated
when the storage temperature increases up to 50 °C, while subunit δ
exhibits a different pattern with a peak of expression at 45 °C. Notably,
in this experiment the abundance of the F-ATP synthase showed a clear
direct correlation with germination and thermo-tolerance of oat seed,
which was suggested to depend on the decrease in the supply of ATP
(Chen et al., 2016).

Heidarvand et al. (2017) published a comprehensive review on the
variations of the F-ATP synthase subunits induced by low temperature
stress in plants. Such a response is not easily attributable to a definite
behavior, since both increasing and decreasing effects on the abun-
dance of some F-ATP synthase subunits have been reported. This
complex response might depend on several factors such as species,
duration and severity of the stress. Accordingly, in the case of subunit
α, there are several reports of its increased abundance at low tem-
perature, and several others that find a decreased or even no change in
abundance (Heidarvand et al., 2017). More consistent data are avail-
able for subunit β, which becomes more abundant at temperatures
lower than 5 °C, while temperatures≥ 15 °C induce a decrease in
abundance (Gammulla et al., 2011; Neilson et al., 2011). Three dif-
ferent papers on soybean seeds, wheat and rice leaves, report that over
a wide range of low temperatures, the abundance of subunit FAd is
lowered (Gammulla et al., 2011; Rinalducci et al., 2011; Yin et al.,
2009). A further peculiar feature concerns subunit γ, the abundance of
which in sunflower is either increased or decreased in chilling-sensitive
and in chilling-tolerant cultivars, respectively (Balbuena et al., 2011).

5.2. Salt stress

Experimental analyses performed on Mesembryanthemum crystal-
linum have shown that the responses of such a halophytic plant to saline
stress have a dual nature, since both osmotic alteration and an ionic
unbalance can occur (Tran et al., 2019). Increase in ATP synthesis was
demonstrated to be dependent on the ionic effect, and this feature is
specific for halophytic plants. They exhibit an increase of ATP content
in the presence of NaCl up to 300mM, probably because such highly
specialized plants show high fitness in saline environments and even a
biomass increase with NaCl concentrations up to 100mM. Similar re-
sults have been found in the case of NaCl treatments in wheat, where a
high salt concentration increased F-ATP synthase activity, even if there
are several overlapping factors able to enhance respiratory rates during
stress (Jacoby et al., 2016). On the other hand, this stimulation is
hardly explained by increased abundance of F-ATP synthase subunits,
since contrasting effects of salinity have been shown on the various
isoforms (Jacoby et al., 2016).

Jacoby and coworkers studied the salt tolerance in wheat by com-
paring a salt-sensitive cultivar with a salt-tolerant amphiploid, obtained
by crossing bread wheat with the wild wheatgrass Lophopyrum elon-
gatum, which is adapted to salt marshes (Jacoby et al., 2013). Besides
other biochemical and physiological traits, they focused on a detailed
analysis of the genotypic differences in the mitochondrial proteome.
Although salt treatment induced a decrease of the respiratory para-
meters in isolated mitochondria, the composition of the main re-
spiratory complexes was only slightly modified, except for a significant
induction of the alternative oxidase. Modifications of protein patterns,
and in particular of antioxidant enzymes, is a peculiar feature of the
hybrid wheat. Nevertheless, the genetic basis for salt tolerance did not
appear to be associated with F-ATP synthase, since only subunits β and
FAd changed in abundance compared to the sensitive variety. In this

case, the modulation of the protein content cannot explain the con-
tribution of F-ATP synthase catalytic activity to the metabolic adjust-
ments during stress.

The pattern of F-ATP synthase subunits during abiotic stress re-
sponses has been analyzed with the aim to dissect the contribution of
the different components. This experimental approach has frequently
demonstrated the involvement of subunit 6 kDa, one of the putative
components of the FO sub-complex, during salt stress (Zhang et al.,
2008). In rice, osmotic and saline stresses, beyond the enhancement of
subunits δ1 (homologous to Arabidopsis subunit δ/ATP16) and δ2
(homologous to Arabidopsis subunit d/ATP7) in leaves, caused the
overexpression of the subunit 6 kDa in both leaves and roots (Zhang
et al., 2006). Consistently, salt resistance was induced by over-
expressing subunit 6 kDa in transgenic tobacco plants at the seedling
stage (Zhang et al., 2006). In addition, subunit 6 kDa gene expression
was induced during salt excess, drought and low temperatures in Ara-
bidopsis (Zhang et al., 2008). This effect was confirmed in transgenic
Arabidopsis plants, where subunit 6 kDa gene overexpression induced a
significant increase in resistance against the aforementioned abiotic
stresses (Zhang et al., 2008). There is also evidence for the participation
of subunit 6 kDa in metabolic adaptations during the early phases of
abiotic stress in wheat (Moghadam et al., 2012). The gene shows cis-
acting elements able to respond to ABA, suggesting a potential role of
this subunit in the modulation of the signaling stress pathway.

Even if subunit 6 kDa has not been unambiguously associated with
FO (Brugière et al., 2004), it has been suggested that its binding to the
FO portion could help to activate the phosphorylating activity to meet
the high energetic needs required by the plant cell under stress. The
function proposed for this small protein would be to modulate the
mitochondrial activity. This hypothesis suggests that during stress
subunit 6 kDa might induce an early and quick response, increasing the
amount of ATP provided by F-ATP synthase (Zhang et al., 2006, 2008).

5.3. Other environmental stresses

Some interesting studies have been published on the effects of stress
caused by either Al toxicity or phosphate starvation on F-ATP synthase.
As demonstrated for Al toxicity in wheat (Hamilton et al., 2001), the
level of transcripts coding for subunits α and β was unchanged, sug-
gesting that the stimulation of the F-ATP synthase activity might be due
to post-translational modifications. In Al-resistant wheat cultivars, this
mechanism would increase ATP production to maintain energy balance
in plants under metal pollution stress (Hamilton et al., 2001).

Along with ADP, Pi represents the substrate for ATP synthesis and it
is a limiting factor for plant growth. Pi starvation induces complex re-
sponses that are suppressed by phosphite (HPO3

2−), a non-metaboliz-
able Pi analog. Arabidopsis phi1 mutants, which are impaired in the
gene encoding subunit FAd, retained the activation of Pi starvation re-
sponses even in presence of HPO3

2−, showing a decrease in ATP con-
tent in roots, together with a more pronounced effect of oligomycin on
growth, and a larger membrane potential in the mitochondria (Leong
et al., 2018). These phy1 mutants are therefore a powerful tool to study
the signaling pathway involved in Pi starvation, suggesting the in-
volvement of F-ATP synthase in the modulation of plant responses to Pi
starvation (Leong et al., 2018).

5.4. Oxidative stress

Several kinds of stress affecting plant mitochondria lead to an in-
crease in oxidative metabolism, due to both sudden increase in re-
spiration, known as oxidative burst, and alteration of electron flow in
the mETC. The accumulation of reduced intermediates with unpaired
electrons causes the production of reactive oxygen species, mainly at
Complex I and III (Braidot et al., 1999; Casolo et al., 2000; Møller,
2001; Jacoby et al., 2018). In Arabidopsis, these events have a negative
impact on F-ATP synthase, in which the degradation of subunits α, β
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and d has been linked to the induction of protease activity (Sweetlove
et al., 2002). Among F-ATP synthase subunits, subunit β seems to be
particularly sensitive to different oxidative agents, as demonstrated by
the presence of its degradation products caused by ATP-dependent
protease activity. On the other hand, degradation of subunit β still
maintains a residual activity of F-ATP synthase, able to sustain the
metabolism responses during oxidative stress. This hypothesis is sup-
ported by the presence of a partial mitochondrial respiratory activity,
despite the addition of H2O2 (Sweetlove et al., 2002).

Tan and coworkers (Tan et al., 2012) applied a quantitative pro-
teomic approach to investigate how oxidative stress affects the abun-
dance of the components of the mitochondrial oxidative phosphoryla-
tion in Arabidopsis. Consistent with previous results, oxidative stress
induced by antimycin, CuCl2 or H2O2 treatments lowered the abun-
dance of F-ATP synthase subunits α, β and d. In contrast, an increase in
subunit c abundance was detectable when mitochondria were exposed
to menadione, a redox-active quinone that stimulates the production of
superoxide anion. These results show the dynamic responses of the
phosphorylating machinery during environmental abiotic stresses (Tan
et al., 2012).

Furthermore, experiments carried out on Arabidopsis by microarray
techniques have excluded inhibitory effects of oxidative stress on the
expression of nuclear genes that code for the F-ATP synthase (Yu et al.,
2001). However, treatments with the herbicide Paraquat or with H2O2

caused inhibitory effects limited to the expression of the gene coding for
subunit 6 kDa in Arabidopsis suspension cell culture (Zhang et al.,
2008).

A multifactorial approach using proteomic and metabolomic ana-
lyses was applied in Arabidopsis suspension cell cultures to disentangle
the mechanisms underlying the modifications in mitochondrial super-
complex composition, in particular during oxidative stress (Obata et al.,
2011). In agreement with previous studies, the relationship between the
transcription and the abundance of components of the F-ATP synthase
and its enzymatic activity was not tight. The immunochemical detec-
tion of the subunit β showed a significant increase after treatments with
menadione, while its transcript level was unchanged. Strikingly, sub-
unit 8 showed the opposite trend, exhibiting only a stimulation of its
transcript level. Therefore, the modulation of F-ATP synthase during
oxidative stress still demonstrates a separation between the effects on
proteome profile and the metabolic changes due to stress response.
Especially during early events of the stress response, it is conceivable
that post-transcriptional (Koussevitzky et al., 2008) or post-transla-
tional (Morgenthal et al., 2007; Møller et al., 2020) modifications, e.g.
phosphorylation (Struglics et al., 1998; Havelund et al., 2013), might
prevail, because this strategy allows a fine tuning of the biochemical
pathways to maintain homeostasis.

Finally, a comprehensive model for the involvement of F-ATP syn-
thase in stress responses is still lacking, owing to the heterogeneity of
the stress duration and magnitude applied in the different experiments.
In addition, the number of mitochondrial proteins affected by stress is
still largely underestimated (Rurek et al., 2018). Poor coordination of
mitochondrial gene transcriptional machinery to stress and the possible
interactions with import mechanisms should be also considered (Rurek

et al., 2018, 2015). Furthermore, the occurrence of post-translational
modifications, able to stimulate enzymatic F-ATP synthase activity,
cannot be excluded (Hamilton et al., 2001). All these features make it
difficult to establish clear relationships between transcript levels, sub-
unit expression, assembly status and phosphorylation activity of F-ATP
synthase (Meyer et al., 2019).

6. F-ATP synthase beyond ATP synthesis

More than 60 years ago it was observed that mitochondria could
undergo a sudden permeability increase of the IMM that leads to mi-
tochondrial swelling (Raaflaub, 1953a, b). This feature was later de-
fined permeability transition (PT) (Haworth and Hunter, 1979; Hunter
and Haworth, 1979a, b) and the putative channel involved in the PT
was named the Permeability Transition Pore (PTP). From the 1970s, the
chemiosmotic theory proposed by Peter Mitchell (Mitchell, 1961) has
been largely accepted and therefore the PT has been considered as an
artifact, since its occurrence leads to the collapse of the proton gradient,
with the consequent decrease in ATP synthesis. However, the PT was
reconsidered when cyclosporin A (CsA), an immunosuppressive agent
interacting with CyPD, was discovered to be a potent PT inhibitor
(Broekemeier et al., 1989; Broekemeier and Pfeiffer, 1989; Crompton
et al., 1988; Davidson and Halestrap, 1990; Fournier et al., 1987) and a
useful tool to demonstrate the occurrence of the PTP opening in cells
and living organisms (Bernardi et al., 2015). The discovery that PTP is
involved in the release of cytochrome c and in the activation of the
intrinsic pathway to apoptosis rapidly made the PT very popular in
mitochondrial research (Bernardi et al., 2015). A common feature
shown by PTP in the species so far examined is the dependence on
matrix Ca2+. The molecular structure of the PTP was long elusive and
many potential proteins were proposed to be component of the pore,
such as the voltage-dependent anion channel (VDAC), the benzodiaze-
pine receptor, the adenine nucleotide translocase (ANT) and the phos-
phate carrier. However, PT is still observed in isolated mitochondria
when the expression of each of these proteins has been suppressed
(Baines et al., 2007; Gutiérrez-Aguilar et al., 2014; Kamei et al., 2018;
Kokoszka et al., 2004; Krauskopf et al., 2006; Šileikytė et al., 2014).
Recently, in mammalian (Alavian et al., 2014; Giorgio et al., 2013), S.
cerevisiae (Carraro et al., 2014; Kamei et al., 2018) and Drosophila
melanogaster (von Stockum et al., 2015) mitochondria, the F-ATP syn-
thase, in its dimeric form, was shown to be an essential component
responsible for PT (Fig. 4). In mammals, CyPD interacts with subunit
OSCP, and modulates the F-ATP synthase activity as well, in a CsA-
sensitive way as CsA displaces CyPD from OSCP (Giorgio et al., 2013).
This finding and the results obtained by site-directed mutagenesis of
mammalian and yeast F-ATP synthase (Antoniel et al., 2018; Giorgio
et al., 2017; Guo et al., 2018, 2019) led to the proposal that F-ATP
synthase undergoes a Ca2+-dependent conformational change. Such a
modification is favored by CyPD binding and propagates from the
catalytic site through OSCP and the peripheral stalk to the inner
membrane, where the PTP forms (Fig. 4B). Highly purified F-ATP
synthase dimers inserted into liposomes form Ca2+-activated channels
with properties matching those of the PTP, further demonstrating that

Fig. 4. F-ATP synthase dimers forming the PTP. A)
The dimers are formed by the interactions between
FO components. This structure is stabilized by ATP,
ADP, Mg2+, or by CsA in the matrix, which displaces
CyPD (not shown), in a «desensitized» conformation.
B) When the matrix Ca2+ concentration is raised
and/or in the presence of oxidizing conditions
(«sensitized» conformation), the dimers would dis-
sociate, leading to the opening of PTP and leakage of
solutes from the matrix.
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this complex represents a strong candidate for PTP formation
(Mnatsakanyan et al., 2019; Urbani et al., 2019). This hypothesis has
been questioned by the finding that in HAP1 cells the PT still occurs
after genetic ablation of subunit c (He et al., 2017b), or peripheral
subunits b and OSCP (He et al., 2017a). However, as discussed by
Bernardi (Bernardi, 2020), a careful analysis of those results highlights
that mitochondria lacking an assembled F–ATP synthase displayed
bongkrekate (a specific inhibitor of ANT) -sensitive Ca2+-activated
channels. Such a finding suggests that the PT pathway could also be
provided by ANT, which forms smaller CsA/bongkrekate-sensitive
channels (Brustovetsky et al., 2002). Thus, mitochondria appear to have
at least two pathways for permeabilization, mediated by F-ATP syn-
thase and by the ANT.

In plants, PT has been observed in several species. In mitochondria
from etiolated pea stems, Ca2+ induced a collapse of the transmem-
brane electrical potential (Δψ), which was delayed by CsA (Vianello
et al., 1995). In mitochondria from potato tuber, Ca2+ induced PT that
was reported to be either CsA-sensitive (Arpagaus et al., 2002) or -in-
sensitive (Fortes et al., 2001). In mitochondria from oat leaves (Curtis
and Wolpert, 2002) and wheat roots (Virolainen et al., 2002), a CsA-
insensitive Δψ collapse was induced by Ca2+ and Pi, leading to matrix
swelling. In Arabidopsis, the opening of PTP induced by Ca2+ was
shown to play a fundamental role in salt stress response (Zhao et al.,
2013). Even if plant mitochondria show diverse PTP phenomenology,
their PTP opening shows remarkable similarities with mammalian mi-
tochondria, such as induction by Ca2+ and release of cytochrome c in
the cytosol as consequences of matrix swelling (Vianello et al., 2012).
This would lead to the onset of programmed cell death as a common
characteristic shared between yeast, insects, mammals, and plants
(Arama et al., 2006; Balk et al., 1999; Giannattasio et al., 2008;
Robertson and Orrenius, 2002). Our group has recently examined some
functional features of the PT in pea stem mitochondria, in the light of
recent advances in other species described above. Pea stem mitochon-
drial PTP is characterized by Ca2+ induction and inhibition by CsA
similarly to PTP in mammals, Drosophila and yeast, yet it possesses
some peculiar features, such as inhibition by Pi, lack of swelling and
activation by oligomycin (De Col et al., 2018). The latter characteristic
could be related to the observation that oligomycin is also a strong
inhibitor of Ca-ATPase activity of F-ATP synthase, as expected if ATP
hydrolysis is coupled to proton translocation. In the presence of Ca2+,
proton backflow would be the possible result of the ATPase activity,
which cannot generate (or maintain) a proton gradient across the IMM.
This supports the proposal that also in pea stem mitochondria the PTP
may originate from a Ca2+-dependent conformational transition of F-
ATP synthase (De Col et al., 2018). Unfortunately, it was not possible to
unequivocally assign the current elicited by Ca2+ to F-ATP synthase
dimers incorporated into lipid bilayer by electrophysiology experi-
ments, nor was it possible to identify the matrix protein responsible for
CsA sensitivity. Therefore, even if some results suggest the involvement
of F-ATP synthase in PT manifestation in pea stem mitochondria, it has
not yet been possible to draw a conclusive picture of the molecular
identity of PTP in plants.

7. Conclusions

As documented in this review, due to the limited knowledge of
structural and functional properties of F-ATP synthase in plants, many
interesting questions are still open. We are looking forward to a better
characterization of all the subunits comprised by this complex, espe-
cially those that have been classified as plant specific and which would
be responsible for the unique features of this enzyme in plants.
Furthermore, the picture would be clearer if the presence, alteration, or
absence of the F-ATP synthase subunits could be related to the actual
assembly state and/or to the enzymatic activity, evaluated directly ei-
ther as ATP synthesis or hydrolysis.

Another issue that still requires deeper investigations is the analysis

of post-translational modifications of F-ATP synthase subunits, which
would represent a key strategy for fine enzymatic regulation. In our
opinion, future work should also examine how F-ATP synthase, beyond
providing energy for most of the cytosolic requirements, is involved in
the regulation of the cell energetic status. This is a particularly crucial
aspect related to the plant responses to stress and to the initial stages of
programmed cell death. In this scenario, it would be interesting to
verify if this complex represents one of the structural equivalents of the
PTP. It is remarkable that F-ATP synthase might be an auto-regulative
system, able to switch from energy production to energy dissipation
triggering cell death, the latter being a crucial process for initiating the
pro-apoptotic pathway activated under many physiological (e.g. xylem
differentiation) or stress conditions (e.g. salt stress).

The extraordinary conservation shown by many subunits of F-ATP
synthase suggests that comparison between different phyla, could reveal
both common and unique features linked to diverse adaptive strategies.
In particular, this enzyme would represent a key element for a systemic
and conservative view of the energetic metabolism in different organ-
isms.
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