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ABSTRACT

Background: Translational medicine aims at transferring advances in basic science research into
new approaches for diagnosis and treatment of diseases. Low-grade gliomas (LGG) have a heter-
ogeneous clinical behavior that can be only partially predicted employing current state-of-the-
art markers, hindering the decision-making process. To deepen our comprehension on tumor
heterogeneity, we dissected the mechanism of interaction between tumor cells and relevant
components of the neoplastic environment, isolating, from LGG and high-grade gliomas (HGG),
proliferating stem cell lines from both the glioma stroma and, where possible, the neoplasm.
Methods and Findings: We isolated glioma-associated stem cells (GASC) from LGG (n=40) and
HGG (n=73). GASC showed stem cell features, anchorage-independent growth, and supported
the malignant properties of both A172 cells and human glioma-stem cells, mainly through the
release of exosomes. Finally, starting from GASC obtained from HGG (n=13) and LGG (n=12)
we defined a score, based on the expression of 9 GASC surface markers, whose prognostic
value was assayed on 40 subsequent LGG-patients. At the multivariate Cox analysis, the GASC-
based score was the only independent predictor of overall survival and malignant progression
free-survival. Conclusions: The microenvironment of both LGG and HGG hosts non-tumorigenic
multipotent stem cells that can increase in vitro the biological aggressiveness of glioma-
initiating cells through the release of exosomes. The clinical importance of this finding is sup-
ported by the strong prognostic value associated with the characteristics of GASC. This patient-
based approach can provide a groundbreaking method to predict prognosis and to exploit novel
strategies that target the tumor stroma. STEM CELLS 2014;32:1239-1253

when combined with newly identified molecu-
lar markers, partially fail in predicting the clini-

INTRODUCTION

Gliomas, the most frequent malignant primi-
tive tumors of the central nervous system [1],
can be divided, according to WHO classifica-
tion, into high-grade gliomas (grades 3 and 4,
HGG) and low-grade gliomas (grades 1 and 2,
LGG) [2]. Although relatively rare (incidence of
5/100,000 person/years in Europe and North
America), HGG are associated, despite optimal
treatment, with disproportionately high mor-
bidity and mortality [3], while LGG grow
slowly, but approximately 70% of grade 2 glio-
mas evolves to anaplasia, in turn leading to
neurological disability and ultimately to death,
within 5-10 years [4-6]. However, both LGG
and HGG are characterized by a wide clinical
heterogeneity and histological analyses, even
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cal evolution of the lesions [7-10]. Therefore,
to profoundly impact the outcome of glioma
patients, new drugs and better prognostic/pre-
dictive factors are strongly required.

The isolation and characterization of
glioma stem cells (GSC) have opened new
insights into glioma biology offering the
unique possibility to study, and possibly target,
the rare population of cells responsible for
tumor development, relapse, and drug-
resistance [11-13]. However, GSC have been
identified only in a fraction of HGG and sel-
dom in adult LGG [14], they are rare and diffi-
cult to expand in culture, thus making a
challenge the use of these cells to identify
novel therapies and biomarkers.

©AlphaMed Press 2013
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Table 1. Clinicopathologic features of the n = 113 patients whose glioma tissues were used to isolate stem cells

Grade n Male n (%)

Age_years (mean * SD)

Histopathological diagnosis

Low grade 40 25 (62.5%)

High grade 73 41 (56%)

38 +£12 Diffuse astrocytoma (n = 22)
Oligoastrocytoma (n = 11)

Gemistocytic astrocytoma (n = 3)
Oligodendroglioma (n = 3)

Pleomorphic xanthoastrocytoma (n = 1)
Glioblastoma multiforme (n = 56)
Anaplastic astrocytoma (n = 9)
Gliosarcoma (n = 5)

Giant cell glioblastoma (n = 3)

50*12

p < .0001

Lately, a great interest has been aroused by the tumor-
associated microenvironment. This latter, which consists of
multiple distinct cell types, including tumor-associated fibro-
blasts (TAF) [15, 16], plays, in most carcinomas, an active role
in tumor proliferation, invasion, and metastasis [17-19]. Intri-
guingly, some biological characteristics of the stromal ele-
ments of tumors may be of prognostic and predictive value,
and they could offer novel targeting opportunities [17-20].
Moreover, it has been recently shown that, in the tumor,
both cancer cells and tumor-associated stromal cells promote
tumor-induced immune suppression, angiogenesis, and metas-
tasis through the release of exosomes [21-24]. These latter
are membrane vesicles that originate in multivesicular bodies
and are released in the extracellular space and in the body
fluids from many cell types [24-26] and, through their con-
tent in biologically active molecules (e.g., proteins, mRNAs,
and miRNAs), they act as a potent intercellular communica-
tion system [24-26]. Regarding gliomas, although some exper-
imental evidences support the role played by the
microenvironment in controlling the course of pathology [27,
28], the correlation between the biological characteristics of
the first one with the clinical outcome of patients has never
been investigated.

In this article, we isolated for the first time, both from
LGG and HGG, a population of stem cells characterized by
tumor-supporting activities, being able, through the release of
exosomes, to increase the biological aggressiveness of glioma-
initiating cells. Importantly, the in vitro features of these cells,
named GASC (glioma-associated stem cells), were the strong-
est predictor of LGG patients’ overall survival (OS) and malig-
nant progression-free-survival (MPFS) outperforming the
state-of-the-art prognostic factors.

MATERIALS AND IMETHODS

Detailed Supporting Information Methods are available online.

The independent ethic committee of the Azienda
Ospedaliero-Universitaria of Udine has approved the research.
Informed consents have been obtained from patients and all
clinical investigations have been conducted according to the
principles expressed in the Declaration of Helsinki.

Supporting Information Table S1 summarizes the sampling
size of each experiment performed.

Tissue Donors

Cells were isolated from 113 patients affected by a supraten-
torial glioma arising de novo. All patients, not treated with

©AlphaMed Press 2013

neo-adjuvant therapy, underwent surgical resection in the
period June 2006 to March 2011 (Tables 1 and 2).

Histological Examination, Immunohistochemistry, FISH,
and Analysis of the Genetic Status of MGMT and IDH
Genes

Tumors were histopathologically reviewed according to WHO
classification [2]. Mitotic index, Ki-67, p53, glial fibrillary acidic
protein (GFAP) (Dako Denmark A/S, Glostrup, Denmark, http://
www.dako.com), Epidermal Growth Factor Receptor (EGFR)
(Zymed Laboratories, Invitrogen, Carlsbad CA, http://www.life-
technologies.com), and IDH1R32H (Dianova, Hamburg/Germany,
http://www.dianova.com) were detected on 4-pum-thick
formalin-fixed paraffin-embedded sections. Fluorescence In Situ
Hybridization (FISH) analysis was performed using dual-color
1p36/1g25 and 19q13/19p13 probes (Vysis, (Vysis, Abbott
Molecular, Illinais, IL, U.S.A, http://www.abbottmolecular.com)).
IDH1 and IDH2 gene status were evaluated by pyrosequencing
as in [29]. Levels of the MGMT promoter were investigated by
PyroMark Q96-CpG-MGMT (Quiagen, Hilden, Germany http://
www.giagen.com/). See Supporting Information methods.

Volumetric Analysis

All preoperative and postoperative (4 months) tumoral seg-
mentations were performed manually across all magnetic res-
onance imaging slices with the OSIRIX software tool to
measure tumor volumes (cm?®) on the basis of T2 axial slices,
as in [30, 31].

GASC Isolation and Culture

Cells from glioma were isolated and cultured applying, with
minor modifications, previously described protocols [32-34].
Briefly, glioma fragments were mechanically enzymatically dis-
sociated and cells less than 40 um in diameter were cultured
in expansion medium as in [32-34]. See Supporting Informa-
tion methods for details.

Isolation and Culture of GSC in Adhesion

Cells after mechanic-enzymatic digestion were cultured on
laminin-coated dishes in a neural stem cell medium as in [13].
See Supporting Information methods for details.

Flow-Cytometry

After enzymatic detachment, cells were incubated with properly
conjugated or unconjugated antibodies. The analysis was per-
formed either by FACS-Calibur, FACScanto (BD Biosciences, San
Jose, CA, http://www.bdbiosciences.com), or by CyAn (Beckman
Coulter s.rl, Milan, Italy, https://www.beckmancoulter.com)
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[32-34]. Exosome staining was performed after incubation of
exosomes with 4 um aldehyde/sulfate latex beads (Molecular
Probes, Invitrogen, Carlsbad CA, http://www.lifetechnologies.
com). See Supporting Information methods for details.

Immunofluorescence

Cell staining and image acquisition were conducted as in [32—
34]. See Supporting Information Methods for details.

Reverse Transcriptase PCR Analysis

Total RNA was extracted from P3-GASC using the TRIzol Reagent
(Invitrogen, Carlsbad CA, http://www.lifetechnologies.com)
[34]. First strand cDNA synthesis, PCR amplification, and analy-
sis of reaction products were performed as in [34]. See Support-
ing Information Table S2 for primer pairs and product length.

Cell Culture Assays

Cell growth kinetic, single-cell cloning, multilineage differen-
tiation, and functional assays were performed as in [32-35].
See Supporting Information methods for details.

Soft Agar Assay

Cells were plated in a 0.25% soft agar solution in plates containing
a basal layer of 1% agarose. The effects of exosomes on GSC have
been evaluated by CytoSelect 96-well Cell Transformation Assay
(Cell Biolabs Inc., San Diego, CA, http://cellbiolabs.com). See Sup-
porting Information methods for details.

Single Nucleotide Polymorphism (SNP) Analysis

SNP array analysis was carried out using the Infinium high-
density HumanCytoSNP-12 DNA analysis BeadChips (lllumina
United Kingdom, Essex, UK, http://www.illumina.com). Data anal-
ysis was performed using the lllumina GenomeStudio v.2010 soft-
ware. See Supporting Information methods for details.

Exosomes for A172 Conditioning

Culture supernatants conditioned for 48 hours by 6 X 10° cells
were collected and split in aliquots. One of these was diluted 1:1
with ultracentrifuged DMEM (uUDMEM) (Gibco, Invitrogen, Carls-
bad, CA, http://www.lifetechnologies.com) (SN+). The other one
was used for exosomes purification by ExoQuick-TC (System
Biosciences, Mountain View, CA, http://www.systembio.com).
The exosome-depleted culture supernatant was diluted 1:1 with
UDMEM (SN—). The exosome pellet was resuspended in the
same volume of uDMEM (EXO). Before functional assays, A172
were cultured for at least two passages in the different media.
See Supporting Information methods for details.

Exosomes for GSC Conditioning

Exosomes produced in 48 hours by 6 X 10° cells were pre-
cipitated by ExoQuick-TC (System Biosciences, Mountain View,
CA, http://www.systembio.com) and resuspended in 40 ml of
neural stem cell medium. Before functional assays, GSC were
cultured in exosomes-enriched media for one passage. See
Supporting Information methods for details.

Atomic Force Microscopy

Exosomes were adsorbed to freshly cleaved mica sheets and
analyzed by MFP-3D Stand Alone Atomic Force Microscopy
(AFM) (Asylum Research, Mannheim, Germany, www.asylum-
research.de) in dynamic mode with silicon probes (Force con-
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stant 0.5-1 N/m, radius of curvature <10 nm, Mikromasch,
Wetzlar, Germany, http://www.nanoandmore.com). See Sup-
porting Information methods for details.

Exosome Internalization Assay

A172 cells were incubated for 4 hours in Dulbecco’s modified
Eagle’s medium (DMEM) added with exosomes labeled by DiD
(Molecular Probes Invitrogen, Carlsbad, CA, http://www.life-
technologies.com). Cells were fixed, stained with TRITC-labeled
phalloidin (Sigma-Aldrich, St. Louis, MO, United States http://
www.sigmaaldrich.com), and fluorescence images acquired
either by Leica TCS SP2 confocal microscope or by Leica
DMI600B epifluorescence microscope equipped with a decon-
volution software (Leica AF6000, Leica Microsystems, Wetzlar,
Germany, http:// leica.com).

Scratch Assay

Cells were plated onto 96-well high-content imaging plates
(Becton Dickinson Diagnostic Systems, Sparks, MD, http://
www.bd.com/). At confluence, cell monolayers were scraped
with a pl0 pipette tip. Images of the “scratches” were
acquired at specified time intervals. See Supporting Informa-
tion methods for details.

Statistical Analysis

Characteristics of the study population are described using
standard methods. In order to define a risk profile for LGG
patients we adopted a multistep approach (Supporting Infor-
mation Fig. S1). OS, PFS (progression-free survival), and MPFS
were defined as time between initial surgery and, respec-
tively, death (0OS), demonstration of unequivocal increase in
tumor size on follow-up imaging, malignant progression, and/
or death (PFS), and demonstration of gadolinium enhance-
ment on follow-up imaging and/or higher-grade tumor on
subsequent biopsy or death (MPFS).

0S, PFS, and MPFS were described using the Kaplan-Meier
approach. Analysis of survival was done using Cox propor-
tional hazard models. Covariates with p < .05 at univariable
analysis were selected for multivariable stepwise analysis. See
Supporting Information methods for details.

RESULTS

Isolation of GASC from LGG and HGG

To establish whether human gliomas possess a population of
stem cells with tumor-supporting ability, we applied the
method, previously optimized to isolate multipotent adult
stem cells (MASC) from normal [32, 33] and neoplastic tissues
[34], to 113 de novo supratentorial glioma samples. These lat-
ter were grouped as LGG (n = 40) or HGG (n = 73), based on
the histological diagnosis (Table 1). Once tumor fragments
(weighing an average of 125 mg) were digested, dissociated
cells were cultured in a medium selective for the growth of
MASC [32-34]. Only a minority of the seeded cells was able
to adhere and proliferate, and the colony-forming efficiency
was lower for cells obtained from HGG with respect to those
obtained from LGG (Supporting Information Fig. S2A-S2D).
Despite the stringent culture conditions, 5-7 days after the
primary culture, proliferating cell lines were obtained in
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Figure 1. Features of glioma-associated stem cells (GASC) at the third passage in culture. (A, B): Phase-contrast image of GASC
obtained from human low-grade gliomas (A) and high-grade gliomas (B). (C-J): Pluripotent state-specific transcription factor expression.
GASC express Oct-4 (green fluorescence, C, D), Nanog (red fluorescence, E, F), and Sox-2 (yellow fluorescence, G, H). In D, F, and H,
nuclei are depicted by the blue fluorescence of DAPI staining. (I): Results are presented as mean * SD. (J): Transcripts for OCT3/4,
NANOG, SOX2, KLF4 c-MYC, and GAPDH are present in GASC obtained from low-grade (L) and high-grade (H) glioma samples. The neuro-
nally committed human teratocarcinoma cell line (NT2) was used as positive control. (K-P): Cytoplasmic protein expression in GASC.
Expression of nestin (green fluorescence, K), vimentin (red fluorescence, L), beta three tubulin (yellow fluorescence, M), GFAP (cyan fluo-
rescence, N), and neuron-specific enolase (magenta fluorescence, O) in GASC. Nuclei are depicted by the blue fluorescence of DAPI
staining. (P): Results are presented as mean = SD. *, p < .05 versus low-grade glioma derived-GASC. (Q): Representative surface immu-
nophenotype of GASC. Histograms overlays show isotype control IgG staining profile (green histograms) versus specific antibody staining
profile (red histograms). Abbreviation: GFAP, glial fibrillary acidic protein.
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approximately 95% of both LGG and HGG, confirming the high
efficiency of the optimized method [32-34].

Since 1 week from seeding, proliferating cells were highly
positive for the expression of the intermediate filaments charac-
terizing an undifferentiated state, such as vimentin and nestin,
as well as of pluripotent-state-specific transcription factors Oct-4
and Nanog (Supporting Information Fig. S2E-S2J), thus excluding
that the acquisition of these features could be related to an
extensive culture manipulation. Conversely, the GFAP was
expressed only in a minority of the cells (Supporting Information
Fig. S21-S2J). Because of the stem cell features, we named these
proliferating cell lines GASC, defining as L-GASC and H-GASC
those obtained from LGG and HGG, respectively.

L-GASC and H-GASC Displayed Stem Cell Properties

L- and H-GASC at the third passage in culture shared a
fibroblast-like morphology (Fig. 1A, 1B) and an undifferentiated
state, as assed by Oct-4, Nanog, Sox-2, KlIf-4, c-Myc, vimentin,
and nestin expression (Fig. 1C-1L, 1P) and the low positivity for
GFAP (Fig. 1N, 1P). However, these cell types differed in the
expression of neuron-specific enolase and nestin (Fig. 10, 1P).
The growth kinetic of H- (n = 18) and L-GASC (n = 27) did not
differ significantly, being the population doubling time (PDT)
34 = 18 versus 37 £ 13 hours, respectively (p > .05).

Flow-cytometry analysis of the surface immunophenotype
demonstrated that, despite some significant differences (Sup-
porting Information Table S3), L- and H-GASC shared a similar
mesenchymal phenotype (Fig. 1Q). H-GASC showed, with
respect to L-GASC, an increased expression of CD90, ABCG2,
CD133, CD66e, E-Cadherin, KDR, and significantly lower levels
of CD105 and CD44 (Supporting Information Table S3).

In order to test whether GASC were characterized by
stem cell properties, a single-cell cloning assay was performed
(n =3 L-GASC and n = 3 H-GASC). Of 2,041 seeded GASC, 452
gave rise to highly proliferating clones (Fig. 2A-2C). Impor-
tantly, clonal cells maintained a stable undifferentiated pheno-
type (Fig. 2D, 2E, 2G, 2H, 2J).

When cultured under appropriate differentiation inducing
conditions, clonal GASC (at least n=5 from both LGG and
HGG) acquired lineage-specific features, without significant
differences between HGG- and LGG-derived clones (data not
shown). Globally, clones exposed to neural differentiation
medium displayed a morphological change (Fig. 2F), a
decreased expression of both nestin and pluripotent-state-
specific transcription factors (Fig. 2G-2J), and the acquisition
of the neuronal-specific markers synaptophysin and MAP-2
(Fig. 2K, 2L, 2P), of the glial-specific marker GFAP (Fig. 2N, 2P)
and of the oligodendrocyte marker O4 (Fig. 20, 2P). Only a
small fraction of cells grown in a medium added with GM-CSF
and conditioned by astrocytes acquired phenotypical and
functional microglial properties, as being positive for the
microglial markers Iba-1, coexpressing CD11b and CD45 and
characterized by phagocytic activity (Fig. 2Q-2T). Similarly to
MASC isolated from normal tissues [32, 33, 36], GASC retain
the ability to differentiate along mesodermic derivatives, such
as endothelial- (Fig. 2U-W), osteoblast-, and myocyte-like cells,
and endodermic derivatives, such as hepatocyte-like cells,
although with a low efficiency (Supporting Information Fig.
S3). Altogether, the accumulated evidences showed that it is
possible to isolate from glioma samples a population of cells
characterized by a mesenchymal stem cell phenotype, clono-
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genicity, and multipotency, similarly to what has already been
demonstrated for non-neoplastic human tissues.

GASC Possess Aberrant Growth Properties but Are Not
Tumorigenic

Despite some similarities, the growth properties of L- and H-
GASC were significantly different from those of MASC
obtained from normal tissues [32, 33, 36].

Specifically, when cultured in soft agar, H- and L-GASC dis-
played an anchorage-independent growth (Fig. 3A-3C). This
aberrant growth property increased upon in vitro expansion (Fig.
3C) and was further retained by GASC even after single-cell clon-
ing (n = 6; Fig. 3D, 3E), demonstrating the ability of the used cul-
ture conditions to preserve the atypical features of GASC.

Despite their ability to grow in semisolid medium, L- and H-
GASC significantly differed from glioma-initiating cells. In fact,
when GASC isolated from HGG were compared with the GSC
obtained following the protocol optimized by Dirks’s group to
expand GSC in adherent culture [13] (Fig. 3F), several differences
became apparent. Because of the described inefficiency in growing
GSC from adult LGG [14], we limited our analysis to HGG. Although
both GSC and H-GASC expressed nestin, Nanog, Oct-4, and Sox-2
(Fig. 3G-3J), only GSC were significantly enriched in the GSC
markers CD133 and CD117 [37], as well as in N-cadherin (Fig. 3K),
a protein involved in GSC migration [38]. The direct comparison of
four GASC and four GSC obtained from the same four HGG
patients, demonstrated that, although GSC tended to grow slower
than GASC (Fig. 3L), only GSC spontaneously formed neurospheres,
despite the use of laminin to favor an adherent growth (Fig. 3L).
Additionally, GSC presented a superior anchorage-independent
growth, giving rise, after 3 weeks of culture, to a larger number of
bigger colonies (Fig. 3M). Importantly, when tested by FISH for
genetic aberrations frequent in gliomas (i.e., aneuploidy of chro-
mosomes 1 and 19), the majority of GSC showed abnormalities,
mainly absent in the respective GASC (Fig. 3N).

The non-neoplastic nature of GASC was further confirmed
by a whole genome SNP analysis (n = 3 L-GASC and n=1 H-
GASC) (Fig. 30). Specifically, comparing the SNP profile of
each GASC-line with the ones of the respective tumor of ori-
gin and of the mononuclear cells of the peripheral blood
(negative control), all tested GASC were devoid of the genetic
alterations characterizing the glioma tissues (Fig. 30). Accord-
ingly, when injected into the striatum of NOD-Scid mice
(n=26), 10° either polyclonal (n=12) or clonal GASC
(n=12) were unable to give rise, even after 8 months, to
tumors, while B2C cells (n = 2) did (data not shown). In con-
clusions, although GASC display aberrant growth properties in
vitro, they differ from GSC, are devoid of the genetic altera-
tions characterizing the glioma of origin, and are not able to
originate a tumor when injected in vivo.

GASC Possess a Tumor-Supporting Phenotype Medi-
ated by Exosomes

The aberrant growth displayed by GASC in the absence of
genetic mutations strictly reminds the distinguishing features
of TAF [39]. These latter are characterized by the ability to
modify the biological properties of tumor cell lines in vitro.
Therefore, we tested whether a medium semiconditioned by
H-GASC possessed the ability to modify growth kinetics and
adhesion-independent growth of the glioblastoma cell lines
A172 and U87. When grown in a medium conditioned by H-

©AlphaMed Press 2013
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Figure 3. GASC grow in soft agar but differ from GSC. (A-E): Anchorage-independent growth of GASC. Phase-contrast images of colo-
nies in soft agar of low-grade gliomas- (A), high-grade gliomas- (B), GASC and of a single-cell-derived clone (D). (C): Quantification of
the absolute number of colonies >100 pm in diameters formed after 30 days. (E): Number of colonies/1,000 seeded cells grown in soft
agar of single-cell-derived clones versus the respective polyclonal cell lines (n=16). In (C) and (E), results are expresses as mean % SD.
(F-J): GSC features. Phase-contrast picture (F), nestin (red fluorescence, G), Nanog (red fluorescence, H), Oct-4 (green fluorescence, ),
and Sox-2 (yellow fluorescence, J) expression by GSC. Nuclei are depicted by the blue fluorescence of DAPI. (K-M): GASC versus GSC.
(K): Surface immunophenotype: on the left, representative histograms overlays showing isotype control IgG staining profile (red histo-
grams) versus specific antibody staining profile (green histograms); on the right, table comparing GSC versus H-GASC expression of 19
surface proteins. (L): Growth kinetic: nuclear density (blue fluorescence of DAPI) of H-GASC and GSC at 1 (i, iii) and 10 (ii, iv) days from
seeding. While H-GASC grew as a monostrate (ii), GSC tended to spontaneously form neurospheres (arrow, iv; phase-contrast image, v).
In vi, data are presented as mean £ SD. (M): Anchorage-independent growth: on the left, phase-contrast images of colonies growing in
soft agar 3 weeks from seeding. On the right, results are expressed as mean = SD. *, p < .05 versus GASC. (N): FISH analysis. Red dots
identify 1p36 (i, ii) and 19913 (iii, iv) while green dots 125 (i, ii) and 19p13 (iii, iv) in H-GASC (i, iii) and GSC (ii, iv), respectively. In v
and vi, results are expressed as mean = SD. *, p < .05 versus GASC. (0): SNP analysis. In the upper panel, data from Infinium high-
density humanCytoSNP-12 DNA analysis BeadChips revealing a mosaic deletion of the chromosome 1p in the glioma tissue but not in
the GASC obtained from it as well as in the peripheral blood cells of the same patient. In the lower panel, table summarizing the results
of the four studied cases. II* diffuse astrocytoma; II® oligoastrocytoma; Il anaplastic astrocytoma. Abbreviations: GASC, glioma-
associated stem cells; GSC, glioma-initiating stem cell.

GASC (n=6), both A172 and U87 displayed a significant
decrease in the PDT and an increased ability to grow in soft
agar (Supporting Information Fig. S4).

Since it has been recently demonstrate that stromal cells,
such as TAF, can act through the release of exosomes [21,
40], we evaluated whether GASC could exert their tumor-
supporting action in this way. Exosomes were isolated from
H-GASC culture supernatants by ExoQuick-TC and their pres-
ence was confirmed both by fluorescence-activated cell sort-
ing (FACS) (expression of CD9 and CD63, Fig. 4A) and AFM
(particles with a diameter ranging from 20 to 110 nm, Fig.
4B). In order to establish whether recipient cells could inter-
nalize exosomes, A172 cells were incubated for 4 hours with

www.StemCells.com

Di-D-labeled exosomes and cells examined either by confocal
microscopy or epifluorescence imaging followed by deconvolu-
tion. As shown in Figure 4C, DiD-labeled exosomes could be
identified within the cells and the internalization was further
confirmed by FACS (Fig. 4D).

Subsequently, we compared the capacity of unfractioned
GASC supernatants (SN+), exosome-depleted GASC superna-
tants (SN—), and GASC-derived exosomes (EXO) to modify
growth kinetic, migration ability, and anchorage-independent
growth of A172 cells (Fig. 4E). These latter, when grown in
GASC-SN+ and GASC-EXO, showed a significant decrease in
the PDT (Fig. 4F) and a significant increase both in motility
and anchorage-independent growth (Fig. 4G, 4H). These
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changes were not present when A172 cells were grown in
SN—, supporting the notion that exosomes were the main
responsible for the effects observed. Importantly, Wi38
fibroblasts-EXO did not affect A172 cells (Fig. 4E—4H). Con-
versely, Wi38-SN+ reduced the growth of A172 cells, and this
effect was mainly attributable to the nonexosomal component
of the supernatant, thus supporting the notion that the
effects of the GASC supernatant were cell- and exosomes
dependent. Similarly to exosomes released by H-GASC, those
obtained from L-GASC significantly affected PDT, anchorage-
independent growth, and motility of A172, although at a sig-
nificant lower extent (Fig. 41-4K), thus suggesting that the
degree of the tumor-supporting ability was proportional to
the grade of malignancy of the tumor of origin. Finally, in
order to assess the effects of GASC-exosomes on a clinically
relevant experimental setting, we isolated, from three HGG
patients, both H-GASC and GSC, and verified the effects of
the H-GASC-exosomes on the respective GSC lines (Fig. 4L).
Exosomes obtained from H-GASC profoundly modified the
growth pattern of GSC, which started to form tridimensional
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cords of cells loosely adherent to each other (Fig. 4M),
decreased the PDT of the respective GSC lines, increased of
the 65% number and diameters of GSC colonies in soft agar,
and doubled GSC motility (Fig. 4M-40). Wi38-derived exo-
somes did not affect any of the three considered parameters.
Altogether, these results showed that functional features of
tumor-supporting cells characterize GASC and that this effect
can be attributable to the release of exosomes.

GASC Features Predict Prognosis in LGG Patients

Since GASC showed: (a) a state of activation that did not
change upon in vitro expansion, and (b) a tumor-supporting
effect whose magnitude increased with the grade of glioma,
we wondered whether GASC features could predict the clini-
cal behavior of the tumor. We focused our attention on LGG,
since new criteria to prognostically stratify these patients are
urgently needed [4, 30, 31]. To evaluate whether GASC could
fulfill these expectations, we first identified the GASC-features
distinguishing LGG from HGG and we inserted them in a score
that was finally tested for its capacity to prognostically stratify
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Figure 4. GASC exert their tumor-supporting function through the release of exosomes. (A): Histograms overlays showing isotype con-
trol 1gG staining profile (green histograms) versus specific antibody staining profile (red histograms). (B): Upper panels: atomic force
microscopy topographic height and phase images of GASC-derived exosomes. The exosomes appear as circular structures with diameters
ranging from 20 to 120 nm, and a distinct phase contrast with respect to the surrounding mica surface. Bottom panel: size distribution
(diameter in nm) of exosomes (n = 308) resulting from the analysis of several atomic force microscopy topographic images. (C): DiD-
labeled exosomes (green fluorescence) appear to be on the same focal plane of phalloidin-labeled actin filaments (red fluorescence).
The area in the inset is presented at higher magnification in the separated and merged panels on the right. Nuclei are depicted by the
blue fluorescence of DAPI. (D): Histograms overlays showing A172 cells cultured (red histogram) or not (green histogram) with Di-D-
labeled exosomes. (E-G): Effects of exosomes derived from H-GASC and WI38 on A172 cells. (E): Layout of the experiment. In (F), (G),
and (H), results are expressed as mean = SD. *** *** § (O <, p < .05 versus A172 grown in the absence of exosomes or in the pres-
ence of SN+GASC, SN—GASC, EXO-GASC, SN+WI38, and SN—WI38, respectively. (G) Anchorage-independent growth: representative
phase-contrast images of colonies of A172 cells grown for 3 weeks in soft agar in the different experimental conditions. (H): Cell motility
(scratch assay): representative pictures, taken at different time points, of A172 cells grown in the different experimental conditions. Yel-
low lines depict the edges of the scratch. (I-K): Effects of L-GASC and H-GASC on A172 cells. Results are expressed as mean = SD. *,**,
*** p < .05 versus Al72 grown in the absence of exosomes, in the presence of L-GASC- or H-GASC-derived exosomes, respectively.
(L-N): Effects H-GASC- and WI38-derived exosomes on glioma-initiating stem cell (GSC). (L): Layout of the experiment. (M): Growth
kinetic: phase-contrast images of GSC grown either in the absence (i) or in the presence of WI38-derived (ii) and GASC-derived (iii and
iv) exosomes. Representative growth curve of a GSC line treated or not with GASC- or WI38-exosomes (v). Population doubling time of
GSC treated or not with either GASC-derived or WI38-derived exosomes (vi). Results are expressed as mean = SD. * **, p < .05 versus
A172 grown in the absence of exosomes or in the presence of WI38 exosomes, respectively. (N): Soft agar assay: representative pictures,
taken 7 days after seeding, of a GSC line treated or not with GASC- or WI38-derived exosomes. (0): Cell motility (scratch assay): repre-
sentative pictures taken at different time points of a GSC line grown in the different experimental conditions. Yellow lines depict the
edges of the scratch. In (M), (N), and (O), results are expressed as mean = SD. Abbreviation: GASC, glioma-associated stem cells.
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Figure 4. (Continued).

40 LGG patients in terms of OS, MPFS, and PFS (Supporting
Information Fig. S1).

Definition of the GASC-Based Score

Starting from a case study composed of 13 H-GASC and 12
L-GASC, obtained, these latter, from patients with an OS >36
months and without MRI evidence of malignant progression,
and using De Long’s nonparametric receiver operating charac-
teristic (ROC) analysis, we selected nine parameters signifi-
cantly (p < .005) able to correctly classify the two groups and
we determined the cut-off value able to discriminate the two
populations (Supporting Information Table S4). Of the nine
parameters, five were more expressed (CD133, CD271,
ABCG2, E-Cadherin, and CD90) and four less expressed
(CD49a, CD49d, CD105, and CD73) in H-GASC with respect to
the L-GASC, and we expressed the selected parameters as
binary values creating a score based on the sum of these lat-
ter (Fig. 5A). Finally, we assessed the prognostic value of the
determined parameter in a larger casistic including 40 subse-
quent LGG-patients (median follow-up 36 months, range 13—
76) (Table 2).

As illustrated in Figure 5B, eight of the LGG patients presented
ascore=0, 10 ascore=1, 14 ascore=2, 1 ascore=3, 2 a
score =5, 1 a score =6, 2 a score = 7, and two a score = 8. We
decided, then, to stratify the score in the following four classes: A
(score = 0), B (score = 1), C (score = 2), and D (score >2).

©AlphaMed Press 2013

Evaluation of the Prognostic Value of the GASC-Based
Score

Table 2 summarizes the demographic, clinical, and histological
data of the 40 LGG patients analyzed.

Overall Survival

Overall, there were 12 deaths (30%) and the median follow-
up in the surviving patients was 41 months (range 19-76
months). The estimated 5-year OS rates were 100% (score-
=0), 90% (score =1), 42% (score =2), and 0% (score >2),
respectively (log-rank test: p < .0001, Fig. 5C).

As summarized in Table 3, the prognostic factors positively
associated with OS at univariate analysis (p < .05) were the
extent of tumor resection (EOR) and the presence of mutated
IDH1 or IDH2 genes, while OS was significantly poorer in older
patients. Importantly, the GASC-based score was associated
with a worse OS, either when treated in its original form or in
four classes. Finally, the multivariate Cox analysis showed that
the four classes GASC-based score was the only independent
predictor of OS (HR 8.84, Cl 95% 2.15-36.28, p = .002).

Tumor Progression and Malignant Transformation

Tumor progression was identified in 25 (62.5%) cases, while
malignant progression was observed in 17 (42.5%) cases. The
estimated 2- and 5 years PFS rates were 87.5% and 43.7%
(score=0), 80% and 0.0% (score=1), 66.7% and 0.0%

STEM CELLS
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Figure 5. Glioma-associated stem cells (GASC)-based score. (A-E):

Prognostic value of the GASC-based score in low-grade gliomas

(LGG) patients. (A): Parameters and cut-off value used to define the GASC-related score. (B): Distribution of the LGG patients in the in
four GASC-classes, according to the GASC-score value. (C—E): Kaplan-Meier curves showing OS (C), PFS (D), and MPFS (E) in LGG patients
stratified according to the GASC-based score. (F): Populations identified by the parameters included in the GASC-based score. Percent-
age of CD133™ cells expressing CD44 and the other markers included in the score (i). Fraction of ABCG2", CD271", and E-Cadherin
(ECAD)" cells expressing CD133 (ii, on the left) and characterization of the ABCG2"/CD133~, CD271%/CD133~, and E-Cadherin
(ECAD)"/CD133™ cells (ii, on the right). Results are expressed as mean = SD.

(score =2), and 25% and 0% (score >2), respectively (log-
rank test: p =.003, Fig. 5D).

At the univariate analysis (Table 3) the EOR was associated
with a significant improvement in PFS as well as the presence

www.StemCells.com

of mutated IDH1 or IDH2 genes. Again, the GASC-based score
was associated with a worse PFS. Finally, the multivariate Cox
analysis showed that the only independent predictor of PFS
was EOR (HR 0.96, CI 95% 0.93-0.98, p =.003). Considering

©AlphaMed Press 2013
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Table 2. Clinicopathologic features of the n = 40 low-grade-glioma
patients

Clinicopathologic features Patients, no. % Median (range)
Sex
Male 25 62.5 -
Female 15 37.5 -
Age at surgery (years) - - 38.5 (18-63)
Extent of resection (%) - - 88 (25-100)
Tumor subtype
Astrocytoma 26 65 -
Oligoastrocytoma+ 14 35 -
Oligodendroglioma
KI67 expression (%) 5 (1-20)
<4 18 45 -
>4 22 55 -
P53 expression (n = 37) 29 78 -
IDH1 mutation (n = 35) 28 80 -
IDH2 mutation (n = 35) 2 5.7 -
IDH1 or IDH2 30 85 -
mutation (n = 35)
Chromosome 1P 10 33 -
deletion (n = 30)
Chromosome 19Q 13 43 -
deletion (n = 30)
Chromosome 1P and 10 33 -
19Q codeletion (n = 30)
MGMT promoter 26 84 -
methylation (n = 31)
number of mitosis/ - - 1(0-7)
10 high power fields
Postoperative chemotherapy 15 37.5 -
Postoperative radiotherapy 23 57.5 -

the MPFS in the four GASC-based score classes, the estimated
2- and 5 years MPFS rates were 100% and 100% (score = 0),
80% and 35% (score =1), 92.9% and 41.3% (score =2), and
37.5% and 0% (score >2), respectively (log-rank test: p <
.0001, Fig. 5E).

At the univariate analysis (Table 3), EOR, presence of
mutated IDH1 or IDH2 genes and methylation of the MGMT-
promoter were associated with a significant improvement in
MPFS. Conversely, older age and the GASC-based score pre-
dicted a worse MPFS. Again, the multivariate Cox analysis
showed that the only independent predictor of MPFS was the
four classes GASC-based score (HR 3.74, Cl 95% 1.60-8.75,
p =.002). Altogether, these results indicate that the GASC-
based score is significantly associated with LGG-0OS, -MPFS, and
-PFS and represents, among the state-of the art LGG prognostic
factors, the strongest independent predictor of OS and MPFS.

Evaluation of the Populations Recognized by Markers
Included in the GASC-Based Score

To determine whether the markers included in the score rec-
ognize the same GASC population or distinct GASC subpopula-
tions, we set multicolor flow-cytometric assays to assess, in
six L-GASC, up to six parameters simultaneously (Supporting
Information Fig. S5). For technical reasons we could not
include in the analysis CD73, but we inserted CD44, given its
importance as a marker of glioma stem cells [37, 41].

With the caution due to the low number of cells analyzed, a
large fraction of CD133 positive cells express other markers of
stemness, such as ABCG2, CD271, and CD44, and, when present,
E-Cadherin (Fig. 5F and Supporting Information Fig. S5). They
were also largely positive for CD90, CD105, CD49a, and CD49d.
However, the large fraction of E-Cadherin®, CD271%, and
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ABCG2™" cells were not expressing CD133 and only partly over-
lapped with each one another, thus identifying putative distinct
cell subpopulations, usually highly expressing CD105, CD44, and
CD49a and variably expressing CD90 and CD49d (Fig. 5F).

DiscussION

Personalized medicine aims at identifying patient- and tumor-
specific factors useful both for the prognostic stratification of
patients and for the identification of therapeutic options that
maximize effectiveness, minimizing treatment-related toxicity
[42]. This is especially important in neuro-oncology, given the
high morbidity and mortality of brain tumors, the rarity of
valuable treatment options, and the possible toxicity of ther-
apy [1, 43]. In this article, we have demonstrated that: (a)
human gliomas host a novel population of nontumorigenic
stem cells, named GASC, that support tumor growth; (b) the
optimized method for GASC in vitro expansion is a robust
and highly reproducible model of the stromal compartment
of both HGG and LGG; (c) GASC support tumor growth releas-
ing exosomes; (d) both tumor stem cells and tumor-
supporting cells can be expanded from HGG; (e) GASC fea-
tures have a strong prognostic value in LGG. The translational
nature of this article imposes us to discuss all the basic
research findings and their clinical application. (a) Since 2000,
Hanahan and Weinberg have postulated that the non-
neoplastic component of tumors plays an active role in tumor
biology [15, 16]. However, little is known regarding the pres-
ence of non-neoplastic stem cells within tumors. These latter
may arise from normal progenitors, in analogy with what
occurs in Platelet-Derived Growth Factor (PDGF)-induced glio-
mas of the adult or neonatal rat, where a small population of
neural stem cells are “recruited” into the glioma and are
induced to proliferate [44]. Accordingly, Kong’s group has iso-
lated from a single glioblastoma patient a stem cell line with
some mesenchymal features (GS-MSLC) that showed the abil-
ity to influence a GSC line by increasing, in vitro, its prolifera-
tion, and, in vivo, the size of the formed tumors via an
incremented angiogenesis [45, 46]. Our article newly shows
that normal stem cells with mesenchymal features and a
wide differentiation potential can be isolated both from LGG
and HGG, support tumor growth releasing exosomes, and can
predict patient prognosis. (b) The presence of GASC raises
issues regarding their origin. There is a limited presence of
fibroblasts in the CNS and their proliferation has never been
described in the course of pathology [47]. Instead, the cell
type that characterizes the CNS’ response to injury is repre-
sented by reactive astrocytes [48, 49]. Importantly, in murine
models, non-neoplastic astrocytes could be converted, by the
glioma microenvironment, into a reactive phenotype [50, 51]
that could acquire stem cell features similar to GASC [52].
Alternatively, GASC may derive from a recently described
population of perivascular mesenchymal stem cells endowed
with both mesodermal and neuroectodermal differentiation
capacities [53]. However, the identification of the in vivo
counterpart of GASC in humans is limited since lineage trac-
ing from the cell-of-origin cannot be done in humans [44]. (c)
GASC exert their in vitro tumor-supporting action through the
release of exosomes. This finding is in line with recent data
from Skog’s group, who showed that glioblastoma tumor cells
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Table 3. Univariate analysis of clinical, histological and GASC-based parameters with OS, PFS, and MPFS in 40 patients with low-grade-

gliomas
0s PFS MPFS

Covariates HR 95% ClI P HR 95% ClI P HR 95% CI p
Age

(modeled as continuous variable) 1.05 1.00-1.09 .032 1.02 0.99-1.052 .182 1.04 1.00-1.08 .038
Gender

(female vs. male) 0.41 0.11-1.51 .180 0.83 0.36-1.91 .663 0.55 0.19-1.57 .265
% EOR

(modeled as continuous variable) 0.97 0.94-0.99 .015 0.96 0.94-0.98 <.0001 0.97 0.95-1.0 .022
Tumor subtype

Oligoastrocytoma/oligodendroglioma 1.35 0.43-4.26 .610 0.74 0.31-1.80 511 0.81 0.28-2.30 .688

versus fibrillar astrocytoma
% K67

>4 versus <4 1.49 0.45-4.99 .516 2.05 0.86-4.86 .104 2.01 0.70-5.73 .193
Number of mitosis

(modeled as continuous variable) 1.40 0.93-2.11 111 1.22 0.88-1.67 229 1.37 0.99-1.91 .061
IDH1 mutation

Yes versus no 0.13 0.04-0.47 .002 0.33 0.12-0.86 .024 0.24 0.08-0.68 .007
IDH2 mutation

Yes versus no 1.73 0.22-13.72 .603 0.58 0.08-4.37 .595 0.95 0.12-7.26 .958
IDH1 or IDH2 mutation

Yes or no 0.11 0.03-0.40 .001 0.09 0.02-0.31 <.0001 0.12 0.04-0.40 .001
P53 Expression

Yes versus no 0.59 0.17-2.04 408 1.25 0.42-3.74 .691 0.86 0.27-2.70 .795
MGMT promoter methylation

Yes versus no 0.40 0.07-2.21 .296 0.43 0.13-1.36 .149 0.21 0.06-0.80 .022
Chromosome 1P-deletion

Yes versus no 0.37 0.08-1.73 .205 0.33 0.11-1.04 .058 0.25 0.054-1.13 .072
Chromosome 19Q-deletion

Yes versus no 0.24 0.05-1.18 .080 0.35 0.12-1.00 .050 0.16 0.03-0.73 .018
Chromosome 1P/19Q codeletion

Yes versus no 0.37 0.08-1.73 .205 0.33 0.11-1.04 .058 0.25 0.054-1.13 .072
GASC-based score

(modeled as continuous variable) 1.85 1.41-2.44 <.0001 1.52 1.25-1.87 <.0001 1.58 1.30-1.93 <.0001
GASC-based score

(modeled as categoric variable) 6.52 2.26-18.86 .001 1.83 1.18-2.82 .007 2.96 1.57-5.60 .001

Boldfacing represents statistical significance values are from two-sided tests (Cox regression) and were statistically significant when < .05.
Abbreviations: Cl, confidence interval; EOR, extent of surgical resection; GASC, glioma-associated stem cells; HR, hazard ratio; MPFS, malignant
progression-free survival; OS, overall survival; PFS, progression-free survival.

could release exosomes, containing mRNA, miRNA, and
angiogenic proteins, able to act on endothelial cells, possibly
favoring the development of a tumor-permissive microenvir-
onment [54]. Accordingly, the proteome and mRNA profiles of
exosome closely reflect the oxygenation status of donor gli-
oma cells and patient tumors [55]. Conversely, it has been
recently shown that TAF, through the release of exosomes,
could induce, in breast tumor cells, the acquisition of a meta-
static phenotype [21]. This suggests the existence of a contin-
uous tumor/stroma crosstalk mediated by exosomes.
Accordingly, our article shows that GASC can produce
exosomes able to influence GSC obtained from the same
patient. Interestingly, exosomes can be also released into the
bloodstream [54] and act on distant sites taking part to the
formation of a premetastatic niche [22]. Therefore, a deeper
comprehension of exosome biology will open new avenues
for the treatment of neoplastic lesions. (d) Concerning the
surface proteins entering in the GASC score, they essentially
belong to three classes: stem cell antigens (CD271, CD133,
and ABCG2), adhesion proteins (CD49a, CD49d, and E-Cad-
herin), and mesenchymal markers (CD90, CD73, and CD105).
Specifically, GASC obtained from patients with poor prognosis
were characterized by an increase in stem cell-related
markers, a downregulation in integrin expression, and a vari-
able modulation of mesenchymal markers. When we eval-

www.StemCells.com

uated, by multiparametric-cytofluorimetric assays, whether
these markers identified the same population or distinct sub-
populations, we concluded that, while CD133" cells fre-
quently coexpressed the other stem cell markers CD271,
ABCG2, and E-Cadherin, the majority of the CD271",
ABCG2", and E-Cadherin™ cells did not express CD133, con-
stituting distinct subpopulations. Therefore, the score seems
to take into account distinct subpopulations whose specific
role in the natural history of glioma deserves future investiga-
tions. Nevertheless, CD133 is a well-established, although
debated [56], marker of both neural stem cells and glioma-
initiating stem cells [11, 12]. Since GASC were devoid of
tumor-initiating properties in vivo, we cannot exclude that
human gliomas may contain, as in the murine model previ-
ously mentioned [44], a small population of neural stem cells.
Alternatively, CD133" cells may derive from a recently
described circulating CD133 ABCG2" mesenchymal stem cells
endowed with neurogenic potential [57]. (e) Despite the lack
of class | evidence, surgical treatment is considered the first
option in LGG management [4, 5]. However, the aptitude of
LGG to infiltrate eloquent areas represents the major limita-
tion in achieving radical resection [30]. The choice between
the different postsurgical therapeutic options for LGG patients
is still a challenge, because there are not definitive criteria to
classify a lesion as at high-risk or low-risk to progress and
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side effects of adjuvant treatments are not justifiable in
patients at low-risk of relapse/progression [4, 5]. Recently,
some advances in defining novel biomarkers able to better
classify LGG have been done [58, 59]. IDH mutations and 1p/
199 codeletions seem to be independent prognostic markers
for OS [59]. The prognostic/predictive role of the methylation
of the MGMT promoter is now under investigation, while
that of p53 and Ki67 has been questioned [59]. In this article,
considering the state-of the art clinical, histological, and
molecular LGG prognostic factors, we confirmed the ability of
some of these latter to predict OS, MPFS, and PFS. However,
in multivariate analysis, the GASC-based score was the only
independent predictor of both OS and MPFS, outperforming
all the available criteria in stratifying LGG patients and thus
allowing a better clinical management [59]. This can prospects
the use of this in vitro model of disease both to predict
response to therapy and to identify innovative interventions
aimed at interrupting the crosstalk between tumor cells and
their supporting stroma. Notably, stromal cells are optimal
therapeutic targets for their genetic stability and lower poten-
tial to develop drug resistance [60].

CONCLUSION

This article strongly suggests that the isolation of GASC, the
study of GASC/GSC model, and of GASC-derived exosomes
can: (a) give insights into the biology of gliomas, (b) directly
impact the patients’ life establishing novel criteria to identify
high-risk patients, and (c) provide a useful criterion to direct
current therapies or to exploit novel strategies aimed at tar-
geting the tumor stroma.
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