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PREFACE 

     
 

Nowadays, in the product development process, engineers and kitchen 

operators run cooking appliance development and use at different steps, using 

diverse tools, languages and perspectives.  

During continuous cooking in pasta cookers, the same cooking water is used 

for hours to promptly serve the consumers. Solid concentration results in 

intense foam formation that leads to overflow. Water, energy, time 

consumption, cooking water viscosity and turbidity increase as well as cooked 

pasta quality changes are reported by kitchen operators, and thus reflected in 

industrial needs to the engineers.  

This Ph.D. thesis aimed at proposing a new approach for food scientists in the 

food service sector to fulfil the disciplinary gap between engineers and kitchen 

operators. To this purpose, the continuous cooking procedure in professional 

appliances was chosen as study case. The effect of the continuous cooking on 

physical and chemical properties of pasta and cooking water was investigated 

by simulating the procedure on laboratory scale. Selected unconventional 

technologies such as ultrasounds and high pressure homogenization were 

applied on laboratory scale to retain fresh-like cooking water properties. An 

ultrasonic batch system and conventional strategies, such as the power rating 

management, were investigated on industrial scale in the attempt to tackle 

continuous cooking procedure issues.  

This study provides original insights into pasta cooking by studying the 

continuous cooking procedure in professional appliances. Furthermore, the 

gap is fulfilled by a food science-based approach, both on laboratory and 

industrial scale. This thesis opens up new scenarios for appliance 

development, reflecting on how to approach the development in the 

manufacture and the use in the professional kitchen. 
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ELECTROLUX PROFESSIONAL 

Electrolux Professional is the branch of the Electrolux Group, and the only 

company in the world that is able to provide both premium food-service 

equipment and laundry solutions. Electrolux Professional represents the 7% of 

the entire production of Electrolux Group (AB Electrolux, 2018). The 

production of Electrolux Professional kitchen appliances has strong roots 

within the Italian industry of Zanussi, in Pordenone. Founded as a division of 

the Zanussi household appliances in 1959, it was acquired by Electrolux group 

in 1984, so then, food service equipment was recognized in the global market 

as Electrolux Professional and Zanussi Professional appliances. Founded in 

Sweden in 1919 by entrepreneur Axel Wenner-Gren, in 2019 Electrolux turned 

100 years.  

Electrolux Professional fulfills the business-to-business1 (B2B) Horeca2 market 

by providing a comprehensive range of solutions to store, prepare, cook, serve 

food, and to clean the tools employed in the food service. Particularly, 

Electrolux Food Service equipment is tailored for different types of 

professional kitchens (from Michelen starred restaurants, to pubs and bars, 

from hospitals, schools and military canteens to Quick Service Restaurants). 

Products contribute to combine excellent results, productivity and hygiene 

with low energy consumption and operating costs. The different appliances 

employed in the food service industry could be divided in six main categories: 

modular cooking, ovens, dynamic preparation, refrigeration, dishwashing, and 

other appliances. Some of these are shown in Figure 1.1. The modular cooking 

area offers the complete flexibility of feature combinations: electric, gas and 

induction modular functional elements, fryers, pasta cookers, fry tops and 

grills, and storage elements. The modular cooking lines 900XP and 700XP are 

usually present in high productivity kitchens and aim at assuring the best 

cooking results in terms of taste, colour evenness and texture, as well as 

nutritional value preservation, and a consistent reduction of cooking time and 

energy consumption. 

The user of professional appliances and the consumer in the establishment 

drive the appliance choice, in terms of model, category and brand. So, cooking 

in the professional industry involves a delicate negotiation among users, 

(servers), and consumers, with each having demands, constraints, and rights. 

 
1 Business-to-business marketing involves the commercial transaction of a company’s 

product or service to another company (Temporal, 2005). 
2 From international Union of National Associations of Hotel, Restaurant, and Café 

Keepers, HORECA is an abbreviation used in Europe to designate the food service 
Industry Market (Restaurants, Hotels, Bars And Cafés, Supermarkets, Hospitals And 
Care Homes, Business, Transport & Industry, Commercial Laundries, Self-Services 
Laundries) (Eurostat, 2005). 
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These have to be translated into engineering metrics by Research and 

Development3 (R&D) engineers in the manufacturing while future needs have 

to be pre-empted.   

 

 
Figure 1.1. Electrolux Professional Food Service products. 

The engineer’s perspective 

Catering is a complex system involving both people and equipment (e.g. 

professional appliances) in the preparation and serving of food and, in the 

broader sense, is the provision of food and beverages away from home (Davis 

et al., 1998). Food service industry serves billions of meals every year. Reliable 

and accurate data on the size of the industry are difficult to obtain but by way 

of example, total global spending is expected to grow 13% over the next five 

years, producing USD359 billion in incremental value. The food service 

industry employs 14 million people in the USA and 8 million in Europe 

(Euromonitor International, 2011; Gössling et al., 2011). The B2B market is 

highly fragmented in terms of customers’ needs and geographic areas. The US 

market is characterized by the presence of large restaurant chains, while the 

European one is mostly dominated by smaller independent establishments 

(De Toni, 2016; Hague & Harrison, 2019). In general, increasing need for 

modern kitchen amenities and shift in kitchen operator preference for 

modular kitchen is boosting the demand for specific appliances. Smart 

kitchens and various innovations in the industry are helping the kitchens in 

 
3 Research and development refer to the activities company undertakes to innovate 

and introduce new products and services. 
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restaurants and hotels become efficient and manageable (Grand View 

Research, 2019; Paananen & Seppänen, 2013). The development of 

professional appliances has been entrusted to engineers, whose role is more 

and more important in the appliance development at manufacturing. Shifting 

consumer preferences from conventional to technologically advanced 

products is enabling manufacturers to offer innovative kitchen appliances. 

This increases the key role of engineering but highlights also the lack of a food 

science multidisciplinary approach when cooking appliances have to be 

developed.   

In the product development process within the R&D department, the project 

status is evaluated based on time, benefits and costs. Furthermore, the 

technical maturity following the Technology Readiness Levels (TRLs)4 concept 

is often assessed. The technical maturity of the project is subdivided into levels 

that can be named as follows: 

1. Basic principles observed; 

2. Technology concept formulated; 

3. Experimental proof of concept; 

4. Technology validated in lab; 

5. Technology validated in relevant environment; 

6. Technology demonstrated in relevant environment; 

7. System prototype demonstration in operational environment; 

8. System complete and qualified; 

9. Actual system proven in operational environment.  

At each update, the technology readiness assessment is also presented to the 

steering committee for approval to move on with the project (Mankins, 2009).  

 

The kitchen operator’s perspective 

The same appliance is intended to be used by multiple users in terms of 

experience and skills. In the fast food chains, workers are often less skilled and 

experienced, and their role is usually in a high rotation system. Therefore, the 

appliance should be operated as much quickly, automatically and 

standardized as possible. In the case of star restaurants, the appliance should 

also be flexible maximizing the chef’s creativity by minimizing repetitive tasks 

and stress inputs.  

From the user perspective, all work is temporally structured. In the 

conventional catering approach of “cook and serve”, food is cooked and 

immediately served to consumers with all stages of food preparation occurring 

 
4 In the mid-1970s, the National Aeronautics and Space Administration (NASA) 

introduced the concept of TRLs as a discipline- independent, program figure of merit 
to allow more effective assessment of, and communication regarding the maturity 
of new technologies, especially among sometimes diverse organizations (Mankins, 
2009).  
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in a few hours before the food is served and consumed. This is typically the 

case of restaurants and canteens. The food is distributed at a temperature of 

65 °C and the consumption should occur within 2 h after cooking (Ciappellano, 

2009; EpiCentro, 2012). Therefore, organization in the kitchen staff and 

temporality are intimately connected. For a kitchen to run efficiently, 

schedules must be meshed, and work products must be generated at a 

determined rate. Within the serving hours, the irregular and unpredictable 

demand for dishes gives the kitchen operators the power and pressure within 

the kitchen. The role of professional appliances in guaranteeing the 

performances and the wellbeing of workers is particularly evident when the 

kitchen is loaded to capacity. When more consumers than expected arrive (or 

when something goes wrong), the kitchen falls behind in the duration of 

preparing dishes, then the consumers do not get their food on time and the 

establishment increases the risk of client loss.  

Another important point from the food service operators is related to the 

need to economize on energy and labor costs (Reeve, Creed, & Pierson, 1999). 

The average daily energy usage for the establishment could be around 294 

kW/h. The total average electricity usage attributed to cooking appliances is 

around 60% of the kitchen (Mudie et al., 2014). One clear approach to energy 

reduction is through better product design and this has been the focus of UK 

and EU policy via the Eco-design of Energy using Products Directive (European 

Commission, 2011), but still a lot has to be done. 

The kitchen is a noisy environment and operators are frequently exposed to 

hot pans or fryers/pasta cookers, increasing the risk of burns, and slips and 

falls due to moisture on kitchen floors (Figure 1.2). The type of appliances and 

tools and the high level of activity and pressure in kitchens during serving 

hours increase the risk of accidents (HSE, 2015; ILO, 2019). Jeong (2015) 

reported the distribution of work time and injured persons according to the 

relevant cooking process in 100 commercial restaurants. The percentage of 

heated cooking was the highest at 18% and the associated percentage 

distribution of injured persons was 21%. Safer appliances and procedures are 

asked to be developed to reduce occupational accidents in the food service.  

 

 
Figure 1.2. Examples of professional kitchen environment. 
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The consumer’s perspective 

Food quality, service environment and service performance are the three main 

criteria used by the consumers to evaluate the establishment. These factors 

need always to be considered and assessed in their entireness. Professional 

appliances play a critical role on at least two of these factors, all of them in the 

case of open kitchens. In establishments with open kitchen, service 

environment includes the appliances and the whole kitchen, so design aspects 

are crucial. Compared to the engineer’s perspective in the manufacturing 

plant, in the establishment the consumer is involved in the creation of the 

service that is consumed at the point of production with little or no time (e.g. 

self-service) delay between production and food service. Therefore, there is 

little if no time for the quality control by the kitchen operator, thus the 

appliance plays fundamental role in guaranteeing always the same food 

quality. Time, or lack of time, can affect the service performance and so the 

eating out experience of consumers in a number of ways. Time concept is 

related to mealtime during the day, time available to consume a meal and 

waiting time to get served. The effect of making people wait has been 

demonstrated to result in lower acceptability ratings of the food (Davis & 

Heineke, 1998; Hul, Dube, & Chebat, 1997). 

 

THE CASE STUDY OF PASTA COOKING IN PASTA COOKERS 

 

Pasta cookers 

Back in the 70s, the call for mass production of commercial solutions prompt 

the evolution of modular lines of professional appliances, in which pasta 

cooker represents a module. Pasta cookers can be either gas or electric, 

smaller as in the 700XP line or bigger as in the 900XP line of Electrolux 

Professional appliances. Pasta cookers resemble a deep fat fryer but are filled 

with water instead of oil, while use similar stainless-steel enclosures 

(Birchfield & Birchfield JR, 2007). Engineers have added features, such as: a 

water connection for ease of filling and maintaining the water levels in the 

well, a top drain to skim off foam, and are frequently accompanied by a cold 

water rinse tank to potentially stop the pasta from overcooking. Pasta cookers 

can employ many of the same control systems as the more advanced fryers, 

including automatic lift baskets to lower and raise the baskets so that cooking 

time is controlled, integrated timers, and solid state controls (Spoor, 

Zabrowski, & Mills, 2014). As an individual appliance in the kitchen, pasta 

cookers can be very energy intensive. This is related to the need of heating 

and holding large volumes of water at high temperatures during the serving 

hours, but also to the procedure with which the appliance is used: the 

continuous cooking.  
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The pasta cooker is filled with fresh water and when the boiling point is 

reached, pasta is manually added and then removed when it is cooked, while 

in industrial continuous pasta cookers it automatically enters. The same water 

batch is used many times (up to 13 and 50 in food service and industry, 

respectively) to cook pasta (Korzeniowska, Korzeniowski, Defrancisci, & 

Hoskins, 2005). This procedure is named continuous cooking. It allows to 

promptly satisfy the consumer’s order and guarantee an efficient use of 

energy and water in the kitchen compared to using a pot or emptying the 

appliance for cooking with fresh water as on domestic scale. However, during 

the continuous cooking process, a foam layer forms upon cooking causing the 

water to go into the overflow drain. Thus, kitchen operators must 

continuously release water and replace it by an equal amount of fresh water 

that has to be heated, with increased time and energy consumption and thus 

operating costs for the establishment. In addition, foam formation results in 

safety issues and depletion of work quality conditions and performance for 

the kitchen operators. Ultimately, the continuous cooking procedure may 

change cooking water and final product properties, as empirically reported, 

that dissatisfy the consumers and therefore again the kitchen operators. There 

is the increasing need for understanding and finding optimization strategies 

able to avoid such phenomenon. 

 

Pasta cooking 

Pasta is a staple food in much of the world. Versatility, ease of transportation, 

handling, cooking properties, long shelf-life, diversity of form, high 

digestibility, good nutritional qualities and relatively low cost, make pasta one 

of the favourite foods by consumers (Martinez et al., 2007; Rakhesh, Fellows, 

& Sissons, 2015; Tudoricǎ, Kuri, & Brennan, 2002). Durum wheat (Triticum 

turgidum L. var. durum) is the cereal of choice for pasta production because 

of the peculiar properties of its proteins and gluten, as well as its yellow 

pigment content (Martinez et al., 2007). Pasta is traditionally cooked in an 

excess of fresh water (the recommended pasta/water ratio is 1/10) at boiling 

temperature (Cocci et al., 2008). As more extensively described in Chapter 2 

and 3, during the cooking of pasta, high temperature and high moisture 

conditions lead to progressive hydration and component solubilisation, 

resulting in major structural changes, i.e. protein (further) polymerization and 

starch gelatinization (Cunin et al., 1995; Lund, 1984; Resmini & Pagani, 1983). 

Both structural changes are competing for water and antagonistic because 

protein polymerization, leading to a continuous and strengthened network, is 

opposed to starch swelling and gelatinization in the network interspaces 

(Resmini & Pagani, 1983). Pasta should release minimal material into the 

cooking water and must be firm and not unduly sticky when cooked for 

maximum consumer acceptance (Grant, Dick, & Shelton, 1993; Lucisano et al., 
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2012; Rakhesh et al., 2015). Cooking water properties could be affected by the 

type and concentration of solids that represent an important issue in food 

service appliance. Already Malcolmson and Matsuo (1993) highlighted the 

importance of cooking medium composition for the textural quality of 

spaghetti, but on laboratory scale.  

 

Conventional and unconventional processing of food 

Food processing can be defined as a set of unit operations by which raw 

foodstuffs are made suitable for consumption, cooking or storage. Among the 

large variety of processing (fermentation, heating, drying, mechanical 

processes etc.), heating is extensively used in food technology. It is well known 

that thermal treatments (conventional processing) cause denaturation and 

gelatinization of protein and starch, respectively, leading to an increase of 

their digestibility (Linnemann et al., 2006). During the centuries, the use of 

heat changed from domestic use to more industrialized process with modern 

thermal processing. In the food service sector, thermal processing has been 

translated into ovens, grills, fryers, pasta cookers, hobs and braising pans. 

Accessories and automatic temperature controls allow to adjust the 

temperature according to specifications and this represents a great tool. 

Specifications are set by kitchen operators during the use in the kitchen and 

with engineers in the R&D phase in the manufacturing, respectively. 

Unconventional technologies are a group of technologies based on driven 

forces different from heating. For instance, mechanical and chemical stresses 

occur during the application of ultrasounds and high pressure. The main 

purpose of unconventional technologies is to obtain foods with improved 

nutritional and sensory properties, modify functional properties and/or 

reduce costs in comparison with conventional technologies (Raso & Barbosa-

Cánovas, 2003). However, any process used to do so on laboratory scale might 

result differently when applied on industrial scale. For this reason, nowadays, 

the challenge for food scientists is first to understand the impact of 

unconventional technologies in order to obtain foods with desired 

characteristics and second to collaborate with engineers for their 

industrialization.  

Among the unconventional technologies, the most promising ones appear to 

be ultrasound (US) and high pressure homogenization (HPH). US techniques 

use acoustic waves at frequencies higher than those perceived by human 

hearing (>18 kHz) (Patist & Bates, 2008). During US treatment, mechanical 

wave propagation into a fluid causes cavitation, which is the spontaneous 

formation and violent collapse of small bubbles that leads to the generation 

of local extreme temperatures (1000-5000 K) and pressures (10-5000 MPa). 

Physical (microject, turbulence, shear forces) and chemical phenomena 

(formation of free radicals) occur (Gogate, Wilhelm, & Pandit, 2003; Leighton, 
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1995). HPH technology consists of pressurizing a fluid to flow through a narrow 

gap valve (Dumay et al., 2013). During HPH treatment, the fluid undergoes 

intense mechanical forces and elongational stresses at the valve entrance and 

in the valve gap, while turbulence, cavitation and impacts with the solid 

surface occur at the gap outlet (Floury et al., 2004; Floury, Legrand, & 

Desrumaux, 2004). Efforts have been made to translate laboratory scale 

devices into industrial ones, but still applications are limited. Power 

ultrasounds have been commercially used in different food science 

applications such as emulsification, dispersion of solids, crystallization, de-

gassing, and extraction (Martini, Potter, & Walsh, 2010). HPH has been applied 

mostly for the stabilization of food and dairy emulsions, and different types of 

equipment now exist, both prototype or industrial scale equipment, for 

example: MicrofluidPM technology, NanojetPM, jet homogenizers, and 

Emulsiflex from Avestin (Paquin, 1999). 

 

RESEARCH NEEDS  

So far, in most cases, the research and development in the manufacturing of 

professional appliances has been entrusted to engineers having a technical 

background. The performance of the food process is validated on a culinary 

base by kitchen operators, instead. This dialogue has different languages and 

lacks a scientific knowledge of food and food processing. The new industrial 

needs call for professional figures who enable the communication between 

different functional areas and departments, merging skills and knowledge 

about food with an integrated approach. Following this need, the food 

scientist becomes an interpreter and facilitator in the dialogue between 

engineers and kitchen operators. The food scientist recognizes the need for an 

integration of the two different approaches and defines food science-based 

methods for investigating and optimizing the food processes in the food 

service sector. The continuous cooking of pasta in pasta cookers is a 

representative case study to analyze such phenomenon.  

Despite the huge number of studies available in the literature on pasta 

cooking, and the effect of conventional and unconventional technologies on 

food, there is no information on the continuous cooking procedure of pasta in 

pasta cookers and even more so on optimization strategies. In addition, almost 

all studies in the literature are based and focused on domestic or industrial 

procedures (Fusi, Guidetti, & Azapagic, 2016). In particular, the role of the 

cooking water characteristics resulting from continuously cooked spaghetti on 

the leaching behaviour, cooked pasta, and thus cooking procedure related 

issues has not been elucidated yet. The simulation of the continuous cooking 

procedure on laboratory scale is needed to identify quantitatively the 

empirical evidences favoring the understanding of the mechanisms inherent 

to the process of cooking. This knowledge is fundamental for giving a boost to 
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optimization strategies, which are represented by both conventional and 

unconventional technologies, whose role has never been explored.  

All this information obtained on laboratory scale is also essential in view of the 

definition of process conditions in the professional appliance on industrial 

scale. In fact, it should be underlined that most of the studies are based on 

laboratory scale devices and it is well known that the effectiveness of the 

process is heavily scale dependent and that the results cannot be readily 

transferred to industrial level. This reinforces the need of studies based on an 

industrial scale perspective and with a food science-based approach in the 

attempt to establish a food-science based dialogue between engineers and 

kitchen operators while optimizing food processes.  

 

AIM AND OUTLINE OF THIS PH.D. THESIS 

This Ph.D. thesis aimed to propose a new approach for food scientists in the 

food service sector to fulfil the gap between engineers and kitchen operator 

perspectives. To this aim, the study case of the continuous cooking procedure 

in professional pasta cookers was chosen. In fact, the pasta cooker represents 

an emblematic case of food service requests to the manufacturer. Kitchen 

operators ask to the appliance for stress inputs minimization, safety, high 

efficiency and productivity. Consumers more and more rise the expectations 

in terms of the quality of food, which has to be promptly served always fresh-

like.    

In particular, the research was divided into two parts (Figure 1.3). 

 

In the first part, the effect of continuous cooking on cooking water properties 

and cooked pasta quality was investigated for up to 13 batches. In Chapter 2 

the continuous cooking procedure was simulated on a laboratory scale. The 

effect of the procedure on technological properties (solid content, cooking 

loss, swelling index) and textural parameters (firmness and stickiness) of 

pasta, and physical properties (solid content, rheological properties) of 

cooking water was studied. Chapter 3 aimed at understanding the effect of 

the procedure on the leaching behaviour of pasta and the cooking water (w/o 

pasta fragments) composition and foaming. In Chapter 4, US and HPH 

treatments were applied to retain fresh-like physical properties (turbidity and 

rheological properties) of cooking water obtained from continuously cooked 

spaghetti on laboratory scale. 

 

In the second part, unconventional (US) and conventional (cooking 

temperature) technologies were applied on cooking water in the attempt to 

optimize the continuous cooking procedure in pasta cookers. Chapter 5 was 

addressed to the formulation of the technology concept of a multipurpose US 

bath system in the pasta cooker (TRL 2). The theoretical feasibility of US bath 
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system as foam breaker, cooking water viscosity reducer and well surface 

cleaner was discussed. Finally, in Chapter 6, the effect of managing the power 

rating at 0/off, 1, 3, 6 kW power  on appliance performance (energy efficiency 

and water balance), cooking water properties (solid content and pH) and 

technological properties of pasta (optimal cooking time, weight increase, 

water absorption and cooking loss) for a single batch and during continuous 

cooking (with 1 and 6 kW power) of 7 batch was investigated (TRL 3).  

 

 
Figure 1.3. Scheme of the overall research of this Ph.D. thesis. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part I 
       

 

 

Continuous cooking procedure of pasta in 

pasta cookers 
  

   



 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 
 
 

 
 

 

Effect of continuous cooking on pasta 

quality and cooking water properties 
 

  

2 



 

 

 



Effect of continuous cooking on pasta quality and cooking water properties 

27 

INTRODUCTION 

It is generally accepted that texture is the main criterion for assessing overall 

quality of cooked pasta (Edwards et al., 1993). Proper evaluation of pasta 

cooking quality requires consideration of a number of factors including 

firmness, surface stickiness, cooking tolerance, water absorption, and loss of 

solids to cooking water (Manser, 1981). Pasta firmness is promoted by a 

protein continuous network entrapping starch components. On the contrary, 

pasta tenderness results from a prevalence of starch swelling along with 

exudate loss, promoting the formation of protein coagulates in discrete 

masses lacking a continuous network (Bonomi et al., 2012; Cuq, Abecassis, & 

Guilbert, 2003; de Noni & Pagani, 2010; Dexter, Dronzek, & Matsuo, 1978). 

Semolina protein content and gluten strength are important prerequisites for 

superior pasta cooking quality (D’Egidio et al., 1990; Dexter et al., 1978; 

Peyron et al., 2002). Protein content is classified as typical when between 11 

and 16% (Del Nobile et al., 2005; Sissons, Soh, & Turner, 2007), while gluten 

strength is primary a function of the density of reversible disulphide bonds, 

which are responsible of the desired solid-like behaviour in cooked pasta 

(Edwards et al., 2001; Rao et al., 2001; Sissons, 2008). Stickiness is one of the 

most desired quality parameters and it is related to the amount of amylose 

leached from the gelatinized starch granules. The higher the cooking loss, i.e. 

leaching of material from the outer layer of pasta in cooking water, the stickier 

the pasta is (Del Nobile et al., 2005; Dexter et al., 1983; Dziki & Janusz, 2005; 

Soh, Sissons, & Turner, 2006). These solids are mainly amylose with a small 

amylopectin presence only, and a small amount of proteins and nonstarch 

polysaccharides (Matsuo & Dexter, 1980). Pasta stickiness results from 

substances escaping from the protein network and adhering to the surface of 

cooked pasta and is related to the proportion of surface material that can be 

rinsed from the cooked pasta following drainage (D’Egidio et al., 1982). Even 

though the role of the cooking medium characteristics has not been fully 

elucidated yet, semolina characteristics (e.g. protein content and quality, 

starch damage related to granulation), processing (e.g. low and high 

temperature drying), cooking conditions (e.g. water characteristics, cooking 

time) and consuming modality (e.g. length of time between draining and 

testing) are well known factors influencing stickiness (Cunin et al., 1995; 

D’Egidio et al., 1990; Del Nobile et al., 2005; Dexter et al., 1983; Grant et al., 

1993; Matsuo & Dexter, 1980).  

Similarly, although the mechanism of solid leaching in cooking water during 

cooking on a laboratory scale has been extensively studied, to the authors' 

best knowledge, no reports about cooking in pasta cookers are present in the 

scientific literature. Moreover, data on cooking water characteristics as 

obtained from continuously cooked pasta are absent (Korzeniowska et al., 

2005).  



Chapter 2  

28 

AIM OF THE STUDY 

 
 

MATERIALS AND METHODS 

Materials 

Durum wheat spaghetti (2 mm diameter) was purchased from a specialized 

supplier to the food service sector (Marr, Italy). The composition of the pasta 

supplied by the manufacturer (Rummo, Benevento, Italy) was: protein 125 g 

kg-1, carbohydrate 715 g kg-1, fiber 28 g kg-1, and fat 16 g kg-1. 

Cooking procedure 

The following professional cooking procedure was performed in a pasta 

cooker (Electric Pasta Cooker, 1 Well 40 L, Electrolux Professional S.p.A., 

Pordenone, Italy). Spaghetti strands (3 kg) were placed in the steel vessel. The 

spaghetti was cooked for 11 min in 36 L of boiling tap water with no salt added. 

The pasta was strained above the tank and fresh water was added to make up 

the initial volume. 7 batches were cooked.  

The laboratory-scale cooking procedure was set up to simulate the continuous 

cooking procedure used by food service operators. The pasta cooking batches 

are added one after the other and thus the service to the customer is as much 

continuous as possible. The flow chart of a single cooking cycle is shown in 

Figure 2.1. To perform continuous cooking a colander fitting in a 500-mL 

beaker was used. Spaghetti strands (25 g) were cut into equal lengths of 50 

mm and placed in the colander (Figure 2.1a). The spaghetti was cooked in 300 

mL of boiling tap water with no salt added (Figure 2.1b). Stirring was 

frequently performed, especially in the first cooking minutes, with a smooth 

plastic stick. Pasta was then strained and rinsed with boiling tap water over 

the beaker (Figure 2.1c) to reach 300 mL of volume for the next batch and 

retain solids in the cooking water. Up to 12 batches were cooked in the same 

colander with the same procedure as before.  

The cooked spaghetti from each batch was analyzed for cooking loss, swelling 

index, and textural characteristics. Cooking water from each batch was 

analyzed for solid content and rheological properties. 

The aim of the present study was to investigate the continuous cooking 

procedure in pasta cooker and simulate the latter under controlled 

conditions. Continuous cooking was run for 7 batches and its effect on 

overflow and wastewater volume in a pasta cooker was studied. The 

procedure was then simulated for the first time on laboratory scale and 

the effect of 12 batches on the technological and textural properties of 

pasta, and the technological and rheological characteristics of cooking 

water was examined. To this aim, spaghetti was chosen since it is the most 

popular pasta form that manufacturers produce today.  
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Figure 2.1. Flow chart of cooking cycle: a) Pasta loading, b) Cooking batch, c) 

Rinsing, straining, unloading.  

Determinations 

Optimal cooking time  

During cooking, the optimal cooking time (OCT) was evaluated by taking a 

sample strand of spaghetti every 30 s and observing the time of disappearance 

of the core of the strand, by squeezing it between two Plexiglas® plates, 

according to the AACC Approved Method 66-50 (AACC, 2000). The time at 

which the core completely disappeared was taken as the OCT.  

Cooking loss and water solid content 

According to the Approved Method 66-50 (AACC, 2000), slightly modified, 

pasta was poured into a Bückner funnel over an aluminum vessel while 

collecting cooking water and rinsed with 100 mL of cold distilled water. Rinsing 

and cooking waters were combined and hereafter referred to as “cooking 

water” for simplicity. For the professional cooking procedure only, a volume 

of cooking water (300 mL) was collected from the pasta cooker tank after the 

straining step. The cooking water was weighed, placed in an air oven at 105 °C 

and evaporated until a constant weight was reached. The cooking loss of pasta 

was expressed as the percentage of the solid substance lost into the cooking 

water referred to the total dry pasta cooked at each cooking batch and the 

solid content of cooking water as the percentage of solid substance in the 

cooking water before drying.  

Overflow and wastewater volume in the pasta cooker 

The overflow was measured as the time per cooking batch in which foam 

formation made the water to go into the overflow drain. The wastewater from 

the overflow drain was the volume (L) of water measured by weighing the 

discharged water from the drainage pipe of the appliance.  
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Swelling index 

The swelling index of cooked pasta (g water g-1 dry pasta) was determined 

according to the procedure described by Foschia et al. (2015) Pasta was 

weighed after cooking and dried in an air oven at 105 °C to a constant weight. 

The swelling index was expressed as: 

 

  
Swelling index =  

Wc − Wd

Wd

 
(Eq. 2.1) 

 
 

where Wc is the weight of cooked pasta (g) and Wd is the weight of the pasta 

after drying (g). 

Textural characteristics 

The textural properties of cooked pasta samples were evaluated using a 

Texture Analyser (TA.XT plus, Stable Micro Systems Ltd., Godalming, UK) 

equipped with a 5 kg load cell. Before being tested, the pasta samples were 

allowed to rest at 25 °C for 10 min in a covered container (Dexter et al., 1983). 

Only for firmness, the cooked pasta was rinsed with 100 mL of cold distilled 

water. 

Pasta firmness was determined according to the Approved Method 66-50 

(AACC, 2000) using a light knife blade (A/LKB) (speed 0.17 mm s-1) and was 

expressed as the maximum cutting force (N) required to cut five pasta strands. 

Pasta stickiness was evaluated using a pasta stickiness rig (HDP/PFS) at a 

compression speed of 0.5 mm s-1 and a compression force of 1 kg for 2 s. It 

was defined as the maximum peak force (N) to separate the probe from the 

surface of the five pasta strands upon probe retraction. 

Rheological properties 

The rheological measurements were carried out using a RS6000 Rheometer 

(Thermo Scientific RheoStress, Haake, Germany), equipped with a coaxial 

cylinder geometry (CCB25 Din) and a Peltier system for temperature control. 

Cooking water was allowed to cool down in a water bath (15±5 °C) for 30 min 

under gentle magnetic stirring. Measurement were conducted at 25 and 80 ± 

0.01 °C. After loading, the samples were allowed to rest and equilibrate for 5 

min at the selected temperature. Steady shear measurements (flow curves) 

were performed over a shear rate range from 3 to 100 s-1. The power law 

model was used to fit the flow data: 

 

 𝜎 = 𝐾�̇�𝑛 (Eq. 2.2) 

 

where  (Pa) is the shear stress, γ (̇s-1) is the shear rate, K (Pa·sn) and n 

(dimensionless) are the consistency and flow coefficients, respectively. 
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The consistency coefficient (K) was used to determine the viscosity-

concentration relationship. The concentration dependence of the consistency 

coefficient at the two temperatures was examined using an exponential model 

and a power law model (Marcotte, Taherian Hoshahili, & Ramaswamy, 2001), 

respectively as follows: 

 

 𝐾 = 𝑎𝑒(𝑏𝐶) (Eq. 2.3) 

 

 𝐾 = 𝑎𝐶𝑏 (Eq. 2.4) 

 

where K (Pa·sn) is the consistency coefficient and C (g kg-1) is the solid 

concentration of cooking water. Parameters a and b were calculated for each 

model.  

 

Statistical analysis 

All experiments were performed in triplicate unless otherwise mentioned. 

Textural data for firmness and stickiness are mean of thirty and fifteen 

measurements (from three different cooking replications), respectively. 

Statistical differences in pasta and solid content in cooking water were 

determined by one-way analysis of variance (ANOVA) and Tukey's comparison 

test (p<0.05). The goodness-of-fit was evaluated based on statistical 

parameters of fitting (coefficient of determination, R2 and standard error). The 

statistical software, R (The R foundation for statistics, v. 3.0.3), was used for 

the analysis. 

RESULTS AND DISCUSSION 

Continuous cooking procedure was first investigated in a professional pasta 

cooker for 7 batches in close collaboration with kitchen operators of the R&D 

department of Electrolux Professional S.p.A. Above this batch threshold pasta 

is perceived as sticky and the cooking water is turbid with off-flavour such as 

the kitchen operators ask to empty the well and use fresh water. Moreover, 

an excessive formation of foam and waste of water were observed. Solid 

content in the collected cooking water progressively increased approaching a 

saturation point (Figure 2.2). The overflow occurred for approximately 10 

minutes per cooking batch with a wastewater volume of 21 L, counting 58.3% 

of the initial well volume. Water consumption during cooking is due to 

evaporation, water absorption by the product and water loss through the 

overflow drain that occurs as a consequence of foam formation due to leached 

components from pasta (Szczesniak & Farkas, 1962; Thewissen et al., 2011). 

These results were useful to delve more deeply into the procedure used in 

food service kitchens and the related issues. Therefore, to reduce wastewater 
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and address product/water changes, the wastewater into the overflow drain 

might be the water consumption cause to be faced. 

 

Figure 2.2. Solid content of cooking water in the pasta cooker as a function of 

pasta batch number. 

 

For this purpose, the professional pasta cooking procedure was simulated on 

the laboratory scale (Figure 2.1) to investigate the effect of continuous 

cooking on pasta quality and cooking water properties under controlled 

conditions.  

The OCT, i.e. the time when the central starch core was no longer visible and 

the starch can be considered to be fully gelatinized (Sissons et al., 2007), was 

13 min 45 s.  

Table 2.1 shows the solid content in the cooking water, as well as pasta 

cooking loss and swelling index of 12 pasta batches, corresponding to more 

than 3 hours of continuous cooking. As expected, the solid content 

progressively increased, similar to solid content of cooking water in the pasta 

cooker (Figure 2.2). This solid concentration gradually approached a 

saturation point, which was not achieved within the batch range of this 

experimental work.  

Increasing the batch number, cooking loss and swelling index of the spaghetti 

progressively decreased from 5.27 to 3.57% and from 1.95 to 1.60% (g water 

g-1 dry pasta), respectively (Table 2.1). Cooking loss is commonly used as a 

predictor of overall cooking performance by both consumers and kitchen 

operators, and it is generally accompanied by a mass transfer of water from 

the cooking medium to the pasta, here quantified by the swelling index (Gull, 

Prasad, & Kumar, 2015; Rakhesh et al., 2015; Tudoricǎ et al., 2002). Pasta that 

features up to 6, 8 and 10% solid loss is considered quite good, regular and 

poor, respectively (Hummel, 1966). Consequently, pasta under our 

investigation can be considered good, which was confirmed by swelling index 

values in agreement with the literature (Rakhesh et al., 2015; Sissons et al., 

2012). During continuous cooking, the increase of solid content in cooking 

water would limit an efficient heat and mass transfer through the strand 
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(reduced concentration gradient) leading to lower hydration and partly 

swelling of starch granules at OCT. The lack of the arrangement of starch 

polymers inside the granule would result in lower solid leaching from the pasta 

matrix during cooking (Marti, Seetharaman, & Pagani, 2013). This finding 

supports the hypothesis of Sissons and Batey (2003) that lower swelling is 

related to a reduced tendency for the granules to leach their contents into the 

surrounding liquid. Moreover, solids in cooking water might act as a physical 

barrier on product surface hindering particles from leaching, which probably 

fill small pores in the gluten network. Furthermore, part of the solids leached 

out of the granule may be aggregated in the protein network partially 

restricting further granule swelling. Amylose is believed to act as a restraint on 

swelling and starch granules do not show complete swelling until amylose has 

been leached out of the granules (Hermansson & Svegmark, 1996). These 

results can hardly be compared with data of the literature since the role of 

cooking water on cooking loss and swelling index has been investigated in 

terms of cooking water composition instead of leached solid concentration, as 

in the present investigation. Specifically, Malcolmson and Matsuo (1993) 

reported greater cooking loss with increased water hardness and when the pH 

was raised over 8. The same was concluded when pasta was cooked in water 

with salt (Majzoobi, Ostovan, & Farahnaky, 2011). 

 

Table 2.1. Effect of batch number on technological properties of cooking 

water and pasta samples. 

Batch  

(n)  

Solid content 

(%) 

Cooking loss 

(%) 

Swelling index 

(g water g-1 dry pasta) 

1 0.53e 5.27a 1.95a 

2 0.77e 5.03ab 1.92a 

3 1.37d 5.02bc 1.90a 

4 1.62d 4.82bc 1.87ab 

5 2.12c 4.54bcd 1.88a 

6 2.41bc 4.33cd 1.84ab 

7 2.65b 4.11de 1.86ab 

9 3.28a 4.10de 1.75b 

12 3.66a 3.57e 1.60c 

aValues followed by the same letter in the same column are not significantly 

different (p<0.05) 

 

Figure 2.3 shows textural values of spaghetti cooked under continuous 

cooking. The firmness value of the first batch (i.e. pasta cooked in fresh tap 

water) can be ascribed to the protein content, indicated in the label by the 

manufacturer. Increasing the number of cooking batch would make the pasta 

significantly firmer (p>0.05). This can be due to the solid retention inside the 
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starch-protein structure and the partial swelling of starch granules, also 

reflected in the decrease in cooking loss. This further supports our hypothesis 

that soluble material was entrapped and did not diffuse in the cooking water. 

Upon cooling, aggregated amylose outside the granules retrograded, 

stabilizing the gluten network and adding firmness to the pasta (Hermansson 

& Svegmark, 1996). Also other starch modifications (e.g. amylopectin melting) 

may supersede amylose content in imparting firmness (Cocci et al., 2008). 

Stickiness did not differ significantly (p<0.05) remaining surprisingly 

unaffected within the range of batch number tested (Figure 2.3). This can be 

explained by both mass and composition factors thus referring to surface 

material quantity and quality, respectively. Surface material quantity might 

change because of surface material leaching kinetic. Constant stickiness values 

with the higher batch number indicated constant material amount stuck to the 

surface. This result disproved the hypothesis that lower cooking loss (Table 

2.1) is attributed to lower stickiness (Majzoobi et al., 2011; Sissons et al., 

2008), while bearing out that total solids lost to cooking water might not 

necessarily be related to stickiness, as indicated by Dexter et al. (1983) Surface 

material quality might change because of the extent of starch gelatinization 

(Sozer, Dalgiç, & Kaya, 2007) and the amount of soluble carbohydrate, 

amylose and amylopectin fragments, exuding from the starch granules during 

cooking (de Noni & Pagani, 2010; Grant et al., 1993). Since instrumental 

stickiness did not change during continuous cooking, the mouthfeel stickiness 

might be related to flow properties of cooking water (Szczesniak & Farkas, 

1962).  

 

 
Figure 2.3. Firmness and stickiness values (N) of the cooked pasta as a function 

of batch number; means ± standard deviations with the same letter are not 

significantly different (p<0.05). 
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In light of the pasta quality values observed, the main issue of the continuous 

cooking procedure may be related to cooking water properties, which is 

indeed indicated by food service operators. Flow properties were investigated 

at room temperature (25 °C) and at the closest temperature to boiling point 

(80 °C), simulating the condition of use. Figure 2.4 shows the flow curves at 25 

°C of cooking water of different batches. In accordance with Che et al. (2008) 

for starch solutions, flow curves of the dispersions showed shear thinning 

behaviour under steady shear flow and the same trend was observed for flow 

curves at 80 °C (data not shown). The decrease in viscosity with the increase 

in shear rate can be attributed to the disentanglement of polymer chains 

under shear flow and breaking of possible structure in solution. This flow 

behaviour was described by a power law model (Eq. 2.2) and the 

corresponding parameters are summarized in Table 2.2. The flow index (n) is 

dimensionless and reflects the closeness to Newtonian flow (n=1), while the 

consistency coefficient (K) indicates viscosity at a shear rate of 1.0 s-1 (Rao, 

2007). The coefficients of determination (R2) were very close to 1, indicating 

that the selected model was adequately suitable for describing the flow 

behaviour of samples (Holdsworth, 1971). Flow index values of 0.83-0.98 at 25 

°C are consistent with a shear thinning behaviour, while at a low batch number 

and 80 °C Newtonian behaviour was observed (Marcotte et al., 2001). These 

results may be attributable to the relatively low concentration of solids. At 25 

and 80 °C, n decreased with the increase in batch number due to more 

entanglements that break upon flow. Increasing the temperature from 25 to 

80 °C led to higher flow index, which indicated that cooking water tends to be 

more shear thinning at lower temperatures. K values increased from 1.4 to 31 

mPa·sn at 25 °C and from 0.5 to 21 mPa·sn at 80 °C increasing batch numbers. 

The viscosity increase due to a higher solid content may result from increased 

restriction of molecular motion due to entanglements between polymer 

chains (Karazhiyan et al., 2009; Lapasin & Pricl, 1995). As expected, K 

decreased with the increase in temperature, indicating a lower apparent 

viscosity at higher temperatures (Holdsworth, 1971; Maskan, 2000).  
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Figure 2.4. Apparent viscosity as a function of shear rate for different batch 

numbers of the cooking water at 25 °C. 

The effect of solid concentration on flow behaviour of cooking water can be 

obtained from parameters of rheological models, which are generally power 

or exponential relationships using apparent viscosity values at 50 s-1, which 

corresponds to effective oral shear rate (Karazhiyan et al., 2009; Nurul, Mohd. 

Azemi, & Manan, 1999). The consistency coefficient (K) instead of the 

apparent viscosity at 50 s-1 was used since pasta cooking water is not intended 

for consumption. The coefficients of determination (R2) were higher for the 

exponential model (Eq. 2.3) than the power law (Eq. 2.3) model. Therefore, 

the former was selected as being more suitable in describing the solid 

concentration effect (Ibarz, Vicente, & Graell, 1987) and the regression model 

parameters “a” and “b” are summarized in Table 2.3. At 80 °C and thus close 

to the temperature of use in pasta cooker, parameter “a” was lower while 

parameter “b” was higher, indicating a stronger dependency of the 

consistency coefficient on concentration. These results are in line with those 

reported by Marcotte et al. (2001), who investigated exponential models for 

food hydrocolloids such as carrageenan, pectin, gelatine, starch, and xanthan. 

The professional continuous cooking procedure was successfully simulated on 

a laboratory scale and this was confirmed by similar values of solid content in 

cooking water. Taking into consideration the indication provided by food 

service operators during the preliminary tests on the pasta cooker, batch 7 is 

an acceptability threshold for working conditions and should be always 

included when investigating pasta continuous cooking.  
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Table 2.2. Power law parameters for cooking water at different batch number 

and temperatures of 25 and 80 °C. 

Temperature 

(°C) 

Batch  

(n) 
n  

K 

(mPa·sn) 
R2 
 

25 1 0.986±0.016 1.4±0.4 0.997 

 2 0.914±0.012 2.8±0.3·10-2 0.998 

 3 0.899±0.008 4.0±0.3·10-2 0.999 

 4 0.896±0.002 5.3±0.3·10-2 0.999 

 5 0.885±0.005 8.3±0.9·10-2 0.999 

 6 0.888±0.004 9.6±3.1·10-2 0.999 

 7 0.894±0.001 11.9±0.7·10-2 1.000 

 9 0.864±0.005 18.9±0.2 0.999 

 12 0.834±0.005 30.7±2.2 1.000 

80 1 0.969±0.039 0.5±0.1 0.982 

 2 1.021±0.037 0.8±0.1 0.994 

 3 1.004±0.043 1.2±0.2 0.998 

 4 0.944±0.026 2.0±0.2 0.999 

 5 0.920±0.059 3.2±1.0 1.000 

 6 0.924±0.029 3.3±0.4 0.999 

 7 0.917±0.038 4.4±0.9 1.000 

 9 0.811±0.133 12.5±1.0 1.000 

 12 0.777±0.133 21.9±2.4 1.000 

Power law parameters: K, consistency coefficient; n, flow behaviour 

index; means ± standard deviation 

 

Table 2.3. Concentration dependence coefficients (± standard errors) for 

consistency coefficient of cooking water (Eq. 2.3). 

Temperature 

(°C) 

a 

 

b 

 

R2 

 

25 1.21·10-3±0.09 0.87±0.04 0.98 

80 0.27·10-3±0.15 1.14±0.06 0.98 

 

CONCLUSIONS 

The effect of professional continuous cooking on cooked pasta quality and 

water properties was investigated for the first time by simulating professional 

pasta cooking on a laboratory scale. Up to more than 3 hours of continuous 

cooking (i.e. 12 cooking batches) resulted in a decrease in cooking loss and a 

lower swelling index of spaghetti. The solid content in cooking water 

progressively increased from to 0.53 to 3.66%, leading to a shear thinning 

behaviour of cooking water, which exhibited Newtonian behaviour at low solid 
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content but high temperature. Increasing the cooking batch number during 

continuous cooking made the pasta firmer (up to 3.03 N), due to the solid 

retention inside the starch-protein network and possibly the only partial 

swelling of starch granules. Surprisingly, stickiness remained unaffected (2.04 

N) during the continuous cooking procedure. In light of these results, kitchen 

operators were reassured about pasta stickiness while the basis for a food 

science based method was established.   
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INTRODUCTION 

The cooking of pasta in an excess of fresh water at boiling temperature starts 

with a water flow that penetrates from the surface of pasta to the core (Cocci 

et al., 2008; Martinez et al., 2007). The water uptake rate is controlled by two 

occurring phenomena: the water diffusion and the macromolecular 

relaxation. The water diffusion through the strand (stochastic phenomenon) 

is driven by a concentration gradient and controls the hydration process at the 

earlier stage. As the water concentration increases, at an elevated 

temperature, starch crystalline domains melt very fast. Water acts also as a 

plasticizer and increases polymer mobility. This allows the macromolecular 

relaxation phenomenon to occur, since in the dry state starch domains act as 

physical constraints to prevent the relaxation toward the equilibrium 

conformation (Del Nobile et al., 2005; Del Nobile et al., 2002). As dry pasta has 

a limited moisture content, the water penetration flow governs starch 

gelatinization and (further) protein polymerization. During cooking, starch 

granules adsorb water and strongly swell. Then the melting of amylopectin 

crystals begins which disrupts the granular structure (Cunin et al., 1995). 

Simultaneously, gluten proteins can polymerize through disulfide (SS) bonds 

at temperatures above 55 °C and moisture contents of 20% (Weegels & 

Hamer, 1998). These SS bonds can be formed by oxidation of free thiol (SH) 

groups (Wieser, 2003) or SH-SS exchange reaction (Kuninori & Sullivan, 1968). 

The impact of the resulting continuous and strengthened protein network is 

opposed to starch swelling and gelatinization in the network interspaces 

(Pagani, Resmini, & Dalbon, 1989; Petitot, Abecassis, & Micard, 2009). From 

this competition results the leaching and final pasta quality (Lucisano et al., 

2012; Rakhesh et al., 2015).  

Material leaching into cooking water is due to starch gelatinization and the 

increased mobility inside the strand during hydration. Regarding starch 

components, mainly amylose leaches into the cooking water and small 

amylopectin molecules displace on the pasta surface (de Noni & Pagani, 2010; 

Singh et al., 2003). Regarding proteins, a very loose gluten matrix allows for a 

large amount of exudate to escape during starch granule gelatinization 

(Matsuo et al., 1992; Resmini & Pagani, 1983; Yaseen, 1993). Among the 

various factors influencing the hydration process and thus leaching behaviour 

during pasta cooking (described in Chapter 2), the role of the cooking water 

characteristics has not been fully elucidated yet. Some authors reported 

higher total organic materials in the rinse and cooking waters and higher 

cooking losses with increased water hardness (Dexter, Matsuo, & Morgan, 

1983). Other workers have demonstrated the importance of cooking water pH 

on the cooking quality of pasta. Adjusting the pH of mineral water (Alary et al., 

1980) and distilled water (Abecassis, Alary, & Kobrehel, 1981) to 6, surface 
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disintegration decreased and cooking losses lowered. Spaghetti cooking 

quality peaked at pH 6 and declined on either side (Feillet, 1984).  

Despite the enormous size and economic value of the food service sector, 

almost all studies are based and focused on the domestic preparation 

procedure (Fusi et al., 2016). The latter implies cooking by using a pot filled 

with tap water on an electric or gas source for a single cooking batch (Oliveira, 

Mitchell, & Badni, 2012). Instead, in the food service the pasta cooker is used, 

and the continuous cooking procedure is performed. Therefore, along with the 

procedure, the impact of the increasing solids in cooking water on the leaching 

behaviour of pasta, the composition of pasta and cooking water, and the 

foaming properties of the latter has never been explored.  

 

AIM OF THE STUDY 

 
 

MATERIALS AND METHODS 

 

Materials 

Durum wheat spaghetti (2 mm diameter) was purchased from the same 

specialized supplier to the food service sector (Marr, Italy) as in Chapter 2. All 

used chemicals, solvents, and reagents were at least of analytical grade and 

purchased from Sigma–Aldrich (Bornem, Belgium), unless specified otherwise. 

 

Cooking procedure and sample collection 

The laboratory scale continuous cooking procedure, as explained in Chapter 2 

(page 28), was performed with some modifications for up to 13 batches. After 

collection and cooling, the cooking water was divided in two parts with 

comparable composition by placing a plastic wall in the middle of the 

container. One part was then centrifuged at 3000 g for 15 min at 20 °C and the 

further called “supernatant” was collected.  

Cooking water and supernatant were analyzed for pH and foaming properties. 

For the analysis of composition and protein extractability, all samples were 

freeze-dried and ground in a universal mill (IKA Labortechnik, Staufen, 

Germany). Batches 1, 2, 6, 7, 12, 13 after cooking in tap water, as well as batch 

1 after cooking in distilled water and adjusted pH were investigated.  

The aim of the present investigation was to study the impact of continuous 

cooking on the technological properties and leaching behaviour of pasta 

and the cooking water composition. Moreover, the polymerization 

behavior of proteins and the foaming properties of cooking water upon the 

continuous cooking procedure were investigated. Finally, the role of 

cooking water pH and mineral content for a single cooking batch, to get rid 

of the solid content factor, was taken into account.  
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DP, CP, W and S followed by the number of batch will refer to dry (uncooked) 

pasta, cooked pasta, cooking water and its supernatant, respectively. 

 

Dry matter and cooking loss 

Dry matter (DM, expressed in %) was determined in triplicate for dry and 

cooked spaghetti, cooking water and supernatant as the mass loss during 

freeze-drying. Cooking loss (CL), i.e. the % of dm material leached into the 

cooking water, was determined as the dm material leached into the cooking 

water of optimally cooked spaghetti until the selected cooking batch: 

 

 
CL (%) =

ΣCL′ (g,  dm)

ΣDP (g,  dm)
 x 100 

(Eq. 3.1)  

 

where ΣCLꞌ is the sum of dm weight (g) of material leached into the cooking 

water until the selected cooking batch, and ΣDP is the sum of dm weight (g) of 

dry (uncooked) pasta until the selected batch. 

 

Water absorption 

Water absorption (WA) was determined in triplicate and calculated by relating 

the weight increase between dry and cooked spaghetti to the dm content of 

dry pasta of the selected batch with correction for the cooking losses:  

 

 
WA (

g

g dm
) =

CP (g) − [DP (g) − CL′ (g,  dm)]

[DP (g,  dm) − CL′ (g,  dm)]
 

(Eq. 3.2) 

 

with CP cooked pasta, DP dry (uncooked) pasta (weight as is or on dm basis), 

and CLꞌ cooking losses, i.e. the dm weight (g) of material leached into the 

cooking water at the selected batch. 

 

pH 

The pH was determined under gentle magnetic stirring (room temperature) 

with a pH meter HI 9025 (Hanna Instruments, Woonsocket, RI, USA). The pH 

of tap water was measured after boiling for 14 min and subsequent cooling to 

room temperature. It was then adjusted by adding HCl (0.5M).  

 

Composition analysis 

Starch contents were determined by gas-liquid chromatography of sorbitol 

acetate following starch hydrolysis, glucose reduction and derivatization as 

described by Courtin et al. (2000), and was calculated as 0.9 times the glucose 

content. 

Protein contents were determined using the Dumas combustion method, an 

adaptation of the AOAC Official Method (AOAC, 1995) to a Dumas protein 
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analysis system (EAS Vario Max C/N, Elt, Gouda, The Netherlands), using 5.7 

as the conversion factor to calculate protein from nitrogen contents. Analyses 

were performed in triplicate and the results are expressed on a dry matter 

(dm) and wet basis (wb).  

Ash contents were determined gravimetrically after combustion of the organic 

material in a muffle furnace at 590 °C, in accordance with the Approved 

Methods 08-01 (AACC, 1983).   

 

Protein extractability  

Size-exclusion high performance liquid chromatography (SE-HPLC) was 

conducted using a Shimadzu LC-2010 system (Kyoto, Japan) with automatic 

injection. The freeze-dried and grinded cooking water, supernatant, dry pasta 

and cooked pasta samples (corresponding to 1.0 mg dm proteins) were shaken 

(150 rpm, 60 min, room temperature) in 1.0 ml sodium phosphate buffer (50 

mM, pH 6.8) containing 2.0% (w/v) sodium dodecyl sulphate (SDS, Acros 

Organics, Geel, Belgium), hereafter referred to as SDS containing medium. To 

evaluate extractability under reducing conditions, 1.0% w/v dithiothreitol 

(DTT, Acros Organics, Geel, Belgium) was added to the SDS containing buffer 

under nitrogen atmosphere, hereafter referred to as DTT containing medium.  

The protein extracts were filtered through a 0.45 µm membrane (regenerated 

cellulose; Alltech Associates, Deerfield, MA, USA) and loaded on a Biosep-SEC-

S4000 column (Phenomenex, Torrance, CA, USA). The elution solvent was the 

SDS containing medium. The flow rate was 1.0 ml/min and the column 

temperature 30 °C. Protein elution was monitored at 214 nm. The injection 

volume was 20 µl. Measurements were conducted in triplicate.  

The protein extractability in SDS containing medium (SDS-EP) was expressed 

as the ratio of proteins extractable under non-reducing versus under reducing 

conditions. For this, the area under the chromatogram of the extract in SDS 

containing buffer was calculated and is expressed as a percentage of the total 

area, i.e. the area in the chromatogram of the corresponding sample extracted 

with SDS and 1.0% DTT containing buffer.  

 

Foaming properties 

Foaming properties were determined with a standardized stirring test 

identical to the one of Wouters et al. (2016). An aliquot (50 mL) of cooking 

water or supernatant was placed in a graduated glass cylinder (internal 

diameter 60.0 mm) in a water bath at 25 °C. After equilibration to this 

temperature for 15 min, it was stirred for 70 s with a propeller (outer diameter 

45.0 mm, thickness 0.4 mm) rotating at about 2000 rpm. After stirring, the 

propeller was immediately removed and the glass cylinder sealed with 

Parafilm M (Bemis, Neenah, WI, USA) to avoid foam disruption by air 

circulation. The foam capacity (FC) is the foam volume 120 s after the start of 
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stirring. Foam stability (FS) is measured by determining foam volume after 60 

min and expressing it as percentage of the FC. Based on the foam height and 

the cylinder internal diameter, foam volume (FV) was calculated and 

expressed in mL.  

 

Statistical analysis 

Samples were produced in threefold starting from scratch for all the cooking 

batches under investigation. Protein and starch contents, and protein 

extractability measurements were performed in triplicate for each of the 

sample. Statistical differences in cooked pasta, cooking water and supernatant 

were determined by one-way analysis of variance (ANOVA) and Tukey’s 

comparison test (p<0.05). The goodness-of-fit was evaluated based on 

statistical parameters of fitting (coefficient of determination, R2 and standard 

error). For each sample, means were compared and error bars or values in all 

figures and tables represent the standard deviation from the means. The 

statistical software R (The R Foundation for Statistics, v. 3.0.3) was used for 

the analysis. 

 

RESULTS AND DISCUSSION 

 

Effect of continuous cooking on pasta properties 

During continuous cooking, visible pasta fragments are mechanically lost from 

the strand surface and edges that can be separated by centrifugation and 

represent the resulting pellet.    

Dry matter of cooked pasta increased from batch 1 to batch 2 and then 

remained constant, indicating a lower loss of solids and/or a lower water 

soaking (Table 3.1). Dry (uncooked) pasta contained 11.3, 58.6 and 0.9% of 

proteins, starch and ash, respectively. Cooked pasta at different batches did 

not show significant differences (p<0.05) in starch contents, ranging from 20.7 

to 23.6% (data not shown). Ash content was slightly higher for the later cooked 

pasta (0.21 to 0.30% for batch 1 to 13, respectively) and the same was for 

protein content, which increased from 4.1 to 4.4% (Table 3.1). Based on the 

spaghetti water sorption kinetic (Del Nobile et al., 2003), it can be inferred that 

the cooking water in which spaghetti is cooked with the continuous cooking 

procedure reduces the water concentration gradient between the cooking 

medium and the pasta matrix. Thus, in the experimental conditions here 

studied, the water diffusion phenomenon slowed down and the lack of 

plasticizer resulted in slower increase in the polymer macromolecular 

mobility. Less polymers were consequently leached into the cooking water. 

These results indicate that cooking pasta in the same water for hours did not 

impact the starch components loss but the one of proteins, which were 

retained more in the matrix for the later cooked pasta. This higher retention 
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might result in different protein network properties, explaining the higher 

pasta firmness and different cooking water characteristics reported in Chapter 

2. This hypothesis about the slower hydration kinetic was supported by the 

results on water absorption and cooking loss (Table 3.2). Water absorption of 

the pasta progressively decreased from 1.9 to 1.7 (g g-1 dm) and cooking loss 

from 7.41 to 3.77%, indeed. Results suggest that when spaghetti is cooked in 

fresh water, it is easy to control its optimal hydration level. However, when it 

was cooked in a more concentrated solution such as the batch 13 in the 

cooking water of the 12th batch, water imbibition through the spaghetti strand 

reduced. This implies a lower hydration extent by the starch-gluten network 

and, consequently, the physical competition for the water molecules 

heightens between starch swelling and polymerized and polymerizing proteins 

(Resmini & Pagani, 1983). The lower hydration counteracts solid leaching at 

the optimal cooking time. In fact, cooking loss theoretically reflects the 

quantity of starch and other components that are released from the pasta 

matrix and lost into the cooking medium (Cole, 1991). For example, Sissons 

and Batey (2003) indicated that lower swelling is related to a reduced leaching 

of starch contents. In our study, the reduced leaching could be related to a 

different polymerization extent or a mobility restriction of the components in 

a matrix with higher dry matter.   

 

Table 3.1. Dry matter (DM), protein, and ash content of cooked pasta (CPi) at 

the i-th batch number. 

Sample 

 

DM  

(%) 

Protein  

(%) 

Ash  

(%) 

CP1 32.76b 4.10c 0.21b 

CP2 34.35a 4.35b 0.24ab 

CP6 34.33a 4.40ab 0.28ab 

CP7 34.46a 4.35b 0.27ab 

CP12 35.04a 4.49ab 0.32a 

CP13 35.18a 4.41ab 0.30ab 
aValues followed by the same letter in the same column are not 

significantly different (p<0.05) 
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Table 3.2. Effect of batch number on cooking loss (CL) and water absorption 

(WA) of cooked pasta (CPi) at the i-th batch number. 

Sample 

  

CL  

(%) 

WA  

(g g-1 dm) 

CP1 7.41a 1.90a 

CP2 6.36ab 1.79ab 

CP6 5.27b - 

CP7 5.17b 1.76b 

CP12 3.78c - 

CP13 3.77c 1.74b 

aValues followed by the same letter in the same column are 

not significantly different (p<0.05) 

 

The differences in protein network properties were monitored by measuring 

the level of proteins extractable in dilute SDS containing medium (SDSEP), 

indicator that decreases with increased polymerization (Hayta & Schofield, 

2004). The degree of polymerization was compared for the dry (uncooked) 

and the cooked spaghetti at the different batches. Approximately 38% of total 

uncooked pasta proteins was extractable in the SDS containing medium. 

Cooking of dry pasta to the optimum cooking time decreased the SDSEP levels 

of pasta to 12.5, 15.6 and 18.2% for cooked pasta at batch 1, 7, and 13, 

respectively. So, proteins became less extractable as a result of the 

polymerization during the heat treatment in water (Hayta & Schofield, 2004; 

Petitot et al., 2009). Even though the SDSEP level of cooked pasta increased 

with cooking batch number but the results were not statistically different 

(p<0.05), changes in the polymerization extent in the spaghetti strand because 

of the lower hydration level can not be excluded. Based on our results, we can 

infer that proteins were retained in the pasta matrix not for a higher 

polymerization level but most probably for the lower mobility inside the 

swollen starch-polymerized protein network that prevents some proteins 

from leaching out. Figure 3.1 shows the elution profile of cooked pasta 

samples at different batches. The first peak (retention time of 5.5 min) 

contained glutenin aggregates of very high molecular weight, while the second 

peak (retention time of 8.4 min) consisted of mainly ω-gliadin. The area in 

between represented glutenin of lower molecular weight. After ω-gliadin, α- 

and γ-gliadins eluted. The most striking difference between batches was the 

peak intensity of albumins and globulins (elution time 9.3-13.0 min). These 

non-gluten proteins, of which albumins are water extractable, were retained 

in the pasta matrix upon continuous cooking without crosslinking. Albumins 

and globulins are monomeric proteins with a molecular weight lower than 25 

k (Veraverbeke & Delcour, 2002). Their retention inside the matrix might be 

related to two factors. The lower plasticizer content leads to higher viscosity 
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and restricted mobility in the matrix resulting in lower possibility for these 

small molecules to be leached out, further confirming hypothesis of Chapter 

2. 

 

 
Figure 3.1. SE-HPLC profile of protein extracts in sodium dodecyl sulfate (SDS) 

buffer of cooked pasta (CPi) at then i-th batch number. A.U., Arbitrary Units. 

Error bars are displayed with lighter color. 

 

Effect of continuous cooking on cooking water properties 

Figure 3.2 shows the dry matter content of the cooking water and supernatant 

of 13 pasta batches, corresponding to more than 3 hours of continuous 

cooking in the same cooking water. As expected, it increased upon increased 

cooking batch number. The dry matter in the cooking water increased by 0.61 

vs 0.42 g from batch 1 to 2 and from 12 to 13, respectively; while in the 

supernatant it increased by 0.52 vs 0.56 g, respectively. The slowing down in 

dry matter content increase suggests that the cooking water after 13 batches 

comes closer to its saturation point for solid concentration, as seen after 

sample evaporation in Chapter 2. In addition, the dry matter increase of the 

supernatant indicates a higher increase in the water-soluble particles 

compared to the insoluble and the bigger in size (fragments) ones. Different 

aspects might play a role here. Pasta fragments are exposed to mechanical 

and thermal stresses during the subsequent cooking batches (e.g. pasta 

fragments from batch 1 are cooked for about 3 more hours), which might 

progressively dissolve parts of these fragments. Indeed, the pasta fragments 

content, calculated as the dry matter content difference between cooking 

water and supernatant at the selected batch, increased from batch 1 to 2 (0.25 
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and 0.38 g, respectively) while decreased from 12 to 13 (2.26 and 2.11 g, 

respectively). The higher dry matter content might also form a protective layer 

on the strand surface and edges thanks to the higher viscosity in the cooking 

water (Figure 2.4), preventing the disintegration during stirring and rolling 

boil. In addition to the higher dry matter, the continuous cooking procedure 

led to a pH drop of cooking water and supernatant from alkalinity in batch 1 

(8.3 and 8.4, respectively) to acidity in batch 13 (6.5 and 6.6, respectively) 

(Figure 3.3). This drop is related to the solid concentration increase and tap 

water (pH 8.2±0.2) addition in between each cooking batch. The drop in pH 

might explain the technological properties of pasta during cooking (Alary et 

al., 1980). Acidic pH increases the interactions between protein and 

gelatinized starch. It has been reported that at an acidic pH, protein molecules 

are positively charged, and starch molecules are negatively charged. Under 

these conditions, electrostatic interactions between proteins and gelatinized 

starch readily occur, enhancing starch-protein interactions (Delcour et al., 

2000; Malcolmson & Matsuo, 1993; Sozer & Kaya, 2008; Veraverbeke & 

Delcour, 2002). In basic media, both protein and starch are negatively charged; 

therefore, fewer interactions may develop. So, acidic cooking water of the last 

batches favors starch-protein interactions, preventing the leaching of part of 

the molecules into the cooking medium. 

 

 
Figure 3.2. Effect of batch number on dry matter (DM) of cooking water (W) 

and supernatant (S) samples. 
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Figure 3.3. Effect of batch number on pH of cooking water (W) and 

supernatant (S) samples. 

 

Cooking water and supernatant composition is shown in Table 3.3. The values 

reflect the blocking effect of the accumulation of components inside the 

cooking water, indeed the enrichment was inversely related to the number of 

preceding cooking batches. Starch, proteins and minerals gave the water its 

peculiar characteristics. Starch components, such as amylose and amylopectin 

short-chain (Matsuo, Malcolmson, Edwards, & Dexter, 1992b), were the most 

abundant in both suspensions (up to 2.8% for cooking water at batch 13) 

increasing the viscosity, the turbidity and giving the water an off-flavour of 

over-cooked flour, as reported by kitchen operators. The protein content also 

increased upon continuous cooking representing up to 0.27 and 0.18% of 

cooking water and supernatant samples, respectively. The increase of protein 

content in cooking water might play a role in the lowering of its pH and the 

foam formation capability during continuous cooking. Finally, the ash content 

increase can be related to mineral leaching from the pasta matrix and the tap 

water addition in between batches. The protein content in the supernatant 

decreased from 8.3 to 4.9 (%, dm) while the starch content increased from 

58.0 to 68.0 (%, dm). It follows that cooking more pasta batches in the same 

cooking water leads to more pronounced enrichment of leached proteins in 

the pasta fragments rather than starch. Increasing the dry matter content, the 

contact between particles gets easier and decreasing the pH their interaction 

and accumulation get stronger in the suspended fragments. Indeed, the 

extractability in the SDS containing medium of proteins in cooking water 

decreased to 53.4% while the one in the supernatant increased to 89.0% 

(Table 3.3). The SDSEP level reduction in cooking water indicates an increase 

in the protein cross-linking extent upon continuous cooking while the opposite 

was for the supernatant samples. These cross-links can form by oxidation of 

sulfhydryl (SH) groups of cysteine and/or SH-SS interchange reactions but also 

by β elimination of intramolecular SS bonds (Kaneko & Kitabatake, 1999; 

Schurer et al., 2007). Both sulfuric and non-sulfuric bonds can decrease the 
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SDSEP value (Rombouts et al., 2010), which indicated that the continuous 

cooking procedure enriched the cooking water in polymerizing gluten and 

non-gluten proteins, mostly aggregating in the pasta fragments. 

 

Table 3.3. Protein, starch and ash content of cooking water (Wi) and 

supernatant (Si) samples; at the i-th batch number. 

Sample 

 

Protein 

 

Starch  

(%) 

Ash  

(%) 

 
Total  

(%) 

SDSEP  

(%) 
  

W1 0.05d 81.4a 0.36c  0.05e 

W2 0.08c - - 0.08d 

W6 0.20b - - 0.15c 

W7 0.22b 75.4a 1.89b  0.17b 

W12 0.27a - - 0.21a 

W13 0.26a 53.4b 2.77a  0.22a 

S1 0.04f 75.6b 0.28c  0.05d 

S2 0.07e - - 0.08c 

S6 0.14d - - 0.16b 

S7 0.16c 84.7a 1.62b  0.16b 

S12 0.18a - - 0.21a 

S13 0.18b 89.0a 2.47a  0.20a 
aValues followed by the same letter in the same column are not significantly 

different (p<0.05) 

 

Figure 3.4 shows the elution profile of cooking water and supernatant samples 

at different batches. The peak intensity for α- and γ-gliadins (which have the 

potential to aggregate via covalent bonds and interactions) but also ω-gliadins 

(only aggregating via non-covalent bonds) increased in the cooking water 

(Figure 3.4a) but not in the supernatant samples (Figure 3.4b). This supports 

the earlier hypothesis about aggregation in fragments, which were then 

separated by centrifugation. Moreover, proteins that are solubilized in 

supernatant may more easily degrade by being more exposed to the 

prolonged thermal and mechanical stresses than the ones protected within 

fragments. Regarding the peak for albumins and globulins, its intensity 

decreased in both cooking water and supernatant, confirming the increased 

retention in the spaghetti strand (Figure 3.1) when its surrounding cooking 

water has been used for more preceding batches. Along with the long time, 

high temperature and mechanical stress conditions, also the decreasing pH to 

6.5 (Figure 3.3) might change the protein extractability profiles. The pH can 

affect the reactivity of free SH groups that can be exposed during the 

continuous cooking procedure. In summary, both polymerization and 
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degradation reactions are favored by the long heat treatment at high 

temperatures and decreasing pH. 

Foaming of the cooking water during a single batch, but also over the 

continuous cooking, is occurring strongly but undesirable. During continuous 

cooking, foaming leads to cost consuming and safety issues for the 

establishment and kitchen operators, respectively. Figure 3.5 shows the 

evolution of FV over time for whipped, cooled cooking water and supernatant 

samples after cooking batch 1, 7 and 13. The samples from batch 13 produced 

significantly (p>0.05) more foam (96 mL) than batch 7 and 1 (80 and 48 ml, 

respectively). Foams from batch 7 and 13 were quite stable, with remaining 

FVs being 60 and 70 ml, respectively, after 60 min. Batch 1 foam was relatively 

unstable, resulting in a low FV of 15 ml after 60 min. This higher stability of 

foam over continuous cooking provides the scientific proof for the empirical 

observations by kitchen operators, even though the foam production method 

was different (whipping versus rolling boil). Interestingly, there were no 

statistical differences (p<0.05) in FV over time between cooking water and 

supernatant foams at the same batch, even though the protein content of 

cooking water was higher than that of supernatant (Table 3.3). This seems 

counterintuitive, as an increase in concentration of surface-active constituents 

would be expected to be accompanied by improved foaming characteristics. 

These results suggest that the suspended, larger particles in the cooking water 

did not provide further proteins for foam generation. They did not impair the 

foaming of bulk proteins, probably being expulsed out of the films during foam 

formation (Fameau & Salonen, 2014). As no negative effect by the larger 

particles was observed, it is thus fair to state that they act as inert particles for 

foam formation and stabilization. In addition to protein content, the decrease 

in pH might also minimize the electrostatic repulsion leading to a rapid protein 

adsorption to the interface and improving the foaming properties in both 

cooking water and supernatant (Foegeding, Luck, & Davis, 2006).  
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Figure 3.4. SE-HPLC profile of protein extracts in sodium dodecyl sulfate (SDS) 

buffer: a) cooking water (Wi); b) Supernatant (Si); at the i-th batch number. 

A.U., Arbitrary Units. Error bars are displayed with lighter color. 
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Figure 3.5. Foam volume (FV) as a function of time of cooking water (Wi) and 

supernatant (Si) samples, at the i-th batch number. Error bars represent the 

deviation from the mean for single measurements of three separate 

experiments. 

 

Effect of solid content and pH on the leaching behavior of pasta 

Changes in dry matter content and pH during the continuous cooking 

procedure were demonstrated to be important factors in determining the 

leaching behavior of pasta and foaming properties of cooking water. To 

discern the effect of dry matter content increase upon continuous cooking and 

investigate the role of pH and minerals in water, single pasta batches were 

cooked in tap water, distilled water and tap water at the lowest experimental 

pH (pH of batch 13). After boiling and cooling down to get rid of carbonated 

water, the pH of tap water was 8.2. Interestingly, adjusted pH and distilled 

water had similar mild-acidic pH close to 7 (6.8 and 6.7, respectively) despite 

the different mineral content. After pasta cooking, the pH was 8.4, 8.0 and 5.9, 

respectively (Table 3.4). Thus, the pH increased during the continuous cooking 

process to alkalinity for tap and adjusted pH water, representing water 

samples with minerals, and it further decreased to acidity in the case of 

distilled water. This change in pH is probably related to solid leaching from 

spaghetti strands in cooking water. The dry matter content in cooking water 

was the lowest for distilled water followed by tap and adjusted pH water and 

the same was found for protein content (Table 3.5).  

The technological properties of pasta were not affected by the different 

cooking water characteristics as shown in Table 3.5. In particular, the cooking 

loss and the water absorption were not statistically different in the different 

cooking water. This indicates that a pH from 5.9 to 8.4 and the mineral content 

of the tap water here studied did not hinder pasta hydration capability and 
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consequent loss of components during cooking. This result is in contrast with 

Alary et al. (1979), who reported reduced cooking loss when pH is adjusted to 

6. Cooking in distilled water led to a decrease in pH and lower solid leaching, 

which supports the observation by Abecassis, Alary, & Kobrehel (1981).  

However, some differences were found on the final composition of pasta 

samples (Table 3.5). Solid and protein contents of pasta cooked in distilled 

water were the highest while the ones of pasta cooked in tap and adjusted pH 

the lowest. Alkaline pH of tap and adjusted pH determines few interactions 

during cooking and lower retention of proteins (Sozer & Kaya, 2008). This 

means that not only pH but also minerals in adjusted water play an important 

role during cooking. Sodium (Na+), calcium (Ca2+) and aluminum (Al3+) ions are 

in tap water the most abundant monovalent, divalent and trivalent cations, 

respectively (De Watergroep, 2019). Thus, tap and adjusted pH waters that 

were alkaline and contained calcium and magnesium ions weakened the 

protein-starch film at the pasta surface leading to lower retention of proteins. 

The ions at the surface acted as a glue to bond pasta surfaces to each other 

determining the perceived stickiness by kitchen operators. This adds another 

factor to consider during continuous cooking of pasta in the same cooking 

water, in addition to dry matter, so solid content, and lower pH from the 

preceding batches.  

 

Table 3.4. Effect of water condition on dry matter (DM), pH and composition 

of cooking water. 

Water 

condition 

DM 

(%) 

pH 

 

Protein  

(% wb) 

Ash 

(% wb) 

Tap  0.59ab 8.4a 0.05a 0.05b 

Adjusted pH 0.65a 8.0b 0.05a 0.07a  

Distilled 0.52b 5.9c 0.04b 0.03c 
aValues followed by the same letter in the same column are not significantly 

different (p<0.05) 

 

Table 3.5. Effect of water condition on dry matter (DM), cooking loss (CL), 

water absorption (WA) and composition of cooked pasta. 

Water 

condition 

DM 

(%) 

CL 

(%) 

WA 

(g g-1 dm) 

Protein  

(% wb) 

Ash 

(% wb) 

Tap  32.76b 7.41a 1.90a 4.10b 0.21a 

Adjusted pH 32.87b 7.64a 1.84a 4.22b 0.22a 

Distilled  34.72a 6.58a 1.83a 4.43a 0.20a 
aValues followed by the same letter in the same column are not significantly 

different (p<0.05) 
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CONCLUSIONS 

The professional continuous cooking was proved to have a significant impact 

on cooking water properties and spaghetti cooking quality. Presence of 

leached solids in the cooking water from preceding batches limited water 

uptake, which resulted in lower cooking losses. This influenced particularly 

protein leaching, which increased in content from 4.10 to 4.41%. Of these 

proteins, albumins and globulins were found to be the most retained ones. 

Increasing the cooking batch number led to a drop of cooking water pH from 

alkalinity (8.3) to acidity (6.5). Consequently, leached proteins concentrated 

more in the pasta fragments of cooking water than starch. Foaming stability 

was increased over continuous cooking, but the accumulated proteins in pasta 

fragments did not aid foam stability by being expulsed out of the films during 

foam formation. Cooking in different pH and without minerals was 

investigated with the findings that the type of water used for cooking 

influenced pasta composition but not cooking loss and water absorption. 
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INTRODUCTION 

The continuous cooking procedure in pasta cookers leads to extensive 

leaching of solids from the cooked pasta that affects cooking water properties, 

particularly viscosity, color, and foaming capacity of cooking water. These 

represent relevant issues affecting the working life of kitchen operators, along 

with time, energy and cost wastes relevant to the food service establishment 

business.  

Among the different commercial uses of power US (Martini et al., 2010),  they 

have been explored for the ultrasound-induced partial or total 

depolymerization of natural polysaccharides. The depolymerization process 

occurs through the effects of cavitation and can involve two possible 

mechanisms: mechanical degradation of the polymer from collapsed 

cavitation bubble, and chemical degradation as a result of the chemical 

reaction between the polymer and hydroxyl radicals (Grönroos, Pirkonen, & 

Ruppert, 2004). Biopolymer structure would be modified by reducing polymer 

size as well as inducing conformational changes. As a consequence, novel 

inter-particle interactions accompanied by a change of the rheological 

properties could be obtained (Seshadri et al., 2003). The ultrasonic process 

has been confirmed to be applicable to many kinds of starches (corn, potato, 

tapioca, and sweet potato) and polysaccharides (Iida, Tuziuti, Yasui, Towata, 

& Kozuka, 2008). BeMiller & Huber (2015) reported depolymerization of the 

starch polysaccharide molecules and large and fairly rapid decreases in starch 

paste viscosity after ultrasonic treatment. The viscosity of starch solution after 

gelatinization was reduced by about two orders of magnitude by the 

ultrasound applied for 30 min on 5% starch slurry (Iida et al., 2008).  

During HPH, high pressure gradients and high local velocities of liquid layers in 

the vicinity of cavitation bubbles are capable of breaking the chains of 

polymers by disrupting covalent bonds (Dumay et al., 2013). As in US, some of 

the OH radicals and H atoms generated from water decomposition can react 

with solute molecules causing polymer degradation (Freudig, Tesch, & 

Schubert, 2003). Polymers in the hot interfacial regions between the 

cavitation bubble and the surrounding liquid may also be pyrolyzed 

(Czechowska-Biskup et al., 2005). Liquids with different properties can thus be 

obtained. Several researchers studied the degradation or disruption of 

polymers caused by HPH, in pure solution or emulsion. High shear, turbulence 

forces, and cavitation produced the reduction of the thickening and stabilizing 

properties of xanthan, the molecular weight and apparent viscosities of 

methylcellulose, and the solution viscosities of large food polymers by partial 

depolymerization (Floury et al., 2002; Kasaai et al., 2003; Lagoueyte & Paquin, 

1998; Modig et al., 2006). HPH can be used to deagglomerate rice starch-

protein aggregates in presence of water (Guraya & James, 2002). In industry, 

HPH has been used as a promising technology for reducing the viscosity of 
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starch pastes that causes problems related to transport and processing (Che 

et al., 2009).  

Modification of biopolymers physical properties are reported to highly depend 

on matrix characteristics and HPH and US intensity, that is, pressure level and 

number of passes applied during HPH, or ultrasonication time (Lopez-Sanchez 

et al., 2011; Vercet et al., 2002). To our knowledge, HPH and US performances 

in the attempt to retain the properties of cooking water obtained from 

continuously cooked spaghetti are hardly comparable due to scarce 

information. Indeed, limited if any information is available on the molecular 

degradation of pasta cooking water components. Moreover, data on the role 

of leached solids concentration in affecting changes in physical properties as 

induced by HPH and US are absent.  

 

AIM OF THE STUDY 

 
 

MATERIALS AND METHODS 

 

Materials 

Durum wheat spaghetti (2 mm diameter) was purchased from the same 

specialized supplier to the food service sector (Marr, Italy) as in Chapter 2. 

 

Cooking procedure 

The laboratory scale continuous cooking procedure was carried out as 

explained in Chapter 2 (page 28). Cooking water samples were collected at 

batch 1, 7 and 13.   

 

Ultrasound (US) treatment of cooking water 

Cooking water was treated with an ultrasonic processor (Hielscher Ultrasonics 

GmbH, mod. UP400S, Teltow, Germany) with a titanium horn tip diameter of 

22 mm. The instrument operated at constant ultrasound amplitude, power 

The aim of the present study was to investigate the use of HPH and US for 

modifying some physical properties of cooking water obtained from 

continuously cooked spaghetti. The final purpose was to obtain cooking 

water with fresh-like properties, especially turbidity and rheological 

properties. To this purpose, cooking water at different batches was 

subjected to HPH and US for increasing pressure levels or treatment time 

periods, respectively, and the changes in some physical properties were 

studied. Finally, to steer food service industry choice on the most feasible 

technology, theoretical considerations in collaboration with engineers 

working within the GR&D department of Electrolux Professional S.p.A were 

elaborated.  
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and frequency of 100 μm, 400 W and 24 kHz, respectively. Right following the 

collection, cooking water samples were divided in two homogeneous aliquots 

and treated, then recombined. Samples were introduced into 400 mL capacity 

(110 mm height, 60 mm internal diameter) glass vessels with a circulating 

mixture of water and glycol. The tip of the sonicator horn was placed in the 

center of the sample, with an immersion depth in the fluid of 70 mm. The 

temperature was recorded as a function of time using a copper constantan 

thermocouple probe (Ellab, Denmark), connected to a data-logger (CHY 

502A1, Tersid, Milano, Italy).  The thermocouple tip was immersed (80 mm) in 

the sample halfway between the dispersion center and the inside wall of the 

vessel. In order to minimize water evaporation during sonication, the vessel 

was closed with a Plexiglas® lid fitted with holes allowing the horn and 

thermocouple probe to be placed at the desired position in the cooking water. 

Cooking water samples and distilled water were treated without temperature 

control for 20 min. Treatment of samples was carried out for 5 and 20 min. 

During the treatment, the temperature was controlled using a cryostatic 

system (Thermo Scientific Haake PC200 A25) set at 80 °C, value as much close 

to the cooking temperature as possible. Following the treatment, the samples 

were cooled down in a water bath (15±5 °C) for 30 min under gentle magnetic 

stirring before analysis. 

 

High pressure homogenization (HPH) treatment of cooking water 

A continuous lab-scale high-pressure homogenizer (Panda Plus 2000, GEA Niro 

Soavi, Parma, Italy) supplied with two Re+ type tungsten carbide 

homogenization valves with a flow rate of 10 L/h was used to treat cooking 

water. The first valve was the actual homogenization stage and was set at 

increasing pressure of 20, 40, 60, 80 and 100 MPa. The second valve was set 

at the constant value of 5 MPa. Temperature was recorded before and after 

the treatments. Following the treatment, the samples were cooled down in a 

water bath (15±5 °C) for 30 min under gentle magnetic stirring before analysis. 

 

Determinations 

 

Solid content 

The cooking water was weighed, placed in an air oven at 105 °C and 

evaporated until a constant weight was reached. The solid content (%) of 

cooking water was the percentage of solid substance in the cooking water. 

 

Color analysis 

Color analysis was carried out using a tristimulus colorimeter (Chromameter-

2 Reflectance, Minolta, Osaka, Japan) equipped with a CR-300 measuring 
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head. The instrument was standardized against a white tile before 

measurements. Color was expressed in L*, a* and b* scale parameters.  

 

Turbidity 

The turbidity was determined by measuring the absorbance at 600 nm and 

room temperature with a UV–visible spectrophotometer (UV-2501PC, 

Shimadzu, Japan). Samples were kept under gentle magnetic stirring right 

before the analysis.  

 

Images 

Cooking water images were captured using a digital camera (Canon EOS 550D, 

Tokyo, Japan) mounted on an adjustable stand positioned 30 cm in front of a 

black cardboard base where the sample was placed. Light was provided by two 

46 W frosted photographic floodlights in a position allowing minimum shadow 

and glare. Images were saved in the JPEG (5184x3456 pixels) file format. 

 

Rheological properties 

The rheological measurements were carried out using a RS6000 Rheometer 

(Thermo Scientific RheoStress, Haake, Germany), equipped with a coaxial 

cylinder geometry (CCB25 Din) and a Peltier system for temperature control, 

as the one used in Chapter 2. Measurements were conducted at 25 and 80±0.2 

°C after HPH treatment, and 80±0.2 °C after US treatment. Before any 

measurements were taken, samples rested for 5 min at the selected 

temperature after loading. Steady shear measurements (flow curves) were 

performed over a shear rate range from 3 to 100 s-1 and the power law model 

was used to fit the flow data (Equation 2.2).  

 

Statistical analysis 

All experiments were performed in triplicate unless otherwise mentioned. 

Statistical differences in solid content, absorbance and temperature upon 

treatment of cooking water were determined by one-way analysis of variance 

(ANOVA) and Tukey's comparison test (p<0.05). The goodness-of-fit was 

evaluated based on statistical parameters of fitting (coefficient of 

determination, R2 and standard error). The statistical software, R (The R 

foundation for statistics, v. 3.0.3), was used for the analysis.  

 

RESULTS AND DISCUSSION 

Cooking water was obtained performing the continuous cooking procedure of 

spaghetti on laboratory scale. Table 4.1 shows the macroscopic images of 

cooking water at batch 1, 7 and 13. At batch 1 cooking water appeared clear 

while at batch 13 particularly turbid, as indeed reported by kitchen operators. 

Differences in water appearance, mainly relevant to color, can be observed 
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particularly between the batch 1 and batch 7. The appearance of cooking 

water is an unpleasant fact for kitchen operators, who relate this change to 

viscosity and off-flavor and empirically use it to choose whether to empty the 

well replacing the volume of water or not. To quantify these changes, samples 

were analyzed for their color and turbidity. Determination of the color 

parameters of the cooking water showed that with increasing the batch 

number, lightness (L*) was constant until batch 10, while increased afterwards 

(Table 4.1). By contrast, redness (a*) and yellowness (b*) decreased upon 

continuous cooking. In other words, the greenness and blueness increased.  

 

Table 4.1. Lightness (L*), color parameters (a* and b*) and images of cooking 

water as a function of batch number.  

Batch 

(n) 

L* Color parameters Images 

 

  a* b*  

1 27.26±0.68 4.45±0.33 -4.80±0.39 

 

7 26.21±0.86 4.43±0.26 -7.58±0.16 

 

13 30.22±1.00 2.68±0.29 -7.87±0.23 

 
 

Effect of US on cooking water properties 

In order to study the effect of ultrasound processing with in situ generated 

heat, sample temperature was left to rise during the ultrasound process due 

to heat dissipation. Trials without temperature control were performed in 

continuous mode. Figure 4.1 shows the time-temperature profiles during 

ultrasound processing of cooking water of batch 1 and 13, and distilled water, 

without temperature control. As expected, temperature increased during 

treatments, reaching approximately 90 °C after 15 min of US. This increase 

approached a plateau which was not achieved in this time range. Batch 13 had 
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constantly higher temperature than batch 1, and distilled water that was 

related to solid content. Effective sonication depends upon balance between 

cavitation and temperature, when the latter is lower the former is favored 

(Ogutu, 2015). US were applied on cooking water at 80 °C, trying to find a 

compromise between the operating temperature in the real environment 

(boiling) and the reduction of volume loss by evaporation during treatment.  

 

 
Figure 4.1. Time-temperature profiles of cooking water at batch 1 and 13, and 

distilled water, during ultrasound provided under uncontrolled temperature 

regime. 

 

Figure 4.2 shows the solid content of batch 1, 7 and 13 as control samples, i.e. 

untreated, and US treated for 5 and 20 min. As expected, solid content 

increased upon continuous cooking for both treated and untreated samples, 

ranging from 0.43 to 3.79%, confirming the results of Chapter 2 and 3. When 

the solid content was lower, i.e. batch 1 and 7, ultrasonic treatment led to 

significant higher solid concentration already after 5 min of processing. This 

means that the application of ultrasounds at 80 °C, even though all 

precautions were taken, led to water loss during treatment and thus slightly 

increased the resulting sample concentration. By contrast, ultrasonically 

treated samples at batch 13 did not show differences compared to the 

untreated one. The particles in suspension might hinder a significant 

evaporation during treatment resulting in samples with similar concentration. 

Sample concentration was thought to be related to sample turbidity and thus 

reduced cooking water quality. Higher absorbance implies a more turbid 

water. Sample turbidity is shown as a function of batch number in Figure 4.3. 

Upon continuous cooking, the increase in batch number and thus the increase 

in solid content, resulted in an increase in the absorbance from 0.09 to 1.04. 

After US treatment, sample absorbance increased for batch 1 and batch 7 

compared to untreated samples, and specifically, increasing the time of 

treatment from 5 to 20 min led to higher absorbance for batch 7. Thus, the 

increase of solid concentration after US treatment led to higher absorbances. 
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For batch 13, instead, similar solid content did not result in similar 

absorbances and after 20 min of US treatment the turbidity increased. These 

data suggest that longer application time result in a more turbid material for 

a concentration factor but also particle dimensions. It is known that the effect 

of US on the turbidity of the sample depends on its solid content (Kardos & 

Luche, 2001; Lorimer, Mason, Cuthbert, & Brookfield, 1995). Then, the higher 

treatment time had a homogenization effect on cooking water components 

and thus reduced the particle size and pasta fragment dimensions. Smaller 

particles more likely stayed in suspension for longer time leading to higher 

absorbances. In addition, this result is in accordance with previous research 

by Ashokkumar et al. (2009) who showed that whey protein aggregate size 

reduced significantly after US. US would be able to disrupt protein–protein 

interactions, which at low concentration are mainly hydrophobic and ionic, 

and can be more easily disrupted than interactions like disulfide bonds that 

occur at higher protein concentrations. The absorbance is also a function of 

the amount of starch components in the cooking water which refract light; the 

more starch components there are, the higher absorbance is.  

 

    

 
Figure 4.2. Solid content of cooking water samples untreated and after US 

treatment for 5 (US 5) and 20 (US 20) min, as a function of batch number. 
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Figure 4.3. Absorbance of cooking water samples untreated and after US 

treatment for 5 (US 5) and 20 (US 20) min, as a function of batch number. 

 

Along with the increase in turbidity, kitchen operators indicated also an 

increase in viscosity of cooking water upon continuous cooking. Flow 

properties were investigated at room (25 °C) and at the closest temperature 

to boiling point (80 °C), simulating the condition of use and possible 

application of US technology on industrial scale. Figure 4.4a and Figure 4.4b 

show the flow curves of cooking water of batch 1 at 25 and 80 °C, respectively. 

Flow curves of the dispersions showed a Newtonian behaviour and this 

because of the low solid content, at both temperatures. Figure 4.5a and Figure 

4.5b show the flow curves of cooking water of batch 7 at 25 and 80 °C, 

respectively. In accordance with Che et al. (2008), flow curves of the 

dispersions showed shear thinning behaviour under steady shear flow for the 

untreated and US treated for 20 min samples, and the same trend was 

observed for flow curves at 80 °C. At batch 13, the untreated samples showed 

higher viscosity curves than both the US 5 and 20 ones, at both temperatures 

(25 and 80°C, Figure 4.6a and Figure 4.6b, respectively). 

This flow behaviour was described by a power law model (Equation 2.2) and 

the corresponding parameters are summarized in Table 4.2. Flow index (n) 

values of 0.975–1.016 for batch 1 at 25 °C are consistent with a Newtonian 

behaviour, while after 5 min US treatment and higher batch number shear 

thinning behaviour was observed. Batch 7 and 13 samples showed a stronger 

shear thinning behaviour when US treated for 20 min, at both temperatures, 

and this could be related to higher solid content. At 25 °C, the consistency 

index K decreased from 8.731 to 3.553 and from 54.268 to 45.847 when 

treating the sample for 5 min for batch 7 and 13, respectively. K increased 

when prolonging the processing time to 20 min. This trend was confirmed at 

80 °C. The increase in consistency index upon a longer US treatment, at batch 

7 and 13, could be related to the higher solid content of such samples that 

results in an increased restriction of molecular motion due to entanglements 

between polymer chains (Karazhiyan et al., 2009; Lapasin & Pricl, 1995). The 
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untreated samples showed higher consistency values compared to the US 

treated for 5 min ones, even though the former had a lower solid content 

compared to the latter. By contrast, a higher solid content generally causes an 

increase in the viscosity (Bhattacharya, Bhat, & Raghuveer, 1992; Maskan, 

2000). So, the solid content could not be directly related to the rheological 

behaviour, since similar solid content did not result in similar behaviour. The 

flow behaviour is usually influenced by the concentration and temperature, 

but here small differences in concentration were not reflected in differences 

in rheological properties. Therefore, the reduction in consistency index could 

be related to an effect of US treatment on aggregates and polymer chains in 

the first 5 min of treatment. Both generation of OH radicals and mechanical 

effects can be responsible for the chain cleavage, with consequent reductions 

in viscosities and consistency coefficients. However, decreases in viscosity 

during ultrasonic treatment have also been attributed to disintegration of 

supermolecular aggregates (Seguchi, Higasa, & Mori, 1994). Only long chains 

are vulnerable to breakage by the action of hydrodynamic forces, while chains 

below some limiting critical size cannot be degraded (Chen & Chen, 2000). This 

is achieved after 5 min.  

From a food service point of view, the higher the batch number the more 

important the effect of US on viscosity is. In addition, the reduction of 

consistency index was obtained after 5 min of treatment while an increase was 

observed prolonging the treatment time. This is a promising result in light of 

an industrial implementation of such a technology, in terms of food service 

operating time and costs, as discussed with engineers.  
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Figure 4.4. Apparent viscosity as a function of shear rate for batch 1 untreated 

and treated samples for 5 (US 5) and 20 (US 20) min at a) 25 °C and b) 80 °C.  

 

 

 
Figure 4.5. Apparent viscosity as a function of shear rate for batch 7 untreated 

and treated samples for 5 (US 5) and 20 (US 20) min at a) 25 °C and b) 80 °C. 
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Figure 4.6. Apparent viscosity as a function of shear rate for batch 13 

untreated and treated samples for 5 (US 5) and 20 (US 20) min at a) 25 °C and 

b) 80 °C. 
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Table 4.2. Power law parameters for cooking water at different batch number 

(untreated, NT) and ultrasonically treated for different times.  

Temperature 

(°C) 

Batch 

(n) 

Time 

(min) 

n 

  

K 

(mPa·sn) 
R2 
 

25 1 NT 1.016±0.029 1.154±0.170 0.999 

  5 0.921±0.040 1.683±0.388 0.997 

  20 0.975±0.054 1.245±0.334 0.998 

 7 NT 0.845±0.026 8.731±1.244 0.999 

  5 0.915±0.041 3.553±0.743 1.000 

  20 0.573±0.041 33.729±4.112 0.996 

 13 NT 0.627±0.021 54.268±4.015 0.994 

  5 0.509±0.014 45.847±3.342 0.968 

  20 0.394±0.031 72.169±5.857 0.987 

80 1 NT 1.103±0.037 0.388±0.062 0.983 

  5 0.850±0.098 0.385±0.071 0.977 

  20 1.148±0.054 0.305±0.085 0.983 

 7 NT 0.834±0.045 2.818±1.046 0.997 

  5 0.982±0.019 0.916±0.105 0.996 

  20 0.599±0.024 13.360±2.929 0.999 

 13 NT 0.627±0.012 31.344±2.105 0.991 

  5 0.527±0.023 24.511±3.204 0.999 

  20 0.327±0.039 42.052±4.682 0.996 

Power law parameters: K, consistency coefficient; n, flow behaviour index; 

means ± standard deviation 

 

Effect of HPH on cooking water properties 

Cooking water obtained from continuously cooked spaghetti was subjected to 

HPH treatment in the attempt to retain fresh-like physical properties. Before 

and after HPH treatment at each batch, samples did not show any differences 

in solid content (data not shown) contrary to US treatment. The effect of 

treatment on sample temperature as a function of pressure and batch number 

is reported in Figure 4.7. A higher batch number resulted in slightly higher 

temperature at the outlet of the homogenizer, for all the pressure tested. 

Increasing the pressure level at each batch number significantly (p>0.05) 

increased the temperature of cooking water. Thus, a higher solid content and 

higher pressure resulted in higher temperature of the samples. Linear 

relationships with high coefficients of determination (R2>0.95) are suitable for 

describing the relationship between the homogenizing pressure and the 

temperatures of homogenized cooking water. The temperatures of 

homogenized cooking water increased linearly with the increasing of 

homogenizing pressure. The slopes of the lines indicating the dependence of 

temperature on the homogenizing pressure were 0.18, 0.19 and 0.15 °C/MPa 
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for batch 1, 7 and 13, respectively. These data confirmed a linear relationship 

of temperature with increasing homogenizing pressure for starch suspensions 

at 2%, with a rate of 0.2 °C/MPa, as reported by Che et al. (2009). The strong 

warming up of the fluid is due to viscous stress caused by high velocity of the 

cooking water flow, friction between the water and the valve, and cavitation 

(Floury et al., 2004). The linear increase in temperature has been widely 

reported with different values for the extent of temperature rise with 

homogenizing pressure (Brookman, 1974; Desrumaux & Marcand, 2002; 

Hayes & Kelly, 2003). From a pasta cooker application perspective, the 

increase in temperature does not represent a great issue but it should be 

taken into account, even more so if cooking water has to be treated at high 

temperatures during the continuous cooking procedure.  

Sample turbidity is shown as a function of batch number in Figure 4.8. Upon 

continuous cooking, the absorbance of the samples increased at all the 

pressure level tested. Particularly, the absorbance of untreated and treated at 

20 MPa samples increased with batch number from 0.1 to 0.9 and 0.1 to 0.5, 

respectively. The increase in turbidity upon continuous cooking is related to 

solid content in cooking water. The effect of HPH on absorbance was the 

significant reduction of the value for all the batches. Then, increasing the 

pressure did not result in a further decrease in turbidity. This means that the 

untreated components in cooking water were all disintegrated during 

homogenization at 20 MPa promoting cooking water clarity. Consequently, 

further increase of homogenizing pressure could not develop more 

transparent cooking water any longer. Similar findings were reported treating 

pre-gelatinized and cooled starch pastes (Che et al., 2009). This is a promising 

achievement in light of an industrial application of the technology, as again 

reported by engineers.  

 

 
Figure 4.7. Temperature of cooking water of batch 1, 7 and 13 after HPH 

treatment as a function of pressure. 
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Figure 4.8. Absorbance of batch 1, 7 and 13 untreated (indicated by 0 MPa) 

and after HPH treatment as a function of pressure.  

 

Flow properties of cooking water after HPH treatment were investigated at 

room temperature (25 °C). As can be observed from Figure 4.9, the apparent 

viscosities of non-homogenized cooking water decreased with the increase of 

the shear rate suggesting that these suspensions exhibit shear-thinning or 

pseudoplastic behavior. The flow behaviour indices of non-homogenized 

cooking water are less than unity (Table 4.3). Applying a homogenizing 

pressure of 20 MPa, the flow behaviour indices approached unity indicating 

that cooking water samples at all batches can be regarded as Newtonian fluids. 

The apparent viscosities of these cooking waters were independent of the 

shear rate in the tested shear rate range. The consistency indices of the 

cooking water were reduced with the application of the minimum 

homogenizing pressure. When pressure was increased beyond 20 MPa, the 

indices increased (see Figure 4.9, and Table 4.3). The flow behaviours of 

cooking water are affected by the rheological properties of the pasta leached 

components, i.e. amylose and proteins (mainly albumins and globulins, see 

Chapter 3), in continuous phase. A strong interaction between aggregated 

components restricts the flow of starch-protein-water system resulting in high 

apparent viscosity (Rao & Tattiyakul, 1999). HPH treatment possibly act on 

these interactions.  

At batch 1, the solid content was too low for a significant effect on apparent 

viscosity (Figure 4.9a). Instead, the HPH processing had a significant effect in 

the case of batch 7 and 13 (Figure 4.9b and c, respectively). During 

homogenization at 20 MPa, the aggregates of starch-proteins and pasta 

fragments were all disintegrated by the intense mechanical forces involved in 

the process leading to remarkable decrease in apparent viscosities and 

transformation from shear-thinning to Newtonian behaviour for these 

cooking water samples. The rheology depends on solid content and upon the 
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molecular weight of components. Thus, the degradation of components arose 

from HPH possibly contributed to the reductions in the apparent viscosities of 

the homogenized components. Czechowska-Biskup et al. (2005) theorized 

that there is a minimum chain length limiting the degradation process and so 

it is reasonable to assume that there is a definite minimum apparent viscosity 

corresponding to the minimum chain length, given a certain concentration. So, 

the polymer chains approached the minimum chain length already at the 

minimum applied pressure. This result, as in the case of US processing, is an 

encouraging result from an industrial application point of view, allowing to 

apply the minimum pressure for obtaining better results.  
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Figure 4.9. Apparent viscosity as a function of shear rate for untreated 

samples and treated at increasing pressure levels at a) batch 1, b) batch 7, c) 

batch 13. 
  
Table 4.3. Power law parameters for cooking water at different batch number 

(non homogenized, NH) and treated under different pressure levels.  

Batch 

(n) 

Pressure 

(MPa) 

n 

  

K 

(mPa·sn) 

R2 

1 NH 0.963±0.028 1.560±0.169 0.995 

 20 1.023±0.022 1.158±0.120 0.999 

 40 1.030±0.018 1.055±0.162 0.999 

 60 1.014±0.033 1.195±0.295 1.000 

 80 0.995±0.033 1.288±0.277 0.999 

 100 0.958±0.050 1.424±0.195 0.999 

7 NH 0.919±0.020 6.869±0.320 0.999 

 20 0.938±0.021 3.425±0.151 0.995 

 40 0.839±0.048 6.367±1.385 0.993 

 60 0.880±0.048 5.249±0.663 0.999 

 80 0.863±0.011 6.406±0.602 0.999 

 100 0.814±0.036 6.699±1.385 0.999 

13 NH 0.783±0.107 37.134±2.632 1.000 

 20 0.974±0.031 4.905±0.651 0.999 

 40 0.854±0.136 15.953±1.106 0.999 

 60 0.727±0.109 31.788±2.620 0.998 

 80 0.774±0.151 29.856±3.409 0.998 

 100 0.856±0.102 13.311±5.376 0.998 

Power law parameters: K, consistency coefficient; n, flow behaviour 

index; means ± standard deviation 
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CONCLUSIONS 

Cooking waters obtained with the simulated continuous cooking procedure 

were ultrasonically treated for 5 and 20 min and homogenized at pressures 

ranging from 0 to 100 MPa to evaluate the effectiveness of US and HPH in 

modifying some physical properties.  

During both US and HPH, the energy input is mostly dissipated in cooking 

water as heat, as a result the temperature of the homogenized cooking water 

increased with the increasing of ultrasound application time and 

homogenizing pressure. US application at 80 °C led to water evaporation and 

thus an increase of solid content when the latter was lower than 2.8%, while 

no differences were found after high pressure treatment. Ultrasonic treated 

cooking water increased the turbidity mostly at lower batches, while 

homogenized cooking water increased the clarity already at the lowest 

pressure of 20 MPa. Both US and HPH disintegrated the pasta fragments 

causing noteworthy decrease in apparent viscosity at the milder conditions. 

These treatments involved cavitation and shear forces that possibly break 

starch-protein molecule chains. The milder conditions, 5 min of ultrasonic 

processing time and 20 MPa of high pressure, represented also the most 

effective in making  US and HPH treated cooking waters appear more fresh-

like, less viscous on hand and equipment, as well as on cooked pasta surface 

when handled, and also likely less foaming capable.   

The complexity of the equipment, the energy input, the increase of 

temperature during treatment, the safety requirements, the investment as 

well as the maintenance costs and safety requirements of each technology are 

of industrial importance. In conclusion, besides results obtained on laboratory 

scale, US technology could be the unconventional technology to be 

implemented in pasta cookers for the treatment of cooking water during the 

continuous cooking procedure aimed at its optimization. 
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INTRODUCTION 

Foam formation during continuous cooking in pasta cooker causes cooking 

water to go into the overflow drain, with consequent water, energy and time 

consumption. No previous paper seemed to describe foam formation in pasta 

cookers and more in general in the food service. Based on the TRLs concept, 

to develop an innovative product, the basic principles have first to be 

investigated (TRL 1), putting the base for the technology concept formulation 

(TRL 2) (Mankins, 2009). Here the principles will be discussed.  

Liquid foam, commonly referred as foam, is a dispersion of a gas within a liquid 

that is formed by gas bubbles separated from each other by thin liquid films 

(Damodaran, 2006). In a liquid foam medium, the volume ratio of gas to liquid 

is very high, and therefore the bulk density approaches that of the gas. 

Stability is one of the most important features of foam because it determines 

the difficulty of its destruction and the extent of the related problems. In a 

typical foam structure, bubbles in the lower part are spherical and of smaller 

size than those at the top. When liquid drains from the upper to the lower 

layers, the bubble at the top distort to form polyhedral, honeycombed 

structure of gas bubbles separated by thin liquid walls. As the films at the top 

become thinner, they are more susceptible to breakage by external stress. 

However, this process is opposed by the capillary pressure gradient along the 

height of the foam column, which prevents the liquid from running out. This 

means that there is a critical height for the foam at which the drain processes 

and capillary pressure are balanced. Other relevant factors affecting the 

stability of foams are surface tension, viscosity, pH, molecular surface 

electrical charge, and temperature (Garret 1993).  

In spite of their tendency to collapse, foams can be constituted in such a way 

that they persist long term or have a long lifetime because of factors such as 

high viscosity of the liquid and the adsorption of surfactants. Another 

important characteristic of foam is the use of foamability as a measure of the 

foaming capacity, which is mainly dependent on the components of the liquid 

and their relative concentrations (Rodríguez Patino et al., 2008). Based on this, 

during continuous cooking of pasta in pasta cookers, foam is generated by the 

agitation, aeration and vaporization of the cooking water by rolling boil. 

Several methods are used to prevent the formation of foam (antifoaming) 

and/or break it once it is formed (defoaming). Antifoamers are foam inhibitors 

added to the liquid phase to prevent foam formation. Defoamers are foam 

breakers developed to eliminate the foam (Denkov et al., 2014). Defoaming 

methods may use chemical or physical effects. Chemical defoaming is based 

on the use of antifoam agents, which can produce a surface tension gradient 

acting as a shear force (Pugh, 1996). They are usually surface-active agents 

formulated to disrupt the surface around the gas bubbles, destabilizing bubble 

walls so that a bubble can break and release the trapped gas. The number of 
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chemical antifoam agents is very large and includes natural compounds such 

as sunflower oil, oleic acid, soapslock from plant oil, as well as synthetic 

compounds such as silicone, polypropylenes, and synthetic fatty acids (Miller, 

2008). In general, antifoam agents, are effective for defoaming but may cause 

serious adverse effects, particularly by contaminating the product. 

Conventional physical methods for defoaming include thermal, electrical, and 

mechanical foam breakers. Thermal and electrical methods have hardly been 

used in practice. Mechanical methods instead have a greater and more 

widespread use. Mechanical foam breakers collapse the foam bubbles by 

mechanical shocks produced by centrifugal, compressive, impact or shear 

forces, suction, or pressure changes. Compared with chemical defoamers, 

they do not always offer economic advantages, and the design and 

manufacture of the systems have to be included in the product development 

steps (Barigou, 2001; Deshpande & Barigou, 2000).  

Among the mechanical foam breakers, the use of ultrasonic energy for 

defoaming has been based on the irradiation of foam by high-intensity 

ultrasonic waves. It represents a clean means of breaking foams without 

making contact with them. Therefore, ultrasonic radiation offers a potential 

alternative to conventional chemical and mechanical techniques. So far, the 

correlations between ultrasonic parameters (frequency, intensity, and time) 

and foam parameters (viscosity and density of the liquid, size and distribution 

of the bubbles, thickness of the foam walls, and compressibility) are still not 

established (Barigou, 2001). Breaking and destroying foams using ultrasonic 

energy is assumed to be a combination of different mechanisms. The 

predominant mechanism is the acoustic streaming, a kind of fluid flow induced 

by the high-intensity acoustic waves that generates turbulence above the 

foam interface and may help to destroy the upper layer of bubbles (Boucher 

& Weiner, 1963). Ultrasonic energy dissipates quickly in the air, the energy 

transmitted in the defoaming application is large enough to break a thin liquid 

film in the foam and thus provides a unique way of destroying foam (Patist & 

Bates, 2008).  

The strategy to breaking foam using ultrasonic waves has been explored for 

several decades mostly on laboratory scale. This could be related to the 

difficulty in efficiently generating high-intensity ultrasound in air, as well as 

the lack of knowledge about the mechanism of action of ultrasound on foams. 

For instance, Dorsey (1959), using a Hartman whistle, applied ultrasonic waves 

at 26, 29 and 34 kHz for controlling foam formation during a fermentation 

process. The whistle had no moving parts and was easily sterilized. The higher 

frequencies showed better results in terms of efficiency and no harmful 

effects of the ultrasound radiation were observed on culture cells. Sandor and 

Stein (1993) studied foam destruction via airborne ultrasonic vibrations 

produced at 20 kHz by using piezoelectrically driven Sonifier probes. Again on 
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laboratory scale, foam was controlled by an ultrasonic sonicator of 20 kHz with 

a horn tip with a 12.7 mm cross-sectional diameter for controlling a 15-mm-

diameter foam column (Barigou, 2001; Morey, Deshpande, & Barigou, 1999).  

The probe was used at a distance of 20 mm from the foam, and also in contact 

with it, showing better results compared to mechanical defoaming tests 

carried out with low-frequency vibrations of 0-40 Hz. Finally, Dedhia et al. 

(2004) confirmed the efficiency of using 20 kHz frequency US for defoaming.  

On industrial scale, some patents have been registered over the years. The 

first ultrasonic defoamers were based on the use of aerodynamic acoustic 

generators, specifically whistle and sirens. Different designs were developed 

but the efficiency of air jet generators remained very low, together with 

problems posed by the introduction of an air jet, the noise problems and the 

high energy consumption (Hay & Shapland, 1970; Sun, 1951). Then, a method 

and apparatus for removing foam based on the use of an array of sonotrodes 

was proposed (Matzner, 1980). Foam was produced in the packaging lines of 

beverages and could be suppressed by applying multiple overlapping 

ultrasonic wave fields at frequencies of about 20 kHz by means of sonotrodes 

located above the foam layer. The drawback was related to the very small 

radiation surface and thus the need to use a large number of units to cover 

any surface. Other solutions were developed to expand the radiation zone 

using reflectors concentrating the radiation over the mouth of the bottles or 

cans (R. P. Singh & Heldman, 2001). Powerful ultrasonic transducers were 

proved to be effective in destroying the foam when used in the air space 

directly above a foaming solution (Chemat, Zill-E-Huma, & Khan, 2011; Riera, 

Gallego-Juárez, & Mason, 2006). From an industrial perspective, almost no 

solution exists for real situations when foam excess occurs in large reactors or 

containers. To the best of our knowledge, only a device constituted by 

stepped-plate transducers has been developed by Pusonics, S.L. 

(www.pusonics.es) for eliminating foams produced in various practical 

situations. The units are constituted by one or several piezoelectric power 

transducers that operate at frequencies of 21 and 25 kHz.  It is claimed to be 

a clean, fast, and efficient system for the control of excess foam produced in 

fermenting vessels and in other reactors with large dimensions, along with the 

high-speed canning and bottling lines during filling operations of carbonated 

beverages (Gallego-Juarez et al., 2010). Up to now, no solutions exist in the 

food service industry to break foam during cooking and all the mentioned 

systems imply the use of horns on surfaces.  

Along with foam formation, during continuous cooking of pasta in pasta 

cookers, kitchen operators report cooking water properties change (Chapter 

2). Specifically, turbidity increase of cooking water displeased kitchen 

operators and is associated to viscosity increase that could aid foam stability 

while affecting the perceived stickiness when handling cooked pasta (Chapter 
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4). On industrial scale, sonication reactors have been introduced to control 

viscosity of dairy ingredients (Zisu et al., 2010) but, to the best of our 

knowledge, any author mentioned the viscosity issue in professional 

appliances, thus an industrial solution for this is not available up to now.  

In the food service, an annoying task that brings together all appliances is 

cleaning of equipment. Traditional cleaning routines follow a standard 

protocol, including manual labor, use of water and chemicals by kitchen 

operators. To decrease the very large volume of water used during cleaning 

processes, water jets and nozzles have been utilized. The use of nozzles on 

water jets can considerably reduce the flow rates of water required for 

cleaning action, but still substantial volumes of water are consumed. In 

addition, energy consumption is also considerable due to the need for high 

temperature water. The efficiency of chemicals usually used is then affected 

by temperature, hardness of water, and other variables that pushes to use 

over quantities of them. In food industries, to solve these common drawbacks, 

US-assisted surface cleaning has been introduced and is nowadays one of the 

most widespread applications of US (Kentish & Feng, 2014; Kieser et al., 2011). 

The use of US for cleaning has been applied for the removal of adherents from 

the surface using an aqueous medium as sound transmitter, chemical deposits 

such as scaling and fouling from equipment surfaces, as well as biological 

deposits such as biofilms on food surfaces (Otto et al., 2011). In an ultrasonic 

cleaning process, cavitation and acoustic streaming work together, but the 

relative contribution of each is a function of frequency. At lower frequencies, 

cavitation dominates the cleaning process, whereas at higher frequencies, 

especially when the time between sonic pulses is too short for the formation 

of cavitation bubbles, acoustic streaming prevails (Awad, 2010). A target 

frequency of 20–100 kHz and a target-specific power ranging from 

approximately 0.2 up to 2.0 W/cm2 was suggested (Otto et al., 2011). 

Applications of ultrasound include the removal of the fouling of the interior 

surface and porous membranes of wine barrels (Oulahal-Lagsir et al., 2000) 

and the cleaning of conveyor belt materials with a  thin layer of water using 

either a protein-rich or a carbohydrate-rich matrix (Axelsson et al., 2013). US 

have been used not only as a decontamination mean but also as a preventor 

of biofilm formation on an industrial scale (Lambert et al., 2010).  
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AIM OF THE STUDY 

 
 

MATERIALS AND METHODS 

 

Materials and equipment 

Durum wheat spaghetti (2 mm diameter) was purchased from the same 

specialized supplier to the food service sector (Marr, Italy) as in Chapter 2. 

The Freestanding Electric Pasta Cooker 700XP (Electrolux Professional S.p.A., 

Pordenone, Italy) with 1 well of 24.5 L capacity was used for the study. The 

pressed well was made of 316 AISI stainless steel of 1.5 mm thickness and the 

infrared heating system was positioned beneath the base of the well. The side 

edges were right-angled.  

 

Cooking procedure 

The pasta cooking process was performed by placing spaghetti strands 

(2000±1 g) in the steel basket and cooked in 18000 g of boiling tap water with 

no salt added. Stirring was frequently performed avoiding spaghetti to stick 

with each other and accumulate on the basket bottom. The pasta was strained 

above the well for 10 s and discharged. Continuous cooking was performed by 

adding fresh water in the well up to the initial volume, waiting the 

temperature to recover the boiling point and starting the new cooking batch. 

Pasta cooking was performed at 6 kW power rating for 12 batches. 

 

Determinations 

 

The aim of the present investigation was to “invent”, identify and design 

the practical application of an ultrasound bath system into the pasta 

cooker, based on theoretical considerations and findings of Chapter 3. The 

implementation of ultrasounds in pasta cooker was discussed in the 

attempt to meet three requirements: 

I. Foam breaking; 

II. Cooking water viscosity reduction; 

III. Well surface cleaning. 

To these objectives, continuous cooking was performed to capture images 

of foam during cooking, cooking water after continuous cooking and 

adhering starchy layer at the end of cooking. Then, a commercially 

available transducer was chosen based on power, operating frequency, 

size, and price. The transducer and the appliance were designed on CATIA 

software to deliver the layout of the prototype. Finally, drawback 

considerations were carried out in collaboration with engineers within the 

GR&D department of Electrolux Professional S.p.A.  



Chapter 5  

86 

Images 

Foam, cooking water and adhering starchy layer images during cooking and 

after cooking were captured using a digital camera (Canon EOS 550D, Tokyo, 

Japan).  Images were saved in the JPEG (5184x3456 pixels) file format. 

 

3D representation  

The software CATIA V5 (Dassault Systèmes, Vélizy-Villacoublay, France) was 

used for shaping the design in 3D on the pasta cooker. The design was carried 

out in collaboration with mechanical engineers within Electrolux Professional.  

The ultrasonic transducer considered for the implementation in the pasta 

cooker is shown in Figure 5.1. The transducer is able to operate at a frequency 

of 20±1 kHz and a power of 100 W. It has a radiating surface with a radius of 

20 mm and an overall height of 30 mm. Its commercial price ranges from 10.0 

to 34.95 $.   

 

  
Figure 5.1. Transducer model used for the pasta cooker ultrasound system. 

 

RESULTS AND DISCUSSION 

During continuous cooking in pasta cookers, foam formation, viscosity 

increase, and the need for a cleaning step represent 3 relevant issues for 

kitchen operators and the establishment business. In the attempt to solve all 

these aspects with a single technology and strategy to be implemented in the 

pasta cooker, US were considered. 

For practical reasons, no moving parts should be added, such as Dorsey (1959), 

and no ultrasonic horn could be used, such as the one used in Chapter 4. In 

addition, no whistle or sirens represent a feasible solution for noise reasons. 

An indirect method of sonication using ultrasonic transducers represents the 

most suitable solution (Kardos & Luche, 2001). The ultrasonic transducer was 

thought to be bonded to the outside bottom surface or to the outside of the 

sidewalls, as implemented by other authors (Awad, 2010). In the pasta cooker, 

the transducer implementation was considered only for the side walls and this 

was for two reasons: beneath the bottom surface there is the heating system, 

which consists of an infrared heating system in the model here considered but 

could be the burners and chimney in gas appliances; then, the implementation 

has to consider the compatibility with the pace and schedule of the assembly 
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line in the manufacturing plant. Among the transducers most commonly used 

for generating ultrasonic vibrations, such as piezoelectric, magnetostrictive, 

electromagnetic, pneumatic, and other mechanical devices, the piezoelectric 

transducer assembly was chosen. This is because it is the most widely used 

configuration in tank-type US treatment devices for their versatility in terms 

of both size and available frequency range, and price (Mason, 2000). The 

ceramic materials convert the electrical energy into a mechanical vibration of 

a particular frequency (Kentish & Feng, 2014). The transducer among all the 

commercially available ones was chosen based on frequency, power, 

availability of power supply board, size and price in accordance with engineer 

specifications and results of Chapter 4. The main parts of the transducer were 

a resonant mass, connectors, transducers and the radiating cone (Figure 5.2) 

(Hunter et al., 2008; Kentish & Feng, 2014). The transducer was properly 

designed on CATIA and the resulting isometric view is shown in Figure 5.3. 

 
Figure 5.2. Schematic representation of the transducer used for the 

formulation of the technology concept in the pasta cooker: a) isometric view 

of layout; b) front view with the different components (resonant mass, 

connector, transducer and radiating cone are indicated). 

 

 
Figure 5.3. Isometric view of the selected transducer as designed on CATIA. 
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The transducer should be bonded through an adhesive epoxy resin to the 

external surface of the well wall, connected to the power supply board and 

inserted in previously cut holes on the insulating material enveloping the well. 

Considering the height of the transducer and the distance between the 

appliance external wall and well surface, 49.5 mm, the space between the 

transducer and the external wall was 19.5 mm, guaranteeing enough space for 

cables and avoiding the contact with external surfaces.  

The radiant units were designed on both the side walls of the tank, opposed, 

to optimize treatment effectiveness. Due to the nature of waves, acoustic field 

distribution in the well would be not uniform (Kentish & Feng, 2014). For a 

correct sizing of the system it was necessary to keep in mind that the 

transducers couple to the liquid planar compression and decompression 

waves, therefore with a very limited opening angle. It was therefore necessary 

that the surface of the radiating units was practically the same as the surface 

of the frame which must be treated (Kruger, 2011). In summary, transducers 

were thought to be placed as much close to each other, on side walls and, for 

space reasons, on the lateral ones.  

 

Foam breaking 

The first requirement was the control or avoidance of foam formation during 

cooking (Figure 5.4).  

US represented the most suitable strategy. Four transducers per side were 

designed above the maximum load mark (Figure 5.5). The dimension of the 

units allowed to perfectly fit them in the foam volume area of the well, in 

between the liquid and the overflow drain. Although some mechanisms of 

defoaming by ultrasounds have been explored, no studies quantifying the 

separate influence of intensity and treatment time are available (Patist & 

Bates, 2008). From a practical point of view, this lack of knowledge 

complicates the optimization of such a technology. Most of ultrasonic 

defoamers were applied in canning lines or fermenting vessels (Gallego-Juarez 

et al., 2010), thus two processes were considered: high-speed lines with little 

exposed surface or very large and static reactors. Foam formation during 

continuous cooking is a dynamic system with a large foaming surface of 0.111 

m2 on the model here considered. Further, the temperature of cooking is close 

to the boiling point, which makes the design of such a system more difficult.  

During continuous cooking in the optimized pasta cooker, rolling boil provides 

the energy for the bubbles to form, which are stabilized by the cooking water 

proteins that at batch 13 were 4.41% (dm) (Chapter 3), while ultrasonic waves 

could break the resulting foam. US should be applied during the cooking 

phase, considering the optimal cooking time of the spaghetti used in this 

research work, this means 13 min 45 s per batch. This means that kitchen 
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operators do not have to be busy in controlling the appliance during cooking 

anymore, with reduced water consumption and safety risks.  

 

 
Figure 5.4. Foam formation during cooking at the 7 batch of continuous 

cooking. 

 

 
Figure 5.5. CAD representation of pasta cooker with 4 transducers located 

above the maximum load mark on the left side of the well: a) lateral view; b) 

isometric view. 

 

Viscosity reduction  

The second requirement was to reduce cooking water properties change as 

much as possible during the serving hours.  

The appearance of cooking water after 12 batch of continuous cooking of 

spaghetti is shown in Figure 5.6. Of course, only turbidity can be visually 

appreciated but it is empirically associated to higher viscosity.  

The project step was to implement into the pasta cooker four transducers (per 

side) below the maximum load mark (Figure 5.7). The shear forces induced by 

cavitation have proved highly effective in reducing the viscosity of cooking 

water obtained during continuous cooking of spaghetti (Figure 4.4, 4.5 and 
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4.6). Thus, the transducer could work in between cooking batches in order to 

reduce the viscosity of cooking water in the attempt to retain fresh-like water 

properties as long as possible. The effectiveness of ultrasonic treatment was 

visible already after 5 min of treatment on laboratory scale and this treatment 

time can be applied in between cooking batches on an industrial scale.  

Based on the solution to be treated, the solid content and component type, it 

takes from 4 to 50 W per liter of liquid (Kruger, 2011). In the pasta cooker, 

cooking water of pasta contains up to 4.04% of solids (Chapter 4), represented 

by starch, proteins and minor pasta constituents. Therefore, using 8 

transducers working at 100 W each, the effect on cooking water properties on 

industrial scale should be tested on a prototype.  

 

 
Figure 5.6. Appearance of cooking water after 12 batch of continuous cooking. 

 

 
Figure 5.7. CAD representation of pasta cooker with 4 transducers located 

below the maximum load mark on the left side of the well: a) lateral view; b) 

isometric view. 
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Surface cleaning 

The third requirement related to the continuous cooking procedure in pasta 

cookers was the cleaning step optimization.  

Figure 5.8 shows the appearance of the well surface of pasta cooker after 

continuous cooking of 7 batch. A starchy film sticking to the wall is clearly 

visible. This is the result of solid leaching into the cooking water of pasta 

components, which attach to the wall and are not removed by cooking water 

turbulence in the subsequent batches. In particular, the starchy film was 

present on the bottom surface and this could be related to the higher 

temperature and gravity precipitation in between batches. Starch exhibits a 

marked tendency to adhere to a contact surface. This stickiness was perceived 

in the palate, teeth, and tongue when the food was being masticated and, such 

as in this specific case, was also perceived on nonoral surfaces such as fingers 

and equipment surfaces. In particular, stickiness of material on pasta cooker 

wall could be attributed to a combined effect of adhesive and cohesive forces, 

but also viscosity and viscoelasticity as well. Authors reported adhesion of milk 

constituents on the surface of processing equipment and subsequent fouling 

in most milk processing plants (Burton, 1968) and adhesion of coagulated milk 

proteins on surfaces (especially on stainless steel) in continuous cheesemaking 

machines (Hegg, Castberg, & Lundh, 1985). In the case of pasta cooking, starch 

and proteins are the most abundant components in leached material and 

contribute to this stickiness. Cohesion, surface tension, and viscosity all 

contribute then to the tack (Adhikari et al., 2001).  

The strategy here proposed concerns a novel cleaning system in professional 

appliances, consisting of eight transducers in proximity of the bottom surface 

where tack mostly occur (Figure 5.9). An ultrasonic treatment of cooking water 

near the bottom could prevent the precipitation and adhesion of such 

components to the well surface, in particular, by applying a step of 

thermosonication in between cooking batches. This means that the ultrasonic 

treatment could be used in combination with the high cooking water 

temperature, close to boiling (80-100 °C), to take advantage of the synergism 

between US waves and temperature. The effectiveness in the removal of 

adherents is related to the jets induced by cavitational collapse on and near 

surfaces (Mason, 2000). Therefore, the cleaning of starchy film on pasta 

cooker walls can be accomplished by the implosion of cavitating bubbles that 

create shock waves, water jets, and microstreaming. 

The power applied (100 W), the available treatment time in between batches 

(around 14 min, as reported by kitchen operators) and the addition of 

surfactants in tap water represent 3 factors to be evaluated when testing the 

efficiency of the proposed solution in a prototype (Mason, 2000).  

By theory, the implementation of such a solution leads to the following 

cleaning suggested procedure: 
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I. Ultrasound treatment in between cooking batches and as a final 

cleaning step (Gallo, Ferrara, & Naviglio, 2018); 

II. Mechanical cleaning of residues with water by kitchen operators 

when the well is emptied.  

US could represent an environmentally friendly washing method that 

potentially reduces water, time, labor by operators and detergent 

consumption introducing an optimized method in the professional appliance.  

 

 
Figure 5.8. Adhering starchy layer to the well surface of the pasta cooker after 

continuous cooking of 12 batches. 

 

 
Figure 5.9. CAD representation of pasta cooker with 4 transducers located 

near the bottom surface on the left side of the well: a) lateral view; b) 

isometric view. 

 

The application of US in the cooking water volume (Figure 5.7 and 5.9) could 

be aimed also at degassing. US forces the small bubbles suspended in the 

liquid to rise to the surface and release the entrapped gas into the 



US technology concept in the professional appliance 

93 

environment, thus reducing the level of gas dissolved below the liquid level 

aiding in the defoaming process.  

The technology concept comprising all the aforementioned solutions is shown 

in the appliance in Figure 5.10 and as a front view of the well in Figure 5.11. 

The upper row was aimed at defoaming, the middle one for cooking water 

properties retention and the lower for cleaning purposes. The upper was 

thought to work during the cooking phase (13 min 45 s), while the others in 

between cooking batches (5 min) and at the end.  

The implementation of piezoelectric transducers on side walls of pasta cooker 

used in professional kitchen was evaluated also in terms of industrial scale 

manufacturing hurdles, also in light of the TRLs evaluation. One potential 

drawback of US application is that extended vibration may cause surface 

erosion because cavitation bubbles exert intense stress on surfaces (Shchukin 

et al., 2011). Erosion effects increase with ultrasonic intensity up to a 

threshold of 50 W/cm2 and are decreasing thereafter. Such an effect has been 

already observed by Whillock et al. (1997) during the study of US-induced 

modification of stainless steel. The susceptibility to cavitation erosion should 

therefore be regarded as a physical property of a particular material and thus 

in situ analysed (Chiu, Cheng, & Man, 2005).  

Even though the operating frequency of the proposed transducer was 20 kHz, 

thus exceeding the threshold of human hearing, the noise could be produced 

by resonance and subharmonic of the well. To prevent as much as possible 

noise problems some precautions should be taken: well made in AISI 316 

stainless steel, isolating material of at least 100 mm thickness, transducers far 

from the external walls limiting vibrations, absence of metal parts attached to 

the well transmitting vibrations (Kruger, 2011). In pasta cooker, all those 

requirements were fulfilled, but the effect in the prototype should anyway to 

be tested. Indeed, the noise limit in professional appliances is set at 85 db 

during exposure time of 8 hours at work (CEI EN 60704-3 2011). For instance, 

blenders present 82-91 dB (A) of noise at 60 cm of distance (Fischer, Spessert, 

& Emmerich, 2014).  

The power to be supplied to the appliance was at maximum 6 kW for the 

infrared heating system to work and up to 1.6 kW for the transducers in 

between cooking batches. Of course, while 6 kW energy was used throughout 

the whole serving hours, 1.6 kW were only thought to be used 10 min per hour 

and 800 W for 28 min per hour. Therefore, the cost-benefit analysis as regards 

the energy demand can give the choice on how much time is needed for the 

treatment and the requirements have to be prioritized.  

The introduction of US must be considered in terms of certifications. In 

particular in the Italian market, the pasta cooker has to be in accordance with 

the followings: 2004/108/EC (EMC), 2006/95//EU (LVD), 2011/65/EU (RoHS); 
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EN 55014-1 (2006), EN 61000-3-2 (2006), EN 61000-3-11 (2000), EN 62233 

(2008), EN 60335-1, EN 50581 and finally EN 60335-2-47.  

Other factors to be counted in are the acceptability by kitchen operators of an 

innovative technology in their daily working life in the kitchen and the proper 

design and cost analysis of the assembly line modification, which have to be 

evaluated in a close collaboration with plant managers.  

 

 
Figure 5.10. CAD representation of pasta cooker with 12 transducers on the 

left side of the well: a) lateral view; b) isometric view. 

 

 
Figure 5.11. Front view of the well with the 3 rows of transducers visible on 

each side.  

 

CONCLUSIONS 

During continuous cooking in pasta cooker, foam formation, viscosity increase, 

and cleaning represent three aspects that were asked to be optimized by 

kitchen operators. The strategy here proposed concerned the formulation and 

design of the layout of an ultrasonic bath system. A proper piezoelectric 

transducer was selected and up to 24 units were successfully designed on the 
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well lateral surfaces. The upper 12 units were aimed at physically breaking the 

foam, the middle ones at reducing cooking water viscosity, and the lower at 

aiding the cleaning procedure. Cooking water and foam to be sonicated were 

in the well in direct contact with the wall surface and thus the transducers. 

This system represented a hybrid system, since there was not a probe to be 

immersed in the water nor a container or medium in between the US source 

and the sample. 

By using this technology, kitchen operators are relieved from the continuous 

monitoring of the appliance during cooking and aid in the annoying task when 

they finish. Within the appliance development, the insight gained in research 

and design of the technology concept should be translated into an ultrasonic 

pasta cooker prototype. By validating the proposed implementation for 

fulfilling all the requirements, an industrial-scale manufacturing process can 

be developed. The “proof-of-concept” should include the cavitation and thus 

reliability testing, noise limit production, compliance with national and 

international standards and certifications, acceptability by kitchen operators 

and finally engineering costs.  
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INTRODUCTION 

Food cooking methods are one of the most essential transformation and have 

been established based on cooking system prices, consumer nutritional needs 

and preferences in terms of taste, smell and texture, as well as the culture and 

ethics. In the food service, such methods have been also selected based on 

time and energy consumption, taking into account the work flow during the 

serving hours and possible drawbacks in the specific kitchen environment in 

terms of efficiency (Bianchi et al., 2019; Pathare & Roskilly, 2016). However, 

the kitchen operator behaviour may even triple the food cooking energy and 

water consumption by applying wrong, even if apparently advantageous, 

procedures. In addition, tradition highly affects food recipes and cooking 

techniques, and this can hinder the introduction of new or modified methods 

(Hennchen, 2019; Oliveira et al., 2012). 

As concerning the continuous cooking of pasta in professional appliances, high 

energy and water consumption during the serving hours occur. During 

cooking, energy is lost from the infrared heating system to the cooking 

container wall; it is lost by the convection and radiation from the outer surface 

of the container wall and insulating material; finally, it is lost by the 

evaporative heat from the free surface of the water. In pasta cookers, there is 

an additional kind of energy loss, that is, the energy associated with the 

cooking water volume overflowing into the drain because of foam formation. 

When wanted, one traditional method for obtaining foam is by using a 

dispersion technique, which may consist of mechanical shaking or whipping a 

surfactant solution (Pugh, 1996). In the food service and most of all during 

pasta cooking in pasta cookers, foam formation during cooking is an unwanted 

whipping of a surfactant (proteins) solution (cooking water) that represents a 

huge issue. Such undesirable foaming, if uncontrolled, leads to a number of 

problems including loss of water, contamination, environment pollution, and 

reduction in working volume (Deshpande & Barigou, 2000). Up to now, the 

control of such a problem has been entrusted empirically to kitchen operators. 

In particular, kitchen operators subjectively manage power rating on the 

appliance and use empirical means to avoid the loss of water into the overflow 

drain, and thus energy, as a step of the cooking method. Cooking of pasta is 

usually carried out in an excess of water at the boiling point (Cocci et al., 2008). 

As regards the amount of water, the method implies the use of about 10 L of 

water per each kg of durum wheat semolina dried pasta, while there is no 

standardized method in AACC Approved Method 66-50 (Barilla, 2019; Peña, 

Wiesenborn, & Manthey, 2014). Even though some authors reported no 

influence on pasta cooking quality when the pasta:water ratio is reduced 

down to 1:3, the standard ratio of 1:10 is still widely used in the kitchens 

(Cimini, Cibelli, & Moresi, 2019). Even if this means the use of higher volume 

of water, the cooking efficiency tends to increase with the volume of cooking 
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water or cooking container size. Additionally, the use of a lid on a pot filled 

with water at the boiling point might cut energy requirements by one-eight by 

limiting the loss of latent heat during evaporation (Hager & Morawicki, 2013; 

Newborough & Probert, 2006). The lid can be used on a domestic scale, 

instead in the food service such a practice would be practically not feasible 

since kitchen operators always need to visually monitor the appliance, also 

from far away while working on another task. As regards the temperature, a 

different cooking method is the passive cooking. Although it may require some 

additional time to attain the final product, partly cooking a product (first 

phase) and then allowing it to continue cooking only with the residual heat 

(second phase) also reduces energy requirements (Kanyama & Bostrom-

Carlsson, 2001). This strategy may limit the energy consumption but still it 

would not solve the foam formation problem in the first phase. Cooking by 

simmering (85-90 °C) instead of boiling (around 100 °C depending on altitude) 

has been proposed as a strategy to reduce energy consumption during cooking 

(Brundrett & Poultney, 1979). This procedure can reduce the evaporation rate 

and hence also make the kitchen a much more acceptable climate. In the 

specific case of continuous cooking in pasta cookers, cooking by simmering 

totally avoids foam formation since the shaking or whipping phenomenon of 

cooking water is prevented. Finally, safety issues related to rolling boil and 

foam formation are eluded. Other aspect is the tendency to assume that more 

vigorous boiling means higher temperatures. The evaporation rate is very 

rapid under these circumstances and the energy used correspondingly high. 

Of course, pasta cooking quality must be taken into account, along with the 

need for more frequent stirring. Pasta stirring during cooking is crucial to yield 

a homogeneously cooked product without agglomerates and/or partly cooked 

areas. Data sets about energy use for different cooking methods, appliances 

and number of portions are incomplete or lacking and no reports can be found 

about pasta cooking by simmering or at different temperature than boiling 

during continuous cooking (Kanyama & Bostrom-Carlsson, 2001).  
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AIM OF THE STUDY

 
 

MATERIALS AND METHODS 

 

Equipment  

Pasta cooking was carried out in a Freestanding Electric Pasta Cooker 700XP 

(Electrolux Professional S.p.A., Pordenone, Italy) using a full size basket (Figure 

6.1). The pasta cooker had 1 well with a capacity of maximum 24.5 L, a control 

knob with 4 power levels and a knob regulating a water tap. The pressed well 

was made of 316 AISI stainless steel of 1.5 mm thickness and the infrared 

heating system was positioned beneath the base of the well. The side edges 

were right-angled to allow flush-fitting junction between units and basket was 

placed on an integrated drip zone. The appliance had four 50 mm legs. 

 

The aim of this research was to study the efficacy of introducing a new 

cooking procedure for the reduction of water and energy consumption and 

prevention of foam formation during continuous cooking of spaghetti in 

pasta cookers.  

To this purpose, water boiling tests were carried out to investigate the 

efficacy of the appliance as a whole in evaporating water and the ability of 

appliance walls and insulating material in retaining heat. Then, single 

cooking batches of spaghetti were cooked at 0, 1, 3, and 6 kW power rating 

in the attempt to find the optimal power rating in terms of foam formation, 

energy efficiency, water balance, cooking water properties and spaghetti 

cooking quality. Finally, continuous cooking at 1 and 6 kW power rating 

was tested for 7 batches with the final aim of identifying the ‘best’ power 

rating and cooking procedure to be implemented during continuous 

cooking in professional kitchens. From a project status evaluations point of 

view, this represented the Technology Readiness Assessment of the level 

4. 
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Figure 6.1. Picture of the professional appliance used in the study, a) 700XP 

Pasta Cooker model (Electrolux Professional S.p.A.); b) full size basket. 

 

Beams (400x40 mm) were used to support the pasta cooker stably and 

centrally on a digital scale while preventing the electric cable and drain to 

touch the scale. Two pipes were attached parallel to the small length of the 

appliance while the other two were attached lenghtwise to the former (Figure 

6.2a). The pasta cooker was thus centrally placed on a digital scale of the series 

DS 150K1 (Kern & Sohn GmbH, Balingen, Germany) with a maximum load of 

150000 g and a reading accuracy of ±1 g. The cooking system is drawn in Figure 

6.2b and shown in Figure 6.3, which displays the pasta cooker positioned over 

the digital scale through the supporting beams.   

 

a) b) 
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Figure 6.2. Pasta cooker supporting system: a) geometric dimensions from 

above; b) isometric view. Dimensions are given in mm. 

 

 
Figure 6.3. Cooking system used with indicated the scale supporting the beam 

system and the bottom part of the pasta cooker. 

 

Four spacers were screwed at each external side of the basket avoiding the 

basket to jiggle and so move the probes during cooking.  

Throughout all tests, vapour and heat generated during cooking were 

exhausted outside through a duct with a commercial kitchen hood EP 12/12 

(Electrolux Professional, Pederobba, Italy). The kitchen hood was installed at 

a height of 150 mm from the pasta cooker and worked constantly at the 

maximum speed during cooking tests. Ambient relative humidity and 

atmospheric pressure were measured by a thermo hygrometer and barometer 

622 (Testo industry corporation, Germany). 

During each test, the electric energy consumption was monitored via a Power 

& Harmonics Analyser Microvip 3 (Elcontrol Energy Net Srl, Marzabotto, 

Bologna, Italy), characterized by an accuracy of 1%.  
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The mass of water evaporated during each test was determined as the 

difference between the initial and final masses of the pasta cooker filled with 

water, basket and dry pasta using the same technical balance mentioned 

above. The mass of water lost into the overflow drain was weighted.  

Temperatures were acquired with the following hardware: 

− One T thermocouple HF/D-30-TT (Tersid srl, Milano, Italy) placed at 

150 mm from the central backside of the appliance was used to 

acquire the instantaneous ambient air temperatures. 

− Five T thermocouples HF/D-30-TT (Tersid srl, Milano, Italy) were used 

to measure water temperatures and located as near as possible to the 

internal side of the well. More specifically, four thermocouples were 

centrally located on each side of the well at 65 mm from the bottom 

of the well and were named based on the location as follows: “a right” 

was located on the right internal side of the well; “b front” on the front 

side; “c left” on the left side; “d back” on the backside. One probe was 

located 125 mm above the “d back” on the backside only and named 

“e back”. In particular, the latter was located at the maximum load 

mark of the well corresponding to 18 L of capacity. Probes had a 

distance from the well surface of 102 mm (Figure 6.4).  

− Four T thermocouples PFA-24-TT (Tersid srl, Milano, Italy) were 

attached to the bottom of the pressed well in correspondence of the 

maximum nub corners. Probes had a distance from the well surface of 

51 mm (Figure 6.4).    

− Two additional T thermocouples HF/D-30-TT (Tersid srl, Milano, Italy) 

were used during energy-efficiency evaluation analysis in the basket 

(50 mm height from the basket bottom and 80 mm from the maximum 

water level) (Figure 6.4). A wire was put through the basket long sides 

to centrally support the probes. 

All probes were stuck to the surface with Kapton adhesive tape (DuPont, 

Wilmington, USA) and had a measurement range of 0-250 °C with an accuracy 

of 0.43 °C.   
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Figure 6.4. Internal surface of pasta cooker well; thermocouples at sides and 

bottom are indicated. 

 

 
Figure 6.5. Internal side of basket with the wire supporting the l- and m- basket 

probes. 

   

Digital scale, thermocouples and Power & Harmonics Analyser were 

connected to a Data Acquisition System GM90PS (Yokogawa Electric 

Corporation, Tokyo, Japan). Communication and transfer of logged data was 

done via a high-speed RS-232 serial port and data was recorded in a computer 
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using LabVIEW software (National Instruments, Austin, Texas, USA). The data 

was further analyzed using Microsoft Excel.  

 

Materials 

Durum wheat spaghetti (2 mm diameter) was purchased from the same 

specialized supplier to the food service sector (Marr, Italy) as in Chapter 2. The 

set time was 660 s supplied by the manufacturer (Rummo, Benevento, Italy). 

 

Water heating and boiling procedure 

Pasta cooker was filled with tap water (15±1°C) to the maximum load mark 

engraved on the well backside and heating until boiling was performed by 

setting the power rating to the maximum level on the knob. That is, the 

maximum nominal power rating corresponding to 6 kW power supply, to bring 

rapidly the cooking water to the boiling point. As the heating process was 

started, the cooking time, water temperatures, weight of pasta cooker and 

energy were automatically recorded with a sampling time of 2 s. As water had 

started to boil, water volume was adjusted to the maximum load and after 

temperature had reached again the boiling point, the knob was set to four 

different nominal power ratings (P≈0, 1, 3, 6 kW) and boiling time set to 3600 

s. The power rating of 0 kW means that the appliance was switched off during 

cooking. Energy efficiency during heating and boiling of tap water was 

evaluated.  

 

Pasta cooking procedure 

The pasta cooking process was subdivided into two distinct phases. The first 

one aimed at heating the cooking water up to its boiling point and followed 

the heating phase of the previous paragraph, whereas the second one 

comprised the real pasta cooking phase.  

Spaghetti strands (2000±1 g) were placed in the steel basket and cooked in 

18000 g of boiling tap water with no salt added. Stirring was frequently 

performed avoiding spaghetti to stick with each other and accumulate on the 

basket bottom, especially at 0 kW power. The pasta was strained above the 

well for 10 s and weighed. Pasta cooking was performed at 0, 1, 3 and 6 kW 

power rating for 1 batch. Continuous cooking was performed by adding fresh 

water in the well up to the initial volume, waiting the temperature to recover 

the boiling point and starting the new cooking batch. Continuous cooking was 

performed at 1 and 6 kW power rating during the cooking phase for 7 batches.  

The cooked spaghetti at each batch was analyzed for optimal cooking time, 

cooking loss, weight increase and water uptake. Cooking water was analyzed 

for solid content and pH. The cooking performance was analyzed for water 

temperature drop, recovery time, energy efficiency and wastewater volume.  
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Determinations 

 

Optimal cooking time  

During cooking at the maximum nominal power rating, some pieces of pasta 

were collected at the set time of 660 s, immersed in cold water (10 °C) and 

halved to detect the extent of the central white annular portion. The extent of 

the white central core was taken as reference for the determination of OCTs 

at the lower power ratings. The OCT was evaluated by taking a sample strand 

of spaghetti every 30 s and observing the time disappearance of the core of 

the strand at the reference extent, by squeezing it between two Plexiglas® 

plates, according to the AACC Approved Method 66-50 (AACC, 2000). The time 

at which the core disappeared to that extent was taken as the OCT and 

pictures of squeezed strands were taken. 

 

Water temperature drop and recovery time 

The temperature drop (Tdrop) was determined by subtracting the minimum 

temperature recorded by the wall thermocouples in the cooking time range of 

0-100 s (Tmin) from the temperature of the water before pasta was added in 

the well. The time of recovery (Timerec) for the water to return to the boiling 

point after pasta incorporation was measured relative to the moment that the 

water temperature reached its minimum after pasta incorporation. 

 

Energy efficiency  

Appliance heating-energy efficiency was measured from 15 to 90 °C, taking 

the mean of temperature measured by l-basket and m-basket thermocouples 

as reference.  

The efficiency (ηheatW) and energy needed to heat the water (EheatW) have been 

calculated according to the followings: 

 

 
ηheatW =  

EheatW

Econsheat
 x 100 (Eq. 6.1) 

 
EheatW =  cpW mW0[TW(t) − TW0] (Eq. 6.2) 

 

The efficiency (ηevap) and energy needed to evaporate the water (Eevap) have 

been calculated according to the followings: 

 

 
ηevap =  

Eevap + EheatW 

Econsevap + Econsheat
 x 100 (Eq. 6.3) 

  

Eevap = qsW(t) =  WlossW x Hv  
(Eq. 6.4) 
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Econsevap and Econsheat were monitored using the aforementioned Power & 

Harmonics Analyser. 

Figure 6.6 shows the block diagram used to represent the entire input and 

output energy flow in each pasta cooking cycle. In particular, it visualizes the 

energy effectively consumed (Econs) in the cooking conditions (heating, 

evaporation, cooking), the energy theoretically consumed to heat water and 

cook pasta (Eth), as well as all the energy losses to the outside environment, 

such as the energy dissipated by convection and conduction from appliance 

(Ecc), and the energy used for evaporation (Eevap).  

 
Figure 6.6. Block diagram of the cooking system examined in this work. 

 

The energy efficiency (ηc) of each pasta cooking cycle examined was estimated 

as the ratio between the instantaneous values of Eth and Econs, as follows:  

 

 
ηc =  

Eth 

EconsOCT
 x 100 

(Eq. 6.5) 

 

With: 

 Eth =  qsW + qsDP + qgel (Eq. 6.6) 

 EconsOCT =  Econsheat + Econsc (Eq. 6.7) 

 qsW = cpW mW[TWmid − TW0] (Eq. 6.8) 

 qsDP = cpDP mDP[TWmid − TDP0] (Eq. 6.9) 

 qgel =  mDPxs ∆Hgel (Eq. 6.10) 

 

where qsW and qsDP are the energies required to raise the cooking water and 

dry (uncooked) pasta, respectively, from the initial temperature Ti0 to the 
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instantaneous water temperature of mid-probe (Tmid), this ranging from TW0 to 

the boiling point; whereas qgel is the heat of wheat starch gelatinization, ∆Hgel 

is the enthalpy of starch gelatinization obtained from Ratnayake, Otani, & 

Jackson (2009). As the dry (uncooked) pasta was the same as the one used in 

Chapter 4, xs was obtained from Table 3.1 and data reported on page. Econsc 

was monitored using the aforementioned Power & Harmonics Analyser.  

 

Cooking loss and water solid content 

The pasta contained in the basket was poured while collecting cooking water 

in the well. 150 mL of cooking water from the well was collected in an 

aluminum vessel immediately after straining for analysis. The cooking water 

was weighed, placed in an air oven at 105 °C and evaporated until a constant 

weight was reached. The cooking loss of pasta was expressed as the 

percentage of the total dry pasta cooked at each cooking batch and the solid 

content of cooking water as the percentage of the cooking water before 

drying. 

 

Weight increase and water absorption  

To measure the increase in weight of spaghetti during cooking as done in the 

food service, the weight increase (WI) was determined as the difference 

between spaghetti weight before and after cooking, according to the 

following: 

 

 
Weight Increase (%) =  

CP (g) − DP (g)

DP (g)
 x 100 

(Eq. 6.11) 

 

10±1 g of cooked pasta from the basket was collected in an aluminum vessel 

immediately after straining for analysis. The cooked pasta was weighed (CPi), 

placed in an air oven at 105 °C and evaporated until a constant weight was 

reached (CPf). The water absorption (WA) of cooked pasta was calculated by 

relating the weight increase between dry (uncooked) and cooked pasta to the 

dm content of dry (uncooked) pasta with correction for the cooking loss by Eq. 

3.2.  

 

pH 

The pH of 500 ml of cooking water collected from the well just after straining 

and cooling was determined at room temperature with a pH meter HI 9812-5 

(Hanna Instruments, Woonsocket, RI, USA). The pH of tap water was 

measured after boiling for 840 s and cooling.  

 

Water balance in the pasta cooker 

The water consumed during cooking (mWcons) was calculated by:  
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mWcons(kg) = mWevap(kg) + mWCP(kg) + mWoverflow (kg) (Eq. 6.12) 

 

With: 
mWevap(kg) = mi(kg) − mf(kg) − mWCP(kg) − mWoverflow (kg) (Eq. 6.13) 

mWCP(kg) = [100 − (
CPf(g)

CPi(g)
x100)] x 

CP (kg)

100
 

(Eq. 6.14) 

 

and mWoverflow is the wastewater mass lost through the drain because of the 

overflow and was measured by weighing the discharged water from the 

drainage pipe. 

 

Statistical analysis 

All experiments were performed in triplicate unless otherwise mentioned. 

Statistical differences in pasta and cooking water were determined by one-

way analysis of variance (ANOVA) and Tukey's comparison test (p < 0.05). The 

goodness-of-fit was evaluated based on statistical parameters of fitting 

(coefficient of determination, R2 and standard error). The statistical software, 

R (The R foundation for statistics, v. 3.0.3), was used for the analysis. 

 

Nomenclature  

c = Cooking phase  

cons = Consumed 

Cpi  = Specific heat of the i-th component 

 = 2.256 (kJ g-1 K-1) for water 

 = 1.840 (kJ g-1 K-1) for dry (uncooked) pasta 

Econsi  = Energy consumed by the appliance (kJ) during the i-th phase 

Eevap = Latent heat of vaporization added to the water (kJ) 

Eth = Energy theoretically consumed to cook pasta (kJ) 

f = Final 

Heat = Heating phase of water 

Hv = Heat of vaporization  

 = 626.66 (W h-1) at 100 °C  

mi = Amount of the i-th component used to heat water and cook 

pasta (g) 

qsi = Sensible heat for the generic i-th component changing its 

temperature from Ti0 to TWmid (kJ) 

qgel = Heat of starch gelatinization (kJ) 

TWmidi = Instantaneous temperature of the cooking water at the generic 

i-th position (°C) 
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RESULTS AND DISCUSSION 

 

Effect of power rating on heating and boiling of water 

During tests, ambient temperature was 25±2 °C, atmospheric pressure was 

around 1010±2 atm, and relative humidity was 77±3%. Heating of water was 

carried out at the maximum nominal power rating, a procedure representing 

the standard heating method in the food service allowing to make the 

appliance ready-to-use in the shortest time. The boiling point in the well was 

reached in 1220±180 s as measured by the l- and m-basket-probes. During 

heating, water temperature difference between the bottom and the wall 

probes progressively lessened from 8.9±0.5 °C to 0.7±0.5 °C. While the 

theoretical energy (EheatW) necessary to heat water, as calculated via Eq. 6.2, 

was 5681±85 kJ, the energy consumed by the appliance (Econsheat) was 6732±72 

kJ. The efficiency to heat water to boiling (ηheatW) was thus 84.3%.  

Table 6.1 shows the efficiencies to evaporate water (ηevap) during the boiling 

tests performed at different power ratings. During boiling at the maximum 

nominal power rating, the formation of an intense thrust of water vapor 

bubbles led to a slight loss of water out of the appliance that was here 

neglected. During boiling at P≈ 3 kW and P≈6 kW, Eq. 6.3 was used, while 

during heating and “boiling” at P≈ 1kW and P≈0 kW Eq. 6.1 was used. The 

evaporation efficiency was slightly negatively affected by lowering the power 

rating from 6 to 3 kW, decreasing from 89.8 to 88.2%, respectively. The 

efficiency at 0 and 1 kW was negatively affected by the absence or too low 

heating energy, respectively.  

Adjusting the control knob of the appliance at the different power ratings led 

to different water temperature profiles after the boiling point was reached 

(data not shown). When the appliance was supplied by P≈3 kW and ≈6 kW, 

water temperature remained constant at the boiling point over time leading 

to efficiencies higher than 88%. Instead, when the knob was set to P≈1 kW, 

the water temperature started to drop from the boiling point and reached 98 

°C in 10 min. Turning off the power rating (P≈0 kW) temperature dropped to 

90 °C. This indicates that when ranging between 3 and 6 kW power rating, the 

water temperature in the well was not highly affected being the absorbed 

energy during heating and the power during the boiling phase high enough for 

Ti = Initial temperature (°C) 

W = Water 

xs = Mass fraction of starch in dry (uncooked) pasta (g g-1) 

∆Hgel = Gelatinization enthalpy of wheat starch (kJ kg-1) 

ηc = Pasta cooking-energy efficiency (%) 

ηevap = Evaporating-energy efficiency (%) 

ηheat = Heating-energy efficiency (%) 
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keeping the boiling point. When decreasing the power lower than 3 kW, the 

supplied energy did not represent the minimum threshold for water to boil, 

being dissipated by conduction and convection through the appliance walls 

and water surface. 

 

Table 6.1. Effect of power rating on the energy consumed by the appliance 

during evaporation (Econsevap), the evaporation energy efficiency (ηevap) and the 

final temperature of water (Tf). 

Power rating 

(kW) 

Econsevap 

(kJ) 

ηevap 

 (%) 

Tf 

(°C) 

0 0 73.9±0.4 69.1±0.4 

1 3744±36 71.2±0.1 93.5±1.7 

3 7836±1195 88.2±0.2 98.4±0.1 

6 10140±2093 89.8±0.6 99.2±0.0 

 

Effect of power rating on pasta cooking 

When pasta was added to the boiling water, a sudden decrease in the water 

temperature was recorded by all the eleven thermocouples in the well (Figure 

6.7). This decrease is explained in part by Fourier’s law of heat conduction, 

which states that when a temperature gradient exists within a system, heat 

energy will flow from the higher temperature to the lower temperature region 

(Holman, 2002). Therefore, pasta initially at room temperature, rapidly 

absorbed heat from the boiling water. When the power rating was lower than 

3 kW (Figure 6.7a and b), the energy supplied by the infrared heating system 

under the well bottom surface was not sufficiently high to restore the initial 

temperature leading to a continuous drop of temperature during cooking. 

When the power rating was kept higher than 3 kW (Figure 6.7c and d), the 

pasta cooker restored the energy absorbed by the pasta and resulted in a 

subsequent increase in water temperature back to the boiling point. The 

corresponding time required to recover the boiling point of water will be 

referred as “recovery time” throughout the discussion.  

Temperature value variation was due to the convective fluxes. These were 

related to the mixing action that was frequently carried out during cooking to 

prevent spaghetti strands to form agglomerates and be non-homogenously 

cooked. In addition, the collapse of vapor bubbles in correspondence of the 

thermocouple could lead to sudden changes of the temperature value.  

Temperature values were averaged across f-, g-, h-, i-bottom probes for the 

bottom-probe and a-, b-, c-, d-mid-probes for mid-probe. In all the power 

ratings here tested, temperatures of the bottom probe were constantly higher 

than those of the wall because of the heating system position (Figure 6.7). Top 

probe, located at the initial water level, followed the trend of the wall probes 

and, therefore, it will not be discussed here after. When pasta cooker knob 
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was kept at 6 kW (Figure 6.7d), the temperature at the bottom was not 

affected by pasta addition, while at 3 kW (Figure 6.7c) it experienced a slight 

drop.  When power was reduced to 1 kW (Figure 6.7b), the wall temperature 

was constantly lower than the bottom one. Cooking without heating (Figure 

6.7a), i.e. at power off or P≈0 kW, led to differences only during the 

temperature drop phase, after which heat was homogeneously distributed in 

the well.    
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Figure 6.7. Cooking water temperature profiles during the optimal cooking 

time at: a) P≈0 kW, b) P≈1 kW; c) P≈3 kW; d) P≈6 kW. Water temperature is 

referred to the three different positions in the well. Bottom probe is the mean 

of f-, g-, h-, i-bottom probes; mid probe is the mean of the a-, b-, c-, d-mid- 

probes. Lighter lines indicate the standard deviations from the means. 

 

Table 6.2 reports the minimum temperature reached by the thermocouples 

upon pasta addition (Tmin), the corresponding drop from the initial 

temperature to the minimum one (Tdrop), the time needed to recover the initial 

temperature (Timerec) and the final mid probe temperature at the OCT (Tf). 

Overall, the wall probe always recorded the lowest minimum temperature 
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than the bottom one. However, during the temperature drop values never fell 

under 95.1 °C. During cooking, pasta tends to congregate near the bottom of 

the basket; therefore, it seems reasonable that temperature drop would be 

greater at the wall beyond which only the insulating material exists rather than 

at the bottom. This difference increased by increasing the power rating, being 

0.7, 1.4, 2.0 and 2.7 °C for P≈0 kW, 1 kW, 3 kW and 6 kW, respectively. When 

the appliance was switched off, water underwent a greater temperature drop 

than water heated at higher power ratings. In all cases, the greater the 

temperature drop, the longer it took for the water to recover its initial boiling 

temperature (recovery time). The recovery time required for water to recover 

its boiling point is determined in part by the rate of heat transferred from the 

infrared heating system to the stainless-steel well bottom, which in turn is 

determined by the temperature difference between the infrared heating 

system and water and the resistance to heat transfer. It follows that higher 

temperatures reached by the well bottom surface through radiation resulted 

in higher heat transfer to the water, which explains the shorter recovery time 

when heated at high (3 and 6 kW) rather than low (0 and 1 kW) power ratings. 

The recovery time at 6 kW was lower than 62 s and increased up to 331 s when 

power was halved. When spaghetti was cooked at a power rating of 0 and 1 

kW, the heat transfer to the cooking water was not high enough to regain the 

boiling point. This observation indicates that the heat dissipated to the 

surrounding air was too great relative to the heat supplied by the infrared 

heating system at that given power rating. Consequently, the temperature at 

the end of cooking was lower than the boiling point for the lower power 

ratings (85.05 and 93.52 °C for 0 and 1 kW power rating, respectively).  

 

Table 6.2. Minimum temperature after pasta addition (Tmin), water 

temperature drop (Tdrop), time of recovery (Timerec) and final temperature of 

cooking at OCT (Tf) for cooking at different power ratings. For Tmin, Tdrop, Timerec 

the bottom-probe and mid-probe are reported while for Tf the mean of 

bottom-probe and mid-probe; with bottom- and mid-probe the mean of f-, g-

, h-, i-bottom probes and a-, b-, c-, d-mid-probes, respectively.  

Power 

rating 

(kW) 

Tmin 

(°C) 

Tdrop 

(°C) 

Timerec 

(s) 

Tf 

(°C) 

 
Bottom-

probe 

Mid-

probe 

Bottom-

probe 

Mid-

probe 

Bottom-

probe 

Mid-

probe 
 

0 95.7 95.1 4.6 4.6 ∞ ∞ 85.1 

1 96.8 95.4 2.9 3.9 ∞ ∞ 93.5 

3 98.4 96.4 2.2 3.0 179 331 100.1 

6 100.3 97.6 0.3 2.2 0.01 62 100.4 
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The effect of power rating on the energy consumed, the energy efficiency for 

cooking and the water consumed by evaporation and overflow are shown in 

Table 6.3. The energy consumed for cooking to the OCT was calculated as the 

sum of the energy to heat water from room temperature to boiling and the 

one to cook pasta to the OCT by Eq. 6.7. More specifically, since the cooking 

water was generally heated from 15 to about 99.9 °C, Econsheat amounted to 

about 6732 kJ. This resulted in quite a low cooking energy efficiency of 58.3% 

at the maximum power that increased to 90.4% when the appliance was 

switched off for cooking (0 kW). The lower efficiency of the cooking system 

operating at the maximum power setting undoubtedly derived from the fact 

that the energy supplied was by far greater than that needed for the pasta 

cooking process. Throughout the water heating phase (at 6 kW), the energy 

efficiency (ηheatW) was high in the range of 84.3% with the overall mass of water 

evaporated of 0.2±0.1 kg. During cooking at 0 and 1 kW power, the mass of 

water evaporated was 0.4 kg, while at 6 kW was 1.3 kg. The intense 

evaporation of water represents a waste of cooking water and energy that 

should be avoided. This founding also corroborated our assumption that a 

good practice is performing the cooking phase at the minimum power, i.e. 1 

kW. At this power, the energy efficiency was high enough, with low mass of 

evaporated water and no foam formation, and thus no overflow during 

cooking. This power rating also allowed to keep water temperature in the well 

over 93.52 °C (Table 6.2) reasonably guaranteeing cooking of pasta to occur 

properly.   

 

Table 6.3. Effect of power rating on the energy consumed by the appliance 

during the cooking phase to the OCT (EconsOCT), the pasta cooking energy 

efficiency (ηc) and water consumed by evaporation (mWevap) and overflow 

(mWoverflow). 

Power rating  

(kW) 

EconsOCT  
(kJ) 

ηc 

(%) 
mWevap 

(kg) 

mWoverflow 

(kg) 

0 7404±145.5 90.4±1.6 0.4±0.1 0 

1 8268±145.5 80.9±1.6 0.4±0.1 0 

3 9499±87.1 70.1±0.6 0.6±0.1 0 

6 11460±145.5 58.3±0.8 1.3±0.4 2.1±0.3 

 

Cooking starts on the surface of the spaghetti strand and progresses toward 

the core of the strand in a radial direction (Fasano, Primicerio, & Tesi, 2011; 

Del Nobile et al., 2003), and it involves the gelatinization of starch and the 

(further) polymerization of the protein present in the gluten matrix 

(Lambrecht et al., 2017). Thus, cooking requires that pasta is heated above the 

gelatinization and protein polymerization temperature and that the 
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temperature is held as the water penetrates into the strand. The temperature 

for starch gelatinization and protein polymerization to occur is usually over 50 

and 90 °C, respectively (Bruneel et al., 2016; Sissons et al., 2012). It follows 

that pasta cooking starts before the boiling point has been reached. When 

pasta was cooked at a power rating of 0 and 1 kW, the water never boiled 

again (Table 6.2). However, to reach the same cooking extent, pasta required 

a significantly longer cooking time than when cooked at higher power ratings. 

In Table 6.4 the OCTs and the corresponding images of spaghetti central white 

core are reported. The set time provided by the manufacturer was taken as 

the OCT at P≈6 kW. A spaghetti strand as pressed between two Plexiglas plates 

exhibited three concentric zones (Sicignano et al., 2015). The external area 

appeared to be swollen, the middle one denser and the inner one almost 

compact, probably due to lower levels of hydration and degree of starch 

gelatinization at this time. The OCT of 660 s was thus considered the time 

needed to get the desired “al dente” texture and degree of cooking fitting with 

food service requirements, lower than the 825 s as determined in Chapter 2.  

While at P≈3 kW the OCT did not increase, lowering the power supply to P≈1 

and 0 kW led to an OCT of 810 and 930 s, respectively. This result can be 

related to the temperature distribution in the well during cooking (Figure 6.7). 

When temperature slightly dropped but recovered the boiling point, pasta 

cooking occurred at similar rates. Instead, when temperature continued to 

drop, cooking rate in pasta slowed down. In addition, comparing the squeezed 

spaghetti cooked at P≈0 kW with the ones at P≈6 kW, the former appeared to 

have a wider middle region with lower density and an irregular external area. 

This indicates that the higher cooking time allowed to reach the same cooking 

extent in the central core, while being too long for the heat and water 

exposure at the external and middle spaghetti areas.  
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Table 6.4. Effect of power rating on optimal cooking time (OCT) and the 

corresponding appearance of spaghetti strand. 

Power rating  

(kW) 

OCT 

(s) 

Images 

 

0 930a 

 
1 810b 

 
3 660c 

 
6 660c 

 
aValues followed by the same letter in the same column are not 

significantly different (p<0.05) 

 

Greater cooking losses were found when pasta was cooked at 6 kW power 

rating than for any other configuration (Table 6.5). Cooking losses of pasta 

decreased when pasta was cooked at 0 and 1 kW, and further decreased when 

the power rating was 3 kW. At 6 kW a strong rolling boil was obtained in the 

cooking well, which enhanced the movement of the strands, promoting 

surface disintegration and cooking loss. In addition, pasta was subjected to 

harsher conditions, i.e. a foam layer was formed after 240±60 s of cooking, 

which could result in larger amounts of starch granule disruption and higher 

cooking losses. Instead, intermediate cooking losses at 0 and 1 kW were 

associated to longer cooking time for starch gelatinization at the core of the 

strand that concurrently led to higher hydration of external areas and thus 
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components leaching (Sobota & Zarzycki, 2013; Zweifel et al., 2003). Cooking 

loss at 3 kW was slightly lower.  

No differences in weight increase were detected between the samples (Table 

6.5). This is valid also for water absorption, whose values were not significantly 

different among the different power rating used.  

Table 6.6 shows the solid content of the cooking water resulting from pasta 

cooked at 0, 1, 3 and 6 kW power rating. The maximum power led to the 

highest solid concentration of 0.87% while no differences were detected in all 

the other cases ranging from 0.62 to 0.65% for power rating 3 and 0 kW, 

respectively. The higher solid content confirmed that spaghetti strands were 

exposed to harsher mechanical and thermal stresses during cooking by rolling 

boil. The higher solid content was accompanied by a lower pH in cooking 

water, which confirmed the observations of Chapter 3 (Figure 3.3 ).  

 

Table 6.5. Effect of power rating on cooking loss (CL), weight increase (WI) and 

water absorption (WA) of cooked pasta. 

Power rating  

(kW) 

CL 

(%) 

WI 

(%) 

WA 

(g g-1 dm) 

0 3.5±0.2ab 142.4±1.7a 1.6±0.1a 

1 3.4±0.2ab 142.7±4.6a 1.6±0.1a 

3 3.2±0.3b 139.2±2.4a 1.6±0.1a 

6 4.0±0.2a 142.0±0.3a 1.6±0.1a 

aValues followed by the same letter in the same column are not 

significantly different (p<0.05) 

 

Table 6.6. Effect of power rating on solid content (SC) and pH of cooking water. 

Power rating  

(kW) 

SC 

(%) 

pH 

 

0 0.7±0.0b 7.2±0.2bc 

1 0.6±0.1b 7.4±0.1b 

3 0.6±0.1b 7.8±0.1a 

6 0.9±0.1a 6.8±0.1c 
aValues followed by the same letter in the same 

column are not significantly different (p<0.05) 

 

Cooking of 1 batch of pasta at different power ratings led to different results 

in terms of energy efficiency, overflow, water use, cooking water properties 

and cooking loss of pasta. Even though cooking at 1 kW power rating increased 

the cooking time by 150 s compared to the standard 6 kW power rating, the 

results on water temperature profiles, energy efficiency and water balance 
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suggested to use the former during the continuous cooking procedure in the 

food service.  

 

Effect of power rating on continuous cooking of pasta 

Continuous cooking of pasta in the pasta cooker was performed for 7 batches 

at the minimum, i.e. 1 kW, and maximum power rating, i.e. 6 kW. In between 

batches, cooking water was heated up at 6 kW, while upon pasta loading it 

was properly adjusted for the cooking phase.  

Figure 6.8 shows the temperature profiles of cooking water in the different 

position in the well (bottom, mid-wall and top) during the continuous cooking 

procedure. Cooking at 1 kW (Figure 6.8a) led to a drop of all the temperature 

curves right after pasta loading. Temperature slightly increased before starting 

to drop again. At the well bottom, water temperature was constantly higher 

than that at the mid and top of the well for all the batches, following the same 

trend as in Figure 6.8b. In between batches, temperature dropped down 

under 61.1, 81.7 and 70.4 °C for top, mid and bottom probes, respectively. 

During cooking at 6 kW (Figure 6.8b) instead led to a smaller drop of 

temperature in the well and the fast recovery of temperature to boiling point 

for all the batches, as seen for a single batch in Figure 6.8d. The drop of 

temperature in between batches went under 36.3, 45.9 and 44.6 °C for top, 

mid and bottom probes, respectively. This difference of minimum 

temperatures in between batches during cooking at 6 kW instead of 1 kW was 

related to foam formation and overflow. Foam layer (Figure 6.9) started to 

form after 240 s of cooking at each cooking batch leading to the water level to 

rise and the cooking water to go into the overflow drain. This led to a huge 

volume of water to be lost, which had consequently to be restored at the end 

of cooking before the following pasta loading. Addition of more fresh water 

caused a greater drop of temperature in the well and therefore a longer time 

for the boiling point to be reached.  
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Figure 6.8. Cooking water temperature profiles during the continuous cooking 

of seven pasta batches at: a) P≈1 kW, b) P≈6 kW. Water temperature are 

reported on the three different position in the well. Bottom probe is the mean 

of f-, g-, h-, i-bottom probes; mid probe is the mean of the a-, b-, c-, d-mid- 

probes. 

 

The effect of batch number on the energy consumed for cooking when 

continuous cooking was performed at 1 and 6 kW is shown in Figure 6.10. The 

energy consumed for cooking to the OCT at the selected batch was calculated 

as the sum of the energy to heat water from the end of the previous batch to 

pasta loading and the one to cook pasta to the OCT. More specifically, for the 
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first batch, Econsheat amounted to about 6732 kJ, being the freshwater 

temperature in the range of 15±1°C and the power rating set at maximum. The 

consumed energy dropped from the first to the second batch while slightly 

increased for the followings when power was kept constantly at 6 kW and 

decreased when it was switched to 1 kW. The drop at the batch 2 is explained 

by the higher energy needed to heat the initial water volume up to boiling. 

The increase in the use of energy during continuous cooking at 6 kW is due to 

the overflow occurring during cooking, which emptied the well. This supports 

what reported by Hager and Morawicki (2013). 

The energy efficiency of the cooking system at each cooking batch is shown in 

Figure 6.11. The lower efficiency of the cooking system operating at the 

maximum power setting throughout the continuous cooking confirmed what 

was previously seen and discussed for a single batch (Table 6.3).  Interestingly, 

ηc decreased from 57.8 to 28.3% from batch 1 to 2, while slightly increased up 

to 43% for batch 7, at 6 kW. At 1 kW, ηc decreased from 80.7 to 50.6% from 

batch 1 to 2, while it was 55% for batch 7. Based on these results, it is clear 

that performing the cooking phase at the minimum power, i.e. 1 kW, leads to 

higher energy efficiency, no overflow, and thus no waste of water at each 

cooking batch here tested.   

 

 
Figure 6.9. Picture of foam layer causing the water to go into the overflow 

drain at power rating of 6 kW. 
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Figure 6.10. Effect of batch number on the energy consumed by the appliance 

to the OCT (EconsOCT) at different power rating. 

 

 
Figure 6.11. Effect of batch number the pasta cooking energy efficiency (ηc) at 

different power rating. 

 

At the end of the continuous cooking procedure, the total energy consumed 

by performing the cooking phase at 1 kW was 26376 kJ, which was much less 

than the 65562 kJ consumed when the maximum power was used (Table 6.7). 

Overflow led to a waste of 52.26 kg of water into the overflow drain, which 

needed to be restored and heated up. Overflow led also to an increase of total 

time for the continuous cooking procedure of 1508 s, even though the OCT at 

1 kW power was longer of 150 s. These results further confirmed the great 

saving of time, energy and water that can be achieved by modifying the 

continuous cooking procedure from rolling boil to simmering, thus from 

cooking with 6 kW (standard use) to 1 kW power rating (proposed strategy). 

By lowering the power rating, for the kitchen operators seemed 
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disadvantageous for the drop of temperature and longer cooking times, 

accompanied by a change in product quality. Instead, for the first time the 

advantages are here clearly shown.  

 

Table 6.7. Consumed energy (Econs), time, mass of water related to overflow 

(mWoverflow) at the end of the continuous cooking procedure for 7 batches at 1 

and 6 kW power rating.  

Power rating 

(kW) 

Econs 
(kJ) 

Time 

(s) 

mWoverflow 

(kg) 

1 26376 7831 0 

6 65562 9339 52.3±3.5 
 

The consequence of overflow is the addition of a greater amount of water in 

between batches that decreases the solid concentration in the cooking water 

keeping its properties closer to the first batch. This effect is visible in Figure 

6.12. Solid content in cooking water progressively increased when pasta was 

cooked at the minimum power while it was constantly lower than 1.06% for 

all the batches when cooking was performed at the maximum power. This 

lower solid content, though, did not prevent the foam layer to form. Foam 

formation indeed occur thanks to the proteins leached out of the pasta during 

cooking that diffuse to and adsorb at the air-water interface, thereby lowering 

surface tension (Fameau & Salonen, 2014). Rolling boil provides the energy 

input to form the air cells that are then stabilized by pasta proteins. 

Apparently, the proteins present in the cooking water up to the batch 7 were 

able to stabilize the vapour bubbles. When pasta was cooked by simmering, 

there was no energy for the gas cells to form and growth in size and number, 

and thus proteins did not find interfaces to be stabilized. This result suggests 

that the waste of water into the overflow drain does not have the advantage 

of diluting the remaining water in the well and so preventing the foam 

formation in the subsequent batches, hypothesis that was supported by 

kitchen operators instead.  

The similar solid content of different batches at 6 kW power rating led to 

similar pH values ranging from 8.3 to 8.6 (Figure 6.13). On the contrary, the 

increase in solid content of cooking water when 1 kW was supplied led to a 

decrease of pH from 7.9 to 6.7, thus from alkalinity to acidity.  
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Figure 6.12. Effect of batch number on solid content (SC) in cooking water of 

pasta cooked at different power rating. 

 

 
Figure 6.13. Effect of batch number on pH in cooking water of pasta cooked at 

different power rating. 

 

Continuous cooking did not affect the weight increase and water absorption 

either at 1 or at 6 kW (data not shown). However, when considering the mean 

among the 7 batches, cooking at the minimum power led to a higher water 

absorption but similar weight increase (Table 6.8). This could be related to the 

higher cooking time leading to higher water hydration, particularly by the 

strand external region. Finally, greater cooking loss was found for pasta 

cooked by continuous cooking at 6 kW power rating, confirming the negative 

effect of rolling boil compared to simmering on pasta cooking quality. 
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Continuous cooking led to a decrease of cooking loss when pasta was cooked 

both at 1 and 6 kW power rating (Figure 6.14).  

 

Table 6.8. Effect of power rating on the water absorption (WA) and weight 

increase (WI) of cooked pasta. Values are the mean ± standard deviation of 7 

batches.  

Power rating  

(kW) 

WA 

(g g-1 dm) 

WI 

(%) 

1 142±1a 1.6±0.1a 

6 137±3b 1.6±0.1a 

aValues followed by the same letter in the same column are 

not significantly different (p<0.05) 

 

 
Figure 6.14. The effect of batch number on cooking loss (CL) at different power 

rating. 

 

CONCLUSIONS 

The power rating was shown to influence significantly the cooking time, 

energy efficiency, water use, cooking water properties and cooking loss of 

pasta by affecting the water temperature, foam formation and heat transfer 

kinetics during the cooking process. The efficiency of the electric pasta cooker 

to heat and boil only water increased from 73.9 to 89.8% when managing the 

power rating from 0 to 6 kW. Cooking for a single batch was performed at 0, 

1, 3, and 6 kW power rating. Decreasing the power supply from 6 to 1 kW, the 

OCT increased by 18.5% because of the temperature drop in cooking water 

down to 93.5°C. However, cooking by simmering and not rolling boil by 

managing the power rating allowed to avoid foam formation completely and 

therefore reduce energy and water consumption. This led to an increase in the 

energy efficiency up to 80.9% and a decrease of water consumption down to 

0.4 kg. Pasta cooking quality was affected in the cooking loss while solid 

content of cooking water increased, and pH decreased when applying higher 

power ratings. Cooking at 1 kW power rating appeared to be the best 
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compromise between OCT and all the other factors. Therefore, continuous 

cooking was investigated at this power rating compared to the standard 

procedure. By using 1 kW power rating during continuous cooking, the drop 

of temperature in between batches was lower and this was related to the 

absence of foam formation that prevented water to go into the overflow 

drain. Overflow water counted 0 kg, while it was 52.3 kg at 6 kW. Following, 

energy efficiency was constantly higher when cooking by simmering compared 

to rolling boil, leading to a consumed energy for the whole continuous cooking 

procedure of 26376 kJ for cooking at 1 kW compared to the 65562 kJ at 6 kW. 

The lower solid content and higher pH of cooking water for samples at 6 kW 

power did not prevent foam formation and greater cooking loss. These results 

support that cooking pasta by simmering instead of rolling boil is possible and 

actually it is even advantageous.  

In conclusion, the acquired results provide fundamental information to select 

the most appropriate procedure to prevent foam formation. By using this 

information, such a cooking practice might be easily converted in a built-in 

procedure to manage automatically the cooking method so as to cut 

significantly time, water and energy consumption while retaining cooked 

pasta technological properties. Of course, this strategy has to be proposed and 

accepted by kitchen operators and chefs, who can now apply a food science-

based approach to solve the issues related to this traditional kitchen 

procedure.  
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INTRODUCTION 

In the food service sector, both the kitchen operator and the consumer in the 

establishment drive the professional appliance choice in terms of model, 

category and brand. Organization, efficiency, time management, productivity, 

personalization, and safety are just examples for needs of kitchen operators. 

Food quality, service environment and service performance are the three main 

criteria used by consumers to evaluate the establishment. Professional 

appliances play a critical role in almost all of them and result from a 

collaboration between engineers and kitchen operators. So far indeed, in most 

cases, the research and development in the manufacturing of such appliances 

has been entrusted to engineers having a technical background. The 

performance of the food process is validated on a culinary base by kitchen 

operators, instead. This dialogue lacks an integrated approach between 

kitchen operators and engineers, and scientific knowledge of food and food 

processing. Food scientists are asked to fill this gap, and this requires a new 

experimental approach and basic scientific research based on a professional 

knowledge of industrial procedures.  

In this PhD thesis, the continuous cooking of pasta in pasta cookers was chosen 

as study case. The continuous cooking procedure and the use of US and HPH 

on cooking water (I part), and the formulation of the technology concept of 

US bath system (TRL 2) and power rating management (TRL 3) as optimization 

strategies (II part) were investigated. In particular, the part I describes the 

effect of the simulated continuous cooking procedure on technological and 

textural properties as well as leaching behaviour of pasta, and rheological and 

physico-chemical properties of cooking water (with and without pasta 

fragments). Moreover, the effect of US and HPH on cooking water physical 

properties was investigated on laboratory scale. The part II was addressed to 

“invent”, identify and design the practical application of US bath system into 

pasta cookers aimed at breaking the foam, retaining cooking water physical 

properties and aiding the appliance cleaning procedure for kitchen operators. 

Furthermore, cooking by simmering was introduced by managing the power 

rating on appliance knob for reducing energy, water and time consumption by 

preventing foam formation. 

 

MAIN FINDINGS 

In Chapter 2, the continuous cooking procedure was simulated on laboratory 

scale. The results acquired showed that the continuous cooking procedure of 

12 batches led to an increase in solid content of cooking water that resulted 

in an increase in shear-thinning behaviour and consistency index. Pasta 

cooking loss as well as the swelling index decreased, while surprisingly, 

continuously cooked pasta got firmer but not stickier.  



Chapter 7  

132 

In Chapter 3, the results evidenced that the continuous cooking procedure of 

13 batches resulted in a lower mobility of components inside the pasta matrix, 

which led to a retention of proteins, particularly albumins and globulins, and 

starch in cooked pasta. Increasing solid content and dropping pH were 

identified as relevant factors for the cooking water. Additionally, continuous 

cooking increased the foaming stability of cooking water while the separation 

of pasta fragments did not play a role.  

In Chapter 4, both US and HPH energy inputs were dissipated as heat in 

cooking water; US applied at 80 °C led to an increase of solid content, while 

no differences were found after HPH treatments. Only the latter was effective 

in reducing cooking water turbidity (already at 20 MPa) while both 

technologies at milder conditions (5 min US and 20 MPa HPH) were 

responsible for apparent viscosity reduction.  

In Chapter 5, an US bath system was “invented”, identified and designed into 

the pasta cooker. A proper piezoelectric transducer was reported and up to 24 

units were successfully designed on the well lateral surfaces with a 3D layout 

aimed at physically breaking the foam during cooking, reducing cooking water 

viscosity in between batches and optimizing the cleaning procedure at the end 

of the serving hours.  

In Chapter 6, the results showed that the management of power rating during 

continuous cooking represents an effective strategy, named simmering, for 

reducing total cooking time, energy and water consumption, by avoiding foam 

formation and overflow into the appliance drain. Cooking by simmering was 

performed at 1 kW power rating and resulted in higher solid content and lower 

pH in cooking water but lower cooking loss when compared to the standard 

rolling boil performed using 6 kW power supply.  

 

IMPLICATIONS FOR THE PROFESSIONAL APPLIANCES INDUSTRY 

 

Continuous cooking procedure of pasta in pasta cookers 

The outcomes of this research highlighted that the continuous cooking 

procedure carried out in professional kitchens causes modifications of 

technological properties of pasta, physical and chemical properties of cooking 

water, and water and energy wastes. However, it is evident that the type of 

tap water used (different pH and mineral content) (Sozer & Kaya, 2008) and 

the procedure carried out (pasta:water ratio, different power rating, specific 

appliance) have to be properly selected to describe an operating protocol for 

future research. Indeed, already Peña et al. (2014) highlighted the absence of 

testing parameters in the international approved method (AACC, 2000), which 

along with the absent information about pasta continuous cooking 

(Korzeniowska et al., 2005) in the food service, made the comparison of the 

acquired results more difficult.  
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The simulation of continuous cooking procedure on laboratory scale works in 

the direction of improving the knowledge on pasta cooking by applying an 

analytical approach to an industrial context. Moreover, physico-chemical, 

textural and rheological analysis that are usually employed to investigate 

hypothesis on laboratory, permit now to evaluate issues based on consumer 

insights and kitchen operator requests (Salazar et al., 2012). From an 

educational perspective, the introduction of a food science-based method 

permits to approach important issues in appliance development: design for 

preventing misuse practices, structured procedures for testing and a common 

language to speed up strategies’ implementation in collaboration with 

engineers and kitchen operators.   

Along with the simulation of continuous cooking procedure and the related 

findings, this research evidenced that US and HPH treatments represent 

effective technological treatments for the reduction of cooking water viscosity 

and thus were promising technologies for tackling the continuous cooking 

procedure issue in pasta cookers. 

 

Strategies for continuous cooking procedure optimization in pasta cookers 

Consumers more and more rise the expectations in terms of the quality of 

food, which has to be promptly served always fresh-like (Linnemann et al., 

2006). Kitchen operators ask to the appliance for stress inputs minimization, 

safety, high efficiency and productivity (Ahn, Kim, & Jeong, 2006). All these 

needs are reported to the engineers in the manufacturing for being 

transformed into engineering metrics.  

To tackle the issue of continuous cooking procedure in pasta cookers and 

please kitchen operators and engineers during daily workload and appliance 

development in the manufacturing, respectively, two strategies were 

proposed. The strategy presented in Chapter 5 regarded the formulation of 

the technology concept of an US bath system in the pasta cooker (TRL 2). Even 

though principles are observed, such implementation needs to be validated 

(TRL 3) taking into account frequency, amplitude, well volume, as main 

process parameters for US treatment. Indeed, the findings reported in the part 

I where obtained using a direct method of sonication on laboratory scale that 

have now to be proved on industrial scale prototype. However, implications 

for the professional appliances industry can already be formulated. By 

considering the whole range of appliances available in the Electrolux 

Professional portfolio, automatic cycles could be developed. Considering 

lifting baskets, the US bath system could be activated on the upper raw 

transducers during pasta cooking for foam breaking and on the middle raw for 

cooking water treatment in between batches. This means to implement an 

automated activation system that switches on the middle raw when baskets 

are raised and the upper raw when baskets are lowered. When the appliance 
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is switched off and the baskets are lowered in the well, the lower raw 

transducers can work as a “cleaning aid”, and this can be also automatized 

considering the cooking temperature and power rating as threshold for 

activation. So, physical effort by kitchen operators is greatly reduced with 

better cleaning results and savings of time, water and costs (Otto et al., 2011).  

The strategy proposed in Chapter 6 aimed at optimizing the cooking procedure 

by managing the power rating directly on the appliance. To this regard, pasta 

cookers could also benefit from the addition of an automatic “simmer mode”. 

Many restaurants leave the pasta cooker in a boil state, which can run the 

appliance at a maximum power duty cycle, even if the appliance is working not 

cooking. An automatic setback that reduces the water temperature by 

managing the power rating to after a predetermined cook time could reduce 

appliance energy and water use by 60% (Spoor et al., 2014). Finally, the 

strategy works also for accident prevention about rolling boil and slippery 

surfaces, while reduces the stress inputs of manually and empirically 

managing the power supply for preventing foam formation.  

 

MAIN CONCLUSIONS 

This research provides new insight into pasta cooking by taking the continuous 

cooking procedure in professional appliances as study case. The novelty and 

interest of this work derives from the consistent framework built using food 

science knowledge and techniques, and its upfront confrontation to the 

complexity of the industrial (food service) environment. The disciplinary gap 

between engineers and kitchen operators, indeed, has been lowered by using 

traditional methods, used both in the food service and in the food science 

laboratory, and conventional and unconventional technologies whose aim 

was tackling the issue related to continuous cooking in pasta cookers.  

The constant effort in establishing a food science-based dialogue among 

engineers and kitchen operators is particularly evident in the association of 

qualitative information with quantitative data, which represents an effective 

strategy to improve food science rationale in professional appliance 

development in the manufacturing and use in the professional kitchen. 

Even if this work serves first the purpose of solving an actual industrial 

problem, it expands the understanding on pasta cooking, bridging the gap 

between theoretical knowledge and professional practice. On one side, 

indeed, the research answers to the market need for food scientists who 

integrate food science and engineering knowledge in developing new 

procedures and products. From this work clearly emerges that food science 

represents a competitive advantage for the food service sector, being the 

driver for product innovation. On the other hand, in the academic context, the 

proposed approach allows a professional-based knowledge about pasta 

cooking related to professional appliances.  
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FUTURE DIRECTIONS 

To clarify the effect of continuous cooking on pasta and cooking water 

properties and further improve the relevance of optimization strategies to the 

food service context, some of the future directions of research could include 

the following topics. 

• Evaluate the influence of cooking water physico-chemical 

characteristics during continuous cooking of pasta in pasta cookers. 

Cooking water solid content and pH were proved to be important 

factors during continuous cooking. However, available data on the 

combined effect of tap water (minerals) and cooking water (solid 

content and pH) composition on cooking properties of pasta during 

continuous cooking are still scarce.  

• Validation of US bath system. Laboratory scale studies and 

formulation of the technology concept on industrial scale are 

fundamental steps (TRL 1 and 2) for finding solutions to industrial 

issues, but prototyping is crucial for a better understanding of the 

potential benefits of unconventional technologies on foam breaking, 

viscosity reduction and cleaning optimization. 

• Sensory analysis of spaghetti cooked quality. During standard 

continuous cooking and upon optimization strategies 

implementation, a food science-based dialogue also with the 

consumer can be established by performing sensory analysis.  
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