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Room temperature ionic liquids (RTILs) are salts made by an organic cation and an organic or 

inorganic anion, which are at the liquid state at 25 °C. RTILs have attracted much attention as new 

sustainable solvents owing to some unique properties they usually possess, such as a practically 

negligible vapor pressure, non-flammability, high thermal stability, wide electrochemical windows, 

good solvation ability and supposed low toxicity. These features make RTILs good candidates for the 

substitution of classical organic solvents in many technological applications. For these reasons, they 

are currently studied as new media for chemical separations, electrodepositions, electrolytes for 

batteries and supercapacitors, catalysis and pharmaceutical research.  

Several of these applications also involve the presence of metal ions as solvated species in RTILs. In 

this field, structural and thermodynamic data about single-ion solvation are fundamental quantities 

that need to be known to improve new technologies. However, this fundamental knowledge still lacks 

for many metal species in several ionic liquids. The aim of this thesis is to obtain a complete 

description of metal ions solvation in RTILs both from a structural and thermodynamic point of view.  

Molecular dynamics (MD) simulations and X-ray absorption spectroscopy (XAS) experiments have 

been performed to study solutions of metal ions of industrial, environmental and economic interest 

such as Zn2+, Co2+, Ag+ in widely used RTILs like those based on the [Tf2N]- 

(bis(trifluoromethylsulfonyl)imide) and [BF4]
- (tetrafluoroborate) anions within the [Cnmim]+ (1-

alkyl-3-methylimidazolium) cation. 

MD simulations have been carried out on Zn2+ in [Cnmim][Tf2N] (n = 2, 4) and [C4mim][BF4]. The 

obtained thermodynamic data are in good agreement with literature experimental values and indicate 

the goodness of the employed protocol. The calculated Gibbs free energies of transfer (ΔGtrans) from 

water to the [Cnmim][Tf2N] RTILs suggest that Zn2+ is more favorably solvated in aqueous solution 

than in this class of ionic liquids, while the opposite is found for [C4mim][BF4]. The obtained single-

ion solvation enthalpies and entropies provided an interpretation of the different contributions to the 

calculated free energies. In addition, XAS experimental results allowed to understand the 

coordination of Zn2+ in water-saturated [C4mim][Tf2N], representing the real-operating condition in 

a liquid-liquid extraction.  

A similar picture has been obtained for Co2+ in [C4mim][Tf2N]. MD calculated ΔGtrans showed that 

the metal ion is still more favorably solvated in water than in the RTIL because of an unfavorable 

entropic contribution. XAS experiments and data-fitting allowed to obtain Co2+ coordination in dry 
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[C4mim][Tf2N]. The metal resulted to be bound by six monodentate anions forming the [Co(Tf2N)6]
4- 

octahedral species, differently to what was observed for the solid state. In addition, water is found to 

preferentially coordinate the metal when present at high concentrations in the RTIL, as provided by 

UV-Vis data. The electronic spectra also showed a blue-shift by passing from [Tf2N]- to water 

coordination, confirming the bis(trifluoromethylsulfonyl)imide anion as a weak ligand. The obtained 

negative enthalpy of transfer from water to [C4mim][Tf2N] must therefore be attributed to outer-

sphere effects induced by the reorganization of the solvent around the first coordination sphere of the 

metal ion. 

As regards the study about Ag+ in RTILs, a totally different picture with respect to Zn2+ and Co2+ has 

been obtained. MD results showed that this ion is more favorably solvated both in [C4mim][Tf2N] 

and [C4mim][BF4] with respect to water, and this encourages the employment of these RTILs as 

extracting phase for this metal. Ag+ resulted coordinated by four or five RTILs anions, depending on 

the employed interaction potential. However, when considering the transfer of Ag+ from water to the 

RTILs, great care must be taken because of a possible change in the coordination number. Indeed, 

preliminary XAS data suggest a linear coordination for this metal ion in aqueous solution, differently 

from the tetrahedral model that is usually accepted and reproduced by the current classical potentials. 

Ab initio MD simulations with the Car-Parrinello method seemed to confirm this observation.     
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Chapter 1 

 

 

Introduction 

 

1.1  Ionic liquids: historical remarks  

 

Ionic liquids (ILs) are salts made by an organic cation and an organic or inorganic anion, which are 

liquid below 100 °C.1–3 Among them, room temperature ionic liquids (RTILs) are melt at 25 °C. Even 

though they are often referred as a new class of solvents, their origin goes back to 1914, when 

ethylammonium nitrate (EAN) was reported as a molten salt at room temperature.4 Strangely, this 

discover did not brought to much interest about these compounds, at least until more recent times, as 

at the end of the 90s when new attention was provoked owing to the synthesis of new air- and water-

stable ILs.5,6 This led to a growth in the number of publications that lasts since nowadays (Fig. 1.1).  

ILs have attracted much attention owing to some unique properties they usually display, such as 

negligible volatility, non-flammability, high thermal and electrochemical stabilities and a supposed 

low toxicity.7 These characteristics make ILs much safer and environmentally sustainable than 

conventional solvents that are usually employed in numerous applications. In particular, the 

substitution of organic solvents (VOC, volatile organic compounds) which are often toxic, flammable 

and highly volatile, is highly desirable. In addition, being composed by ions, ILs display high 

conductivity and a good solvation ability for both neutral and charged species. Specific cations and 

anions can also be synthetized to achieve desired physical-chemical properties and task specific ionic 

liquids (TSILs) can be designed for particular applications,8 making the number of potentially 

available ILs almost infinite.  
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Figure 1.1. Number of publications per year as found in Scopus by typing “ionic liquids” as keyword. 

 

 

1.2 Ionic liquids: some chemical-physical properties  

 

The low melting points of these salts seem to be caused by the high molecular weights and delocalized 

charges of the relative cations and anions, the first consisting usually in large organic species such as 

imidazolium, pyridinium, pyrrolidinium, quaternary ammonium or phosphonium among the most 

common ones (Fig. 1.2).9–12 Their melting point is governed by the cation-cation, cation-anion, anion-

anion van der Waals (vdW) and electrostatic interactions, therefore depending strictly on their 

structural features. For example, taking into account the 1-alkyl-3-methylimidazolium ([Cnmim]+) 

series, we can observe that small and high symmetric cations like 1-methyl-3-methylimidazolium 

([C1mim]+) provide ILs with high melting points, which are lowered with increasing the alkyl chain 

length.13 This is true only up to a certain extent, while starting from n = 9, 10 the melting point tends 

to increase with increasing the alkyl chain length due to the attractive forces between these 

substituents (Tab. 1.1). As regards the anionic counterpart, it can consist in inorganic species like Cl-

, Br-, NO3
- or bigger anions such as tetrafluoroborate ([BF4]-), hexafluorophosphate ([PF6]-) and 

bis(trifluoromethylsulfonyl)imide ([Tf2N]-) among the most employed (Fig. 1.2). The general trend 

is that the smaller is the anion, the higher the melting point, since larger anions should display weaker 

electrostatic interactions with the IL cation. Interestingly, [PF6]- represents an exception to this series, 

which has been attributed to the formation of strong hydrogen bonds between fluorine atoms and the 

cation hydrogen atoms.13 
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Figure 1.2. Schematic representation of some common ILs anions and cations with the relative 

nomenclature employed in this work. Cations: [Cnmim]+ = 1-alkyl-3-methylimidazolium, [Cnmpyr]+ 

= 1-alkyl-1-methylpyrrolidinium, [Cnmpy]+ = 1-alkyl-4-methylpyridinium, [Nnnnn]+ = 

tetraalkylammonium, [Pnnnn]+ = tetraalkylphosphonium, [Choline]+ = (2-

hydroxyethyl)trimethylammonium, [Cnmpip]+ = 1-alkyl-1-methylpiperidinium. Anions: [Tf2N]- = 

bis(trifluoromethylsulfonyl)imide, [FSA]- = bis(fluorosulfonyl)imide, [TfO]- = 

trifluoromethanesulfonate or triflate, [BF4]- = tetrafluoroborate, [PF6]- = hexafluorophosphate, [NO3]- 

= nitrate, [N(CN)2]- = dicyanamide. For [Nnnnn]+ and [Pnnnn]+, the four n values may be different 

among each other.   

 

Another characteristic that strictly depends on the nature of the ions is the usually high density of ILs, 

which is higher than water for almost all of them.13 An exception is given by tetraalkylammonium 

ILs with inorganic anions such as chloride or nitrate, which show densities smaller than 1 g cm-3. In 

particular, small cations and anions exhibit lower steric hindrance and higher “packing” abilities, 

bringing to higher densities. For the same reason, the smaller is the substituent on the cation (e.g. the 

shorter the alkyl chain), the higher is the density (Tab. 1.1).  

The viscosities are generally higher than those of organic solvents of 1 – 3 orders of magnitude (Tab. 

1.1).14 Usually, viscosity displays the opposite trend of density, due to the increase in vdW 

interactions causing a higher friction between the alkyl chains following their increase in length. 
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Hydrogen bonding is another factor influencing viscosity, thus fluorination of the ions usually 

provides more viscous ILs. 

 

Table 1.1. Melting points (K), densities (ρ, g cm-3, 298.15 K) and viscosities (η, cP, 298.15 K) of ILs 

carrying the 1-alkyl-3-methylimidazolium cation [Cnmim]+ (n = 1 – 18) within the [Tf2N]- and [BF4]- 

anions. Data from ref.13 and references therein except when indicated differently. 

Cation 
[Tf2N]- [BF4]- 

MP ρ η MP ρ η 

[C1mim]+ 295.15 1.559 100 376.55  67 

[C2mim]+ 258.15 1.52 28 288.15 1.26 48.8 

[C3mim]+  1.475 42.815 256.15 1.24 103 

[C4mim]+ 269.15 1.43 69 190.65 1.12 – 1.26 180 

[C5mim]+ 264.15 1.403 59.115   158.115 

[C6mim]+  1.372 87.3*   314 

[C7mim]+ 280.15 1.344     

[C8mim]+ 310.15 1.32 119.3* 193.15 1.08 294.316 

[C9mim]+  1.299     

[C10mim]+ 244.15 1.271 152.8* 268.95 1.04 416* 

[C11mim]+    294.55   

[C12mim]+ 289.85   312.15   

[C13mim]+    322.25   

[C14mim]+ 307.45   315.55   

[C16mim]+ 315.25   322.75   

[C18mim]+ 317.95   339.95   

*Data referred to 293.15 K. 

 

The mutual solubility of ILs with water is one of the most important features of these solvents and an 

easy way to classify them is between hydrophobic and hydrophilic, depending on their attitude to 

form two separate phases with an aqueous solution. Differently from the properties discussed above, 

ILs solubility with water is primarily dependent on the nature of the anion, while a smaller effect is 

provided by the cation and its substituents. In particular, hydrophobicity is found to increase 

according to the NO3
- < Cl- < Br- < [BF4]- < [PF6]- < [TfO]- < [Tf2N]- trend. As regards the cation, 

the longer is the alkyl chain length, the higher the hydrophobicity of the IL, as expected.17–19 It is 

interesting to note that even the most hydrophobic ILs, such as those from the [Cnmim][Tf2N] family, 
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present a water solubility ranging from 0.17 to 0.36 in mole fraction for n = 2 – 8, while ILs solubility 

in water is much lower, going from 3.2 x 10-5 to 1.1 x 10-3.20 It has to be pointed out that, although 

hydrophobic, these ILs are often hygroscopic, and that they tend to accumulate water very easily if 

left in contact with the moisture of the air. 

Thermal decomposition is another fundamental property, which strongly depends on the structure of 

the ions. The high decomposition temperatures of ILs make them interesting for applications because, 

differently from many organic solvents, they can be kept at the liquid state above 400 °C. This usually 

allows reaching high dynamic properties or catalytic activity, as well as to lower their high viscosity. 

In general, imidazolium cations provide the most stable ILs, while the trend of relative stabilities for 

the most common anions is [PF6]- > [Tf2N]- > [TfO]- > [BF4]- >> I-, Br-, Cl-.13 

A general comment about the safety of ILs has to be carried out. All the characteristics reported here 

do not mean that ionic liquids are inherently sustainable and safe solvents. For example, some works 

have reported that ILs with fluorinated anions such as [BF4]- and [PF6]- can undergo hydrolysis and 

consequent production of hydrofluoric acid if put in contact with high molar fractions of water.21–24 

Differently, the “greenness” of a solvent, if not of a chemical compound, should be always considered 

in a relative way, i.e. with respect to the species which are currently employed in an application and 

that could be potentially substituted. Another limit that has to be faced to improve the applications is 

ILs cost, which is usually higher than traditional solvents, as well as the difficulty in obtaining them 

with high purity levels.25 However, this should not prevent the continuous research to develop cations 

and anions that allow to obtain desired ILs characteristics with less and less effort. 

 

 

1.3 Metal ions and ionic liquids 

 

Owing to their unique properties, ILs have been proposed for a variety of applications such as 

chemical extractions and analysis, electrodepositions, batteries, solar cells, corrosion protection, 

catalysis and pharmaceutical research.25–29 Several of these applications involve the presence of 

dissolved metal ions and/or metal complexes. Usually, to have an efficient application, the metal ion 

should be completely solvated by the IL, e.g. the metal salt needs to be solubilized by the solvent. 

Sufficient solubility for a wide range of metal salts is an obvious but not trivial prerequisite for 

applications involving metals in ILs. In addition, depending on the specific case, also high 

concentrations of the metal could be required.  

A typical strategy is that of solubilizing metal salts having the anion in common with the IL. However, 

some salts have been found to possess very low solubility in several ionic liquids.30,31 This seems to 
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be caused by the poor coordinating ability of many common anions like [Tf2N]- or [PF6]-, but also to 

be very dependent on the considered metal. For example, it has been found that concentrated solutions 

up to 1 M can be obtained for Co(Tf2N)2 and Ni(Tf2N)2 in respectively [C2mim][Tf2N] and 

[C4mim][Tf2N], while the maximum concentration is 0.4 M for AgTf2N in [C4mim][Tf2N] and only 

0.06 M for AgPF6 in [C4mim][PF6].30 

 

1.3.1 Applications 

 

1.3.1.1 Electrochemical and energy applications 

 

Many of the main characteristics of ILs make them suitable candidates for a huge number of energy-

related applications. In particular, their wide electrochemical windows coupled with high 

electrochemical and thermal stabilities can provide ILs that could be considered as ideal electrolytes 

for batteries, supercapacitors or solar cells. As a counterpart, their high viscosity is what usually limits 

their employment in this field. For these reasons, many studies have been devoted to the structural, 

thermodynamic and transport properties of alkali metal ions in ILs to replace the current Li-ion 

batteries.32–34 This research topic has been extended also to divalent and trivalent cations which, 

carrying more than one elementary charge per atom, should be potentially more efficient as energy-

storage systems.35,36 In addition, species like Mg2+, Zn2+ or Al3+ are way more abundant and 

economic, safer and environmental sustainable than lithium,25 therefore some studies have been 

devoted to the development of batteries also involving these metal ions.36–42 In this field, the 

knowledge of the speciation of the complex formed by the metal ion in the IL solution is somewhat 

mandatory to understand its influence on ion transport.  

In general, a metal ion is coordinated by the IL anions in the “neat and dry” IL. As a consequence, a 

negative charged complex is usually formed, bringing to a loss in the metal self-diffusion coefficients 

and a lowering in conductivity. Taking into account that forming these anionic species is detrimental 

for electrochemical applications, the complexation of alkali-metal ions with ligands of different 

nature in order to form whether neutral or cationic species has been widely studied. One of the first 

attempts was the addition of water in the IL electrolyte. In this case, water is expected to coordinate 

the metal and provoke the release of ILs anions from the first solvation shell, increasing the overall 

charge of the metal complex.43 The disadvantage is that the addition of water to the IL is destined to 

reduce the electrochemical window of the solution. Another effort has been the introduction of neutral 

ligands with coordinating ability. For example, the complexation of metal ions by crown ethers of 
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various nature has been widely studied in several ILs both from a structural and thermodynamic point 

of view.44–49  

A further attempt to influence the electrolyte properties in this direction has been the introduction of 

potentially coordinating substituents in the IL cation, e.g. alkoxy or cyano functionalities. Also in this 

case, the cation should be able to coordinate the metal and provide species with an overall positive 

charge.50,51 Furthermore, the dilution of the IL with additives such as Gn glymes of general formula 

CH3(OCH2CH2)nOCH3 or co-solvents like vinylene or ethylene carbonate has been studied.52,53  

As regards supercapacitors, here ILs can play a role in particular owing to their electrochemical 

stability. In fact, significant improvement in the energy density of a capacitor can be obtained by 

increasing the cell voltage, which is limited by the electrochemical stability of the employed 

electrolyte.54 If water is used, the potential cannot go beyond 1 V in the majority of the cases, while 

with organic solvents like acetonitrile (AN) or propylene carbonate cell voltages of almost 3 V have 

been reached. With ILs, this limit may be pushed even to higher voltages.25  

High electrochemical windows make ILs also suitable solvents for metals electrodeposition. For 

example, it seems possible to obtain metals that cannot be deposited from aqueous solutions due to 

the limited electrochemical window of water or by organic solvents.28,55–64 In addition, the low vapor 

pressure of ILs allows to carry out these deposition processes at high temperature. This should allow 

direct deposition of water-sensitive metals such as aluminum, as well as many other metals having 

deposition potentials conflicting with water decomposition. For example, metallic zinc and cobalt 

have been successfully electrodeposited from Zn2+ and Co2+ solutions in RTILs carrying the [Tf2N]-, 

[TfO]- and [BF4]- anions,65–68 while electrodeposition of copper thin films have been obtained from 

[C2mim][Tf2N] and [C2mim][EtSO4] (1-ethyl-3-methylimidazolium ethyl sulfate).58,59  

 

1.3.1.2 Catalysis 

 

ILs have been also turned out to be a unique medium for several organic reactions promoted by 

transition metal catalysts.69–72 The general idea is that of having a catalytic reaction followed by 

spontaneous separation of the products, which should allow their recovery as well as the recycle of 

the catalyst. This mechanism is often guaranteed by multiphase systems involving both heterogeneous 

and homogeneous catalysis. In both cases, the IL forms the catalyst-philic phase, while an organic 

phase should confine most of the reagents and products. Occasionally, an aqueous phase can also be 

present. In addition, we can distinguish between situations in which the catalyst confined in the IL is 

catalytically active as itself and those in which a chemical reaction between the IL and the metal 

complex is required to provide the catalyst. The first case is certainly the most interesting, as the 
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catalytic species consists in the solvated metal ion, the regeneration of the spent catalyst being simply 

the dissolution of a new amount of metallic salt in the ionic liquid phase.72 To this purpose, ILs with 

inert and weakly coordinating anions that do not compete with the substrate for the coordination to 

the metal are preferred. A further advantage is that recovery of the metal can be performed by means 

of electrodeposition at the end of the catalytic process. As an example, the dissolution of Zn(Tf2N)2 

and Co(Tf2N)2 in [C4mim][Tf2N] has turned out to provide a solution with a high catalytic activity 

for the acylation of chloro- and fluorobenzene.72 Cobalt(II) phtalocyanine in [C4mim][Br] also 

showed excellent yields and high recycling capabilities for the aerobic oxidation of alkyl arenes and 

alcohols.73  

Currently, the most important industrial application employing catalysis with ILs is probably the 

BASILTM (Biphasic Acid Scavenging utilizing Ionic Liquids) process by BASF for the synthesis of 

alcoxylphenyl phosphines.74 

 

1.3.1.3 Chemical separations 

 

One of the applications that promoted the largest number of works about ILs is certainly their 

employment as receiving phase for the separation of metal ions from aqueous solutions (e.g. 

wastewaters), allowing the recovery of critical metals of economic or environmental interest.17,75–84 

In this case, the employment of non-toxic, non-volatile and non-flammable ILs is particularly 

desirable since traditional extractions are usually performed by means of toxic, highly volatile and 

flammable organic solvents. In addition, the recovery of the metal confined in the IL phase by 

electrodeposition at the end of the extraction procedure is a key advantage.  

Many methods can be applied, depending on the nature of the IL. For example, hydrophobic ionic 

liquids allow the formation of biphasic systems with water. In these liquid-liquid extractions, the ideal 

line-up should imply the initial presence of the metal in the aqueous solution, distributing in the IL 

phase either in presence of auxiliary extracting agents or not. In the first case, the actual species that 

goes in the hydrophobic phase is the complex formed between the metal ion and the extracting 

ligands, the IL anions and/or water. In the latter, the extracted metal can be coordinated only by the 

molecules of the two solvents and/or by the counterions. Differently, in case the IL is soluble with 

water, different systems have to be employed to confine the extracting phase. For example, 

“supported liquid membranes” (SLMs) can be interposed by the two liquids, these membranes often 

consisting in porous polymeric materials impregnated with the extracting agent.82  

As regards the extraction mechanism, it can be classified according to the charge of the transferred 

metal complex: if positive, we are in front of a cation-exchange mechanism; if negative, anion-
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exchange has occurred. The neutral mechanism is actually identical to that of extractions with 

traditional molecular solvents. 

The first application of an IL in metal extraction dates back to 1999, when Dai et al. presented  the 

results for the separation of Sr2+ by means of the dicyclohexyl-18-crown-6 (DCH18C6) crown ether 

in ILs carrying [Tf2N]- and [PF6]- anions within various [Cnmim]+ cations.85 In general, the efficiency 

of an extraction procedure seems to be strictly related to the considered system, depending on the 

metal ion, the nature of the IL and of the extracting agents, if present. For example, some authors 

have found that Zn2+ and Cd2+ are selectively extracted from Zn2+/Fe2+ and Cd2+/Fe2+ mixtures, 

respectively, by the [C4mim][BF4] and [C8mim][BF4] RTILs.84,86 By changing the anion and 

employing [C4mim][Tf2N] and [C8mim][Tf2N], the same authors found that Cd2+ and Fe2+ are 

selectively extracted from respectively Cd2+/Zn2+ and Fe2+/Zn2+ mixtures. In addition, the separation 

of Cu2+ and Zn2+ by means of [C8mim][BF4] and [C10mim][BF4] gave poor results according to other 

authors, but the efficiency of extraction for Zn2+ seemed to increase with addition of chlorides, 

indicating that the transfer of an anionic complex was somewhat more favored.87  The addition of 

auxiliary ligands seems therefore to increase the extraction, in particular if the IL possess weakly-

coordinating anions, as was found for the addition of thenoyltrifluoroacetone (Htta) to [Cnmim][Tf2N] 

(n = 4, 6, 8), resulting in high extraction rates for Cu2+, Co2+, Ni2+, Zn2+ and Cd2+.88 [C8mim][BF4] 

has been found to efficiently extract Hg2+, while in the same conditions the separation of Ni2+, Zn2+ 

and Pb2+ was found to be poor.89 The extraction of Ag+ and Pb2+ was way more efficient with 

[Cneim][Tf2N] (n = 2, 4, 6, 1-alkyl-3-ethylimidazolium bis(trifluoromethylsylfonyl)imide) than the 

traditional process with chloroform, on the contrary of the correspondent RTILs carrying the [PF6]- 

anion.76 Differently, Ag+ was found to be the only species extracted by [Cnmim][PF6] (n = 2, 4, 6) 

with the addition of a pyridinocalix-[4]arene in a mixture containing also Cu2+, Co2+, Ni2+ and Zn2+.90  

The suitability of RTILs as receiving phase for the separation of rare-earth metals from aqueous 

solutions has also been demonstrated in many works.75,77,91,92 The most employed extractants for 

lanthanides are β-diketones, dialkylphosphoric and dialkylphosphinic acids, 

diisobutylcarbamoylmethyl phosphine oxide (CMPO), tri-n-butylphosphate (TBP) and N,N,N’,N’-

tetraoctylglycolamide (TODGA).91,93,94 Nakashima et al. found that many lanthanides nitrates were 

extracted to [C4mim][PF6] in presence of CMPO without the addition of further anionic species, 

differently from other molecular solvents where high concentration of nitric acid is required.75 

Lanthanide ions resulted to be efficiently extracted also by means of [C4mim][Tf2N] with the addition 

of Htta.95 In this case, metals were extracted as the [Ln(tta)4]- anionic species with no presence of 

coordinating water molecules, differently to what was found for the extraction with traditional organic 

solvents. On the other hand, extraction of the uranyl cation [UO2]2+, Am3+, Nd3+ and Eu3+ from water 



Chapter 1 

10 
 

to hydrophobic [C12mim][Tf2N] showed that metals were transferred as the same species as found in 

the traditional extraction with dodecane.96 The same observation has been pointed out for uranyl 

extraction to [C4mim][PF6] by means of TBP.93 However, the situation is different for [C4mim][Tf2N] 

and [C8mim][Tf2N] with CMPO, where the cationic species [UO2(NO3)(CPMO)]+ is extracted, 

differently from extraction to dodecane where the neutral [UO2(NO3)2(CMPO)2] complex was 

found.97 This situation is probably due to the shorter alkyl chain length in the last two cases with 

respect to [C12mim][Tf2N], which gives to the RTIL an hydrophobicity similar to dodecane.  

The structure of the IL cation and anion seems therefore to have a crucial influence on the extraction 

efficiency. This should derive from the level of hydrophobicity of the IL and from its effect on the 

extraction mechanism. In fact, it has been found that an hydrophobic IL cation tends to suppress a 

cationic-exchange mechanism, while increase in the hydrophobicity of the anion suppresses the 

anionic-exchange.98 For example, studies on Sr2+ extraction with a series of [Cnmim][Tf2N] RTILs 

demonstrated that the mechanism is fully cation-exchange for n = 5 - 6, but neutral extraction starts 

increasing for n = 9 and becomes dominant for n = 10.99,100 In addition, the decrease of the cation-

exchange mechanism seems to be followed by a general decrease in the extraction efficiency.98 For 

example, extraction of Ag+ and Pb2+ to [Cnmim][Tf2N] and [Cnmim][PF6] (n = 2 – 6) showed that the 

increase in the alkyl chain length of the imidazolium cation from ethyl- to hexyl- decreased the 

efficiency of the extraction.76 The same tendency, i.e. neutral-exchange and low extraction for longer 

alkyl chains of the imidazolium cation, has been observed for the extraction of several alkali metal 

ions and uranium.101–103  

 

1.3.2 Structural properties of metal ions in ILs 

 

The knowledge of a metal ion coordination in solution is a fundamental quantity that needs to be 

known to design an efficient application. If we consider the case of a “neat and dry” IL where only 

the IL anions and occasionally cations (depending on their functionalization) can coordinate the 

metal, this turns into knowing the number of ligands set in the first solvation shell as well as their 

binding mode (mono-, bi-, tridentate etc.). The whole of these data gives access to the total 

coordination number (CN), i.e. the number of atoms coordinating the metal. The former information 

is somewhat more important for the applications, as was already underlined that the nature of the 

negatively charged species formed by a metal ion in an IL is directly related to its transference number 

and has a crucial influence on the working of electrochemical devices. In addition, the nature of the 

formed species is also important to understand the efficiency of an extraction mechanism as well as 

for catalytic processes. 
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 1.3.2.1 Alkali and alkali-earth metal ions 

 

As previously reported, a huge number of publications has been devoted to the solvation of alkali and 

alkali-earth metal ions in ILs owing to their extended number of applications in electrochemical 

devices. Among them, Li+ is certainly the ion that inspired the largest number of works.25,28 A 

particular effort has been dedicated to the study of Li+ in RTILs carrying the [Tf2N]- anion, giving 

the potential advantages of this class of ionic liquids as electrolytes.28 The largest part of these works 

agrees in depicting Li+ as tetrahedrally coordinated in these ILs. However, taking into account that 

[Tf2N]- can act both as mono- and bidentate ligand, this does not give access to the full knowledge of 

the species formed in solution, nor to its total charge, which is even more important for the 

applications. In case of a tetrahedral coordination, the problem to address is to understand whether 

the existence of the [M(Tf2N)2]-, [M(Tf2N)3]2- or [M(Tf2N)4]3- (M = metal) complex (Fig. 1.3) occurs 

in solution, the first involving two bidentate, the second one bidentate and two monodentate, and the 

latter four monodentate [Tf2N]-. Given its small atomic number and the impossibility to employ useful 

methods such as X-ray absorption spectroscopy (XAS) or neutron diffraction to study its local 

environment in solution, a large amount of works studying Li+ in ILs by means of IR and Raman 

spectroscopies have been published so far.34 The diagnostic vibration to understand [Tf2N]- 

coordination has been identified with the band arising from the overlapping of the δ3(CF3) bending 

and the νS(SNS) stretching, corresponding to a whole expansion and contraction of the anion which 

has often be referred as [Tf2N]- “breathing mode”.34 When present at ~740 cm-1, this band is related 

to the ‘‘free’’ uncoordinated [Tf2N]-, while it is shifted to higher wavenumbers when contact ion-

pairs are formed. The ratio of these relative peaks areas could therefore provide the number of anions 

coordinating the metal. No general agreement seems to be present in literature about the number of 

anions coordinating Li+, some pointing out the presence of two, three or four [Tf2N]- anions binding 

the metal. However, the majority of these authors seems to support the formation of the [Li(Tf2N)2]- 

species where the metal is coordinated by two bidentate [Tf2N]-.52,53,104–106  

Another issue that has been faced in different works is the conformational isomerism of coordinating 

[Tf2N]-, i.e. the presence in the first solvation shell of anions displaying cis or trans –CF3 groups with 

respect to the S-N-S plane.52,104 Considering the [M(Tf2N)2]- cluster, three species are possible, 

namely [M(cis-Tf2N)2]- (Fig. 1.3 A), [M(cis-Tf2N)(trans-Tf2N)]- (Fig. 1.3 B), and [M(trans-Tf2N)2]- 

(Fig. 1.3 C). According to different authors, the 250 - 500 cm-1 frequency range of the Raman 

spectrum can provide information about this conformational distribution.107–109 Taking into account 

that the trans isomer is largely preferred in neat Tf2N-based ILs,107,109–111 changes in this region of 
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the spectrum upon dissolution of the metal salt should suggest coordination of this anion in the cis 

form.   

 

 
Figure 1.3. Possible coordinations of the [Tf2N]- anion in a tetrahedral ligand field towards a generic 

Mn+ metal ion. The case of a two-fold coordination involving two cis (A), one cis and one trans (B) 

and two trans isomers (C) of [Tf2N]- are showed. In case of three- (D) and four-fold (E) coordinations, 

only species with trans isomers are reported. 

 

Besides [Tf2N]-, other anions have been studied to overcome some technical problems in batteries 

and reach better performances as electrolytes for Li+.112,113 Given its smaller size and lower anion-

cation binding energies that should favor the metal transport number,114 a good candidate seems to 

be the [FSA]- anion, where -CF3 groups of [Tf2N]- are substituted by fluorine atoms. In this case, IR 

and Raman spectroscopies works seem to agree in assigning a higher number of anions in the metal 

first solvation shell with respect to [Tf2N]- coordination and thus a preference for the [Li(FSA)3]2- 

species, at least in equilibrium with [Li(FSA)2]-.115–117 As regards fluorine-donor anions, experimental 

data on Li+ coordination are quite scarce. However, according to classical and ab initio molecular 

dynamics (MD and AIMD) simulations, Li+ results to be coordinated by four [BF4]- anions in a 

tetrahedral geometry in [C2mim][BF4],116 while MD simulations performed by other authors118 

pointed out that 3.3 [BF4]- and three [PF6]- anions surround Li+ respectively in [C4mim][BF4] and 

[C4mim][PF6]. A 1H-NMR study suggested the formation of the tetrahedral [Li(NO3)4]3- species119 
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when Li+ is solubilized in EAN and a similar picture has been confirmed by X-ray diffraction 

measures and MD simulations.120–122 

Higher CNs are usually displayed by the other alkali metal ions, as it is expectable from the higher 

ionic radii. For example, Na+ seems to be preferentially coordinated as [Na(Tf2N)3]2- by Tf2N-based 

RTILs, but it is not clear if its CN is five or six and thus how many anions act as mono- or 

bidentate.123–125 These experimental findings have been reproduced also by classical MD simulations 

both with polarizable and non-polarizable models.126,127 Raman spectroscopy measures on KTf2N 

solutions in [C4mim][Tf2N] suggested that K+ is coordinated in an octahedral environment by three 

[Tf2N]- bidentate anions similarly to the structure proposed for Na+, while even a higher number of 

anions (3.9) surrounding the metal resulted for Cs+ in the same RTIL.123  

As regards alkali-earth metals, Mg2+ has almost the same ionic radius of Li+ (0.65 Å vs. 0.60 Å),128 

but being a divalent cation it possesses a higher charge-to-size ratio and a different coordination 

should be expected.129 In fact, according to Raman spectroscopy measures, the number of [Tf2N]- 

coordinating Mg2+ in solution stands between three and four and is therefore greater than that 

generally observed for Li+.129–131 These structural features have been well reproduced also by means 

of MD simulations employing a polarizable model.127 Data about Mg2+ coordination in RTILs with 

other anions are quite scarce. In a MD work about [C4mim][PF6] and EAN, Mg2+ resulted coordinated 

still in an octahedral fashion and the average number of anions in the first solvation shell is comprised 

between three and four for [PF6]- (one bidentate and the remaining monodentate) and between four 

and five for NO3
-, which showed no bidentate coordination.35 In the same work, it has been found 

that the number of [PF6]- anions in Ca2+ first solvation shell still stands between three and four. In 

addition, Ca2+ in EAN resulted coordinated by 4 - 5 NO3
- anions, but bidentate coordination is 

dominant in this case, probably because of the higher dimensions of this metal ion with respect to 

Mg2+. As expected, even higher CNs have been obtained for Sr2+. MD simulations of the Sr2+ ion in 

[C4mim][PF6] and [C2mim][AlCl4] reproduced this metal as coordinated by 10.1 fluorine atoms in 

the first case and 7.4 chlorides in the latter.132 The number of anions in the metal first solvation sphere 

resulted to be 5.0 for [PF6]- and 7.0 for [AlCl4]-, being the first mostly bidentate and the latter 

monodentate. 

 

1.3.2.2 Transition metal ions 

 

IR and Raman spectroscopies have been employed by many authors also to understand the 

coordination of transition metal ions in ILs.34 In particular, a number of ~3 coordinating anions in 

Tf2N-based RTILs, therefore the octahedral [M(Tf2N)3]- species (Fig. 1.4), has been found for M = 
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Mn2+, Fe2+, Co2+ and Ni2+ and Zn2+.133,134 In this case, three [Tf2N]- are supposed to act as bidentate. 

This coordination has been confirmed also by Bortolini et al.,30,135 who detected [M(Tf2N)3]- (M = 

Cu2+, Co2+, Zn2+, Ni2+) as the only species in [C4mim][Tf2N] by the analysis of ESI-MS peaks. 

However, it has to be underlined that in this work135 the RTIL solutions have been diluted with organic 

solvents like methanol, acetonitrile and dichloromethane in order to perform the ESI-MS analysis. 

A slight different approach has been employed by other authors for the Ag+ ion in [C2mim][Tf2N].136 

Here IR and Raman spectra were collected on AgTf2N solutions for different concentrations of the 

metal, up to a molar fraction of xAg = 0.2. The dissolution of the metal salt led to spectral modifications 

that the authors were able to reproduce by means of density functional theory (DFT) simulated 

spectra. To this purpose, an optimization was performed for an Ag+ cluster including three [Tf2N]- 

anions coordinating in a tetrahedral field, i.e. one bidentate and two monodentate, thus for the 

[Ag(Tf2N)3]2- species. However, it has to be pointed out that theoretical spectra have not been 

generated for other possible [Tf2N]- coordination mode in a tetrahedral arrangement (Fig. 1.3), that 

is for the [Ag(Tf2N)2]- (two bidentate) and [Ag(Tf2N)4]3- (four monodentate anions) species. A similar 

approach has been used also by Pendleton et al. for Zn2+,137 finding that the DFT simulated IR 

spectrum for the [C2mim][Zn(Tf2N)3] cluster well agreed with the experimental collected on a 

Zn(Tf2N)2 solution in [C2mim][Tf2N]. Also in this case, the existence of the other possible 

coordinations involving the [Tf2N]- anion in an octahedral field (Fig. 1.4), i.e. [Zn(Tf2N)4]2- (two 

mono- and two bidentate [Tf2N]-), [Zn(Tf2N)5]3- (four monodentate and one bidentate) and 

[Zn(Tf2N)6]4- (six monodentate) has not been verified.  

A recent work138 reported the analysis of EXAFS (extended X-ray absorption fine structure) spectra 

of 0.03 M Ni(Tf2N)2 solutions in [C4mim][Tf2N]. In that case, the [Ni(Tf2N)5]3- species with one 

bidentate and four monodentate anions was supposed, also on the basis of MD simulations. In 

particular, a first coordination shell made by six oxygen atoms has been found at 2.03 Å from the 

metal, while a sulfur shell is present at 3.23 Å. This coordination mode was in agreement with solid 

state data obtained from the crystal of a Co(Tf2N)2 solution in [C4mpyr][Tf2N], where the octahedral 

[Co(Tf2N)4]2- unit (with two apical monodentate and two equatorial bidentate anions) was found.139 

Here the Co-S distance for monodentate coordination is 3.19 Å, while for bidentate it is comprised 

between 3.27 and 3.31 Å. Considering  that Co2+ has a similar ionic radius with respect to Ni2+ (79 

vs. 83 pm)128 and that a Ni-S(Tf2N) average distance of 3.23 Å was obtained, it has been argued that 

a mixed coordination of [Tf2N]- towards Ni2+ should be present in solution. This picture has been 

reproduced by MD simulations also by other authors, finding that Ni2+ in [C4mim][Tf2N] is for the 

59.5% surrounded by five [Tf2N]- anions and for 40.5% by six anions.140  
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An even more synergic approach between EXAFS and MD has been employed by D’Angelo et al.141 

for the study of Zn2+ in Tf2N-based RTILs carrying different cations, namely [C4mim]+, [N1114]+, 

[Choline]+ and [C8(mim)2]2+ (1,8-bis(3-methylimidazolium-1-yl)octane). In this work, a different 

strategy has been employed to differentiate between mono- and bidentate [Tf2N]- coordination. In 

particular, the authors observed that the Zn-O-S three-body distribution giving rise to a strong 

multiple-scattering (MS) signal is characterized by a ~132° angle in case of bidentate coordination, 

as also showed by the solid state structure of the Zn(Tf2N)2 salt.72 Differently, it assumes a quasi-

linear geometry with a ~180° angle in the monodentate case. MD simulations performed by the 

authors provided the [Zn(Tf2N)6]4- species with monodentate-only coordination and a ~180° Zn-O-S 

angle. EXAFS theoretical spectra were then calculated for this coordination and resulted to be in 

excellent agreement with the experimental.  

 

 
Figure 1.4. Possible coordinations of the [Tf2N]- anion in an octahedral ligand field towards a generic 

Mn+ metal ion. Cis and trans [Tf2N]- isomers are randomly shown. 

 

Different CNs seem to be provided by chloride coordination in RTILs. For example, EXAFS and X-

ray photoelectron spectroscopy (XPS) measures on Co2+, Mn2+, Ni2+, and Zn2+ solutions in RTILs 

carrying the Cl- anion showed the formation of the [MCl4]2- species.142,143 EXAFS data analysis of  

Cu2+ solutions in [C6mim][Cl] suggested also the formation of [CuCl3]-,144 even if according to other 

authors [CuCl4]2- is found to dominate in [C2mim][Cl] and [Choline][Cl].145,146 As a consequence, 

the presence of [CuCl3]- in [C6mim][Cl] seems to be caused by the effect of the RTIL cation, 

suggesting that longer alkyl chains could promote the formation of complexes with a lower charge. 

A three-fold coordination of Cu2+ has been found also in [C2mim][SCN] (1-ethyl-3-

methylimidazolium thiocyanate), where two anions bind the metal via nitrogen and one via sulfur 

atoms forming the [Cu(NCS)2(SCN)]- species. Interestingly, the Cr3+ ion resulted coordinated by five 
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thiocyanate anions binding through nitrogen atoms in the same RTIL.144 Cu2+ is certainly the metal 

ion showing the highest multiplicity of CNs in RTILs, due to the well-known Jahn-Teller effect that 

provokes the elongation of two apical ligands in the ideal octahedron providing CNs ranging from 

four to six even in water.147–150 For example, UV-Vis spectra and DFT calculations on Cu(TfO)2 

solutions in [C4mim][TfO] suggested Cu2+ as four-fold coordinated, forming the square-planar 

[Cu(TfO)4]2- species.151  

The coordination of [TfO]- has been studied also for Zn2+ by means of IR and Raman spectra collected 

on Zn(TfO)2 solutions in [C2mim][TfO] and [C4mpyr][TfO].152 The average number of [TfO]- anions 

in the first solvation shell of the metal was calculated according to peak areas related to “free” and 

coordinating [TfO]- and resulted to be 3.8 for [C2mim][TfO], indicating the presence of the 

[Zn(TfO)4]2- species. Supposing Zn2+ as octahedrally coordinated, two [TfO]- should bind the metal 

in a bidentate fashion and two as monodentate. Differently, 4.5 anions coordinating Zn2+ were found 

in [C4mpyr][TfO], thus suggesting the presence of an equilibrium between [Zn(TfO)4]2- and 

[Zn(TfO)5]3-. According to the authors, this is probably due to a weaker interaction between [TfO]- 

and the [C4mpyr]+ cation in comparison with [C2mim]+. Further insights into the influence of the 

RTIL cation-anion interaction on the coordination tendencies of the metal have been obtained in a 

work of the same group, analyzing Zn(TfO)2 0.2 M solutions in [Hmim][TfO] (Hmim = 1-

methylimidazolium), [C2mim][TfO] and [C2C1mim][TfO] ([C2C1mim] = 1-ethyl-2,3-dimethyl-

imidazolium).153 The Far-IR part of the spectra below 200 cm-1, revealing the RTILs cation-anion 

interaction, is shifted to lower wavenumbers by changing the RTIL cation and suggests a [Hmim]+ > 

[C2mim]+ > [C2C1mim]+ trend for the interaction strength with the RTIL anion. Interestingly, the 

average number of [TfO]- anions coordinating Zn2+ has been found to be 3.0 in [Hmim][TfO], 3.8 in 

[C2mim][TfO] and 5.1 in [C2C1mim][TfO], suggesting respectively the presence of the [Zn(TfO)3]-, 

[Zn(TfO)4]2- and [Zn(TfO)5]3- species. This confirms that the stronger is the interaction between the 

RTIL cation and the anion, the smaller is the “availability” of the anion to coordinate the metal.  

 

1.3.2.3 Rare-earth metal ions 

 

Data about solvated lanthanides and actinides metal ions coordination in RTILs are quite scarce in 

comparison with the studies about the complexation of these metals,91 the latter having been inspired 

by the great interest towards the separation processes of these ions by means of auxiliary ligands.  

The first solvation sphere structure of Eu3+ in RTILs carrying the [C4mim]+ cation within several 

anions ([PF6]-, [BF4]-, [TfO]- and [Tf2N]-) has been studied by means of TRES (Time-Resolved 

Emission Spectroscopy) and EXAFS.154 The results showed that Eu3+ is surrounded by ~9 fluorine 
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atoms at an average distance of ~2.35 Å in [C4mim][PF6] and [C4mim][BF4], while in [C4mim][Tf2N] 

and [C4mim][TfO] it resulted coordinated by 9.8 and 11.5 oxygen atoms, respectively, at an average 

distance of ~2.42 Å. Classical MD simulations on the same systems provided results in good 

agreement with the experimental data.155 Similar CNs have been found by means of MD simulations 

for La3+, Eu3+ and Yb3+ in [C4mim][SCN] and [N4441][SCN], where the metals resulted to be bound 

by 6 – 8 N-coordinating ligands.156 This is in agreement with X-ray structures collected on a 

crystallized solution of La3+ from [C4mim][SCN] in presence of water, showing the [La(SCN)7H2O]4- 

unit where thiocyanate coordinates only via nitrogen atoms.157 In addition, absorption spectra for 

these systems did not show differences between the solid and the liquid states, thus it can be supposed 

that this coordination is retained even in solution.156 

As regards the Nd3+ ion, Raman spectroscopy data for Nd(Tf2N)3 solutions in [P2225][Tf2N] indicated 

that the number of anions in the metal first solvation sphere was ~5, compatible with the [Nd(Tf2N)5]2- 

species.158  

La3+ and Lu3+ coordination in EAN has been studied by means of ab initio MD simulations.159 La3+ 

resulted to be coordinated by five bidentate NO3
- anions, while Lu3+ by six anions with half of them 

acting as bidentate and half as monodentate. This is traduced in CNs of 10 for the former metal and 

8 for the latter, in agreement with the trend of their ionic radii.  

Coordination in EAN has been explored also for Ce3+ by means of EXAFS data analysis performed 

on Ce(NO3)3 solutions in combination with MD simulations carried out with both polarizable and 

non-polarizable methods.160 The results unambiguously showed that Ce3+ is coordinated in an 

icosahedral geometry by three bidentate and six monodentate NO3
-, differently from the solid state 

where six bidentate nitrates are found.161  

 

1.3.3 Solvation thermodynamics of metal ions in ILs 

 

Free energies, enthalpies and entropies of solvation can provide useful data about single-ion 

interaction with a given solvent, while transfer parameters can give insights about the relative 

solvation capability of two different media. Gibbs free energies of transfer from dimethyl sulfoxide 

(DMSO) to several RTILs (ΔGtrans(DMSO→RTIL)) have been obtained by electrode potentials for 

Cu2+, Zn2+, Ag+ and Cd2+ by Lewandowski et al.162,163 By employing the experimental hydration free 

energies164,165 (ΔGhyd) and free energies of transfer between water and DMSO 

(ΔGtrans(water→DMSO)) for these metal ions,165 it is possible to calculate the free energies of 

solvation in the RTILs (ΔGsolv) as well as free energies of transfer from water to the RTILs 

(ΔGtrans(water→RTIL)) according to the thermodynamic cycle showed in Scheme 1.1. In particular, 
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ΔGtrans(water→RTIL) reflects the spontaneity related to the transfer process of the metal ion from an 

aqueous solution to the ionic liquid, thus giving useful insights into the capabilities of RTILs as 

receiving phase for a chemical separation. 

 

 

Scheme 1.1. Schematic representation of the thermodynamic cycle employed in this work for the 

calculation of the Gibbs free energy of solvation in the RTILs (ΔGsolv) and free energy of transfer 

from water to the RTILs (ΔGtrans(water→RTIL)) from literature experimental data.162–165 

 

The values obtained according to Scheme 1.1 are reported in Tab. 1.2 and depict a very different 

situation depending on the considered metal and ionic liquid. The first observation is that positive 

ΔGtrans(water→RTIL) values are obtained for Cu2+ and Zn2+ in Tf2N-based RTILs, suggesting that 

these metal ions are more favorably solvated in water than in this class of ionic liquids. A different 

picture is obtained for Ag+, whose transfer from water to these RTILs is only little unfavorable or 

even favorable, and the same happens for [C2mim][TfO]. Indeed, transfer values towards BF4-based 

RTILs are always negative, reporting that Cu2+, Zn2+ and Ag+ are much favorably solvated in these 

solvents than in water and suggesting a higher solvation capability of the [BF4]- anion in comparison 

with [Tf2N]-. In addition, the transfer of Zn2+ from water to [C2mim][PF6] results to be unfavorable, 

even if of a less extent with respect to Tf2N-based RTILs. Furthermore, the transfer to [C4mim][Br] 

is always largely favorable for all the considered metal ions. 
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Table 1.2. Gibbs free energies of solvation in several RTILs within free energies of transfer from 

DMSO and water for the Cu2+, Zn2+ and Ag+ ions at 298 K. Data in kcal mol-1. 

RTIL 
ΔGtrans(DMSO→RTIL)  ΔGsolv(g→RTIL)a  ΔGtrans(water→RTIL)b 

Cu2+ Zn2+ Ag+  Cu2+ Zn2+ Ag+  Cu2+ Zn2+ Ag+ 

[C2mim][Tf2N]162 18.8 21.4 8.6  
-473.6§ 

-491.0† 

-457.1§ 

-473.6† 

-102.2§ 

-113.5† 
 6.8 10.2 0.5 

[C4mim][Tf2N]162 27.8 21.2 3.97  
-464.6§ 

-482.0† 

-457.2§ 

-473.7† 

-107.1§ 

-118.4† 
 15.8 10.0 -4.4 

[C3mpyr][Tf2N] 27.4162 24.8162 
12.8162 

11.6163 
 

-464.9§ 

-482.4† 

-453.7§ 

-470.1† 

-98.0§ 

-109.3† 

-99.2§ 

-110.5† 

 15.5 13.6 
4.7 

3.5 

[C4mpyr][Tf2N] 25.3162 27.2162 
13.1162 

13.5163 
 

-467.0§ 

-484.5† 

-451.3§ 

-467.8† 

-97.8§ 

-109.0† 

-97.3§ 

-108.6† 

 13.4 16.0 

 

5.0 

5.4 

[C2mim][TfO]162   5.9    
-105.0§ 

-116.2† 
   -2.2 

[C2mim][BF4] -12.5162 -7.0162 
-8.8162 

1.5163 
 

-504.8§ 

-522.3† 

-485.5§ 

-502.0† 

 

-119.6§ 

-130.8† 

-109.3§ 

-120.5† 

 -24.4 -18.2 

 

-16.8 

-6.5 

[C4mim][BF4] -18.2162 -0.7162 

 

-4.3162 

4.1163 

 
-510.5§ 

-528.0† 

-479.2§ 

-495.7† 

 

-115.2§ 

-126.4† 

-106.7§ 

-118.0† 

 -30.1 -12.0 

 

-12.4 

-4.0 

[C2mim][PF6]162  14.1    
-464.4§ 

-480.9† 
   2.9  

[C4mim][Br]162 -30.3 -20.3 -17.9  
-522.7§ 

-540.1† 

-498.8§ 

-515.3† 

-128.8§ 

-140.0† 
 -42.3 -31.5 -26.0 

aGibbs free energies of solvation calculated according to the thermodynamic cycle reported in Scheme 1. 
§ΔGsolv calculated by employing ΔGhyd from Marcus164 or †from Ahrland.165 In all cases, 

ΔGtrans(water→DMSO) from Ahrland165 has been used. bGibbs free energies of transfer from water to the 

RTILs calculated as ΔGtrans(water→RTIL) = ΔGsolv(g→RTIL) - ΔGhyd. Note that the choice of the employed 

ΔGhyd is irrelevant in this case. 
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1.3.4 Complex formation thermodynamics of metal ions in ILs 

 

The coordination of a metal ion by a ligand in solution occurs in competition with the solvent 

molecules.166 As a consequence, thermodynamic data about metal ions complexation in ILs can 

provide useful insights also about the interaction between the metal and the ionic liquid. Several 

works studying the complexation of various metal in ILs with ligands of different nature have been 

carried out as inspired by different potential applications. As underlined previously, metal ions 

complexation with organic ligands is often desirable in electrochemical devices. Alternatively, the 

wastewaters from which a metal has to be separated can be particularly rich in some anions, often 

inorganic species such as nitrates or chlorides.138 Otherwise, ligands can be added to the IL solution 

as extracting agents to increase the separation rate.  

 

1.3.4.1 Alkali and alkali-earth metal ions 

 

A large amount of works about the formation of Li+ complexes in ionic liquids has been certainly 

inspired by the potential electrochemical applications.167 For example, Li+ complexation with crown 

ethers was studied by 7Li-NMR and it was found that only 1:1 species were formed with 15C5 

(1,4,7,10,13-pentaoxacyclopentadecane) and 18C6 (1,4,7,10,13,16-hexaoxacyclooctadecane) in 

[C4mim][Tf2N].44 Interestingly, complexation with both 15C5 and 18C6 does not occur in water and 

with 18C6 not even in methanol,168 indicating that solvation of Li+ in these media is strong enough to 

prevent the coordination of the crown ethers, while 15C5 and 18C6 are able to displace [Tf2N]- from 

Li+ first solvation sphere in the RTIL. Complexation with 15C5 in [C4mim][Tf2N] resulted to be 

entropy stabilized and showed small negligible enthalpy, on the contrary of what is found in the other 

molecular solvents.168 This result was related to the increase in entropy following the release of a 

flexible ligand such as the [Tf2N]- anion from the metal first solvation sphere. Regardless of the anion, 

the ionic liquid determines a general increase of metal complexes stability relative to the aqueous 

solution and a unique reaction environment. Also complexation of Na+, K+ and Rb+ with DB18C6 

(2,3,11,12-dibenzo-1,4,7,10,13,16-hexaoxacyclooctadeca-2,11-diene) and 18C6 in different RTILs 

showed formation constants higher than in water.45,46,49  

Many works have been devoted to the complexation of Cs+ in ILs, due to the interest in designing 

new extraction procedures for this metal ion.167,169–174 For 1:1 complexation with 18C6, formation 

constants in RTILs carrying the [Tf2N]- anion are higher than those with the [BF4]- or [PF6]- anions, 

this picture confirming the poor solvation ability of [Tf2N]-. In addition, Cs+ 1:2 species are formed 

only in Tf2N-based RTILs, while they have not been observed in RTILs with other anions. An 
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interesting fact is that if we assume that [Tf2N]- bond with alkali metals is weaker than that of the 

other RTILs anions,  we should expect more negative values for the reaction enthalpy and a more 

exothermic complexation. However, enthalpy is the most negative in RTILs carrying [BF4]-, [PF6]- 

and [N(CN2)]- anions, while it is only slight negative or even positive for Tf2N-based RTILs. On the 

other side, the determining contribution to complexation in Tf2N-RTILs derives from the entropic 

term, which results to be positive for complexation in this class of ionic liquids, while it is negative 

for the other RTILs. As in the case of Li+ complexation with 15C5 in [C4mim][Tf2N],44 this could be 

reasonably explained by the gain in entropy following the release of the flexible [Tf2N]- with respect 

to [BF4]-, [PF6]- and [N(CN2)]-, possessing more rigid structures, overwhelming the enthalpic factor 

and determining the global favorable free energies. 

 

1.3.4.2 Transition metal-ions 

 

A more intricate picture is obtained when complexation goes beyond the 1:1 or 1:2 steps, as in the 

case of transition and rare-earth metals. For example, Ni2+ complexation with nitrate in 

[C4mim][Tf2N] has been studied by means of spectroscopic and microcalorimetric titrations.138 The 

formation of [Ni(NO3)n]2-n species up to n = 3 was found to occur, where the first two complexation 

steps resulted to be enthalpy driven, while for [Ni(NO3)3]2- unfavorable enthalpy together with large 

and positive entropy were observed.  

Chloride complexation with Cu2+ in [C4mim][TfO] has been studied by means of UV-Vis and 

calorimetric titrations with the support of DFT calculations by Kanzaki et al.151 The results pointed 

out that a 1:1 ligand exchange occurs between Cl- and [TfO]- until the formation of the final [CuCl4]2- 

tetrahedral species. The overall process is almost athermal and the driving force of chloro-

complexation seems to be once again the desolvation entropy provided by the release of [TfO]- anions 

from the metal first solvation sphere. In particular, the [CuCl]+ + Cl- → [CuCl2] process was promoted 

by a large and positive entropic contribution. This trend was reversed in the next step, i.e. for the 

[CuCl2] + Cl- → [CuCl3]- reaction, where complexation resulted to be enthalpically-driven. This 

opposite picture suggests that a different coordination structure occurs between these two steps. To 

this extent, the authors supposed that a lowering of Cu2+ coordination number may occur in the 

[CuCl]+ + Cl- → [CuCl2] process, passing from [CuCl(TfO)3]+ to [CuCl2(TfO)]-. When the species 

with three chloride anions is formed, the coordination number becomes four again, with the formation 

of [CuCl3(TfO)]2-. In this complexation step,  Cl- anion can enter the first solvation sphere without an 

enthalpic cost and without entropic gain, since no [TfO]- release occurs, and this should explain the 

negative enthalpy and very low complexation entropy associated with the formation of [CuCl3]-.  
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Stability constants for the complexation of Ag+ with cryptand 222 in several RTILs have been also 

obtained by Lewandowski et al.163,175 and the values are reported in Tab. 1.3. Firstly, it has to be 

noted that complexation in RTILs is in general more favorable than in classical organic solvents such 

as DMSO and AN.176 In addition, the obtained trend of log K values is in agreement with data reported 

in Tab. 1.2 for Ag+ solvation. In fact, since both the RTIL anions and cryptand 222 compete to 

coordinate the metal, the more Ag+ is solvated, the less its complexation with the ligand should be 

favorable. In particular, log K values obtained in Tf2N-based RTILs are more favorable than those in 

ionic liquids carrying the [TfO]- and [BF4]- anions and this is in agreement with Ag+ more favorable 

solvation in the latter classes of RTILs than in the former one, as showed by the comparison between 

ΔGsolv(g→RTIL) and ΔGtrans(water→RTIL) values (Tab. 1.2). 

 

Table 1.3. Stability constants for Ag+ complexation with cryptand 222 at 298 K in various RTILs. 

Solvent log K  Solvent log K 

[C2mim][Tf2N]163 13.6  [C2mim][TfO]163 11.6 

[C4mim][Tf2N]163 10.0  [C4mim][TfO]175 13.4 

[C3mpyr][Tf2N]163 15.8  [C2mim][BF4]163 8.4 

[C4mpyr][Tf2N]163 17.2  [C4mim][BF4]163 10.3 

[C3mpy][Tf2N]175 16.7  [C4mim][PF6]175 8.9 

[N8881][Tf2N]175 15.5  DMSO176 7.3 

[S221][Tf2N]*175 16.6  AN176 8.9 

*Diethylmethyl-sulfonium bis(trifluoromethylsulfonyl)imide. 

 

1.3.4.3 Rare-earth metal ions 

 

The unique environment provided by RTILs solutions was also confirmed for complexation of rare-

earth metal ions. For example, a study about nitrate complexation of Nd3+ in [C4mim][Tf2N] showed 

that the limiting complex in this environment is [Nd(NO3)6]3-,177 in contrast with the aqueous solution 

where up to  the [Nd(NO3)2]+ species is formed.178 In addition, stability constants of several orders of 

magnitude with respect to water have been obtained and complexation resulted highly exothermic, 

differently from the slight positive enthalpy values obtained in water. The difference in enthalpy was 

explained by taking into account that water solvates more strongly than [Tf2N]- both Nd3+ and NO3
-. 

Furthermore, negative entropy values were obtained, reporting that the overall degree of disorder was 

reduced upon complexation. This was interpreted as due to the decrease in the number of species that 

can break the RTIL internal order and also with a lowering of the charges of the solubilized species 
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by passing from Nd3+ to [Nd(NO3)n]3-n. The competitive effect of water on such systems has been 

inspected by studying Nd3+ and Eu3+ complexation by nitrate also in water-saturated 

[C4mim][Tf2N].179,180 In this solution, the metal ions were found to form nitrate species up to 

[Ln(NO3)4]- (Ln = Nd, Eu) with overall formation constants greater of several orders of magnitude 

with respect to complexation in water, but lower than in dry RTIL. Each step resulted to be 

endothermic and with larger and positive entropy change, on the contrary of complexation in dry 

[C4mim][Tf2N].177 The positive enthalpy obtained in the water-saturated RTIL was explained with 

the higher energy required to remove water molecules from the first coordination sphere in 

comparison with the [Tf2N]- anions.  

Also Eu3+ complexation by Cl- in RTILs carrying the [PF6]-, [BF4]-, [Tf2N]- and [TfO]- anions has 

been studied by means of TRES and EXAFS. The results showed that chloride anions are able to 

partially replace the [BF4]- and [TfO]- anions, while all the coordinating [Tf2N]- are displaced from 

the first solvation shell.154 [Tf2N]- is therefore confirmed to be a weaker ligand in comparison with 

other RTILs anions.  

As far as the complexation of La3+, Nd3+ and Eu3+ with CMPO in [C4mim][Tf2N]181 was considered, 

it came out that [Ln(CMPO)n]3+ complexes up to n = 4 were formed both in dry and wet conditions. 

In the first case complexation is stronger and enthalpy-driven, while in the latter it is less favorable 

and mainly driven by high positive entropies. This is still in agreement with the picture suggesting 

that less energy is required to desolvate the metal ion and the complexing ligand when they are 

coordinated by [Tf2N]- rather than by water. Similar results have been obtained for uranyl 

complexation with CMPO in [C4mim][PF6] and [C8mim][Tf2N].97,182 
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Chapter 2 
 

 

Focus of the work 

 

The aim of this work is to obtain a detailed description at molecular level of structural and 

thermodynamic properties of transition metal ions in RTILs.  

Several technological applications involve metal ions and their complexes in ionic liquids. To 

improve these applications, the achievement of a clear picture about their structural and 

thermodynamic solvation features in these media is essential. As regards the structural part, this 

means the knowledge of the metal first solvation sphere structure, i.e. of its coordination in solution. 

On the other hand, thermodynamic quantities such as Gibbs free energies, enthalpies and entropies 

of solvation in the RTIL, as well as for transfer from other solutions, are useful to describe the nature 

of the interaction between a metal ion and a solvent and to predict its behavior in a system. However, 

this fundamental knowledge still lacks for many metal ions in several RTILs. 

The work developed in this thesis is focused on metal ions involved in numerous applications in 

RTILs:  Zn2+, Co2+ and Ag+.  The studied RTILs belong to the family formed by the 1-alkyl-3-

methylimidazolium cation [Cnmim]+ together with the bis(trifluoromethylsulfonyl)imide anion 

[Tf2N]-. It has been shown that this anion can produce RTILs with high thermal and electrochemical 

stabilities, low toxicity and with an ion conductivity comparable to the best organic solvents 

employed in electrochemical devices.1 This in particularly true when this anion is combined with an 

imidazolium cation. Furthermore, being hydrophobic, these RTILs are among the most studied for 

extraction processes by means of liquid-liquid biphasic systems.2 In addition, the family of RTILs 

carrying the [BF4]
- anion within the [Cnmim]+ cation has been taken into account owing to the high 

solvation capabilities they seem to display towards some of the studied metal ions, as reported by 

experimental thermodynamic data (Sec. 1.3.3 of Chapter 1). 

The employed methods combine computational techniques such as Molecular Dynamics (MD) 

simulations and DFT calculations with experimental methods like X-ray absorption spectroscopy 

(XAS).  

The abundance of force fields for several RTILs within an accessible computational cost and the 

possibility of reproducing several properties in good agreement with experimental data have made 

MD one of the most useful techniques in the study of ionic liquids.3,4 However, the choice of the 
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potential describing the interaction between the simulated species is not trivial and can have a crucial 

influence on the calculated structural and thermodynamic properties. A force field is usually 

parametrized to fit some target data, weather if they are empirical or provided by quantum-chemical 

calculations. In other words, it does not come from ab initio principles. Such issue does not mean that 

a force field cannot be predictive. For example, the parametrization of RTILs force fields is usually 

performed on bulk solvent properties like density, viscosity or vaporization enthalpy.5 However, this 

does not prevent the possibility that such a force field could reproduce also other features like the 

diffusion coefficients of the ions or even properties related with metal ions solvation. In this sense, it 

can be said that a force field is predictive. As a consequence, one initial challenge of this project has 

been also to verify if reliable structural and thermodynamic data about metal ions solvation in RTILs 

could be obtained by MD simulations with the employment of interaction potentials that have not 

been parametrized specifically for the present case study. To this purpose, the impact of different 

force fields and the comparison of the results with available experimental data has been a constant 

effort. 

In addition, it is known that the achievement of a definite picture reporting structural information on 

disordered liquid systems can be a difficult task.6 In this respect, XAS is a very powerful tool for the 

study of the first shell structure surrounding a metal ion in solution, owing to its high sensitivity on 

the closest environment of the photoabsorbing atom. In particular, if used in combination with MD, 

it has turned out to be a useful technique in the study of RTILs both in dry and wet conditions and in 

the analysis of metal ions solvation structure in these media.7–10 A source of inspiration for this work 

has been therefore also the validation of a combined approach between MD and XAS in the study of 

metal ions in RTILs, with the hope that a more standardized application of this methodology could 

help the improvement of new potential applications involving this class of solvents in the future. 

This thesis is organized as follows. An overview about ILs general properties and of the available 

literature data on metal ions solvation in these solvents has been provided in Chapter 1. In the next 

Chapter, the theoretical background of the employed methods will be given. Chapter 4 contains the 

results about a study on Zn2+ in [Cnmim][Tf2N] (n = 2, 4) and [C4mim][BF4]. In Chapter 5, results 

for Co2+ in [C4mim][Tf2N] are provided. Chapter 6 reports a study about Ag+ both in aqueous 

solution and in the [C4mim][Tf2N] and [C4mim][BF4] RTILs. Successively, Appendix A contains 

details about the generation of a new Ag-H2O interaction potential carried out starting from ab initio 

data. Appendix B is concerned with a preliminary MD study about Zn2+ in [C2mim][Tf2N] with the 

inclusion of many-body explicit polarizability. Finally, Appendix C is employed as Supporting 

Information. 
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Methods  

 

3.1 Simulation techniques 

 

Molecular modelling techniques are based on the assumption that the description of a chemical 

system at atomistic level can provide knowledge also on macroscopic phenomena.1,2 Furthermore, 

these methods can give access to properties that are difficult or impossible to measure experimentally. 

The obtained knowledge can have a two-fold employment: i) predictive, i.e. it can supply a priori 

understanding of a phenomenon and help to set up an experiment or a process; ii) it can provide an a 

posteriori explanation of a physical observable. In both cases, the intimate relationship and 

continuous comparison between theoretical and experimental data should never be forgotten. 

Macroscopic physical properties are ensemble averages over a molecular system. As a consequence, 

the knowledge of a single state, even if the absolute energy minimum, is usually not sufficient to 

obtain the desired macroscopic description. Differently, it is necessary to generate a representative 

ensemble of states at a given temperature. The generation of equilibrium ensembles is faced by two 

methods: i) Monte Carlo (MC) and ii) Molecular Dynamics (MD) simulations. While MC methods 

compute the average of a function of the coordinates and momenta of the system by ensemble 

averaging, MD simulations do so by time averaging.  

In principle, a fulfill description of such a many-body molecular system could be provided by solving 

the relativistic time-dependent Schrödinger equation including the electronic and nuclear degrees of 

freedom. The expectation value of a physical observable could be then computed for all the quantum 

states with non-negligible statistical weight. However, only a system consisting in a few atoms can 

be treated at this level of theory, therefore approximation are necessary for bigger ensembles. These 

approximations become more and more rude as the complexity of the system and/or the required 

simulation time increase. A very first try is the Born-Oppenheimer approximation, i.e. admit that the 

electron cloud adjusts instantaneously with changes in the nuclear configuration. However, at a 

certain point also this ab initio description needs to be substituted by empirical parameterization. This 

means renouncing to the inclusion of the electronic motion and to describe particles interactions with 

a potential form that is a function of atomic (nuclear) positions only. If the system is treated only by 



Chapter 3 
 

45 
 

the laws of classical physics, we are in the realm of classical molecular dynamics. Here the system is 

considered as composed of point-like nuclei with forces acting on them derived from a previously 

determined empirical effective potential. Differently, in ab initio molecular dynamics (AIMD) the 

classical treatment of nuclei is maintained, but forces are considered as quantum-mechanical in nature 

and derived from calculations including also the electronic structure.3 Other possible approaches are 

for example mixed Quantum Mechanical/Molecular Mechanics (QM/MM) methods, where one part 

of a system is classically treated and another, usually considered as the most relevant, is described 

from ab initio principles.  

In the next sections, a brief description of the simulation methods employed in this work, i.e. classical 

and ab initio MD, will be given. 

 

3.1.1 Classical Molecular Dynamics 

 

In a MD simulation, the dynamics of a system in time is predicted by solving step-by-step the 

Newton’s equations of motion for a system of N interacting particles: 

 = ;  = 1 …  

 (3.1) 

where the forces are the negative derivatives of the potential function V(r1, r2, … rN): 

 = −  

(3.2) 

The coordinates as a function of time constitute what is called the trajectory of the system. The 

potential energy function depends on the complete set of the 3N coordinates and it is often referred 

to as force field. It can be useful to divide this function into a bonded and a non-bonded part: 

 = +  

(3.3) 

Bonded interactions are again the sum of various terms: 

 = + + +  

(3.4) 
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being Vbonds related to two-body, Vangles to three-body, Vdihedrals and Vimproper to four-body interactions 

(Fig. 3.1).  

Vbonds represents the bond stretching between two i and j atoms covalently bonded and in the simplest 

case it can be described by a harmonic potential: 

 = 12 ( − )  

(3.5) 

where kb
ij is a force constant, rij and r0

ij the instantaneous and equilibrium distances, respectively. 

The Vangles term is related to the bond-angle vibration for the θijk angle between three atoms i, j and k: 

 = 12 ( − )  

(3.6) 

with harmonic constant kθij, instantaneous and equilibrium angles θijk and θ0
ijk.  

Vdihedrals describes the potential related to the motion of a proper dihedral angle involving four i, j, k 

and l atoms. According to the IUPAC convention, it is defined as the φ angle between the ijk and jkl 

planes, a value of zero corresponding to a cis configuration of the i and l atoms. 

 = (1 − cos( − )) 

(3.7) 

where γ is the phase and n the number of peaks for a full rotation.  

Vimproper is referred to improper dihedrals, which can be employed to keep certain groups planar (e.g. 

for aromatic rings), or to prevent transitions of molecules to their mirror images. In its harmonic form, 

it is given by: 

 = 12 ( − )  

(3.8) 

with kξijkl, ξijkl and ξ0
ijkl as respectively the force constant, instantaneous and equilibrium improper 

dihedral angles. 
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Figure 3.1. Pictorial representation of the two-, three- and four-body bonded interactions described 

by a force field. 

 

As regards the non-bonded interaction included in the Vnon-bond term, in the simplest case it is made 

by an electrostatic term plus another term representing van der Waals (vdW) interactions including 

repulsion and dispersion: 

 = +  

(3.9) 

The electrostatic part can be represented by a Coulomb potential between two point charges qi and qj 

at a given distance rij: 

 =  

(3.10) 

with =  = 138.935 kJ mol-1 nm e-2 and εr as the relative dielectric constant. 

Different potentials can be employed for the vdW part. One of the simplest and most employed is 

certainly the Lennard-Jones (LJ) potential, described as: 

 = 4 −  

(3.11) 
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where σij and εij are the LJ parameters, whose physical meaning is showed in Fig. 3.2. These 

parameters are combined for each mixed pair interaction starting from the single σii, σjj and εii, εjj 

terms by means of appropriate combination rules. Among the most employed, the Lorentz-Berthelot 

rules are defined as:  

 = 12  

 /  

(3.12) 

which imply an arithmetic average for σij and a geometric average for εij. Alternatively, a geometric 

average for both can be used, this last rule being the default in the OPLS force field.4 

 

 
Figure 3.2. Schematic representation of the Lennard-Jones potential between two i and j particles in 

function of their reciprocal distance. 

 

Interatomic potentials other than LJ can be employed for the vdW part. For example, the Buckingham 

potential includes a third term that allows a less approximated description of repulsion and dispersion: 

 

 

(3.13) 
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where Aij, Bij and Cij are the Buckingham parameters. A more accurate representation of pair 

interactions usually implies the introduction of further terms in the potential form, at the expense of 

an increase in the computational cost. 

 

3.1.1.1 Long-range interactions 

 

In order to reduce the computational effort of certain simulations, non-bonded interactions are usually 

not calculated beyond a given cut-off distance. However, the introduction of a simple cut-off can 

introduce serious artifacts at least for Coulomb interactions. As a consequence, various methods have 

been developed for the handling of long-range electrostatics. One of the first to be introduced was the 

Ewald summation, which was initially thought for taking into account long-range electrostatic 

interactions of periodic images in crystals.5 In this formalism, the considered system is infinite and 

each particle interacts also with the periodic images of the other particles. The potential is split into 

one term in the real space including short-range interactions, one in the reciprocal space including 

long-range ones, plus a constant term. For a system of N particles and their periodic images: 

 

 

(3.14) 

with 

 

2 ( , ),∗,  

(3.15) 

= 2 ( )
∗,  

(3.16) 

= − √  

(3.17) 

where n = (nx, ny, nz) and m = (mx, my, mz) are the box index vectors, the star indicating that terms 

with i = j are omitted for (0, 0, 0). β is a parameter providing the relative weights of direct and 

reciprocal sums, while erfc(x) is the error function. The limit of Ewald summation is that the 
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computational cost of the reciprocal sum increases with N2, making it unpractical for large systems. 

To improve the performance of Ewald summation, the Particle Mesh Ewald (PME) method was 

introduced.6 In this case, charges are associated to a grid using interpolation and the algorithm scales 

as NlogN, being therefore much faster than classical Ewald. 

 

3.1.1.2 Constraint algorithms 

 

Constraints are often introduced in the interaction potential to fix bond distances and/or angles to 

constant values. This is particularly useful for bonds displaying very high vibration frequencies that 

should be treated at a quantum mechanical level of theory. This is the case of hydrogen atoms, which 

in some situations  can show a quantum mechanical behavior like tunneling effects or vibrations with 

frequency ν such that hν > kBT.  

Various algorithms have been developed to constraint bonds in MD simulations. One of the first to 

be introduced was the SHAKE algorithm, which operates by changing a set of unconstrained 

coordinates r’ to a set of r’’ coordinates that satisfies a list of distance constraints by employing a set 

r as reference.7 This method is iterative and the computation continues until all the constraints are 

satisfied within a chosen tolerance. Differently, the probably more employed LINCS algorithm resets 

bonds to their imposed distances after an unconstrained update.8 This method is non-iterative and is 

always made by two steps. In the first one, projections of the new obtained lengths on old ones are 

set to zero. In the second step, a correction is applied for the lengthening of the bonds caused by 

rotation. The LINCS algorithm is usually faster and more stable than SHAKE. 

 

3.1.1.3 Box definition and periodic boundary conditions 

 

Periodic boundary conditions (pbc) are usually employed to minimize edge effects that may arise 

from the simulation of a finite system. In this way, the MD system consists in the studied chemical 

species filling a box that is surrounded by translated copies of itself. This box is defined by three 

vectors a, b and c, which must satisfy the following relationships: 

 0 

(3.18) > 0; > 0; > 0 

(3.19) 
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| | ≤ 12 ; | | ≤ 12 ; ≤ 12  

(3.20) 

The features of some very common box geometries are reported in Tab. 3.1. 

 

Table 3.1. Parameters for cubic, rhombic dodecahedron and truncated dodecahedron boxes. 

Box type 
Image 

distance 
Volume 

Vectors Vector angles 

a b c <bc <ac <ab 

Cubic d d 3 

d 0 0 

90° 90° 90° 0 d 0 

0 0 d 
Rhombic 

dodecahedron 

(xy: square) 

d 12 √2  

d 0 
12  

60° 60° 90° 0 d 12  

0 0 
12 √2  

Rhombic 

dodecahedron 

(xy: hexagon) 

d 12 √2  

d 12  
12  

60° 60° 60° 0 
12 √3  

16 √3  

0 0 
13 √6  

Truncated 

octahedron 
d 49 √3  

d 
13  − 13  

71.53° 109.47° 71.53° 0 
23 √2  

13 √2  

0 0 
13 √6  

 

3.1.1.4 Integrators  

 

As an input to start a MD simulation, some information is needed. This includes the already described 

potential interaction V as a function of the positions r of all the particles of the system, the positions 

themselves, and velocities v. At this point, the force acting on each particle is calculated including 

forces coming from bonded and non-bonded interactions, in addition to those associated with 

constraints and/or external forces. Particles movement is then simulated by integrating Newton’s 
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equations of motion. The last computations, starting from force calculation, are repeated for the new 

set of coordinates. 

Many algorithms have been proposed to integrate the equations of motion step-by-step. One of the 

most employed is certainly the leap-frog algorithm,9 which evaluates the velocities at half-integer 

time steps and employs these velocities to compute the new positions: 

 12 ∆ = − 12 ∆ + ∆ ( ) 

(3.21) ( + ∆ ) = ( ) + ∆ ( + 12 ∆ ) 

(3.22) 

The so-defined leap-frog algorithm is basically identical to the popular Verlet algorithm, i.e. it gives 

rise to identical trajectories. However, it has to be  noted that velocities are not defined at the same 

time as positions in this scheme. Consequently, kinetic and potential energies are not defined at the 

same time. To solve this issue, and algorithm that uses positions and velocities computed at equal 

times can be defined, as for example the Velocity Verlet algorithm.10 Here positions r and velocities 

v at time t to integrate the equations of motion and velocities of the previous half step are not required: 

 ( + ∆ ) = ( ) + ∆2 ( ) + ( + ∆ )  

(3.23) ( + ∆ ) = ( ) + ∆ ( ) + ∆2 ( ) 

(3.24) 

 

3.1.1.5 Statistical ensembles, thermostats and barostats 

 

When solving Newton’s equations of motion in an MD simulation, the total energy becomes a 

constant of motion and the simulation is run in the microcanonical NVE ensemble (constant number 

of particles, volume and energy). However, to calculate some chemical-physical properties it is 

usually more useful to keep the system in the NVT canonical ensemble (constant number of particles, 

volume and temperature). To accomplish that, an algorithm for reaching the desired temperature and 

keeping it constant, i.e. a thermostat, is required. One of the first thermostats to be introduced was the 
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Berendsen algorithm, which mimics a weak coupling to an external heath bath with a given 

temperature T0.11 The deviation of the system from T0 is corrected according to: 

 

 

(3.25) 

This means that temperature deviation decays exponentially with the time constant τ, which can be 

chosen accordingly to the purpose of the MD run (i.e. for equilibrating the system or keep it 

equilibrated). The heat flow going into or out the system is affected by rescaling the velocities of each 

particle every nTC steps by means of a λ factor expressed as: 

 

1 + ( − 12 ∆ ) − 1 /
 

(3.26)   

where the parameter τT is close to τ but does not exactly match it: 

 = 2  

(3.27) 

with CV the heat capacity of the system, kB Boltzmann’s constant and Ndf the total number of degrees 

of freedom. The origin of the difference between τ and τT is that the change in the kinetic energy 

caused by velocities rescaling is partially redistributed between kinetic and potential energies. The 

τ/τT ratio usually oscillates between 1 for a gas and 3 for water.  

Although the Berendsen algorithm is very good to relax the system to a given temperature, its weak-

coupling scheme is not recommended to keep the system oscillating around a constant temperature. 

In this case, the most appropriate method is probably the Nosé-Hoover thermostat which was first 

proposed by S. Nosé12 and then modified by W. G. Hoover.13 This algorithm implies a modification 

in the Hamiltonian of the system, since a thermal reservoir and a friction term are inserted in the 

equations of motion. The force related to friction is proportional to the product between the velocity 

of each particle and a friction parameter ξ, which is a full-dynamic quantity with its own momentum 

pξ. Equations of motion are therefore modified as: 
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(3.28) 

and the equation of motion for ξ is: 

 

 

(3.29) 

The Q constant determines the strength of the coupling and is usually referred to as the “mass 

parameter” of the reservoir. It is connected to τT by: 

 

4  

(3.30) 

The total energy for a system of N particles therefore becomes: 

 

, 2 + ( , , … ) + 2 +  

(3.31) 

Even though NVT conditions are often very useful to simulate a system, most of the chemical 

transformation in nature occur at constant pressure. Therefore, simulating the system in NPT 

conditions (constant number of particles, pressure and temperature) is often desirable. As a 

consequence, the introduction of a barostat is required and the volume becomes a dynamical variable 

that  changes during simulation time. With the Berendsen algorithm,11 the coordinates and box vectors 

are rescaled every nPC steps by means of a kinetic relaxation of the pressure given a reference pressure 

P0 according to: 

 = −
 

(3.32) 

where τp is the pressure coupling parameter. Another popular algorithm is the Parrinello-Rahman 

barostat,14 where the box vectors represented as the matrix b obey the following equation of motion: 
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(3.33) 

with V as the volume of the box and W as the matrix parameter determining the strength of the 

coupling and basically how much the box can be deformed. Its inverse is defined as: 

 43  

(3.34) 

where β is the isothermal compressibility and L the largest box matrix element. As for the Nosé-

Hoover thermostat, the equations of motion of the particles are also changed with the introduction of 

the Parrinello-Rahman barostat: 

 

 

(3.35) 

with 

 ′ ′ ′  

(3.36) 

Also in this case, the weak-coupling Berendsen algorithm is suggested when the system is far from 

the desired pressure value, while Parrinello-Rahman is good for maintaining the system around the 

desired pressure and therefore particularly suggested for calculating thermodynamic properties in 

“true” NPT conditions.  

 

3.1.1.6 Free energy calculations 

 

One of the most useful physical observable that is possible to calculate with MD simulations is the 

estimated free energy for a given process. These quantities are often highly desirable to compute, as 

they indicate how much favorable a process is and the direction that the thermodynamic system will 

take spontaneously. Helmholtz free energy F of a system in the NVT ensemble is given by: 
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1   

(3.37) 

where = 1/  and Q is the canonical partition function. For a system of N particles at the 

thermodynamic equilibrium, it can  be expressed as: 

 = 1ℎ ! ( , )  

(3.38) 

with h as Planck’s constant. It is straightforward to say that in NPT conditions Gibbs free energy 

(usually denoted as G) is defined. In condensed phases like liquids, which are hardly compressible, 

Helmholtz and Gibbs free energies can be numerically very similar. 

An absolute free energy can be calculated only in case an analytical expression for the partition 

function can be obtained, which is practically possible only for very small systems with simple 

Hamiltonians. If this is not possible, one has to limit to the difference in free energy between the 

system of interest and a given reference state. In case of an ideal gas or an ideal crystal, the free 

energy of the reference state is known, and the absolute free energy of the system can still be 

calculated. In these cases, an analytical expression for Q is indeed possible owing to lack of 

interactions between the particles (ideal gas) or symmetry simplifications (ideal crystal).15 However, 

defining such a reference state for a liquid phase is usually not allowed. In this latter case, it is only 

possible to calculate relative free energy differences between two states A and B of the system: 

 ∆ = − = −  

(3.39) 

This is also usually more interesting from a chemical point of view, since A and B (i.e. HA and HB) 

can differ for example in how particles interact among each other, allowing to associate free energies 

differences to chemical processes as the binding of a compound to a substrate or the interaction of a 

species with a solvent. 

As regards free energy calculations performed in molecular simulations, they consist of three 

fundamental ingredients: i) the Hamiltonian employed to represent the system; ii) the sampling used 

to generate representative configurations of the system; iii) a method for calculating the free energy 

difference.15–18 As regards point i), the Hamiltonian should be chosen such that all the configurations 

present the correct relative probability. Practically, it should be computationally affordable in order 

to allow sufficient sampling, but enough accurate to estimate a free energy in a reliable way.  
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Point ii) strictly depends on the nature of states A and B. In case they present an intersection region 

of their relative energies, it is sufficient to sample adequately representative configurations at the 

intersection region.15 However, if they do not overlap, it is necessary to find an Hamiltonian 

connecting the two A and B states. This can be carried out by defining a combined Hamiltonian Hcomb 

that will be in some way a function of the end-state Hamiltonians HA and HB. One of the most 

employed strategies is to make the Hamiltonian dependent on a coupling parameter λ such as for a 

certain value (e.g. λ = 0), Hcomb = HA (or, equivalently, Vcomb = VA) and for another value (e.g. λ = 1), 

Hcomb = HB (or Vcomb = VB). In this case, sampling of configurations can be done by windowing 

between different values of  λ. For each value, an independent simulation has to be run with the 

system constrained to that particular λ. In case of the decoupling of non-bonded interactions, the 

Coulomb potential between two particles with charges varying with λ can be rewritten as: 

 1 − ) +  

(3.40) 

while for a LJ interaction: 

 = (1 − )4 4 1 − )4 4
 

(3.41) 

However, this simple linear combination can lead to numerical problems in some cases. Among them, 

the calculation of free energies of solvation of a species in a solvent, performed by making the solute 

appearing/disappearing in the medium, can give problems if this species interacts via LJ due to some 

singularities connected with this form of potential.15 In fact, if we think about a Coulomb and LJ 

interacting particle in a solvent, there will be one moment in which the particle is nearly disappearing 

(λ close to 0 or 1, depending on the chosen path). In this situation, the interaction energy and in 

particular the repulsion term will be weak enough to cause penetration effects. To circumvent this 

issue, the LJ and/or electrostatic potentials can be replaced by soft core potentials.19–23 In their general 

form, they can be expressed as: 

 1 − ) ( ) + ( ) 

(3.42) 

with 
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(3.43) 1 − ) +  

(3.44) 

VA and VB are the normal LJ and electrostatic potentials in states A (λ = 0) and B (λ = 1), α can be 

referred to as the “soft-core parameter”, p as the “soft-core power” and σ is the radius of the 

interaction. The effect of the “soft-core” potential is that, for intermediate λ values, rA and rB alter the 

interaction only to a little extent for r > α1/6σ, while it turns from the soft-core interaction to a constant 

value for smaller distances, so that the singularity in the potential at r = 0 is never reached. 

Once the sampling of the various configurations has been carried out, there are several different ways 

to face point iii), since a huge number of available free energy estimators has been developed. In 

general, it is possible to divide them into two families: thermodynamic integration (TI) and free 

energy perturbation (FEP) methods. In the former case, the free energy along a thermodynamic path 

of K states is calculated as a weighted sum of ensemble averages of the potential energy derivative 

with respect to λ derivatives: 

 

∆ =  〈 〉  

(3.45) 

where Wi are weighting factors. As regards FEP, different methods are available. For example, it is 

possible to employ an exponential averaging scheme related to the potential energies of two adjacent 

windows:22 

 ∆ = − 1 〈 ∆ 〉  

(3.46) 

In other popular methods like the Bennett Acceptance Ratio (BAR),24 the free energy difference 

between the two adjacent states i and j, each constituted of Ni and Nj microstates, is calculated by 

numerically solving an implicit function of ΔVij: 

 1〈1 + (∆ 〉 = 1〈1 + (∆ )〉  

(3.47) 
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with  

 ∆ 1
 

(3.48) 

It has to be noted that in BAR both forward and direct ΔVij and ΔVji potential energy differences are 

included in the analysis. 

 

3.1.1.7 Umbrella sampling 

 

In case the continuous parameter which links the two thermodynamic states is defined in geometric 

terms, e.g. as a direction (vector) or a torsion, an umbrella sampling simulation can be performed.25 

The path along which the system evolves is called reaction coordinate (ξ). In this case, the partition 

function Q is dependent from ξ and can be defined as the probability of finding the system in an 

interval dξ around ξ. The free energy along the reaction coordinate, defined as ( ) = − ( ), 

is called potential of mean force (PMF). Sampling of different configurations along ξ can be done by 

means of a bias, an additional energy term that is applied to the system to make it passing from one 

state to another. Each window can be then simulated independently by constraining the system in one 

state with a harmonic potential, which also allows oscillation and overlap within each window.26 To 

calculate the PMF, results from different windows can be combined in different ways like the 

weighted histogram analysis method (WHAM)27 or by umbrella integration.28 

 

3.1.2 Ab initio Molecular Dynamics 

 

Strictly speaking, in classical MD the total interaction potential is made by additive pair potentials 

that are determined in advance, either empirically or based on fitting procedures of ab initio data. 

Otherwise, different methods have been proposed to include also the electronic degrees of freedom 

in the dynamics of the system. For example, in Born-Oppenheimer Molecular Dynamics (BOMD) 

the time-independent Schrödinger equation for a given set of nuclear coordinates is iteratively solved 

for each step of the dynamics. By assuming Newton’s notation for partial derivatives, the equations 

of motion are given by: 

 = −∇ Ψ Ĥ Ψ ;  ĤΨ = EΨ 

(3.49) 
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where mi masses and ri positions are referred to the i-th nucleus, while Ĥ, Ψ and E are respectively 

the electronic Hamiltonian, wave function and energy. The minΨ notation indicates that in each MD 

step the minimum of 〈Ĥ〉 has to be reached, i.e. the electronic wave function is optimized at a desired 

level of theory. This task is very computational demanding, making BOMD a difficultly affordable 

technique.  

A suitable alternative is Car-Parrinello Molecular Dynamics (CPMD).29 Here the basic idea is that 

the electronic degrees of freedom can evolve in time classically along with nuclear motion. This can 

be done by means of a quantum-mechanical adiabatic time-scale separation between the fast 

electronic and slow nuclear motion by transforming this into a classical-mechanical adiabatic energy-

scale separation in the framework of molecular dynamics.30 To do so, Car and Parrinello introduced 

new ℒ  Lagrangians expressed as: 

 

ℒ 12 + 12 − Ψ Ĥ Ψ +  

(3.50)  

where = ∑  and ∑  are the kinetic energies of the N nuclei and fictitious 

kinetic energies of Ne electronic orbitals ψj. = Ψ Ĥ Ψ  is the potential energy related to the 

electronic wavefunction Ψ. The “constraints” are functions of the nuclear positions and of the set of 

orbitals, introduced to guarantee conservation of orbitals orthonormality. μi are the fictitious masses 

assigned to the orbital degrees of freedom. The Newtonian equations of motion become: 

 ℒ = ℒ  ;         ℒ∗ = ℒ∗ 

(3.51) 

with ∗ =< |. The equations of motion in the CPMD approach are therefore given by: 

 = − Ψ Ĥ Ψ + ( ) 

(3.52) = − ∗ Ψ Ĥ Ψ + ∗ ( ) 

(3.53) 
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Basically, in the Car-Parrinello method the nuclei evolve in time at a definite physical temperature, 

while a fictitious temperature is associated to the electronic degrees of freedom. If this fictitious 

temperature is low enough, the electronic ensemble stays close to its (instantaneous) minimum energy Ψ Ĥ  (i.e. close to the Born-Oppenheimer surface). If the system is in its electronic ground-

state corresponding to the nuclear configuration of that time-step, forces acting on electrons vanish.3 

Therefore, a CPMD run must always start with an optimization of the wave function of the system to 

reach the ground-state for the initial configuration of nuclear positions. Such an optimized wave 

function is supposed to stay close to its Born-Oppenheimer surface for each step of the dynamics if 

kept fixed to a sufficiently low temperature. Given that the Lagrangian in Eq. 3.50 is time-

independent, there should be a conserved energy quantity Econs defined as: 

 

 

(3.54) 

while the physical energy of the system Ephys can be expressed as: 

 

 

(3.55) 

Therefore, if Te << Econs, i.e. if the fictitious electronic kinetic energy Te is very small in comparison 

to the total energy, Ephys remains constant on the desired time scale. Strictly speaking, the validity of 

the Car-Parrinello approach is guaranteed by the maintenance of adiabaticity between the fictitious 

electrons dynamics and nuclear motion. In poor terms, if no heat exchange occurs between the “hot 

nuclei” and the “cold electrons”. This adiabatic condition is maintained if Te is kept oscillating around 

a small and constant value. Thus, Te can be considered as a measure of the deviation from the Born-

Oppenheimer surface. 

 

 

3.2 X-ray absorption spectroscopy 

 

In an X-ray absorption spectroscopy (XAS) experiment, a sample is exposed to an electromagnetic 

radiation in the X-ray energy field. Some of these X-rays are absorbed and an absorption coefficient 

μ(E) is measured as a function of the incident photon energy E = ħω. This causes the excitation and/or 

ejection of a core electron of the absorbing atom, which is called photoabsorber. In a XAS spectrum, 

an overall decrease of the absorption with increasing energy can be observed, with the exception of 
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some sharp peaks called edges. These edges are provoked by transitions of core electrons to an 

unoccupied level or to the continuum. This occurs when the incident photon energy is greater than 

the energy that is necessary to remove the electron from its ground state (E0). The electron is ejected 

from the photoabsorber and is now called a photoelectron, leaving behind him a core-hole. In this 

way, each absorption edge can be associated to a specific element and this makes XAS a selective 

technique that allows understanding the atomic species in a material. The nomenclature of the various 

edges is related to the origin of the excited electron: K-edge is referred to the innermost 1s electron, 

L1-edge to the 2s electron, L2- and L3-edge to the 2p electrons with 2P1/2 and 2P3/2 electronic states, 

respectively (Fig. 3.3). 

  

 
Figure 3.3. Pictorial representation of the transitions that can take place at the various absorption 
edges. 

 

Once ejected, the photoelectron possesses a kinetic energy , i.e. equal to the energy E of 

the incident photon minus whatever energy was necessary to remove it from its ground state. The 

photoelectron can be now described as a spherical wave radiating out in all directions with a λ 

wavelength given by: 

 ℎ
 

(3.56) 
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with h Planck’s constant and p momentum of the photoelectron. The momentum is related to the 

kinetic energy by: 

 

2  

(3.57) 

where me is the mass of an electron. The photoelectron wavenumber k is equal to 2π/λ, so it can be 

put in relationship with the photon energy by: 

 = 1ħ 2 ( − ) 

(3.58) 

Therefore, when we are scanning through the incident photon energy, we are also scanning through 

the photoelectron wavenumber.  

A XAS spectrum can be divided into two regions: the XANES (X-ray Absorption Near Edge 

Structure), usually considered as that located up to 50 eV after the absorption edge, and the EXAFS 

part (Extended X-ray Absorption Fine Structure) which is higher in energy (Fig. 3.4). This arbitrary 

division is made because XANES and EXAFS can provide different, although complementary, 

structural information, the former being more sensitive to the three-dimensional displacement of the 

scattering atoms around the photoabsorber, the latter to their average distances.31 In addition, a 

different treatment of the photoelectron phenomenology is usually needed between XANES and 

EXAFS. In both cases, approximations have to be made since a full quantum-mechanical description 

of the X-ray absorption is not possible. The ejected electron is usually treated as a quasi-particle 

moving in an effective potential taking into account both the interactions with the other electrons of 

the photoabsorber and the potential generated by the scattering atoms. In general, the higher the 

kinetic energy of the photoelectron, the less it will be influenced by this local potential. Consequently, 

XANES should need a more precise description of the potential affecting the photoelectron, while 

further approximations can be made for EXAFS.31 For example, this description can be made in the 

framework of the widely employed muffin-tin approximation, where a spherical potential is centered 

on each scattering atom and a constant value is present in the interstitial regions. 
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Figure 3.4. Division of a XAS spectrum into the XANES and EXAFS energy regions. 

 

As regards the destiny of the photoelectron, once it has passed the continuum it can be scattered by 

the neighboring atoms and return back to the photoabsorber.32 Being a quasi-particle, we can imagine 

it as doing different paths between these neighboring atoms. Being also a wave, it can interfere 

constructively or destructively, this process producing the typical oscillatory structures in the XAS 

spectrum above the threshold energy. Given the relationship between absorption coefficient and 

cross-section, this part of the spectrum can be defined in function of k as the relative oscillation with 

respect to a total atomic cross-section σ0
t normalized for the atomic cross section of the considered 

edge σ0:33 

 

 

(3.59) 

A general expression which gives a quantitative parametrization of the χ(k) signal has been proposed 

by Sayers et al.:34 

 sin 2  

(3.60) 
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The first observation is that the EXAFS spectrum is a sum of contributions, each derived from a 

different neighboring atom. In case the photoelectron path involves the same type of atom at the same 

average distance, we talk about the degeneracy of that path, which is taken into account by the term 

Ni. In addition, the description given until now is based on the assumption that the photoelectron 

scatters elastically on a neighboring atom surrounding the photoabsorber. However, other things can 

happen to the photoelectron, e.g. it can scatter inelastically such that some of its energy is lost and its 

wavelength is changed, or it could not scatter at all. Each of these phenomena possess a probability 

which is included in the fi(k) term, being this related to the probability of scattering elastically. It has 

to be underlined that this term depends directly on k and this dependence is different for different 

elements. For example, it comes obvious that a big atom with a huge number of electrons possess a 

higher scatter probability than an atom with smaller atomic number. This statement points out that 

the selectivity of EXAFS is not only about the photoabsorber, but also for the scattering atoms, at 

least if their atomic numbers are not very close.  

Furthermore, the scattering atom is not expected to reverse the direction of the photoelectron 

instantaneously, but in reality the photoelectron phase is shifted of a certain extent after the interaction 

with a neighboring atom. The phase-shift parameter φi(k) is related to this issue. This dephasing term 

is still a function associated to both the photoabsorber and the scattering atom, therefore introducing 

further selectivity in XAS.  

Another information that makes EXAFS a useful technique is its high sensitivity (usually up to 0.02 

Å) on the average distance of the scattering atoms from the photoabsorber. This quantity is expressed 

by Ri, representing half the path length of the photoelectron. The presence of Ri
2 dividing the fi(k) 

term means that the scattering probability drops with the square of the distance, as the spherical wave 

of the photoelectron spreads out as the distance from the photoabsorber increases.  

Besides the fall of the amplitude with Ri
2, many other events can damage the wave function of the 

photoelectron. For example, it can scatter inelastically and excite a valence electron from a scattering 

atom. In addition, the core-hole has a limited lifetime and eventually an electron from a higher orbital 

will fall into it, resulting in a fluorescence phenomenon or in the ejection of another electron. These 

effects have a strong dependence on Ri, since the farther the photoelectron goes, the higher is the 

probability for these events to occur. This probability is included in the λ(k) function called mean free 

path of the photoelectron. It is primarily because of this term that EXAFS is a short-range sensitive 

method, i.e. among 4 - 5 Å from the photoabsorber.32  

In addition, the initial state of the photoabsorber is not the same as the final state. In the final state, 

the ejected photoelectron has left a core-hole in the photoabsorber. As a consequence, the other 

electrons feel a higher positive charge from the nucleus because of a smaller shielding effect and there 
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is a contraction of their orbits. These issues may attenuate the amplitude of the oscillating signal and 

are taken into account by the amplitude reduction factor S0
2. Typical values for this parameter should 

be comprised between 0.85 and 1.0 in a fitting procedure, i.e. its spectral weight should not go beyond 

15 % of the total amplitude, otherwise the starting model is probably wrong. All these phenomena 

described since here can be divided into two groups: extrinsic losses, related to events after the 

formation of the core-hole (included in λ(k)), and intrinsic losses, which are connected with the 

formation of the core-hole and (included in S0
2).  

The  term introduces a dumping of the XAS signal with the square of the so-called Debye-

Waller factor σ2, often referred to also as second cumulant. It is equivalent to a mean square relative 

displacement (MSRD), that is the square of the standard deviation of half the path length. This takes 

into account two kinds of disorder in the cluster: static and thermal. Static disorder can arise from 

defects in a crystal, which are basically scattered at random distances throughout all the material. 

Thermal disorder is due to oscillations of atoms around equilibrium positions due to thermal 

vibrations. Amorphous materials and liquids are the extreme case, since no long-range order can be 

discerned and the distinction between static and thermal disorder is not possible anymore.  

 

3.2.1 EXAFS analysis 

 

If the photoelectron scatters only on one single neighboring atom and comes back to the 

photoabsorber, a single-scattering (SS) has occurred. If its path includes two or more scattering 

atoms, we talk about multiple-scattering (MS). SS terms probe a two-particle distribution, while MS 

terms are able to probe the presence of several atoms around the photoabsorber, i.e. they probe the n-

body distribution. MS effects are dominant in the XANES region, and this is what makes the low-

energy part of the XAS spectrum so sensitive to the three-dimensional arrangement of the scattering 

atoms. However, the treatment of MS paths has been for a long time the subject of some debate also 

for what concerns the EXAFS region, limiting the applicability of standard methods for EXAFS 

analysis to SS approximation for many years. The general problem is that of finding a linear 

relationship between the geometry of the analyzed cluster and the XAS signal. In terms of a MS 

series, the XAS cross-section σ(ω) can be expressed as follows:33  

 



Chapter 3 
 

67 
 

⎝⎜
⎛1  …

,, ⎠⎟
⎞

 

(3.61) 

where each χn term is related to a scattering path starting and ending at the photoabsorber 0, with the 

only constraint that successive sites i, j, k… must be different. A linear relationship between geometry 

and signal is preserved up to n = 3, since the χ2 and χ3 terms probe a two- and three-particle 

distributions: χ2 probe the relative positions of particles 0 and i, χ3 of particles 0, i and j. However, 

starting form χ4, this linearity is lost and the relationship between geometry and signal starts to be 

cumbersome. In fact, χ4 probes not only the four-body distribution between 0, i, j and k, but also 

lower-order distributions with paths like 0i0i0 or 0i0k0 (two- and three-particle order, respectively) 

(Fig. 3.5). In general, for order n we have paths involving 2 … n particles if n is even, 3 … n particles 

if n is odd.  

 

 
Figure 3.5. Pictorial view of the possible photoelectron paths included in the χ2, χ3 and χ4 terms. 

 

For this reason, reorder of the MS series seems necessary. Strictly speaking, it can be affirmed that 

the different approaches in EXAFS data analysis differ among each other basically for the different 

treatment of the MS theory. One of the first packages to be developed with the aim of being user-

oriented was the EXCURVE software by the Daresbury research group.35 Another popular code is 

the FEFF package,36 which uses ad hoc amplitude cut-off criteria to select the most relevant MS paths 

and reduce their prohibitive high number.  

A total different approach has been followed in the GNXAS method.33,37 Here the total cross-section 

σ(0,i,j, …n) for a system of n +1 atoms (n neighbors plus the photoabsorber) has been be reordered 

as: 
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 0, , , … ) = + ( )(0, ) + ( )(0, , ) + ( )(0, , , ) + ⋯ + ( )(0, , , … ), ,,  

(3.62) 

where σ(0,i) is the cross section of the structure including particles 0 and i only, σ(0,i,j) including 0, 

i and j and so on. Therefore, the total cross section is expressed as a sum of the atomic cross-section 

in addition to all the possible 2-body, 3-body … contributions. This series has a finite number of 

terms only for a finite number of atoms, but the n-body contributions are expected to be smaller and 

smaller as n and/or the atomic distances increase. Therefore, it can be easily argued that the sum 

possesses excellent convergence properties, so that relative small numbers of atoms can be considered 

in a practical case.38  

Provided that the XAS oscillation is defined as in Eq. 3.59 and by introducing the dimensionless 

quantities γ(n) = σ(n)/σ0, XAS structural signal can be rewritten as: 

 (0, , , … ) = ( )(0, ) + ( )(0, , ) + ( )(0, , , ) + ⋯ + ( )(0, , , … ), ,,  

(3.63) 

The γ(n) signals are the central quantities in the GNXAS approach, as each of them is related to a 

precise n-body arrangement. Like the χn terms, they are oscillating functions of the photoelectron 

wave-vector modulus k of the type A(k)sin[2kR+φ(k,R)], where A(k) is the amplitude function 

characteristic of the backscattering atom and φ(k) is the already described phase function. In the two-

body case, γ(2) can be expanded in the MS series as: 

 ( )(0, ) = + + + + ⋯ 

(3.64) 

while for γ(3): 

 ( )(0, , ) = 2 + 2 + + + 2 + + ++ + + ⋯ 

(3.65) 

In other words, γ(n) is the sum of all the possible MS signals involving all and only the considered n-

bodies in any possible sequence (Fig. 3.6). Being each of these series potentially infinite, in a fitting 

procedure they have to be cut to a certain limit. Usually, the number of required MS terms depends 
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on bond distances and atomic numbers of the involved species. For short bonds, terms up to χ6 may 

be required, while for long bonds terms up to χ4 may suffice.  

 

 
Figure 3.6. Pictorial view of the MS expansion for the γ(2) and γ(3) signals including terms up to χ6 

and χ4, respectively. 

 

To simulate a XAS signal for a given cluster, the analysis of the n-body distribution functions around 

the photoabsorber is therefore required. For the two-body case, this means defining only one distance 

between the photoabsorber and the scattering atom. For a three-body distribution, the two shortest 

distances r1 and r2 within the φ angle in between can be considered. This choice is physically 

meaningful, since the two shortest bonds are usually real chemical bonds and the angle between them 

is the real bond angle. Since these distances and angle are correlated, a covariance matrix containing 

bond and angle variances as well as bond-angle correlations is also required: 

 

 

(3.66) 

where the ρij terms are defined as /  and 1 ≤ ≤ 1. For ρij = 0, bonds (or angles) 

vibrate independently, while for ρij = ± 1 there is full correlation between the parameters, which both 

expand or contract at the same time for +1, while one expands the other contracts in case of -1. 
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3.2.1.1 Liquid systems 

 

As previously reported, the structural environment around the photoabsorber can be described in 

terms of n-body distribution functions. In case of a disordered system, like an amorphous solid or a 

liquid, information on the relative particle positions is meaningful only in a probabilistic sense. 

Basically, the sum of Eq. 3.63 expressed in terms of atomic positions has to be turned into integrals 

over the atomic distributions.38 The average XAS signal can be written as: 

 ⟨ ⟩   4   ,
8 sin( ) ( , , ) ( )( , , , ) +  … 

(3.67) 

where ρ is the density of the considered scattering atoms. It has to be noted that the integrals are 

formally extended to the whole coordinates domain, but in practice are limited to EXAFS short-range 

sensitivity.  

The average distribution of atoms around the photoabsorber is now expressed by means of a collection 

of radial distribution functions.38–40 Here only the two- and three-body cases have been reported, so 

that pair and triplet distributions g(r) and g(r1,r2,φ) appear. In disordered systems, a radial distribution 

function usually present peaks with a broad shape and tend to 1 in the long range region due to lack 

of correlation between positions of distant atoms. In addition, asymmetric distributions are often 

obtained, which are not well approximated by Gaussian functions with width directly proportional to 

the Debye-Waller factor as in case of crystal structures at room temperature. Particles distribution in 

liquid systems can instead be modelled as a set of Gamma functions depending on four parameters: 

average distance R, coordination number N (degeneracy), standard deviation σ2 and asymmetry factor 

β = 2p-1/2. They can be expressed as: 

 ( ) = 2| |Γ(4 4 2( − ) ( ( ))
 

(3.68) 

Where Γ(x) is the Euler’s Gamma function. Eq. 3.68 is defined in a wide interval of positive and 

negative asymmetry values and falls in the Gaussian limit for β → 0.  

With the GNXAS method, a theoretical spectrum can be therefore generated for an average particle 

distribution provided by several radial distribution functions. Least-squares fits of the model spectrum 
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can be performed on the experimental one by minimizing a residual function Rsq running on the square 

differences between the experimental α(Ei) points and the model αm(Ei), which also depend on the 

array of the optimized parameters p: 

 , ×  

(3.69) 

where W(Ei) is a statistical weight. This can be carried out for an arbitrary structural model or for that 

provided by any method who can produce distribution functions between the photoabsorber and the 

scattering atoms. In this way, it is possible to couple molecular simulation techniques like MD with 

XAS in a synergic approach, comparing the obtained theoretical results with the experimental data 

and assessing the validity of the simulation.41–45 

 

3.2.2 XANES analysis 

 

As already stated, the XANES region of the XAS spectrum is extremely sensitive to the geometrical 

environment around the photoabsorber including the overall symmetry, distances and angles. This 

should allow in principle a complete recovery of the three-dimensional arrangement of the scattering 

atoms. In addition, EXAFS is usually not particularly sensible to coordination numbers in disordered 

systems due to their strong correlation with the Debye-Waller factor. On the contrary, atomic thermal 

disorder is very limited for low k values,46 thus XANES can provide complementary information and 

address some drawbacks with respect to the analysis of the high energy part of the spectrum. 

However, XANES analysis presents some dramatic difficulties that limited its employment to a 

qualitative level (i.e. comparison between spectra collected on different samples) for many years. 

These difficulties derive in particular from the treatment of the local potential felt by the photoelectron 

and the employment of very time-demanding algorithms for the calculation of the absorption cross 

section in a full MS treatment, since multiple-scattering phenomena are dominant in this spectral 

region.31 In the last years, some methods have been proposed for a quantitative XANES data analysis. 

For example, in the MXAN code47 a comparison between the experimental spectrum and several 

theoretical ones is performed starting from a putative geometrical configuration of the scattering 

atoms around the photoabsorber. This is performed by varying selected structural parameters like 

angles and bond distances and minimizing a residual function similar to Eq. 3.69. The X-ray 

absorption cross-section is calculated with a general MS scheme in the muffin-tin approximation.46,48 

The exchange and correlation parts of the potential are determined in the local density approximation 
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(LDA) of the self-energy of the photoelectron, i.e. for a certain spatial coordinate they depend only 

on the value of the electronic density at that point. This can be done by employing an appropriate 

complex optical potential.49 Actually, MXAN supports the Xα energy-independent or the energy-

dependent complex Hedin-Lundqvist (HL) potentials.50 However, the complex part of HL potential 

can introduce an excessive loss in the transition amplitude for the primary channel.51 To avoid for 

this over-damping at low energies, it is possible to account for the inelastic processes by means of a 

convolution of the total cross section with a Lorentzian broadening having an energy-dependent 

Γtot(E) width given by: 

 

 

(3.70) 

Here the constant part Γc takes into account both the experimental resolution and core-hole lifetime, 

while the Γmfp(E) energy-dependent term includes all the intrinsic and extrinsic inelastic processes 

(mfp stands for “mean free path” of the photoelectron).49 Γmfp(E) is zero below the Fermi energy and 

starts increasing from a definite value that corresponds to the plasmon excitation energy.49 The values 

of these energies introduce three non-structural parameters that are continuously adjusted at each 

computational step by means of a Monte Carlo fit. 
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Chapter 4 

 

 

Zn2+ ion in Tf2N- and BF4-based imidazolium RTILs 

 

4.1 Introduction  

 

Many technological, environmental and energy-related applications involve the presence of the Zn2+ 

ion in RTILs. For example, it has been proven that the dissolution of the Zn(Tf2N)2 salt in RTILs 

carrying the [Tf2N]- anion can provide a solution with high catalytic activity for Friedel-Crafts 

acylation.1 In addition, the electrochemical behavior of the Zn/Zn2+ redox couple in various RTILs 

has been studied to electrodeposit zinc metallic films2 and for zinc-air rechargeable batteries.3–7  

Zinc is also involved in many kinds of industrial processes, therefore its removal from aqueous 

solutions has become an important issue for wastewater treatment technologies.8,9 Selective 

extractions of Zn2+ ion employing RTILs have already been tested.10–15 According to these works, 

Zn2+ seems to be poorly separated by pure Tf2N-based ionic liquids and the presence of auxiliary 

extractants is needed.11,14,15 Differently, the extraction with RTILs carrying the [BF4]- anion seems to 

a certain extent more promising.11,14,16 This is in agreement with the previously reported experimental 

Gibbs free energies of transfer from water to these families of RTILs (Tab. 1.2 of Chapter 1), 

showing positive values for transfer to Tf2N-based RTILs and negative values for BF4-RTILs. Data 

for the RTILs studied in this work are here reported again for sake of clarity (Tab. 4.1).  

As regards the coordination in solution, Zn2+ structural features in Tf2N-based RTILs in dry 

conditions have been unambiguously determined by XAS measurements coupled with MD 

simulations, resulting in the [Zn(Tf2N)6]4- species where zinc is coordinated by six monodentate 

[Tf2N]- in an octahedral field.17 However, it is known that in a real application, e.g. a liquid-liquid 

extraction, water is present in the RTIL at high concentrations. Therefore, metal ion coordination in 

the “wet” ionic liquid can be in principle very different to that in “dry” conditions. In addition, no 

structural data are present for Zn2+ coordination in BF4-based RTILs. For these reasons, a study about 

the Zn2+ ion in RTILs carrying the [Tf2N]- and [BF4]- anions within 1-alkyl-3-methylimidazolium 

cations has been carried out.  

In the first part, Zn2+ in Tf2N-based RTILs has been used as a test case to verify if an accurate 

description of single-ion structural and thermodynamic solvation properties can be obtained by means 
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of MD simulations. To this purpose, the metal ion coordination as well as Gibbs free energies of 

solvation in the RTILs and transfer from water have been calculated employing different LJ 

parameters for Zn2+ and RTILs force fields and the results compared with the experimental data (Tab. 

4.1). To understand the reasons of the unfavorable transfer to Tf2N-RTILs, also the enthalpies and 

entropies of solvation and transfer were obtained for [C4mim][Tf2N]. Umbrella sampling simulations 

have been performed to understand the energetics related to the two possible binding modes of the 

[Tf2N]- anion, namely mono- and bidentate. This technique has been employed also to study the 

transfer of Zn2+ in a water/[C4mim][Tf2N] biphasic system. In addition, to get insights into Zn2+ 

coordination in wet RTILs, XAS measures along with EXAFS data analysis have been performed on 

Zn(Tf2N)2 solutions in [C4mim][Tf2N] in presence of different amounts of water.  

In the second part, MD simulations have been employed to obtain a structural and thermodynamic 

description of Zn2+ solvation in [C4mim][BF4]. Also in this case, two force fields for the RTIL have 

been tested. In addition, an explanation of the favorable Gibbs free energy of transfer from water to 

this RTIL is given thanks to the interpretation of the calculated enthalpies and entropies of solvation 

and transfer. 

 

Table 4.1. Zn2+ experimental Gibbs free energies of solvation (ΔGsolv) and transfer from water 

(ΔGtrans) for the RTILs studied in this work obtained as reported in Sec. 1.3.3 of Chapter 1 at 298.15 

K. Values in kcal mol-1. 

RTIL ΔGsolv ΔGtrans 

[C2mim][Tf2N]  
-457.1 

-473.6 
10.2 

[C4mim][Tf2N]  
-457.2 

-473.7 
10.0 

[C4mim][BF4] 
-479.2 

-495.7 
-12.0 
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4.2 Methods 

 

4.2.1 Zn2+ in [Cnmim][Tf2N] (n = 2, 4) 

 

4.2.1.1 MD simulations details 

 

MD simulations have been carried out for the Zn2+ ion in the [Cnmim][Tf2N] (n = 2, 4) RTILs. To 

this purpose, cubic boxes with one Zn2+, 216 [C2mim]+/[C4mim]+ cations and 218 [Tf2N]- anions with 

respectively 45.3 Å and 47.3 Å initial side lengths were built. These box dimensions and number of 

ions were chosen to reproduce neat [C2mim][Tf2N] and [C4mim][Tf2N] experimental densities and 

infinite dilution conditions for the metal ion. Three force fields were tested for [C4mim][Tf2N], 

namely the all-atom non-polarizable force fields by Canongia Lopes and Padua (CL&P),18–20 Ludwig 

et al. (KPL)21 and Müller-Plathe et al. (MP).22 For [C2mim][Tf2N], simulations have been performed 

with CL&P18–20 and KPL.21 For each RTIL force field, simulations were carried out testing also three 

LJ parameter sets for Zn2+ taken from Merz et al. (Merz),23 Stote and Karplus (SK),24 and from those 

implemented by Merz et al. in the AMBER force field (AMBER).25 Non-bonded parameters for Zn2+ 

and the oxygen atom of the [Tf2N]- anion taken from the force fields employed in this work are 

reported in Tab. 4.2. In case of Merz parameters, which will be employed for the rest of the 

calculations (vide infra), we choose the “CM” set for TIP3P water parametrized to reproduce a good 

compromise between structural (CN and average bond distance) and thermodynamic (ΔGhyd) 

parameters in aqueous solution. Cross terms in vdW interactions were constructed with geometric 

average combining rules. A 10 Å cut-off has been employed for all non-bonded interactions, being 

this length comprised in the optimal range in order to perform free energy calculations.26 No 

substantial differences in the calculated free energies have been observed by varying the cut-off 

between 10 and 12 Å. Long-range electrostatic interactions were taken into account with the PME 

method.27,28 

After an energy minimization, each box was equilibrated in NVT conditions for 10 ns at 700 K and 

then cooled back to 298.15 K for 20 ns. NPT equilibration and final production runs were carried out 

each for 10 ns at 298.15 K and 1 atm to obtain data for structural analysis. The temperature was kept 

constant with the thermostat implicitly handled by the stochastic dynamics (sd) leap-frog integrator,29 

while in NPT the pressure was coupled to the Parrinello-Rahman barostat30 both with relaxation 

constants of 1 ps. In all simulations, a 1 fs time step has been employed. Stretching vibrations 

involving hydrogen atoms have been constrained with the LINCS algorithm.31 All calculations have 

been performed with the Gromacs 5.1.6 package.32 
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Zn2+ ∆Gsolv in the RTILs have been calculated for all the possible combinations of the tested force 

fields and LJ parameters. A decoupling of Zn2+ non-bonded interactions with the solvent has been 

performed by multiplying the Hamiltonian by a decoupling parameter λ. In particular, 20 λ windows 

have been chosen to change Zn2+ non-bonded interactions from λ = 0 (dummy metal ion in solution 

without interactions) to λ = 1 (full Coulomb and vdW-interacting metal ion). The first 10 λ correspond 

to turning on vdW interactions, while the successive 10 are related to the electrostatic part. This 

number of windows was selected as it allowed to reproduce Zn2+ ΔGhyd in good agreement with the 

values obtained by Merz et al.23 in the optimization of the LJ parameters for the metal. LJ 

transformation has been treated via the soft-core potential to avoid singularities when the ion is close 

to appear (λ ~0). For each λ, an NPT equilibration and a production run for data collection were 

carried out at 1 atm and 298.15 K each for 2 ns.  

To calculate Zn2+ free energies of transfer between water and the RTILs, Gibbs free energies of 

hydration for the metal ion were also calculated by representing Zn2+ with all the tested LJ parameters. 

To this purpose, boxes containing one Zn2+ ion and 500 TIP3P water molecules33 were first 

equilibrated, then 20 λ windows were employed for ΔGhyd calculation. For each λ, 100 ps NPT 

equilibrations and 1 ns runs for data collection were performed. 

Final free energies have been calculated with the BAR method.34 From the obtained values, Gibbs 

free energies of transfer have been calculated as ∆Gtrans = ∆Gsolv - ∆Ghyd. 

To calculate Zn2+ solvation enthalpy and entropy in [C4mim][Tf2N], free energy calculations were 

also carried out at 7 temperatures in the 290 - 340 K range. This protocol has turned out to be the 

most accurate for the calculation of the entropy change for metal ions in water by means of MD.35–37  

In this case, Merz parameters were employed for Zn2+ within the CL&P force field for the RTIL. For 

each temperature, the box was equilibrated for 10 ns in NVT and for 20 ns in NPT, then free energy 

calculations were performed after 5 ns equilibrations and 10 ns production runs for each λ in NPT 

conditions. A similar procedure has been employed to calculate Zn2+ hydration enthalpy and entropy, 

which gave access to enthalpy and entropy of transfer.  
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Table 4.2. Non-bonded parameters for Zn2+ and the oxygen atom of the [Tf2N]- anion taken from 

the force fields employed in this work. 

Atom Potential q (e) σ (Å) ε (kcal mol-1) 

Zn2+ 

Merz23 2.00 2.265 0.0033 

SK24 2.00 1.949 0.250 

AMBER25 2.00 1.960 0.0125 

O(Tf2N) 

CL&P18–20 -0.53 2.96 0.21 

KPL21 -0.53 3.46 0.063 

MP22 -0.53 3.18 0.21 

 

4.2.1.2 Umbrella sampling simulations 

 

The free energy related to the phase transfer of Zn2+ from water to an RTIL has been studied by 

pulling the metal ion from the aqueous phase to [C4mim][Tf2N] in a biphasic system. A 36.47 Å × 

36.47 Å × 72.95 Å box was filled with 100 [C4mim]+/102 [Tf2N]- ions and 1618 TIP3P33 water 

molecules with a preformed biphasic system where the RTIL and water occupy initially the same 

volumes. One Zn2+ was set in the middle of the aqueous phase in the starting configuration. The box 

was equilibrated for 20 ns in NPT at 298.15 K and 1 atm and then in NVT for 10 ns at the same 

temperature. Sampling of the configurations along the path of interest was performed by pulling Zn2+ 

for 400 ps along the z-axis connecting the two phases by applying between the metal and the center 

of mass (COM) of the [C4mim][Tf2N] phase a force constant of 1000 kJ mol-1 nm-2. From the result 

of this simulation, 35 configurations were collected to cover a path of ~36 Å connecting the two 

phases with ~1 Å step size. Each configuration has been simulated for data collection for 15 ns in 

NPT (1 atm, 298.15 K) by constraining the z-component of Zn2+ position by means of an harmonic 

potential with 2000 kJ mol-1 nm-2 force constant. The first 2 ns of each run were discarded as 

equilibration time.  

Umbrella sampling simulations were employed also to assess a possible solvation equilibrium 

between a species formed by [Tf2N]- anions coordinating Zn2+ with monodentate-only fashion 

([Zn(Tf2N)6]4-) and a species with a mixed coordination presenting one bidentate and four 

monodentate coordinating anions ([Zn(Tf2N)5]3-). A box with one Zn2+ ion, 80 [C4mim]+ cations and 

82 [Tf2N]- anions was employed in this case. Configurations along the reaction coordinate were 

generated with a 400 ps NVT simulation by applying a 200 kJ mol-1 nm-2 force constant between the 

oxygen atom of the incoming [Tf2N]- anion and Zn2+. During this run, the approach of [Tf2N]- to 

[Zn(Tf2N)5]3- provoked the formation of a new Zn-O(Tf2N) bond and the aperture of the bidentate 
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[Tf2N]- to monodentate, giving [Zn(Tf2N)6]4-. From the results of this simulation, 20 configurations 

were collected along the reaction coordinate for Zn-O(Tf2N) distances from 6.86 Å to 1.88 Å with 

~0.25 Å step. Each of these configurations was equilibrated for 5 ns and simulated for data collection 

for 10 ns in NPT ensemble (298.15 K, 1 atm) by applying between Zn2+ and the oxygen atom of the 

approaching [Tf2N]- a harmonic potential going from 20000 kJ mol-1 nm-2 for the longer distances to 

220000 kJ mol-1 nm-2 for the shorter ones.  

In all the umbrella sampling simulations, the Merz and CL&P parameters for respectively Zn2+ and 

[C4mim][Tf2N] were employed. Free energies related to each process were obtained by the PMF 

profiles calculated with the WHAM method.38 

 

4.2.1.3 X-ray absorption measurements 

 

0.1 M Zn(Tf2N)2 solutions in water, dry [C4mim][Tf2N], [C4mim][Tf2N] with 1 M water and in water-

saturated conditions were prepared by adding weighted amounts of metallic salt into the 

correspondent solvent. Zn(Tf2N)2 was purchased from Solvionic and [C4mim][Tf2N] from Iolitec 

GmbH (purities > 99%). For dry [C4mim][Tf2N], the resulting solution was sonicated for 10 minutes 

and dried under vacuum for 36 hours. A final water content between 150 and 300 ppm was determined 

by Karl-Fischer titration. A precise amount of Milliq water was added to a part of this solution to 

obtain the [C4mim][Tf2N] sample with 1 M water. Water-saturated [C4mim][Tf2N] has been prepared 

by shaking the RTIL with water in a separating funnel for 3 minutes, letting the two phases separate 

overnight and collecting the organic phase.  

Zn K-edge XAS spectra were collected in transmission mode at the 11.1 beamline of Elettra 

Synchrotron.39 Cells with Kapton windows were filled with the solutions and kept under N2-flux 

during data collection to avoid contact with moisture from the air. A Si(111) double crystal was 

employed as monochromator, while the storage ring was working at 2 GeV and beam current was 

maintained between 300 and 200 mA. At least two spectra were recorded and averaged for each 

sample. 

 

4.2.1.4 EXAFS data analysis 

 

Analysis of the EXAFS part of the spectra was carried with the GNXAS method and software.33,37 

To this purpose, theoretical signals have been generated and subsequent refinement of the structural 

parameters has been performed in order to get the best agreement with the experimental data. 

Amplitudes A(k,r) and phase shifts φ(k,r) have been calculated in the muffin-tin approximation 



Chapter 4 
 

84 
 

employing advanced models for the exchange-correlation self-energy (Hedin-Lundqvist).41 In this 

way, inelastic losses in the final state are intrinsically accounted by the complex potential. The 

imaginary part also includes a constant factor accounting for the core-hole width (1.67 eV). Given 

the similarity of the XANES spectra of Zn2+ in wet [C4mim][Tf2N] and in pure water (vide infra), 

EXAFS data analysis of these samples has been carried out starting from the results of a previous 

EXAFS investigation performed on a 0.2 M Zn(NO3)2 aqueous solution,42 showing the presence of 

an octahedral hydration shell with six oxygen atoms at 2.078(2) Å and twelve hydrogens at 2.78(2) 

Å. Also in this case, both the Zn-O and Zn-H SS contributions have been considered, as well as MS 

contributions associated to three-body O-Zn-O distributions with 180° and 90° bond angles. Each 

two-body distribution has been modeled as a Γ-like function characterized by coordination number 

CN, average distance R, variance σ2 (Debye-Waller-like factor) and asymmetry factor β. Least-

squares fits have been carried out on the raw data directly, without preliminary background 

subtraction or Fourier filtering, by changing all the structural parameters with the exception of the 

coordination numbers and angles, being known that Zn2+ forms well defined octahedral complexes 

with water.42 Moreover, non-structural parameters have been optimized, namely E0 which is the K-

edge ionization energy, and the KM1 and KM2 double-electron excitation channels identified 

respectively at 103 and 160 eV above the first inflection point of the spectra on the basis of the Z+1 

approximation. Owing to the inclusion of double-electron excitations, the S0
2 amplitude reduction 

factor was kept constrained to 0.99. 

 

4.2.2 Zn2+ in [C4mim][BF4] 

 

4.2.2.1 MD simulations details 

 

MD simulations have been carried out on Zn2+ in the [C4mim][BF4] RTIL. A cubic box with one Zn2+ 

ion, 198 [C4mim]+ cations and 200 [BF4]- anions with 38.97 Å initial side length was built. Zn2+ was 

represented with LJ parameters taken from Merz et al. “CM set” for TIP3P water, while two force 

fields were tested for [C4mim][BF4]: CL&P18 and CL&P with the parameters for [BF4]- taken from 

Wang et al.43 Non-bonded parameters for boron and fluorine atoms of the anion are reported in Tab. 

4.3. Cross terms in vdW interactions were constructed with the Lorentz-Berthelot combining rules. 

A 12 Å cut-off has been employed for all non-bonded interactions and long-range electrostatics was 

taken into account with the PME method.27,28 

After an energy minimization, the box was first equilibrated in NVT conditions for 10 ns at 700 K 

and then cooled to 298.15 K for 12 ns. An equilibration in NPT conditions (1 atm, 298.15 K) has 
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been performed for further 10 ns. Zn2+ solvation free energy in [C4mim][BF4] was calculated by 

decoupling the metal ion non-bonded interactions with the solvent in 15 λ windows, the first 5 λ 

corresponding to vdW interactions and the successive 10 to the electrostatic part. The number of 

windows related to the vdW part has been reduced with respect to calculations in Tf2N-based RTILs 

since it was observed that only a negligible contribute to the free energy is provided by the LJ 

interaction (vide infra). For each λ value, production runs at 1 atm and 298.15 K in NPT were 

performed for 15 ns, with the first 5 ns discarded as equilibration time. Simulations of each window 

up to 50 ns did not show any relevant change in the computed free energy value. The same protocol 

was employed to obtain solvation enthalpy and entropy in [C4mim][BF4] by free energy calculations 

at different temperatures (300 – 420 K). Temperature was kept constant with the thermostat implicitly 

handled by the sd leap-frog integrator,29 while in NPT the pressure was coupled to the Parrinello-

Rahman barostat30 with relaxation constants of respectively 0.5 and 1 ps. In all simulations, a 1 fs 

time step has been employed. Stretching vibrations involving hydrogen atoms have been constrained 

with the LINCS algorithm.31  

Final free energies have been calculated with the BAR method.34 Structural parameters were obtained 

from the Zn-F and Zn-B g(r) calculated on the simulations with λ = 1. All calculations have been 

performed with the Gromacs 5.1.6 program.32 

 

Table 4.3. Non-bonded parameters for the [BF4]- anion taken from the force fields employed in this 

work. 

Force field Atom q (e) σ (Å) ε (kcal mol-1) 

CL&P18 
F -0.49 3.12 1.0678 

B 0.96 3.58 1.6631 

CL&P + Wang18,43 
F -0.5376 3.58 1.0678 

B 1.1504 3.12 1.6631 
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4.3 Results 

 

4.3.1 Zn2+ in [Cnmim][Tf2N] (n = 2, 4) 

 

4.3.1.1 Zn2+ coordination   

 

MD simulations of Zn2+ in [C2mim][Tf2N] and [C4mim][Tf2N] employing different RTILs force 

fields and LJ parameters for the metal have been carried out. The obtained structural parameters for 

Zn2+ first coordination shell are reported in Tab. 4.4, while the calculated g(r)’s for the Zn−O(Tf2N) 

and Zn−N(Tf2N) pairs are reported in Fig. 4.1 and Fig. 4.2 for [C2mim][Tf2N] and [C4mim][Tf2N], 

respectively. As regards the Zn-O distribution, a first intense peak integrating six oxygen atoms is 

obtained with all the tested parameter sets. The average bond distance between Zn2+ and the 

coordinating oxygen atoms shows a clear dependence from the employed potential. In particular, 

keeping constant the metal LJ parameters, the Zn-O distance decreases with the RTIL force field 

following the KPL > MP > CL&P trend. This order can be attributed to the different value of σ, which 

is smaller following the same KPL (3.46 Å) > MP (3.18 Å) > CL&P (2.96 Å) order. On the other 

side, keeping constant the RTIL force field and changing Zn2+ LJ parameters, the average bond 

decreases following the SK > Merz > AMBER trend, even if the σ value for zinc decreases in a 

different order. Also for the Zn-N pairs distribution a single intense peak integrating six nitrogen 

atoms is observed. This picture implies that each of the coordinating oxygen atoms is provided by a 

monodentate [Tf2N]- and reports the presence of the octahedral [Zn(Tf2N)6]4- species in solution (Fig. 

4.3 A). This result is in agreement with what was found by D’Angelo et al. on 0.1 M Zn2+ solutions 

in [C4mim][Tf2N] by means of MD simulations validated on EXAFS data employing SK parameters 

for Zn2+ and the CL&P force field.17 However, an exception is given in case the MP force field is 

employed for [C4mim][Tf2N] in combination with AMBER parameters for zinc. In fact, in this case 

the Zn-N(Tf2N) g(r) is split into two peaks, a first one of lower and a second of higher intensity (Fig. 

4.2). The overall integration reports 5.0 nitrogen atoms in Zn2+ first solvation shell (Tab. 4.4), thus 

the [Zn(Tf2N)5]3- species where one [Tf2N]- binds the metal in a bidentate way and four [Tf2N]- are 

monodentate (Fig. 4.3 B). The former coordination gives rise to the first peak of the g(r), the latter to 

the second one.  
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Table 4.4. MD results of Zn2+ first solvation shell structure in [C2mim][Tf2N] and [C4mim][Tf2N] 

employing all the tested Zn2+ LJ parameters23–25 and RTILs force fields.18–22 

RTIL RTIL force field Zn2+ LJ parameters rZn-O (Å)a CNO
b CNN

c 

[C2mim][Tf2N] 

CL&P 

Merz 1.90 6.0 6.0 

SK 2.02 6.0 6.0 

AMBER 1.88 6.0 6.0 

KPL  

Merz 2.00 6.0 6.0 

SK 2.14 6.0 6.0 

AMBER 1.98 6.0 6.0 

[C4mim][Tf2N] 

CL&P 

Merz 1.88 6.0 6.0 

SK 2.00 6.0 6.0 

AMBER 1.86 6.0 6.0 

KPL 

Merz 2.00 6.0 6.0 

SK 2.14 6.0 6.0 

AMBER 1.98 6.0 6.0 

MP 

Merz 2.00 6.0 6.0 

SK 2.12 6.0 6.0 

AMBER 1.96 6.0 5.0 
aAverage bond distance between the Zn2+ ion and the coordinating oxygen atoms of the first solvation shell [Tf2N]- anions; 
bZn-O(Tf2N) first g(r) peak integration number; cZn-N(Tf2N) first g(r) peak integration number. 
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Figure 4.1. Zn-O(Tf2N) and Zn-N(Tf2N) pairs g(r)’s radial distribution functions calculated for Zn2+ 

in [C2mim]Tf2N] employing different Zn2+ LJ parameters and RTILs force fields. 
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Figure 4.2. Zn-O(Tf2N) and Zn-N(Tf2N) pairs radial distribution functions calculated for Zn2+ in 

[C4mim]Tf2N] employing different Zn2+ LJ parameters and RTILs force fields. 
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Figure 4.3. MD snapshots of Zn2+ in [C4mim][Tf2N] giving A) [Zn(Tf2N)6]4- (Zn2+ LJ parameters: 

Merz; RTIL force field: CL&P) and B) [Zn(Tf2N)5]3- (Zn2+ LJ parameters: AMBER; RTIL force field: 

MP). Balls and sticks: Zn2+ and coordinating [Tf2N]-; wireframe: second shell [C4mim]+. 

 

The obtained structural results show that even though monodentate [Tf2N]- coordination is preferred, 

the choice of the force field can also give rise to different coordination modes of the RTIL anion. To 

understand if a possible solvation equilibrium could be present, umbrella sampling simulations for 

the following process have been performed:  

 

[Zn(b-Tf2N)(m-Tf2N)4]3- + [Tf2N]-  [Zn(m-Tf2N)6]4-               

 

where b is bidentate and m is monodentate ligand. The studied thermodynamic path implies the 

approach of one [Tf2N]- forming a new Zn-O(Tf2N) bond causing the detachment of one oxygen atom 

of the bidentate [Tf2N]- from the metal to give [Zn(Tf2N)6]4-, as can be observed from the snapshots 

reported in Fig. 4.4.  
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Figure 4.4. Selected MD snapshots from the umbrella sampling simulation showing A) the 

[Zn(Tf2N)5]3- unit and the [Tf2N]- anion set in the second solvation shell, B) the approach of the 

[Tf2N]- anion leading to the aperture of the bidentate [Tf2N]- ligand and C) the resulting 

[Zn(Tf2N)6]4- species.   

 

After the simulation of each configuration, the analysis evidenced a reasonable overlap between the 

histograms of the selected windows (Fig. C.1 in Appendix C). Here it is also possible to observe the 

effect of the different constant for the harmonic potential that have been employed for different Zn-

O(Tf2N) distances between the metal and the approaching [Tf2N]-. For longer distances, smaller 

constants show higher oscillations around the imposed value of the reaction coordinate ξ. On the other 

hand, higher constants had to be employed for small Zn-O(Tf2N) distances to contrast the strong 

electrostatic interaction and to prevent the oxygen atom falling around the equilibrium bond distance. 

The obtained PMF profile is reported in Fig. 4.5. The minimum is located at 1.88 Å, which is the 

average Zn-O(Tf2N) distance obtained for Zn2+ in [C4mim][Tf2N] with Merz and CL&P parameter 

sets (Tab. 4.4). The PMF profile shows that when the [Tf2N]- anion approaches [Zn(Tf2N)5]3- there 

is an energy barrier of 5.2 kcal mol-1 at ~3 Å, corresponding to the opening of the bidentate [Tf2N]-. 

Given that the final potential minimum value is -7.8 kcal mol-1, [Zn(Tf2N)6]4- seems to be the favored 

species in comparison to [Zn(Tf2N)5]3-. To further confirm this observation, the calculated energy 

difference obtained at DFT leveli for interconverting [Tf2N]- from mono- to bidentate binding 

conformation resulted to be 3.4 kcal mol-1. Furthermore, the estimated ∆Gsolv of the [Zn(Tf2N)6]4- and 

[Zn(Tf2N)5]3- complexes in SMD continuum solvent resulted to be -325.6 and -189.9 kcal mol-1, 

                                                           
iDFT calculations carried out for [Zn(Tf2N)5]3- and [Zn(Tf2N)6]4- complexes with ωB97XD functional47 and 6-31+G(d) 

basis set coupled with Stuttgart-Dresden pseudopotentials for Zn.48 Triple-zeta 6-311+G(d) basis set was employed for 

[Tf2N]- in its mono- and bidentate binding configurations. Simulations carried out using the SMD continuum model49 

with the specific parameters developed for [C4mim][Tf2N].50 Calculations performed with Gaussian 16 program.51 
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respectively. This further indicates that the more favorable solvation of the hexa-monodentate species 

could be responsible of its higher stability, highlighting the role of the solvent in the formation of this 

coordination. Such difference should be able to compensate also the increase in entropy of the anion 

when released to the bulk ionic liquid in the [Zn(Tf2N)6]4- → [Zn(Tf2N)5]3- + [Tf2N]- process. 

 

 
Figure 4.5. Calculated PMF profile for the addition of a [Tf2N]- anion to a [Zn(Tf2N)5]3- unit to give 

[Zn(Tf2N]6]4-. 

 

4.3.1.2 Zn2+ Solvation thermodynamics 

 

Zn2+ Gibbs free energies of solvation in [C2mim][Tf2N] and [C4mim]Tf2N] have been calculated with 

all the tested RTILs force fields and LJ parameters for the metal and the results are reported in Tab. 

4.5. The output of the BAR module providing the relative free energy differences between 

neighboring λ windows is reported in Fig. C.2 of Appendix C. From this output, it can be observed 

that the process of turning on vdW interactions provides only a negligible contribute to the total free 

energy, while the largest part is given by the electrostatic interaction. The values reported in Tab. 4.5 

show that at constant Zn2+ LJ parameters, ΔGsolv becomes more negative by changing the RTIL force 

field following the KPL < MP < CL&P trend. Since [Tf2N]- oxygen partial charge is the same in the 

tested force fields (Tab. 4.2), it can be concluded that the more negative value calculated with CL&P 

is due to the smaller value of the LJ parameter σ for oxygen, thus bringing to shorter Zn-O(Tf2N) 
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average distances (Tab. 4.4) and stronger non-bonded interactions between the metal ion and the 

solvent. On the other hand, for a given RTIL force field, ΔGsolv becomes more negative with Zn2+ LJ 

parameters in the SK < Merz < AMBER order, following once again the calculated average Zn-

O(Tf2N) distance as expected. Interestingly, the values obtained with MP force field in combination 

with AMBER LJ parameters do not follow this trend. This exception can be attributed to the different 

[Tf2N]- coordination towards zinc ([Zn(Tf2N)5]3- instead of [Zn(Tf2N)6]4-) observed with this set of 

potentials. As regards the absolute values, ΔGsolv results to be best reproduced in comparison with the 

experimental (Tab. 4.1) with CL&P force field in combination with Merz and AMBER parameters. 

On the other hand, KPL and MP tend to underestimate ΔGsolv regardless of the employed LJ for Zn2+.  

In order to obtain the ΔGtrans from water to the RTILs, Zn2+ ΔGhyd employing all the tested LJ 

parameters for the metal were also calculated and the values are reported in Tab. 4.6. It can be 

observed that the obtained values are well in agreement with those calculated by Merz et al.23 in the 

parametrization of their new sets of LJ for Zn2+. In addition, it is evident that an underestimation of 

ΔGsolv (Tab. 4.5) is accompanied by an equal underestimation of ΔGhyd for a given set of LJ. In 

particular, the slight underestimation of ΔGsolv with Merz parameters and CL&P is caused by an equal 

underestimation of ΔGhyd (-447.2 kcal mol-1 vs. -467.444 and -483.7 kcal mol-1)45 due to the 

employment of the “CM set”23 parametrized to provide a compromise between structural and 

thermodynamic properties in water. The choice of the “HFE” set, capable of reproducing ΔGhyd in 

almost perfect agreement with the experimental, was discarded since to obtain such a negative free 

energy the authors had to reduce the Zn-O(H2O) bond distance and a CN of 4.0 also resulted,23 which 

is deeply incorrect for Zn2+ in water.42 As regards the calculated ΔGtrans(water→RTIL), values are 

positive for both the ionic liquids in most cases and this result shows that MD simulations were able 

to reproduce Zn2+ as less solvated in the RTILs than in water, in agreement with the picture arising 

from the experimental data (Tab. 4.1). Also in this case, the best reproduction of experimental ΔGtrans 

is provided by Merz LJ parameters in combination with CL&P. 
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Table 4.5. Calculated Zn2+ Gibbs free energies of solvation ΔGsolv (kcal mol-1) in [C2mim][Tf2N] and [C4mim][Tf2N] and free energies of transfer 

from water to the RTILs employing all the tested Zn2+ LJ parameters23–25 and RTIL force fields.18–22 T = 298.15 K, P = 1 atm. Errors given by BAR 

module. 

  Zn2+ LJ: Merz Zn2+ LJ: SK Zn2+ LJ: AMBER 

RTIL RTIL force field 
ΔGsolv

a 

 

ΔGtrans 

(water→RTIL)b 

 

ΔGsolv
a 

 

ΔGtrans 

(water→RTIL)b 

 

ΔGsolv
a 

 

ΔGtrans 

(water→RTIL) b 

 

[C2mim][Tf2N] 
CL&P -437.7 ± 0.4 9.5 ± 0.5 -412.7 ± 1.1 1.6 ± 1.2 -452.4 ± 1.1 1.3 ± 1.3 

KPL -397.6 ± 1.1 49.6 ± 1.2 -379.2 ± 0.6 35.1 ± 0.7 -397.7 ± 1.7 56.0 ± 1.9 

[C4mim][Tf2N] 

CL&P -441.4 ± 0.3 5.8 ± 0.5 -415.5 ± 1.1 -0.2 ± 1.2 -454.7 ± 0.7 -0.9 ± 0.9 

KPL -393.8 ± 0.9 53.4 ± 1.1 -375.0 ± 0.8 39.3 ± 0.9 -398.5 ± 0.7 55.2 ± 0.9 

MP -413.3 ± 1.1 33.9 ± 1.3 -391.8 ± 1.4 22.4 ± 1.5 -402.9 ± 0.6 50.8 ± 0.8 
aZn2+ Gibbs free energy of solvation in RTILs; bZn2+ Gibbs free energy of transfer from water to the RTILs calculated as ΔGtrans(water→RTIL) = ΔGsolv(g→RTIL) - ΔGhyd with the 

ΔGhyd values reported in Tab. 4.6.  
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Table 4.6. MD calculated Zn2+ Gibbs free energy of hydration (ΔGhyd, kcal mol-1) with the LJ 

parameters23–25 tested in this work at T = 298.15 K and P = 1 atm. Errors given by BAR module. 

Zn2+ LJ parameters ΔGhyd 

Merz -447.2 ± 0.2 

SK -414.3 ± 0.1 

AMBER -453.8 ± 0.2 

 

An estimation about the spontaneity of the transfer process of Zn2+ from water to [C4mim][Tf2N] has 

been obtained also by means of umbrella sampling simulations for the pulling of one Zn2+ ion from 

an aqueous phase to [C4mim][Tf2N] in a biphasic system (Fig. 4.6).  

 

 
Figure 4.6. Initial configuration of the simulated system for the pulling of Zn2+ through a 

water/[C4mim][Tf2N] interphase (balls and sticks: Zn2+ and coordinating water molecules, wireframe: 

bulk water and [C4mim][Tf2N]). 

 

After the simulation of each configuration and the calculation of the PMF, a good overlap between 

the histograms of the selected windows was observed (Fig. C.3 in Appendix C). The calculated PMF 

profile reported in Fig. 4.7 shows a plateau from the ~34 Å reaction coordinate (distance between 

Zn2+ and [C4mim][Tf2N] COM) to ~23 Å, corresponding to the Zn2+ ion in the aqueous phase. After, 

the energy starts increasing sharply at about 18 Å, which is the coordinate corresponding to the 

interphase. In the RTIL, the energy rises until a value comprised between 5.0 and 5.5 kcal mol-1, 

which is the PMF associated to the transfer of the metal ion between the two phases. The obtained 
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value is still in agreement with the experimental and calculated ΔGtrans(water→[C4mim][Tf2N]) 

between the two pure solvents (Tab. 4.1 and Tab. 4.5) and also with the observation that Zn2+ is 

poorly extracted from water employing the ionic liquid without auxiliary ligands.11,14,15  

 

 
Figure 4.7. Calculated PMF profile for the umbrella sampling simulation of one Zn2+ ion pulled 

through a water/[C4mim][Tf2N] biphasic system. 

 

As regards Zn2+ coordination along the reaction coordinate, MD simulations reproduced the metal ion 

as always coordinated by six water molecules in an octahedral fashion along the entire reaction 

coordinate. This can be observed from the Zn-O(H2O) g(r) in the RTIL phase (Fig. C.4 in Appendix 

C), showing overlapping strong peaks at 1.98 Å which integrate six oxygen atoms in each umbrella 

window. In addition, the Zn-O(Tf2N) g(r) in the RTIL phase report a second solvation shell formed 

by a mixture of water molecules and [Tf2N]- anions starting approximately at 4.2 Å from the metal 

center, thus indicating that no [Tf2N]- are present in the first solvation shell. 

To understand the origin of the unfavorable transfer, Zn2+ enthalpies and entropies of hydration and 

solvation in [C4mim][Tf2N] have been calculated using the set of potentials providing the best 

compromise between structural and thermodynamic experimental data (CL&P for the RTIL and Merz 

for Zn2+). This was performed by means of free energy calculations at different temperatures and the 

employment of ΔG/T vs. 1/T plots (Fig. 4.8). The obtained values for hydration are reported in Tab. 
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4.7. The calculated ΔHhyd and ΔShyd are in good agreement with the experimental and are typical for 

divalent metal ions in water,44–46 showing large negative enthalpy and small negative entropy due to 

the ordering of the solvent around the solute. The calculation of enthalpy and entropy of solvation in 

[C4mim][Tf2N] also allowed to obtain the enthalpy and entropy of transfer from water to the RTIL. 

The results are reported in Tab. 4.8. ΔHsolv in [C4mim][Tf2N] resulted to be more negative than ΔHhyd 

and the same happens for the entropy term. As a consequence, both the enthalpy and entropy of 

transfer from water to the RTIL are negative. The negative enthalpy seems to favor the transfer of 

Zn2+, but the unfavorable contribution is given by the negative ΔStrans(water→[C4mim][Tf2N]) term 

which determines the global positive Gibbs free energy of transfer. This result can be explained by 

the higher order imposed to the liquid structure by the solvated metal ion in the case of [C4mim][Tf2N] 

with respect to water. 

 

 
Figure 4.8. ΔG/T vs. 1/T plots obtained from calculated Zn2+ Gibbs free energies A) in water and B) 

in [C4mim][Tf2N] at different temperatures (R2 = 0.99). 

 

Table 4.7. Hydration enthalpies (kcal mol-1) and entropies (kcal mol-1 K-1) for Zn2+ calculated from 

MD simulations (obtained from plot in Fig. 4.8 A) and from experimental data. 

MD calculated Experimental 

ΔHhyd ΔShyd ΔHhyd ΔShyd 

-473.2 ± 0.4 -0.086 ± 0.001 
-486.7a 
-493.145 

-0.06546 
-0.031b 

aΔHhyd calculated from Marcus’ ΔGhyd
44 and ΔShyd.46 bΔShyd calculated from Ahrland’s ΔGhyd and 

ΔHhyd.45 
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Table 4.8. MD calculated enthalpy (kcal mol-1) and entropy (kcal mol-1 K-1) of solvation for Zn2+ in 

[C4mim][Tf2N] and transfer from water to the RTIL obtained from the plot in Fig. 4.8 B. 

ΔHsolv ΔSsolv   
ΔHtrans

a
 

(water→[C4mim][Tf2N]) 

ΔStrans
b
 

(water→[C4mim][Tf2N]) 

-538.1 ± 16.8 -0.318 ± 0.054 -64.9 ± 17.2 -0.232 ± 0.055 
aEnthalpy of transfer from water to [C4mim][Tf2N] calculated as ΔHtrans(water→[C4mim][Tf2N]) = ΔHsolv – ΔHhyd; 
bEntropy of transfer from water to [C4mim][Tf2N] calculated as ΔStrans(water→[C4mim][Tf2N]) = ΔSsolv – ΔShyd using the 

MD calculated values reported in Tab. 4.7 for hydration. 

 

4.3.1.3 Zn2+ coordination in wet [C4mim][Tf2N]: XAS results 

 

To better characterize Zn2+ first solvation shell composition and structure in water-saturated 

[C4mim][Tf2N] and verify the reliability of the biphasic system umbrella sampling simulation 

representing zinc as coordinated by six water molecules, XAS measures have been performed on Zn2+ 

solutions in the RTIL in presence of water (1 M and water-saturated). The XANES part of the spectra 

of the wet [C4mim][Tf2N] solutions has been compared with those of dry [C4mim][Tf2N] and pure 

water solutions, and the results are shown in Fig. 4.9. From this comparison, it can be observed that 

the XANES spectrum of Zn2+ in dry [C4mim][Tf2N] presents slight differences as compared to the 

wet solutions, while spectra from RTIL solutions containing either 1 M water or up to the saturation 

limit are identical. This finding suggests that, if water is present at high concentration, Zn2+ is 

preferentially coordinated by water in the RTIL. The origin of these small but detectable differences 

of the dry RTIL XANES spectrum as compared with the wet samples can be explained by taking into 

account that both water and the [Tf2N]- coordinate Zn2+ with the oxygen atom at approximately the 

same distance (2.078(2) Å for water42 and 2.07 Å for [Tf2N]- ).17 However, in dry [C4mim][Tf2N] 

there is an additional second shell Zn-S SS contribution associated with the [Tf2N]- ion.17 In addition, 

XANES is known to be strongly sensitive to MS contributions. Therefore, further differences can be 

attributed to the Zn-O-S MS, which has been found to possess a detectable amplitude in the dry 

RTIL.17 A further proof of the presence of a hexa-aquo Zn2+ complex in wet [C4mim][Tf2N] has been 

obtained comparing the XANES spectra of this sample with that of Zn(Tf2N)2 in pure water. The 

comparison is shown in Fig. 4.9 B. As expected, the two spectra are almost identical. 
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Figure 4.9. A) Zn K-edge XANES spectra of Zn(Tf2N)2 0.1 M solutions in [C4mim][Tf2N] in dry 

conditions (red line), with 1 M water (blue line) and water-saturated (green line). B) Zn K-edge 

XANES spectra of Zn(Tf2N)2 0.1 M in water (red line) and in [C4mim][Tf2N] with 1 M water 

content (blue line). 

 

A quantitative determination of Zn2+ coordination in the wet RTIL has been obtained by the analysis 

of the EXAFS part of the spectra. To this purpose, a fitting procedure has been carried out on the 0.1 

M Zn(Tf2N)2 sample in [C4mim][Tf2N] with 1 M water content. To validate the results from the 

umbrella sampling simulations and the qualitative observations of XANES, the fitting procedure has 

been carried out for a Zn2+ ion as coordinated by six water molecules in an octahedral fashion. To 

this extent, SS contributions associated with 6 Zn-O and 12 Zn-H paths have been included, within 

MS signals coming from O-Zn-O 90° and 180° paths. Least-squares fits of the EXAFS data have 

been carried out in the 2.3 - 15.0 Å-1 k range by varying the structural parameters associated with the 

Zn-O and Zn-H contributions, whereas O-Zn-O angles have been kept fixed in an octahedral 

configuration. The full list of the final optimized parameters is reported in Tab. 4.9, whereas the 

calculated χ(k) signals are reported in Fig. 4.10 within the best-fit results compared with the 
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experimental spectrum and the resulting residuals. The agreement between the theoretical and 

experimental data is very good, as also showed by the Fourier-transformed spectra. The average 

distances for the Zn-O and Zn-H paths of respectively 2.07 and 2.80 Å, as well as the σ2 Debye-

Waller factors and asymmetry indexes β, are almost identical to that of the [Zn(H2O)6]2+ species 

formed by Zn2+ in pure water,42 while E0 was found at 0.8 eV above the first inflection point of the 

spectrum. Such results show that the Zn2+ ion is preferentially coordinated by water in the wet 

[C4mim][Tf2N] ionic liquid, as suggested by MD simulations. 

 

 

Figure 4.10. Upper panel: EXAFS analysis of the Zn K-edge EXAFS spectrum of the 0.1 Zn(Tf2N)2 

solution in [C4mim][Tf2N] with 1 M water content. From the top the following curves are reported: 

best fit theoretical Zn-O and Zn-H SS contributions, O-Zn-O MS signals, total theoretical signal (blue 

line) together with the experimental spectrum (red line) and the correspondent residuals (green line). 

Lower panel: non-phase shift corrected Fourier Transforms of the best-fit EXAFS theoretical signal 

(blue line) of the experimental data (red line) and of the residual curve (green line). 
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Table 4.9. Coordination number CN, average distance R, Debye-Waller factor σ2 and asymmetry 

index β optimized during the EXAFS fitting procedure for 0.1 M Zn(Tf2N)2 in [C4mim][Tf2N] with 

1 M water content. Standard deviation in parenthesis. 

 CN R (Å) σ2 (Å2) β 

Zn-O 6.0 2.07(2) 0.008(3) 0.15(5) 

Zn-H 12.0 2.80(3) 0.015(4) 0.09(5) 

 

4.3.2 Zn2+ in [C4mim][BF4] 

 

MD simulations of Zn2+ in [C4mim][BF4] have been carried out by representing the RTIL with two 

different force fields. The obtained structural parameters for Zn2+ first coordination shell are reported 

in Tab. 4.10, while the g(r)’s calculated for the Zn−F and Zn−B pairs are showed in Fig. 4.11. As 

regards the Zn-F distribution, a first intense peak integrating 6.0 fluorine atoms at an average distance 

of 1.85 Å is obtained with both force fields. The Zn-B g(r), also integrating 6.0 atoms, indicates the 

formation of the [Zn(BF4)6]4- octahedral species where six tetrafluoroborate anions are able to 

coordinate the metal in a monodentate fashion (Fig. 4.12). Therefore, the same coordination is 

obtained with both the tested force fields, as is expectable given the same LJ part between these two 

potential sets (Tab. 4.3). 

 

Table 4.10. MD results of Zn2+ first solvation shell structure in [C4mim][BF4] employing the tested 

RTIL force fields.18,43 

RTIL force field rZn-F (Å)a CNF
b CNB

c 

CL&P 1.85 6.0 6.0 

CL&P + Wang anion 1.85 6.0 6.0 
aAverage bond distance between the Zn2+ ion and the coordinating fluorine atoms of the first solvation shell [BF4]- anions; 
bZn-F first g(r) peak integration number; cZn-B first g(r) peak integration number. 

 



Chapter 4 
 

102 
 

 

Figure 4.11. MD calculated A) Zn-F and B) Zn-B pairs g(r)’s radial distribution functions (black 

lines, left scale) and corresponding integration numbers (red lines, right scales) for Zn2+ in 

[C4mim][BF4] (RTIL force field: CL&P). 

 

 

Figure 4.12. MD snapshot of Zn2+ in [C4mim][BF4] forming the [Zn(BF4)6]4- species (RTIL force 

field: CL&P). Balls and sticks: Zn2+ and coordinating [BF4]-; wireframe: second shell [C4mim]+. 

 

Zn2+ Gibbs free energies of solvation in [C4mim][BF4] and transfer from water to the RTIL have also 

been calculated and the obtained values are reported in Tab. 4.11. As can be observed, ΔGsolv 

calculated with CL&P force field resulted to be less negative than that obtained with Wang et al. 

parameters for [BF4]-, as is expectable from the less negative partial charge on the fluorine atoms in 

case of the former force field (Tab. 4.3). In addition, Wang anion reproduced a ΔGsolv which is more 

close to the experimental (-479.2 and -495.7 kcal mol-1, Tab. 4.1). As a consequence, this force field 
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provided also a better estimation of ΔGtrans in comparison with the experimental data (-12.0 kcal mol-

1), even though both the force fields were able to reproduce Zn2+ as more solvated in [C4mim][BF4] 

than in water and therefore a favorable transfer from the aqueous solution to this RTIL. 

 

Table 4.11. MD calculated Gibbs free energies of solvation in [C4mim][BF4] (ΔGsolv) and transfer 

from water (ΔGtrans) obtained at T = 298.15 K and P = 1 atm for Zn2+ with the tested RTIL force 

fields.18,43 Errors given by the BAR module. Values in kcal mol-1. 

RTIL force field ΔGsolv ΔGtrans
a 

CL&P -450.2 ± 0.8 -2.9 ± 1.1 

CL&P + Wang anion -461.1 ± 0.8 -13.8 ± 1.1 
aZn2+ Gibbs free energy of transfer from water to the RTIL calculated as ΔGtrans = ΔGsolv - ΔGhyd with the values for 

hydration reported in Tab. 4.6 (Merz LJ). 

 

Also in this case, the contributions to the free energies of solvation and transfer were explored by 

obtaining the enthalpies and entropies of solvation in [C4mim][BF4] and of transfer from water to this 

RTIL. To this purpose, free energy calculations were performed at six different temperatures in the 

300 – 420 K range by representing Zn2+ with Merz et al. LJ parameters and [C4mim][BF4] with CL&P 

plus Wang et al. anion. The obtained ΔG/T vs. 1/T plot is showed in Fig. 4.13, while the calculated 

values are reported in Tab. 4.12. Here it can be observed that the obtained ΔHsolv is more negative 

than ΔHhyd (Tab. 4.7) and the same happens for the entropic term. As a consequence, both ΔHtrans and 

ΔStrans are negative, as was found for [C4mim][Tf2N] (Tab. 4.8). However, ΔStrans is much lower in 

comparison with that obtained for the previously studied RTIL. As a consequence, the favorable 

ΔGtrans towards [C4mim][BF4] can be attributed to the negative ΔHtrans, while the slightly unfavorable 

ΔStrans is not negative enough to compensate the favorable enthalpic effect. In other words, it seems 

that a higher order to the liquid structure is still imposed by the solvated metal ion in case of 

[C4mim][BF4] with respect to water, but of a lower extent with respect to what was found for 

[C4mim][Tf2N].  
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Figure 4.13. ΔG/T vs. 1/T plot obtained from calculated Zn2+ Gibbs free energies in [C4mim][BF4] 

at different temperatures (R2 = 0.99). 

 

Table 4.12. MD calculated enthalpy (kcal mol-1) and entropy (kcal mol-1 K-1) of solvation for Zn2+ in 

[C4mim][BF4] and transfer from water to the RTIL obtained from the plot in Fig. 4.13. 

ΔHsolv ΔSsolv   
ΔHtrans

a
 

(water→[C4mim][BF4]) 

ΔStrans
b
 

(water→[C4mim][BF4]) 

-499.6 ± 8.7 -0.124 ± 0.024 -26.4 ± 9.1  -0.038 ± 0.025 
aEnthalpy of transfer from water to [C4mim][BF4] calculated as ΔHtrans(water→[C4mim][BF4]) = ΔHsolv – ΔHhyd; bEntropy 

of transfer from water to [C4mim][BF4] calculated as ΔStrans(water→[C4mim][BF4]) = ΔSsolv – ΔShyd using the MD 

calculated values reported in Tab. 4.7 for hydration. 

 

 

4.4 Conclusions 

 

MD simulations have been carried out on the Zn2+ ion in the [Cnmim][Tf2N] (n = 2, 4) and 

[C4mim][BF4] ionic liquids. The results showed that a description of structural and thermodynamic 

properties of a metal ion solvation in RTILs in good agreement with experimental data can be 

obtained by means of MD calculations. From a thermodynamic point of view, the positive transfer 

free energies ΔGtrans(water→[Cnmim][Tf2N]) indicate that Zn2+ is more favorably solvated in water 

than in this class of ionic liquids. The unfavorable ΔGtrans arises from an entropy-enthalpy balance 

where the negative ΔStrans(water→[C4mim][Tf2N]) is able to overcome a favorable 

ΔHtrans(water→[C4mim][Tf2N]) contribution and could be explained by the higher liquid ordering 
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due to ion solvation in the case of [C4mim][Tf2N] with respect to water. Also the free energy 

associated to the transfer of a Zn2+ ion in a water/[C4mim][Tf2N] biphasic system is positive, in 

agreement with the poor extraction rates from aqueous solutions obtained experimentally. From a 

structural point of view, umbrella sampling simulations for the addition of a [Tf2N]- anion to a 

[Zn(Tf2N)5]3- unit to give [Zn(Tf2N)6]4- showed that the coordination including only monodentate 

[Tf2N]- is largely energetically favored. In addition, simulations predict that Zn2+ in water saturated 

[C4mim][Tf2N] is coordinated by six water molecules. This finding is confirmed by XAS 

experimental results, which clearly show that water completely solvates the metal ion when present 

at high concentrations in the ionic liquid. 

As regards [C4mim][BF4], MD simulations reproduce a Zn2+ ion still coordinated by six monodentate 

anions, thus the [Zn(BF4)6]4- species. In addition, the trend showed by the experimental data is 

confirmed, i.e. a favorable transfer from water to BF4-based RTILs is obtained. In this case the 

favorable ΔGtrans(water→[C4mim][BF4]) is due to the negative enthalpy of transfer, with a still 

unfavorable ΔStrans(water→[C4mim][BF4]) that however is not enough negative to counterbalance the 

enthalpic effect.  
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Chapter 5 

 

 

Co2+ ion in [C4mim][Tf2N] 

 

5.1 Introduction  

 

Applications involving the Co2+ ion in RTILs seems to provide promising results. For example, Co2+ 

complexes in RTILs have been tested as catalysts for sustainable chemistry and energy applications 

such as the oxidation of lignin to obtain high-value products1 or for the desulfurization of petroleum.2 

Co(Tf2N)2 dissolved in [C4mim][Tf2N] showed a high catalytic activity for the acylation of chloro- 

and fluorobenzene,3 while Co2+ phtalocyanine complexes in [C4mim][Br] exhibited excellent yields 

and high recycling capabilities for the aerobic oxidation of alkyl-arenes and alcohols.4 In addition, 

the electrochemical behavior of the Co/Co2+ redox couple has been studied in several RTILs for 

electrodepositions.5,6 Metallic cobalt has been successfully electrodeposited from [C4mpyr][Tf2N] 

and [C4mim][BF4].7–9 The extraction of Co2+ from aqueous solutions with ionic liquids has also been 

tested.10–12 

For what concerns RTILs containing the [Tf2N]- anion, at the solid state Co2+ results to be bound via 

the oxygen atoms of the –SO2 moieties as shown by the crystal structure of [C4mpyr]2[Co(Tf2N)4].13 

In the [Co(Tf2N)4]2- unit, the metal ion is bound by two bidentate [Tf2N]- anions each binding with 

two oxygen atoms of two different –SO2 moieties on the equatorial plane, in addition to two 

monodentate [Tf2N]- in apical positions. In a Raman spectroscopy work on Co(Tf2N)2 in 

[C2mim][Tf2N], the ratio of the peak areas related to “free” and coordinating [Tf2N]- provided a 

number of RTIL anions in the metal first solvation sphere of ~3, thus suggesting the presence in 

solution of the octahedral [Co(Tf2N)3]- species with three bidentate [Tf2N]-.14 The same coordination 

has been proposed for solutions in [P2225][Tf2N] in another recent work.15 This [Co(Tf2N)3]- species 

was also the only detectable in gas phase as found by ESI-MS experiments.16 However, previous 

studies have showed that the coordination of a metal ion in solution can be significantly different 

from that obtained for the solid state and different structures came out also for the liquid phases 

according to the method employed to analyze the metal first solvation sphere structure.17–20 As a 

consequence, the nature of the species formed by the Co2+ ion in several RTILs as well as most of the 

important thermodynamic parameters describing its solvation in these media are still unknown. 
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In this work, XAS measures have been combined with MD simulations to shed light on the still 

uncertain coordination of the [Tf2N]- anions towards Co2+ in RTILs. To this purpose, the 

[C4mim][Tf2N] ionic liquid was considered. The structure of the first solvation shell provided by MD 

has been validated directly on XAS experiments in a synergic approach. In addition, thermodynamic 

data such as the metal ion ΔGsolv in [C4mim][Tf2N] and ΔGtrans from water to the RTIL have been 

calculated. Free energy calculations performed at different temperatures allowed also to obtain 

information about the enthalpies and entropies of solvation and transfer. Furthermore, spectroscopic 

data in the UV-Vis region have been collected for Co(Tf2N)2 solutions in [C4mim][Tf2N] with an 

increasing amount of water to get more insight into the metal ion solvation tendencies also in the 

“wet” RTIL.  

 

 

5.2 Methods 

 

5.2.1 MD simulations details 

 

For Co2+ simulations in [C4mim][Tf2N], two different protocols have been employed in order to 

obtain structural and thermodynamic data. The composition of the simulated boxes for the two sets 

of calculations is reported in Tab. 5.1. For the structural part, the number of species was set up to 

reproduce the density of the 0.1 M Co(Tf2N)2 solution employed for the XAS measurements. As 

regards the thermodynamic calculations, the system has been designed to reproduce pure RTIL 

density and infinite dilution conditions for the metal. 

 

Table 5.1. MD boxes details for the calculation of Co2+ structural and thermodynamic properties in 

[C4mim][Tf2N].   

 Structure Thermodynamics 

Co2+ 5 1 

[C4mim]+ 170 198 

[Tf2N]- 180 200 

Box edge (Å) 44.15 45.90* 

*Initial side length before NPT equilibration. 
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The CL&P force field was employed for [C4mim][Tf2N],21–23 while LJ parameters for Co2+ were 

taken from Merz et al.24 This set was selected as that providing the best compromise between 

structural and thermodynamic description for the solvation of Zn2+ in RTILs (see Chapter 4).25 For 

the structural part, Merz “IOD set” reproducing the average Co-O bond distance in water in almost 

perfect agreement with the experimental was employed, while for the thermodynamic part the “HFE 

set” that best reproduces Co2+ Gibbs free energy of hydration was chosen. Both sets of parameters 

provide a CN of 6.0 for Co2+, since it is well-known that this ion is hexa-coordinated in water.26  

A similar simulation protocol to that employed for Zn2+ as specified in Sec. 4.2.1.1 was used, with 

some exceptions. For the structural part, the production run for data acquisition was performed for 

100 ns in NVT conditions at 298.15 K with configurations saved every 100 time steps. For the 

thermodynamic calculations, Co2+ single-ion ΔGsolv in [C4mim][Tf2N] has been calculated with 15 λ 

windows: the first 5 λ correspond to turn on vdW interactions and the successive 10 are related to the 

electrostatic part. The number of vdW windows has been reduced because it was observed that the 

majority of the contribution to the calculated free energy is provided by the electrostatic part, while 

for vdW it is almost negligible (Sec. 4.3.1.2 of Chapter 4). Longer simulation times were employed 

with respect to Zn2+: for each λ, an NPT equilibration was performed for 5 ns and a production run 

for data collection was carried out for 60 ns. Longer runs resulted to be necessary as, differently from 

the Zn2+ case, a derive in the computed free energy has been observed with simulation time.  

To calculate ΔGtrans, simulations were carried out also in water. To this purpose, Co2+ was represented 

with the same Merz “HFE set”24 employed for calculations in the RTIL and water with the SPC/E 

model.27 ΔGhyd was calculated by employing a 26.2 Å side length box containing one Co2+ and 600 

water molecules still with 15 λ windows. For each λ, 2 ns equilibrations and 5 ns runs for data 

collection were performed. 

Co2+ Enthalpies and entropies of hydration and solvation in [C4mim][Tf2N] were obtained by 

performing free energy calculations at 6 different temperatures in the 280 – 340 K range for water 

and at 5 temperatures in the 300 – 420 K range for the RTIL. A slightly longer cut-off radius with 

respect to the Zn2+ case was employed for non-bonded interactions (12 Å). Cross-terms were 

constructed with the Lorentz-Berthelot combining rules. Simulations have been performed with the 

Gromacs 5.1.6 program.28  

 

5.2.2 X-ray absorption measurements 

 

[C4mim][Tf2N] was purchased by Sigma-Aldrich with a >99% stated purity. Co(Tf2N)2 was 

synthesized following the procedure reported by Earle et al.29  A 0.1 M solution of Co(Tf2N)2 in 
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[C4mim][Tf2N] was prepared with a procedure similar to that employed for Zn2+ in the same dry 

RTIL (Sec. 4.2.1.3 of Chapter 4). In addition, solid Co(Tf2N)2 was diluted with boron nitride, 

carefully grained in an agate mortar and put in 1.5 mm aluminum frames with a Mylar tape covering 

the sample. Co K-edge XAS spectra of the RTIL solution and solid Co(Tf2N)2 were collected in 

transmission mode at the 11.1 beamline of Elettra Synchrotron with the same operating conditions 

employed for Zn2+. Three spectra have been recorded and averaged for each sample. 

 

5.2.3 EXAFS data analysis 

 

EXAFS data analysis has been carried out with the GNXAS method with the same level of theory 

employed for Zn2+ (Sec. 4.2.1.4 of Chapter 4). For the analysis of the Co(Tf2N)2 salt spectrum, the 

crystallographic structure of [C4mpyr]2[Co(Tf2N)4] has been employed as starting point.13 Co-O first 

shell SS signal accounting for the six coordinating oxygen atoms has been calculated as well as the 

Co-S and Co-N signals related to the four [Tf2N]- binding the metal. In addition, a strong MS 

contribution associated to the Co-O-S three-body configurations has been found. In particular, both 

bidentate and monodentate [Tf2N]- are coordinated to Co2+ in such a way that the Co-O-S angle is 

134°, thus providing a MS signal with a multiplicity of six. The O-S distance of [Tf2N]- as determined 

from the crystallographic structure is 1.47 Å. The MS contribution associated with the three collinear 

O-Co-O configurations has been also found to have a detectable amplitude. All the other three-body 

configurations involving Co2+ showed negligible amplitude. 

Differently, the analysis of the Co(Tf2N)2 solution in [C4mim][Tf2N] has been carried out starting 

from the structural results of the MD simulation. In particular, the Co-O, Co-N and Co-S pairs g(r)’s 

have been modeled as Γ-like functions. SS signals for these pair distributions have been calculated 

starting from the structural parameters obtained from the MD simulation. In this case, as was found 

for Zn(Tf2N)2 in [C4mim][Tf2N],20 there are six monodentate ligands coordinating Co2+ in an 

octahedral fashion. At variance with the crystallographic structure, in the RTIL the [Tf2N]- ligands 

assume a quasi-linear geometry around the metal ion with Co-O-S angles of  ~180° and O-S distance 

of 1.46 Å. Also in this case, the MS contribution associated with O-Co-O collinear configurations has 

been included in the analysis. Structural parameters obtained from MD have been varied during the 

fitting procedure to obtain the best agreement with the χ(k) experimental spectrum. In this way, the 

structural results deriving from the simulation have been compared directly with the EXAFS 

experimental evidence.  
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Besides E0, also the KM1 and KM2,3 double-electron excitation energies were optimized starting from 

values of respectively 66 – 68 and 111 eV above the first inflection point of the experimental spectra 

on the basis of the Z+1 approximation.  

 

5.2.4 UV-Vis absorption spectra 

 

A spectrophotometric titration of a Co(Tf2N)2 (Alfa Aesar, >98%) solution in [C4mim][Tf2N] (Iolitec, 

>99%) with water was carried out. To this purpose, all chemicals were dried under vacuum for 48 h 

at 70 °C. An amount of metallic salt was dissolved in [C4mim][Tf2N] to form a Co(Tf2N)2 0.05 M 

solution and the residual water was determined to be less than 50 ppm after Karl-Fischer titration. 

Manipulations of the samples was performed in a N2-filled glove box (water content < 1 ppm). 

Absorbance spectra were recorded in the 200 − 900 nm region on a Cary 50 UV−Vis 

spectrophotometer employing a rectangular quartz cell of 10 mm path length with Teflon stopper. 

Neat [C4mim][Tf2N] has been employed as blank sample. After recording the Co(Tf2N)2 sample in 

the dry RTIL, precise amounts of a 0.5 M water solution in [C4mim][Tf2N] were added to reach 

Co:H2O ratios from 1:1 to a 1:8 excess, since this metal is hexa-coordinated by water.26 In addition, 

spectra of 0.05 M Co(Tf2N)2 in pure water and in water-saturated [C4mim][Tf2N] were recorded as 

comparison. The water-saturated RTIL has been prepared by shaking [C4mim][Tf2N] with an equal 

volume of Milliq water in a separating funnel for 3 minutes, letting the two liquids separate overnight 

and then collecting the organic phase.  

 

 

5.3 Results 

 

5.3.1 Co2+ coordination 

 

Co2+ coordination in the Co(Tf2N)2 crystal has been determined on the basis of the crystallographic 

structure reported in literature.13 The metal ion results to be coordinated by two monodentate and two 

bidentate [Tf2N]- (Fig. 5.1 A) both assuming a bent configuration with a Co-O-S angle of 134°. The 

first coordination shell consists in six oxygen atoms arranged in an octahedral fashion at a Co-O 

distance of 2.07 Å. In addition, six sulfur atoms are present at 3.24 Å and four Co-N paths at 3.63 Å.  
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Figure 5.1. Structural arrangement of the [Tf2N]- anions around Co2+ A) in the Co(Tf2N)2 crystal as 

determined starting from the crystallographic structure of Ref.13 and B) in the [C4mim][Tf2N] ionic 

liquid as showed by a snapshot from the MD simulation (balls and sticks: Co2+ and coordinating 

[Tf2N]-, wireframe: second shell [C4mim]+). 

 

As regards the Co(Tf2N)2 solution in [C4mim][Tf2N], the local structure around the metal has been 

characterized starting from the Co-O, Co-S and Co-N pairs g(r)’s obtained from the analysis of the 

MD simulation (Fig. 5.2). To compare the MD results with the crystallographic structure of 

Co(Tf2N)2 and provide a quantitative description of the local coordination around Co2+, the g(r)’s 

have been modeled with Γ-like functions as previously described. The results of this analysis are 

shown in Fig. C.5 of Appendix C, while the obtained structural parameters are listed in Tab. 5.2. As 

can be observed, the Co-O g(r) shows a sharp first peak indicating the existence of a well-defined 

first solvation shell of oxygen atoms around Co2+ with a number of coordinating atoms equal to six 

and an average Co-O distance of 2.07 Å (Fig. 5.2 A). As regards the Co-S g(r) (Fig. 5.2 B), a well-

defined first peak is obtained with a CN of six and an average Co-S distance of 3.48 Å. Conversely, 

the Co-N g(r) is wider as compared to the other pair distribution functions (Fig. 5.2 C) and two 

asymmetric peaks had to be used to obtain a proper fit, both comprising three nitrogen atoms (see 

Fig. C.5 B of Appendix C). This finding suggests that three [Tf2N]- ligands coordinate the metal in 

a slightly different way with respect to the other three anions. This effect is probably due to the 

organization of the first solvation sphere and to the steric hindrance provoked by the contemporary 

presence of six large anions like the bis(trifluoromethylsulfonyl)imide in a restricted space around 

the metal ion. These results altogether suggest that in the RTIL solution the Co2+ cation is coordinated 

by six monodentate [Tf2N]- ligands arranged to form a linear Co-O-S configuration. Note that the 



Chapter 5 
 

118 
 

different Co-O-S angle of the monodentate ligands found in the Co(Tf2N)2 crystal as compared to the 

RTIL solution is inferred by the different Co-S distance of the sulfonyl groups that are found at 

smaller values in the crystallographic structure as compared to the solution. Moreover, the existence 

of a small structural disorder in the arrangement of the ligands is shown by the wider Co-N pair 

distribution.  

 

 
Figure 5.2. Radial distribution functions g(r)’s (black lines, left scale) and corresponding integration 

number (red lines, right scale) for the A) Co-O, B) Co-S and C) Co-N pairs calculated from the MD 

simulation of the Co(Tf2N)2 solution in [C4mim][Tf2N] for the structural part. 
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Table 5.2. Coordination number CN, average distance R, Debye-Waller factor σ2 and asymmetry 

index β of the first peaks of the Co-O, Co-S and Co-N g(r)’s as obtained by modeling the peaks with 

Γ-like functions for the Co(Tf2N)2 0.1 M solution in [C4mim][Tf2N]. 

Path CN R (Å) σ2 (Å2) β 

Co-O 6.0 2.07 0.003 0.44 

Co-S 6.0 3.48 0.005 0.02 

Co-N1 3.0 4.22 0.035 -0.03 

Co-N2 3.0 4.45 0.017 0.00 

 

The results of the MD simulation show Co2+ as coordinated by six oxygen atoms in the first shell 

assuming an octahedral geometry as in the crystal. Nevertheless, while in the metallic salt there are 

two monodentate and two bidentate [Tf2N]-, in solution the ligands are only monodentate and they 

are arranged differently. This suggests that the [C4mim][Tf2N] RTIL is able to dissolve the Co(Tf2N)2 

salt giving rise to a different structural arrangement as compared to the solid state. A first qualitative 

proof of this has been obtained by comparing the XANES parts of the absorption spectra of the 

Co(Tf2N)2 salt and RTIL solution (Fig. 5.3). As can be observed, the XANES spectrum of the 

Co(Tf2N)2 crystal shows small but detectable differences from that of the RTIL solution. As it is 

known, this spectral region is influenced by the higher distance contributions and by MS effects. The 

similarity between the two XANES spectra therefore confirms the existence of a similar octahedral 

first coordination shell around Co2+. However, the small but detectable differences such as the 

presence of the bump at about 7740 eV in the XANES spectrum of the solution, not present in the 

crystal, are consistent with a different arrangement of the ligands in the two cases. In fact, the [Tf2N]- 

anion is known to be able to coordinate both in a mono- and bidentate fashion. The average distance 

of first shell oxygen atoms with respect to the metal ion has been found to be approximately the same 

for the two coordination modes.20,30 However, the different organization of the [Tf2N]- ligand gives 

rise to a different distance between the metal ion and the nitrogen atoms as well as to different MS 

paths.20 Therefore, the differences in the XANES spectra between the solid and the solution suggest 

a different number of bidentate-coordinating ligands in the two cases.  
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Figure 5.3. Co K-edge XANES experimental spectra of solid Co(Tf2N)2 as compared to the 0.1 M 

solution of Co(Tf2N)2 in [C4mim][Tf2N]. 

 

A more quantitative determination of the structural arrangement around Co2+ has been obtained from 

the analysis of the EXAFS spectra. EXAFS data analysis for the Co(Tf2N)2 crystal has been carried 

out on the basis of the crystallographic structure reported in literature.13 To this purpose, two-body 

signals associated with the Co-O, Co-S and Co-N paths have been considered while MS signals with 

a detectable amplitude resulted those associated with the three linear O-Co-O contributions and six 

Co-O-S paths with 134° bond angle. For the Co-N paths coming from mono- and bidentate [Tf2N]- 

the same distance was employed, since they are found at distances that differ of a quantity comprised 

in EXAFS uncertainty on bond distances (3.62 Å and 3.65 Å, respectively). Least-squares fits have 

been carried out in the 2.1 – 15.0 Å-1 k range on the raw spectrum of the Co(Tf2N)2 salt and the best-

fit results are shown in Fig. 5.4. The agreement between the theoretical and experimental data is very 

good, and this is also evident from the corresponding FT spectra shown in the lower panel. The 

complete list of the optimized structural parameters is reported in Tab. 5.3, while among the non-

structural ones E0 resulted to be 2.0 eV above the first inflection point of the experimental spectrum. 

The structural results obtained from the EXAFS analysis are equal to the crystallographic structure 

reported in literature within the experimental error.13 
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Figure 5.4. Upper panels: fit of Co K-edge EXAFS spectra of Co(Tf2N)2 crystal (left panel) and of 

the 0.1 M solution of Co(Tf2N)2 in [C4mim](Tf2N) (right panel). From the top to the bottom: Co-O, 

Co-S and Co-N SS theoretical signals, O-Co-O and Co-O-S MS three-body theoretical signals, total 

theoretical signal (blue line) compared with the experimental spectrum (red dotted line) and resulting 

residual. Lower panels: non-phase shift corrected Fourier transforms of the experimental data (red 

dotted line), of the total theoretical signals (blue line) and of the residuals (blue dashed line). 
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Table 5.3. Coordination number CN, average distance R (Å), Debye-Waller factor σ2 (Å2) and 

asymmetry index β as obtained from the EXAFS data analysis for the Co(Tf2N)2 crystal and the 

Co(Tf2N)2 0.1 M solution in [C4mim][Tf2N]. 

Path  Co(Tf2N)2 crystal Co(Tf2N)2 in [C4mim][Tf2N]  

Co-O 

CN 6 6 

R 2.07(1) 2.08(1) 

σ2 0.006(1) 0.005(1) 

β 0.0(1) 0.0(1) 

Co-S 

CN 6 6 

R 3.29(3) 3.49(3) 

σ2 0.008(2) 0.009(3) 

β 0.0(1) 0.0(1) 

Co-N 

CN 4 6 

R 3.60(4) 4.39(4) 

σ2 0.009(2) 0.014(4) 

β 0.1(1) 0.1(1) 

 

A quantitative determination of the coordination involving Co2+ in the [C4mim][Tf2N] solution has 

been also carried out from EXAFS experimental data. To this purpose, χ(k) theoretical signals have 

been calculated for the Zn-O, Zn-S and Zn-N contributions as well as for the six Zn-O-S paths starting 

from the parameters obtained from the MD simulation (Tab. 5.2). Least-squares fits of the EXAFS 

data have been carried out in the 2.0 – 13.0 Å-1 k range. The best-fit results are shown in the right 

panel of Fig. 5.4, while the optimized parameters are reported in Tab. 5.3. Also in this case, the 

agreement between the theoretical and experimental data is good both for the χ(k) and FT spectra and 

this strongly supports the presence of the [Co(Tf2N)6]4- species in solution, as found from the MD 

simulation. In addition, it can be observed that the EXAFS spectra of the Co(Tf2N)2 salt and the RTIL 

solution are quite similar among each other, as the high energy region of a XAS spectra is dominated 

by first shell SS contribution that is similar in the two samples. In fact, from the theoretical signals 

shown in Fig. 5.4 it can be observed that the Co-O signals are quite similar between the solid and the 

solution. Indeed, the main difference in the two cases is provided by the different coordination modes 

of the [Tf2N]- anion, that implies also the bidentate fashion for Co(Tf2N)2, while monodentate-only 

coordination is found for the solution. This gives rise to MS signals for the O-Co-O and Co-O-S paths 

that are different in amplitude and phase, as can be appreciated in Fig. 5.4.  
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In addition, it has to be noted that while Co-O and Co-S distances obtained from EXAFS analysis are 

equal to those obtained from the MD simulation, the Debye-Waller factor obtained from the 

experimental data fitting are larger. This finding suggests that the potentials used in the simulations 

for the Co2+-RTIL interaction are too rigid, giving rise to a structure in solution that is less flexible as 

compared to the experimental results. This behavior has to be attributed to the employment of the LJ 

potential for the Co-[Tf2N]- interaction, as already pointed out when the LJ function is used in MD 

simulations of liquids containing metal cations.26,31,32  

Also for the solution, E0 was found at 2.0 eV above the first inflection point of the experimental 

spectrum.  

 

5.3.2 Co2+ solvation thermodynamics 

 

MD simulations for the thermodynamic part have been also carried out. The resulting metal species 

in [C4mim][Tf2N] was [Co(Tf2N)6]4- with an average Co-O(Tf2N) distance of 1.84 Å, as can as 

deduced from the Co-O, Co-S and Co-N g(r)’s (Fig. C.6 of Appendix C). Therefore, the same type 

of [Tf2N]- coordination towards Co2+ with respect that observed in the structural part has been 

obtained also in this case. The underestimated bond distance with respect to that obtained previously 

is due to the employment of the “HFE” LJ parameters instead of the “IOD” set used for the structural 

part.  

The calculated ΔGsolv resulted to be -451.3 kcal mol-1 (Tab. 5.4), which is similar to that previously 

obtained for Zn2+. This was expected on the basis of the dominating electrostatic term in free energy 

calculations as discussed in Chapter 4 (Sec. 4.3.1.2). As regards the aqueous solution, the obtained 

ΔGhyd for Co2+ in SPC/E water (Tab. 5.4) is very close to that obtained by Merz and Li (-456.9 kcal 

mol-1)24 as well as to the experimental (-457.7 kcal mol-1),33 showing the goodness of the employed 

protocol for free energy calculations. The calculated ΔGsolv in [C4mim][Tf2N] resulted to be less 

negative than ΔGhyd and as a consequence a positive ΔGtrans of 6.6 kcal mol-1 is obtained, suggesting 

that Co2+ is more favorably solvated in water than in the RTIL. This is qualitatively in agreement 

with the previously obtained ΔGtrans for Zn2+ and confirms the unfavorable transfer from an aqueous 

solution to neat [C4mim][Tf2N] for these metal ions. 
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Table 5.4. MD calculated Gibbs free energies of hydration (ΔGhyd), solvation in [C4mim][Tf2N] 

(ΔGsolv) and transfer from water to the RTIL (ΔGtrans) obtained at T = 298.15 K and P = 1 atm for the 

Co2+ ion. Values in kcal mol-1. 

ΔGhyd ΔGsolv ΔGtrans
a 

-457.9 ± 0.1 -451.3 ± 1.5 6.6 ± 1.6 
aGibbs free energy of transfer from water to the RTIL calculated as ΔGtrans = ΔGsolv - ΔGhyd. 

 

As for Zn2+, to understand the origin of the unfavorable transfer, enthalpies and entropies of hydration 

and solvation were obtained by performing free energy calculations at different temperatures. The 

obtained ΔG/T vs. 1/T plots are showed in Fig. 5.5, while the calculated values are reported in Tab. 

5.5 for hydration and in Tab. 5.6 for solvation in [C4mim][Tf2N]. ∆Hhyd and ΔShyd are in good 

agreement with the experimental33,34 and are typical for the formation of divalent metal ions aquo-

complexes.35 ∆Hsolv in [C4mim][Tf2N] is more negative than in water and the same happens for the 

entropic term. As a consequence, both ΔHtrans and ΔStrans from water to [C4mim][Tf2N] are negative. 

The negative ΔHtrans suggests that the transfer of Co2+ from water to [C4mim][Tf2N] is enthalpically 

favorable. Therefore, the term that causes the overall positive ΔGtrans is the unfavorable ΔStrans, as was 

found for Zn2+. The negative entropy of transfer has been previously explained with the higher order 

imposed to the liquid structure by the solvated metal ion in the case of [C4mim][Tf2N] with respect 

to water. The almost identical picture obtained in the Zn2+ and Co2+ cases can be reasonably explained 

by taking into account their similar ionic radii36 and coordination mode in the two liquids.20 

 

 
Figure 5.5. ΔG/T vs. 1/T plots obtained from MD calculated Co2+ Gibbs free energies A) in water 

and B) in [C4mim][Tf2N] at different temperatures (R2 = 0.99). 
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Table 5.5. Hydration enthalpies (kcal mol-1) and entropies (kcal mol-1 K-1) for Co2+ calculated from 

MD simulations (obtained from plot in Fig. 5.5 A) and from experimental data.  

 MD Experimental 

 ΔHhyd ΔShyd ΔHhyd ΔShyd 

Co2+ -483.2 ± 0.6 -0.085 ± 0.002 -478.6a -0.07034 
aCo2+ experimental ΔHhyd calculated from Marcus’ ΔGhyd

33 and ΔShyd.34 

 

Table 5.6. MD calculated enthalpy (kcal mol-1) and entropy (kcal mol-1 K-1) of solvation for Co2+ in 

[C4mim][Tf2N] and transfer from water to the RTIL obtained from the plot in Fig. 5.5 B. 

 ΔHsolv ΔSsolv ΔHtrans
a ΔStrans

b 

Co2+ -507.4 ± 2.6 -0.188 ± 0.007 -24.2 ± 3.2 -0.103 ± 0.009 
aEnthalpy of transfer from water to [C4mim][Tf2N] calculated as ΔHtrans = ΔHsolv – ΔHhyd; bEntropy of transfer from water 

to [C4mim][Tf2N] calculated as ΔStrans = ΔSsolv – ΔShyd using values reported in Tab. 5.5 for hydration. 

 

 

5.3.3 Co2+ in wet [C4mim][Tf2N]: UV-Vis titration 

 

Electronic spectra have been collected on Co(Tf2N)2 solutions in [C4mim][Tf2N] in dry conditions as 

well as with increasing water content (Co:H2O from 1:1 to 1:8), in water-saturated [C4mim][Tf2N] 

and in pure aqueous solution. The obtained spectra are shown in Fig. 5.6. The spectrum of Co(Tf2N)2 

in water-saturated [C4mim][Tf2N] presents a maximum at λmax = 510 nm (ε = 5.3 mol-1 L cm-1) and 

is nearly superimposable to that obtained in pure water (λmax = 511 nm; ε = 4.0 mol-1 L cm-1). This 

trend suggests that Co2+ is preferentially coordinated by water instead of [Tf2N]- in the wet RTIL and 

is compatible with the obtained positive ΔGtrans  (Tab. 5.4). The same has been previously evidenced 

for Zn2+ by means of MD simulations and XAS measures (Sec. 4.3.1.3 of Chapter 4).  

UV-Vis spectra provide also additional information. By increasing the water content, the maximum 

of the d-d transition is blue-shifted from λmax = 549 nm (ε = 33.1 mol-1 L cm-1) in dry [C4mim][Tf2N] 

to λmax = 512 nm (ε = 11.9 mol-1 L cm-1) in the solution with the 1:8 Co:H2O ratio, therefore a blue-

shift is observed by passing from [Tf2N]- to water coordination. In other words, water results to be a 

stronger ligand than [Tf2N]- for Co2+. To compare the relative strength associated to the pure metal-

ligand interaction, also the energy difference (ΔE) for the ligand-exchange reaction [Co(H2O)6]2+ + 6 
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[Tf2N]- → [Co(Tf2N)6]4- + 6 H2O has been computed at DFT level of theory.i The calculated ΔE 

resulted to be 48.6 and 88.2 kcal mol-1 in gas phase and in SMD continuum solvent, respectively. 

Note that these positive ΔE values seem somewhat contradictory with respect to the negative 

ΔHtrans(water→[C4mim][Tf2N]) data obtained by MD simulations both in the Co2+ and Zn2+ cases. 

The whole results indirectly suggest that the negative ΔHtrans(water→[C4mim][Tf2N]) cannot be 

attributed to a stronger metal-ligand interaction, rather to a different reorganization energy of the 

outer-sphere solvent around the metal ion in the two cases. In fact, transfer enthalpy is known to be 

related not only to the solute-solvent interaction, but also to the interactions within the solvent 

molecules.37–39 For example, for the transfer of Co2+ from water to methanol and dimethyl sulfoxide 

a ΔHtrans(water→solvent) of -11.2 and -16.7 kcal mol-1 has been obtained, respectively.40 In this case, 

the negative ΔHtrans(water→solvent) have been justified by supposing that, when the metal is 

introduced in water, the breaking of the network of strong H-bonds requires a higher energy cost with 

respect to the solvent-solvent interactions present in the other solvents.37,40 This explanation could fit 

also the Zn2+ case, where the same trend has been obtained for the transfer data. 

                                                           
i[Co(Tf2N)6]4- and [Co(H2O)6]2+ complexes as well as single ligands optimized in gas phase with the B3LYP functional41,42 

and the 6-31G(d, p) basis set for main group elements, while the Stuttgart-Dresden pseudopotential coupled with the 

relative basis set for the valence electrons was used for Co.43 Vibrational analysis was carried out to confirm that stationary 

points were minima. Co2+ always considered in its high-spin state (S = 3/2). Single-point calculations also performed 

including solvent effects by the SMD continuum model44 with parameters developed for [C4mim][Tf2N].45 Simulations 

carried out with the Gaussian 16 program.46  
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Figure 5.6. From the top to the bottom: absorption spectra of Co(Tf2N)2 0.05 M solutions in dry 

[C4mim][Tf2N] and with increasing content of water. The spectrum in pure water is also reported. 

The molar absorbance corresponds to the experimental absorbance divided by the total Co2+ 

concentration. 

 

 

5.4 Conclusions 

 

The solvation of the Co2+ ion in the [C4mim][Tf2N] ionic liquid has been studied both from a 

structural and thermodynamic point of view. The analysis of X-ray absorption data for the solution 

combined with MD simulations shows that the metal ion is coordinated by six monodentate [Tf2N]- 

anions to form [Co(Tf2N)6]4-. This differs from the spectrum of the solid compound, presenting a 

[Co(Tf2N)4]2- unit with two bidentate and two monodentate anions.  

Free energy calculations provided a ∆Gsolv that is close to that previously obtained for the Zn2+ ion in 

the same RTIL with the same simulation protocol. Negative ∆Ηsolv and ∆Ssolv have been obtained by 

means of free energy calculations carried out at variable temperature. Negative ∆Ssolv are found for 

bivalent metal ions in various solvents and reflect the increased order of the liquid by the introduction 

of the metal ion. On the other hand, the overall solvation enthalpy is the result of several contributions, 

such as the nature of the Co2+-[Tf2N]- interaction, ionic liquid reorganization and interaction between 
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the solvate and outer sphere ions.  The positive ΔGtrans obtained here is the result of the compensation 

between both negative ΔStrans and ΔHtrans terms in qualitative agreement with those obtained for the 

Zn2+ ion. The positive ΔGtrans suggests Co2+ preferential solvation by water with respect to 

[C4mim][Tf2N], as is also shown by the UV-Vis spectral changes of RTIL solutions containing 

increasing amounts of water up to the saturation limit. The spectrum of the saturated solution is nearly 

the same as that in pure water, indicating that the Co2+ ion is fully hydrated as also shown for Zn2+ 

by EXAFS spectra. 

The ΔStrans could be explained by the higher liquid order imposed when the metal ion is introduced in 

[C4mim][Tf2N] with respect to water. The largely positive ∆E for the ligand exchange calculated for 

the replacement of H2O by [Tf2N]- in the CoL6 complexes is in agreement with the general assumption 

that [Tf2N]- is a weaker ligand as compared to water, but in apparent contrast with the calculated 

negative ΔHtrans. This evidence suggests that the energetic contributions to the overall solvation 

enthalpy due to outer sphere effects are markedly different in water and [C4mim][Tf2N], so that the 

final ΔHtrans results to be negative despite the [Tf2N]- anion is a weaker ligand than H2O. 
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Chapter 6 
 

 

Ag+ ion between water and RTILs 

 

6.1 Introduction  

 

Available literature data about Ag+ solvation in RTILs provide a quite encouraging picture for the 

potential applications involving this metal ion in these solvents. This is particularly true for what 

concerns the employment of RTILs as receiving phase for chemical separations, since high extraction 

rates of Ag+ have been obtained both with Tf2N- and PF6-based ionic liquids.1,2 Solvation 

thermodynamics data seem to confirm this trend, showing favorable Gibbs free energies of transfer 

from water to [C4mim][Tf2N] and [Cnmim][BF4] (n = 2, 4) for this metal ion (see Sec. 1.3.3 of 

Chapter 1, Tab. 1.2). ΔGsolv and ΔGtrans values for the RTILs studied in this work are here reported 

for sake of clarity (Tab. 6.1). As regards Ag+ coordination in RTILs, according to an IR/Raman 

spectroscopies and DFT study in [C2mim][Tf2N], the tetrahedral [Ag(Tf2N)3]2- species has been 

supposed.3 On the other hand, in a recent study by Bortolini et al.,4 the still tetrahedral [Ag(Tf2N)2]- 

has been proposed on the basis of mass spectra and DFT calculations in gas-phase. No data are 

available about Ag+ coordination in BF4-based RTILs.  

However, to understand the properties of a metal ion in a molecular solvent, a definite picture of its 

hydration properties in aqueous solution is an essential starting point. As has been showed in the 

previous chapters, a continuous comparison of the studied metal ions between water and RTILs has 

been traced, not only from a structural but also from a thermodynamic point of view. The latter point 

is particular important for the interpretation of ΔGtrans from water, which is essential to understand 

the employment of RTILs as extracting phase. While hydration properties of transition metal ions 

like Zn2+ and Co2+ are well-known,5 this is not totally true for Ag+. In fact, even though Ag+ 

coordination in water has been a matter of interest of many research groups, no general agreement on 

its structure in aqueous solution seems to have been reached yet. In particular, its coordination number 

is far from being unambiguously determined. The general picture arising from the earliest 

experimental data is that of a tetrahedrally coordinated metal ion. This is the case of neutron 

diffraction studies reporting CNs of 3.7(5) and 4.1(3) within average Ag-O(H2O) distances of 2.40(2) 

and 2.41(2) Å, respectively.6,7 EXAFS measures have also been employed. In particular, Yamaguchi 
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et al.8 found Ag+ as coordinated by three to four water molecules at a 2.31 - 2.36 Å distance. In 

addition, Funahashi et al.9 presented a fitting of an EXAFS spectrum for Ag+ in water providing a 

CN of 4.0 and a 2.41 Å bond distance, even though the authors pointed out that these structural 

parameters have been kept fixed during the fitting procedure. On the other hand, more recent works 

have started questioning the tetrahedral coordination. In particular, by means of large-angle X-ray 

scattering (LAXS) and EXAFS measures, Persson et al.10 proposed a "2 + 2" model that should come 

from a linearly-distorted tetrahedral structure with two waters set at 2.32 Å and two at 2.48 Å. 

Differently, CNs higher than four have been proposed by Ag K- and L2-edge EXAFS measures by 

Fulton et al.11 Here the authors argued that the K-edge spectrum analysis could not distinguish 

between different CNs and that in particular a MS feature in the Fourier-transformed spectrum 

consisting in a peak at 3.5 Å could not be fitted by any of the examined geometries. On the contrary, 

the L2-edge spectrum resulted to be more sensible to the CN and only the insertion of O-Ag-O 90° 

MS paths could provide a good fit, therefore suggesting a trigonal bypiramidal or octahedral 

coordination. High CNs have been obtained also by many theoretical works. In particular, both 

classical MD or Monte Carlo simulations and hybrid techniques like QM/MM and AIMD reproduced 

an Ag+ ion as always coordinated by at least five or six water molecules with Ag-O distances ranging 

from 2.3 to 2.6 Å.12–17 The parametrization of Ag+-water potentials with the aim of reproducing some 

experimental hydration properties in classical MD simulations has been also an effort of many groups. 

In this respect, it can be observed a general difficulty in reproducing a target CN alongside with the 

experimental Ag-O bond distance. In addition, the contemporary reproduction of such structural 

properties with thermodynamic ones can be very challenging. In this regard, Spezia et al.15 presented 

a set of LJ parameters for classical MD simulations able to reproduce an Ag-O bond distance of 2.36 

Å and a good Gibbs hydration free energy with respect to the experimental. However, a CN of 5.55 

was also obtained, while the goal in the fitting procedure was 4.5. In their work about the 

parametrization of LJ parameters for several monovalent cations, Merz and Li18 proposed two sets of 

LJ couples for Ag+: an “HFE set” reproducing good ΔGhyd but an underestimated Ag-O bond (2.10-

2.14 Å) together with a CN of 4.9-5.3, and an “IOD set” providing good bond distance (2.40 Å) but 

underestimated ΔGhyd and CN of 5.7-5.9. The compromises that have to be taken in case of the 

employment of simple forms of pair-interaction potentials like the LJ one are well-known5,19,20 and 

has been already underlined also in the previous Chapters of this thesis. In addition, some authors 

also tried to employ more complex potential forms for the Ag+-H2O interaction. For example, Rode 

et al.12 developed a polynomial 6-8-9-12 potential for classical MD simulations from an ab initio 

fitting procedure. However, also in this case a high CN of 4.9 is obtained, alongside with a Ag-O 

bond of 2.59 Å.  
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For these reasons, in the first part of the work, a study about Ag+ in aqueous solution was carried out. 

To obtain a clear picture about this metal ion coordination, a fitting procedure of the XANES and 

EXAFS spectra collected on an Ag+ solution in water have been carried out. AIMD simulations with 

the Car-Parrinello approach have been performed on the same system to check the coordination 

reproduced at quantum-mechanical level of theory. In the second part, the task of reproducing Ag+ 

structural and thermodynamic hydration properties in classical MD simulations has been faced with 

different strategies. To this purpose, a scan of Ag+ LJ parameters was performed to check the 

dependency of Ag+ CN and bond distance with water upon σ and ε variation and if the employment 

of a simple LJ potential is still justified. In addition, the generation of a new Ag-H2O potential 

obtained from an ab initio fitting procedure has been carried out and is reported in Appendix A.  

It has to be underlined that improvements in the liquid structure description of AgCl by means of 

dipolar and quadrupolar polarization has been discussed in literature.21 This is beyond the purpose of 

this study, aimed to explore the advantages and limits of classical MD and provide a reliable model 

based on experimental data without the inclusion of explicit polarizability. 

In the second part, the knowledge acquired from the study of Ag+ in water has been applied to MD 

simulations in the RTILs. In particular, MD simulations have been performed in order to obtain 

structural and thermodynamic data about Ag+ solvation in [C4mim][Tf2N] and [C4mim][BF4].  

 

Table 6.1. Ag+ literature experimental Gibbs free energies of solvation (ΔGsolv) and transfer from 

water (ΔGtrans) for the RTILs studied in this work obtained as reported in Sec. 1.3.3 of Chapter 1 at 

298.15 K. Data in kcal mol-1. 

RTIL ΔGsolv ΔGtrans 

[C4mim][Tf2N]  
-107.1 

-118.4 
-4.4 

[C4mim][BF4] 

-115.2 

-126.4 

-106.7 

-118.0 

-12.4 

-4.0 

 

 

 

 

 

 



Chapter 6 
 

137 
 

6.2 Methods 

 

6.2.1 Ag+ in water 

 

6.2.1.1 X-Ray absorption measurements 

 

A weighed amount of anhydrous silver perchlorate AgClO4 (G. F. Smith) was dissolved in Millipore 

Q filtered water to obtain a 2.0 M solution. Silver K-edge XAS were collected in transmission mode 

at the 4-1 beamline of the Stanford Synchrotron Radiation Laboratory (SSRL). The EXAFS station 

was equipped with a Si[220] double-crystal monochromator while the storage ring was operating at 

3.0 GeV with a maximum current of 100 mA. The energy scales of the XAS spectra were calibrated 

by assigning the first inflection point of the K-edge of a silver foil to 25514 eV. Three scans were 

averaged to obtain a satisfactory spectral quality. 

 

6.2.1.2 EXAFS data analysis 

 

Data analysis of the EXAFS part of the spectrum has been carried out with the GNXAS method. For 

the generation of the interatomic potential in the muffin-tin approximation, two structures consisting 

in a linear [Ag(H2O)2]+ and trigonal bipiramidal [Ag(H2O)5]+ clusters were employed in order to 

represent the low and high CNs case, as it has been proven that the potential is only weakly dependent 

on the selected geometry.22 SS signals coming from first shell oxygen atoms as well as with hydrogens 

were included in the fitting procedure. Signals from a second shell of oxygen atoms and the O-Ag-O 

three-body 180° MS have been found to have negligible amplitude. Each two-body distribution has 

been modelled as a Γ-like function. During the fitting procedure, all structural parameters have been 

optimized with the exception of CN, which has been constrained with values ranging from 1.7 to 6.0 

every ~0.1 units. In addition, the "2 + 2" model was also tested by including an additional Ag-O SS 

signal from two distal oxygen atoms initially set at 2.48 Å. Among non-structural parameters, E0 and 

the KN2&3, KN1 and KM4&5 double-electron excitation channels identified respectively at 64, 110 and 

409 eV above the threshold energy were optimized. S0
2 was kept fixed to 0.99. 

 

6.2.1.3 XANES data analysis 

 

The analysis of the XANES part of the spectrum collected on the Ag+ aqueous solution has been 

carried out with the MXAN code.23 The interatomic potential has been calculated in the framework 
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of the MT approximation using a complex optical potential based on the local density approximation 

of the excited photoelectron self-energy. The self-energy has been calculated with the HL scheme 

using only the real part of the HL potential, while inelastic losses are accounted by convolution of the 

theoretical spectrum with a Lorentzian function having an energy-dependent width (see Sec. 3.2.2 of 

Chapter 3).  

The XANES spectrum has been analyzed starting from clusters with CNs of 2, “2+2”, 4 and 6 with 

an average Ag-O bond distance of 2.34 Å, as found from the EXAFS analysis (vide infra). The fitting 

procedure has been carried out by optimizing both the structural and non-structural parameters by 

minimizing the residual function Rsq between the theoretically generated and experimental spectra.  

 

6.2.1.4 Car-Parrinello Molecular Dynamics 

 

Ab initio MD simulations of Ag+ in water have been carried out with the Car-Parrinello approach by 

means of the CPMD code.24 The BLYP functional combining Becke’s GGA approximation25 for 

exchange and Lee-Yang-Parr26 for correlation energies was employed with Grimme’s empirical 

correction for dispersion.27 This functional has been already shown to give good results for the 

structure and dynamics of water28,29 and has been already employed in the study of Ag+ in aqueous 

solution.14–16 Norm-conserving Troullier-Martins pseudo-potentials30 have been used for the Ag, O 

and H atoms with a 70 Ry energy cut-off. Tests with higher cut-offs up to 100 Ry have been carried 

out and did not show any difference in the coordination tendencies of the metal ion. Electronic degrees 

of freedom have been associated with a fictitious mass of 400 a.u. and a time step of 4 a.u. was 

employed for all the simulations. This augmented mass for electrons has been demonstrated to be 

necessary for the correct representation of bulk water dynamic properties in AIMD.31,32  

The system consisting in a periodic cubic box of 14.7 Å edge with one Ag+ ion and 100 water 

molecules was previously equilibrated with a 10 ns classical MD run in NVT conditions at 298 K. 

Different initial geometries for Ag+ coordination, i.e. CNs of 4 and 6, were employed to check the 

dependence from the starting configuration. A geometry optimization was performed with the CPMD 

code and the system was equilibrated in NVT for 2 ps at 298 K, then for 2 ps at 400 K and brought 

again to 298 K for further 4 ps. A production run was carried out for 30 ps at 298 K. Temperature 

was kept constant with the Nosé-Hoover thermostat with a coupling frequency of 1500 cm-1. The 

fictitious electronic kinetic energy was constantly monitored during all simulation time not to display 

any relevant drift.  

Information about the second hydration sphere was also obtained by means of combined distribution 

functions (CDFs) between distances and angles. CDFs has been turned out to be a useful tool for the 
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inspection of the three-dimensional arrangement of water molecules around metal ions in aqueous 

solutions.33 To this purpose, O1st-Ag-O2nd angles were considered as those formed between the vector 

going from Ag+ to one of the first shell coordinating oxygens (that was kept fixed) and vectors 

connecting Ag+ with second shells oxygen atoms. These angles were plotted against the Ag-O2nd 

distances between the silver atom and outer-sphere oxygens. The same procedure was applied on 

hydrogen atoms. In addition, the spatial distribution function (SDF) of O atoms around Ag+ was 

calculated. The TRAVIS code34 was employed for CDF and SDF calculation. 

 

6.2.1.5 Lennard-Jones parameters for the Ag+ ion 

 

The dependency of Ag+ coordination in classical MD upon the employed LJ parameters was checked 

by performing simulations of the metal ion in water with different combinations of Ag+ σ and ε values. 

To this purpose, a box with one Ag+ and 500 TIP3P35 water molecules was built and first minimized, 

then for each LJ couple a 500 ps equilibration and 1 ns production run were carried out in NPT 

conditions (298.15 K, 1 atm). LJ parameter σ was varied between 0.4 and 2.8 Å at constant ε (1.6736 

kcal mol-1), while ε was varied between 0.4184 and 1087.84 kcal mol-1 at constant σ (1.07 Å). For 

each couple of parameters, Ag+ CN and average Ag-O(H2O) bond distance were calculated from Ag-

O(H2O) pairs g(r). Free energy calculations were carried out with the chosen LJ final values by means 

of a 15 λ windows decoupling. The obtained LJ parameters were tested for both TIP3P and SPC/E 

water models. Simulations have been performed with Gromacs 5.1.6 program.36 

 

6.2.2 Ag+ in RTILs 

 

Classical MD simulations of Ag+ have been performed in the [C4mim][Tf2N] and [C4mim][BF4] 

RTILs. The composition of the simulated boxes is reported in Tab. 6.2. These numbers of ions and 

box dimensions were chosen in order to reproduce pure RTILs densities and infinite dilution 

conditions for the metal. 
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Table 6.2. MD boxes details for the simulation of Ag+ in the [C4mim][Tf2N] and [C4mim][BF4] 

RTILs.   

 [C4mim][Tf2N] [C4mim][BF4] 

Ag+ 1 1 

[C4mim]+ 217 199 

[Tf2N]-/[BF4]- 218 200 

Box edge (Å)* 47.277 39.01 

*Initial side length before NPT equilibration. 

 

The CL&P force field37–39 was employed for [C4mim][Tf2N]. For [C4mim][BF4], CL&P was used in 

combination with Wang et al.40 parameters for [BF4]-, as this combination was demonstrated to 

provide the best results for Zn2+ in this RTIL (Sec. 4.3.2 of Chapter 4). Ag+ was represented with 

the LJ parameters obtained in this work reproducing a tetrahedral coordination in water (vide infra) 

and with Merz and Li “HFE” set.18  

The same simulation protocol employed for Zn2+ thermodynamic calculations was used (Sec. 4.2.1.1). 

Ag+ single-ion solvation free energies in the RTILs have been calculated with a 15 λ windows 

decoupling by performing 5 ns equilibrations and 10 ns production runs for each λ value. Simulations 

have been carried out with Gromacs 5.1.6 program.36  

 

 

6.3 Results 

 

6.3.1 Ag+ in water 

 

6.3.1.1 XAS results  

 

A fitting procedure of the Ag K-edge EXAFS spectrum collected on the AgClO4 solution in water 

has been carried out. To this purpose, χ(k) theoretical signals associated with first shell Ag-O and Ag-

H SS paths have been generated, while the contribution from a second shell of oxygen atoms has 

turned out to provide negligible amplitude. First, least-squares fits were performed in the 2.7 – 15.0 

Å-1 k range for fixed CNs of the Ag+ ion comprised between 1.7 and 6.0. The goodness of the fit upon 

CN variation has been evaluated by checking the evolution of the obtained residual function Rsq and 

of the σ2 Debye-Waller factor for the Ag-O path, which are reported in Fig. 6.1. As can be observed, 

the smallest residual between the theoretical and experimental spectra is obtained for a CN of 2.0, 
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while Rsq tends to increase exponentially for greater coordination numbers (Fig. 6.1 A). For what 

concerns σ2, the 0.013 Å2 value obtained for CN = 2.0 is in line with typical Debye-Waller factors 

usually observed for metal ions in disordered liquid systems,5,20,41,42 while it tends to rise linearly 

reaching values of ~0.05 Å2 for CNs close to 6.0 (Fig. 6.1 B).  

As a consequence, the best-fit is obtained for a CN of 2.0, which is shown in Fig. 6.2 together with 

the single theoretical signals, the total theoretical contribution compared with the experimental 

spectra and the resulting residuals. A complete list of the optimized parameters is reported in Tab. 

6.3. As can be observed, the agreement between the theoretical and experimental data is very good, 

as is also evident from the comparison of the FT spectra reported in the lower panel of Fig. 6.2. From 

the generated theoretical signals, it is evident that the EXAFS oscillation is largely dominated by the 

Ag-O SS, while the Ag-H path provides a much little contribution. The mean Ag-O bond distance 

resulted to be 2.34(2) Å and is in line with previous determinations reported in literature,6–8,10 while 

the obtained Ag-H distance of 3.02(4) Å is in agreement with the geometry of the water molecule.  

As regards the tetrahedral distorted "2 + 2" model, the SS signal related to an additional Ag-O path 

arising from two distal oxygen atoms initially placed at 2.48 Å resulted to provide a worst fit. A 

special mention has to be devoted to the collinear O-Ag-O MS, which turned out to provide negligible 

amplitude to the EXAFS oscillation. It is known that this kind of three-body path can have a marked 

contribution only if a focusing effect (bond angle ~180°) is present or for particularly short bond 

distances.5,20,41,42 In our case, the long Ag-O bond distance of 2.34 Å is probably responsible for the 

negligible contribution provided by this MS path. 

 

 

Figure 6.1. Values of the A) Rsq residual function and of the B) σ2 Debye-Waller factor obtained 

from the EXAFS fitting procedure for all the tested Ag+ coordination numbers (CN). 

 



Chapter 6 
 

142 
 

 

Figure 6.2. Upper panel: analysis of the Ag K-edge EXAFS spectrum of the 2 M AgClO4 in water. 

From the top the theoretical Ag-O and Ag-H SS signals are shown, as well as the total theoretical 

signal (blue line) together with the experimental spectrum (red dots) and the correspondent residuals 

(green line). Lower panel: non-phase shift corrected Fourier Transforms of the best-fit EXAFS 

theoretical signal (blue line) of the experimental data (red dots) and of the residual curve (green line). 

 

Table 6.3. Best-fit coordination number CN, average distance R, Debye-Waller factor σ2 and 

asymmetry index β of the Ag-O and Ag-H distributions as obtained during the EXAFS fitting 

procedure for the 2 M AgClO4 solution in water. 

Path CN R (Å) σ2 (Å2) β 

Ag-O 2.0 2.34 0.013 0.14 

Ag-H 4.0 3.02 0.020 0.00 
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It is known that a complete recovery of the three-dimensional displacement of the scattering atoms 

around the photoabsorber can be obtained by the analysis of the XANES part of the X-ray absorption 

spectrum.43 Therefore, to further confirm the results obtained with the EXAFS analysis, a fitting 

procedure of the XANES spectrum of the Ag+ solution in water has been performed. To shed light 

into the different potential CNs of the metal ion, a fitting procedure was carried out by optimizing the 

structural parameters starting from clusters with CNs of 2 (linear), “2+2” (linearly-distorted 

tetrahedral), 4 (tetrahedral) and 6 (octahedral) for the metal ion. The result of the fitting procedures 

is showed in Fig. 6.3. As can be observed, the best fitting is obtained for the cluster with the linear 

coordination, which shows a very good agreement between the experimental and theoretical spectra 

(Rsq = 1.1). Differently, the value of the residual function tends to increase following the increase in 

the CN, up to a very poor fit obtained with the octahedral coordination (Rsq = 1.9). In particular, a 

clear mismatch in the first and third oscillations after the threshold energy is observed for CNs higher 

than two. Therefore, XANES seems to confirm the preference for the linear coordination of the Ag+ 

ion in water solution already suggested by the EXAFS analysis. 

 

 

Figure 6.3. From left to the right: comparison of the XANES experimental spectrum (red dots) with 

the theoretical ones (black lines) optimized by starting from clusters with Ag+ CN of 2 (linear), “2+2” 

(linearly-distorted tetrahedral), 4 (tetrahedral) and 6 (octahedral). For each CN, the corresponding 

optimized cluster is shown as well as inset.   

 

6.3.1.2 CPMD simulation results 

 

The structural properties of Ag+ in water have been investigated also by means of ab initio MD 

simulations with the CPMD method.24 The calculated Ag-O g(r) is shown in Fig. 6.4 A. As can  be 
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observed, the Ag-O distribution presents a first intense peak centered at 2.20 Å integrating 2.0 oxygen 

atoms. This result shows that CPMD is able to reproduce the Ag+ ion as linearly coordinated, as can 

also be observed from the snapshot reported in Fig. 6.4 B. It has to be noted that the choice of the 

initial configuration, i.e. starting from clusters with pre-fixed tetrahedral or octahedral geometries, 

resulted to have no effect on the description of Ag+ first hydration shell, as water coordination towards 

the metal turned out to become linear after a few picoseconds already during equilibration time.  

However, the Ag-O bond distance is underestimated with respect to that determined by the EXAFS 

analysis (Tab. 6.3). In addition, the Ag-O and Ag-H distributions obtained from the EXAFS fitting 

have been modelled as Γ-like functions and compared with the Ag-O and Ag-H g(r)’s calculated from 

the CPMD simulation. The comparison is shown in Fig. C.7 of Appendix C. Firstly, here it can be 

observed that the Ag-O and Ag-H distributions from CPMD have a first maximum at shorter distances 

with respect to the experimental. However, the mismatch between the simulation and the 

experimental data is not only about average bond distances. In fact, from Fig. C.7 it can also be 

observed that the Debye-Waller factor is smaller for the distributions obtained from the CPMD 

simulation, provoking peaks that are much more intense with respect to those found from EXAFS 

data analysis. In other words, the AIMD simulation reproduces an Ag-H2O interaction that is too stiff 

with respect to the experimental. This is a quite surprising result, if we take into account that this 

interaction is derived from ab initio principles in case of CPMD. 

 

 

Figure 6.4. A) Ag-O pairs radial distribution function g(r) (black line, left scale) and corresponding 

integration number (red line, right scale) and B) trajectory snapshot (balls and sticks: Ag+ and 

coordinating water molecules, wireframe: bulk water) as obtained by the CPMD simulation. 

 

Fig. 6.4 A also shows the presence of a second shell at approximately 3.5 Å, but it consists in a very 

broad peak due to the short simulation time characteristic of AIMD. To get further insights into the 

arrangement of the outer-sphere solvent, Ag-O and Ag-H CDFs were calculated as reported in Sec. 
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6.2.1.4 and the results are shown in Fig. 6.5. As can be observed, a first intense area in the Ag-O 

distribution results at ~3.25 Å, these water molecules forming a 90° angle with the vector formed by 

Ag+ and first shell oxygen atoms. In addition, two areas of high probability are observed at a ~4 Å 

distance for angles of ~45° and ~135°, respectively. Therefore, the CDF analysis was able to separate 

the contributions from the second hydration sphere that were convoluted in one broad peak in Fig. 

6.4 A. Our supposition is that the second hydration sphere set at ~3.25 Å is represented by water 

molecules that could partially weakly interact with the Ag+ ion and partially be caught in the H-bonds 

network formed by the outer-sphere waters. As regards the area at ~4 Å, it could belong to water 

molecules forming H-bonds with the two coordinating waters of the first hydration sphere. In 

addition, from the CDF in Fig. 6.5 B it can be observed that the higher probability areas for hydrogens 

are at distances comparable with those obtained for the oxygen atoms of the corresponding waters. 

This result could mean that outer-sphere water molecules are oriented in a planar manner with respect 

to the O1st-Ag-O1st axis, this being a further proof that their disposition is more governed by water-

water interactions with respect to the Ag-H2O one. A representative snapshot of this picture is 

reported in Fig. C.8 of Appendix C.  

The SDF between silver and outer-sphere water is shown in Fig. 6.6. The SDF results in a first area 

of density forming a ring around the Ag+ ion, while the two coordinating waters are embedded by 

two further rings. This confirms the picture supposed by the CDF analysis (Fig. 6.5), being the ring 

around Ag+ connected with the density area set at ~3.25 Å, and the latter two rings with the two areas 

at ~4 Å in Fig. 6.5 representing water molecules forming H-bonds with the coordinating ones.  
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Figure 6.5. Combined distributions functions (CDFs) between the O1st-Ag-O2nd/H2nd angles and Ag-

O2nd/H2nd distances calculated from the CPMD simulation. Angles were considered as those formed 

between the vector going from Ag+ to one of the first shell coordinating oxygens and vectors 

connecting Ag+ with second shells oxygen/hydrogen atoms. The Ag-O2nd and Ag-H2nd distances are 

those between the silver atom and outer-sphere oxygens/hydrogens. P(r,θ) is the probability function 

of finding the inspected particle at that distance and angle. Note than no information about the first 

hydration shell is here reported, as can be observed from the blank area up to ~2.5 Å.  
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Figure 6.6. Spatial distribution function (SDF) between the O1st-Ag-O1st vector and outer-sphere 

oxygen atoms. Balls and sticks: Ag+ and first shell water molecules, solid surface: SDF (isovalue = 

105). Two different orientations are shown. 

 

6.3.1.3 Reproduction of Ag+ coordination in water with classical MD 

 

Classical MD simulations of Ag+ in water have been carried out by varying the metal ion LJ 

parameters to check the dependency of the reproduced coordination upon σ and ε. The obtained Ag+ 

coordination number and Ag-O average bond distance are reported in Fig. 6.7 in function of the varied 

LJ parameter. A direct proportionality between CN and bond distances against σ and ε is observed. 

In particular, to reproduce a bond length which is close to the experimental (2.34 Å, Tab. 6.3), a CN 

between 5 and 6 is obtained. Otherwise, to get a CN lower than ~5, the bond distance results to be 

underestimated.  

This was an expected result, as it is related to the employment of the simple LJ potential form that 

has already been underlined. Taking into account this trend, the reproduction of a linear coordination 

and thus a CN of 2 seems to be impossible to obtain with this kind of function. In addition, the 

generation of a new Ag-H2O interaction potential has been carried out and the results are reported in 

Appendix A. To this purpose, ab initio data were fitted with a polynomial 4-6-8-12 potential form. 

The resulting coordination consists in 6.0 water molecules at an average Ag-O distance of 2.31 Å. A 

bond in good agreement with the experimental (Tab. 6.3) was therefore obtained together with an 

overestimated CN. This result shows that also the employment of a more complex, but still spherical 

potential, is not sufficient to reproduce asymmetric coordinations like for example the linear case.  
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Figure 6.7. MD calculated Ag+ coordination number CN (black dots, left scales) and average distance 

with coordinating water oxygen atoms (red dots, right scales) against Ag+ LJ parameters A) σ and B) 

ε. 

 

As a consequence, LJ parameters that seemed to reproduce a CN of ~4 (σAg = 1.50 Å, εAg = 0.0956 

kcal mol-1) were chosen and MD simulations were carried out to further test the performance of this 

set in the reproduction of structural and thermodynamic properties of Ag+ in water. Simulations were 

performed both in TIP3P and SPC/E water and compared with Merz et al. “IOD” and “HFE” LJ sets 

for Ag+.18 The results are reported in Tab. 6.4. As can be observed, a CN of 4.0 reproducing a 

tetrahedral coordination for Ag+ is obtained with both the employed water models, as can also be 

observed from the snapshot and the Ag-O pairs g(r) shown in Fig. 6.8. The rAg-O average distance 

resulted of 1.93 Å with TIP3P water and 1.91 Å with SPC/E (Tab. 6.4), thus underestimated with 

respect to the bond distance obtained by EXAFS data analysis (Tab. 6.3). Every attempt of increasing 

this bond length has turned out to provide CNs higher than 4.0 and the loss of the tetrahedral 

coordination. The calculated ΔGhyd (Tab. 6.4) are in well agreement with the experimental values of 

-102.8 and -114.0 kcal mol-1.44,45 It has to be noted that, according to us, a set of LJ parameters 

reproducing a tetrahedrally-coordinated Ag+ ion in water together with good estimation of ΔGhyd is 

not still present in literature for classical MD.  

As regards the results obtained with the parameters from Merz et al.,18 they are very close to those 

obtained by the authors in the parametrization of the LJ set, providing a five-fold coordinated Ag+, 

good ΔGhyd and slight underestimated bond distance for the “HFE” set (Tab. 6.4). As expected, the 

“IOD” set best matches the experimental Ag-O(H2O) bond, but this is traduced in an increase of the 

CN and an underestimation of ΔGhyd. 
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Table 6.4. MD calculated Ag+ coordination in water and Gibbs free energy of hydration (ΔGhyd, kcal 

mol-1) with the LJ parameters obtained in this work and from Merz et al.18 

LJ parameters Water CNO
a
 rAg-O (Å)b ΔGhyd (kcal mol-1)* 

This work 
TIP3P 4.0 1.93 -118.3 

SPC/E 4.0 1.91 -117.3 

Merz “HFE”  SPC/E 4.9 2.09 -102.7 

Merz “IOD” SPC/E 5.8 2.37 -84.3 
aAg-O(H2O) first g(r) peak integration number; baverage bond distance between Ag+ and the coordinating oxygen atoms. 

*Errors below the first decimal digit. 

 

 

Figure 6.8. A) Ag-O(H2O) pair g(r) radial distribution function (black line, left scale) and 

corresponding integration number (red line, right scale) within B) MD snapshot obtained from the 

simulation of Ag+ in water with the LJ parameters found in this work (data showed for the simulation  

with SPC/E water). 

 

The LJ parameters set obtained in this work was furtherly tested by calculating Ag+ hydration 

enthalpy and entropy in SPC/E water. To this purpose, free energy calculations were performed for 

five different temperatures in the 280 – 360 K range. The resulting ΔG/T vs. 1/T plot is shown in Fig. 

6.9, while the calculated ΔHhyd and ΔShyd are reported in Tab. 6.5 together with the experimental data. 

Also in this case large negative enthalpy and small negative entropy are obtained, as expected for 

metal ion hydration.44–46 The MD calculated ΔHhyd is well in agreement with the experimental, in 

particular with the value reported by Ahrland.45 As regards ΔShyd, the calculated value matches very 

well the experimental of Marcus et al.,46 while the value obtained by Ahrland’s data is more 

underestimated. It has to be noted that in their works Ahrland and Marcus provided a direct 
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determination of ΔHhyd and ΔShyd respectively, while ΔShyd has been calculated in this work by ΔGhyd
45 

and ΔHhyd
45 for Ahrland and ΔHhyd was calculated by ΔGhyd

44 and ΔShyd
46 for Marcus. 

 

 

Figure 6.9. ΔG/T vs. 1/T plots obtained from calculated Ag+ Gibbs free energies in water at different 

temperatures (R2 = 0.99). Ag+ represented with LJ parameters obtained in this work. 

 

Table 6.5. Hydration enthalpies (kcal mol-1) and entropies (kcal mol-1 K-1) for Ag+ calculated from 

MD simulations (obtained from plot in Fig. 6.9) and from experimental data.  

MD calculated Experimental 

ΔHhyd ΔShyd ΔHhyd ΔShyd 

-125.9 ± 0.2 -0.029* 
-109.6a

 

-115.445
 

-0.02346
 

-0.005b
 

aΔHhyd calculated from Marcus’ ΔGhyd
44 and ΔShyd.46 bΔShyd calculated from Ahrland’s ΔGhyd and 

ΔHhyd.45 *Error below the third decimal digit. 

 

6.3.2 Ag+ in RTILs 

 

Classical MD simulations have been performed to obtain data about Ag+ solvation in [C4mim][Tf2N] 

and [C4mim][BF4]. As was reported in Sec. 6.3.1.1, an experimental evidence for a linear 

coordination of Ag+ in water has been obtained. However, this study also showed the impossibility 

of reproducing a linear coordination for this metal ion with the employment of a spherical potential, 

in particular in the LJ case (Sec. 6.3.1.3). In addition, in absence of XAS data about Ag+ in these 

RTILs, the only experimental evidence points out a tetrahedral coordination for this metal ion in 
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Tf2N-based ionic liquids,3,4 while no information is available for BF4-based ones. For these reasons, 

to get thermodynamic data about Ag+ solvation in [C4mim][Tf2N] and [C4mim][BF4], the metal ion 

was represented both with the LJ obtained in this work providing a tetrahedral coordination in water 

(Sec. 6.3.1.3) and with Merz et al. “HFE” set.18  

The obtained Ag-O(Tf2N) and Ag-N(Tf2N) g(r)’s for simulations in [C4mim][Tf2N] with both the LJ 

sets are reported in Fig. 6.10, while the Ag-F(BF4) and Ag-B(BF4) g(r)’s for [C4mim][BF4] are shown 

in Fig. 6.12. Details of the first solvation sphere structure in the two RTILs are reported in Tab. 6.6. 

In [C4mim][Tf2N], a tetrahedral coordination with four monodentate [Tf2N]- is reproduced with the 

LJ obtained in this work, while with Merz et al. parameters a five-fold coordination with one bidentate 

and three monodentate [Tf2N]- is obtained, as can also be observed from the snapshots reported in 

Fig. 6.11. The mixed coordination in case of Merz et al. parameters can be also observed from the 

Ag-N g(r) in Fig. 6.10 D. Here two peaks are present, the less intense relative to bidentate 

coordination (integrating one anion) and the more intense to the monodentate-binding form 

(integrating three).  

As regards [C4mim][BF4], a similar picture is observed. Here Ag+ is bound in a tetrahedral fashion 

by four monodentate [BF4]- with the LJ obtained in this work, while five anions coordinate the metal 

(one bidentate and three monodentate) when Merz et al. parameters are employed. The correspondent 

snapshots are reported in Fig. 6.13. Also in this case, the mixed coordination mode is evident from 

the Ag-B g(r) in Fig. 6.12 D. As expected, for both RTILs a higher average bond distance between 

Ag+ and the coordinating atoms of the anions is obtained with Merz et al. parameters with respect of 

the LJ couple of our work (Tab. 6.6). 

 

Table 6.6. MD results of Ag+ first solvation shell structure in [C4mim][Tf2N] and [C4mim][BF4] with 

both the tested LJ sets for the metal ion. 

RTIL Ag+ LJ parameters rAg-O (Å)a CNO
b CNN

c 

[C4mim][Tf2N] 
This work 1.87 4.0 4.0 

Merz “HFE”  2.09 5.1 4.0 

  rAg-F (Å)d CNF
e CNB

f 

[C4mim][BF4] 
This work 1.85 4.2 4.0 

Merz “HFE”  2.01 5.0 4.0 
aAverage bond distance between the Ag+ ion and the coordinating oxygen atoms of the first solvation shell [Tf2N]- anions; 
bAg-O(Tf2N) first g(r) peak integration number; cAg-N(Tf2N) first g(r) peak integration number. dAverage bond distance 

between the Ag+ ion and the coordinating oxygen atoms of the first solvation shell [BF4]- anions; eAg-F(BF4) first g(r) 

peak integration number; fAg-B(BF4) first g(r) peak integration number. In case of Merz et al. sets, the cumulative 

integration between the first and second peaks has been calculated for Ag-N and Ag-B. 



Chapter 6 
 

152 
 

 

Figure 6.10. MD calculated Ag-O(Tf2N) and Ag-N(Tf2N) pairs radial distribution functions g(r)’s 

obtained from simulations in [C4mim][Tf2N] with LJ parameters for Ag+ obtained in this work (A 

and C) and from Merz et al. “HFE” set (B and D) (black lines, left scales). The correspondent 

integration numbers (red lines, right scales) are also reported. 
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Figure 6.11. MD snapshots of Ag+ in [C4mim][Tf2N] obtained by representing the metal ion A) with 

the LJ parameters obtained in this work and B) from Merz et al. (balls and sticks: Ag+ and 

coordinating [Tf2N]-, wireframe: second shell [C4mim]+). 

 

 

Figure 6.12. MD calculated Ag-F(BF4) and Ag-B(BF4) pairs radial distribution functions g(r)’s 

obtained from simulations in [C4mim][BF4] with LJ parameters for Ag+ obtained in this work (A and 

C) and from Merz et al. “HFE” set (B and D) (black lines, left scales). The correspondent integration 

numbers (red lines, right scales) are also reported. 
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Figure 6.13. MD snapshots of Ag+ in [C4mim][BF4] obtained by representing the metal ion A) with 

the LJ parameters obtained in this work and B) from Merz et al. (balls and sticks: Ag+ and 

coordinating [BF4]-, wireframe: second shell [C4mim]+). 

 

6.3.2.1 Solvation thermodynamics  

 

Ag+ Gibbs free energies of solvation in [C4mim][Tf2N] and [C4mim][BF4] as well as free energies of 

transfer from water to the RTILs have been calculated. Also in this case, the metal ion has been 

represented both with LJ parameters obtained in this work and with Merz et al set.18 The calculated 

values are reported in Tab. 6.7. As can be observed, free energies of solvation in good agreement 

with the experimental data (Tab. 6.1) are obtained for both the studied RTILs with the LJ from this 

work. In addition, the free energies of transfer from water to [C4mim][Tf2N] and [C4mim][BF4] result 

to be positive. Therefore, the picture of an Ag+ ion that is more favorably solvated in these RTILs 

than in water is confirmed, in agreement with the experimental data (Tab. 6.1). In addition, ΔGtrans 

for [C4mim][BF4] is more negative than that for [C4mim][Tf2N], thus MD simulations were also able 

to reproduce the more favorable solvation capabilities of the former RTIL in comparison with the 

latter.  
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Table 6.7. MD calculated Gibbs free energies of solvation in [C4mim][Tf2N] and [C4mim][BF4] 

(ΔGsolv) as well as transfer from water to the RTILs (ΔGtrans) obtained at T = 298.15 K and P = 1 atm 

for the Ag+ ion. Values in kcal mol-1. 

RTIL Ag+ LJ parameters ΔGsolv ΔGtrans(water→RTIL)a 

[C4mim][Tf2N] 
This work -125.0 ± 0.9 -7.7 ± 0.9   

Merz “HFE” -109.1 ± 0.5 -6.5 ± 0.5 

    

[C4mim][BF4] 
This work -130.9 ± 0.4 -13.6 ± 0.4  

Merz “HFE” -115.9 ± 0.4 -13.2 ± 0.4 
aGibbs free energy of transfer from water to the RTIL calculated as ΔGtrans = ΔGsolv - ΔGhyd with the correspondent value 

reported in Tab. 6.4 for hydration.  

 

To inspect the reasons of this favorable transfer, also the enthalpies and entropies of solvation in 

[C4mim][Tf2N] and [C4mim][BF4] were calculated by represented the Ag+ ion with the LJ from this 

work. To this purpose, free energy calculations were performed for five different temperatures in each 

RTIL in the 300 – 400 K temperature range. The obtained ΔG/T vs. 1/T plots are shown in Fig. 6.14. 

Thanks to the data obtained for hydration with the same set of parameters (Tab. 6.5), also the 

enthalpies and entropies of transfer from water to the RTILs have been calculated and the obtained 

values are reported in Tab. 6.8. As can be observed, ΔHsolv is more negative than ΔHhyd (Tab. 6.5) 

for both the RTILs and the same is found for the entropic term. As a consequence, both ΔHtrans and 

ΔStrans are negative (Tab. 6.8). The enthalpic contribution seems therefore to favor the transfer of Ag+ 

from water to [C4mim][Tf2N] and [C4mim][BF4], as was found for Zn2+ and Co2+. However, 

differently from zinc and cobalt in [C4mim][Tf2N], the unfavorable ΔStrans is not negative enough to 

prevent the transfer and a favorable ΔGtrans is therefore obtained (Tab. 6.7). The negative ΔStrans has 

been previously attributed to the higher order imposed by the metal ion to the RTIL phase with respect 

to the aqueous phase when the transfer occurs (Sec. 4.3.1.2 of Chapter 4 for Zn2+ and Sec. 5.3.2 of 

Chapter 5 for Co2+). In addition, in a similar way to the picture obtained here, a favorable free energy 

of transfer caused by negative transfer enthalpy and only slight negative entropy has been found for 

Zn2+ in [C4mim][BF4] (Sec. 4.3.2 of Chapter 4). In this last case, the explanation was the less order 

imposed by Zn2+ in the [C4mim][BF4] RTIL with respect to [C4mim][Tf2N], where the transfer was 

unfavorable. The only slight unfavorable ΔStrans of Ag+ for both [C4mim][Tf2N] and [C4mim][BF4] 

could be instead be attributed to the different coordination obtained for this metal ion with respect to 

Zn2+ and Co2+ (tetrahedral instead of octahedral) and a consequent lower extent of order imposed by 
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the metal in the RTIL. Note that the degree of order imposed in the RTIL phase is still higher than 

that in water, since ΔStrans is negative. 

 

 

Figure 6.14. ΔG/T vs. 1/T plots obtained from calculated Ag+ Gibbs free energies A) in 

[C4mim][Tf2N] and B) in [C4mim][BF4] at different temperatures (R2 = 0.99). 

 

Table 6.8. MD calculated enthalpy (kcal mol-1) and entropy (kcal mol-1 K-1) of solvation for Ag+ in 

[C4mim][Tf2N] and [C4mim][BF4] transfer from water to the RTILs obtained from the plots in Fig. 

6.14. 

RTIL ΔHsolv ΔSsolv   ΔHtrans(water→RTIL)a ΔStrans(water→RTIL)b 

[C4mim][Tf2N] -139.3 ± 0.3 -0.047 ± 0.001 -13.4 ± 0.5 -0.018 ± 0.001 

[C4mim][BF4] -143.9 ± 1.7 -0.045 ± 0.005 -18.0 ± 1.9 -0.016 ± 0.005  
aEnthalpy of transfer from water to RTILs calculated as ΔHtrans(water→RTIL) = ΔHsolv – ΔHhyd; bEntropy of transfer from 

water to RTILs calculated as ΔStrans(water→RTILs) = ΔSsolv – ΔShyd using the MD calculated values reported in Tab. 6.5 

for hydration. 

 

 

6.4 Conclusions 

 

A study about the Ag+ ion in the [C4mim][Tf2N] and [C4mim][BF4] RTILs has been carried out. As 

a preliminary part of this research, the hydration properties of Ag+ have been studied both from an 

experimental and theoretical point of view. In this respect, EXAFS and XANES data analysis 

performed on the X-ray absorption spectrum of Ag+ in aqueous solution seem to suggest a linear 

coordination of this metal ion in water. AIMD simulations with the Car-Parrinello approach 

confirmed this observation and provided a picture also about the second hydration sphere. However, 



Chapter 6 
 

157 
 

the simultaneous reproduction of Ag+ structural and thermodynamic hydration features in good 

agreement with the experimental data is found to be difficult in classical MD. In particular, when a 

LJ potential for the Ag-H2O interaction is employed, a compromise between the metal ion CN and 

average bond distance with water has to be taken into account. More complex potential forms, but 

still spherical, seem not to solve this issue. In this work, LJ parameters reproducing a tetrahedral 

coordinated Ag+ in water within good estimation of ΔGhyd, although underestimated Ag-O bond 

distance, have been obtained.  

Classical MD simulations of Ag+ in [C4mim][Tf2N] and [C4mim][BF4] showed that thermodynamic 

data in good agreement with the experimental can be obtained. In particular, ΔGsolv in the RTILs and 

ΔGtrans from water to the ionic liquids have been calculated, depicting an Ag+ ion that is more 

favorably solvated in the RTILs than in water. Enthalpies and entropies of solvation and transfer have 

also been obtained by free energy calculations at different temperatures. The results showed that the 

transfer of Ag+ from an aqueous phase to the RTILs is favored by the enthalpic contribution, while a 

negative entropy of transfer is obtained. However, the latter contribute is not unfavorable enough and 

a negative (favorable) Gibbs free energy of transfer is obtained. 
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Appendix A 
 

 

Ab initio generation of Ag+-H2O interaction potential 

 

A.1 Method 

 

An ab initio fitting of the interaction potential between the Ag+ ion and water has been carried out 

with the method proposed by Floris et al.1,2 and more recently employed by other authors also for 

divalent transition metal ions in aqueous solution.3 This method mainly consists in the calculation of 

an effective pair potential between the metal and one water molecule, with the effect induced by the 

remaining of the solvent taken into account by an implicit solvation model. The main advantage is 

that this does not need a priori knowledge about the number of molecules coordinating the metal ion, 

i.e. of the experimental coordination number.  

This Ag+-H2O potential (VAgw) can be expressed as: 

 =  〈 |Ĥ | 〉  −  〈 Ĥ 〉  − 〈 |Ĥ | 〉   
(A.1) 

where ψ is the wave function perturbed by the solvent represented by the solvation model (CPCM in 

this case),4,5 while the three Hamiltonians Ĥ0 are referred to respectively the Ag-H2O cluster, the 

solely Ag+ ion and to the water molecule in gas phase. This potential has been calculated for different 

configurations of the Ag-H2O dimer. In particular, a potential energy surface (PES) scan of the 

energies along the Ag-O(H2O) distance rAgO from 1.2 to 12.0 Å every 0.02 Å has been carried out for 

variable Ag-Ô-H angles θ (Fig. A.1) from 35° to 125° every 10°, for a total of 4860 grid points. 

Energies more repulsive than 30 kcal mol-1 were not taken into account in the fitting.  

Water geometry has been kept fixed to the SPC/E model,6 since it has been successively employed 

for the MD simulations. In a first step, single-point energy calculations on the water molecule with 

different quantum-mechanical levels of theory have been carried out to verify which one was able to 

best reproduce water partial charges in agreement with the SPC/E model.  

A central issue in Floris’ method was also explored, that is the optimization of the effective radii of 

the implicit solvation model. In this work, standard CPCM radii for hydrogen and oxygen were 

employed, while the radius for Ag+ (ρAg) was optimized. This has been carried out by running two 



164 
 

sets of simulations on the [AgH2O]+ and [Ag(H2O)2]+ clusters for different radii, to find the value that 

satisfied the following equation: 

 = 2 +   

(A.2) 

where 

 =  〈 |Ĥ | 〉  −  〈 Ĥ 〉  − 2 〈 |Ĥ | 〉   
(A.3) 

VwAgw is referred to the [Ag(H2O)2]+ cluster, while Vww is the water-water potential without the effect 

of the electric field of the ion and VAgw is defined as in Eq. A.1. Both sides of Eq. A.2 depend upon 

ρAg, but taking into account that VAgw is much more sensitive to the radius than VwAgw, the equation is 

satisfied only for a specific value of ρAg. 

The Ag-H2O energies obtained from the potential scans were fitted with the following 4-6-8-12 

potential form: 

 = + + + + + + + + +,  

(A.4) 

where rAgO and rAgH are the ion-water distances (the second term containing distances for the two 

different hydrogen atoms), qAg, qO and qH are the electrostatic charges and AO, BO, … DH the fitted 

parameters. During the fitting, water charges have been kept fixed to the SPC/E model, while qAg was 

equal to 1. The quality of the fitting was assessed by comparing ab initio energies with those obtained 

by the fitting. 

The obtained Ag-H2O interaction potential was implemented in the DLPOLY 2 package for classical 

MD simulations.7 A box with one Ag+ ion and 500 SPC/E waters was initially minimized, then an 

NVT simulation at 298.15 K was run for 1.5 ns with 1 fs time step and coordinates were saved every 

100 frames. The first 500 ps were discarded as equilibration time. Temperature was kept constant 

with the Nosé-Hoover thermostat8,9 with 0.5 ps relaxation constant. A cut-off of 12 Å was employed 

for all non-bonded interactions with long-range electrostatics taken into account with the PME 

method.10,11 Bonds involving hydrogen atoms were constrained with the SHAKE algorithm.12 
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Figure A.1. Geometrical parameters definition for the Ag-H2O cluster employed to generate the 

interaction potential. The Ag-Ô-H angle θ is defined in the plane containing Ag+, O and the 

considered H atom. 

 

 

A.2 Results 

 

The calculated CHelpG charges for the water oxygen and hydrogen atoms at different levels of theory 

are reported in Tab. A.1. Since the set that provided the closest partial charges to those of the SPC/E 

model resulted to be B3LYP/6-311++G(d,p), these functional and basis set were employed in the 

subsequent generation of the ab initio potential.  

 

Table A.1. Calculated CHelpG charges for water oxygen and hydrogen atoms obtained at different 

levels of theory compared with charges from the SPC/E water model. 

 qO (au) qH (au) 

SPC/E -0.848 0.424 

MP2/6-311++G(d,p) -0.898 0.449 

MP2/cc-PVTZ -0.823 0.412 

B3LYP/6-311++G(d,p) -0.870 0.435 

B3LYP/cc-PVTZ -0.783 0.391 

 

In addition, Ag+ CPCM radius was optimized as previously described. The evolution of the two 

members of Eq. A.2 is plotted as a function of the effective radius ρAg in Fig. A.2. The two curves 

intersect for ρAg = 1.80 Å, therefore this value for Ag+ CPCM radius was employed for the generation 

of the effective pair potential.  
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Figure A.2. CPCM cavity radius optimization curves for the Ag+ ion. The 2VAgw + Vww (black line) 

and VwAgw (red line) energies are plotted as a function of the effective radius ρAg.  

 

The fitting of the potential energy including all the studied configurations is reported in Fig. A.3 

together with the comparison between DFT calculated and fitted energies. The standard deviation 

between the two sets of energies resulted to be 2.7 kcal mol-1. The obtained parameters for the 4-6-8-

12 potential are reported in Tab. A.2.  

 

 
Figure A.3. A) Ag+-H2O interaction energy curves vs. the ion-oxygen (rAgO) distance. All the curves 

for the various configurations with different Ag-Ô-H angles θ are reported (black dots: DFT 

calculated energies, red dots: energies from the fitted potential). B) Fitted vs. DFT calculated energies 

for the Ag+-H2O pair potential. 
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Table A.2. Fitted parameters for the Ag-H2O 4-6-8-12 interaction potential. 

Parameter Value (kcal mol-1) 

AO -4.995 102 

BO 1.519 10-2 

CO 9.117 103 

DO 9.361 10-5 

AH 3.272 102 

BH -1.749 103 

CH 3.483 103 

DH -3.916 103 

 

An MD simulation of Ag+ in 500 SPC/E water molecules has been carried out by employing the 4-6-

8-12 potential of Eq. A.4 for the Ag+-H2O interaction with the parameters obtained from the ab initio 

fitting (Tab. A.2). The results for Ag+ first hydration shell obtained from the Ag-O g(r) (Fig. A.4 A) 

report a silver ion as coordinated by 6.0 water molecules at an average distance of 2.31 Å. This 

indicates the formation of an octahedral species, as can also be observed from the MD snapshot 

reported in Fig. A.4 B. Therefore, the obtained potential is able to reproduce the Ag-O average bond 

distance in good agreement with that determined by the EXAFS analysis (Chapter 6), but a high CN 

very far to that determined by the XAS data fitting is also obtained. 

 

 
Figure A.4. A) Ag-O(H2O) pair g(r) radial distribution function (black line, left scale) and 

corresponding integration number (red line, right scale) within B) MD snapshot obtained from the 

simulation of Ag+ in water with the fitted ab initio potential. 
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A.3 Conclusions 

 

The generation of a new Ag-H2O interaction potential for classical MD was carried out by means of 

a fitting procedure performed on ab initio calculations. As regards Ag+ coordination, the new potential 

was able to reproduce the Ag-O bond distance in good agreement with the experimental data, but an 

overestimated CN was also obtained. This circumstance could arise from the nature of the PES 

generation, carried out on a Ag-H2O cluster and being therefore independent from any imposed CN. 

However, it could be also a proof that interaction potentials more complex than the LJ form, but still 

spherical, are not able to reproduce particular anisotropic coordinations like the linear case. 
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Appendix B 

 

 

Zn2+ ion in [C2mim][Tf2N]: adding explicit polarizability 

 

B.1 Introduction 

 

Although the employment of non-polarizable force fields has provided very useful knowledge in the 

study of RTILs, in the last years the challenge of the inclusion of explicit many-body polarizability 

has been thrown.1,2 This necessity arose from the observation that many popular non-polarizable force 

fields tend to underestimate some dynamical properties like the diffusion coefficients of the ions, 

while viscosities are overestimated even of one order of magnitude and conductivities are 

underestimated. The inclusion of polarizability, that some authors have referred to as an “inner 

solvent” or “lubricant”,3 should be able to tackle these issues.  

Actually, the effect induced by polarizability can be introduced also by refining non-polarizable 

models. For example, in their pioneering work, Ludwig et al.4 re-parametrized many of the LJ terms 

of CL&P4 and obtained a more accurate description of cations and anions self-diffusion coefficients 

in comparison with the experimental. This should be possible in principle because LJ terms already 

account implicitly for induction coming from parametrization on empirical data.5 Another simple 

solution, often referred to as the “poor man’s way”,6 is charges rescaling. This method takes its origin 

from the observation that ionic net charges of non-isolated ions of RTILs were found to be reduced 

as showed by ab initio calculations.7–9 Both charge-transfer and polarization effects should be 

responsible for this phenomenon, but discriminating between them seems to be a difficult challenge.1 

Typical re-scaled values for the RTIL cation and anion are comprised between +/- 0.7 and 0.9 e. For 

RTILs, this strategy of including polarizability has been observed to yield good improvement on 

collective properties.6 However, to obtain a more accurate description of local interactions, an explicit 

inclusion of many-body polarizability seems somewhat mandatory. This seems to be particularly true 

when the computation of thermodynamic quantities (e.g. ΔGsolv) of small solutes in RTILs is required, 

as was shown in a recent work for CO2 and NH3 in [C4mim][BF4].10 In addition, carbon dioxide and 

ammonia can be considered in first approximation as vdW-interacting solutes, but it seems legit to 

suppose that for metal ions, where the electrostatic contribution to ΔGsolv is massive (see Sec. 4.3.1.2 

of Chapter 4), this could be even more important.  
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Many methods have been proposed for the introduction of many-body polarizability in RTILs. For 

example, in the polarizable ion model (PIM), the interaction potential for the non-bonded part is 

described as following:11 

 

� =��� ����	
��� + �����
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(B.1) 

Here the first term corresponds to a normal Coulomb interaction among fixed charges, while the 

following terms are represented by a Born-Huggins-Mayer type potential accounting for repulsion 

and dispersion. C6
ij and C8

ij are the dipole-dipole and dipole-quadrupole dispersion coefficients and 

the fn
ij terms are the Tang-Toennies damping functions12 aimed at avoiding short-range penetration 

effects and the so-called “polarization catastrophe”. They take the form: 
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with the bn
ij parameter setting the range of the damping. Instead, the Vpol term in the potential reads: 
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where ,α and ,αβ are respectively the charge-dipole and dipole-dipole tensors, while αi is the isotropic 

polarizability of atom i. The entity of the μi induced dipoles is determined at each time step by 

minimizing the total polarization potential. Tang-Toennies functions gij are again introduced, but here 

they are expressed as: 

 

+������� = 1 − 3����� ��
����!�������"#!
�

"%&
 

(B.4) 

Note that these functions differ from the previously defined in Eq. B.2 only for the parameter cij.  

The PIM model was successfully employed for the [C2mim][AlCl4] ionic liquid.11 Besides this 

method, a more serial parametrization of polarizable force fields for RTILs were carried out also by 

other authors. One of the first polarizable force fields for a huge amount of RTILs cations and anions 
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was proposed by O. Borodin.13 Here the non-bonded part is very similar to the PIM model, with the 

exception that Tang-Toennies functions are replaced by Thole screening14 to smear induced dipoles 

at short distances: 

 

4������� = 1 − �1 + 5���
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Thole function depends on the polarizabilities of the two centers and by the a parameter that is fixed 

for all the interactions.  

Another recent polarizable force field for several RTILs was proposed by Yethiraj et al.15,16 Here the 

authors accounted for polarizability by means of Drude oscillators, consisting in particles with a 

partial charge and a small mass attached to a core atom by a harmonic bond. Their displacement with 

respect to the reference atom is determined at each time step and mimics the effect of an induced 

dipole.6 This strategy was recently employed also by A. Padua5 in the insertion of polarization in the 

popular CL&P force field. The bonded part of the original potential set is preserved, but the interesting 

point is that a LJ potential is still employed for the vdW part. Here the author re-scaled the ε 

parameters from the non-polarizable set, since they implicitly already account for induction as 

previously said. 

In this work, the CL&P polarizable force field5 was employed in the study of Zn2+ in [C2mim][Tf2N]. 

Preliminary results are presented by showing the different strategies that have been employed to 

represent the Zn-RTIL interaction with the aim of reproducing the experimental coordination of the 

metal ion in solution.17 This work has to be considered a very first step aimed at setting-up an 

interaction potential to perform also thermodynamic calculations of metal ions in RTILs with the 

inclusion of polarizability. 

 

 

B.2 Methods and Results 

 

In a first part of the study, the CL&P polarizable force field was implemented in the “Metalwalls” in-

house code for classical MD simulations developed by the PHENIX group (Physicochimie des 

Electrolytes et Nanosystèmes interfaciau – Sorbonne Université, CNRS). Drude particles and Thole 

screening of the original force field were traduced into the PIM model employing explicit dipoles for 

polarizability and Tang-Toennies functions for short-range correction. The cij values of Eq. B.4 were 

set to 1 to coincide with Thole screening at the origin, while bn
ij parameters were fitted for each 
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interacting couple to obtain the best matching between the two functions. The reproducibility of the 

force field in the new code was validated by checking forces acting on each atom in a box of 125 

[C2mim]+ cations and 125 [Tf2N]- anions.  

In a second part, one Zn2+ ion was introduced in a cubic box consisting of 123 [C2mim]+ cations and 

123 [Tf2N]- anions with a 37.58 Å side length chosen to reproduce pure RTIL density. In a first try, 

Zn2+ was represented with Merz and Li18 LJ parameters already employed for simulations with the 

non-polarizable model (Chapter 4). In this case, the vdW interaction between Zn2+ and the RTIL acts 

only via LJ potential, but the ionic liquid is polarized by the RTIL-RTIL interaction and by the net 

charge of the metal ion. An NVT run was carried out by equilibrating the system at 700 K and then 

cooling back at 300 K. The Velocity-Verlet algorithm19 was employed to propagate the equations of 

motion with a time step of 1 fs, while temperature was kept constant with the Nosé-Hoover 

thermostat.20,21 A cut-off of 10 Å was used for long-range non-bonded interactions, with Ewald 

summation22 employed for the electrostatic part. As a result, this interaction potential gave rise to a 

coordination very different to that found experimentally. In particular, some [Tf2N]- anions were 

found to coordinate the metal with two oxygen atoms coming from the same –SO2 moiety and also 

fluorine coordination was observed.  

Given the poor results provided by literature LJ parameters for this case, a different strategy was tried 

to describe the Zn-RTIL interaction. In particular, an ab initio fitting of the Zn-RTIL interaction 

potential was carried out. To this purpose, a classical MD simulation with non-polarizable CL&P was 

carried out on a smaller box of 1 Zn2+, 14 [C4mim]+ and 16 [Tf2N]- anions. From the result of this 

simulation, 20 configurations were collected and on each of them a wave-function optimization was 

carried out with the plane-wave DFT package CPMD.23 The BLYP functional24,25 was employed 

along with Norm-Conserving Martin-Troullier pseudo potentials26 for all the atoms with a 80 Ry 

cutoff for plane waves. Grimme’s empirical corrections for dispersion were also taken into account.27 

Forces acting of Zn2+ were then collected and a force-matching fitting procedure was carried out. To 

this purpose, a screening of Zn2+ LJ parameters was performed by varying σ from 1.5 to 4 Å and ε 

from 0.001 to 1 kJ mol-1. For each couple of parameters, the agreement between DFT-calculated 

forces acting on Zn2+ and those calculated with the MD code including polarizability for the RTIL 

was calculated by a mean-square relative error χ2. The obtained map is reported in Fig. B.1. 
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Figure B.1. Mean-square relative error χ2 calculated between the atomic forces acting on Zn2+ at DFT 

level and in the polarizable MD simulation at dependence of Zn2+ LJ parameters. The position of the 

chosen set is indicated by the green cross. 

  

The plot shows that the minimum value (~0.5) of χ2 is obtained for different equivalent couples of LJ 

parameters. Therefore, σ = 1.92 Å and ε = 1.0 kJ mol-1 were arbitrary chosen among these values. An 

NVT run was then performed by representing Zn2+ with this LJ set in the polarizable RTIL. The 

system was equilibrated at 700 K for 5 ns and then cooled back and simulated at 300 K for 1 ns. 

Structural data of the metal first solvation shell were obtained from the Zn-O(Tf2N) and Zn-N(Tf2N) 

g(r)’s shown in Fig. B.2. The results are reported in Tab. B.1. Surprisingly, also in this case the 

coordination resulted to be unusual. As can be observed, the Zn-O g(r) shows a first intense peak at 

2.07 Å from the metal ion integrating 4.0 oxygens, but the Zn-N distribution also shows a peak at 

2.05 Å integrating 2.0 atoms. Therefore, nitrogen coordination was observed. Taking into account 

that pure oxygen coordination has been reported experimentally by means of XAS data,17 also this 

strategy was discarded.  
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Figure B.2. Zn-O(Tf2N) and Zn-N(Tf2N) pairs g(r)’s obtained for Zn2+ in [C2mim][Tf2N] by 

representing the RTIL with CL&P polarizable force field and the metal ion with LJ parameters from 

the ab initio fitting procedure. 

 

As a last try, parameters for Zn2+ were taken from a recent work by Borodin et al. ,28 where the authors 

carried out polarizable MD simulations in RTILs of some alkali and transition metal ions, including 

Zn2+. In this work, the authors employed the following interaction potential for the repulsion and 

dispersion energy terms: 
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In our case, the third term of Eq. B.6 was set to zero for the Zn-RTIL interaction, providing essentially 

a Buckingham potential (Eq. 3.13 of Chapter 3). Successively, different NVT runs were carried out 
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by manually varying the B parameter to match the experimental bond distance between Zn2+ and 

[Tf2N]- coordinating oxygen atoms.17 A a good match was found after increasing Bij of 2.5% for each 

pair interaction. An NVT run was then performed with this potential by equilibrating the system at 

700 K for 10 ns, while data collection was performed for 5 ns at 300 K. In Tab. B.1 the obtained 

coordination for the Zn-O and Zn-N pairs is reported, while the comparison of the g(r)’s is shown in 

Fig. B.3. As can be observed, a definite Zn-O first peak integrating 6.0 oxygen atoms is obtained at 

2.07 Å. The average bond distance is therefore in good agreement with the experimental of 2.06 Å as 

found from XAS data.17 The Zn-N g(r) also shows one intense peak, this time centered at 4.31 Å. 

Therefore, N is set in the second coordination shell and no nitrogen coordination is observed in this 

case. The integration number is 6.0, providing a total number of six [Tf2N]- anions coordinating the 

metal and therefore the [Zn(Tf2N)6]4- species in agreement with experimental data.17 

 

Table B.1. MD results of first solvation sphere structure for Zn2+ in [C2mim][Tf2N] obtained by 

representing the RTIL with CL&P polarizable force field5 and the Zn-RTIL interaction with 

parameters from the ab initio fitting procedure (LJ potential) and from those adapted from Borodin 

et al.28 (Buckingham potential). 

Zn-RTIL potential r
Zn-O

 (Å)* CN
O

† r
Zn-N

 (Å)* CN
N

† 

Ab initio fit 2.07 4.0 2.05 2.0 

Borodin adapted 2.07 6.0 4.31 6.0 
*Average bond distance between the Zn2+ ion and the oxygen or nitrogen atoms of first solvation shell [Tf2N]- anions; 

†Zn-O(Tf2N) and Zn-N(Tf2N) first g(r) peak integration numbers. 
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Figure B.3. Zn-O(Tf2N) and Zn-N(Tf2N) pairs g(r)’s obtained for Zn2+ in [C2mim][Tf2N] by 

representing the RTIL with CL&P polarizable force field5 and the metal ion with parameters adapted 

from Borodin et al.28 

 

 

B.3 Conclusions  

 

Classical MD simulations of Zn2+ in [C2mim][Tf2N] employing a polarizable force field for the ionic 

liquid were carried out. The results showed that with the additional degree of freedom of explicit 

polarization, literature LJ sets parametrized for simulations of the same metal ion in water are not 

transferable any more, differently to what was found for non-polarizable calculations of the same 

system (Chapter 4). Indeed, an ad hoc refinement of the Zn-RTIL interaction potential was necessary 

to reproduce the experimental coordination of the metal ion in this solvent.  
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Appendix C 
 

 

Materials for Chapter 4: “Zn2+ ion in Tf2N- and BF4-based imidazolium 

RTILs”. 

 

 
Figure C.1. Histograms of the configurations within the umbrella sampling windows for the 

addition of a [Tf2N]- anion to the [Zn(Tf2N)5]3- unit. 
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Figure C.2. Gromacs BAR module output showing the relative free energy differences calculated 

between neighboring λ windows for Zn2+ represented with Merz LJ parameters in [C4mim][Tf2N] 

with A) CL&P; B) KLP and C) MP force fields. 
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Figure C.3. Histograms of the configurations within the umbrella sampling windows for the transfer 

of Zn2+ from water to [C4mim][Tf2N] in the biphasic system. 

 

 

Figure C.4. A) Zn-O(H2O) and B) Zn-O(Tf2N) pairs g(r) along the reaction coordinate between the 

interphase (from top) to the ionic liquid bulk (to bottom). 
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Materials for Chapter 5: “Co2+ ion in [C4mim][Tf2N]”. 

 

 

 

Figure C.5. A) Co-O, B) Co-S and C) Co-N g(r)’s obtained from the MD simulations of Co(Tf2N)2 

in [C4mim][Tf2N] for the structural part (red dotted lines) as compared with the Γ-like functions 

obtained from the fitting procedure (solid black lines). In case of the Co-N distribution, also the two 

partial curves employed for the fit are showed (fragmented black lines). 
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Figure C.6. Radial distribution functions g(r)’s for the A) Co-O, B) Co-S and C) Co-N pairs 

calculated from the MD simulation of the Co(Tf2N)2 solution in [C4mim][Tf2N] for the 

thermodynamic part.  
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Materials for Chapter 6: “Ag+ ion between water and RTILs”. 

 

 

 

Figure C.7. Comparison between A) Ag-O and B) Ag-H g(r)’s obtained from the CPMD simulation 

of Ag+ in water (red dots) and from the fitting of the Ag K-edge EXAFS spectrum in aqueous solution 

(blue lines). In the latter case, the peaks are the resulting Γ-like functions for the Ag-O and Ag-H 

distributions that provided the best fit of the spectrum.  
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Figure C.8. Representative snapshot from the CPMD simulations of Ag+ in water showing the two 

coordinating water molecules in addition to selected outer-sphere waters. In particular, two water 

molecules connected with the first area in Fig. 6.5 A (Chapter 6) are present at distances of 3.01 Å, 

3.44 Å and 3.57 Å from the silver atom. In addition, outer-sphere waters interacting with first-shell 

molecules by means of H-bonds are shown. (Balls and stricks: Ag+ and water, dashed lines: 

interaction between Ag+ and outer-sphere waters as well as H-bonds between water molecules). Non-

isometric view is shown for sake of clarity. 
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General conclusions and perspectives 

 

 

A study about metal ions solvation in RTILs has been carried out from a structural and 

thermodynamic point of view. The results allowed to obtain useful data with the aim of helping 

improving new technological applications involving metals and this class of potentially sustainable 

solvents. In particular: 

 

• Zn2+ resulted to be more favorably solvated in water than in Tf2N-based RTILs, as shown by 

positive ΔGtrans. This is in agreement with the low solvation capabilities of the [Tf2N]- anion, 

as already argued in literature. XAS data analysis also confirmed this outline, showing that 

Zn2+ is coordinated only by water when it is present in the RTIL. However, the reasons at the 

origin of this picture were still unclear. In this work, it has been stressed that the Zn-Tf2N 

interaction is favorable from an enthalpic point of view (at least with respect to water), but an 

unfavorable entropic contribution is also present when the metal passes from an aqueous 

solution to the RTIL. In other words, bringing six [Tf2N]- anions from the solution bulk to the 

first coordination sphere and forming the [Zn(Tf2N)6]
4- species means a great loss of disorder, 

therefore energy must be spent. This is in agreement also with data about complexation 

thermodynamics of metal ions in Tf2N-based RTILs (see Sec. 1.3.4 of Chapter 1), were the 

substitution of this ligand with others of various nature is often favorable because of the 

positive entropic contribution followed by the release of [Tf2N]- from the first coordination 

sphere of the metal. According the results from this project, “neat” Tf2N-based RTILs could 

difficultly be employed as extracting phase for this metal ion. Differently, the addition of 

extracting agents able to complex Zn2+ in the aqueous solution could make its distribution to 

the RTIL phase more favorable. As a future perspective, it would be interesting to study the 

complexation of the metal ion in RTILs with ligands of various nature, starting for example 

from the simple cases of Cl- and NO3
-. 

A different situation is displayed for Zn2+ in [C4mim][BF4], where a favorable ΔGtrans from 

water was obtained. This result is in agreement with experimental data and with the picture 

of the higher solvating capabilities of the [BF4]
- anion with respect to [Tf2N]-. The favorable 

transfer free energy seems to arise by a still negative ΔHtrans, but in this case the entropic 

contribution is not unfavorable enough to prevent the process. The reason could be traced in 

the more rigid structure of [BF4]
- with respect to [Tf2N]-, that is traduced in a smaller loss of 
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entropy suffered by the anion upon complexation. This direct comparison is allowed also 

because the same number of anions with respect to the Tf2N-case is found to coordinate the 

metal according to MD simulation, providing the [Zn(BF4)6]
4- species. As a future perspective, 

XAS data collected on this sample could help in validate this structure. 

  

• The picture obtained about Co2+ in [C4mim][Tf2N] is not much different from that of Zn2+ in 

the same RTIL. Also for cobalt, a favorable contribution to the transfer from water is given 

by ΔHtrans, while transfer entropy opposites to the process. In addition, from UV-Vis data a 

blue-shift was observed by passing from [Tf2N]- to water coordination. This means that water 

is a stronger ligand for cobalt than the bis(trifluoromethylsulfonyl)imide, as also confirmed 

by DFT calculations. This result was in principle unexpected, because the negative 

ΔHtrans(water→[C4mim][Tf2N]) obtained both for cobalt and zinc was at a first try interpreted 

by supposing that the “pure” metal-ligand interaction was stronger for [Tf2N]- with respect to 

water. However, UV-Vis results suggested that the negative transfer enthalpy must be 

provoked by effects that are not coming from the first coordination sphere. Therefore, the 

different reorganization of the outer-sphere solvent between the aqueous solution and the 

RTIL could have a crucial role in this case.  

XAS data collected on the Co(Tf2N)2 solid as well as on a Co(Tf2N)2 solution in 

[C4mim][Tf2N] have shown that the RTIL is able to dissolve the metal salt giving rise to a 

different coordination with respect to the solid state. This result confirmed that the 

employment of powerful techniques like XAS is essential for the determination of the 

coordination in solution. EXAFS data analysis was also compared with structural results from 

the MD simulation. When we talk about metal ions coordination, we are often trained at 

thinking in terms of coordination numbers and bond distances. However, this study also 

showed how a slightly more complex description is required to achieve a fulfill picture about 

metal ions coordination in liquid disordered systems. In this case, MD was able to reproduce 

the same kind of coordination of the experimental, i.e. the [Co(Tf2N)6]
4- cluster. However, the 

comparison between Co-RTIL g(r)’s as modelled with Γ-like functions also showed that 

coordination coming from MD and from EXAFS fitting were different in some other features. 

In particular, dynamical properties of [Tf2N]- coordination towards Co2+ were not correctly 

reproduced, providing a too rigid interaction that was traduced in underestimated Debye-

Waller factors. This is a known drawback of the LJ potential and of its simple, although fast 

and very commonly employed, formulation.   
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• XAS data fitting about Ag+ in water provided a picture of this metal ion as linearly coordinated 

in aqueous solution. This evidence suggested that the generally accepted model of Ag+ as 

tetrahedrally-coordinated in water is questionable. However, the employment of a LJ potential 

for the Ag-H2O interaction in classical MD showed some limits in reproducing the 

experimental evidence. Also more complex, but still spherical potentials, could not allow to 

obtain a good compromise between CN and experimental bond distance.  

The transfer of Ag+ from an aqueous solution to [C4mim][Tf2N] and [C4mim][BF4] resulted 

to be favorable. This seemed to arise from negative ΔHtrans, while ΔStrans is not unfavorable 

enough to prevent the process. A favorable transfer towards [C4mim][BF4] has been found 

also for Zn2+, but the interesting result is that the transfer of Ag+ is favorable also towards 

[C4mim][Tf2N]. This could arise from the different CN shown by Ag+ in the RTIL, forming 

the [Ag(Tf2N)4]
3- or [Ag(Tf2N)5]

4- species at dependence of the employed potential. The 

different coordination could be at the origin of the less unfavorable ΔStrans. In other words, 

bringing four or five [Tf2N]- anions from the solution bulk and ordering them in the first 

solvation sphere of Ag+ costs less energy with respect to the zinc case, where six anions are 

found to coordinate. However, care must be taken because of a possible change in the CN by 

passing from the aqueous solution (where Ag+ resulted to be linear) to the RTIL phase. 

Nevertheless, these results are encouraging for the employment of ionic liquids in the 

separation of this metal ion from aqueous solutions. XAS measures collected on Ag+ solutions 

in the studied RTILs would help in validating the structural results obtained by means of MD.  

 

• A reasoning about the introduction of many-body polarizability in classical MD simulations 

of RTILs must be traced. As has been demonstrated through all this project, a description of 

metal ions coordination and thermodynamic solvation properties in good agreement with 

experimental data can be obtained by MD with the employment of interaction potentials that 

were not parametrized for the specific case. This was not a trivial result, as RTILs force fields 

are usually refined to represent some solvent bulk properties. Therefore, this ability in 

reproducing solvation features arising from punctual interactions with a metal ion was not 

taken for granted. However, non-polarizable force fields interacting with metal ions via LJ 

potential also showed some drawbacks. For this reason, a compromise between structural and 

thermodynamic description has often to be taken into account. The purpose underneath the 

employment of RTILs polarizable force fields in this project has been the supposition that the 

addition of this additional degree of freedom could help in reproducing  structural and 

thermodynamic solvation properties altogether. A description of Zn2+ coordination in 
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[C2mim][Tf2N] in agreement with the experimental has been obtain with this kind of potential. 

As a future perspective, the metal ion ΔGsolv in the RTIL could be calculated with a 

thermodynamic integration method.  

It has to be underlined that a drawback of polarizable force fields is that an increase in the 

computational effort of ~5 times has been observed with respect to non-polarizable 

simulations. This was an expected result, but can be detrimental in particular for RTILs, since 

these are known to be slow-dynamics solvents that often require long equilibration times.  
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Su ciò di cui non si può parlare, si deve tacere. 

 

L. Wittgenstein, Tractatus Logico-Philosophicus 
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