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Abstract

Stress in car drivers represents a risk, especially for professional car drivers
which are more likely to be exposed to it for prolonged periods. A persisting
stress state leads to mental and physical pathologies and increases the prob-
ability of causing accidents. Thus, the monitoring of drivers’ mental state
could allow an immediate action before the problem degenerates.

In the present work, two main methods to detect a subject’s sympathetic re-
action to stress are developed.

In the first method (Method 1) we measure Skin Potential Response (SPR)
and record the Steering Wheel angle excursion. Then, we process the mea-
sured signals with adaptive filters which remove the component related to
Motion Artifact, exploiting the relation between hand movements to han-
dle the Steering Wheel and MA. Next, we process the obtained Stress signal
with a Smooth Nonlinear Energy Operator (SNEO) to locate stress events.
Experiments which allow to define a ground-truth for stress events recogni-
tion, show that, by appropriately processing, it is possible to efficiently detect
stress events, obtaining a mean Recall of 95 %.

The second method (Method 2) uses a double channel SPR sensor to measure
the SPR from both the hands, and the Electrocardiogram is recorded with a
triple channel ECG sensor. SPR measurements are processed through an al-
gorithm which selects the smoother signal. In this way we obtain a Stress
signal without the Motion Artifact component. Several experiments carried
out in laboratory and with a real car professional simulators, reveal the ef-
ficacy of the proposed system, which outperformed Principal Component
Analysis and Independent Component Analysis.

Next, machine learning techniques are employed to classify features obtained
from the Stress signal and from Heart Rate Variability. In particular, we con-
sidered a Support Vector Machine (SVM) and a feed-forward Neural Net-
work (NN). The system is tested in experiments carried out on a professional
driving simulator. Classifying 15 seconds long time intervals, we obtained a
balanced accuracy of 76.72% for SVM and 77.15% for NN. Applying a rela-
beling method based on the previous time intervals, the performances raised
to 78.74% for SVM and 78.26% for NN. We then, tested the ability to iden-
tify stress intervals and obtained a balanced accuracy of 89.58% for SVM and
91.92% for NN.
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Abstract

Lo stress rappresenta un rischio per chi guida, specialmente per chi guida
per professione dato che sono soggetti a stress per periodi prolungati. Un
persistente stato di stress porta a patologie sia fisiche che psicologiche e in-
crementa la probabilità di causare incidenti.

Nel presente lavoro sono stati sviluppati due sistemi per rilevare la risposta
simpatetica di soggetti sotto stress.

Nel primo metodo (Metodo 1), la Skin Potential Response (SPR) viene mi-
surata e l’escursione della posizione del volante (Steering Wheel, SW) viene
registrata. Le misure prese vengono elaborate da filtri adattativi che rimuo-
vono la componente dell’SPR legata al Motion Artifact (MA), sfruttando la
relazione che c’è tra i movimenti della mano eseguiti per far girare il volante
e il Motion Artifact. Il segnale Stress (S) ottenuto, viene poi elaborato da
un operatore Smooth Nonlinear Energy Operator (SNEO) per localizzare gli
eventi di stress. Gli esperimenti grazie ai quali viene definita una ground-
truth per la rilevazione di stress, mostrano che, attraverso le opportune ela-
borazioni, è possibile rilevare eventi che causano stress, ottenendo una Recall
del 95 %.

Il secondo metodo (Metodo 2) usa un sensore per la misura di SPR a due
canali, che viene utilizzato per misurare il segnale SPR da entrambe le mani.
In aggiunta viene misurato l’ Elettrocardiogramma (ECG) con un sensore a
tre canali. I segnali SPR misurati vengono poi processati attraverso un algo-
ritmo che seleziona il segnale più smussato. In questo modo, dopo la can-
cellazione si ottiene un Segnale stress privo dal MA. Diversi esperimenti ese-
guiti sia in laboratorio che in simulazione realistiche, illustrano l’efficacia del
sistema proposto, che ha fornito prestazioni migliori degli algoritmi Princi-
pal Component Analysis e Independent Component Analysis.

Successivamente, vengono utilizzate tecniche di Machine Learning per clas-
sificare intervalli temporali estraendo delle feature dal segnale Stress e dal
segnale Hear Rate Variability. Nello specifico, vengono utilizzati i classifi-
catori Support Vector Machine (SVM) and a feed-forward Neural Network
(NN). Il sistema sviluppato viene poi testato mediante esperimenti eseguiti
su un simulatore di guida professionale. Classificando intervalli di tempo
lunghi 15 s, si è ottenuta una balanced accuracy del 89.58% con l’ SVM e del
91.92% con la NN.
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Thesis Structure

The objective of this thesis is to devise methods and procedures to automati-
cally detect a driver’s stress condition from sensed physiological signals. To
describe our work, we structured the thesis as follows.

In Chapter 1 we discuss the motivations behind our research activity. An
overview about the state of the art regarding techniques for emotion recog-
nition, with special focus on car driving contexts, follows. The contribution
of the present work is then outlined.

In Chapter 2 we briefly introduce a description of the skin structure and of the
sweating process. Next, the characteristics of Electrodermal signals, such as
Skin Conductance and Skin Potential, are explained with the help of several
electrical models specifically designed for the purpose.

Chapter 3, begins with a description of the cardiovascular system and, suc-
cessively, we explain how the Electrocardiogram (ECG) is related to the heart
activity. The subsequent sections focus on techniques which are widely em-
ployed to process the ECG signal and obtain the Heart Rate (HR) parameters
useful to detect mental stress.

Chapter 4 introduces the Motion Artifact (MA) issue and, also by means of
preliminary experiments, we show how the MA disturbances affect the Elec-
trodermal signals we employ in our work. Next, we present the methods we
devised to remove Motion Artifact disturbances in order to extrapolate the
SPR component related to the subjects’ emotional state. To address the task,
we followed two different procedures. The first method removes Motion Ar-
tifact by using adaptive filters, which exploit the relation between the hand
movements and the Steering Wheel rotation. The second method involves
the processing of two SPR signals measured on both the hands. The Motion
Artifact removal is carried out by implementing a smoothing algorithm that
outputs the stress component which is common to both the SPR signals. A
stress signal (S) is obtained and the effectiveness of the methods is evaluated
through the results of experiments carried out in different driving contexts.

Chapter 5 is about the activity that follows the Motion Artifact removal ad-
dressed in Chapter 4. It begins with the theory of the classifiers which have
been employed to detect stress in the subjects under test, in particular Sup-
port Vector Machines (SVM) and feed-forward Neural Networks (NN). New
experiments, in which the Skin Potential Response and Electrocardiogram
measurements are taken, are presented. Next, we describe the extrapolation
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of features from the SPR and HR signals and how they can be useful to evalu-
ate the subjects’ state. Implementing the SVM and NN classifiers, we process
the collected features, showing the respective results and performance.

Finally, in Chapter 6 the conclusions and the plans for future work are pre-
sented. We suggest to employ more advanced feature extraction methods,
alternative more complex classifiers from the Machine Learning and Deep
Learning literature, and to enlarge the set of data and experiments, also in
autonomous driving scenarios.
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Chapter 1

State of the art and contribution

1.1 Motivation

The problem of assessing the psycho-physical well-being of drivers
has recently attracted the interest of the research and industry
communities. Pressure due to continuous driving in traffic dur-
ing commuting or freight delivery, for professional drivers, can
indeed cause mental as well as physical exhaustion, fatigue, shoul-
der and back pain and hypertension [9, 11], thus increasing the
number of potential traffic violations and car accidents, with
great costs for the community [119]. In a research among taxi
drivers [52], positive correlation has been found between neg-
ative affecting state caused by conflicts in the workplace and
accidents rate. During experiments carried out in [45] the per-
formance of drivers decreases along with the raising of anxiety,
leading to a higher probability to cause accidents.

The psychological state of a subject is reflected by sympathetic
reactions, which identify mental workload and pressure or, as
they are commonly referred to in literature, stress conditions.
Recently, many systems which are able to detect the mental stress
of drivers on the basis of their physiological response, have been
designed. Detecting driver’s stress conditions can allow to man-
age the phenomenon under the physiological and contextual as-
pect and eventually intercede for preventing the arise of health
problems and/or accidents.



2 Chapter 1. State of the art and contribution

1.2 Related Work

Signal processing for emotion recognition involves two main
branches [47]: physical/behavioral signals [36] and physiologi-
cal signals.

Physical traits based method
Behavioral traits are exposed by facial expression which are de-
tected through imaging techniques. The large employment of
facial expression recognition induced researches to develop stan-
dard protocols [86, 33]. Furthermore, facial expression tech-
niques advanced enough to allow development of methods able
to recognize micro-expressions [111].
In addition to facial expression, imaging techniques can be em-
ployed to obtain a measurement of tissue oxygen saturation (StO2)
as a feature for detecting human stress [27].
Behavior is well depicted by human gesture, which is analyzed
in [83] using video techniques. Eye tracking systems are capable
to detect eye movements as well as pupil dilatation and blink
rate [75], [48] and through audio signal based techniques it is
possible to detect tones and inflections that reveal inner stress
[87], [89].

Physiological traits based methods
Among physiological signals, heart rate has been considered
one of the most reliable for stress detection [47, 36, 86, 55, 63,
88]. Photoplethysmography optically measures blood volume
changes and has many applications for stress and emotional de-
tection [105, 74, 120]. In [96] it is shown how the Electroder-
mal Activity (EDA) characteristics differ depending on the emo-
tional state, while in [102] it can be seen how the Electrodermal
Activity can be used for detecting and discriminate mental stress
and cognitive load.

To detect arousal, stress and emotional state of subjects, machine
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learning techniques are widely employed for feature classifica-
tion. Several methods are employed to train and classify physi-
ological signals features. Such implementations can be found in
[56] for linear discriminant analysis (LDA), Naïve Bayes, classi-
fication and regression tree (CART), self-organization map (SOMs),
and support vector machine (SVM) or in [104] for Naive Bayes,
Support Vector Machine (SVM) with linear and RBF kernel. In
[76], a comparison of different classifiers concluded that KNN
and SVM outperform Discriminant Analysis and Classification
Trees. SVM is broadly used and its efficacy is confirmed in [70,
8].

The use of Neural Networks (NN) is taking root; not only be-
cause they are the most advanced type of classifiers, but also
because their structure allows to create a lot of variants based
on the users’ specific needs and applications. We can find NN
applied to emotional classification in [88, 25]; furthermore sev-
eral NN variants are being applied, such as Back Propagation
NN [88], Hierarchical NN [114], Convolutional NN [100], Unsu-
pervised Deep Belief Network (UDBN) [51].

Several works have been focused on feature selection and ex-
traction methods. Many features exist for detecting mental state,
but not all of them represent a good indicator for a given ap-
plication. Hence, choosing the optimal features can make the
system computationally lighter and increase the performance at
the same time. In [117], an analysis of Heart Rate features has
been carried out to evaluate the ones whose response is mostly
correlated to stress. An analogous work for EDA can be found
in [103] where features belonging to EDA measurements are col-
lected and automatically selected through Joint and Conditional
Mutual Information and Double Input Symmetrical Relevance
filters. Authors in [46] developed a system to evaluate features
efficacy considering their impact on arousal and valence state.
In [61] features are selected to recognize mental state consider-
ing their sensitivities to local changes.

EEG methods acquire data from a large number of channels [13],
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and feature selection is needed, to discard the redundant ones
[66, 67].

Another issue that could undermine the reliability of features is
given by inter-subject and contextual differences [104]. In [113],
a clustering method for categorizing the users is developed to
avoid the inaccuracies arising when trying to make the subject
data homogeneous or fitting the system on the current subject
every time.
Another approach is to use unsupervised Machine Learning tech-
niques to automatically find significant features as authors have
done in [51], merging the obtained features with the standard
ones using data fusion methods.

Applications in the driving environment
Several stress detection works, involving the techniques discussed
above, are set in the car driving scenarios. A crucial aspect to
take into account, is the right signal choice depending on the
purposes of the research activity. Authors in [68] compare a
large number of physiological signals used to evaluate drowsi-
ness and cognitive state during car driving, discussing related
advantages and limitations about the employment of such data
depending on the specific application. The surveys in [81, 69]
compare machine learning approaches and put in evidence the
issues which still have to be challenged in a deeper way, such
as the assumptions to do in order to evaluate which situations
cause a determined kind of reaction, such as stress or appraisal,
the experimental setup that differs among the experiments, inter-
subject differences, invasiveness of sensors and reliability of tests
to resemble real driving scenario.

In [106], tests on a professional car driver during a car race, are
carried out to analyze features belonging to different bio-signals.
The results showed that HR and sweat rate are good indicators
for mental stress detection while electromyogram (EMG) is suit-
able for recognizing physical stress but not mental stress. Dif-
ferently from [106], authors in [60, 65] consider EMG a good
indicator of mental state and use it, along with other physical
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and physiological signals, to distinguish negative and positive
mental conditions. In [64], mechanical parameters of the vehicle
are used, in addition to SCR and ECG data, to detect stress and
testing several features’ datasets and it is realized that EDA mea-
surements are extremely useful for detecting stress. On the other
hand, in [30] several tests are done to find the optimal feature set
for drowsiness detection. Differently from stress, it seems that
EDA measurements are less efficient to recognize drowsiness.
These results suggest that the experimental task has to be well
defined to make the right choice about the employed signals.
This consideration also concerns features belonging to the same
signal. During experiments for analyzing the influence of GPS
instructions on a driver in [115], an evaluation of HR features
concluded that MeanRR, SDNN and HRVTri are the most effec-
tive ones to recognize sudden changes in drivers’ mental stress
during short time lapses.

There are several works that employ a large number of inputs re-
lated to physiological [18] and/or other kinds of data. Authors
in [90] warn about the drawbacks of relying on multi-modal
measurements, such as the computational cost, or the redun-
dant features that impede target classification learning.

In [92], the available dataset includes physiological, video and
environment data; then several test are carried out to rank the
usefulness of features to recognize stress and fatigue. In [29],
the optimal set of features, including PPG, GSR, temperature
(TEM), acceleration (ACCEL), and the rate of rotation (GYRO),
is selected through algorithms based on variance analysis (ANOVA)
and sequential forward floating selection (SFFS). The approach
used in [73] differs from the previous mentioned because the
features are not only selected but also automatically extracted
by the Time Series Feature Extraction based on Scalable Hypoth-
esis tests (TSFRESH) system, which extracts and selects hun-
dreds of features. Automatic feature extraction methods are
especially common for electroencephalogram (EEG) [49], since
EEG requires data from many channels.



6 Chapter 1. State of the art and contribution

In [32], besides stress detection, method for stress reduction are
also reviewed.

The aspect of driver and passengers mental state is critical in
autonomous driving as it is in manual driving. In [50], authors
have provided to the subjects a chaffeur, who plays the role
of an autonomous driving system, for monitoring their behav-
ior about their car trips when they do not need to drive them-
selves. Usually people are not worried about the driver behav-
ior, but this may not be the same for autonomous driving sys-
tems. Then, the analysis of the passenger mental state is needed
to check how much people trust autonomous driving systems
and the social impact of this new technology. Moreover, switch-
ing to manual driving could always occur, for example when a
pedestrian suddenly crosses the street, especially in dense traf-
fic [44]. In [116], it is shown how the vehicle sensors perfor-
mances deteriorate during adverse weather conditions. Studies
have shown how people drowsiness rises during autonomous
driving, deteriorating their reactions when they have to take
control of the vehicle [39]. Even if the drivers have to moni-
tor the driving system, after some time their attention decreases
and in some cases they fall asleep in about 60 minutes [71]. This
brought researchers to search for tasks that do not make peo-
ple get drowsy during trips and at the same time do not distract
them in order to be able to act when it is necessary [38], [58]. Au-
thors in [84], developed a system, based on eye-tracking tech-
niques, that highlights pedestrians and other critical objects if
the subject is distracted by the tasks which are assigned to them
during the trip. In [112], authors presented an advanced eye-
tracking system which is able to analyze multiple events at the
same time and to classify them on the basis of their importance
in an automated driving scenario. Moreover they created the
Berkeley DeepDrive Attention (BDD-A) database with the ex-
perimental data. In [19] and [82], EEG is employed to check the
drowsiness and the emotional state of self driven vehicle pas-
sengers.



1.3. Contribution 7

1.3 Contribution

The contribution of this work is focused on the following points:

Employment of Skin Potential Response (SPR) signal
In the clinical sector we can find several studies on the behavior
of endosomatic Electrodermal measurements, known as Sym-
pathetic Skin Response (SSR) or Skin Potential Response (SPR),
connected with sweating [31], muscle contraction [107], electri-
cal and magnetic stimuli [99, 37]. In [108, 109, 110] the rate of
waveforms that compose the SPR signal in response of stimuli
is studied.
The technological sector however, hasn’t take advantage of SPR
enough for designing systems able to automatically detect psy-
chological state. As we can deduce researching the state of the
art related to psychological state detection and monitoring ap-
plications, Skin Conductance has always been chosen among
EDA measurements.
Our purpose then, is to investigate how Skin Potential can be
employed for psychological state analysis applications, as an al-
ternative to Skin Conductance, and how we can take advantage
from its properties.

Motion Artifact (MA) removal

Since EDA measurements are usually taken from the hands, the
measured signal has a strong component related to hand move-
ments. This component is defined as Motion Artifact (MA) and
it is an affliction when taking EDA measurements during driv-
ing activity. If not appropriately processed, it can make the ac-
quired data completely useless.

There are not related works dedicated to Motion artifact impact
on Skin Potential. Regarding Skin Conductance instead, several
methods to detect and correct MA interferences can be found. In
[118], an unsupervised machine learning method can success-
fully recognize and label MA interferences. The system devel-
oped in [62], is able to correct minor MA interferences employ-
ing sparse recovery with the aid of appropriate atoms. In [28],
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a system based on wavelet transform is able to clean SCR from
MA identifying the waves that characterize the signal.

In our application, the methods above cannot work because drivers
could need to move the hands suddenly and quickly to drive in
a proper way and MA energy equals or even overtakes the en-
ergy of the emotional component we are interested in. This ef-
fect is mostly marked in the SC phasic part, SCR, whose energy
can be smaller that that of the disturbances introduced by MA.

We developed two ways to remove the Motion Artifact com-
ponent from SPR. In the first approach, we relate MA to hand
movements with an adaptive filtering techniques. In the second
approach, we measure SPR in both hands and extrapolate the
emotional component through a smoothing selection process.

Feature extraction and classification
The final step is to correctly classify the subject state. For this
purpose it is essential to choose the right features, that are the
ones which represent the presence or the absence of stress. Use-
ful features for detecting mental state extracted from SPR, dif-
fer from the kind of features commonly used when SCR is em-
ployed. This is due to the differences between SPR and SCR sig-
nals. Furthermore, SPR features that work for machine learning
classification is a topic which has not been completely investi-
gated, then an evaluation has to be made to evaluate which kind
of features we can use for our purpose. Once the features have
been collected, we employ Support Vector Machine and Neural
Networks to reveal the mental stress of subjects under test.
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Chapter 2

Skin Structure and Electrodermal
Properties

In this chapter, we first describe the structure of the skin and
the mechanism of the sweating process. The explanation will
include the necessary knowledge to understand the signals em-
ployed in this work. The reader can refer to [21, 94], to deepen
the topic. Secondly, we show the principal electrical models cre-
ated to resemble the electrical behavior of the skin during the
sweating process.

2.1 Skin Structure

The skin is composed by several layers which are listed in Table
2.1 and depicted in Figure 2.1

The epidermis, Figure 2.2, is mainly composed by keratinocytes
cells which are produced in germinativum layer. The growing

TABLE 2.1: Skin structure

Cutis (skin) Epidermis
Stratum corneum
Stratum lucidum
Stratum granulosum
Stratum spinosum
Stratum germinativum

Subcutis (hypodermis) Dermis (cutis vera)
Stratum papillare
Stratum reticulare
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FIGURE 2.1: Skin structure.

pressure of the cells pushes keratinocytes through the upper lay-
ers. During this process, keratinocytes gradually absorb kera-
tine and take a hornier shape until they reach the corneum layer
becoming full exfoliated horny plates.

The dermis, also labeled as the corium, is much thicker than the
epidermis. In the dermis, arterial and venous blood vessels and
receptor organs are present. The terminal parts, which form the
capillary net, are located in the papillar sub-layer along with
melanocytes, which produce melatonine (skin pigment). The
collagen is present in both the sub layers, but in the reticular
sub-layer it is much stronger, giving high resistance to the skin.

The hypodermis is a connecting tissue that allows horizontal
mobility to the skin on the muscles surface. In the hypoder-
mis the fat is stored for thermal and mechanical insulation. It
also contains nerves and vessels which supply the skin, the hair
follicles and glands and the secretory part of the sweat glands.
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FIGURE 2.2: Epidermis.

Sweat glands are distributed across several parts of the body.
They can be of eccrine types, which represent the majority of the
total sweat glands, and apocrine types, which are exclusively lo-
cated in hairy areas of the skin and loose cytoplasm in addition
to the sweat.

The eccrine sweat gland can be subdivided into the secretory
segment, which is located in both dermis and hypodermis, and
is formed by layers of outer basal and inner luminal cells, and
the duct, which is located in the epidermis and has no cells on
its own.

In addition, skin contains several types of other glands, recep-
tors, hair, muscles ( i.e., the pilo-erecting muscle). For details,
the reader can refer to [21].
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2.2 Electrodermal Activity

Sympathetic fibers, which are innervated along the skin, acti-
vate the eccrine sweat glands secretory segment; the terminals
of sympathetic fibers are called sudomotor fibers. The terminals
reach as well the pilo-erecting muscles, whose task is to erect
the hair, retract the skin and compress the sebaceous glands be-
tween them. Finally, the fibers reach the blood vessels, in or-
der to regulate the blood flow, constituting the vasoconstrictory
fiber system. Besides sudomotor and vasoconstrictory fibers,
the skin is innervated by motor and sensory fibers as well by the
central nerves from which the peripheral branches come from
[21].

Sweat glands are distributed across several areas of the body.
Particular attention has been dedicated to the sweat glands lo-
cated on the palmar and plantar sites. Several experiments re-
veal that, differently from the sweat glands present on the rest
of the body, palmar and plantar sweat glands don’t take part
to the body thermo-regulation process, unless the body reaches
extremely high temperatures. On the other hand, palmar and
plantar sweat glands are exceptionally active in the emotional
sweating process.

The secretory segment of the sweat gland, which is surrounded
by a layer of myoepithelial cells, consists of clear and dark se-
cretory cells. The clear cells produce the liquid part of secre-
tion, while the mucin molecules, produced by the dark cells,
may have protecting functions within the lumen cavity of cells.
Through the serous cells, water and ions pass from the plasma
to the lumen. While the sweat passes through the duct, it looses
most of the ions because of the ions reabsorption mechanism.
The sweat moves from the duct to the skin surface in a pulsating
manner, by means of rhythmic contractions of the myoepithelia
that surrounds both the secretory and the ductile part. Sweating
have several functions. One of them is thermoregulation, which
regulates the body temperature by sweat vaporization. Another
cause is due to the person emotional condition, that could stim-
ulate the sweating glands. Also, sweat can arise while eating an
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especially sour, salted or spicy food or when a lesion to the sym-
pathetic nerve occurs. Reflex sweating occurs when a skin area
is stimulated by radiation, heat, needle punctures, or electric-
ity. Furthermore, sweat can also be caused by pharmacological
induction.

2.3 EDA dynamics and electrical properties of the
skin

The structure of the skin and the sweating process influences the
electrical properties of the skin, on which electrodermal mea-
surements, skin conductance, skin resistance and skin potential,
are based. Electrical properties of the skin are usually classified
in two major branches: passive and active. The dynamic of skin
conductance is modeled using passive properties while the dy-
namic of skin potential is modeled by both active and passive
properties.

The epidermal barrier, formed by the lower corneal zone, pro-
vides electrical resistance to the skin, since it is relatively im-
permeable to water and solutions. Electrical resistance depends
on the amount of lipids and essential fatty acids that permeate
the cell membrane, which prevents water diffusion, and skin
temperature, whose increase goes along with an increase of wa-
ter permeability of the skin. The other parts as the dermis and
hypodermis don’t contribute much to the skin resistance. The
electrical resistance of the corneum depends on its hydratation.
The factors that influence corneal hydratation are enivironment
humidity, sweating, skin reabsorbtion, rate of sweating and age,
because the skin becomes drier along with aging. Another prop-
erty which influences skin electrical resistance, is the electrolytic
content of the skin, which allows ions to flow through the skin.
Furthermore, the skin presents capacitive properties due to cell
membranes, which get polarized during the flow of ions.

Besides the passive properties, the skin has active membranes
that regulate sweating by changing their potential when stim-
uli occour. These membranes are located in the secretory part
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of the sweat glands, in the epidermal duct at the level of the
stratum germinativum, in the inner corneal zone, in the dermal
and in the epidermal part of the duct during the reabsorption
of sodium successively to the sweating and in the myoepithelial
cells.

2.4 EDA circuital models

Several circuital models have been developed to simulate the
behavior of Electrodermal activity, especially focusing on the
sweating process. In this section the main models, that differ
on the focusing aspects and in the relative mechanisms, details
will be described.

Figure 2.3 shows the Montagu and Coles model [77] , which is
widley used to predict the dynamic of skin conductance. In the
circuit, R1 and R2 represent the resistance of derms and stratum
corneum respectively, r1.....rn represent the sweat gland ducts re-
sistances and are connected to the circuit by the shunts, whose
dynamic depends on the sweating process. The sweat gland
duct resistors can be modeled as a single variable resistance which
varies on the basis of the global dynamic of the sweat ducts. It
can be seen that the circuit is composed by passive components
only, since the changing of the sweat duct resistance is repre-
sented by the shunts.

The voltage divider model, depicted in Figure 2.4, has been de-
veloped by Edelberg [94]. It is employed to characterize skin
potential excursion. The skin potential measured at point P, de-
pends on the voltage sources S and E, that represent the poten-
tial of the sweat glands and the corneum, the current ripartition
between the resistance of sweat duct RS and the resistance of ex-
traductal epidermis Re. If the resistance of the sweat gland de-
creases, for example during the filling of the ducts, the surface
potential goes more negative. If the resistance of the corneum
decreases, when the sweat is expelled, the surface potential goes
more positive.
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FIGURE 2.3: Montagu-Coles circuital model for EDA).

FIGURE 2.4: Voltage divider EDA model.

Starting from the Edelberg model, Fowles developed a more
complex version showed in Figure 2.5. E1 originates in the duc-
tal wall in the dermis, and is mainly caused by the sodium ionic
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concentration inside the cells. The dermal duct resistance is rep-
resented by R4 and R2, which depend on hydratation and duct
filling respectively.

FIGURE 2.5: Fowles EDA model.

E2 depends on the concentration of sodium and chloride ions
at the stratum stratum germinativum level of the duct. E2 is
smaller than E1 because the membrane in the stratum stratum
germinativum is less selective on ions flow. In the stratum stra-
tum germinativum, the resistances of the duct are modeled by
R3 for the duct wall, and by R1 for the epidermal part of the
duct, depending on the duct filling. E3 represents the local-
ized membrane potential, located in the lower zone of the stra-
tum corneum and depends on potassium ionic concentration in
the interstitial fluid. R6 is the resistance of the compact kera-
tinized layer zone, R5 is the resistance of the upper layers of the
corneum, varying with their hydration. R6 varies very little due
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to its low permeability, then its resistance can be assumed con-
stant in this model.

2.5 Electrodermal Signals

An example of a Skin Conductance (SC) measured signal is plot-
ted in Figure 2.6. The signal is composed by a tonic part, Skin
Conductance Level (SCL), and a phasic part, Skin Conductance
Response (SCR). SCR varies faster than SCL and is caused by
the phasic electrodermal activity. SCR reveals reactions to sud-
den stimuli and sudden emotional state changes while SCL rep-
resents SC when no stimulus occurs. SCL and SCR are plotted
respectively in the top and bottom graphs of Figure 2.6. SCL and
SCR have been obtained from SC through non-negative decon-
volution decomposition explained in [15], using the dictionary
composed by sigmoid-exponential, Bateman and chi-square wave-
forms developed in [26].

FIGURE 2.6: SC and SCL measurements (top). SCR measure-
ments (bottom).

In Figure 2.7 some examples of waveforms belonging to single
SCR impulses, modeled as Bateman functions [26] are plotted.
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These impulses arise due to the sweating process. Skin con-
ductance quickly arises while the sweat is being expelled, then
the sweat evaporates and skin conductance slowly returns to its
resting value represented by the skin conductance level for the
SC signal or by zero for SCR. In addition to SCL, the analysis
of the signals typically relies on the properties of SCR impulses,
in particular on magnitude, energy, rise time, recovery time, im-
pulse frequency, slope of the impulses [21].

FIGURE 2.7: SCR wavelet patterns modeled as Bateman func-
tions [26].

Skin Potential, on which our work is focused, can range be-
tween 10 and -70 mV. As Skin Conductance, Skin Potential has
a slowly varying tonic component, Basal Skin Potential Level
(BSPR) and a fast varying phasic component, Skin Potential Re-
sponse (SPR). Differently from SCR, SPR waves can be com-
posed by either positive and/or negative components. The pos-
itive component (P pattern in Figure 2.8 (a) is caused by hydra-
tion changing which, as in SCR, happens when the sweat is ex-
pelled on the skin surface from the duct, followed by a rapid
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recovery. On the contrary, the negative component in Figure 2.8
(b) appears as a reaction to stimuli when the sweat ducts are still
recovering after sweating. In this type of reaction, sweat is not
expelled [42].

Depending on the electrodermal activity, different wave types
could occur. The test undertaken in [107] involves repeated stim-
uli, and shows how the positive waves are more common dur-
ing the first session. In the following sessions, the trend reverses
and the subjects present more negative then positive waves due
to habituation. The situation switches once more when a dif-
ferent type of stimuli occurs and the rate of positive waves, as
reactions to the stimuli, raises again. SPR impulses don’t always
present a single wave type and often we could have waves com-
posed by both positive and negative components (M pattern in
Figure 2.8 (c)). As described in [108], M pattern waves could
vary, in amplitude and latency, more than N and P waves, con-
sidering the same number of repeated stimuli.

FIGURE 2.8: SPR wavelet patterns modeled as combination of
Gaussian functions.
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2.6 Conclusions

In this chapter Electrodermal Activity has been described un-
der the physiological aspect to provide a background about the
mechanisms behind the signals we measure and use in this work.
The medical research which have been cited in this chapter, can
give a wider comprehension on how the EDA signals behave.
Although in our context the behavior of EDA will be more com-
plicated, this is a fundamental base from which to start our re-
search. The equivalent circuital models in the end, provide pat-
terns that we can recognize to analyze the signals we measure.
In Chapter 4, it will be explained how we apply EDA signals to
carry out our purpose to automatically detect stress mental state
in vehicle drivers.
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Chapter 3

Electrocardiogram

In this chapter, we introduce the functioning of the cardiovascu-
lar system to give the basis to understand the information car-
ried by a signal which depicts the heart activity (Section 3.1).
Section 3.2 is about the characteristics of the Electrocardiogram
(ECG) and the interpretations of the waves to evaluate if the
subject is in a healthy state or could suffer some diseases. Sec-
tion 3.3 is dedicated to the processing of ECG to detect the ECG
waveform patterns and obtain a signal that represents the ex-
cursion of the Heart Rate (HR). Section 3.4 gives an overview of
the Heart Rate Variability parameters and how they can provide
information about a subject state, including mental stress.

3.1 The cardiovascular system

The functions of the cardiovascular system are: the transport of
nutrients, oxygen, and hormones to the cells and the removal
of metabolic waste; the body protection from foreign microbes
and toxins by white blood cells and antibodies; the mechanism
of coagulation to prevent blood loss after injuries; the regulation
of the body temperature, fluid pH, and water content of cells.

The cardiovascular system is a closed double circuit (see Figure
3.1):

◦ the pulmonary circuit carries blood to and from the lungs for
gaseous exchange; it transports the venal blood into the lungs
through the right side of the heart, where the carbon dioxide
leaves the system and the blood is loaded with oxygen, then the
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FIGURE 3.1: Human circulatory system. Red: arteries. Blue:
veins.

blood is carried to the systemic circuit through the left side of
the heart

◦ the systemic circuit transports the blood from the left side of
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the heart, through the arteries, arterioles and capillaries, to the
organs and tissues where oxygen and nutrients are delivered.
The blood then, loaded with carbon dioxide, returns to the pul-
monary circuit which directs the blood to the heart, where the
circulation restarts.

The cardiovascular system is activated by the heart, that pumps
the blood through the circuit. The heart has four chambers: two
atria (left and right) and two ventricles (left and right). The atria
are located in the upper part of the heart and pump blood to the
respective left and right ventricles after receiving blood from the
veins. The right atrium receives deoxygenated blood from the
superior vena cava, then pumps the blood into the right ven-
tricle. The right ventricle pumps the blood into the pulmonary
artery, through which it reaches the lungs, where the blood oxy-
genation occurs. Oxygenated blood leaves the lung via the pul-
monary vein and enters the left atrium. The left atrium pumps
the blood into the left ventricle, which is much thicker than the
right one. Finally, blood is pumped into the aorta, which carries
oxygenated blood around the body.

The heart activity is activated by the sinoatrial node, which pro-
duces the action potentials that activate the cardiac muscle, the
myocardium, which contracts the heart chambers, pumping the
blood trough the system. Furthermore it acts as a natural pace-
maker and regulates the heart beat rytmh.

For a more detailed description of the cardiovascular system see
[43].

3.2 Electrocardiogram

The electrical activity of the cardiovascular system is well rep-
resented by Electrocardiogram (ECG). ECG depicts the excur-
sion of the electrical charges that polarize and depolarize cardiac
muscles.

ECG is composed by three waveforms, Figure 3.3
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FIGURE 3.2: Human heart

- The P wave on the ECG represents atrial depolarization, which
results in an atrial contraction

- The QRS complex represents the diffusion of the electrical stim-
ulus through the myocardium

- The T wave represents the repolarization of the ventricles; in
this phase we have a relaxation of the ventricular myocardium.

ECG provides information about the health state of the subject;
abnormalities in ECG give indication of possible diseases. Ab-
normalities can regard magnitude and/or duration or even dis-
tortion or wave absence. Figure 3.4 and Figure 3.5 show some
examples of ECG waveforms that indicate potential diseases.

ECG is related to a person emotional state too. Emotions influ-
ence the ECG cycle rate which can be used to estimate mental
state; [57] and [101] present experiments during which several
type of emotions and their intensity are estimated on the basis
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FIGURE 3.3: A group of patterns created to represent the ECG
signal waves.

of ECG characteristics. For a comprehensive view of ECG inter-
pretations the reader can refer to [41]

3.3 ECG processing

Emotional state recognition through cardiac activity, is often based
on Heart Rate Variability (HRV) parameters which have to be
extracted by Heart Rate (HR) and RR peaks signals. HR and RR
signals are, in turn, extracted from ECG.

In this section, the ECG processing to obtain the parameters we
need is depicted, describing operations and algorithms which
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FIGURE 3.4: Abnormal ECG waveforms related to different
types of diseases

have been developed for this purpose.
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FIGURE 3.5: Abnormal T waves

3.3.1 QRS detection

The fist step is to detect the pattern of QRS complexes in ECG
waveforms. In our work, we use the Pan-Tompkins algorithm,
which has been developed to recognize QRS complex in noisy
ECG signals [80]. In the following, the Pan-Tompkins algorithm
steps (Figure 3.6) will be described. The ECG signal is band-pass
filtered. The band pass filter is designed as a cascade of a second
order low-pass filter followed by a first order high-pass filter to
have more design flexibility for the passband.

FIGURE 3.6: Pan-Tompkins algorithm block scheme.

After the filtering, the signal is differentiated to provide the QRS
complex slope information (Figure 3.8 (top)) and then squared
to emphasize peaks (Figure 3.8 (middle)). An integration is then
carried out (Figure 3.8 (bottom)) to obtain the waveform feature
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FIGURE 3.7: ECG signal: Raw (bottom), processed with low-
pass filter (middle), processed with highpass filter (bottom)

information in addition to the slope of the R wave. The inte-
gration window length has to be chosen considering the widest
QRS complex. If the window is too wide, the integrated wave-
forms will merge the QRS and T complexes together. If it is too
narrow, some QRS complexes will produce several peaks in the
integration waveform. These can cause difficulty in subsequent
QRS detection processes. The QRS complex corresponds to the
rising edge of the integration waveform. The time duration of
the rising edge is equal to the width of the QRS complex. A fidu-
cial mark for the temporal location of the QRS complex can be
determined from this rising edge according to the desired wave-
form feature to be marked such as the maximal slope or the peak
of the R wave.

To reduce the possibility of wrongly selecting a noise peak as a
QRS, each peak amplitude is compared to a threshold that takes
into account the available information about already detected
QRS and the noise level.

Two sets of thresholds are automatically adjusted to float over
the noise. Low thresholds are possible because of the improve-
ment of the signal-to-noise ratio by the bandpass filter.

The higher of the two thresholds in each of the two sets is used
for the first analysis of the signal. The lower threshold is used
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FIGURE 3.8: ECG: processed with derivative filter (top),
squared (middle), integrated (bottom)

if no QRS is detected in a certain time interval so that a search-
back technique is necessary to look back in time for the missed
QRS complexes.

The thresholds are based upon running estimates of PKIsignal

and PKInoise, which are the signal and noise peaks respectively
[80]. New values of these variables are computed in part from
their prior values. When a new peak is detected, it must first be
classified as a noise peak or a signal peak. To be a signal peak,
the peak must exceed a threshold ThrI1 as the signal is first an-
alyzed or a threshold ThrI2 if searchback is required to find the
QRS. When the QRS complex is found using the second thresh-
old, the noise level is updated. In Figure 3.8 (bottom), the es-
timated noise and signal level and the thresholds related to the
ECG integrated signal are plotted.

For irregular heart rates, the first threshold of each set is reduced
by half so as to increase the detection sensitivity and to avoid
missing beats.

To be identified as a QRS complex, a peak must be recognized as
such in both the integrated and bandpass-filtered waveforms.

Two RR-interval averages are maintained. One is the average
calculated on the basis of the eight most-recent beats. The other
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one is the average of the eight most-recent beats having RR in-
tervals that fall within certain limits. The reason for maintain-
ing these two separate averages is to be able to adapt to quickly
changing or irregular heart rates. The first average is the mean
of the eight most-recent sequential RR intervals regardless of
their values.

AVGRR1n = mean([RRn−7 + ..... + RRn]) (3.1)

where RRn is the most-recent RR interval. The second average
is based on selected beats:

AVGRR2n = mean([RR′n−7 + ..... + RR′n]) (3.2)

where RR’ is the most recent RR interval that fell between the
acceptable low and high RR-interval limits. This is the case for
normal sinus rhythm.

FIGURE 3.9: QRS detection on filtered ECG (top), QRS detec-
tion on integrated ECG (middle), ECG and pulse train of de-

tected R waves (bottom)

Figure 3.9 shows QRS detection with the estimated signal and
noise level and thresholds for Filtered (top) and Integrated (mid-
dle) ECG. The bottom graph depicts the ECG and the resulting
QRS detection train.

When an RR interval is less than 360 ms (it must be greater than
the 200 ms latency), a judgment is made to determine whether
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the current QRS complex has been correctly identified or whether
it is really a T wave. If the maximal slope that occurs during this
waveform is less than half that of the QRS waveform that pre-
ceded it, it is identified to be a T wave; otherwise, it is called a
QRS complex.

3.3.2 Artifact correction

Once QRS complexes have been detected, RR and HR signals
can be computed, Figure 3.10:

RR = di f f (tR)HR = 60/RR (3.3)

where tR are the time instants of detected QRS complexes.

FIGURE 3.10: RR (top) and HR(bottom)

However, some errors could still be present due to artifacts. An
error correction procedure then, is recommended. First, a smoothed
version of RR, RRsmoooth, is obtained.

For this purpose, RR is processed by a Savitzky–Golay filter
[97]. The Savitzky–Golay filter is preferable to a moving win-
dow averaging filter which could introduce bias in the presence
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of local maxima [85]. Instead of averaging the signal, the Sav-
itzky–Golay filter replaces a signal block, within a moving win-
dow, with a polynomial function of predefined order. The poly-
nomial coefficients are selected according to the values reported
in [97], based on the window length and the polynomial order.
The Savitzky–Golay filter uses the polynomial coefficients that
optimally fit the data, in a computationally much cheaper way
than the least-squares fitting method.

Then, RR intervals whose difference with RRsmoooth exceed a thresh-
old are discarded and new values are obtained through interpo-
lation.

FIGURE 3.11: RR: before and after error correction (top), HR:
before and after error correction (bottom)

In Figure 3.11, RR and HR before and after the artifact correction
are plotted.

3.4 Heart Rate Variability

Heart Rate Variability (HRV) represents the amount of heart rate
fluctuations around the mean heart rate and depicts the func-
tioning of cardiovascular control system and Autonomous Ner-
vous System (ANS) [91, 1].
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The Autonomous Nervous System has sympathetic and parasym-
pathetic components. Sympathetic stimulation, occurring in re-
sponse to stress, exercise and heart disease, causes an increase in
HR by increasing the firing rate of pacemaker cells in the heart’s
sino-atrial node. Parasympathetic activity, primarily resulting
from the function of internal organs, trauma, allergic reactions
and the inhalation of irritants, decreases the firing rate of pace-
maker cells and the HR, providing a regulatory balance in phys-
iological autonomic function.

Heart Rate Variability then, is an indicator for the health state
of a person. HRV clinical applications cover a large number of
fields: it can reveal cardiovascular and neurological diseases,
monitor diabetes, renal and hypertension status. Also, HRV can
highlight the effects of drugs, smoking, alcohol and it gives in-
formation about the sleeping quality and, as we can see from
the references cited in 1, HRV is extremely useful to recognize
stress.

In the following tables HRV parameters included in the stan-
dard developed by the Task Force of The European Society of
Cardiology and The North American Society of Pacing and Elec-
trophysiology [24], are listed. HRV parameters are sorted in sta-
tistical time domain features (Table 3.1), geometric time domain
features (Table 3.2), frequency domain short-term features (usu-
ally taken in a window of some seconds or some minutes) (Table
3.3) and frequency domain long-term features (usually taken in
a window of 24 hours) (Table 3.4).

In our work we will use HRV features (jointly with SPR features)
to detect stress in driving subjects. We will not use all the feature
listed in this chapter, but will do evaluations for finding the HRV
features that are more suitable for our purposes.
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TABLE 3.1: HRV time domain statistical features

Variable Units Description function
SDNN ms Standard deviation of all NN intervals.

SDANN ms Standard deviation of the averages of NN intervals
in all 5 min segments of the entire recording.

RMSSD ms The square root of the mean of the sum of the
squares of differences between adjacent NN inter-
vals.

SDNN index ms Mean of the standard deviations of all NN intervals
for all 5 min segments of the entire recording.

SDSD ms Standard deviation of differences between adjacent
NN intervals.

NN50 count Number of pairs of adjacent NN intervals differing
by more than 50 ms in the entire recording. Three
variants are possible counting all such NN inter-
vals pairs or only pairs in which the first or the sec-
ond interval is longer.

pNN50 % NN50 count divided by the total number of all NN
intervals.

TABLE 3.2: HRV time domain geometric features

Variable Units Description function
HRV triangular index Total number of all NN intervals divided

by the height of the histogram of all NN
intervals measured on a discrete scale
with bins of 7 · 8125 ms (1/128 s). (Details
in Fig. 2)

TINN ms Baseline width of the minimum square
difference triangular interpolation of the
highest peak of the histogram of all NN
intervals (Details in Fig. 2.)

Differential index ms Difference between the widths of the his-
togram of differences between adjacent
NN intervals measured at selected heights
(e.g. at the levels of 1000 and 10 000 sam-
ples).

Logarithmic index Coefficient ϕ of the negative exponential
curve k · e−ϕt which is the best approxi-
mation of the histogram of absolute differ-
ences between adjacent NN intervals.
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TABLE 3.3: HRV frequency domain short-term features

Variable Units Description function
5 min total power [ms2] The variance of NN

intervals over the
temporal segment

approximately
≤ 0.4Hz

VLF [ms2] Power in very low
frequency range

≤ 0.4Hz

LF [ms2] Power in low fre-
quency range

0.04− 0.15 Hz

LF norm n.u. LF power in nor-
malized units
LF/(TotalPower −
VLF)x100

HF [ms2] Power in high fre-
quency range

0.15− 0.4Hz

HF norm n.u. HF power in nor-
malised units
HF/(TotalPower −
VLF)x100

LF/HF Ratio
LF[ms2]/HF[ms2]

TABLE 3.4: HRV frequency domain long-term features

Variable Units Description function
Total power [ms2] Variance of all NN inter-

vals
approximately ≤ 0.4Hz

ULF [ms2] Power in the ultra low fre-
quency range

≤ 0.003Hz

VLF [ms2] Power in the very low fre-
quency range

0.003− 0.04Hz

LF [ms2] Power in the low fre-
quency range

0.04− 0.15Hz

HF [ms2] Power in the high fre-
quency range

0.4− Hz

α Slope of the linear inter-
polation of the spectrum
in a log-log scale

≤ 0.04Hz
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Chapter 4

Motion Artifact Removal

The main topic of the chapter, is the development of the Motion
Artifact removal system for a Skin Potential Response signal.

In Section 4.1 we begin to analyze Skin Potential measurements
describing the SPR behavior with some simple tests during which,
stress is induced by stimulation and Motion Artifact disturbances
are introduced. A comparison between SPR and SCR signals fol-
lows, along with an explanation about how, in our application,
SPR employment can bring better results respect to SCR.

In Section 4.2 the main topic of this chapter, MA removal is chal-
lenged. We present a system which removes Motion Artifact,
exploiting its relation with the hand movements related to the
Steering Wheel rotation. The system is based on adaptive filters
and is tested through experiments set up in laboratory.

In Section 4.3 another approach for Motion Artifact removal is
presented. The system processes two SPR measured on both
the hands to remove MA. Several experiments are carried out in
laboratory and in more realistic car driving contexts, to test the
method performances.

Section 4.4 discusses the possible real time implementation of
the proposed systems.

The conclusions are discussed in 4.5
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4.1 Preliminary test and the Motion Artifact issue

This section is dedicated, in the first part, to the preliminary
measurements and analysis of Skin Potential Response (SPR).
We begin with a description of the laboratory instruments and
the experimental setup, then we show the behavior of Skin Po-
tential Response signal to stress stimuli and how Motion Arti-
fact prevents to correctly recognize the Stress component of the
signal.
In the last part we compare SPR and SCR measurements show-
ing their differences and explaining the reasons of our choice to
employ SPR.

4.1.1 SPR Sensor

Here the sensor employed for measuring Skin Potential Response
is described 4.1 (a). For a deeper explanation see [4].

SPR signal is acquired with two electrodes posed on the palm
and the back of the hand respectively; a third reference electrode
is added on the wrist to force the reference voltage VREF . Refer-
ring to the scheme shown in 4.1 (a), the differential voltage VIND

between the palm and the back of the hand is conditioned by an
analog front end, acquired by a Digital Signal Processor (DSP)
and sent to a Bluetooth module. The device is supplied with a
single cell Lithium Polymer battery, whose voltage is converted
into + 3.3 V through a buck DC-DC converter.

A linear voltage reference provides VREF = 1.65V to the refer-
ence electrode and also to the analog front end. The differential
voltage VIND is filtered by passive high pass filters, in order to re-
move the DC voltage that may be present on the skin; the input
impedance of the instrument is 100 MΩ in the pass-band, by far
higher than skin output impedance (in the order of 1 MΩ). With
this specification, the load error is lower than 1% and, more-
over, the changes in skin impedance (e.g., due to long term ac-
quisition or temperature changes) are desensitized. Measuring
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FIGURE 4.1: Laboratory experimental setup. EDA Sensor (a).
Steering Wheel (b). An illustration resembling the experiment

SPR with a high input impedance instrument, in fact, makes the
changes in skin electrical properties negligible (this is one of the
advantages of SPR with respect to SCR).
The instrumentation amplifier then, amplifies VIND with a gain
set to 80, since the input range for SPR pulses is in the order of
± 20 mV and must be amplified into 3.3 Vpp.
The DC Compensation block in Figure 4.1 (a) has been intro-
duced to remove the non-idealities of the instrumentation am-
plifier, like offset voltage (VOS), bias current (IB) and offset cur-
rent (IOS). The DC compensation is the inverting integration of
VIA−VREF thus shifting the DC component of the amplifier out-
put to VREF. This DC compensation, together with the input fil-
ters, behaves as a second order high pass filter with cutoff fre-
quency at 0.08 Hz. At the output of the instrumentation ampli-
fier, a third order Sallen-Key lowpass filter acts as anti-alias filter
with cutoff frequency at 40 Hz.
After the analog front end, VAD is acquired by the analog to dig-
ital converter on board on the DSP; the sample rate is 200 Sa/s
and data are converted with 12-bit resolution. On the DSP a dig-
ital notch filter is implemented in order to reduce the EMI power
line noise which affects the low-level signal. The implemented
notch is a second order Butterworth filter centered at 50 Hz and
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rejects power line disturbs by 38 dB. The processed data are fi-
nally sent to the Bluetooth module with data transfer Baud Rate
of 19.2 kbps. The frequency response of the circuit allows de-
tecting the SPR pulses, but the stress measurement is partially
affected by skin stretch and body movements, which produce
burst potentials. For this reason, it is mandatory to remove the
motion artifact, as described in next section.

4.1.2 Steering Wheel

The subjects under test in laboratory use a Logitech G Driving
Force GT Steering Wheel from which we record the Steering
Wheel angle (Figure 4.1 (b)). The recorded values can range
from -1, which means that the Steering Wheel angle is turned
90◦ in anticlockwise, to 1, which means that the Steering Wheel
angle is turned 90◦ in clockwise. A value of 0 means that the
steering wheel is at the reference position 0◦.

4.1.3 PC connection and interface

The sensor and the steering wheel are connected to a PC (Fig-
ure 4.1 (c)) through a software developed in Matlab. The sen-
sor transmits data via Bluetooth and the steering wheel angle is
recorded in synchronous with the receiving of data sets from the
sensor. In addition, the software manages the playing of audio
and video files which are used to represent the test scenario and
cause stress to the subject under test.

4.1.4 Endosomatic EDA and exosomatic EDA comparison

In Section 2.5 we showed patterns which represent endosomatic
and exosomatic waveforms; we then described the properties of
Skin Potential and Skin Conductance waveforms.

In this section we take real measurements of endosomatic EDA,
(Skin Potential) and exosomatic EDA (Skin Conductance); then,
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we compare SP and SC and make our considerations on the ba-
sis of real data. Our choice to use Skin Potential to detect the
stress of a car driver then, is explained.

An example of different characteristics belonging to SCR and
SPR signals in our application is shown in Figure 4.2, which
plots a 70 seconds long recording of both SPR and SCR responses,
in blue and red color, respectively. The two signals have been
synchronized on the basis of the acquiring laptop timestamp,
which has a resolution of 1 ms.
The test encompassed a free drive on a simple track, using the
steering wheel with the right hand, which had no sensors ap-
plied, while the left hand was kept resting on the knee. It is from
this left resting hand that the SPR signal was recorded, in addi-
tion to the SCR recorded with a commercial device produced
by Shimmer [22]. At random times a stress inducing sound is
played to the driver (evidenced by the black square markers in
the figure).

From Figure 4.2 it can be seen that, as we have explained in Sec-
tion 2.5, the SPR shows a faster reaction to stress stimuli com-
pared to SCR. SPR rises and decays faster, thus making event
recognition possibly simpler in our scenario. Once the exper-
imental measurements confirmed the bibliographical hypothe-
sis, we considered other aspects that led us to adopt Skin Poten-
tial for our work. SPR can be measured in a simpler way, with-
out applying current to the body, and because it is less sensitive
to the impedance of electrodes and to slow variations of skin
impedance [3]. A detailed comparison of different EDA signals,
including SCR and SPR, is also reported in [12].

4.1.5 Motion Artifact

The main problem concerning electrodermal activity measured
while a person is driving, is represented by the Motion Artifact
(MA). Since electrodermal measurements have to be taken from
the hand, the signal will be strongly corrupted by components
related to physical movements instead of subject mental state.
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FIGURE 4.2: SPR and SCR responses comparison. Blue line:
SPR signal. Red line: SCR signal.

Moreover, the power of motion artifact disturbances is compa-
rable with the power of the waves that resemble stress; since a
driver, almost always needs to move the steering wheel, it can
lead to many false stress detections.

As underlined in [54], Motion Artifact related problems limit the
situations in which EDA measurements can be used for stress
detection in car driving scenarios and the applications are lim-
ited as well. Standard filters are not able to provide a solution
due to the overlap between the frequency bands of stress and
motion artifact components. Therefore, motion artifact cannot
be processed and removed in the same manner as it can be done
for noise or minor interferences that only partially overlap the
frequency band of the signal of interest.

4.1.6 Measurements analysis

The initial test has the purpose of highlighting how the Motion
Artifact obstructs the detection of stress response. SPR is mea-
sured on the subject’s hand in three different conditions. In the
first test, the subject does not move his hands. Audio record
of clapping hands is played in random time instants to induce
stress. In the second test, the subject moves his hand freely as
he was driving. No stress is induced. In the third experiment,
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stress is induced while the subject moves his hands as he was
driving.

The obtained measurements are plotted in Figure 4.3 for test 1
(top), test 2 (middle) and test 3 (bottom). SPR is plotted in blue
line, the Steering Wheel excursion in black dotted line and the
instants in which the stress inputs are administered are marked
with black stems. In test 1, we can clearly identify the subject’s
reaction to the stress stimuli. It is noticeable that SPR in the prox-
imity of the stems resembles the patterns in Figure 2.8. In test 2,
only the Motion Artifact component is present since no stress
stimuli occur. We can notice that the signal power is compara-
ble to the one of stress impulses in test 1. In test 3, it is evident
the difficulty to discriminate the Motion Artifact and the stress
response to stimuli. In these conditions, false stress detections
will compromise the reliability of the analysis.

FIGURE 4.3: SPR preliminary measurements while: stress is in-
duced with audio tracks (top); the subject is moving the SW
(middle); stress is induced with audio tracks while the subject

is moving the SW (bottom)
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4.2 Adaptive filtering for Motion Artifact removal
and SNEO peaks based Stress detection sys-
tem

In this Section a system designed to remove the Motion Artifact
and highlight the stress responses in SPR signal is presented.
The results have been published in [5]. The system is depicted
in Figure 4.4. It consists in the following main parts:
- Sensor
- Steering Wheel
- Motion Artifact removal
- Processing
- Detection and Display
all the system components will be described in the following
sections.

FIGURE 4.4: Block diagram of the proposed scheme.

4.2.1 Sensor and Steering Wheel

The sensor and the steering wheel are the ones we have em-
ployed and described respectively in Section 4.1.1 and Section
4.1.2 to which the reader can refer for the description.
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4.2.2 Motion Artifact removal

The Motion Artifact removal block is composed by an adap-
tive filter, whose functioning is described below. The inputs of
MA removal block are the SPR measurements and the Steering
Wheel excursion.

Adaptive filters are used to predict the behavior of unknown
and time varying systems. The adaptive filter algorithm min-
imizes the error between reference and output signals adapt-
ing its frequency response. The behavior of adaptive filters is
strongly non-linear during the adaptation phase, but when the
filter converges, its behavior resembles the behavior of a linear
Finite Impulse Response (FIR) filter. An explanation of the vari-
ants employed in our work follows. For a detailed description
the reader can refer to [53], [98].
In our application, the input of the adaptive filter x(t) is rep-
resented by the recorded Steering Wheel angle x(t) = sw(t).
The reference signal d(t) is represented by the measured Skin
Potential Response d(t) = spr(t). Assuming that Motion Arti-
fact is correlated to the Steering Wheel excursion, we propose to
model the acquired SPR signal as a linear regression:

spr(t) = sw ∗ h(t) + s(t) (4.1)

Least Mean Square Adaptive Filter

Least Mean Square (LMS) algorithm [53] adapts its impulse re-
sponse h in order to minimize the expected Mean Square Error
(MSE) between the filter output xt ∗ ht to the input xt = swt,
and the desired response d(t) = spr(t). The input vector xt =
[x(t), . . . , x(t− N + 1)]T is composed by the last N consecutive
samples of the input signal; h is the time variant impulse re-
sponse, whose value at time t is ht = [h1,t, . . . . . . , hN,t]T. The
input signal x(t) then, undergoes to a time variant convolution.
The coefficients of ht are updated to minimize the MSE of the
error e(t) = d(t)− ht, trough the gradient descent method:

ht+1 = ht −
µ

2
∇E[e2(t)] (4.2)
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In the implementation of the LMS algorithm, the filter update is
calculated as ht+1 = ht + µe(t)xt ,where µe(t)xt is an approx-
imation of the gradient based filter coefficient correction. The
filter length N and the step µ must be chosen in order to obtain
the desired output and guarantee the stability. Then, µ cannot
exceed the limit which depends on the eigenvalues of the input
signal covariance matrix.

A typical choice is [53]:

µ =
α

λmax
(4.3)

where λmax is the greatest eigenvalue and α is a constant whose
valuee must be 0 < α < 1, in order to assure the filter conver-
gence. In case of strongly non-stationary signals, the eigenval-
ues could spread, deteriorating the speed and the performance
of the filter when they depends on the smaller eigenvalues. The
trace of covariance matrix, instead of its eigenvalues, can be
used for choosing µ. This approximation is not the optimum
one but it assures stability and diminishes computational cost
when applying the algorithm.

Recursive Least Squares Adaptive Filter

The Recursive Least Squares (RLS) algorithm updates the filter
coefficients basing on the errors of the previous time instants
[98]:

ϵt =
t

∑
i=0

λt−ie2(i) (4.4)

where e(i) is the error at time i. λ is the forgetting factor that
weights the proportion of past data which contribute to the filter
update. The closer is λ to 1, the more the past samples contribute
to the output at time t.

By minimizing 4.4 with respect to the filter coefficients, one ob-
tains a system of equations with solution ht = Ptrdx,t, where Pt

is the inverse of the weighted input covariance matrix, and rdx,t
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is the vector of weighted cross-correlation coefficients between
d(t) and the input. By using the matrix inversion lemma, it is
possible to solve the system of equations recursively, by writing
Pt and rdx,t as functions of Pt−1 and rdx,t−1.

The hyperparameters of RLS algorithm are the filter order N
and the forgetting factor λ. λ must be 0 < λ < 1 to avoid
the input matrix to became singular, lead the system to insta-
bility and make the problem ill-conditioned. One also initializes
P0 as P0 = δ−1I, where the influence of δ becomes negligible
at steady state if λ < 1. The RLS algorithm can keep track
of the signal in a better way, but requires more computational
resources than LMS. Moreover, it has been demonstrated that,
for non-stationary signals, RLS filtering can give worse perfor-
mance than the LMS algorithm [17].

Kalman Adaptive Filter

Kalman filtering is a general technique used to estimate the un-
known state of a linear system from noisy observations and a
model of state uncertainties. We can cast the problem of adap-
tive filtering as the state estimation problem for the system:{

ht = ht−1 + qt

d(t) = ht
Txt + v(t)

(4.5)

,where qt is the process noise and v(t) is the observation noise.

The algorithm consists in two steps. In the prediction step, the
Kalman filter estimates the state variables at the current time,
as well as their uncertainty by means of the estimate covari-
ance matrix. Once a new measure is acquired, the state estimate,
represented by the covariance matrix a priori estimate P, is up-
dated, with more weight being given to estimates with less un-
certainty [53]. The algorithm is recursive and utilizes the current
measurement and previously calculated state estimates.

To set Kalman filter properly, correct estimations of the hyper-
parameters, represented by the variance σ2

v of the observation
noise, and the covariance matrix Qt of the process noise, are
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necessary. Moreover, one initializes the a priori estimate covari-
ance matrix as P0|0. The algorithm can become unstable or ill-
conditioned if the system described by Equation 4.5 becomes
non-observable [53].

4.2.3 Processing

The output s(t) = spr(t)− sw ∗ h(t) of the MA removal block,
is low-pass filtered in order to remove high frequency interfer-
ence, which is not relevant for emotional and stress event detec-
tion. As it will also be apparent from the experiments in Section
4.2.8, emotional events typically have a few seconds duration.
Therefore, the cutoff frequency of the low-pass filter is set to 0.5
Hz. Starting from signals sampled at 200 Hz, the filter is im-
plemented as a cascade of multistage decimation linear phase
filters.
The output of the filter is then processed via the Smoothed Non-
linear Energy Operator (SNEO), in order to enhance possible
stress events [78, 23]. In particular, SNEO is a smoothed version
of the nonlinear energy operator:

ψ[s(t)] = s2(t)− s(t− 1)s(t + 1) (4.6)

4.2.4 Detection and Display

By modelling s(t) as a combination of emotional events spikes
and noise, it is shown in [78] that E[ψ[s(t)]] can reveal spike lo-
cations, since they are associated to sudden raising energy. The
expectation operator for SNEO is approximated by convolving
it with the five-point Bartlett window (2, 4, 6, 4, 2).

In the current implementation of our system, we process the sig-
nal offline and, for the purpose of visualization, we simplify and
display the emotional information by subdividing the absolute
value of the SNEO signal into blocks with duration of about 10
s. For each of the blocks, we select one event by approximating
the signal with a single Gaussian shaped impulse. This can be
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easily done by projecting the signal block into a dictionary of
Gaussian-shaped atoms, with different variances and time posi-
tion inside the block that represents the time interval and select-
ing the atom corresponding to the largest projection coefficient
[34]. The stress is detected finding the peaks of the Gaussian
SNEO reconstruction, which are greater than a fixed threshold.

4.2.5 Experimental setup

In order to assess the influence of MA and compare the different
adaptive filter types, we preliminarily consider a test where a
subject watches a video with different driving situations (curves,
cone slaloms, normal driving), and moves the steering wheel ac-
cordingly. Figure 4.5 shows a picture of the lab with the subject
taking the test. The steering wheel is connected to a computer
which records the steering wheel rotation angle sw(t), while the
SPR signal is measured by the sensor and transmitted via a Blue-
tooth interface, as introduced in Section 4.1.1. We do not induce
stress events in this case.

FIGURE 4.5: A picture of the test setup.

We then perform tests where we actually induce acute stress
events, in order to unambiguously define a ground-truth for the
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proposed stress recognition system. Tests were devised with the
aim of evaluating the stress induced on subjects during a sim-
ulated driving experience in a controlled experimental setup.
The kind of stimuli we consider here may not fully represent
“driving stress” which may arise from different causes, like pro-
longed fatigue. We believe however that the proposed setup can
be representative of the kind of responses that we can detect in
the SPR signal.

We tested 15 subjects, 3 females and 12 males, in healthy condi-
tions and with average driving experience, drawn from a pool
of students from the University of Udine, Italy, with ages in the
range 20–28 years. Stress is induced at random times during the
experiment through sudden sounds and/or video interactions.
This allows identifying unambiguously the events of interest.
Notice that this setup, which targets stress possibly caused by
unexpected events, could be a good approximation of real situ-
ations, as well as of emotional peaks due to sudden awakenings
when the driver is in danger to fall asleep at the wheel.

The tests are carried out in two different scenarios described as
follows:

Scenario 1: audio sequence with sudden random sound effects.
In the first scenario the subjects are asked to move the steer-
ing wheel, normally using two hands and with the sensor in
one hand, while listening to an audio sequence which contains
both sudden random sound effects (used as triggers to induce
stress) and a metronome ticking sound. They must turn the
steering half a turn left or right for each tick. The frequency of
the metronome is changing through the experiment (from 1 to
2.5 Hz). We used multiple metronome frequencies instead of a
single frequency because the motion artifact during driving con-
ditions may have several spectral components depending on the
road characteristics (different curve radius, sudden manoeuvre,
etc.). Using different frequencies, we verify that the adaptive
filter may respond effectively to different spectral components.
The audio sequence is roughly 17 min long. The purpose of the
experiment is to evaluate the influence of MA on the recorded
SPR signal, and to measure the ability of the proposed scheme
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to detect induced stress in correspondence of the sound effects.
In order to assess the influence of possible residual artifacts in
the processed signals, we also consider an experiment with one
additional male student subject (Subject 0, outside the group of
15) where two sensors are used, one for each hand.

The subject is asked to use only one hand to steer the wheel
while the other hand is kept resting during the test, differently
from the other subjects, in the same test, who steer the wheel
with both hands. Variations in the recorded signals due to in-
duced stress events should appear in both signals, while possi-
ble artifacts should appear in the signal recorded from the mov-
ing hand.

Scenario 2: audio and video sequence with a car accident event.
In the second scenario the 15 subjects are watching a video of
a pilot driving on a racing track at normal pace, as seen from
the driver’s helmet. Subjects must steer the wheel in order to
follow the track curves, as in a realistic driving session, so the
recorded SPR signal is possibly affected by MA. They are lis-
tening to peaceful music in the background. We then induce
a single stress episode by suddenly reproducing a car accident
video frame and turning up the audio. After several seconds,
the video and music start again from where they were inter-
rupted, so we can keep recording the SPR after the “accident”.
The audio/video sequence is roughly 4 min long.

For each of the 15 subjects in both scenarios, we can count the
True Positives (TP), i.e., the number of correctly detected stress
peaks after the trigger, and the False Negatives (FN), i.e., the
number of missed triggers. We believe it is not significant to
count the False Positives (FP) or True Negatives (TN), because
we cannot verify when stress should not be present in a subject,
because a person can be stressed for reasons that we don’t know
and that we cannot measure. Moreover, it is well known that
EDA signals can exhibit nonspecific responses which cannot be
traced to any stimulation [21].

We then compute the Recall figure (also known as Sensitivity),
which is defined as:
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Recall(%) =
TP

TP + FN
∗ 100 (4.7)

where TP + FN amounts to the total number of stress triggers.
[10]LMS

4.2.6 Adaptive Filters comparison

To test Adaptive Filters and tune their hyperparameters, we set
up a simple experiment where the input signal x(t) is white
gaussian with unit variance. The measurements d(t) are com-
puted as d(t) = ho ∗ x(t) + n(t), where ho(t) is a 100-tap FIR fil-
ter whose coefficients are chosen at random, independently and
with a uniform [0, 1] distribution. The filter energy is then nor-
malized to unity. The noise n(t) is white gaussian with variance
0.1. The filter parameters were chosen as follows. For the LMS
filter, we chose µ = 0.002. The RLS hyperparameters were cho-
sen as λ = 1− 10−4 and δ = 10 for the RLS filter, while we set
Qt = 10−7I, σ2

v = 0.1 and P0|0 = 0.1I for the Kalman filter. The
adaptive filter length is set to N = 100 and the initial filter co-
efficients h0 are set to zero. Figure 4.6 shows the learning curve
|ht − h0|, in dB, for the different adaptive filters in one trial.

As expected, the Kalman and RLS filters exhibit the fastest re-
sponse, with a similar performance. The LMS filter, with the
given µ value, exhibits a slightly slower response and a slightly
larger error. The time-averaged error energy E[e2(t)] = E[(d(t)−
hT

t xt)2] , in 50 trials with different random ho(t) filters and signal
samples, was about 0.11, 0.11, 0.13 for the Kalman filter, the RLS
filter and the LMS filter, respectively.

As a further test, we performed experiments with real data, us-
ing the same filter parameters as before, by setting x(t) = sw(t),
the steering wheel angle recording, and d(t) = spr(t), the ac-
quired SPR signal. According to model 4.1, the residual error
signal s(t) represents SPR signal components that are not due to
the motion artifact, and that may evidence stress events.
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FIGURE 4.6: Learning curve for the adaptive filters.

Figure 4.7(a) and Figure 4.7(b) show sw(t) and spr(t), respec-
tively.

The SPR signal is in general correlated with the steering wheel
(SW) signal, and the MA removal procedure aims at removing
the SW component from the SPR. As an example, Figure 4.8
shows the Pearson correlation between consecutive 5s blocks of
the SPR and SW signals. The correlation for the event located at
the sample interval between 13.000 and 15.000, where the SW is
almost constant, has a smaller value ρ = −0.22.

As described in Section 4.2.5, the driver in this preliminary test
moves the steering wheel following a test video, replicating typ-
ical driving behavior in different situations. The plots clearly
show the steering wheel pattern in spr(t), confirming the influ-
ence of motion artifacts. However, the regions evidenced by the
red squared blocks show a rather clear deviation of spr(t) sig-
nal from sw(t), which may reveal emotional or stress events.
Figure 4.7(a), 4.7(c) and 4.7(d) show the squared residual s2(t)
after the Kalman and LMS filters, respectively. Although with
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FIGURE 4.7: Adaptive filter performance with acquired signals.
(a) Steering wheel angle sw(t), (b) Skin Potential Response spr
(t), (c) squared residual s2(t) for the Kalman filter, (d) squared

residual s2(t) for the LMS filter.

some differences, the qualitative behaviour of the filters is com-
parable. The time-averaged error energy E[s2(t)] in this example
was 0.52, 0.86, 0.39 for the Kalman filter, the RLS filter and the
LMS filter, respectively. Note that the signals in Figure 4.7(a)
and 4.7(b) differ also at time instant 12,000, as evidenced by the
gray rectangle.

However, the two signals are pretty much inverse correlated
in this time interval, so that it is difficult to decide if the peak
in spr(t) signal is MA or if it is related to an emotional event.
In any case, the adaptive filters compensate the peak, and the
corresponding residuals have low energy. Note that the input
signal sw(t) can be nearly constant and narrowband in many
time intervals. This may cause the input covariance matrix to
become close to singular, and the system 4.5 to become nearly
non-observable. When processing real data, we noticed that the
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FIGURE 4.8: Top: Skin Potential Response; Middle: Steering
Wheel; Bottom: correlation between SPR and SW over time, the
moving window length is 1000 samples (corresponding to 5 s).

Kalman and RLS estimated filter coefficients can fluctuate sig-
nificantly, even if this has little impact on the residual energy.

As a matter of fact, with a strictly narrow-band input signal, the
adaptive filter frequency response in no-care regions can be ar-
bitrary, without affecting the residual. For these reasons, and for
its lower computational complexity, we chose the LMS adaptive
filter for the experiments presented below.

FIGURE 4.9: Absolute value of SNEO and its sparse representa-
tion.

The sparse approximation is however not necessary, and, in view
of a real time implementation, we can take into account the orig-
inal SNEO signal only.
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4.2.7 Experimental setup

Scenario 1: Figure 4.10 shows the SPR acquired from Subject 0 in
Scenario 1, for whom we also record the SPR signal from the
still hand, and the corresponding steering wheel angle (Sub-
plot 1, 250 s signal block). Sound occurrences are marked by
the red vertical lines with a circle marker in the figure. We
also plot lighter grey lines with a square marker to indicate the
metronome frequency change. As it can be seen, the SPR has
big peaks right after stress events (circle markers), and between
them there are smaller variations which show a correlation to
the wheel rotations. The stress signal, obtained after MA re-
moval and lowpass filtering, is shown in Figure 4.10 Subplot 2
and compared with the SPR signal acquired from the still hand.
It can be noticed from Subplot 1 that the raw SPR signal is cor-
related to the SW signal and from Subplot 2 that the obtained
stress signal is consistent with the still hand signal, confirming
the effectiveness of our procedure and its feasibility to reveal
stress-related events.

As described in the previous sections, when the SPR signal is
similar to the filtered SW signal, it can be inferred that a motion
artifact due to the movements of the steering wheel and vibra-
tions has occurred, and the stress component is negligible. On
the other hand, if the signals are fairly different, this difference is
due to the emotional or stress component. This is confirmed by
looking at the figure, where it can be seen that the higher stress
peaks happen right after each sudden sound effect. In order to
make more evident the effect of MA removal, we show in Fig-
ure 4.11 a detail of the signals in the time interval 347–372 s. In
particular, we show the raw SPR signal, the SPR signal after MA
removal and low-pass filtering and the still hand signal.

We also show the raw SPR signal after low-pass filtering, but
without MA removal, in order to evidence the effect of the adap-
tive filter. It can be seen that SPR signal, processed with the pro-
posed procedure, is indeed consistent with the still hand signal,
and that the raw SPR signal is indeed influenced by the motion
artifact.
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The stress signal is then processed to derive the SNEO and its
sparse Gaussian reconstruction (as explained in Section 4.2.5).
Figure 4.12 Subplot 1 shows the absolute value of SNEO of Sub-
ject 0 for the entire duration of the experiment. The stress iden-
tified by the peaks in the signal is now more evident and clearly
appears after each sound event (circle markers). Smaller peaks
also happen when the metronome frequency changes. In ad-
dition (see the sparse approximation in Subplot 2), for visual-
ization purposes, we propose a possible way to segment stress
level intensity using color thresholds, by dividing the maximum
measured level (from blue for lowest/no stress, to red for high-
est stress).

Results for the 15 students in the group, using two hands for
moving the steering wheel, are consistent with those of Subject
0, even if individual responses can have different characteris-
tics. As an example, Figure 4.13 and Figure 4.14 show the sig-
nals and SNEO respectively for Subject 3 of the group, where
the response under the same conditions is different. This is due
to a variety of reasons. The measured SPR changes from per-
son to person because of the differences in the skin properties,
moreover each person might have a different emotional reaction
to a particular sound. These variations can be seen in Figure
4.15 and Figure 4.16, relative to Subject 6, where there are lower
or absent stress reaction peaks after some sounds, or more pro-
nounced peaks during metronome frequency changes.

Scenario 2: Figure 4.17 shows the absolute value of SNEO and
its Gaussian approximation for Subject 1 for the entire duration
of the experiment. As before, the LMS algorithm is used to ac-
count for the MA signal. The stress response after the sudden
simulated accident can be clearly seen. In the vast majority of
subjects the stress peak right after the accident is higher than
any other stress level during the rest of the video. In some sub-
jects there have been similar stress peaks during other parts of
the video (see also another subject reaction, Subject 8, in Figure
4.18). This might be due to the fact that some subjects may have
some emotional reactions by just watching the video, or they
expect a second accident after the first one in successive turns.
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FIGURE 4.10: Subject 0 in scenario 1. Subplot 1: Skin Poten-
tial Response signal and Steering Wheel excursion; Subplot 2:
Resulting stress signal after MA removal and lowpass filtering,
compared with the still hand SPR signal. Red markers: induced

stress events, Gray markers: metronome frequency changes.

FIGURE 4.11: A detail of the signals in time interval 347–372 s.

4.2.8 Experimental results

In order to quantify the performance of our algorithm, we start
from the hypothesis that each stress trigger (the sudden random
sounds and the accident event) will cause a stress reaction in the
subjects. We will consider a stress reaction as happening when
the stress level will be greater than a threshold. This threshold
is defined for each subject individually and, as a reasonable em-
pirical choice, we set it to 75% percentile of the SNEO values
obtained in a 5 min recording of the SPR signal in conditions
similar to those of the test, before the actual experiment begins.

In a real world implementation, one would need to train the
system for each particular subject. To collect the statistics of our
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FIGURE 4.12: Subject 0 in scenario 1. Subplot 1: Absolute value
of SNEO; Subplot 2: Sparse Gaussian reconstruction.

FIGURE 4.13: Subject 3 in scenario 1. Subplot 1: Skin Poten-
tial Response signal and Steering Wheel excursion; Subplot 2:
Resulting stress signal after MA removal and lowpass filtering.
Red markers: induced stress events, Gray markers: metronome

frequency changes.

experiments, any value below the threshold will be ignored, and
any occurrence above it will be counted as positive. To count the
true positives, we consider only the stress happening in a ten
seconds time window after each trigger event. If stress happens
outside of this window we don’t consider it as related to the
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FIGURE 4.14: Subject 3 in scenario 1. Subplot 1: Absolute value
of SNEO; Subplot 2: Sparse Gaussian reconstruction.

FIGURE 4.15: Subject 6 in scenario 1. Subplot 1: Skin Poten-
tial Response signal and Steering Wheel excursion; Subplot 2:
Resulting stress signal after MA removal and lowpass filtering.
Red markers: induced stress events, Gray markers: metronome

frequency changes.

trigger event.

In the video experiment, the single stress event induced a stress
reaction in all of the 15 test subjects, evidenced by a large peak
of the SNEO signal in the 10 s window after the event, clearly
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FIGURE 4.16: Subject 6 in scenario 1. Subplot 1: Absolute value
of SNEO; Subplot 2: Sparse Gaussian reconstruction.

FIGURE 4.17: Subject 1 in scenario 2. Subplot 1: Absolute value
of SNEO; Subplot 2: Sparse Gaussian reconstruction.

distinguishable from other smaller peaks (see Figure 4.17).

In the following, we therefore quantify the results for the au-
dio events scenario only. The results are shown in Table 4.1,
where we compute the Recall for each subject. We then average
these Recall values in order to express the general performance
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FIGURE 4.18: Another subject (Subject 8) in scenario 2. Subplot
1: Absolute value of SNEO; Subplot 2: Sparse Gaussian recon-

struction. Red marker: induced stress event.

of the algorithm. The computed average turns out to be 95.15%,
which confirms the good performance of the proposed scheme
for stress event detection.

It is apparent from the experiments (see for instance Figure 4.16),
that we can observe a certain number of peaks in the processed
SNEO signal which are not related to the stress triggers. As men-
tioned, this can be due to changes of the emotional status of the
subject that we cannot control. We observe however that many
of these peaks are located in correspondence to changes in the
metronome/steering wheel turning frequency, which may sug-
gest they are related to artifacts still present in the processed sig-
nal. To better understand the presence of stress peaks which are
far from triggers, as described in Section 3.2, we recorded on the
first scenario with the audio sequence two signals for Subject
0, one from a resting hand and the other from the hand steer-
ing the wheel. In these conditions, we notice that SPR peaks, far
from the trigger events, are still present in both recorded signals.
This means that they are indeed probably due to the emotional
or stress state of the subject and not, for instance, to residual
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motion artifacts related to driving. Since they often happen af-
ter each metronome frequency change, it can be meaningful to
analyze the algorithm performance in our original experiment
(with the same 15 subjects measured data) in a different way,
using a new hypothesis: not only each stress trigger, but also
each metronome frequency change, will cause a stress reaction
in the subjects.

We still count a stress reaction as happening when the stress
level will be greater than the same thresholds we found before.
For each subject we count the True Positives (TP), which this
time are the number of correctly detected stress peaks after the
sudden sounds and after the metronome frequency changes (within
a ten seconds time window). We also count the False Negatives
(FN), i.e., the number of missed peaks under the same setup.
The results are shown in Table 4.2, where we compute the Recall
for each subject. As before, we then average these Recall values,
obtaining a result of 83.92%. This value is a little worse than be-
fore. This might be due to different reasons: the metronome fre-
quency change is probably a less stressful event than the sudden
sounds, the subjects may become used to the frequency changes,
or slow to high frequency changes might be more stressful than
high to slow ones. Nonetheless, the performance of the algo-
rithm is still good, even under these new conditions.

For the sake of completeness, Table 4.3 shows the performance
considering the metronome frequency changes only.

TABLE 4.1: TP, FN and Recall values for all the subjects (con-
sidering stress reactions after sudden random sounds).

Subject no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TP 11 10 11 11 10 10 10 11 11 11 10 10 11 10 10
FN 0 1 0 0 1 1 1 0 0 0 1 1 0 1 1

Recall (%) 100 90.91 100 100 90.91 90.91 90.91 100 100 100 90.91 90.91 100 90.91 90.91

TABLE 4.2: TP, FN and Recall values for all the subjects
(considering stress reactions after sudden random sounds and

metronome frequency changes).

Subject no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TP 33 28 28 28 26 29 27 26 30 32 27 28 28 28 30
FN 1 6 6 6 8 5 7 8 4 2 7 6 6 6 4

Recall (%) 97.06 82.35 82.35 82.35 76.47 85.29 79.41 76.47 88.24 94.12 79.41 82.35 82.35 82.35 88.24
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TABLE 4.3: TP, FN and Recall values for all the subjects (con-
sidering stress reactions after metronome frequency changes).

Subject no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TP 22 18 17 17 16 19 17 15 19 21 17 18 17 18 20
FN 1 5 6 6 7 4 6 8 4 2 6 5 6 5 3

Recall (%) 95.65 78.26 73.91 73.91 69.57 82.61 73.91 65.22 82.61 91.30 73.91 78.26 73.91 78.26 86.96

4.3 Dual channel Electrodermal activity sensor and
Motion Artifact removal through smoother se-
lection algorithm

Although adaptive filters can follow the SPR deviations caused
by the handling of the steering wheel, it has several limitations.
While driving, people occasionally put the hands off the steering
wheel. The Steering Wheel excursion then, cannot be correlated
to the Motion Artifact when the driver is not holding it. This can
lead to false stress detection. Another issue is represented by the
artifacts caused by muscle stretching, which are not correlated
to hand movements and can be wrongly detected as stress as
well. The method developed to overcome the issue, considers
SPR measurements taken on both hands. Relying on the fact that
the emotional component is the same in both left and right SPR
signals while the MA is not, the two SPR are processed through
an algorithm whose output represents the common emotional
component of SPR.

4.3.1 Sensor

The sensor architecture is shown in Figure 4.19(a). The dual
channel SPR device acquires the electrodermal signals (named
s1 and s2) on both hands and transmits the data via Wi-Fi to a
laptop at a sample rate 200 Sa/s. The signals are acquired posing
three Ag/AgCl electrodes on the palm, the back and the wrist of
each hand. The sensor is battery operated with a single LiPo cell
and is able to transmit data continuously for 8 hours. The sen-
sor analog front end is shown in Figure 4.19(b). It is composed
of two channels which amplify (with a gain G = 160) both s1 and
s2 SPR signals whose amplitude is in the range ±10 mV; in this
way the output varies in the range ±1.65V with respect to VREF.
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The bandwidth of the conditioning circuit is in the range [0.08,
40] Hz [2, 4, 3]. The analog to digital converter (12 bits resolu-
tion) on board of the DSP converts the data and sends them to
the WiFi module. The analog front end of the sensor has been
characterized in detail in [3], providing an accuracy in the mea-
surement of the SPR signal in the order of 0.5%.

FIGURE 4.19: (a) Scheme of the developed system for EDA
measure- ment; (b) block diagram of the dual channel SPR sen-

sor.

4.3.2 Left and right hand SPR relation

In this section we show some measurements of SPR taken on
the left and right hand with the sensor described in Section 4.3.1.
These measurements put in evidence the crucial aspects between
the two SPR signals on which the proposed method for MA re-
moval has been based.

The two acquired SPR signals (named s1(t) and s2(t) as intro-
duced before) are both governed by the sympathetic nervous
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system, and thus they are almost identical if the hands are per-
fectly still. In Figure 4.20 it is possible to see, during a three
minutes long recording, that the SPR signals from the two hands
exhibit the same behavior in terms of peak amplitudes and vari-
ation rate.

As described in Section 4.1.5 and in Section 4.3, if SPR is mea-
sured while a person is driving, it will be affected by MA caused
by hand movements and clasps. In Figure 4.21 we can see that
because of the hands’ motion, especially when the electrodes are
mechanically stressed, the signals are strongly perturbed. Note
that mechanical stress is typically induced by one of the two
hands at a time, resulting in motion artifacts in one of the two
signals only. For these reasons, a single channel EDA sensor
could provide results that are not consistent with the real elec-
trodermal activity due to stress or fatigue.

FIGURE 4.20: SPR raw signals acquired with both hands still
for two minutes: with no motion, the signals are identical.

4.3.3 Motion Artifact removal

The first assumption of the proposed MA removal algorithm is
that the motion artifact, if present, increases the local energy of
the acquired signal, since there is a component due to EDA and
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FIGURE 4.21: Top graph: motion artifacts on SPR signals due
to hands movements; bottom graph: expected SPR signal when

the hands are still.

a component due to motion. Moreover, we assume that motion
artifacts are present in only one of the two signals s1, s2 at a time.
This assumption is very often verified in real data, even if not
always, but the proposed solution is a reasonable compromise
to mitigate MA, as confirmed by the results which will be pre-
sented later in Section 4.3.4. We calculate first the RMS values σ1

and σ2 of the input signals s1 and s2 on a moving window whose
width has been set to N = 200 samples, corresponding to a time
duration of 1s with a sample rate of 200 Sa/s. At the k-th sample
(with k > N), σ1,2 will be:

σ1,2(k) =

√
∑k

n=k−N+1 s2
1,2(n)

N
(4.8)

After RMS calculation, we choose a smooth threshold function:

g(x) =
1

1 + e−2(x−1)
(4.9)

Function g(x) in (4.9) is such that g(x) ≈ 0 when 0 ≤ x ≪ 1 and
g(x) ≈ 1 when 1 ≪ x ≤ 2. The threshold function g(x) is used
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to calculate the correction factor α used to remove the motion
artifact. At the kth sample, α(k) is:

α(k) =

⎧⎪⎨⎪⎩
g
(

σ1(k)
σ2(k)

)
if σ2(k) ̸= 0

1 if σ2(k) = 0
(4.10)

From (4.9) and (4.10) it is possible to see that α→ 0 when σ1 < σ2

and α → 1 when σ1 > σ2. Finally, we obtain the output of the
proposed algorithm by linearly weighting the two input signals
with the correction factor α obtained in (4.10). The output of the
algorithm, at the kth sample, is computed as:

out(k) = α(k) · s2(k) + [1− α(k)] · s1(k) (4.11)

Qualitatively speaking, the output in (4.11) follows the smoother
signal, i.e., the input signal (whether s1 or s2) with lower energy
content inside the moving window of 1 s duration.

4.3.4 Experimental setup and algorithm performances

In this section we compare the results obtained using our MA re-
moval algorithm with two of the most commonly applied blind
source separation techniques, namely Principal Component Anal-
ysis (PCA) and Independent Component Analysis (ICA) [93].
As a matter of fact, one can suppose that s1(t) and s2(t) are es-
sentially obtained as the combination of a common component
related to the Autonomous Nervous System activity, and of un-
correlated or independent components due to MA and noise.
As well known, PCA allows to find statistically uncorrelated
components, which do not necessarily represent independent
sources, which are instead searched for by the ICA algorithm.

For the experiments in 4.3.4 and 4.3.4, the disturbances are planned.
Then, we quantify the quality of signal extraction by evaluat-
ing the error in artifact removal as the difference VERR(t) =
SPREXP(t)−OUTi(t), where OUTi(t), i = 1, 2, 3, represents the
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output of the PCA, ICA and of the proposed algorithm, respec-
tively.

On the contrary, for the experiments described in Section 4.3.4
and Section 4.3.4, we do not have a ground truth since we do
not have a still hand at any time. For this reason, we quantify
the performance of the algorithm by means of spectral flatness
as described in section 4.3.5.

Test on Artificial signals

We initially test the algorithms on artificially created signals that
resemble disturbed SPR signals (s1 and s2). Figure 4.22 shows
the artificial signals we used for comparison. In particular, we
simulate the case of non-simultaneous MA appearing at differ-
ent time instants in the SPR signals taken from the two hands,
as well as the case of simultaneous MAs. In the figure, the up-
per plot shows ten seconds of a recorded original SPR signal,
taken from one hand, where we superimpose artificial distur-
bances, mimicking MA, at time instant 5 s and 7.5 s. The plot in
the middle shows the same signal with the disturbance at 7.5 s
only, which we pretend to be acquired from the other hand.

In this simplified experiment, therefore, we model the signals
from the two hands ("original spr1" and "original spr2 (a)" in the
figure) as consisting of the same signal, with one non-simultaneous
MA in one of the two hands, and one simultaneous MA in both
hands. Figure 4.23 shows the signals obtained after processing
with the PCA ("pca1" and "pca2" in the figure) and Fast ICA
algorithms ("IC1" and "IC2" in the figure). It is clear from the
figure that PCA does not remove the disturbances completely
(see signal "pca1"), both the non-simultaneous and simultane-
ous ones, due to the lack of exact orthogonality between the
disturbance and the common signal. It can be seen, however,
that ICA is effective in removing the non-simultaneous distur-
bance (see signal "IC2", neglecting signal scaling). The bottom
plot in Fig. 4.23 shows the signal obtained with the proposed al-
gorithm, where the non-simultaneous disturbance is effectively
removed.
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Figure 4.24 shows the output of the PCA and ICA algorithms
by using as input the signals "original spr1" and "original spr2
(b)" of Figure 4.22. In this simplified case, we pretend there-
fore that the signals from the two hands are identical, except
from MA disturbances at about 5 s time instant in one hand,
and at about 2.5 s in the other hand, again with a simultane-
ous MA at 7.5 s. It is clear from the figure that both PCA and
ICA cannot completely remove the non-simultaneous artifacts.
As a matter of fact, for ICA, we have in this case three com-
ponents (the two non-simultaneous artifacts and the common
signal) and only two measurements. Again, the bottom plot in
Figure 4.24 shows the signal obtained with the proposed algo-
rithm, where the non-simultaneous disturbances are effectively
removed. All the methods, including the proposed one, fail to
remove the simultaneous disturbance. This problem could be
inevitable in real situations, where it is difficult to recognize
a clear structural difference between MA and SPR signal mor-
phologies, contrary to what happens in these artificial examples.

MA induced moving the hands and disturbing the electrodes
test

The test is carried on in laboratory and consists in moving the
hands and disturbing the electrodes during the SPR acquisition.
In Figure 4.27 the artifacts related to each hand (spr1 left, spr2

right) can be noticed.

Figure 4.28 shows the output of the algorithm when the input
data are the ones shown in Figure 4.27. It is evident that all the
motion artifacts are removed and the output follows the signal
which is not affected by disturbances. Comparing Figure 4.27
with Figure 4.25 and Figure 4.26, it is noticeable that PCA and
ICA performances are limited as explained in Section 4.3.4 and
that the proposed algorithm qualitatively performs much better
than PCA and ICA.

Test on driving simulator

After the tests in laboratory, we tried the algorithm on a pro-
fessional driving simulator; the simulated circuit is Jerez de la
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FIGURE 4.22: Artificial test signals. Top: original SPR signal
with simulated MA at time 5 s and at 7.5 s. Middle: original
SPR signal with simulated MA at 7.5 s. Bottom: original SPR

signal with simulated MA at time 2.5 s and at 7.5 s.

Frontera. The driver (not a professionist) never drove on it be-
fore. It is evident that the algorithm follows the input with min-
imum energy when there is discordance between inputs. In Fig-
ure 4.29, one example of the signals acquired during the simula-
tion is shown.

City driving test

As a last qualitative example, we show in Figure 4.30 the algo-
rithm output when the signals are taken from a driver in a fifteen
minutes drive in city traffic.

Since the number of SPR pulses is very high on a long acqui-
sition, for the sake of clarity, in Figure 4.31 we show a zoom
of Figure 4.30 in the time interval [400, 550] s. In this interval,
two kinds of motion artifacts are clearly visible. The first one, a
high frequency disturbance, is due to muscle contractions and
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FIGURE 4.23: Results of processing signals “original spr1" and
“original spr2 (a)" with PCA and ICA.

is present almost always, especially on the black line. The sec-
ond one is a long term motion artifact due to a long curve, or a
roundabout, appearing at the time instant t = 450 s and whose
duration is about 5 s. Also in this case, it can be seen that the
output of the algorithm is stable, presenting peaks only when
they appear in both input signals.
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FIGURE 4.24: Results of processing signals “original spr1" and
“original spr2 (b)" with PCA and ICA.

4.3.5 Spectral flatness

To quantify the smoothness of the output provided by our algo-
rithm in comparison with PCA and ICA, we evaluate the Wiener
entropy (or Spectral Flatness, SPF) [59], defined as:
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FIGURE 4.25: Raw signals versus Principal Component Anal-
ysis (blue line). It is noticeable that the algorithm does not re-

move all the motion artifacts.

FIGURE 4.26: Raw signals versus ICA algorithm. Top plot:
SPR1 (green dashed) and ICA1 (blue solid); bottom plot: SPR2
(black dashed) and ICA2 (blue solid). It is noticeable that ICA

algorithm does not remove the motion artifacts.

SPF =

N
√

∏N−1
k=0 Y(k)

1
N ∑N−1

k=0 Y(k)
(4.12)

where Y(k) is an N-point estimate of the Power Spectral Density
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FIGURE 4.27: Motion artifacts on SPR signals due to hands
movements

FIGURE 4.28: Raw signals versus the proposed algorithm: the
output (blue line) is not affected by motion

of the input. Low SPF values indicate that the signal energy is
concentrated in a narrow band (this typically happens for elec-
trodermal signals), while high values of the SPF imply that fre-
quency components are spread in the spectrum (e.g., when ran-
dom or impulsive components are added to the electrodermal
activity).

In Table 4.4 the values of SPF are reported. The proposed algo-
rithm has lowest SPF in almost all the tests, and in some cases it
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FIGURE 4.29: Signals acquired during a track lap on a driving
simulator

FIGURE 4.30: Signals acquired during a drive session in traffic

is several orders of magnitude lower than using the other meth-
ods.

4.4 Real time implementation

The proposed system could be implemented in real time. In par-
ticular, the proposed motion artifact removal algorithms only
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FIGURE 4.31: Signals acquired during a drive session in traffic
(zoom); two kinds of artifacts removed: muscle activity and

disturbance to electrode (at t = 450 s)

SPF (·10−5)
SPR1 SPR2 PCA ICA1 ICA2 Proposed

Lab test1 105.6 9.8 62.7 95.2 8.9 0.4
Lab test2 1.5 4.6 0.5 1.6 1.4 0.02
Lab test3 0.7 3.9 1.2 0.08 2.2 0.03
Lab test4 2.1 1.9 1.9 2.1 0.7 0.6
Simulator test1 4.5 1.5 3.8 1.3 10.7 0.06
Simulator test2 2.9 0.5 1.9 5.6 0.6 0.08
Simulator test3 2.6 1.5 5.5 5.1 1.4 1.2
Simulator test4 0.3 0.7 1.1 1.1 0.3 0.4
Simulator test5 1.6 5.3 2.2 0.4 3.3 0.04
Simulator test6 0.3 0.6 0.4 0.1 2.3 0.5
Simulator test7 0.8 0.4 0.1 0.2 0.3 0.0001
Simulator test8 0.9 1.8 1.6 0.6 5.9 0.8
Simulator test9 2.7 1 1.8 1.8 1.9 0.9
Simulator test10 19.9 8.8 40.2 46.5 13.2 2.7
Simulator test11 0.09 0.6 0.1 0.6 0.2 0.01
Traffic 0.9 6.3 1.3 7.1 4.4 0.1

TABLE 4.4: Wiener entropy evaluation of the raw SPR signals,
PCA, ICA, and proposed method

require the past samples contained in a one second long slid-
ing window to compute the output that follows the smoother
SPR signal (we then shift by one sample and do the computa-
tion again). Since we collect 200 samples per second for adap-
tive filtering and 100 samples per second for smoother, there is a
1/200 s-1/100 s interval between each sample, so the constraint
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is that the computation must be completed within 1/200 s and
1/100 s respectively.

4.5 Conclusions

This chapter is dedicated to the development of MA removal
systems.

The first approach is based on adaptive filtering, exploiting the
correlation between hand movements, represented by Steering
Wheel angle excursion and Motion Artifact. The system has
been tested during an experiment carried out in laboratory while
the subjects move the wheel at different speeds. The results
showed that the system is able to remove Motion Artifact and
allow the detection of stress reactions.

More realistic experiments put in evidence the problems of track-
ing Motion Artifact from the Steering Wheel due to the driving
behavior. Drivers occasionally take the hands off the Steering
Wheel (at least one hand per time) and stretch the hand muscles
during particular maneuvers and/or operations.

To handle this kind of situations another approach has been de-
veloped. The method is based on measuring SPR on both the
hands and processing them in order to get only the common
part, which is related to mental state, in the output. Although
the proposed method cannot clear Motion Artifact when both
the hands suddenly simultaneously move in the same way, we
rely on the fact that these events barely occur in real driving
scenarios. Since our hypothesis is based on drivers behavior,
we set several experiments of increasing realism. The tests con-
firmed our hypothesis and the performances of Motion Artifact
removal method outperformed PCA and ICA algorithms. Ul-
timately, the experiments have shown that Motion Artifact is
strongly invasive in driving context and a perfect method for
its removal cannot exist; but if the context is properly taken into
account we can obtain good results and obtain a Stress (S) sig-
nal which can be correctly interpreted and processed to detect
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stress. In the next chapter, signal features behavior will be ana-
lyzed, then machine learning techniques will be used to classify
the drivers’ mental state.
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Chapter 5

Features extraction and data
classification

In this chapter, we process the Stress signal obtained from the
Motion Artifact removal system and the RR peaks and Heart
Rate (HR) obtained from the Electrocardiogram of the subjects
under test, in order to extract features that represent the pres-
ence or the absence of mental stress. The features then, are pro-
cessed and classified with Machine Learning techniques which
give an evaluation about the subjects’ state.

This chapter is structured in the following way: Section 5.1 is
dedicated to the theory and the functioning of the machine learn-
ing techniques that will be used to classify the subjects’ state.
The next sections regard the experiments in which the classi-
fiers will be applied. In Section 5.2 the feature extraction and
classification procedure is carried out on the Stress, RR and HR
signals. In Section 5.3 and Section 5.4 are presented new exper-
iments in realistic car driving scenarios, carried out on a pro-
fessional simulator. Support Vector Machines (SVM) and feed-
forward Neural Networks (NN) are then employed to classify
the collected features. Section 5.5 discusses a possible real time
implementation of the proposed systems. Finally in Section 5.6
the conclusions are given.

—————————————————————————–
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5.1 Machine learning

To evaluate the mental state of the subjects under test, we use
machine learning techniques. The classifiers we employ in our
work are the Support Vector Machine and the Neural Network.
In this section, the functioning of the classifiers is explained in
order to understand how the features of the physiological sig-
nals we measure are processed to detect drivers’ stress.

5.1.1 Support Vector Machine

The idea behind the Support Vector Machines (SVM) classifier
is to split the training data set, in order to classify new data, on
the basis of their position in the N-dimensional hyperspace in
which the feature values lie. Figure 5.1 shows a 2D representa-
tion of such a hyperspace. The hyperplane h(x) separates the
hyperspace in two regions, assigning to the features a binary la-
bel.
An explanation of binary SVM functioning follows.

Given the training data in the form:

S = {(yi, xi)|yi ∈ {+1,−1}, xi ∈ ℜN∀i = 1, ..., l} (5.1)

where xi is the i-th training sample and yi is the label associated
to xi. xi is a vector of dimension Nx1, yi is a scalar whose value
can be -1 or +1. Each label assign a sample to a specific class.

A decision function f (x) must be found to separate the hyper-
space in regions in which all the samples have the same label.
This hypothesis is verified if the decision function has the fol-
lowing property:

f (x) =
{

+1 when h(x) > 0
−1 when h(x) < 0

(5.2)
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The separating surface, which represents the boundary between
positive (+1) and negative (-1) labeled regions, is defined as fol-
lows:

H = {x|h(x) = 0}. (5.3)

FIGURE 5.1: 2D space with linearly separable data separated by
a hyperplane.

In first instance, we consider the case of a linearly separable sce-
nario as depicted in Figure 5.1. In this scenario a hyperplane
defined as h(x) represented by a linear function:

h(x) = wTx + b (5.4)

where w and b are the hyperplane parameters of NxN and Nx1
dimensions, is able to separate positive and negative regions.

Infinitely hyperplanes that can correctly separate the positive
and negative instances may exist; the optimal hyperplane is the
one with the largest gap between the classes because it will be
more robust to any perturbation of the training data.
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Since the margin could be measured in different ways, we for-
mally define the distances of a feature x to the setH

Distance(x,H) = min
p∈H

(∥x− p∥) (5.5)

where p is the point in the hyperplane with the smallest eu-
clidean distance from the closest element of the dataset; this set-
ting is called Maximum Margin Classifier, where the margin is
defined as the distance between the hyperplane and the closest
dataset element.

If H is a hyperplane we can apply Theorem 2.2 in [72] and write
Equation 5.5 in closed form:

Distance(x,H) =
|wTx + b|
∥w∥∗ (5.6)

Different norms can be used, we choose the dual norm ∥∥∗.
The margin, which measures the gap between the separating
surface H and the nearest instance, is defined as follows:

M = min
i

|wTxi + b|
∥w∥∗ (5.7)

When the instance xi lies on the correct side of the hyperplane
(i.e. if a positive labeled instance lies on the sector of the hy-
perplane that belongs to positive instances), the numerator of M
could be simplified as follows:

|wTxi + b| = yi
(
wTxi + b

)
> 0 (5.8)

Thus, to find a maximum margin classifier, we can instead solve
the following problem:

max
w,b,M

M, s.t.
yi(wTxi+b)
∥w∥∗ ≥ M (5.9)
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It could be verified that any non-zero multiple of the optimal
solution

(
w̄, b̄

)
is still an optimal solution. Therefore, we could

set:
M∥w∥∗ = 1 (5.10)

than, the problem can be written in the equivalent form:

min
w,b
∥w∥∗, s.t. yi

(
wTxi + b

)
≥ 1, ∀i = 1.....l (5.11)

In real scenarios however, we do not have linearly separable
regions. Therefore, the model should also be able to handling
non separable data. Figure 5.2 shows a non-linearly separable
dataset. To find the optimal hyperplane then, condition 5.11
must be violated and a loss function ξ(·) must be introduced:

FIGURE 5.2: 2D space with non-linearly separable data sepa-
rated by a hyperplane.

ξL2 (w, b; yi, xi) = max
(
0, 1− yi

(
wTxi + b

))2
(5.12)
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The goal of the loss function is to contrast the optimal hyper-
plane objective function, penalizing the elements having values
that significantly differ from the other elements of dataset which
belong to the same class, known as loss terms.

We need to find the optimal hyperplane which excludes the loss
terms and, at the same time, maintains a large margin. Thus,
there are two objectives, and there may be multiple ways of bal-
ancing them.

For example, one can have a smaller margin with one violated
instance. Alternatively, one can have a larger margin with more
violated instances. Since it is more difficult to minimize multi-
ple objectives simultaneously, some tradeoffs between ∥w∥∗ and
the loss terms are introduced. If the distance is defined by the
Euclidean norm, and the L1 hinge loss is chosen, we have the
classic SVM formulation in [20]:

min
w,b

1
2wTw + C ∑l

i=1 ξL1 (w, b; yi, xi) (5.13)

composed of two parts: a norm from the maximum margin ob-
jective, and the loss terms from the violation of the models. The
maximum margin part is also called the Regularization Term,
which is used to control the model complexity with respect to
the violation of the models. From the perspective of numeric
stability, the regularization term also plays a role in the balance
between the accuracy of the model and the numeric range of w.
It ensures that w does not assume extreme values.

Equation 5.13 could be written in the following form:

min
w,b,ξ

1
2wTw + C ∑l

i=1 ξi, yi
(
wTxi + b

)
≥ 1− ξi,≥ 0 , ∀i = 1, ...., l

(5.14)

defining the scalar ξi = ξL1 (w, b; yi, xi).

Different from the original non-differentiable problem, this for-
mulation is a convex quadratic programming problem over some
linear constraints. Since this problem is a constrained optimiza-
tion problem, a Lagrangian relaxation approach may be used to
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derive the optimality condition [40]. Following the procedure in
Section 7.4 of [7] the Lagrangian relaxation method is applied to
our problem.

In several cases, a hyperplane cannot be a valid surface to define
the regions properly; or maybe, it is just more convenient to use
a different kind of separating surface rather than a hyperplane.

Equation 5.4 can be generalized as follow:

h(x) = wTϕ(x) (5.15)

where ϕ is a non-linear kernel.

Specifically, if we apply a feature transformation described in
[7][Section 7.5], the data set becomes linearly separable in the
mapped space. A widely used kernel is the Radial Basis Func-
tion (RBF), also known as Gaussian kernel

k (x, z) = exp
(
−γ∥x− z∥2) (5.16)

where x and z are two samples that belong to the features dataset,
k (x, z) = ϕ (x)T ϕ (z) and γ is a defined hyper-parameter.

Another widespread kernel type for ϕ(x) is the polynomial func-
tion of a certain defined order.
Figure 5.3 shows an example of a non-linear separation bound-
ary.

The reader can refer to [7], for a detailed explanation about SVM
theory, including the Lagrangian relaxation approach used to
derive the optimality condition, other kernel tricks, the func-
tioning of algorithms employed by the solvers and multiclass
SVM classifiers.
For a practical guide to employ SVM, the reader can refer to [14].
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FIGURE 5.3: 2D space with data separated by a surface obtained
by RBF kernel.

5.1.2 Neural Networks

An artificial neural network (ANN) or neural net is a graph of
connected units representing mathematical models of biologi-
cal neurons. Those units are sometimes referred to as process-
ing units, nodes, or simply neurons. The units are connected
through unidirectional or bidirectional arcs with weights rep-
resenting the strength of the connections between units. This
is inspired from the biological model in which the connection
weights represent the strength of the synapses between the neu-
rons, inhibiting or facilitating the passage of signals.

The neural network processes the input data through several
steps. Each neuron takes the input from the neurons which be-
long to the previous layer and transmits its output to the neu-
rons of the next layer.

For classification problems, a neural network is characterized by
the characteristics listed below:
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• The neuron model or the mathematical model of a neuron that
describes how a unit in the network produces an output from
its inputs and the role it plays in the network (input unit, output
unit, or computing unit).

• The architecture or the topology that outlines the connections
between units, including a well-defined set of input and output
units.

• The data encoding policy describing how input data or class
labels are represented in the network.

• The training algorithm used to estimate the optimal set of
weights associated with each unit.

The details of the following subsections are well-described in
[7].

Neuron model

In Figure 5.4 the structure of a neuron is depicted. It consists of:
• N gains wi, also called synaptic weights, on which each of the
N inputs xi is weighted
• a net value function ξ, which utilizes the synaptic weights (or
parameters) w of the unit to summarize input data into a net
value, ν, as:

ν = ξ (x, w) (5.17)

with x = (x1, x2, x3, x4, x5), w = (w1, w2, w3, w4, w5)

• an activation function, or squashing function, ϕ, that trans-
forms net value into the unit’s output value o as:

o = ϕ (ν) (5.18)

The net value function mimics the behavior of a biological neu-
ron, as it aggregates signals from linked neurons into an internal
representation. Typically, it takes the form of a weighted sum, a
distance, or a kernel. The activation function simulates the be-
havior of a biological neuron as it decides to fire or inhibit sig-
nals, depending on its internal logic. The output value is then
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FIGURE 5.4: Neuron structure

dispatched to all receiving units as determined by the under-
lying topology. Among activation functions, the most widely-
used ones include linear, step, threshold function, sigmoid and
hyperbolic tangent functions. Table 5.1 lists several types of
commonly used units.

TABLE 5.1: Type of units commonly used in Neural Network

Type of unit net function activation function
linear threshold unit weighted sum step or sign function

linear unit weighted sum linear or piecewise linear
sigmoidal unit weighted sum sigmoid or tanh
distance unit distance linear or piecewise linear
gaussian unit distance gaussian kernel

Architecture

In Figure 5.5 an example of a standard feed-forward Neural Net-
work architecture is shown. It is composed by several layers
which, in turn, are composed by a certain number of neurons.
The layers are connected each other through their neurons.
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Here we refer to a standard feed-forward NN whose the archi-
tecture is composed of an input layer, one or more hidden layers
and an output layer, which are connected in cascade as we can
see in Figure 5.5. The intermediate layers gradually extract the
information from the input to the output layer through the pro-
cessing carried out by their neurons.

In other types of NN, many kinds of architectures and connec-
tions can be found. To deepen the topic, the reader can refer to
[35, 7].

FIGURE 5.5: Architecture of a Neural Network with 2 hidden
layers

Data encoding policy

At the unit level, computation is a two-stage process, in which
the unit computes the net value using the net value function,
and then computes its output using the activation function. At
the network level, computation starts with a presentation of the
data to the input units in the network.

The input units then transmit the data (without modifications)
to the connected successor units. These units are then activated,
each one computing its net value and output, and in turn trans-
mitting that output to the connected recipient units. This pro-
cess is called spreading activations or forward propagation, as
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activation values spread from the input layer up to the output
layer in a sequential fashion. Depending on the network con-
nectivity, the spreading activation process can be implemented
in a Parallel Distributed System (PDP) [95].

In networks without feedback, the process of activation and prop-
agation ends in the output layer. In networks with feedback,
such as recurrent networks, the activation propagation never
ends, instead following a dynamic trajectory through the state
space, as units and layers are continuously updated. The state of
the network is represented by the values of its synaptic weights.

Training algorithm

The algorithm by which a Neural Network is trained, consists of
the backward propagation of errors, also known as Backpropa-
gation. Basically it consists of adapting the weighting factors
using a gradient-based procedure, in order to obtain the desired
output for the training dataset. Initially, training data inputs are
processed as usual as in a feed-forward network, from the input
to the output layer. Then, the gradients are calculated beginning
from the last till the first layer through the Backpropagation al-
gorithm. Then, the synaptic weights are updated as

w← w0 +∇w (5.19)

∇w = −η
∂E
∂w

(5.20)

where w0 is the previous value of w, E is the error between the
output and the desired output (also called target vector). In the
output layer, the target vector corresponds to the label vector y,
while in the hidden layers it is computed through the optimiza-
tion procedure.

Using the mean square error, E is defined as:

E = Emse (x; w) = ∑
k=0

K (ok − tk)
2 (5.21)
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Specifically, if wjk is the weight connecting the j-th unit in the
last hidden layer and the k-th output unit with net value νk and
output ok = ϕ(ν

(L)
k ):

∂E
∂wjk

=
∂E

∂ν
(L)
k

∂ν
(L)
k

∂wjk
= δkz(L−1)

j (5.22)

where z(L−1)
j is the output of the j-th unit in the last hidden layer

HL−1 and where we define δk =
∂E

∂ν
(L)
k

.

Similarly, the error gradient relative to weight w(l)
hj between the

h-th unit in hidden layer l − 1 and the j-th unit in hidden layer l
is computed as:

∂E

∂w(l)
hj

=
∂E

∂ν
(l)
j

∂ν
(l)
j

∂w(l)
hj

= δ
(l)
j z(l−1)

h (5.23)

By referencing the output layer as HL and input layer as H0, the
weight update is simply:

∇w(l)
ij = −ηδ

(l)
j z(l−1)

i (5.24)

for any given weight w(l)
ij with l ∈ {1, .....L}.

To deepen the topic, the reader can refer to [7] and [35], which
provide a complete explanation of NN variants along with ap-
plication examples.

5.2 Feature extraction and classification 1

In this section, a classification procedure is implemented on the
stress signal S obtained during the experiment undertaken in
Section 4.2, which has been described in 4.2.5. Figure 5.6 shows
the system.
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FIGURE 5.6: Block diagram of the proposed system

TABLE 5.2

Electrode positioning
Electrode 1: Hand Palm (sweat glands present)

Electrode 2: Hand Back (sweat glands not present)
Electrode 3: Wrist (for voltage reference)

Battery Lithium Polymer
VREF 1.65V

Input impedance 100 MΩ
Gain 80

Range ± 20 mV
Frequency Band [0.08 40] Hz

Sampling Frequency 200 Hz
Transmission mode Bluetooth

ADC 12 bit

5.2.1 Sensor and Steering Wheel

The Sensor and the Steering Wheel are the ones described in
Section 4.1.1 and Section 4.1.2 respectively and which have been
depicted in Figure 4.1.

We briefly summarize the sensor characteristics in Table 5.2; for
details, see Section 4.1.1 and [4]:

Regarding the Steering Wheel, we briefly remind that it is a Log-
itech G Driving Force GT Steering Wheel which gives an output
that ranges from [-1 to 1], representing an excursion within the
range of [-90 90]◦. The reader can refer to the relative section for
details.
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5.2.2 Motion Artifact removal

As for the Sensor and Steering Wheel blocks, Motion Artifact
Removal blocks are the ones described in the experiment in Sec-
tion 4.2. See Section 4.2.2 for a complete explanation.

We assume that Motion Artifact is correlated with the motion of
the steering wheel [6], modeling the acquired SPR signal as:

spr(t) = sw ⋆ h(t) + ŝ(t). (5.25)

In (5.25), sw(t) is the Steering Wheel (SW) angle excursion, si-
multaneously recorded with the SPR signal, while ŝ(t) is the SPR
signal component actually related to emotional events.

The LMS algorithm is used to estimate an adaptive filter ĥ(t)
which minimizes the expected MSE E[s2(t)], s(t) = spr(t) −
sw ⋆ ĥ(t). In such a way, we remove from the recorded spr(t) any
component which is linearly correlated with the steering wheel
angle and causes the Motion Artifact. The use of an adaptive
procedure can take into account possible time-varying relations
between Motion Artifact and its effect on the recorded spr(t).
According to model (5.25), the residual signal s(t) is therefore a
suitable estimate of the emotional component ŝ(t), where Mo-
tion Artifact has been removed or at least reduced. The signal
s(t) is then further processed for classification.

Differently from the system employed in 4.2, the stress signal
s(t) is not processed through SNEO operator. This time the
purpose is to classify the driver’s stress relying on several sig-
nal characteristics and make the evaluation more reliable as ex-
plained in the following sessions.

5.2.3 Feature extraction

The residual signal s(t) is therefore analyzed by extracting seven
statistical features from each time interval signal block, which
we chose to be 15 s long, as it will be described in Section 5.2.6.
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5.2.4 Feature labeling and classifier setup

To detect the stress component in a given time interval we use a
classification algorithm. In particular, we use the Support Vector
Machine (SVM) supervised learning algorithm. We ultimately
want to label a given time interval in a binary way, as in “with
stress” (labeled as “1”) and “without stress” (labeled as “0”).

The SVM classifier has been set up using the MATLAB routine
functions (MATLAB 2017.a) with a Radial Basis Function ker-
nel. The Bayesian optimization procedure has also been applied
during the training procedure. The experimental setup is fully
described in the following section. The experimental results are
then presented in 5.2.6.

5.2.5 Experimental Setup

The data we used to test the classifier are derived from the test-
ing scenario we considered in Section 4.2. We performed sev-
eral experiments in which acute stress events were introduced
throughout a drive test simulation.

FIGURE 5.7: A portion of a subject residual signal

Figure 5.7 shows a 50 s long portion of the residual signal of a
subject, after a sound stress event (the first vertical line with a
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circle marker) and after a frequency metronome change (the sec-
ond vertical line with a square marker). The characteristic stress
peaks, as described in [5], are clearly visible after each trigger.

5.2.6 Experimental results

We used the data from 12 subjects out of the 17 to build the clas-
sifier. To populate samples of the "stress" class, we consider all
the stress inducing events, i.e., all the sound stress triggers and
the metronome frequency changes. For both, we selected the
events where we noticed a stronger response, and we removed
the ones where there was a weaker or no response. We kept a
total of 11 stress inducing events. Signal blocks with 15 s dura-
tion, belonging to the "stress" class, are then extracted across the
trigger time position.
In particular, in order to mimic the fact that in the actual classifi-
cation task we are of course not synchronized with stress events,
we choose three time intervals, which overlap the stress trigger
event with different timings. If we call t0 the time a given stress
trigger or metronome change happens, the first interval starts
from t0 − 5 s to t0 + 10 s, the second interval from t0 to t0 + 15 s,
and the third interval starts from t0 + 5 s to t0 + 20 s (see also
Fig. 5.8).

FIGURE 5.8: The overlapping intervals we consider for classifi-
cation, for each stress trigger

All these intervals are labeled as "1", with stress. We assume the
stress as non-existent ("0" class, with no stress) in an equal num-
ber of 15 s intervals, extracted far from the stress triggers and the
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metronome changes time positions. We are now able to build
a dataset of 11 (stress inducing events)× 3 (time intervals)× 12
(subjects) = 396 feature vectors labeled as "1", with stress, and
other corresponding 396 feature vectors labeled as "0", with no
stress. Each feature vector is composed by 7 features, as intro-
duced above.

The features, extracted from the stress signal, should be cho-
sen to identify the stress signal characteristics, discerning when
they are related to a stressed state and when not. In particu-
lar, we consider the energy (since the energy of the signal peaks
due to stress is much higher than the energy of the stress sig-
nal in normal conditions), the mean absolute value, the vari-
ance, the mean absolute derivative and the max absolute deriva-
tive to identify the signal sudden raising and fall when a stress
event occurs. We also consider the Peak to Average Power Ratio
(PAPR) and kurtosis to help discriminate the shape of the peaks.
Each feature, in all corresponding feature vectors, has been nor-
malized to the range [0, 1].

In Figure 5.9 and Figure 5.10, the histograms of the features
which have been extracted from the s(t) signals belonging to the
subjects under test are shown. The blue histograms are related
to the features labeled as "1", the red histograms are related to
the features labeled as "0". It can be noticed that the feature val-
ues corresponding to "0" (no stress) exhibit different histograms
than in the case "1" (stress). Even if the histograms of PAPR and
kurtosis alone do not show evident differences between the two
cases, these features proved to be useful for classification when
used together with the other features.

We use about 70% of this data for the training, and 30% for the
test. This let us have almost 800 data samples for the training.
This is a limited number, but considering the ratio between the
training and the test data, this number can be acceptable [79].
In addition, a 10-fold cross validation has been used. We are
able to count the True Positives (TP), the number of test intervals
that the classifier correctly classified "stress"; the False Negatives
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FIGURE 5.9: The overlapping intervals we consider for classifi-
cation, for each stress trigger

FIGURE 5.10: The overlapping intervals we consider for classi-
fication, for each stress trigger

(FN), the number of "non-stress" classified intervals which in-
stead we expected as "stress"; the True Negatives (TN), the cor-
rectly classified "non-stress" intervals; the False Positives (FP),
the number of incorrectly labeled "stress" intervals that instead
we expected as "non-stress". With these values, we can create
the confusion matrix of the system, which is shown in Fig. 5.11.
The total average accuracy resulted to be 87.40%.
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FIGURE 5.11: Confusion matrix for the two classes classifier
(“stress"/“non-stress") with total average accuracy of 87.40%

We used the data of the remaining 5 subjects to test the classi-
fier in an actual experiment, under the hypothesis that we do
not know anything about the stress triggers, or their timing, so
to evaluate the classifier stress detection capability in a more re-
alistic situation. We will consider both the trigger sounds and
the metronome frequency changes as stress inducing factors.
The classifier will start evaluating the signal from the begin-
ning, considering 15 seconds long intervals. The time window
length has been chosen on the basis of the stress impulse dura-
tion which, as it can be seen in Figure 5.12, is on average 15 s.
A new evaluation will start every 5 seconds. The classification
result will be displayed at the end of each interval. So, every 5
seconds we will have an indication of the stress presence of the
previous 15 seconds interval.

We count a True Positive detection as happening if at least 1 out
of the 4 subsequent intervals after the stress trigger, is labeled as
positive by the classifier. If all the 4 intervals are labeled as neg-
ative, we consider it as a False Negative detection. As in [5], we
do not consider the False Positives (FP) and True Negatives (TN)
detections, because we cannot truly verify when stress should
not be present in a subject at all, and more importantly because
we ultimately want to evaluate the classifier performance in de-
tecting the stress component in proximity of the controlled stress
trigger events. We then compute the Recall (also known as Sen-
sitivity), which is defined as:

Recall (%) =
TP

TP+FN
· 100 (5.26)

where TP+FN represents the total number of stress triggers. The
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TABLE 5.3: Top: TP, FN and Recall values for the five evalu-
ated subjects, considering stress reactions after sudden random
sounds. Bottom: TP, FN and Recall values for the five evalu-
ated subjects, considering stress reactions after sudden random

sounds and metronome frequency changes

Subject no. 1 2 3 4 5
TP 11 11 11 11 10
FN 0 0 0 0 1

Recall (%) 100 100 100 100 90.91
Subject no. 1 2 3 4 5

TP 29 30 31 33 33
FN 5 4 3 1 1

Recall (%) 85.29 88.24 91.18 97.06 97.06

results are presented in Table 5.3 (a), where we have computed
the Recall for each of the five evaluated subjects, considering
only the sound triggers (which we expect to provide a stronger
response) without the metronome. Then, we average these Re-
call values to obtain the overall performance, which equals 98.18%.
Table 5.3 (b) shows instead the Recall value for each subject, but
considering both the sound triggers and the metronome changes
as stress inducing factors. Again, we average these Recall values
to obtain the overall performance, which equals 91.77%. This
confirms the ability of the proposed system to detect the in-
duced stress events.

FIGURE 5.12: A visualization of the classification results for a
tested subject. In this part of the acquired signal there are three

different stress inducing episodes
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Figure 5.12 shows the output labels of the classifier, in a 95 s long
portion of the residual signal for one of the five tested subjects.
A tall dark bar corresponds to stress detection, whereas a light
short bar corresponds to non-stress detection. It can be noticed
that the classifier detects the presence of stress in proximity of
the stress triggers.

5.3 Feature extraction and classification 2

In this section we continue the activity described in 5.2, where
we have tested SVM performance to classify the subject mental
state. We set up a new experiment in collaboration with a com-
pany which specializes in driving simulator equipment. The ex-
periment is a driving simulation running on a motorized plat-
form which allows to recreate a more realistic scenario respect
to the one described in 5.1. In addition to SPR, we measure and
process Electrocardiogram (ECG) too, in order to have more fea-
tures and improve the stress detection performance.

5.3.1 Sensor

Double channel SPR: The sensor architecture is similar to the
one that we presented in Section 4.3.1 and is depicted in Figure
4.19; it is a dual-channel sensor that measures SPR from both the
hands. In table 5.4 is a summary of sensor characteristics.

Triple channel ECG: The analog front end for ECG channels is
basically a band-pass differential amplifier. The maximum in-
put range for each channel is supposed to be±5 mV. The signals
must be therefore amplified to obtain the output range ±1.65 V
with respect to VREF. The bandwidth of each channel is [0.03, 160]Hz.
The input impedance of each channel is 100 MΩ, in order to re-
duce the load error to less than 1%. Finally, accordingly to the
A/D specifications, the resolution of the ECG signals acquired
on the skin results in the order of 2.5 µV.
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TABLE 5.4: (a) Scheme of the developed system for EDA mea-
surement; (b) block diagram of the dual channel SPR sensor

Electrode positioning
Electrode 1: Hand Palm (sweat glands present)
Electrode 2: Hand Back (sweat glands not present)
Electrode 3: Wrist (for voltage reference)

Battery Lithium Polymer
VREF 1.65V
Input impedance 100 MΩ
Gain 160
Range ± 10 mV
Frequency Band [0.08 40] Hz
Sampling Frequency 200 Hz
Transmission mode wi-fi
ADC 12 bit

5.3.2 Motion Artifact removal

Motion artifact removal technique is the one described in Sec-
tion 4.3.3. Being s1(t) and s2(t) the acquired SPR from left and
right hand respectively, the output of the motion Artifact re-
moval block is:

out(k) = α(k) · s2(k) + [1− α(k)] · s1(k) (5.27)

α(k) =

⎧⎪⎪⎨⎪⎪⎩
1

1+e
−2(

σ1(k)
σ2(k)

−1)
if σ2(k) ̸= 0

1 if σ2(k) = 0

(5.28)

σ1(k) and σ2(k) are the standard deviations of the least N sam-
ples of s1(k) and s2(k) respectively.

5.3.3 Feature extraction and classification

In the proposed system we use two different supervised learn-
ing algorithms for classification: a Support Vector Machine and
an Artificial Neural Network. We want to classify each time in-
terval in one of the two possible classes: with stress (or "1") and
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without stress (or "0"). To do so, we consider the cleaned SPR
signal S, resulting from the MA removal block HR and RR ob-
tained from ECG.

The magnitude of the SPR signal, subsampled at 100 Sa/s, may
be very different from one subject to another, and a normalizing
preprocessing phase is necessary. We consider, for each sam-
ple, the SPR signal in the previous 5 minutes. We then calculate,
for each subject, the mean and standard deviation of all the SPR
values included in this interval, and finally we standardize each
value of the SPR, by subtracting the computed mean value and
dividing the result by the standard deviation.
This normalization procedure is the result of the evaluation of
different other normalization algorithms, and different durations
of the intervals to consider, preceding the one analyzed, have
been tested as well. The chosen method allows us to obtain a
signal with approximately zero mean and a standard deviation
equal to 1. The 5 minutes long interval is a good compromise in
relation to the amount of data to process and the time window
length needed to apply the algorithm.
From the SPR signal we consider five statistical features from
each time interval signal block, which we chose to be 15 seconds
long. Blocks are overlapping by 10 s, thus considering a new
block every 5 s. This allows detection with an acceptable low
delay.

In ECG signal, we detect R-peak locations with the Pan-Tompkins
algorithm [80]. The instantaneous HR signal is extrapolated
from RR intervals at a sample rate of 100 Sa/s. The HR signal is
again normalized using the same procedure of the SPR signal.
We consider eight statistical features for each time interval sig-
nal block.

Features were chosen to represent the stress signal component
characteristics. In particular, regarding the SPR signal, we con-
sider the block variance, the energy, the mean absolute value,
the mean absolute derivative and the max absolute derivative.
Kurtosis and PAPR were not chosen, since they did not improve
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accuracy, contrary to what observed in the experiment described
in Section 5.2. In this more realistic case, the SPR signal presents
some fluctuations even when no stress events occur, as evidenced
by Figure 5.14. Regarding the ECG signal, we compute the mean
value of normal-to-normal RR (also known as NN) intervals,
standard deviation of RR intervals (SDNN), standard deviation
of subsequent RR interval differences (SDSD), root mean square
of subsequent RR interval differences (RMSSD), number of sub-
sequent RR intervals differing more than 50 ms (NN50) and the
corresponding relative value in percentage (PNN50), mean value
of the Heart Rate (HR) and HR mean derivative value (in Ta-
ble 5.5 we summarize the considered features). We also took
into account frequency domain features, in particular Low Fre-
quency (LF) and High Frequency (HF) power spectra and the
ratio LF/HF, but they were not selected for classification since
they did not improve performance.

Input Extracted features
Variance
Energy

SPR Mean absolute value
Mean absolute derivative
Max absolute derivative
RR mean
SDNN
SDSD

ECG RMSSD
NN50
PNN50
HR mean
HR mean derivative

TABLE 5.5: Features used in our classification algorithms. In
bold we highlighted the features combination which gives the

best results, for both classifiers.

Feature vectors are obtained by combining the features of both
signals, and each feature is then normalized in the [0, 1] range.
The SVM classifier has been set up using the Matlab routine
functions (Matlab 2017.a) with a Radial Basis Function (RBF)
kernel and the Sequential minimal optimization (SMO) solver.
The RBF hyperparameters, box constraint and kernel scale, have



106 Chapter 5. Features extraction and data classification

been set up through the Bayesian optimization procedure which
has also been applied during the training procedure.

The Artificial Neural Network has been setup using Python,
with the Keras library and the optimization package [16] which
allow us to apply the Bayesian optimization procedure as well.
The ANN has one input layer, two hidden layers and one output
layer. The input layer has a number of nodes equal to the num-
ber of selected features. The number of nodes in the first and
second hidden layer ranges from 16 to 128. To choose the num-
ber of nodes in both hidden layers we run the optimization pro-
cedure. It works by comparing all the nodes combinations and
selecting the best number of total nodes to use for each layer.
Finally, the output layer has a single node with a binary output,
"1" for stress and "0" for non-stress situations. Thanks to the op-
timization package, we could also optimize the "batch-size", the
number of samples in each subset considered during the cross-
validation training procedure. We choose it in order to obtain
the same number of subsets as in the cross validation procedure
used in the SVM. We also let the optimization procedure set the
"drop-out" percentage, that corresponds to the number of nodes
discarded during the classification process.

The "leave-one-person-out" method has been used for both clas-
sifiers. In particular, we train each classifier using data of all
subjects, leaving one out, which is the one the classifier is tested
on (similarly to what is done in 5.1). This is repeated leaving out
each one of the subjects. Performance is calculated by averaging
the test results of all subjects.

Considering that the total numbers of features is relatively low
(5 extracted from the SPR signal and 8 from the ECG signal)
we try all the combinations of these features and select the one
which provided the best accuracy. This combination happens to
be the same for both classifiers, and comprises nine features (in-
dicated in bold in Table 5.5). The following section introduces
the experimental setup. Section 5.3.5 then presents the experi-
mental results.
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5.3.4 Signal Processing

Tests are carried out in collaboration with a company which
designs driving simulators, both in hardware (static and mov-
ing cockpits) and in software. We use a dynamic driving sim-
ulator, in which the subject is sitting inside a reproduced car
cockpit, which allows to drive and to have physical feedback of
car motion, acceleration, and of some external events. 18 non-
professional drivers are tested, 14 men and 4 women, with age
in the range 19-35 years, coming from the University of Udine
and the University of Padua.

Before sitting on the simulator, each subject has to wear the sensor-
equipped vest, which measures the ECG, and the double sensor
which measures the SPR signal from each hand (as introduced
in Section 5.3.1). In particular, in order to minimize the effects
of bumps of the hand on the steering wheel (which may give
rise to signal artifacts), we positioned the palm electrode on the
Abductor pollicis brevis muscle. The driving test consists in a 67
km long track, simulating a straight highway, where 12 differ-
ent stress-inducing events happen, spaced at different locations.
The total run time depends on the speed each subject drives, but
is roughly 40 minutes long because the subjects are instructed
to keep a constant velocity between 120 km/h and 130 km/h.
Each subject is also instructed to drive freely and in a realistic
way. The 12 events are the ones shown in Figure 5.13: Double
lane change (right to left or left to right), Tire labyrinth, Sponsor
block (from left or from right), Slalom (from left or from right),
Lateral Wind (from left or from right), Jersey LR, Tire trap, Stop.

In Figure 5.14 we show the full cleaned SPR signal, obtained af-
ter motion artifact removal from s1 and s2, and the HR signal
of one subject, during the test. The vertical lines with a circle
marker denote the starting points of the stress events (for obsta-
cles, it is set at the moment they become visible, at a distance
of 800 meters). The vertical lines with a squared marker denote
the end points (40 seconds after the obstacle). The typical stress
peaks in S signal are distinctly noticeable. Also, the character-
istic rise in the Heart Rate during the stress episodes is clearly
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FIGURE 5.13: Stress events used in the simulation.

evident.

FIGURE 5.14: Stress (top) and HR (bottom) signals. The circled
and the squared stems represent the beginning and the ending

of stress events

5.3.5 Experimental results

As explained above, SPR and ECG features calculated from 15 s
long blocks are used as the input to the classifier. We pick a new
interval every 5 seconds, so there is an overlap between the in-
tervals we consider. As explained before, an event begins when
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an obstacle becomes visible and ends 40 seconds after the obsta-
cle. So we know when and for how long the stress is supposed
to happen in a subject. If an interval falls outside of these events,
we then consider it to be "0", without stress, and if an interval,
even partially, intersects a moment of stress, we consider it to be
"1", with stress.

As introduced previously in Section 5.3.3, for classification we
use the “leave-one-person-out" procedure, i.e., for the training
process we use the data of all subjects, leaving one subject out,
which is the one which the classifier is tested on. The subjects
can perform the assigned tasks at different speeds and thus elapsed
times, so each subject will have a different total number of stress
intervals. For the training process we thus pick a number of
stress intervals which can differ from subject to subject (variable
from 148 to 169). We then extract, for each subject, a number of
non-stress intervals equal to the number of the stress intervals
we picked for that subject before, and we select these non-stress
intervals randomly among the bigger pool of them (because our
test track produced more non-stress intervals than stress inter-
vals).

Therefore, for training and for each subject, we use a dataset
in the range of [148 to 169] x 17 subjects = [2516 to 2873] inter-
vals for each case, stress and non-stress. For testing, instead, the
number of intervals to consider for each subject is 432, on aver-
age, with the majority (about two thirds) being non-stress ones.
However, in calculating the performance indicators (that will be
explained shortly in this section) we account for this unbalanced
test dataset.

In the case of SVM classification, we use a 10-fold cross valida-
tion, and in the case of Neural Network classification we choose
a specific "batch-size" in order to obtain 10 subsets in the cross
validation procedure. In order to have 10 subsets, the batch size
value must be approximately equal to 240. As introduced be-
fore, we use the optimal features combination for both SVM and



110 Chapter 5. Features extraction and data classification

ANN classifiers, and to derive the performance measures we av-
erage the results for all the subjects.

We are able to count the True Positives (TP), which are all the
test intervals which the classifier correctly labeled as “stress";
the False Negatives (FN), which are all the “non-stress" labeled
intervals which instead we expected as “stress"; the True Nega-
tives (TN), which are all the correctly detected “non-stress" in-
tervals; and the False Positives (FP), which are all the incorrectly
labeled “stress" intervals that instead we expected as “non-stress".
We then compute the performance in terms of Accuracy, Sen-
sitivity (also known as True positive rate, TPR) and Specificity
(also known as True negative rate, TNR), defined as follows:

Accuracy (%) =
TP+TN

TP+TN+FP+FN
· 100 (5.29)

Sensitivity (%) =
TP

TP+FN
· 100 (5.30)

Specificity (%) =
TN

FP+TN
· 100 (5.31)

The accuracy expresses how effective our classifier is in general,
computing how many correctly labeled stress and non-stress
events are present among the total number of events. The sensi-
tivity represents how effective our classifier is in correctly label-
ing stress events to the total number of actual stress events. The
specificity represents how effective our classifier is in correctly
labeling non-stress events to the total number of actual non-
stress events. We also compute the Balanced Accuracy (BA),
which is the arithmetic mean of sensitivity and specificity, and
the Geometric Mean (GM) of sensitivity and specificity:

BA (%) =
1
2

(
TP

TP+FN
+

TN
FP+TN

)
· 100 (5.32)

GM (%) =

√
TP

TP+FN
· TN

FP+TN
· 100 (5.33)
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These two additional indicators are significant when the test
data are unbalanced like in our case.

Acc (%) Sens (%) Spec (%) Balanced Acc (%) GM (%)
SVM 77.49 71.67 81.78 76.72 76.40
ANN 79.10 65.59 88.71 77.15 76.04

TABLE 5.6: SVM and Artificial Neural Network performance
obtained using the optimal combination of features for both of

them.

In Table 5.6 we show the values of these parameters obtained in
our experiment. It can be seen that the accuracy and balanced
accuracy are comparable between the SVM and ANN classifiers,
with a slight advantage for the ANN. SVM sensitivity is higher
than the ANN one, but SVM specificity is lower than the ANN
one. The GM values are however very similar. The overall per-
formance is fairly good, even if our hypotheses may have lim-
ited it. The first hypothesis is that we suppose that all the time
intervals within a stress event are positive, while it may happen
that a subject is not continuously stressed during the event. The
second one is that a person should not be stressed outside of a
stress event. This is not always true, because it may happen that
a person becomes stressed at any time for reasons that we do
not control.

To take these possibilities into account, in an attempt to detect
stress more reliably, we apply a re-labelling procedure and con-
sider the stress as present if we detect at least 4 consecutive pos-
itive stress labels. If there are less than 4 consecutive labels de-
tected as stress we consider the stress to be absent (see Figure
5.15 that shows how we re-label the classifier’s output).

In Table 5.7 we show the performance under these new assump-
tions, using the same indicators, which are slightly better than
before. However, the sensitivity value is slightly worse (for both
SVM and ANN classifiers), because we noticed that some of the
correctly detected stress intervals are ruled out, since they were
not consequential in groups of four or more.

In order to assess the capability of the proposed system to iden-
tify the stress inducing events, instead of single 15 s intervals,
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FIGURE 5.15: Relabeling procedure.

Acc (%) Sens (%) Spec (%) Balanced Acc (%) GM (%)
SVM 80.21 69.55 87.93 78.74 78.04
ANN 80.78 63.32 93.19 78.26 76.49

TABLE 5.7: SVM and Artificial Neural Network performance
after the re-labelling procedure.

we segment the signals into “stress” (starting 800 m before the
obstacle and ending 40 s after) and “non-stress” blocks. For
each subject there are therefore 12 stress blocks (corresponding
to the 12 stress events) and 23 non-stress blocks. These are 23
because the time length of the non-stress blocks was longer than
the stress ones, so we decided to divide them in half, making
them roughly the same length. A block is marked as “stress” if
we find inside it at least 4 consecutive positively classified inter-
vals.

The performances under these assumptions, obtained averag-
ing the results for all the subjects, are reported in Table 5.8. The
accuracy and balanced accuracy are very high for both the SVM
and ANN classifiers, with an advantage for the ANN. The SVM
sensitivity is higher than that of the ANN, but the SVM speci-
ficity is lower than the ANN one, as in the two previous cases.
The overall performance of this third case is very high, our hy-
pothesis being basically that a stress detection in a block is con-
sidered positive if the subject is continuously stressed for at least
30 s, corresponding to 4 overlapping 15 s intervals, with 5 s dis-
placement.
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Acc (%) Sens (%) Spec (%) Balanced Acc (%) GM (%)
SVM 87.62 95.83 83.33 89.58 89.21
ANN 91.27 93.98 89.86 91.92 91.73

TABLE 5.8: SVM and Artificial Neural Network performance
considering stress and non-stress blocks (instead of single in-

tervals).

5.4 Feature extraction and classification 3

Further driving simulations have been carried on, to test the
classifier performance in a slightly different car driving context
respect to the one in Section 5.3.

5.4.1 System, instrumentation and methods

FIGURE 5.16: Scheme of the proposed system.

The scheme of our system is depicted in Figure 5.16. It is es-
sentially the same of 5.3, two Skin Potential Response signals
are given as input along with the Electrocardiogram signal. The
SPR signals are then cleaned from the motion artifact and the
result is a single combined SPR signal. Finally, through the use
of a classifier, the recognition of stress in a given time interval is
given as output.

The structure of the sensors are much the same of the ones used
in 5.3; the Double channel SPR sensor and the triple channel
ECG unit described in Section 5.2.1.

Also the Motion Artifact removal algorithm as well as feature
extraction method and classifiers are the same of Section 5.3, de-
scribed in Section 5.2.2, Section 5.2.3, Section 5.2.6 respectively.
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5.4.2 Experimental setup

The tests are conducted in a company specialized in driving sim-
ulators. A professional dynamic driving simulator is utilized,
which moves accordingly to the car movement. A total of 16
healthy individuals took part in the test, with an age in the 22-47
range, some attending the University of Udine and the Univer-
sity of Padua. They gave permission to have their physiological
signals logged, and the principles of the Declaration of Helsinki
were also respected during the tests.

FIGURE 5.17: The obstacles placed along the track.

Each subject has to be prepared beforehand, wearing the sensors
on the chest and on the hands. The experiment took place in a
simulated 28 km long road, reproducing a highway, with four
obstacles, requiring some effort to cross, positioned at differ-
ent distances along the road. Figure 5.17 shows the four obsta-
cles, which are: Sponsor block (from right to left), Tire labyrinth,
Double lane change (right to left) and Sponsor block (from left
to right).

Figure 5.18 shows, for a tested individual, the SPR signal once
the motion artifact is removed, and the HR signal. The circle
and square markers indicate respectively the onset and offset of
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each stress event (the start is set when the individual sees the
obstacle, at 800 meters distance, and the end is set 30 seconds
after the obstacle is surpassed). In the figure the representative
stress spikes in the SPR signal are clearly visible, as well as the
typical increase in Heart Rate during the stress event.

FIGURE 5.18: SPR (top) and HR (bottom) signals for an indi-
vidual during the drive.

5.4.3 Experimental results

Both the cleaned SPR and the ECG signals of each subject are
used to construct the classifier for stress detection in each 15 s
time interval. The signal features are extracted in each of the
intervals, which, as mentioned, overlap by 10 s.

All the intervals belonging to a road section with obstacles are
supposed to be "1", with stress, and all the intervals belonging
to a section without obstacles are supposed to be "0", without
stress. As explained before, for the classification process, the
"leave-one-person-out" method is used. Therefore, during the
training phase, we consider 15 subjects at a time. This generates
a number of intervals variable between 1176 and 1209, for both
stress and non-stress classes, from which we extract the optimal
combination of features listed above. The number of intervals in
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each training phase is not constant because of the fact that each
individual crosses the obstacles with a different speed/time. In
the test phase, for each individual, we have approximately 187
intervals to consider (which is an average number considering
all the subjects), where most of them (two thirds roughly) belong
to the non-stress class.

Another aspect about the classification pertains the cross vali-
dation methodology. The 10-fold cross validation is used for the
SVM, while for the ANN classifier we select the "batch-size" in
order to get a matching number of subsets in the cross validation
phase.

We can calculate the True Positives (TP), the False Negatives
(FN), the True Negatives (TN) and the False Positives (FP), and
we can therefore calculate the performance in terms of Accuracy,
Sensitivity and Specificity, as defined in Equations 5.29, 5.30 and
5.31.

Since our test data is biased (more non-stress intervals than stress
ones), two parameters are also significant, namely, the Balanced
Accuracy (BA) and the Geometric Mean (GM), as in

BA (%) =
1
2

(
TP

TP+FN
+

TN
FP+TN

)
· 100 (5.34)

GM (%) =

√
TP

TP+FN
· TN

FP+TN
· 100 (5.35)

Table 5.9 shows the overall performance of our system (MEAN
± STD, computed from the results of the 16 subjects). The ac-
curacy and balanced accuracy are similar in the SVM and ANN
classifiers, with the ANN slightly better in both of them. Sensi-
tivity of the SVM is greater than that of the ANN, and specificity
in SVM is worse than in the ANN. The GM values are compara-
ble in both SVM and ANN.

TABLE 5.9: Performance Comparison Between SVM and ANN

Acc % Sens % Spec % Balanced Acc % GM %
SVM 72.86 ± 8.77 86.69 ± 7.79 66.46 ± 13.02 76.57 ± 6.91 75.40 ± 7.85
ANN 74.45 ± 8.65 86.19 ± 8.13 69.00 ± 13.38 77.59 ± 6.50 76.56 ± 7.30
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The hypothesis are the same of Section 5.3.We assume that all
the time intervals falling inside an obstacle crossing event should
evidence stress and that a person is not stressed outside of an
obstacle crossing event. This may not be true, since an individ-
ual can be stressed in those time intervals for reasons which we
cannot control.

To consider these added occurrences, and recognize stress more
reliably, we use the re-label method explained in Section 5.3.5 to
the classifiers’ output.

Table 5.10 shows the performance using the re-label procedure.
The parameters are slightly better than before. As in the previ-
ous experiment, Sensitivity is a little lower for both classifiers.

TABLE 5.10: Performance Comparison Between SVM and
ANN (the Classifier’s Output Is Re-labelled)

Acc % Sens % Specificity % Balanced Acc % GM %
SVM 77.61 ± 8.14 85.11 ± 8.82 74.05 ± 11.67 79.58 ± 6.89 79.00 ± 7.30
ANN 78.17 ± 9.13 84.73 ± 9.72 75.16 ± 14.23 79.94 ± 6.88 79.15 ± 7.50

The results of the experiment presented in this section, trace the
results obtained Section 5.3. The only difference is that we have
not segmented data in "stress" and "non stress" macro-blocks as
in the previous test due to the small number of stressing events
(4 per subject vs the 12 per subjects of experiment in Section 5.3).

5.5 Real time implementation

Having completed the classifiers training beforehand, classifica-
tion can be computed with reasonable computational complex-
ity in real time. As described before, we consider 15 seconds
long time windows, shifting 5 seconds at a time for the next
computation. The time available for each block classification,
before we need to consider the next batch of data, is therefore
5 s. We might consider a concrete real time implementation as a
future evolution of the system. The normalizing preprocessing
step used in Section 4.3 to overcome the problem of possibly dif-
ferent SPR signal amplitudes among different subjects, can also
be implemented in real time and can be applied before using
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adaptive filters too. Indeed, we need to buffer the past samples
in a 5 minute long sliding window and complete the normaliza-
tion within 1/100 s. Initialization requires to wait 5 minutes to
start the procedure.

5.6 Conclusions

In this chapter, we proposed a system for drivers’ stress detec-
tion. In Section 5.1, we tested the system on data taken in labora-
tory experiments. Since the tests have been carried out in a con-
trolled environment and stress has been induced through sym-
pathetic stimulations we could rely on a strong ground truth.
This allowed us to obtain a set of features whose classes ("stress"
and "no stress") are well distinct as we can see from the test
performances. We obtained a Recall value of 98.18% consid-
ering just the sound triggers, and of 91.77% considering both
the sound triggers and the metronome changes. Having reliable
data simplify the tests to try different kind of settings and find
the way to perfect the system choosing the algorithm and the
hyperparameters that give the best performances.

In Section 5.3 and Section 5.4 we carried on more realistic exper-
iments with the aid of a professional simulator which runs on a
motorized platform. The results show that, using both SPR and
ECG signals, we can recognize stress episodes with good relia-
bility. Also, the experiments evidenced some difficulties of real-
istic simulations due to the difficulty of design a good ground
truth. Besides having to set the experiment to have a calm or
stressed driver in certain time lapses; the issues with classifying
stress in a prolonged period instead of detect a sudden transi-
tory reaction led us to develop a relabeling procedure and to
evaluate the stress considering macro intervals. Hence, an idea
for improving the system efficacy, in addition to the implemen-
tation of more advanced classifiers and the employing of further
signals and features, could be the development of a proper post
processing method to take the driving context into account.
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Chapter 6

Conclusions

The aim of the present work is to bring a contribution to the
field of stress detection systems through the processing of phys-
iological measurements; specifically, we focused on the stress
that affects a person during driving activity. The physiological
measurements recorded in our work are based on Skin Potential
Response (SPR) and Electrocardiogram (ECG).

First, we focused on SPR, an endosomatic Electrodermal Activ-
ity (EDA) measure, which is less commonly used for the devel-
opment of stress recognition systems. Our idea is to exploit the
properties of SPR which has a faster response to stimuli than the
more common Skin Conductance Response (SCR).

Then, we considered the issue of Motion Artifact which is espe-
cially strong for physiological measurements recorded from the
hands, like EDA, and prevents any reliable evaluation from the
signals. We developed a system to remove the Motion Artifact
from SPR signals based on adaptive filters. The system removes
Motion Artifact disturbances which are related to hand move-
ments, which are represented by the Steering Wheel (SW) angle
excursion. We tested the system on measurements taken in ex-
periments carried out in laboratory, in which the subjects move
the Steering Wheel while they are under stress stimulation. We
applied the Motion Artifact removal system, and then we high-
lighted the stress response peaks with a Smoothed Nonlinear
Energy Operator (SNEO). The results evidenced that we were
able to recognize stress reactions.

In additional tests we considered the problem of removing the
Motion Artifact not related to SW handling, such as movements
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when holding off the SW or during muscle stretching. Thus,
we developed a system for Motion Artifact removal which, in-
stead of relying on hand movements, is based on the processing
of two SPR signals measured on both the hands with a double
channel SPR sensor. The system processes the two SPR through
an algorithm that selects the smoother signal and outputs the
stress component of SPR, which is the same for both the signals.
Some errors could occur when the driver stretches the hands at
the same time, but this kind of situations are rare in a driving
context. To test the system, we carried out several experiments.
The results showed that the system is able to remove the Motion
Artifact and outperforms Principal Component Analysis and In-
dependent Component Analysis algorithms.

Once we were able to get a signal cleaned from the Motion Ar-
tifact disturbances, the activity continued through the employ-
ing of machine learning techniques to recognize stress state in
drivers. We carried out realistic experiments on a motorized
platform, in collaboration with a company specialized on pro-
fessional simulators, VI-Grade S.r.l., Tavagnacco (UD) - Italy. In
addition to SPR, we measured ECG signal, then, we extracted
several features from SPR and ECG. We used Support Vector
Machine (SVM) and Neural Networks (NN) classifiers to detect
stress. Analyzing the excursion of the features during the ex-
periments and testing several combinations of features which
are given as input to the classifiers, we found the set of features
which give the best performance and were able to detect mental
stress caused by the obstacles that the subjects had to avoid.

Future work will involve an in-depth analysis during car driv-
ing, focusing on SPR feature extraction. While the studies on
the efficacy of ECG and SCR features are in an advanced stage,
the studies on SPR features are very scarce. Also, the use of
other types of classifiers will be carried out. The use of Recur-
rent Neural Networks, for example, will allow to classify data
taking into account the excursion of the features over time. A
decisive improvement for the performances would be probably
obtained by raising the complexity of the Neural Network. Sig-
nal processing by means of Deep Learning systems, which are
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not feature-based, will allow to perform the classification based
on properties that would be hard to identify manually. Another
perspective is represented by the stress recognition in subjects
while they are in vehicles which have an autonomous driving
system. As mentioned in the introduction, people are less likely
to rely on automatic driving systems. Furthermore, autonomous
driving systems still cannot handle every kind of situations and
human intervention is often necessary. Thus, it is important to
analyze the driver mental state in this context too. Experiments
in autonomous driving contexts are being carried out along with
the research activity.
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