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SUMMARY 

In the last decades, large-scale losses of honey bee (Apis mellifera L.) colonies have been recorded 

all over the world. After years of intense investigation, no specific causal agent for the widespread 

colony losses has been found but rather a multifactorial origin has been proposed for this 

phenomenon. Biotic and abiotic factors contribute to this situation, but several studies indicate that 

the ectoparasitic mite Varroa destructor and the deformed wing virus (DWV) play an important role. 

Recent research has shown that DWV infections at low viral levels are asymptomatic because the 

honey bee immune competence is able to contain virus replication.  As soon as any stress factor 

interferes with this equilibrium, competing for metabolic resources or negatively acting on immunity, 

uncontrolled viral replication is promoted, resulting in the transition from a benign covert infection 

to a devastating overt disease. Xenobiotics, abiotic stressors, malnutrition and other factors can 

further contribute to complicate the situation. 

The aim of this thesis was to investigate, at the individual level, how different stress factors and 

nutrition interact to influence the survival of honey bees. To this aim, we subdivided the study in two 

phases; in the first one, we assessed how several stress factors as well as pollen influence honey bee 

health. In a second phase of this study, we investigated how some of these stressors act in combination 

with the others and in combination with nutrition. 

We selected seven factors that are possibly implicated in the multifactorial syndrome related to colony 

losses: pollen, as a natural supply of amino acids and lipids for the honey bee; hydroxymethylfurfural 

(HMF), a toxic compound contained in additional sugars syrups; acidity, which normally 

characterizes the sugar syrups mentioned above; nicotine, which is a toxic alkaloid that bees can 

encounter in the environment and with a mode of action similar to that of neonicotinoid insecticides; 

a temperature 2-3 degrees below that normally found within the hive; V. destructor, the most 

dangerous ectoparasite of honey bees and deformed wing virus (DWV), a key pathogen of honey 

bees.  
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We confirmed the beneficial effect of pollen nutrition on honey bees as a positive factor on individuals 

affected by parasites and pathogens. To gain insight into the mechanisms underlying these effects, 

we interfered with the energetic pathway of mite infested bees using rapamycin, a chemical inhibitor 

of mTOR, a protein complex that regulates cell growth and other key cellular processes. We observed 

that rapamycin, just like pollen, decreases DWV load in a manner that could be related to the 

stimulation of autophagy. 

More in general, we noted the important role played by nutrition in the interactions between honey 

bee and other stressors. We also documented for the first time a kind of physiological anorexia 

triggered by V. destructor infestation, which leads to a reduced energy availability that influences the 

capacity of honey bees to cope with other stressors. 

Moreover, we shed light on the possible detrimental side effects of supplementary nutrition 

administered to bees by beekeepers with homemade sugar syrups. In fact, acidity and HMF that are 

normally present in such syrups are toxic for honey bees. 

Lastly, with this work we showed how unpredictable it can be the relationship between stress factors. 

Since an analytic study of all the factors that can affect honey bee health is unimaginable, the attention 

should be focused on the metabolic process accounting for the observed interactions in order to 

develop one or several models that could help to predict the outcome of such interactions. 
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1. INTRODUCTION 

 

1.1. The importance of Apis mellifera 

Apis mellifera is an Hymenopteran insect belonging to the superfamily Apoidea. This insect, also 

known as “honey bee” or “western honey bee”, is widely distributed all over the world, and lives in 

colonies formed by tens of thousands of individuals. The colony lives in a nest made of several wax 

combs built inside a natural cavity or in a hive box provided by beekeepers. 

A. mellifera L. is an eusocial insect because of three distinctive characteristic: division of reproductive 

and non-reproductive castes, overlapping of two or more generations and brood care operated by 

unfertile individuals. Indeed, inside an A. mellifera colony there are both female and male individuals 

divided in three castes. The first caste includes the queen bee which is the only fertile female of the 

hive; she lays eggs for the most of the time (e.g. during the Spring a queen bee can lay 1500-2000 

eggs per day). Thanks to an organ called spermatheca, she can preserve, for the entire life, the 

spermatozoa collected during her first and only mate event with drones (i.e. the male honey bees). 

The other fundamental role of this individual is to maintain the cohesion of the colony by means of 

pheromones. A queen can live an average of 3-4 years. 

The second caste is represented by the worker honey bees. This group represents the non-fertile 

female caste whose reproductive organs are atrophic because of a pheromone produced by the queen. 

These bees live an average of 40 days during which they undertake different tasks depending on age; 

the firsts three weeks of the adult life are normally spent inside the hive taking care of the brood and 

operating other nest activities; instead, in the lasts weeks of their life, the workers fly outside the hive 

as foragers to collect nectar and pollen.  

Drones bees are male individuals that are observed mostly during Spring and Summer; their principal 

role is mating with the queen. 
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Under temperate climates, when the income of nutrients is sufficient, a situation normally occurring 

in Spring and Summer, a honey bee colony contains one queen bee, a few thousand drone bees and 

tens of thousands of worker bees, including adult worker bees (20,000 – 60,000) and immature worker 

bees (10,000 – 30,000) at different developmental stages (egg, larvae and pupae). 

The brood is reared in wax cells produced and shaped by the worker bees. During the egg and the 

larval stage, the cell is open, while, when the larva spins the cocoon for pupation the cell is sealed. 

The cell remains sealed until the eclosion of the adult bee. The development of the individuals (from 

egg to adult) depends on the caste lasting 16 days for queens, 21 and 24 days for workers and drones, 

respectively. 

During Autumn, brood production slows down for stopping completely during Winter when the 

queen bee and about 8,000 – 15,000 worker bees survive depleting the honey and pollen resources 

accumulated beforehand (Winston, 1987). 

Because of its products (honey, wax and propolis) A. mellifera has a long history of domestication. 

This fact promoted international transport resulting in a cosmopolitan distribution including all 

continents except Antarctica and other oceanic islands (Hung et al., 2018). The importance of this 

insect is mainly related to its pollination role; indeed, the western honey bee provides an important 

pollination services for a wide number of agricultural crops (Calderone, 2012) and ranks as the most 

frequent species of crop pollinators (Garibaldi et al., 2014). More precisely 39 of 57 monoculture 

crops are pollinated by honey bees (Klein et al., 2007). This results in an estimated 35% of food for 

human consumption dependent by the honey bees activity; both directly (e.g. pollination of fruit and 

vegetables) and indirectly (e.g. pollination of fodder cops). This accounts for an estimated 14.5 billion 

Euro value for the pollination service carried out by honey bees in Europe, while, in the world, the 

economic impact of honey bees is estimated around 153 billion Euro in 2005 (Moritz et al., 2010).  

The real importance of honey bees, however, is related to the maintenance of ecosystems’ 

biodiversity. Indeed, A. mellifera is thought to be the most important pollinator species in natural 

ecosystems with an average proportion of floral visit that is more than double than that contributed 



9 
 

by all bumblebee (Apidae: Bombus) species (Kearns and Inouye, 1997; Russo, 2016; Geslin et al., 

2017; Hung et al., 2018). 

In light of the dramatic decline of wild pollinator insects, both in abundance and diversity (Potts et 

al., 2010a; Cameron et al., 2011), the importance of honey bees is becoming increasingly important.  

  

1.2. Colony losses 

During the winter of 2006 – 2007, in the United States, important losses of managed honey bees were 

reported and the losses continued through the winter 2007 – 2008 (vanEngelsdrop et al., 2007). The 

losses, that were attributed to a syndrome called “Colony Collapse Disorder” (CCD), triggered a 

generalized worry for the health of bees contributing to the spread of large interest in bees which, 

however, is often related to a simplistic view of the real problems affecting the honey bee. 

Indeed, it is indisputable that in the last decade, managed bee colonies have experienced a severe 

crisis with extensive colony losses (20-30% per year) reported all over the northern hemisphere (Le 

Conte et al., 2010; vanEngelsdrop et al., 2010; Neumann and Carreck, 2010). Moreover, historic 

records show that apiculture has been in decline in both Europe and United States as testified by a 

generally decreasing trend in the number of managed honey bee colonies (Ellis et al., 2010; Potts et 

al., 2010b). 

However, extensive losses are not unusual in the history of beekeeping (vanEngelsdrop and Meixner, 

2009). 

Reports of bee diseases are in Aristotele’s “The History of Animals” or in the ancient writings by 

Pliny and Virgil (Nazzi and Pennacchio, 2014). In modern time, the first recorded losses date back to 

1869 followed by 18 further events until today (Underwood and vanEngelsdrop, 2007).  

An interesting example comes from a little island close to the seashore of England. In 1906 on the 

Isle of Wight (England), beekeepers noticed a considerable number of bees crawling outside their 

hives, unable to fly. Subsequently this condition and the related colony losses, were ascribed to a 

malady called “Isle of Wight Disease” (Bailey and Ball, 1991; Bailey, 2002). This “disease” then 
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spread throughout Britain, but the response of the scientific community was not the most appropriate. 

Indeed, eager to quickly find the responsible for this disease, scientists jumped to conclusions that 

the tracheal mite Acarapis woodi (Rennie et al., 1921) should be blamed for this emergency 

(Neumann and Carreck, 2010). Seventy years later, Bailey and Ball (1991) and Bailey (2002) 

concluded that the disease had been due to a more complex combination of stress factors (Neumann 

and Carreck, 2010). 

The history of the Isle of Wight Disease can help to clarify the problem of today colony losses. At 

the beginning these losses were ascribed to CCD, notwithstanding that the term was specially coined 

for a defined set of symptoms (vanEngelsdrop et al., 2009) and not just for colony losses. However, 

nowadays it is largely accepted that the losses of honey bee colonies can be related to many causes 

and CCD is just one of them (vanEngelsdrop et al., 2010); more importantly, it was highlighted that 

all factors threatening honey bee colonies can interact with each other (Nazzi and Pennacchio, 2014). 

Indeed, colony losses have a multifactorial origin with parasites and pathogens playing an active role, 

reinforced by abiotic stress factors such as pollution, increased mono-agriculture landscapes, climate 

change and deterioration of natural environments (Le Conte and Navajas, 2008; Goulson et al., 2015; 

Di Prisco et al., 2016). 

 

1.3. Multifactorial stress affecting honey bee health 

As in the case of the Isle of Wight disease, the quest for the cause of recent colony losses started with 

the attempt to identify a possible single causal agent (Nazzi and Pennacchio, 2014). In fact, similarly 

to 100 years ago, most early studies attempted to correlate colony losses to a vast range of stress 

factors (e.g. viruses, pesticides, parasites, fungal pathogens) identifying one or another as the main 

causal agents (Ratnieks and Carreck, 2010). However, subsequent studies revealed that these factors, 

while certainly involved, were not the principal responsible for the losses but were part of a complex 

multifactorial syndrome (Ratnieks and Carreck, 2010). Thus, the theory of a single detrimental 
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stressor turned into a new paradigm that the decline of honey bees colonies can be induced by a 

variety of stress factors (abiotic and biotic), often showing synergistic interactions. 

Notwithstanding the complexity of this intricate network of interactions between stress factors 

(Lafferty, 2010), two biotic agents seem to characterize the system: the deformed wing virus (DWV), 

and the parasitic mite Varroa destructor (de Miranda and Genersch, 2010; Rosenkranz et al. 2010; 

Nazzi and Le Conte, 2016). 

The first is an endemic pathogen, that develop asymptomatic covert infections (de Miranda and 

Genersch, 2010) and this peculiar ability to entail limited acute effects on honey bee colonies has 

favoured its spread in virtually all honey bee colonies (Nazzi and Pennacchio, 2018). However, covert 

infections of the virus are not due to a low pathogenicity of the virus but rather to the fact that the 

honey bee’s antiviral barriers are able to contain viral infection (Nazzi et al., 2012). Thus, immunity 

plays an essential role in maintaining under control viral infection; this implies that any further 

stressor altering the immunocompetence of the host, and in particular the antiviral function, can cause 

a transition from benign DWV covert infections to devastating outbreaks of the pathogen (Nazzi et 

al., 2012; Nazzi and Pennacchio 2014; Di Prisco et al., 2013; Nazzi and Pennacchio 2018). This 

scenario has been corroborated by a study which proved that DWV exerts an immunosuppressive 

action, characterized by the downregulation of the nuclear factor-kappaB (NF-kB) (Nazzi et al., 2012) 

which plays a fundamental role in immunity (Silverman and Maniatis, 2001; Hayden and Ghosh, 

2008) and is implicated in the antiviral response of bees (Nazzi et al., 2012). This last evidence 

accounts for the positive feed-back explaining the impressive dynamics of viral infection as soon as 

any further stress factor influencing the expression of this crucial gene comes into play (Fig. 1). In 

particular, this is what normally occurs in case of a severe mite infestation (Nazzi et al., 2012). 
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Figure 1. Multiple interactions between honey bees and environmental factors from Nazzi and Pennacchio 2014. 

 

1.4. Stressors 

Honey bees are threatened by several stress factors that contribute to their decline. Following the 

major factors affecting honey bees survival are described. 

 

1.4.1. Varroa destructor 

Varroa destructor is an ectoparasitic mite originally confined to the Eastern honey bee Apis cerana; 

however, during the first half part of the last century, this parasite shifted to the western honey bee: 

A. mellifera. Therefore, the mite represents a “new” parasite for the western honey bee and a balanced 

host – parasite relationship is lacking, making V. destructor a major threat for apiculture (Rosenkranz 

et al., 2010). 

The mite presents a distinct sexual dimorphism (Ifantidis, 1983) with grey and pear-shaped males and 

red-brown flat ellipsoidal females (Rosenkranz et al., 2010). 
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The life cycle of the parasite is closely synchronized with that of the host and lacks a free-living stage; 

it includes a phoretic phase that is spent on adult bees and a reproductive phase within the sealed 

brood cells. 

The reproductive phase occurs exclusively into the capped brood cells. This phase begins with the 

adult female reaching a cell with a 5th instar bee larva; there, approximately 5 h after the cell capping, 

the mite starts sucking haemolymph from a hole made in the larva’s body. About 70 h after cell 

invasion, the mite lays an unfertilized egg which develops into a male (Infantidis, 1983; Rehm and 

Ritter, 1989; Steiner et al., 1994). Subsequently fertilized female eggs are laid at 30 h intervals (Rehm 

and Ritter, 1989; Infantidis, 1990). Forty-eight hours after oviposition, protonymphs emerge and start 

feeding from a communal feeding site on the ventral side of the bee pupa (Donzè et al., 1998). 

Protonymphs then moult into deutonymphs and eventually into adults. The total cycle, from egg to 

adult, lasts 6 – 7 days for males and 6 – 9 for females (Accorti et al., 1983). 

During the host’s pupal stage, the mite’s offspring feed on a site prepared by the mother mite, sucking 

haemolymph from the bee (Donzè et al., 1998). This feeding activity is central to all the detrimental 

effects of the varroa parasitism, both direct and indirect (Nazzi and Le Conte, 2016). The direct 

effects, linked to haemolymph subtraction, are reduced weight (De Jong et al., 1982; Schatton-

Gadelmayer and Engels, 1988; Bowen-Walker and Gunn, 2001; Annoscia et al., 2012), and increased 

water transpiration (Annoscia et al., 2012) as well as depletion in proteins and carbohydrates (Bowen-

Walker and Gunn, 2001), while the indirect effects are related to the transmission and replication of 

pathogens (de Miranda and Genersch 2010; Nazzi and Le Conte 2016, Annoscia et al., 2019). In 

particular, V. destructor can vector the following bee viruses: slow paralysis virus (SPV) acute bee 

paralysis virus (ABPV), Kashmir bee virus (KBV), Cloudy wing virus (CWV) Israeli acute bee virus 

(IAPV) and the deformed wing virus (DWV) (Allen et al., 1986; Bakonyi et al., 2002; Ongus et al., 

2004; Tencheva et al., 2004; Chen et al., 2005; Tencheva et al., 2006). Furtermore, V. destructor can 

promote secondary infections (Vanikova et al., 2015) caused by bacteria and viruses invading the bee 

through the mite’s feeding hole (Boecking and Genersch, 2008; Vanikova et al., 2015). Other effects 
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related to mite infestation are behavioural modifications (Annoscia et al., 2015; Zanni et al., 2018), 

accelerated behavioural maturation (Downey et al., 2000; Zanni et al., 2018) and decreased flight 

performance (Kralj and Fuchs, 2006; Kralj et al., 2007), but a clear distinction between the role of 

the parasite and the associated DWV virus in causing these effects is difficult. 

At colony level, with a moderate mite infestation, the growth of the bee population is reduced 

(Rosenkranz et al., 2010), while beyond a certain threshold of infestation the colony function is 

compromised. Indeed, untreated mite infested colonies normally collapse within six months to two 

years (Le Conte et al., 2010). 

Recently one study (Ramsey et al., 2019) suggested that the mite feeds primarily on honey bee fat 

body tissue and not haemolymph; however the detrimental effects of the feeding activity remains 

unchanged while more data are necessary to confirm this hypothesis. 

 

1.4.2. Deformed wing virus (DWV) 

The deformed wing virus (DWV) is one of the most common viruses of bees (Chen and Siede, 2007) 

and the main virus associated with the collapse of honey bee colonies infested by V. destructor 

(Ribière et al., 2008; Sumpter and Martin, 2004; Tentcheva et al., 2004). The DWV consists of a 30 

nm icosahedral particle containing a single positive strand RNA genome with three structural protein 

(Bailey and Ball, 1991; Lanzi et al., 2006; Ongus et al., 2004); its genomic organization is typical of 

iflaviruses, within the picorna like family Iflaviridae (de Miranda and Genersch, 2010). DWV is 

transmitted between honey bees both horizontally (from individual to individual) and vertically 

(parent - offspring) (Chen et al., 2006). In presence of overt infection, the virus causes wing 

deformities, smaller body size, discoloration and reduced lifespan (de Miranda and Genersch, 2010; 

Grozinger and Flenniken, 2019). 

DWV is now widely distributed also due to the intimate relationship with the Varroa mite (Wilfert et 

al., 2016). The virus develops asymptomatic covert infections (de Miranda and Genersch, 2010) 

related to an effective immune control (Nazzi and Pennacchio, 2014); however, additional stress 
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factors can influence the outcome of viral infection, and, in particular, both abiotic and biotic factors. 

As for the biotic stressors, V. destructor represents the major agent favouring the transition from 

common covert infections to devastating overt infections (Nazzi and Pennacchio, 2014). In fact, V. 

destructor, beside vectoring DWV (Ball, 1989; Bowen-Walker et al., 1999), can activate the virus 

inside the host. Several mechanisms have been proposed to explain the higher viral load observed in 

mite infested bees (Yang and Cox-Foster, 2005; Gisder et al., 2009; Martin et al., 2012; Annoscia et 

al., 2019). However, a hypothesis involving virus activation via haemolymph removal and the 

depletion of a common immune resource (Nazzi et al., 2012; Di Prisco et al., 2016) recently appeared 

the most supported in a detailed lab study (Annoscia et al., 2019). 

As for the abiotic stressors, DWV infection could be triggered by other chemicals acquired through 

the diet (Vaudo et al., 2015), agrochemicals found in the environment by foragers (Mulin et al., 2010; 

Sponsler and Johnson, 2017; Di Prisco et al., 2013) and acaricides used by beekeepers inside the hive 

(Grozinger and Flenniken, 2019). 

It is therefore clear that DVW covert infections represent a kind of “sword of Damocles” permanently 

pending above the bee colony such that any single or a combination of stress factors weakening the 

antiviral defence barriers maintaining under control those infections and thus supporting the sword, 

can promote viral replication, thus allowing the sword to fall with dramatic consequences (Nazzi and 

Pennacchio, 2018). 

 

1.4.3. Temperature 

Insects are strongly dependent on environmental temperature (Angilletta, 2009) because of their 

limited thermoregulation capacity (Chown and Nicolson, 2004). In particular, honey bees are born in 

a stenothermic environment with larvae completely dependent on the adult bees for heat (Heinrich, 

1993). Adult bees instead, are able to generate endothermic heat from muscle contraction (Free and 

Spencer-Booth, 1960; Heinrich, 1993). In honey bee colonies, adult honey bees maintain the nest 

temperature within the 32-36 °C range, with an average temperature in the brood area between 34 



16 
 

and 35 °C (Seeley and Heinrich, 1981). This temperature guarantees an optimal larva and pupal 

development. Indeed, bees raised at sub-optimal temperature are more susceptible to stress (i.e. 

pesticides) than adults (Medrzycky, 2009).  Studies report that the temperature of 32 °C represents 

the lower limit for both adult and brood since, long periods under this temperature result in 

malformities as well as neuronal and behavioural insufficiencies (Tautz et al., 2003; Groh et al., 2004; 

Jones et al., 2005; Becher et al., 2009). 

In recent years, a gradual modification of the planet’s climatic conditions, provoked by anthropogenic 

causes, has been recorded; in particular, a general increase in the average global temperature has been 

reported which has been linked to extreme weather conditions, including both heat waves and cold 

waves (IPCC, 2012). 

 

1.4.4. Xenobiotics 

In addition to parasites, viruses and abnormal environmental temperatures, honey bees are exposed 

to xenobiotic substances in the environment: phytochemicals acquired through nectar, pollen and 

propolis (Di Pasquale et al., 2013), agrochemicals, acaricides used for mite control (e.g. the pyrethroid 

Tau-Fluvalinate and the organophosphate Coumaphos) (National Research Council of the National 

Academies, 2007). In particular, neonicotinoid insecticides are the subject of intense debate 

(Blacquière et al., 2012); indeed, based on the scientific evidence regarding the negative effect of 

these compounds, the European Commission banned three of them (Gross, 2013). Neonicotinoids are 

nicotine-like compounds used for the protection of agricultural crops and their residues can be found 

both in nectar and pollen (Blacquière et al., 2012). These compounds act negatively on honey bee 

immunity (Di Prisco et al., 2013) as well as behavioural traits, such as communication, homing and 

foraging (Henry et al., 2012). 

Nicotine is a highly toxic alkaloid found in nature, primarily in the plant family Solanaceae, where it 

serves as a defence against herbivores with a mode of actions similar to that of synthetic 

neonicotinoids (Johnson et al., 2009). Nicotine mimics acetylcholine at the neuromuscular junction, 
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causing convulsion and death (Tomizawa and Casida., 2003; Steppuhn et al., 2004). Honey bees can 

naturally acquire nicotine mostly through certain nectars (Detzel and Wink, 1993); this could have 

diverse effects on honey bee survival, depending on the health status of the colonies (Kohler et al. 

2012). 

 

1.4.5. Environmental impoverishment and nutrition 

 

Landscape alteration is the result of the fragmentation, loss, isolation and modification of the 

landscape; this alteration can affect honey bee and pollinators in general, in several different ways 

but the most important outcome of these modifications is the change in the availability of food 

resources (Montero - Castano and Vilà, 2012) that can lead to nutritional stress. In fact, in the last 

years a number of studies revealed that the widespread decline of many pollinator insects are due to 

a combination of land use, habitat degradation and the spread of disease (Breeze et al., 2014) and, in 

particular, a recent study commissioned by European Union, linked the poor variety and quantity of 

food to increasing honey bee mortality (Donkersley et al., 2014). Thus, it can be assumed that an 

insufficient availability of food, resulting from environmental impoverishment, can be regarded as a 

further stress factor affecting honey bees. 

Honey bees use carbohydrates to obtain energy, proteins for growth and development, lipids for 

energy reserves, whereas minerals, vitamins and water are needed for optimal survival (Standifer et 

al., 1977). Honey bees gather these substances by collecting nectar, pollen and water from the natural 

environment in quantities that can exceed colony demands and store the surplus for periods of dearth 

and for juvenile stages. Nectar (which is transformed into honey if stored in the colony) is the only 

source of carbohydrates; it provides energy for metabolic processes associated with the innate 

humoral and cellular immune reactions and can also provide secondary plant metabolites (e.g. 

nicotine) that can work together with the immune system reducing microbial or pathogen pressure 

because of their antimicrobial properties (Erler et al., 2014). Pollen instead, provides proteins and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242570/#b10
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nutrients required for physiological processes such as growth and immunity (Di Pasquale et al., 2013; 

Vaudo et al., 2015). In particular pollen can influence longevity, the development of hypopharyngeal 

glands, (Pernal and Currie, 2000), the production of some antimicrobial peptides (Alaux et al., 2011) 

and more in general immune competence (DeGrandi-Hoffman et al., 2010; Alaux et al., 2010). 

Nutrition is an important determinant of immune response, and the immune system is one of the 

costliest physiological system in animals (Lochmiller and Deerenberg 2000; Schmid-Hempel 2005). 

Malnutrition can impair the immune function and increase the susceptibility to disease. In humans, 

for example, lack of proteins in the diet reduces the concentration of amino acids in plasma and 

compromises the immune system (Li et al., 2007), while an adequate provision of proteins is required 

to sustain normal immune-competence. The ectoparasitic mite V. destructor, compromises the normal 

relationship between nutrition and immunity (DeGrandi-Hoffman and Chen, 2015). In fact, workers 

parasitized during development emerge with lower protein level that can not be restored even with 

pollen feeding during the adult life (van Dooremalen et al., 2013). Moreover, mite parasitized honey 

bees pupae have lower emergence weight, lower protein content and elevated free amino acids levels, 

suggesting that protein synthesis and growth are inhibited by Varroa (Aronstein et al., 2012). 

In cage condition however, pollen can mitigate the deleterious effects of V. destructor and the related 

virus infections expanding the lifespan of infested bees (Annoscia et al., 2017). It was demonstrated 

that the apolar fraction of pollen (i.e. lipidic compound) plays a key role in prolonging the lifespan of 

honey bees (Annoscia et al., 2017) even if it cannot be excluded that other compound may play a role. 

The TOR (target of rapamycin) pathway is a major nutrient-sensing pattern that regulates growth and 

metabolism in response to amino acids, stresses, changes in cellular energy status (Bjedov et al., 

2009). It also controls protein translation and ribosome biogenesis, the upregulation of which is 

required for growth. More recently, the TOR pathway has emerged as an important modulator of 

ageing (Kaeberlein and Kennedy, 2008). 

The principal component of TOR pathway is TOR protein-kinase, which is divided into two different 

complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 regulates 
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translation and growth through phosphorylation of two downstream effectors: S6K and 4E-BP. In 

favourable conditions such us an amino acid-rich diet, phosphorylated S6K promotes cellular and 

organismal growth while, S6K – deficient animals are smaller and their metabolisms replicate low-

calorie diet conditions (Um et al., 2006). In addition, mTROC1 promotes autophagy when the cell or 

the organism is under starvation (Lum et al., 2005). Autophagy provides the cell with supplementary 

nutrients, but it also removes damaged cellular components playing an important cytoprotective 

function. 

mTORC1 is activated by insulin and environmental nutrients and naturally repressed by AMP-

activated protein kinase (AMPK) a sensor of cellular energy status (Johnson et al., 2013). Thus, there 

is an interaction between TOR and insulin signaling pathway, although this interaction is complex 

and the outcome may depend on cell type and on the intensity and duration of the signal (Sarbassov 

et al., 2006). 

The TOR kinase is chemically inhibited by rapamycin, which is a natural macrolide compound 

isolated from a bacterium from the island of Rapa Nui (Easter Island). Rapamycin is the most specific 

TOR inhibitor and works by binding the FK506-binding protein EKBP12, which interact with 

mTORc1 and decreases its activity (Johnson et al., 2013). mTORC2 instead, is not directly affected 

by rapamycin (Lamming, 2012). 

Rapamycin is generally accepted as stimulator of autophagy and inhibition of cap-dependent 

translation (Ravikumar et al., 2004). The inhibition of TOR activity can increase lifespan and delay 

the ageing process in yeast (Kaeberlein et al., 2007), worms (Hansen et al., 2008), flies (Kapahi et 

al., 2004; Luong et al., 2006) and mice (Selman et al., 2009). 

In honey bees the TOR pathway and the associated insulin pathway, play a fundamental role in 

regulation of ageing of individuals (Corona et al., 2007; Münch and Amdam, 2010) and division of 

labour between worker bees (Wang et al., 2009; Ament et al., 2008), respectively. Moreover, recently 

it has been demonstrated that the mTOR/insulin pathway responds positively to pollen nutrition but 

could be inhibited by Varroa parasitism (Alaux et al., 2011). 
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In the northern hemisphere most of the colony losses occur during the Autumn-Winter period 

(Amdam, 2004) when the resources are naturally limited and V. destructor infestation is high (Martin, 

1998). Moreover, since in some periods of the year and in some areas, natural resources can be 

naturally limited and not match the colony’s needs, beekeepers normally sustain colonies with 

additional sources of carbohydrates (Haydak, 1970; Brodschneider and Crailsheim, 2010; Krainer et 

al., 2016), using homemade inverted sugar syrups, high fructose corn syrup (HFCS) or starch syrup 

(Jachimowicz and El Sherbiny, 1975; LeBlanc et al., 2009; Brodschneider et al., 2010; Brodschneider 

and Crailsheim 2010; Krainer et al., 2016). Additional sources of proteins, consisting of pollen 

supplements or pollen substitutes (Standifer et al., 1977), can also be provided. Carbohydrate rich 

supplementary food provides an alternative source of energy, increases colony strength, prevents 

starvation and may reduce wintering losses (Emsen and Dodologlu, 2014). Indeed, a mixture of 

sucrose and water is commonly used to feed honey bees (Free and Spencer-Booth, 1961; Barker, 

1971; Semkiw and Skubida, 2016) especially in the Autumn–Winter period in temperate areas, when 

honey bees may suffer from low nectar flow and bad weather. However, these syrups may contain 

hydroxymethylfurfural (HMF) and/or its degradation compounds (i.e. laevulinic acid and formic 

acid) which are toxic for honey bees. HMF, is an organic compound consisting of a furan ring 

containing both an aldehyde and an alcohol function, which has been proved to be harmful to adult 

bees at 150 ppm (Jachimowicz and El Sherbiny, 1975) and 8000 ppm in sugar solution (Krainer et 

al., 2016), 250 ppm in HFCS syrup (LeBlanc et al., 2009) and 915 ppm in sugar candies (Smodiš 

Škerl and Gregorc, 2014); while negative effects on larvae were observed at concentrations higher 

than 750 ppm (Krainer et al., 2016). This compound can be formed both through the Maillard reaction 

and the thermal and acid-catalyzed degradation of sugars and carbohydrates (Zirbes et al., 2013; 

Krainer et al., 2016). Moreover, the sugar syrups provided by the beekeepers are also characterized 

by a marked acidity due to substances added to the mixture to invert sucrose in glucose and fructose 

(Bailey, 1966); thought to be more digestible by honey bees. 
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1.5. Aim of the thesis 

Honey bees losses are the result of multiple stressors that affect bee health reducing the lifespan of 

these insects. These stressors are both abiotic and biotic, natural and artificial, with no single one 

being entirely responsible for the problem. At the same time, nutrients in the diet play a crucial role 

in the maintenance of homeostatic balance and in developing optimal immune response. 

The aim of this study was to investigate, at the individual level, how different stress factors and 

nutrition interact to influence the survival of honey bees. To this aim, we subdivided the study in two 

phases; in the first one, we assessed how several stress factors as well as pollen influence honey bee 

health. In a second phase of this study, we investigated how some of these stressors act in combination 

with the others and in combination with nutrition. 

 

The factors that were individually studied in the first phase of this work. were:  

• Pollen: the only source of amino acids and lipids for honey bees. 

• Hydroxymethylfurfural (HMF): a toxic compound contained in additional sugars syrups 

produced by beekeepers to sustain colonies in some periods of the year. 

• Acidity: that normally characterizes the sugar syrups as reported above. 

• Nicotine: a toxic alkaloid that bees can encounter in the environment and was used here as a 

model compound for its mode of action similar to that of neonicotinoid insecticides (du Rand 

et al., 2015). 

• Temperature: a temperature of 32 °C, 2-3 degrees below that normally found in the hive, was 

selected as an example of abiotic stress factor in view of the recurrent alarms related to the 

impact climate change on bee health. 

• V. destructor: the most dangerous ectoparasite of honey bees. 

• Deformed wing virus (DWV): a key pathogen of honey bees. 
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The second phase of the work, involving the study of multiple interactions between the above cited 

factors, included the following analyses. 

• Study of the interaction between dietary pollen and DWV infection; for this purpose, honey 

bees infected orally with different doses of DWV, were fed with two different diets, one 

composed by sugar only and the other made of sugar and pollen. 

• Study of the interaction between dietary pollen and V. destructor; for this purpose, honey bees 

infested or not by Varroa mite were fed with sugar only or sugar and pollen. An experimental 

study aiming at clarifying the positive effect of pollen through chemical inhibition and 

subsequent expression analyses was also carried out. 

• Study the interaction between cold stress and V. destructor; to this aim we maintained mite 

infested individuals at 32 °C and compared their survival with that of bees exposed to a single 

stressor at a time. 

• Study of the interaction among nicotine, temperature, V. destructor and dietary pollen; to this 

aim a fully factorial experiment was carried out and the results analysed by means of Cox 

proportional hazards regression. 

• Study of the interaction between hydroxymethylfurfural and acidity and 

hydroxymethylfurfural and V. destructor; for this purpose, we exposed honey bees to HMF 

and/or to acidified food and to V. destructor. 

In all cases, caged bees were studied and the response variable was the survival. 

Additional relative genes expressions analyses were carried out to complement the survival studies 

and thus to better understand the effects of stressor on individual honey bees. 

Table 1 summarizes the stressors and the interactions that were considered in this study. 
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Table 1. Interaction of stressors considered in this study. Blue colour refers to sugar only diet, yellow colour to sugar 

and pollen diet. Blank boxes refer to non-studied interaction. 
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2. MATERIALS AND METHODS 

In order to understand if and how potential stressors, belonging to different categories, and nutrition 

can impact on honey bee survival, several experiments were carried out under lab conditions. In this 

chapter the reader will find the experiments that were carried out during this study. Each paragraph 

refers to a single experiment (except 2.1.). 

2.1. Honey bees, Varroa mites and methodology used in this study 

Experiments were carried out between May 2017 and October 2019. Newly emerged adult bees and 

mites were collected randomly (unless otherwise specified) from several colonies of the experimental 

apiary of the Dipartimento di Scienze AgroAlimentari, Ambientali e Animali of the University of 

Udine (46°04′53.3″ N, 13°12′33.1″ E). Previous studies indicated that local honey bee colonies are 

hybrids between Apis mellifera ligustica Spinola and Apis mellifera carnica Pollmann (Comparini 

and Biasiolo, 1991). 

If not otherwise specified, every experiment consisted of three replicates carried out at different times, 

while the number of bees refers to the total number of individuals used in the experiments.   

 

2.2. Effect of pollen nutrition on survival and diet consumption of 

deformed wing virus-infected honey bees 

Pollen, along with nectar, is the natural food for Apis mellifera. Specifically, pollen represents the 

only source of amino acids, lipids, and protein for honey bees. It has been demonstrated that pollen 

feeding in some cases reduce virus infection (DeGrandi – Hoffman et al., 2010; Annoscia et al., 2017). 

To gain insight the effects of pollen nutrition on honey bee survival challenged by DWV, we design 

a dose-response experiment where honey bees infected with an increasing number of viral copies 

were feed with a sugar diet or with a sugar diet complemented with pollen. 
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At the beginning of the beekeeping season (June), when the DWV load in the area is low inside the 

hives (Nazzi et al., 2012), newly emerged bees were collected from one colony. The bees were then 

divided in 4 groups, transferred into plastic cages (185 x 105 x 85 mm) in a climatic chamber (34.5 

°C, 75% R.H., dark) and fed with water and a sugar solution. After two hours, the bees were starved 

by removing the sugar solution for one hour; then, bees were individually fed with 5 µL of sugar 

solution containing different concentrations of DWV: 0, 100, 1000, 10000 viral copies. 

Subsequentially each group were split in two sub-groups (8 cages in total): one group (4 cages) fed 

with sugar candy (Apifonda®) and water, while the other group (4 cages) fed with sugar candy 

(Apifonda®), crude pollen and water. The final situation was composed by eight cages: 

- 1 control group fed with sugar and water (control). 

- 1 control group fed with sugar, pollen and water (control P+). 

- 1 group infected with 100 DWV viral copies and fed with sugar and water (100 vc). 

- 1 group infected with 100 DWV viral copies and fed with sugar, pollen and water (100 vc 

P+). 

- 1 group infected with 1000 DWV viral copies and fed with sugar and water (1000 vc). 

- 1 group infected with 1000 DWV viral copies and fed with sugar, pollen and water (1000 vc 

P+). 

- 1 group infected with 10000 DWV viral copies and fed with sugar and water (10000 vc). 

- 1 group infected with 10000 DWV viral copies and fed with sugar, pollen and water (10000 

vc P+). 

Sugar were dispensed with the use of small plastic button (Ø = 1.5 cm) filled with fresh sugar candy 

every 2 days and placed on the floor of the cages. Plastic buttons were completely covered with 

laboratory film (Parafilm®), to prevent the exsiccation of the candy, except a little cut on the top, to 

ensure the bee feeding. 

Survival and diet consumption were recorded daily.  
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Sugar consumption was analysed from day 4 to day 20, because of the high variability in sugar intake 

before day 4, and the too low number of bees after day 20. Indeed, a low number of honey bee per 

cage (< 5 individual), influence negatively the quality of data. Pollen consumption analysis instead, 

were calculated from day 4 to 12, since after this day the consumption drastically dropped below the 

sensitivity of our weighing method. 

From 118 to 124 bees per group were used. Log rank test was used for statistical analysis.  

For a better understanding of the results, the comparison between control curves (“control” and 

“control P+”) was extrapolated and plotted individually in the paragraph 3.1.1. (“Effect of pollen on 

adult honey bees under normal conditions”). 

 

2.3. Effects of different doses of hydroxymethylfurfural (HMF) on honey 

bee survival 

Beekeepers normally sustain colonies with homemade sugar syrups that could contain 

hydroxymethylfurfural (HMF), which is harmful to honey bees nevertheless its toxicity in syrups is 

still debated and complex. To assess the possible negative effects of HMF in homemade wintering 

food, we investigated the survival of uninfested honey bees fed with HMF at doses similar to those 

developed in previous prepared homemade syrups (see 6.3.  “Attachment 3” for more information) 

and also compatible with those reported in literature. To this aim, the day before the experiment, 

several combs containing emerging bees were randomly collected from the apiary and stored 

overnight in a climatic chamber (34.5 °C, 75% R.H., dark). The day after, newly emerged honey bees 

were transferred into plastic cages (185 x 105 x 85 mm) and maintained under the same controlled 

conditions. Bees were divided in two groups. The first one was fed with a sucrose solution (sucrose 

– water, 2:1 ratio) (“control” in figures) and the second one with a sucrose solution containing 85 

ppm of HMF (“85 ppm HMF” in figure). The dose of 85 ppm is equal to the concentration of HMF 

produced in previous homemade syrups (see 6.3.  “Attachment 3” for more information).  
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The experiment was replicated three times. From 62 up to 80 honey bees per experimental group were 

used. 

Since the concentration of HMF that can be observed in homemade syrups depends on both acidity 

and boiling time of the homemade sugar syrups (see 6.3.  “Attachment 3” for more information), we 

tested two additional HMF doses corresponding respectively to 400 (“400 ppm HMF” in figure) and 

10000 ppm (“10000 ppm HMF” in figure). To this aim, we followed the same protocol reported above 

to manage honey bee experimental group.  

 

2.4. Effects of acidity on honey bee survival 

Since homemade sugar syrup are acidified to invert sucrose, we decided to investigate the possible 

side effects of a low pH diet on honey bee survival. To this aim, honey bees were collected using the 

same protocol reported for the previous experiments; the individuals were divided in three groups: a 

control group fed with water and sugar solution (sucrose : water, 2:1 ratio) (control), a group fed with 

the same sugar solution acidified with lemon (lemon), and a third group fed with the same sugar 

solution acidified with HCl (HCl). The three different diets were provided ad libitum to bees, together 

with water. The experiment was replicated three times using three different cages per experimental 

group (each replicate corresponded to one cage). 

 

2.5. Effect of different concentration of nicotine on honey bee lifespan 

Nicotine is not only a xenobiotic that honey bees could find naturally in the environment, but also a 

compound that likely interact with the same metabolic pathways of neonicotinoids – like compounds, 

that are used for agricultural crops protection. The first step of our nicotine study was to find a 

possible sublethal dose to be used in following experiments. To this aim, we investigated the survival 

of honey bees fed with different concentrations of this natural xenobiotics, as reported in literature. 

For this purpose, during the early season (May - June) sealed brood combs from different colonies of 
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the apiary were collected and stored overnight in a climatic chamber (34.5 °C, 75% R.H., dark). The 

day after, newly emerged bees were transferred into plastic cages (185 x 105 x 85 mm) and fed ad 

libitum with water and different diets, which consisted in a sugar solution (glucose 61%, fructose 

39%; Thom et al., 2003) added with 0, 0.1, 1, 10, 50 ppm of Nicotine (Sigma Aldrich, USA), 

respectively labelled as: “0 ppm”, “0.1 ppm”, “1 ppm” and “50 ppm” in figures and maintained in a 

climatic chamber (34.5 °C, 75% R.H., dark). The different diets were dispensed through 20 mL 

syringes that were daily weighed to record the food consumption. A total of 100 bees per group were 

used. 

 

2.6. Effects of cold stress on V. destructor parasited honey bees 

Varroa destructor is a well-known parasite for Apis mellifera and a lot of studies had already 

highlighted the magnitude of the detrimental effects caused to the host. On the other hand, honey bees 

are affected also by other stressors contemporary to mite infestation. In the northern hemisphere, most 

colony losses occur during the autumn – winter period when temperature decrease according to 

latitude and continentality. Thus, cold stress could be a supplementary factor that, along with Varroa 

infestation, could affects colony survival. To investigate the combined effect of low temperature and 

V. destructor infestation, we treated honey bees with both stressors. 

For this purpose, we collected mites and last instar bee larvae from brood cells capped in the preceding 

15 h obtained as follows: in the evening of the day preceding the experiment the capped brood cells 

of a comb were marked and the following morning the comb was transferred to the lab and unmarked 

cells, that had been capped overnight, were manually unsealed. The comb was then placed in an 

incubator at 35 °C, 75% R.H., where larvae, either infested or not, spontaneously emerged. Last instar 

bee larvae were transferred into gelatin capsules (Agar Scientific ltd., 6.5 mm diameter) with no mites 

or one mite, and maintained at 35 °C, 75% R.H. for 12 days (Nazzi and Milani, 1994). Upon eclosion, 

newly emerged adult bees were separated from the infesting mite and transferred into four plastic 

cages (185 × 105 × 85 mm) with water and sugar candy (Apifonda®) ad libitum, provided as 
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described above (paragraph 2.2). In this experiment, sugar consumption was analysed from day 4 to 

day 23, using the Kruskal – Wallis extension Scheirer-Ray-Hare (SHR) statistical method. 

One cage, composed by uninfested bees, was maintained in a climatic chamber at 34.5 °C, 75% R.H., 

in dark condition (labelled as “control” in figures), while another cage, also composed by uninfested 

bees, was maintained in a climatic chamber at 32 °C, 75% R.H. Even the mite infested bees were 

divided into two cages, one maintained at standard temperature (34.5 °C, 75% R.H, dark) and the 

other one kept in cold stress condition (32 °C, 75% R.H, dark).  

Survival and diet consumption were recorded daily. A total of 155 bees per group were used.  

For a better understanding of the results, the comparison between control curve and cold stress and 

control curve and V. destructor (“control vs. 32° C” and “control vs. V+” respectively) were 

extrapolated and plotted individually in the paragraph 3.1.5. (“Temperature”) and 3.1.6. (“Varroa 

destructor”). 

To gain insight of the detrimental effects of these two stressors, we further analysed, by quantitative 

real time PCR (qRT-PCR), the relative expression of some fundamental genes involved in the stress 

response in organisms, as described below. 

Apidaecin (forward: 5’- TTTTGCCTTAGCAATTCTTGTTG - 3’; reverse: 5’- 

GAAGGTCGAGTAGGCGGATCT - 3’) is a gene encoding the antimicrobial peptide involved in 

specific responses to bacterial challenge (Evans et al., 2006) and thus fundamental for secondary 

infections vectored by Varroa destructor.  A similar role has Defensin (forward: 5’- 

CATGGCTAATGCCGGAGAGG - 3’; reverse: 5’- CTGCACCAGCTTGAAGAGC - 3’), an 

antimicrobial peptide with an active role against a broad spectrum of Gram-negative bacteria and 

fungi (Evans et al., 2006). Heat shock protein (Hsp90) (forward: 5’- 

TTTTGCCTTAGCAATTCTTGTTG - 3’; reverse: 5’- GAAGGTCGAGTAGGCGGATCT - 3’) is a 

protein responding to the proteostatic disruption in the cytoplasm due to high temperature (McKinsty 

et al., 2017). To maintain a constant temperature in the hive, honey bees can heat themselves up to 

49 °C, exposing routinely to significant proteostatic stressors. Temperature slightly lower than normal 
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(i.e. 32 °C) could bring honey bees to thermoregulate more, leading to higher proteostatic stress than 

normality.  

Vitellogenin (Vg) (forward: 5’-TTGACCAAGACAAGCGGAACT-3’; reverse: 5’-

AAGGTTCGAATTAACGATGAA-3’) was selected as a generic marker of stress (Dolezal et al., 

2016; Smart et al., 2016; Zanni et al., 2017). 

Because of its role in the insulin signalling/mTor pathway, and thus in food intake, we studied the 

Insulin Receptor Substrate 1 (IRS-1) (forward: 5’- TTTGCAGTCGTTGCTGGTA - 3’; reverse: 5’- 

TAGCGGTAGTGGCACAGTTG - 3’) (Mutti et al., 2011). Finally, we investigated the relative virus 

load of deformed wing virus (DWV) (forward: 5’- GCGCTTAGTGGAGGAAATGAA - 3’; reverse: 

5’- GCACCTACGCGATGTAAATCTG - 3’) (Mondet et al., 2014), since it represents a constant 

pathogenic threat for honey bees (Nazzi and Pennacchio, 2018). Actin (forward: 5’- 

GATTTGTATGCCAACACTGTCCTT - 3’; reverse: 5’- TTGCATTCTATCTGCGATTCCA - 3’) 

(Di Prisco et al., 2016) was used as housekeeping gene. RNA extractions were performed on 12 bees 

per experimental group with Rneasy® Plus Mini Kit (Quiagen) homogenisation the whole body of 

the honey bee using a mortar. cDNA was synthetized with Moloney Murine Leukemia Virus Reverse 

Transcriptase (M-MLV RT, Promega) and the real-time PCR analysis were performed using SYBR® 

green dye (Ambion®), according to the manufacturer specifications, on an ABI prism® 7900 

sequence detector (Applied Biosystems™, United States). Relative gene expression data were 

analysed using the 2-ΔΔCt method (Livak and Schmittgen, 2001). 

The Kruskal – Wallis extension Scheirer-Ray-Hare (SHR) was used to study statistical differences. 

 

 

2.7.  V. destructor effects on honey bee thermoregulation 

Since we noted a decreasing in sugar intake by honey bees during Varroa infestation, and since body 

temperature affects the rate of energy expenditure and vice – versa, we investigated the body 

temperature of uninfested and mite infested honey bees. For this purpose, using the same protocol 
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described above (Nazzi and Milani, 1994), we artificially infested honey bee larvae. Upon eclosion, 

newly emerged adult bees were separated from the infesting mite and transferred into plastic cages 

(185 × 105 × 85 mm). Uninfested and infested honey bees were maintained in a climatic chamber at 

34.5 °C, 75% R.H., dark.  

Starting from day 4, three honey bees collected randomly from the two groups (infested and 

uninfested) were photographed with an infrared thermographic camera (brand: FLIR; model: i5; 

thermal resolutions = ± 0.1 °C) with emissivity settled at 0.97 according with (Stabentheiner et al., 

2010). The photos were taken for four consecutive days. Three technical replicates (i.e. three pictures) 

were taken for each photo. Images were analysed with FLIR Tools® software and temperature data 

were collected, considering the higher degree Celsius reached by the thorax of the honey bee. 

Following, since we noted a decrease on thermoregulatory capacity of the mite parasitised bees, we 

investigated indirectly the status of flight muscles. Indeed, these muscles are involved in honey bee 

thermoregulation because of their tetanic contraction that lead to a non-shivering thermogenesis. 

To investigate this issue, we artificially infested or not honey bee larvae as described before. The two 

groups of bees (infested or not) were maintained in an environmental chamber at 34.5 °C, 75% R.H., 

dark, for 12 days. Upon eclosion, newly emerged honey bee were weighed and then head, thorax, and 

abdomen were dissected and separately weighed. Data were analysed with Mann-Whitney test to 

investigate differences in thorax weight between infested and uninfested bees.  

 

2.8. Effect of pollen nutrition on mite infested bees and study of the possible 

causes of the observed beneficial effect 

Pollen nutrition has a beneficial effect on lifespan of V. destructor parasited bees (Annoscia et al., 

2017). To further investigate this effect, we tested the hypothesis that pollen can influence the 

energetic pathways of the honey bees, compensating nutrients that are lost because of the mite’s 

feeding activity (e.g. glycogen, trehalose and  proteins (Glinski and Jarosz, 1984; Zóltowska et al., 

2007). 
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The experimental plan envisaged the feeding of honey bees with pollen and rapamycin, to verify if 

the beneficial effects of pollen were lost. Rapamycin indeed, inhibit the mTOR pathway, which is 

central in the energetic metabolisms of the organisms.  

However, before using rapamycin we carried out preliminary experiments aiming at assessing the 

best solvent to dilute the compound to the required concentration. 

The first preliminary experiment was set up to study the best solvent for rapamycin (Glentham life 

sciences). Since the solubility of the chemical inhibitor in water is only 2.6 µg/mL, we tested if 

ethanol (Sigma Aldrich, USA) and dimethyl sulfoxide (DMSO) (Sigma Aldrich, USA), whose 

rapamycin solubility are >90 mg/mL and >250 mg/mL respectively (source: 

www.sigmaaldrich.com), could represent a health issue for honey bees. To investigate this problem, 

newly emerged honey bee were collected into plastic cages (185 x 105 x 85 mm) and divided in three 

groups: the control group (control), fed ad libitum with water and sugar solution (glucose 61%, 

fructose 39%; Thom et al., 2003); the “8‰ ethanol” group, fed ad libitum with water and sugar 

solution containing 8‰ ethanol (Sigma Aldrich, USA); the “5‰ DMSO” group, fed ad libitum with 

water and sugar solution containing 5‰ DMSO (Sigma Aldrich, USA). Concentrations of 8‰ and 

5‰ were used because they allowed the total solubilization of rapamycin at doses that we would have 

been used in the next steps of our study. Survival and diet consumption were recorded daily. The 

experiment was replicated two times. 

The second step in the use of rapamycin as inhibitor, was to investigate the right concentration of this 

drug in food. Indeed, rapamycin could have deleterious, beneficial or no effects on organism health, 

depending on the working dose. Our idea was to use a hypothetical maximum dose with no negative 

effect on honeybee survival. After preliminary bibliography investigation, the choice fall down on 

four possible concentrations: 0.5 µM, 5 µM, 50 µM, 500 µM.  Rapamycin were administered via oral 

feeding by sugar solutions. After the results of the previous experiment, ethanol at 8‰ was used as 

solvent for rapamycin since no effect were highlighted in survival and in sugar intake of treated bees.  
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Rapamycin (Glentham life science, UK) was thus first solubilized in ethanol 8‰ (Sigma Aldrich, 

USA), and then diluted in sugar solution (glucose 61%, fructose 39%; Thom et al., 2003) to obtain a 

concentration of 500 µM (“500 µM” in figures). Subsequently, this solution was diluted 10, 100, 

10000 times with sugar solution to reach: 50 µM (“50 µM” in figures), 5 µM (“5 µM” in figures)  and 

0.5 µM (“0.5 µM” in figures). These food solutions were respectively administered to honey bees in 

different experimental group. The control solution (“control” in figures) was created adding 8‰ 

ethanol (Sigma Aldrich, USA) in sugar solution. 

As for previous experiments, uninfested newly emerged honey bees were collected into plastic cages 

(185 x 105 x 85 mm) and stored in a climatic chamber (34.5 °C, 75% R.H., dark).   

Survival and diet consumption were recorded daily. From 74 to 104 bees per group were used.   

After the previous experiment, 500 µM was choose as working concentration for our experiment 

since no negative effects were highlighted both on survival of bees and in daily intake of food. 

To study the hypothesis that pollen acts on energetic pathway to promote survival in mite infested 

bees we used rapamycin, which is an inhibitor of mTOR pathway, together with pollen and V. 

destructor. The experimental plan was composed by six groups divided as follow: the control group 

(“control”), formed by uninfested bees fed with sugar and water ad libitum; a group formed by 

uninfested bees fed with a sugar solution containing 500 µM of rapamycin (Sigma Aldrich, USA) 

and water ad libitum (“V-R+” in figure); the mite infested group, formed by Varroa infested honey 

bees fed with sugar and water ad libitum (“V+” in figure); mite infested bees fed with sugar, pollen 

and water ad libitum (“V+P+” in figure); mite infested bees fed with a sugar solution with 500 µM 

of rapamycin (Sigma Aldrich, USA) and water ad libitum (“V+R+” in figure); and finally, the last 

group formed by mite infested bees fed with a sugar solution with 500 µM of rapamycin (Sigma 

Aldrich, USA), pollen and water ad libitum (“V+R+P+” in figures). To obtain mite infested bees or 

uninfested bees, we artificially incapsulated larvae as described previously (Nazzi and Milani, 1994). 

Upon eclosion, newly emerged adult bees were separated from the infesting mite and transferred into 

plastic cages (185 × 105 × 85 mm), maintained in a climatic chamber (34.5 °C, 75% R.H, dark). 
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Sugar solution were dispensed with the use of 20 mL syringes inside the cages, while pollen was 

delivered with the use of an open petri dish placed on the floor of the cages. Survival and diet 

consumption were recorded daily. A minimum of 65 and a maximum of 85 bees per group were used. 

Relative gene expression analysis was firstly utilized to assess the biological effect of the rapamycin 

and to investigate the impact of pollen on the mTOR pathway. Since we had three independent 

variables (rapamycin, V. destructor and pollen) with unequal groups (absence of uninfested bees fed 

with sugar solution and pollen since this effect was well studied in previous experiments) we used 

the Mann Whitney test to study defined comparisons. In particular, the studied comparisons were:  

- Uninfested honey bees versus Varroa infested honey bees. 

- Varroa infested honey bees versus Varroa infested honey bees fed with pollen. 

- Varroa infested honey bees versus Varroa infested honey bees fed with rapamycin.  

- Varroa infested honey bees fed with pollen versus Varroa infested honey bees fed with pollen 

and rapamycin.  

- Uninfested honey bees versus uninfested honey bees fed with rapamycin.  

We choose these comparisons to highlight the effectiveness of the independent variables in respond 

to a single variable factor. Since we did five comparisons per gene, with a total of 25 comparisons, 

we control the false discovery rate with Benjamini – Hochberg procedure, setting the false discovery 

rate (Q) to 0.1. This false discovery rate was chosen because of the large number of statistical test 

and because it excludes potentially false negatives. 

To investigate the relative expression of genes, we performed a quantitative real time PCR (qRT-

PCR) assessing the relative expression of some key genes involved both in mTOR and insulin 

signalling pathways (rather than PI3K – Akt signalling pathway). These genes were: Insulin – like 

peptide 2 (ILP-2) (forward: 5’- TTCCAGAAATGGAGATGGATG -3’; reverse: 5’-

TAGGAGCGCAACTCCTCTGT -3’); Insulin Receptor Substrate 1 (IRS-1) (forward: 5’- 

TTTGCAGTCGTTGCTGGTA - 3’; reverse: 5’- TAGCGGTAGTGGCACAGTTG - 3’); 

Phosphoinositide 3-kinases (PI3K) (forward: 55’- TGAATTTGGCTTAACTGGAT - 3’; reverse: 5’- 
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TTTCAACTGCTCGTTCGTAT - 3’); mTOR (forward: 55’- GTTGCAGTCCAGGCTTTTTG- 3’; 

reverse: 5’- AACAACTGTTGCTGACGGTG- 3’); ATG2 (forward: 5’ – 

GCCACTGGATTCTTCAACAGG – 3’; reverse: 5’ – GCGTAGAACCCCTGCTAGAT– 3’). 

Vitellogenin (Vg) (forward: 5’-TTGACCAAGACAAGCGGAACT-3’; reverse: 5’-

AAGGTTCGAATTAACGATGAA-3’) was selected as a generic marker of stress (Dolezal et al., 

2016; Smart et al., 2016; Zanni et al., 2017). In addition to gene expression we also studied the relative 

viral load of deformed wing virus (DWV) (forward: 5’- GCGCTTAGTGGAGGAAATGAA - 3’; 

reverse: 5’- GCACCTACGCGATGTAAATCTG - 3’), because it represents a constant pathogenic 

threat for honey bees (Nazzi and Pennacchio, 2018) and it is regulated by pollen presence in diet 

(Annoscia et al., 2017). Elf – s8 (forward: 5’- TGAGTGTCTGCTATGGATTGCAA - 3’; reverse: 

5’- TCGCGGCTCGTGGTAAA - 3’) and GAPDH were used as housekeeping genes. RNA 

extractions were performed on 12 bees per experimental group with Rneasy® Plus Mini Kit 

(Quiagen) homogenization the whole body of the honey bee using a Fast- Prep® 

(Savant™TermoFisher™, United States) homogenizer. cDNA was synthetized with Moloney Murine 

Leukemia Virus Reverse Transcriptase (M-MLV RT, Promega) and the real-time PCR analysis were 

performed using SYBR® green dye (Ambion®), according to the manufacturer specifications, on an 

ABI prism® 7900 sequence detector (Applied Biosystems™, United States). Relative gene 

expression data were analysed using the 2-ΔΔCt method (Livak and Schmittgen, 2001). 

 

2.9. Interactions between nicotine, temperature, V. destructor and pollen 

Since honey bees are exposed to a considerable variety of stress factors in the environment, both 

biotic and abiotic, is essential investigate how multiple stressors could interact to influence honey 

bees health. In fact, stressors are usually tested individually; however, in natural conditions the effect 

of a tested stressor could be enhanced or repressed by the presence of other factors. 
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To this aim we selected four factors and we tested them simultaneously in a fully nested experiment. 

These factors were: V. destructor, nicotine (50 ppm in sugar solution), low temperature (32 °C) and 

the presence of pollen in the diet.    

During the months of August-September we collected mature bee larvae and mites from brood cells 

capped in the preceding 15 hours. Then, we artificially infested or not honey bee larvae with one mite 

or no mites, respectively (Nazzi and Milani, 1994). Such honey bee larvae were maintained in an 

environmental chamber at 34.5 °C, 75% R.H., dark, for 12 days and, upon eclosion, newly emerged 

adult bees were separated from the mite (if present) and divided in eight experimental groups (each 

composed by two cages) organized as follows:  

- Uninfested honey bees fed with sugar solution (glucose 61%, fructose 39%). 

- Uninfested honey bees fed with sugar solution and pollen. 

- Uninfested honey bees fed with sugar solution containing 50 ppm of nicotine. 

- Uninfested honey bees fed with sugar solution containing 50 ppm of nicotine and pollen. 

- Infested honey bees fed with sugar solution. 

- Infested honey bees fed with sugar solution and pollen. 

- Infested honey bees fed with sugar solution containing 50 ppm of nicotine. 

- Infested honey bees fed with sugar solution containing 50 ppm of nicotine and pollen. 

Each of the two cages belonging to the eight different groups were then stored in two different 

climatic chambers, with the same relative humidity (75 %) but different temperature 34.5 °C and 32.5 

°C, respectively.  

Survival and diet consumption were recorded daily. From 53 to 65 bees per group were used. 

For a better understanding of the results, we extrapolated the survival curves of caged bees fed with 

sugar diet and honey bees fed with sugar and pollen and we plotted them individually in the paragraph 

3.1.1. (“Effect of pollen on adult honey bees under normal conditions”). 
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2.9.1. Survival data analysis  

The Cox proportional-hazards model (Cox, 1972) was used to analyse the data. The Cox model is 

commonly used in medical research for investigating the association between the survival time of 

patients in relation to one or more predictor variables. The main assumption of Cox model is the 

proportionality of the hazard ratios (HR) between groups. However, in our model the proportionality 

was rejected because of HR pollen trend (data not showed); therefore, the weighted Cox regression 

was used. Weighted estimation of Cox regression is a parsimonious alternative which supplies well 

interpretable average effects also in case of non-proportional hazard (Dunker et al., 2018). The R 

package “coxphw” was utilized for the purpose.  

 

2.9.2. Model building (R script) 

Since theory suggests that Cox regression with more than two interaction factors may be non-

predictive, we started our analysis with the pairwise comparison of our four factors and progressively 

omitted the non-statistically significant interactions, starting with those with the higher p-value. For 

simplicity we report below the starting and final regression equation: 

Starting equation: 

> res.cox <- coxphw(Surv(time, status) ~ (temperature+varroa+pollen+nicotine)^2, data = mydata2, template = 

"AHR") 

 

Final equation: 

> res.cox <- coxphw(Surv(time, status) ~ (temperature+varroa+pollen+nicotine)^2 - varroa:pollen - 

temperature:pollen - temperature:nicotine - temperature:varroa, data = mydata2, template = "AHR") 

 

2.10. Combination of HMF and acidity on honey bee survival  

Since we showed that HMF at a low concentration is not harmful for honey bees while acidity has a 

negative effect on bee, we decided to study the combinate effects of these stressors together. In order 

to study the interactive effect of these two potential stressors we compared the survival of newly 
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emerged honey bees (obtained with the protocol mentioned above; Nazzi and Milani, 1994) fed with 

an acidified sucrose solution at 2.91 pH containing 85 ppm of HMF (“acid + HMF” in figure), versus 

honey bees fed with sucrose solution containing HMF but not acid (“control + HMF”) and versus a 

acidified (with HCl) solution at 2.91 pH (“acid”) . From 62 up to 80 honey bees per experimental 

group were used in total. 

 

2.11. Effects of a monosaccharide based diet on honey bees  

To verify the need to invert sucrose in homemade syrups and thus the importance of the lemon juice 

addition in the syrups, we studied the survival of bees fed either with monosaccharide or disaccharide 

sugars. We therefore reared newly emerged honey bees obtained as above and provided either a water 

and sucrose solution ad libitum (“sucrose” in figure) or a 1:1:1 water, glucose and fructose solution 

(“glu+fru” in figure). Three replicates with three different cages were made for this experiment (each 

replicate corresponded to one cage). 

 

2.12. Combination of HMF and V. destructor 

Homemade sugar syrups, which can hide possible side detrimental effects, are administered to honey 

bee colonies during the autumn – winter periods. This part of the season however, if often 

characterized by high V. destructor infestation. 

To assess the possible negative interaction of HMF with the ectoparasite, we investigated the survival 

of infested bees fed with 400 ppm of HMF. To do so, we collected mature bee larvae from brood cells 

capped in the preceding 15 hours and transferred them into gelatin capsules (Agar Scientific Ltd., 6.5 

mm Ø) with no mites or one mite that had been collected from recently sealed brood cells (Nazzi and 

Milani, 1994); bees were maintained in an environmental chamber at 34.5 °C, 75% R.H., dark, for 12 

days. Upon eclosion, newly emerged adult bees were separated from the infesting mite and transferred 

into plastic cages (185 × 105 × 85 mm), maintained in a climatic chamber at 34.5 °C, 75% R.H., dark. 

Bees were divided in three groups: infested honey bees fed with sugar solution (glucose 61%, fructose 
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39%) and water (“V+” in figures); infested honey bee fed with sugar solution (glucose 61%, fructose 

39%) containing 400 mg/L of HMF and water ad libitum (“V+ HMF+”); uninfested honey bees fed 

with sugar solution (glucose 61%, fructose 39%) containing 400 mg/L of HMF and water ad libitum 

(“V+ HMF-”). The experiment was replicated twice. From 62 up to 80 honey bees per experimental 

group were used in total. 
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3. RESULTS 

 

3.1. Effect of single factors on bee health  

In order to understand if and how potential stressors, belonging to different categories, and pollen can 

impact on honey bee survival, several experiments were carried out under lab conditions. These 

experiments involved exposing to different stressors caged honey bees whose survival was monitored 

on daily basis. For a better comprehension, results are reported following the sequence “from single 

to multiple stressors” rather than the consecutiveness of the experiments. Thus, results of an 

experiment could have been subdivided in more than one paragraph. This, of course did not 

influenced the validity of the data. The most relevant data are reported below.  

 

3.1.1. Effect of pollen on adult honey bees under normal conditions 

Pollen as well as nectar, is the natural food for A. mellifera. In particular, pollen represents the only 

source of amino acids, lipids, and protein for honey bees. To assess the effect of this substance on 

adult honey bees survival, we ran two experiments: one early in the active bee season (May) and 

another later in the season (August - September); during the experiments, caged bees were fed sugar 

candy and pollen or sugar candy only and their survival assessed through daily observations. 

In general, a shorter survival was observed in bees at the end of Summer as compared to bees sampled 

in Spring (Fig. 2); pollen fed bees seemed to survive longer than bees fed with sugar only. However, 

in the trial carried out in May, the difference between the survival of pollen fed bees and control bees 

did not reach significance (Fig. 2A; P- vs. P+, Log-rank test: Chi-Square = 2.451, d.f. = 1, P = 0.117), 

while, in the late season experiment we noted a significant difference in survival between pollen fed 
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bees and bees fed with sugar only (Fig. 2B; P- vs. P+, Log-rank test: Chi-Square =13.366, d.f. = 1, P 

< 0.000). 

 

 

3.1.2. Hydroxymethylfurfural 

Beekeepers normally sustain colonies with homemade sugar syrups that can contain 

hydroxymethylfurfural (HMF), which is harmful to honey bees. To assess the influence of this toxic 

compound we fed caged honey bees with a sugar solution (sucrose – water, 2:1 ratio) containing a 

dose of HMF (85 ± 9.17 ppm) similar to that previously found in homemade syrups and also similar 

Figure 2. A- Survival of honey bees fed with sugar and with sugar and pollen in early season (May). B- Survival of 

honey bees fed with sugar and with sugar and pollen in late season (August - September). For a better comprehension, 

curves of point A coming from Fig.10 while curves of section B coming from data of the paragraph “2.9. Pairwise 

interactions between nicotine, temperature, V. destructor and pollen” 

 

* 
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to that reported in literature. HMF at this low dose had no effect on survival (Fig. 3A; control vs. 

control + HMF, Log-rank test: Chi-Square = 0.567, d.f. = 1, P = 0.451). However, the concentration 

of HMF that can observed in homemade syrups depends both on acidity and boiling time of these 

syrups (see appendix 6.3. “Possible side effects of sugar supplementary nutrition on honey bee health” 

for more information). In particular, at low pH (i.e. 2 pH), HMF can range from 355.3 ppm to 12,005.3 

ppm depending on boiling time (0 to 40 minutes). Therefore, we tested the survival of honey bee fed 

with sugar solutions containing either 400 ppm or 10,000 ppm. 400 ppm of HMF did not affect the 

survival of honey bees (Fig. 3B; control vs. 400 HMF, Log-rank test: Chi-Square 0.298, d.f. = 1, P = 

0.585), while 10,000 ppm of HMF appeared to be toxic for bees (Fig. 3C; control vs. 10000 HMF, 

Log-rank test: Chi-Square = 16.452, d.f. = 1, P < 0.000). 
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Figure 3. A- Survival of honey bees fed with sugar and sugar with 85 ppm HMF. B- Survival of honey bees fed with 

sugar and sugar with 400 ppm HMF. C- Survival of honey bees fed with sugar and sugar with 10000 ppm HMF. An 

asterisk was added in the legend to the name of the experimental group if a significant difference (p <0.05) was found 

between that group and the control. 
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3.1.3. Acidity 

Since homemade sugar syrup are normally acidified to invert sucrose, we investigated the possible 

side effects of low pH on honey bee survival. Low acidity (pH = 2.91) obtained by adding either HCl 

or lemon juice (a common ingredient of homemade sugar syrups) negatively affected the survival of 

honey bees (Fig. 4; control vs. lemon, Log-rank test: Chi-Square = 47.852, d.f. = 1, P < 0.000; control 

vs. HCl, Log-rank test: Chi-Square = 25.059, d.f. = 1, P < 0.000; HCl vs. lemon, Log-rank test: Chi-

Square = 1.103, d.f. = 1, P = 0.294). 

 

 

Figure 4. Survival of honey bees fed with sugar syrup acidified or not with different substances (pH = 2.91). An asterisk 

was added in the legend to the name of the experimental group if a significant difference (p <0.05) was found between 

that group and the control. 

 

3.1.4. Nicotine 

To assess the impact of this natural xenobiotic on bee survival, four doses of the compound were 

dissolved in sugar solutions and fed to bees as well as a clean control solution. 

0.1 and 1 ppm of nicotine slightly increased the lifespan of honey bees (Fig. 5A; 0 ppm vs. 0.1 ppm, 

Log-rank test: Chi-Square = 11.671, d.f. = 1, P = 0.001; 0 ppm vs. 1 ppm, Log-rank test: Chi-Square 
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= 11.150, d.f. = 1, P = 0.001). No effect was observed with 10 ppm of nicotine (Fig. 5A; 0 ppm vs. 

10 ppm, Log-rank test: Chi-Square = 19.107, d.f. = 1, P = 0.166); instead, 50 ppm of nicotine 

decreased the survival of treated bees (Fig.5A; 0 ppm vs. 50 ppm, Log-rank test: Chi-Square = 10.408, 

d.f. = 1, P = 0.001). 

To exclude the possibility that the negative effects of the highest dose of nicotine was related to a 

decreased ingestion of sugar solution, and thus, to the effect of starvation, caused by a possible phago-

deterrent effect of the compound, we calculated the daily average consumption of sugar solution per 

experimental group. No differences were found between treated groups and control (Fig. 5B; 0 ppm 

vs. 0.1 ppm, Mann-Whitney U test: n1 = 20 ; n2 = 20; U = 149; P = 0.084; 0 ppm vs. 1 ppm, Mann-

Whitney U test: n1 = 20 ; n2 = 20; U = 158; P = 0.128; 0 ppm vs. 10 ppm, Mann-Whitney U test: n1 

= 20 ; n2 = 20; U = 155; P = 0.112; 0 ppm vs. 50 ppm, Mann-Whitney U test: n1 = 20 ; n2 = 20; U = 

191; P = 0.404). 
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Figure 5. A- Survival of honey bees fed with sugar syrups containing different concentration of nicotine. B- Average 

daily consumption per bee of sugar syrups containing different concentration of nicotine. An asterisk was added in the 

legend to the name of the experimental group if a significant difference (p <0.05) was found between that group and the 

control. 

 

3.1.5. Temperature 

To study the possible negative effects of cold stress on survival, honey bees were maintained at 34.5 

°C, which is regarded as the normal temperature within the hive, and at 32 °C. 

No differences in the shape of survival curves or in the median survival time were observed between 

the two groups of bees maintained at different temperature (Fig. 6A; control vs. 32 °C, Log-rank test: 

Chi-Square = 0.900, d.f. = 1, P = 0.343). However, a higher average daily intake of sugars was noted 
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in bees kept at 32 °C (stress temperature) versus bees reared at 34.5 °C (control temperature) (Fig. 

6B; control vs. 32 °C, Mann-Whitney U test: n1 = 14 ; n2 = 14; U = 58; P = 0.033). 

 

 

Figure 6. A-Survival of honey bees reared at control temperature (34.5 °C) and at 32°C. B. Average daily consumption 

per bee of sugar candy at control temperature and under cold-stress conditions. 

An asterisk marks values significantly differing from control (p <0.05). For a better comprehension, the curves (A) are 

extrapolated from Fig.19. 

 

3.1.6. Varroa destructor 

The effect of Varroa parasitism on honey bee health has been extensively studied. However, to set a 

standard baseline for the following experiments regarding the multiple interactions among different 

stressors, an experiment was carried out, whereby the survival of adult bees exposed or not to the 

parasite during the pupal stage was studied. As expected, bees artificially infested with V. destructor 

showed a reduced lifespan as compared to un-infested bees (Fig. 7A; control vs. V+, Log-rank test: 
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Chi-Square = 9.6361, d.f. = 1, P = 0.002). Interestingly, mite infestation decreased the daily 

consumption of sugar in honey bees (Fig. 7B; control vs. V+, Mann-Whitney U test: n1 = 19 ; n2 = 

19; U = 56; P < 0.000). 

Since body temperature affects the rate of energy expenditure and vice – versa, sugar intake should 

influence honey bee body temperature. To investigate this aspect, we analysed the body temperature 

of healthy and mite infested honey bees with an infrared thermographic camera.  Results showed that 

mite infested bees have a lower body temperature (Fig. 8; control vs. varroa, Mann-Whitney U test: 

n1 = 12 ; n2 = 12; U = 19; P = 0.001).  

To get insight into why mite infested honey bees are less able to thermoregulate, we weighted honey 

bees thoraxes, which contains no more than the indirect flight muscles, to assess whether mite infested 

bees have underdeveloped muscles as a side effect of V. destructor parasitization. Data show that 

there is no difference in thorax weight between uninfested and mite infested honey bees (Fig. 9; 

control vs. varroa, Mann-Whitney U test: n1 = 10 ; n2 = 10; U = 50; P = 0.500); this is even more 

convincing in view of the normally reduced weight of mite infested bees.  
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Figure 7. A- Survival of uninfested (control) and mite infested (V+) honey bee. B- Average daily consumption per bee of 

sugar solution in control and parasitized honey bee. Asterisk refers to statistical significance (p <0.05) compared to 

control. For a better comprehension, the curves (A) are extrapolated from Fig.19. 
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Figure 8. Average body temperature of health and mite infested honey bees. Asterisk refers to statistical significance (p 

<0.05) compared to control. 

 

Figure 9. Average thoraxes weight of uninfested (control) and infested (varroa) honey bees. 

 

3.1.7. Deformed wing virus 

In order to study the net effect of the virus on honey bee lifespan, while excluding the interference of 

the vector V. destructor and/or the immune challenge related to a possible intrabdominal injection, 
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we orally administered various doses of deformed wing virus (DWV) to newly emerged honey bees 

that were fed with sugar only. 

Honey bees treated at emergence with 100 viral copies showed no statistical differences in survival 

from the control group (Fig. 10A; control vs. 100 vc , Log-rank test: Chi-Square = 1.224, d.f. = 1, P 

= 0.269), while bees fed with 1,000 and 10,000 viral copies showed a shorter lifespan (Fig. 10A; 

control vs. 1000 vc , Log-rank test: Chi-Square = 6.160, d.f. = 1, P = 0.013; control vs. 10000 vc, 

Log-rank test: Chi-Square = 3.896, d.f. = 1, P = 0.005). 

No differences in daily intake of sugar was observed among bees belonging to the different 

experimental groups (Fig. 10B; control vs. 100 vc, Mann-Whitney U test: n1 = 17 ; n2 = 17; U = 111; 

P = 0.385; control vs. 1000 vc, Mann-Whitney U test: n1 = 17 ; n2 = 17; U = 136; P = 0.124; control 

vs. 10000 vc, Mann-Whitney U test: n1 = 17 ; n2 = 17; U = 133; P = 0.139). 
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Figure 10. A- Survival of honey bees infected with different viral copies and fed with different diets (pollen presence, 

pollen absence). B- Average sugar consumption of bees with different diets (pollen presence, pollen absence). Asterisks 

marks significant differences (p <0.05). C- Average pollen consumption of bees. 
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3.2. Effects of multiple factors on bee health and interactions with 

nutrition  

In the previous paragraphs we reported the net effect of different stressors on honey bee health. 

However, under natural conditions, honey bee colonies face a number of different stress factors. In 

order to understand how these stressors interact with each other and their impact on honey bee 

survival also in combination with nutrition, several experiments were carried out under lab conditions. 

 

First, we investigated the effects of pollen on virus infected honey bees at different infection levels.  

Then, we studied the effect of pollen on Varroa parasitized bees and tried to assess if this positive 

effect depends on the contribution of pollen to the energetic balance of bees. 

Following, we built a fully four factorial experiment to get insight into the interplay between nicotine, 

temperature, V. destructor and pollen.  

Lastly, we tested the combined action of HMF and acidity because these two stressors are often 

combined in the supplementary nutrition provided by beekeepers to bees in some periods of nectar 

shortage. 

 

3.2.1. Effect of pollen on virus infected honey bees 

To investigate the effect of pollen on the lifespan of virus infected honey bees, we fed bees infected 

with different viral copies (0, 100, 1,000, 10,000 viral copies) with sugar, water and pollen. 

No statistical differences among groups of pollen fed bees were observed  (Fig. 10A; control P+ vs. 

100 vc P+ , Log-rank test: Chi-Square = 3.784, d.f. = 1, P = 0.052; control P+ vs. 1000 vc P+ , Log-

rank test: Chi-Square = 0.832, d.f. = 1, P = 0.362; control P+ vs. 10000 vc P+ , Log-rank test: Chi-

Square = 0.006, d.f. = 1, P = 0.939). No differences in both sugar (Fig.10B; control P+ vs. 100 vc P+, 

Mann-Whitney U test: n1 = 17 ; n2 = 17; U = 121; P = 0.209; control P+ vs. 1000 vc P+, Mann-

Whitney U test: n1 = 17 ; n2 = 17; U = 128; P = 0.285; control P+ vs. 10000 vc P+, Mann-Whitney 
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U test: n1 = 17 ; n2 = 17; U = 118; P = 0.181) and pollen daily intake (Fig. 10C; control P+ vs. 100 

vc P+, Mann-Whitney U test: n1 = 9 ; n2 = 9; U = 51; P = 0.113; control P+ vs. 1000 vc P+, Mann-

Whitney U test: n1 = 9 ; n2 = 9; U = 70; P = 0.454; control P+ vs. 10000 vc P+, Mann Whitney: n1 

= 9 ; n2 = 9; U = 64; P = 0.322) were noted in this experiment. 

No significant differences were found in the lifespan of bees belonging to the two control groups (i.e. 

infected bees fed with pollen or not) (Fig. 10A; control vs. control P+, Log-rank test: Chi-Square = 

2.451, d.f. = 1, P = 0.117). Instead, pollen significantly increased the survival of virus infected bees 

at all concentration tested  (Fig.10A; 100 vc vs. 100 vc P+, Log-rank test: Chi-Square = 15.554, d.f. 

= 1, P < 0.000; 1000 vc vs. 1000 vc P+, Log-rank test: Chi-Square = 14.745, d.f. = 1, P < 0.000; 

10000 vc vs. 10000 vc P+, Log-rank test: Chi-Square = 7.758, d.f. = 1, P = 0.005). 

We also compared sugar consumption in bees fed with pollen or not. We noted higher sugar 

consumption in bees inoculated with 100  and 1000 viral copies fed with pollen with respect to those 

treated with the same number of viral copies but without pollen (Fig. 10B; 100 vs. 100 vc P+, Mann-

Whitney U test: n1 = 17 ; n2 = 17; U = 57; P = 0.001; 1000 vs. 1000 vc P+, Mann-Whitney U test: 

n1 = 17 ; n2 = 17; U = 87; P = 0.024). No differences were noted between the control group and that 

treated with 10,000 viral copies (Fig. 10B; control vs. control P+, Mann-Whitney U test: n1 = 17 ; n2 

= 17; U = 100; P = 0.063; 10000 vs. 10000 vc P+, Mann-Whitney U test: n1 = 17 ; n2 = 17; U = 142; 

P = 0.466). 

 

3.2.2. Effect of pollen on mite infested bees and study of the possible causes 

of the observed beneficial effect 

To investigate the effect of pollen on the lifespan of parasitized bees, we fed bees infested by the mite 

at the pupal stage with pollen or not and assessed their survival. 

As expected mite infested bees lived shorter than uninfested ones (Fig. 11A; control vs. V+ , Log-

rank test: Chi-Square = 11.381, d.f. = 1, P = 0.001) but mite infested bees fed with sugar and pollen, 
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survived significantly longer than mite infested bees fed with sugar only (Fig. 11A; V+ vs. V+P+ , 

Log-rank test: Chi-Square = 12.101, d.f. = 1, P = 0.001). 

 

Figure 11. A- Survival of honey bees treated with different combination of Varroa, pollen and rapamycin. Curves that 

share the same letter are not significantly different. B- Average daily consumption per bee of sugar solution in treated 

honey bees. 

 

To gain insight into how pollen can mitigate the detrimental effects of varroa parasitism on honey 

bees previously demonstrated, we tested if the observed beneficial effects depends on the positive 

contributions of pollen to the energetic metabolism of bees. To this aim, we altered the functioning 

of the energetic pathways of pollen fed bees, by means of a chemical inhibitor of a crucial player of 

metabolism and checked if the positive effect of pollen was conserved.  
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As a preliminary step we tested different solvents for dissolving our inhibitor. The survival of honey 

bees fed with 8‰ ethanol and 5‰ DMSO was similar to that of bees belonging to the control group 

(Fig. 12A; control vs. 8‰ ethanol, Log-rank test: Chi-Square = 0.867, d.f. = 1, P = 0.352; control vs. 

5‰ DMSO, Log-rank test: Chi-Square = 0.301, d.f. = 1, P = 0.583). However, sugar consumption 

was significantly lower in DMSO treated honey bees (Fig. 12B; control vs. 5‰ DMSO, Mann-

Whitney U test: n1 = 20 ; n2 = 20; U = 267; P = 0.035). For this reason, to avoid any possible 

interference between food intake and rapamycin treatment, we choose ethanol as a solvent for 

dissolving this inhibitor.  

 

Figure 12. Survival of honey bees treated with different rapamycin solvent. B- Average daily consumption per bee of 

sugar solution in treated honey bees. Asterisks marks experimental groups that significantly differ from control (p 

<0.05). 

To investigate the effects of rapamycin drug on survival, honey bees were treated with different doses 

of the compound. Survival was monitored daily. No statistical significant differences in survival were 

observed (Fig. 13A; control vs. 0.5 µM, Log-rank test: Chi-Square = 2.034, d.f. = 1, P = 0.154; control 

vs. 5 µM, Log-rank test: Chi-Square = 1.288, d.f. = 1, P = 0.256; control vs. 500 µM, Log-rank test: 
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Chi-Square = 3.262, d.f. = 1, P = 0.071) apart from 50 µM which had a negative impact on honey bee 

survival (Fig.13A; control vs. 50 µM, Log-rank test: Chi-Square = 5.170, d.f. = 1, P = 0.023). 

No significantly differences in sugar intake were found among the treatment (Fig.13B; control vs. 0.5 

µM, Mann-Whitney U test: n1 = 18 ; n2 = 18; U = 163; P = 0.487; control vs. 5 µM, Mann-Whitney 

U test: n1 = 18 ; n2 = 18; U = 133; P = 0.179; control vs. 50 µM, Mann-Whitney U test: n1 = 18 ; n2 

= 18; U = 162; P = 0.919; control vs. 500 µM, Mann-Whitney U test: n1 = 18 ; n2 = 18; U = 120; P 

= 0.273). Based on these results, we adopted the dose of 500 µM as the standard one for further 

experiments. 

 

Figure 13. A- Survival of honey bees treated with different concentration of rapamycin. B- Average daily consumption 

per bee of sugar solution in treated honey bees. Asterisks marks experimental groups that significantly different from 

control (p <0.05). 
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To investigate if the beneficial role of pollen in mite infested bees is lost after chemical inhibition of 

mTOR, a crucial node of the energetic pathways, honey bees were treated with different combinations 

of varroa, pollen and rapamycin and their survival studied. 

Rapamycin had no effect on uninfested honey bees (Fig. 11A; control vs. V-R+ , Log-rank test: Chi-

Square = 0.865, d.f. = 1, P = 0.352); furthermore, rapamycin did not affect the survival of mite 

infested bees fed with sugar only (Fig. 11A; V+ vs. V+R+, Log-rank test: Chi-Square = 1.003, d.f. = 

1, P = 0.317); however, in this case the survival curve of Varroa infested bees showed a peculiar 

extension after day 23 (Fig. 11A); also rapamycin did not influence the survival of mite infested - 

pollen fed honey bees (Fig. 11A; V+P+ vs. V+R+P+ , Log-rank: Chi-Square = 1,226 d.f. = 1, P = 

0.68). No differences in sugar consumption were observed among treatment (Fig. 11B; control vs. V-

R+, Mann-Whitney U test: n1 = 20 ; n2 = 20; U = 198; P = 0.478; control vs. V+, Mann-Whitney U 

test: n1 = 14 ; n2 = 20; U = 132; P = 0.390; V+ vs. V+R+, Mann-Whitney U test: n1 = 14 ; n2 = 20; 

U = 103; P = 0.098; V+ vs. V+P+, Mann-Whitney U test: n1 = 14 ; n2 = 20; U = 120; P = 0.242; 

V+P+ vs. V+P+R+, Mann-Whitney U test: n1 = 20 ; n2 = 20; U = 162; P = 0.152). 

To further investigate the relationship between pollen and mTOR pathway activation, we performed 

virus and gene expression analyses on the bees used in the experiments. 

Firstly, we investigated the effects of V. destructor and pollen in our experimental groups. 

As expected mite infestation increased DWV relative load (Fig. 14; control vs. V+, Mann-Whitney 

U test: n1 = 4; n2 = 7; U = 3; P = 0.01882; Benjamini – Hochberg procedure: Q = 0.1; (i/m)Q = 0.02; 

P<(i/m)Q = 0.01882; significance = confirmed), while the difference between varroa infested bees 

fed with pollen or not did not reach statistical significance (Fig. 14; V+ vs. V+P+; Mann-Whitney U 

test: n1 =7; n2 =3; U = 7; P = 0.21252; Benjamini – Hochberg procedure: Q = 0.1; (i/m)Q = 0.01; 

P<(i/m)Q = 0.21252; significance = not confirmed). 

Varroa and pollen had a significative impact on vitellogenin expression. Indeed, the mite decreased 

the expression of Vg (Fig. 15; control vs. V+; Mann-Whitney U test: n1 = 12 ; n2 = 9; U = 15; P = 

0.00279; Benjamini – Hochberg procedure: Q = 0.1; (i/m)Q = 0.04; P<(i/m)Q = 0.00279; significance 
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= confirmed), while pollen considerably increased its expression in parasitized bees (Fig. 15; V+ vs. 

V+ P+; Mann-Whitney U test: n1 = 9 ; n2 = 11; U = 11; P = 0.00011; Benjamini – Hochberg 

procedure: Q = 0.1; (i/m)Q = 0.02; P<(i/m)Q = 0.00011; significance = confirmed). 

 

Figure 14. Relative DWV expression in the experimental groups. Asterisks mark comparisons that are statistically 

significant (p<0.05). 

 

Figure 15. Relative expression of Vitellogenin in the experimental groups. Comparison marked with asterisk are 

significantly different. 
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As for the genes in the mTOR pathway, Varroa influenced IRS-1 and ATG2 (Fig. 16). In particular, 

mite infestation up-regulated IRS-1 (Fig. 17B; control vs. V+; Mann-Whitney U test: n1 = 12 ; n2 = 

12; U = 37; P = 0.022; Benjamini – Hochberg procedure: Q = 0.1; (i/m)Q = 0.032; P<(i/m)Q = 0.022; 

significance = confirmed) and down-regulated ATG2 (Fig. 17E; control vs. V+ ; Mann-Whitney U 

test: n1 = 12 ; n2 = 10; U = 11; P = 0.001; Benjamini – Hochberg procedure: Q = 0.1; (i/m)Q = 0.008; 

P<(i/m)Q = 0.001; significance = confirmed). 

A significant effect of pollen on the relative expression of ILP-1 (up-regulation: Fig. 17A; V+ vs. 

V+P+; Mann-Whitney U test: n1 = 12 ; n2 = 12; U = 22; P = 0.002; Benjamini – Hochberg procedure: 

Q = 0.1; (i/m)Q = 0.02; P<(i/m)Q = 0.002; significance = confirmed) and PI3K (down-regulation: 

Fig. 17C; V+ vs. V+P+; Mann-Whitney U test: n1 = 12 ; n2 = 12; U = 27; P = 0.001; Benjamini – 

Hochberg procedure: Q = 0.1; (i/m)Q = 0.028; P<(i/m)Q = 0.001; significance = confirmed) was 

observed. 

Rapamycin at 500 µM concentration, increased both DWV relative load (Fig. 14; control vs. V-R+; 

Mann-Whitney U test: n1 = 4; n2 = 4; U = 3; P = 0.074; Benjamini – Hocberg procedure: Q = 0.1; 

(i/m)Q = 0.08; P<(i/m)Q = 0.074; significance = confirmed) and Vg expression (Fig. 15; control vs. 

V-R+; Mann-Whitney U test: n1 = 12 ; n2 = 9; U = 31; P = 0.050; Benjamini – Hochberg procedure: 

Q = 0.1; (i/m)Q = 0.06; P<(i/m)Q = 0.050; and Vg expression) but did not influence any mTOR gene 

when supplied alone. However, in combination with V. destructor and pollen, rapamycin influenced 

four genes in the mTOR pathway. ILP-1 (Fig. 16), was up-regulated in mite infested bees treated with 

rapamycin (Fig. 17A; V+ vs. V+R+, Mann-Whitney U test: n1 = 12 ; n2 = 12; U = 30; P = 0.008; 

Benjamini – Hochberg procedure: Q = 0.1; (i/m)Q = 0.024; P<(i/m)Q = 0.008; significance = 

confirmed); IRS-1 (Fig. 16), was down-regulated in mite infested bees fed with sugar and pollen (Fig. 

17B; V+P+ vs. V+P+R+, Mann-Whitney U test: n1 = 11 ; n2 = 12; U = 18; P = 0.002; Benjamini – 

Hochberg procedure: Q = 0.1; (i/m)Q = 0.016; P<(i/m)Q = 0.002; significance = confirmed); finally, 

mTOR (Fig. 16) was up-regulated in mite infested honey bees treated with rapamycin (Fig. 17D; V+ 

vs. V+R+, Mann-Whitney U test: n1 = 12 ; n2 = 12; U = 20; P = 0.001; Benjamini – Hochberg 
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procedure: Q = 0.1; (i/m)Q = 0.012; P<(i/m)Q = 0.001; significance = confirmed). Lastly, rapamycin 

up-regulated the expression of ATG2 (Fig. 16) in varroa infested honey bees (Fig. 18E; V+ vs.V+R+, 

Mann-Whitney U test: n1 = 10 ; n2 = 11; U = 7; P < 0.000; Benjamini – Hochberg procedure: Q = 

0.1; (i/m)Q = 0.08; P<(i/m)Q < 0.000; significance = confirmed). 

Tab.2 resume all multiple comparison of genes involved in mTOR pathway. 

 

 

Figure 16. Studied genes of the mTOR pathway (in blue) as affected by rapamycin, Varroa and pollen (see legend of 

colours and symbols). 
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Figure 17. Relative gene expression of members of the mTOR pathway. Asterisks mark significant differences (p<0.05). 
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Table 2. Statistics associated to the comparison of relative gene expression of the analysed genes in the mTOR pathway. 

gene  Comparison n1 n2 U p value fdr (Q) (i/m)Q P<(i/m)Q significance 

ILP-1 1 control vs. V+ 12 12 48 0.8293 0.1 0.1 - negative 

2 V+ vs. V+P+ 12 12 22 0.00195 0.1 0.02 0.00195 positive 

3 V+ vs. V+R+ 12 12 30 0.00766 0.1 0.024 0.00766 positive 

4 V+P+ vs. 

V+P+R+ 
12 12 58 

0.20946 0.1 0.052 - negative 

5 control vs. V-P+ 12 12 72 0.5 0.1 0.096 - negative 

IRS-1 1 control vs. V+ 12 12 37 0.02165 0.1 0.032 0.02165 positive 

2 V+ vs. V+P+ 12 11 48 0.13397 0.1 0.044 - negative 

3 V+ vs. V+R+ 12 11 63 0.42676 0.1 0.084 - negative 

4 V+P+ vs. 

V+P+R+ 
11 12 18 

0.00157 0.1 0.016 0.00157 positive 

5 control vs. V-P+ 12 12 58 0.20946 0.1 0.052 - negative 

PI3K 1 control vs. V+ 12 12 65 0.34305 0.1 0.076 - negative 

2 V+ vs. V+P+ 12 11 27 0.00819 0.1 0.028 0.00819 positive 

3 V+ vs. V+R+ 12 12 50 0.10201 0.1 0.04 - negative 

4 V+P+ vs. 

V+P+R+ 
11 12 44 

0.08787 0.1 0.036 - negative 

5 control vs. V-P+ 12 12 69 0.43125 0.1 0.088 - negative 

mTOR 1 control vs. V+ 11 12 59 0.3333 0.1 0.068 - negative 

2 V+ vs. V+P+ 12 11 52 0.19444 0.1 0.048 - negative 

3 V+ vs. V+R+ 12 12 20 0.00134 0.1 0.012 0.00134 positive 

4 V+P+ vs. 

V+P+R+ 
11 12 57 

0.28982 0.1 0.064 - negative 

5 control vs. V-P+ 11 12 59 0.3333 0.1 0.068 - negative 

ATG2 1 control vs. V+ 12 10 11 0.00062 0.1 0.008 0.00062 positive 

2 V+ vs. V+P+ 10 11 44 0.21929 0.1 0.06 - negative 

3 V+ vs. V+R+ 10 11 7 0.00036 0.1 0.004 0.00036 positive 

4 V+P+ vs. 

V+P+R+ 
11 12 61 

0.37914 0.1 0.08 - negative 

5 control vs. V-P+ 12 12 69 0.43125 0.1 0.088 - negative 
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3.2.3. Effects of cold stress on mite infested honey bees 

To assess the combined effect of low temperatures and V. destructor infestation on bees, we 

maintained mite infested individuals at 32 °C and compared their survival with that of bees exposed 

to a single stressor at a time. 

We recorded a negative effect of the two stressors combined (Fig. 18A; control  vs. T+V+, Log-rank 

test: Chi-Square = 28.387 , d.f. = 1, P < 0.000; V+ vs. T+V+, Log-rank test: Chi-Square = 85.40, d.f. 

= 1, P = 0.003; T+ vs. T+V+, Log-rank test: Chi-Square = 16.76 , d.f. = 1, P > 0.000). 

We noted that sugar consumption was negatively influenced both by mite infestation and temperature 

but not by the interaction between the two stressors (Fig. 18B; Scheirer-Ray-Hare test: varroa: p-

value < 0.000; temperature: p-value = 0.025; interaction varroa * temperature: p-value =  0.615). 
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Figure 18 A- Honey bee survival. B- Average daily intake of sugar in control bees (uninfested, mantained at 34 °C), 

uninfested bees mantained at 32 °C (V-T+), mite infested honey bee maintained at 34 °C (V+T-) and infested bees 

maintained at 32°C (V+T+). Varroa, Temperature and Interaction, refers to the Scheirer-Ray-Hare test. Only the 

effects of Varroa was statistical significant in influencing the average daily intake. 

 

To further explore the effect of these two stressors at the physiological level, we analysed the 

expression of some relevant genes. 

DWV relative load was influenced by mite infestation but not by temperature (Fig. 19; Scheirer-Ray-

Hare test: varroa: p-value < 0.05; temperature: p-value > 0.05; interaction varroa * temperature: p-

value > 0.05). 

Apidaecin relative expression was influenced by Varroa infestation but not by temperature (Fig. 20A; 

Scheirer-Ray-Hare test: varroa: p-value < 0.05; temperature: p-value > 0.05; interaction varroa * 

temperature: p-value > 0.05). Defensin expression was not influenced by any stressor (Fig. 20B; 

Scheirer-Ray-Hare test: varroa: p-value > 0.05; temperature: p-value >0.05; interaction varroa * 
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temperature: p-value > 0.05). We also investigated the expression of one gene involved in thermal 

stress (i.e. Heat shock protein Hsp90), a key player in the insulin/insulin-like signalling pathway (i.e. 

IRS1) and vitellogenin that proved to be a good marker of mite infestation and is involved in 

immunity. Heat shock protein Hsp90 was influenced by temperature but not by mite infestation or 

the interaction between factors (Fig. 20C; Scheirer-Ray-Hare test: varroa: p-value > 0.05; 

temperature: p-value < 0.05; interaction varroa * temperature: p-value > 0.05), while IRS-1 was up-

regulated in Varroa infested bees (Fig. 20D; Scheirer-Ray-Hare test: varroa: p-value < 0.05; 

temperature: p-value > 0.05; interaction varroa * temperature: P < 0.05). Vitellogenin (Vg) was down-

regulated at low temperature but not by mite infestation (Fig. 20E; Scheirer-Ray-Hare test: varroa: p-

value > 0.05; temperature: p-value < 0.05; interaction varroa * temperature: P < 0.05 ). 

 

Figure 19. DWV relative expression of honey bee affected by cold stress, V. destructor and the interaction between 

them. Result of the Scheirer-Ray-Hare test were reported. Asterisk refers to statistical significance (p <0.05) of the test. 
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Figure 20. Relative gene expression of the several genes studied. Honey bee were affected by cold stress, V. destructor 

and the interaction between them. Result of the Scheirer-Ray-Hare test were reported. Asterisk refers to statistical 

significance (p <0.05) of the test. 

 

 

3.2.4. Pairwise interactions between nicotine, temperature, V. destructor 

and pollen 

In the first phase of our experimental activity we determined the effect of single factors on honey bee 

survival. We showed that nicotine at 50 ppm and V. destructor have a negative impact on honey bees 

lifespan while 32 °C temperature has no significant effect. Pollen instead, have a neutral or 

significantly positive effect depending on the seasonality of the experiments. However, under natural 
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conditions, a number of factors are present at a time making it necessary to understand how different 

factors interact with each other to influence honey bee survival. To this aim we run a fully factorial 

experiment including: nicotine, low temperature, V. destructor and pollen. 

To analyse the effects of various factors on survival time, we utilized a multivariate weighted Cox 

proportional-hazard model. Since using more than two interacting factors tends to make the Cox 

regression strongly non-predictive, we started with the pairwise comparison between interaction 

factors and progressively deleted the non-statistically significant interactions. 

 

 

Table 2. Value and significance of the hazard ratio of different factors and interactions according to 

Cox. 

 

We found that honey bees exposed to abnormal low temperatures (32 °C) and Varroa infestation had 

a significantly higher risk of death by 34% and 94%, respectively, whereas pollen significantly 

reduced the risk of death by 45%. We also found a significant interaction between pollen and nicotine 

such that the risk of death was increased by 63% when the two factors were presented together. On 

> res.cox <- coxphw(Surv(time, status) ~ (low_temperature+varroa+pollen+nicotine)^2 - varroa:pol
len – low_temperature:pollen – low_temperature:nicotine – low_temperature:varroa, data = mydata2
, template = "AHR") 
> summary(res.cox) 
 
coxphw(formula = Surv(time, status) ~ (low_temperature + varroa +  
    pollen + nicotine)^2 - varroa:pollen – low_temperature:pollen -  
    low_temperature:nicotine – low_temperature:varroa, data = mydata2,  
    template = "AHR") 
 
Model fitted by weighted estimation (AHR template)  
 
                      coef   se(coef) exp(coef) lower 0.95 upper 0.95         z            p 
low_temperature  0.2919643 0.08906946 1.3390552  1.1245595  1.5944634  3.277939 1.045678e-03 * 
varroa           0.6620712 0.13300655 1.9388038  1.4938896  2.5162237  4.977734 6.433303e-07 *** 
pollen          -0.6037658 0.13826646 0.5467488  0.4169608  0.7169362 -4.366683 1.261478e-05 *** 
nicotine         0.1475093 0.12893914 1.1589440  0.9001384  1.4921609  1.144023 2.526143e-01 
varroa:nicotine -0.4195690 0.17755163 0.6573301  0.4641424  0.9309272 -2.363082 1.812367e-02 * 
pollen:nicotine  0.4927955 0.18407186 1.6368857  1.1411326  2.3480135  2.677191 7.424237e-03 ** 
 
Wald Chi-square = 54.68762 on 6  df, p = 5.359947e-10 
 
 
Generalized concordance probability: 
 
                concordance prob. lower 0.95 upper 0.95 
low_temperature            0.5725     0.5293     0.6146 
varroa                     0.6597     0.5990     0.7156 
pollen                     0.3535     0.2943     0.4176 
nicotine                   0.5368     0.4737     0.5987 
varroa:nicotine            0.3966     0.3170     0.4821 
pollen:nicotine            0.6208     0.5330     0.7013 
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the contrary, the significant interaction between varroa and nicotine caused a reduction in the risk of 

death by 34%. 

The p-value of the overall Wald test is significant, indicating that the model is significant. 

 

3.2.5. Combined action of HMF and acidity on honey bee survival 

In the paragraph “Effects of single stressors on bee health” we showed that HMF at a low 

concentration (i.e. 85 ppm and 400 ppm) is not harmful to honey bees while acidity (pH = 2.91) has 

a negative effect on bee lifespan. In order to study the interactive effect of these two potential stressors 

we compared the survival of honey bees fed with an acidified sucrose solution at 2.91 pH containing 

HMF (85 ± 9.17 ppm) versus honey bees fed with a sucrose solution containing HMF but not acidified 

and an acidified solution (2.91 pH). We found that the combination of HMF and acidity has an effect 

not more deleterious than acidity per se (Fig. 21; control + HMF  vs. acid + HMF, Log-rank test: Chi-

Square = 93.978 , d.f. = 1, P = 0.002; acid vs. acid + HMF, Log-rank test: Chi-Square = 1.354 , d.f. 

= 1, P = 0.245). 

Since acidification of sugar syrups appears to be critical for bee survival, and the purpose of this 

treatment is to obtain the inversion of disaccharide sugars into monosaccharides, we tested if feeding 

bees with a sucrose solution instead of glucose and fructose influences their survival. 

We found that bees fed with sucrose syrup (the same recipe as that used in the previous experiments) 

had a longer survival than bees fed with a 1:1:1 water, glucose and fructose solution (Fig. 22; sucrose 

vs glu+fru, Log-rank test: Chi-Square = 7.440, d.f. = 1, P = 0.006). 
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Figure 21. Survival of honey bees treated differentially with HMF, acidity and HMF + acidity. 

 

Figure 22. Survival of honey bees fed with monosaccharide and disaccharide diets. 
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3.2.6. Combined action of HMF and V. destructor 

To investigate if an otherwise ineffective concentration of HMF can be harmful to mite infested bees, 

we treated such bees with HMF at 400 ppm and compared their survival to that of bees treated with 

HMF but uninfested. We noted that surprisingly 400 ppm of HMF increased the survival of mite 

infested bees (Fig. 23; V+ vs. V+ HMF+, Log-rank test: Chi-Square = 5.052, d.f. = 1, P = 0.025) 

while the survival of uninfested bees treated with HMF was higher than both untreated uninfested 

bees and mite infested (Fig. 23; V- HMF+ vs. V+ HMF+, Log-rank test: Chi-Square = 6.000, d.f. = 

1, P = 0.014). 

 

Figure 23. Survival of honey bee treated with: V. destructor, HMF at low concentration (400 ppm) and V. destructor 

and HMF 400 ppm. Asterisk refers to statistical significance (p <0.05) compared to V+HMF+. 
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4. DISCUSSION 

Three years of experiments produced a considerable amount of data. For better clarity, the chapter 

is subdivided into paragraphs. Each paragraph refers to a single factor that is examined first for the 

effect that it can have on its own on bees and then for the combined effect with other factors as 

demonstrated along this study. 

 

4.1. Pollen 

Our study confirms the well-known beneficial effects of pollen on honey bees. In particular, pollen 

seems to play a fundamental role in relation to the stressors that might affect honey bee’s health. 

Indeed, pollen did not affect the normal survival of unchallenged newly emerged adult bees (i.e. bees 

not exposed to any of the following potential stressors: DWV, V. destructor, nicotine, temperature, 

acidity and HMF). However, as soon as one or more stressors were added, pollen increased the 

lifespan compared to control. In particular, no effects of pollen on otherwise healthy bees were noted 

in May, when, under the conditions of the area where this experiment was carried out, most bees are 

DWV negative and the viral load in positive bees is low (Nazzi et al., 2012). Instead, at the end of the 

Summer, when viral prevalence reaches 100% and viral load is higher (Nazzi et al., 2012), a 

significant effect of pollen was noted. 

This result implies that pollen is not fundamental per se for honey bee’s survival under cage 

conditions but it is beneficial in presence of factors which can affect the homeostasis of bees. These 

was already noted by Annoscia et al. (2017) who demonstrated that pollen increased the survival of 

mite infested bees but did not do so in un-infested bees. Previous observation on the effect of pollen 

on mite parasitized bees were confirmed here when pollen was supplied to bees infested with one 

mite at the pupal stage and their survival compared to that of un-infested bees (see par. 3.2.2). 

The results on the effect of pollen on bees that were infected with the virus through nutrition reported 

in paragraph 3.2.1. suggest that the beneficial effect of pollen on mite infested bees may be related 
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both to the compensation of the negative effects of mite nutrition on developing bees and a possible 

direct effect of pollen on the virus vectored by the mite. Clearly, it may well be that the beneficial 

effect of pollen on virus infected bees is related only to a compensation of the deleterious effects of 

virus infection rather than a possible antiviral action suggested above. This antiviral effect of pollen 

was already noted by DeGrandi-Hoffman and colleagues (2010) which found that worker honey bee 

fed with pollen had a lower DWV load than those bees fed with sugar alone, however, in a similar 

study, pollen increased the virus load both in Varroa infested and Varroa-free honey bees (Alaux et 

al., 2011). This interesting hypothesis thus, seems to be worth of further investigation. In any case, to 

our knowledge, for the first time we showed the net beneficial effects of a pollen diet on virus infected 

honey bees. Indeed, the oral injection of DWV allowed us to work with bees whose 

immunocompetence was challenged by the virus alone and not by other interfering factors (e.g. 

syringe injection triggers the immune system activating clotting and melanisation). 

Interestingly, in early season experiment, pollen treated honey bees started to die few days before the 

non-treated ones (day 12 vs. day 20) but the mortality was constant and lower, compared to sugar fed 

honey bees. This might be explained by the fact that pollen contains compounds (i.e. flavonoids) and 

secondary metabolites that have to be detoxificated by the honey bees (Schmehl et al., 2014; 

Berenbaum and Johnson, 2015; du Rand et al., 2015). This detoxification process has a cost in terms 

of energy (du Rand et al., 2015), and it may be noted that, in fact, bees fed with pollen and infected 

with 100 and 1,000 viral copies consumed higher amounts of sugar as compared to their control 

without pollen.  

The hypothesis that the beneficial effect of pollen comes at a cost in terms of detoxification seems to 

be supported by the negative interaction between pollen and nicotine observed in the multifactorial 

experiment that will be discussed below. 
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4.2. HMF and acidity 

Doses of HMF similar to those reported as sublethal in the literature (Jachimowicz and El Sherbiny, 

1975; Le Blanc et al., 2009) and found in our homemade sugar syrups, seem to be non-toxic for 

uninfested bees (see par. 3.1.2.). This result suggests that, at low concentrations, in the range of 85-

400 ppm, HMF does not influence bee health. This apparent non toxicity of HMF at low doses was 

confirmed also with bees that were infested at the pupal stage (see par. 3.2.6.) supporting the notion 

that these two stressors do not interfere with each other. 

Our results show that the lower acidity that can be found in homemade syrups because of lemon 

addition, negatively affects bees’ survival, as confirmed by comparing the survival of bees fed a sugar 

solution acidified or not with lemon (see par. 3.1.3.). The similar results obtained after changing the 

acidifying agent support the notion that acidity per se, rather than any toxic compounds from lemon, 

is responsible for the observed effect. 

However, our experiments (see appendix 6.3 “Possible side effects of sugar supplementary nutrition 

on honey bee health” for more information) further showed that acidified sugar solutions may reach 

much higher concentrations of HMF if a prolonged heating is applied and a low pH level (e.g. pH=2) 

is reached after lemon addition; in fact, both acidity and the amount of lemon juice are influenced by 

seasonality, climate and the stage of ripeness of the lemon (Bartholomew, 1923), and such low pH 

level can easily be reached. Since the very high concentrations of HMF that can be produced under 

the above mentioned conditions can be very toxic to bees (i.e. above 10000 ppm), a great care should 

be used while making homemade syrups. The negative effect of lemon addition obtained here 

suggested to test if lemon addition is really necessary; we found that sucrose can be as effective as 

glucose and fructose to sustain a normal survivorship under laboratory condition. This would suggest 

that lemon addition may be not necessary as normally thought, possibly because bees are able to 

invert disaccharides themselves, thanks to α-invertase (White, 1975). 
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The golden rule of medicine “primum non nocere” (first do no harm), attributed to Hippocrates, 

underlines the need of carefully considering the possible negative side effects of the treatments we 

may apply to sustain the health of an individual. Bees are currently exposed to a number of interacting 

stress factors (vanEngelsdorp et al., 2009; Hedtka et al., 2011; Dainat et al., 2012; Nazzi et al., 2012; 

Nazzi and Pennacchio, 2014,) that may affect bee health in a complex and often unpredictable way 

(Di Prisco et al., 2013; Doublet at al., 2015; Nazzi and Pennacchio, 2018). With these experiments 

concerning HMF and acidity we wanted to point the attention to the undesirable effects of 

supplementary nutrition a practice which has become very common due to the increased fragility of 

bees underlined above. 

 

4.3. Nicotine 

Nicotine is a natural xenobiotic that is detoxicated by honey bee’s metabolism (du Rand et al., 2015). 

Our data show a detrimental effect at 50 ppm while at the lower concentration of 0.1 and 1 ppm 

nicotine slightly increased the survival of honey bees (see par. 3.1.4.). These results confirm the 

findings of Kohler et al. (2012) who found that 50 ppm of nicotine are detrimental for caged honey 

bees. 

The negative effect of nicotine may be related to an interference of the alkaloid with food utilization, 

as it happens for tobacco hornworms, in which dietary nicotine reduces the efficiency of food 

conversion (Bentz and Barbosa, 1992). On the other hand, the increased survival of bees fed with low 

concentrations of the compound support the dose-response relationship observed in bees between 

feeding and the concentration of nectar secondary metabolites: low concentration of some alkaloids 

are preferred to sugar-only controls, while high concentration inhibits ingestion (Hagler and 

Buchmann, 1993; Singaravelan et al., 2005). 

When presented together with other factors, nicotine revealed a very interesting pattern of activity. 

In fact, this alkaloid was ineffective when taken alone but very effective when supplied to bees 

exposed to V. destructor or fed with pollen. In particular, when honey bees were exposed to both 
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Varroa and nicotine, the hazard ratio (HR) (probability of death) was lower suggesting that nicotine 

can be positive for mite infested bees. The beneficial effect of nicotine is difficult to explain; our first 

hypothesis refers to the antiviral effects of nicotine. It has been demonstrated that the alkaloid 

decreases the Hepatitis C Virus (HCV) by acting on the well conserved MAPK pathway (Yamashina 

et al., 2008). According to this mechanism, nicotine could have decreased the virus load in mite 

infested bees fed with nicotine, enhancing their survival; this interesting hypothesis will need to be 

tested with further analyses.  

A second and more straight-forward hypothesis, implies the energetic metabolism of honey bees. 

Nicotine increases the resting metabolisms (McGovern and Benowitz, 2011) and its detoxification by 

the honey bee increases the energy demand (du Rand 2015). This could counteract the observed 

Varroa induced anorexia by stimulating the sugar daily intake; this in turn could provide the energy 

that is necessary to better cope with the negative effects of the ectoparasitic mite. 

The negative effects of the interaction between pollen and nicotine may result since pollen 

constituents, in part, can regulate detoxifying genes expression affecting the metabolic pathways of 

phytochemical and pesticides (Gong and Diao, 2016). 

Thus our results might be explained because, in some case, the compounds contained in pollen (e.g. 

bacteria and secondary metabolites), are detoxified by the same pathway of nicotine, entailing a 

flooding of these process. Indeed, it has been suggested that the small number of detoxification genes 

presents in A. mellifera, may limit the capacity to metabolize multiple toxin simultaneously that 

results in a reduction in lifespan (du Rand et al., 2015). 

In general, our results confirm that the response of honey bees to xenobiotics is complex involving 

detoxification, oxidative and general stress response (Gong and Diao, 2016). 
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4.4. Temperature 

A 2.5 degrees lower temperature did not affect honey bee lifespan, but it stimulated a higher intake 

of sugars. Since honey bees can regulate their body temperature by contracting the indirect flight 

muscles, it is reasonable to think that a lower external temperature, may activate muscle contraction, 

which is an energy demanding activity likely implying an increased sugar consumption. The possible 

interaction of his factor with lower temperature will be discussed in the next paragraph. 

 

 

4.5. V. destructor and DWV 

The detrimental effects of V. destructor parasitism on honey bees have been extensively studied, and 

our results confirm previous data. However, this is the first study which reports a reduced sugar intake 

in mite parasited bees and a lower average body temperature in mite infested bees (see par. 3.1.6.). 

In principle, this might be related to the detrimental effect of Varroa parasitism on fight muscles 

development in honey bees. Indeed, an impaired anatomy of mite infested honey bees could lead to 

a decreased thermoregulatory capacity with a consequent decrease in energy demand. However, this 

hypothesis does not seem to be supported by the similar weight of the thorax in mite infested honey 

bees as compared to uninfested bees. Instead, this evidence points to a possible effect of the reduced 

sugar intake resulting from a kind of physiological anorexia triggered by mite infestation. A disease 

associated anorexia associated to viral infections has been observed in caterpillars of the African 

armyworm Spodoptera exempta (Povey et al., 2013); however, in our case, the observed anorexia 

does not seem to be related to the viral infection associated to mite infestation since we found no 

differences in sugar consumption in artificially virus infected bees (see par. 3.2.1.). 

Contrary to what observed in this study, Pusceddu et al. (2018) did not notice any effect of mite 

parasitization on sugar intake of mite infested bees; however, in that study bee were parasitized at the 
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adult stage and both the effect of parasitization at that stage and the resulting response could be 

different. 

The impact of V. destructor on the feeding of honey bees may have notable consequences. A lower 

sugar intake can lead to a decrease in energy availability negatively influencing honey bee 

homeostasis, and, in particular, immunity (DeGrandi-Hoffman and Chen, 2015). The connection 

between nutrition and immunity has been demonstrated in numerous organisms where the immune 

function is affected by caloric restriction (Franca et al., 2009; Cotter et al., 2011). 

Moreover, a reduced energy intake involves a reduced and probably slower capacity to cope with 

thermal stress. Therefore, it appears that the decreasing temperature observed during the cold season 

and the extreme weather episodes likely related to climate change, can further enhance the detrimental 

effects of V. destructor infestation. The pollen effect on Varroa parasitism, documented here, 

replicates the findings of Annoscia et al. (2017), where pollen was beneficial for caged infested honey 

bees. However, for a deeper understanding, we tested the hypothesis that this beneficial effect 

depends on the positive contributions of pollen to the energetic metabolism of bees and thus on the 

better functioning of the homeostatic mechanisms. To this aim, we altered the functioning of the 

energetic pathways with rapamycin. Contrary to our expectations, rapamycin had no effect on the 

survival of mite infested honey bees fed with pollen; this suggests that the beneficial effects of pollen 

are likely related to other unexpected mechanisms. 

Our molecular studies, aiming at measuring the expression of vitellogenin and a number of genes in 

the mTOR pathway and assessing DWV infection level, provided some interpretative clues. 

In particular, we noted that rapamycin consistently decreased DWV load in varroa infested bees both 

in presence of pollen or not. We hypothesize that this may be related to the increased autophagy 

stimulated by this compound. In fact, autophagy can degrade intracellular pathogens and virus 

(Levine, 2005; Deretic and Levine 2009; Sumpter and Levine, 2010) and mite infestation is clearly 

associated to higher viral load, as observed here in agreement with previous studies (de Miranda and 

Genersch, 2010; Nazzi and Le Conte, 2016; Wilfert et al., 2016). This hypothesis is consistent with 
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the up-regulation of ATG-2, a gene implicated in autophagy and life span extension (Tsukada and 

Ohsumi, 1993), observed in varroa infested bees treated with rapamycin; however, this effect was not 

noted in pollen fed mite infested bees suggesting caution with this interpretation. 

As for the effect of pollen on virus infected bees that was observed in this study, we speculate that it 

may result from the enhanced synthesis of antimicrobial peptides that are likely involved in antiviral 

response as observed by Annoscia et al. (2019); in fact, Danihlik et al. (2018) observed that pollen 

fed bees have an higher production and expression of antimicrobial peptides.  

The up-regulation of IRS-1, a key gene responding to the nutritional status of the organism, observed 

in mite infested bees is likely related to the necessity to cope with the increased energy demand 

associated to the reduced calorie intake caused by V. destructor. 

Vitellogenin expression was greater in mite infested bees, confirming previous results and strongly 

supporting the validity of this protein as a marker of mite infestation (Dolezal et al., 2016; Smart et 

al., 2016; Zanni et al., 2017). Furthermore, pollen influenced the expression of vitellogenin in mite 

infested bees, most likely for the increased availability of nutrients for its production (Bitondi and 

Simoes, 1996; Di Pasquale et al., 2013). 

Since pollen is the only source of amino acids, it is not surprising that it influenced the mTOR 

pathway of mite infested bees regulating the ILP-1 and PI3K genes. 

 

With this study we show how unpredictable are the relation between stress factors and we should 

consider that these interactions are just the result of four factors combined. Natural environment 

instead, are characterized by several of these factors that might affect honey bee health. Since an 

analytic study of all the factors that can affect honey bee health is unimaginable, the attention should 

be focused on the metabolic process accounting for the observed interactions in order to develop one 

or several models that could help to predict the outcome of such interactions. 

  



80 
 

5. REFERENCES 

Accorti M., D’Ambrosio M., Nannelli R., Pegazzano F. (1983). La Varroa (Varroa jacobsoni Oud.). 

Pubblicazione dell’Istituto Sperimentale per la Zoologia Agraria di Firenze, 83. 

Alaux C., Ducloz F., Crauser D., Le Conte Y. (2010). Diet effects on honeybee immunocompetence. 

Biology Letters. 6, 562-565. 

Alaux C., Dantec C., Parrinello H., Le Conte Y. (2011). Nutrigenomics in honey bees: digital gene 

expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC 

Gen. 12, 496. 

Allen M.F., Ball B.V., White R.F., Antoniw J.F. (1986). The detection of acute paralysis virus in 

Varroa jacobsoni by the use of a simple indirect ELISA. J. Apic. Res. 25, 100-105. 

Alqarni A.S. (2006). Influence of some protein diets on the longevity and some physiological 

conditions of honeybee Apis mellifera L. workers. J. Biol. Sci. 6, 734-737. 

Amdam G.V., Hartfelder K., Norberg K., Hagen A., Omholt S.W. (2004). Altered physiology in 

worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: 

Varroidae): A factor in colony loss during overwintering? J. Econ. Entomol. 97, 741-747. 

Ament S.A., Corona M., Pollock H.S., Robinson G.E. (2008) Insulin signaling is involved in the 

regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA, 105, 

4226-4231. 

Angilletta M.J. (2009). Thermal adaptation: a theoretical and empirical synthesis. Oxford: Oxford 

University Press. 

Annoscia D., Del Piccolo F., Nazzi F. (2012). How does the mite Varroa destructor kill the honeybee 

Apis mellifera? Alteration of cuticular hydrocarbons and water loss in infested honeybees. J. 

Insect. Physiol. 58, 1548-1555. 



81 
 

Annoscia D., Del Piccolo F., Covre F., Nazzi F. (2015). Mite infestation during development alters 

the in-hive behaviour of adult honey bees. Apidologie. 46, 306-314. 

Annoscia D., Zanni V., Galbraith D., Quirici A., Grozinger C., Bortolomeazzi R., Nazzi F. (2017). 

Elucidating the mechanisms underlying the beneficial health effects of dietary pollen on honey 

bees (Apis mellifera) infested by Varroa mite ectoparasites. Sci. Rep. 7, 6258. 

Annoscia D., Brown S.P., Di Prisco G., De Paoli E., Del Fabbro S., Frizzera D., Zanni V., Galbraith 

D.A., Caprio E., Grozinger C.M., Pennacchio F., Nazzi F. (2019). Haemolymph removal by 

Varroa mite destabilizes the dynamical interaction between immune effectors and virus in bees, 

as predicted by Volterra’s model. Proc. R. Soc. B. 286, 20190331. 

Aronstein K.A., Vega S.E., Westmiller R., Douglas S.A.E. (2012). How Varroa parasitism affects 

the immunological and nutritional status of the honey bee, Apis mellifera. Insects 3, 601-615. 

Ball B.V. (1989). Varroa jacobsoni as a virus vector. In Present status of varroatosis in Europe and 

progress in the varroa mite control. Proc. of EC Experts Group, 28–30 November 1988, Udine, 

Italy (ed. R Cavalloro), pp. 241-244. Luxembourg: Office for Official Publications of the 

European Communities. 

Bailey L. (1966). The effect of Acid-Hydrolysed Sucrose on Honeybees. J. Apic. Res. 5, 127-136. 

Bailey L. (2002). The Isle of Wight Disease. Central Association of Bee-Keepers. Poole, UK. 11. 

Bailey L., Ball B.V. (1991). Honey be pathology. Academic Press, London, UK, 193. 

Bakonyi T., Farkas R., Szendroi A., Dobos-kovacs M., Rusvai M. (2002). Detection of acute paralysis 

virus by RT-PCR in honey bee and Varroa destructor field samples: rapid screening of 

representative Hungarian apiaries. Apidologie 33, 63-74. 

Barker R.J. (1971). Shouldn’t a minimum food supply be specified for bee colonies rented for 

pollination? Glean. Bee Cult. 99, 299-315. 



82 
 

Bartholomew E.T. (1923). Internal Decline of Lemons. II. Growth Rate, Water Content, and Acidity 

of Lemons at Different Stages of Maturity. Am. J. Bot. 10, 117-126. 

Becher M.A., Scharpenberg H., Moritz R.F.A. (2009). Pupal developmental temperature and 

behavioral specialization of honeybee workers (Apis mellifera L.). J. Comp. Physiol. A. 195, 

673-679. 

Bentz J.A., Barbosa P. (1992). Effects of dietary nicotine and partial starvation of tobacco hornworm, 

Manduca sexta, on the survival and development of the parasitoid Cotesia congregate. NEV. 

65, 3, 241-245. 

Berenbaum M.R., Johnson M.R. (2015). Xenobiotic detoxification pathways in honey bees, Current 

Curr. Opin. Insect. Sci. 10, 51-58. 

Bitondi M.M.G., Simões Z.L.P. (1996). The relationship between level of pollen in the diet, 

vitellogenin and juvenile hormone titres in Africanized Apis mellifera workers. J. Apic. Res. 

35, 27-36. 

Bjedov I., Toivonen J.M., Kerr F., Slack C., Jacobson J., Foley A., Patridge L. (2009). Mechanisms 

of life span extensions by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 

35-46. 

Blacquière T., Smagghe G., van Gestel C.A.M., Mommaerts V. (2012). Neonicotinoids in bees: A 

review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973-992. 

Boecking O., Genersch, E. (2008). Varroosis- the ongoing crisis in bee keeping. J. Consumer. Protect. 

Food Safety 3, 221-228. 

Bowen-Walker P.L., Martin S.J., Gunn A. (1999). The transmission of deformed wing virus between 

honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J. Invertebr. 

Pathol. 73, 101-106, doi:10.1006/jipa.1998.4807. 



83 
 

Bowen-Walker P.L., Gunn A. (2001). The effect of the ectoparasitic mite, Varroa destructor on adult 

worker honey bee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid 

levels. Entomol. Exp. Appl. 101, 207-217. 

Breeze T.D., Vaissière B.E., Bommarco R., Petanidou T., Seraphides N., Kozák L. (2014). 

Agricultural policies exacerbate honeybee pollination service supply-demand mismatches 

across Europe. PLoS ONE 9, e82996. 

Brodschneider R., Crailsheim K. (2010). Nutrition and health in honey bees, Apidologie 41, 278-294. 

Brodschneider R., Moosbeckhofer R., Crailsheim K. (2010). Surveys as a tool to record winter losses 

of honey bee colonies: a two year case study in Austria and Southern Tyrol. J. Apic. Res. 49, 

23-30. 

Calderone N.W. (2012). Insect pollinated Crops, insect pollinators and US agriculture: trend analysis 

of aggregate data for the period 1992 – 2009. PLoS ONE 7. e37235, doi: 

10.1371/journal.pone.0037235. 

Cameron S.A., Lozier J.D., Strange J.P., Koch J.B., Cordes N., Solter L., Griswold T.L. (2011). 

Patterns of widespread decline in North American bumble bees. PNAS, 108, 662-667. 

Chen Y.P., Siede, R. (2007). Honey bee viruses. Adv. Virus Res. 70, 33-80. 

Chen Y.P., Pettis J.S., Feldlaufer M.F. (2005). Detection of multiple viruses in queens of the honey 

bee, Apis mellifera L. J. of Inverteb. Pathol. 90, 118-121. 

Chen Y.P., Evans J., Feldlaufer, M.F. (2006). Horizontal and vertical transmission of viruses in the 

honey bee, Apis mellifera. J. Inverteb. Pathol. 92, 152-159. 

Chown S.L., Nicolson S.W. (2004). Insect physiological ecology: mechanisms and patterns. Oxford: 

Oxford University Press. 



84 
 

Comparini A., Biasiolo A. (1991). Genetic characterization of Italian bee Apis mellifera ligustica 

Spin., versus Carnolian bee, Apis mellifera carnica Poll., by allozyme variability analysis, 

Biochem. Syst. Ecol. 19, 189-194. 

Corona M., Velarde R.A., Remolina S., Moran-Lauter A., Wang Y., Hughes K.A., Robinson G.E. 

(2007). Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. 

Natl. Acad. Sci. USA. 104, 7128-7133. 

Cotter S.C., Raubenheimer S.S., Wilson D.K. (2011). Macronutrient balance mediates trade-offs 

between immune function and life history traits. Funct. Ecol. 25, 186-198. 

Cox D.R. (1972). Regression models and life tables (with discussion). J. Royal Statist. Soc. B. 34, 

187-220. 

Dainat B., Evans J.D., Chen Y.P., Gauthier L., Neumann P. (2012). Dead or alive: deformed wing 

virus and Varroa destructor reduce the life span of winter honeybees. Appl. Environ. Microbiol. 

78, 981-987. 

Danihlík J., Škrabišová M., Lenobel R., Šebela M., Omar E., Petřivalský M., Crailsheim K., 

Brodschneider R. (2018). Does the Pollen Diet Influence the Production and Expression of 

Antimicrobial Peptides in Individual Honey Bees? Insects 9, E79, doi: 10.3390/insects9030079. 

DeGrandi-Hoffman G., Chen Y., Huang E., Huang M.H. (2010). The effect of diet on protein 

concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis 

mellifera L.). J. Insect Physiol. 56,1184-1191, doi:10.1016/j.jinsphys.2010.03.017. 

DeGrandi-Hoffman G., Chen Y. (2015). Nutrition, immunity and viral infections in honey bees. Curr. 

Opin. Insect Sci. 10, 170-176. 

De Jong D., De Jong P.H., Goncalves L.S., (1982). Weight loss and other damage to developing 

worker honeybees from infestation with V. jacobsoni. J. Apic. Res. 21, 165-216. 

de Miranda J.R., Genersch E. (2010). Deformed wing virus. J. Invertebr. Pathol. 103, S48-S61. 



85 
 

Deretic V., Levine B. (2009). Autophagy, immunity, and microbial adaptations. Cell Host Microbe 

5, 527 – 549. 

 , A. Wink, M. (1993). Attraction, deterrence or intoxication of bees (Apis mellifera) by plant 

allelochemicals. Chemoec. 4, 8-18. 

Di Pasquale G., Salignon M., Le Conte Y., Belzunces L.P., Decourtye A. (2013). Influence of pollen 

nutrition on honey bee health: do pollen quality and diversity matter? PLoS One. 8, e72016. 

Di Prisco G., Cavaliere V., Annoscia D., Varricchio P., Caprio E., Nazzi F., Gargiulo G., Pennacchio 

F. (2013). Neonicotinoid clothianidin adversely affects insect immunity and promotes 

replication of a viral pathogen in honey bees. PNAS. 110, 18466-1847. 

Di Prisco G., Annoscia D., Margiotta M., Ferrara R., Varricchio P., Zanni V., Caprio E., Nazzi, F., 

Pennacchio, F. (2016). A mutualistic symbiosis between a parasitic mite and a pathogenic virus 

undermines honey bee immunity and health. Proc. Natl. Acad. Sci. USA 113, 3203-3208. 

Dolezal A.G., Carrillo-Tripp J., Miller W.A., Bonning B.C., Toth A.L. (2016). Intensively cultivated 

landscape and Varroa mite infestation are associated with reduced honey bee nutritional state. 

PLoS One 11, e0153531. 

Donzé G., Fluri P., Imdorf, A. (1998). A look under the cap: The reproductive behavior of Varroa in 

the capped brood of the honey bee. Am. Bee J. 138, 528-533. 

Donkersley P., Rhodes G.,  Pickup R.W., Jones K.C., Wilson K. (2014). Honeybee nutrition is linked 

to landscape composition. Ecol. Evol. 4, 4195-4206.  

Doublet V., Labarussias M., de Miranda J.R., Moritz R.F.A., Paxton R.J. (2015). Bees under stress: 

sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee 

mortality across the life cycle. Environ. Microbiol. 17, 969-983. 

Downey D.L., Higo T.T, Winston M.L. (2000). Single and dual parasitic mite infestations on the 

honey bee, Apis mellifera L. Insect Soc. 47, 171-176. 



86 
 

Dunker D., Ploner M., Schemper M., Heize G. (2018). Weighted Cox regression using the R package 

coxphw. J. Stat. Soft. 84, 2. 

du Rand E.E., Smit S., Beukes M., Apostolides Z., Prik C.W.W., Nicolson S.W. (2015). 

Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary 

nicotine. Sci. Rep. 5, 11779, doi: 10.1038/srep11779. 

Ellis J.D., Evans L.D., Pettis J.S. (2010). Colony losses, managed colony population decline and 

Colony Collapse Disorder in the United States. J. Apic. Res. 49, 134-136, doi: 

10.3896/IBRA.1.49.1.30. 

Emsen B., Dodologlu A. (2014). Physiological characteristics of honeybee (Apis mellifera L.) 

colonies fed with commercial glucose. J. Anim. Vet. Adv. 13, 623-626. 

Erler S., Denner A., Bobis O., Forsgren E., Moritz R.F. (2014). Diversity of honey stores and their 

impact on pathogenic bacteria of the honeybee, Apis mellifera. Ecol. Evol. 4, 3960-3967. 

Evans J.D., Aronstein H., Chen Y.P., Hetru C., Imler J.L., Jiang H., Kanost M., Thompson G.J., Zou 

Z., and Hultmark D. (2006). Immune pathways and defence mechanisms in honey beees Apis 

mellifera. Insect Mol. Biol. 15, 645-656. 

Franca T.G.D., Zorzella-Pezavento I.L., Chiuso-Minicucci S.F.G., daCunha F., Sartori M.L.R.S.A. 

(2009). Impact of malnutrition on immunity and infection. J. Venm. Anim. Toxins 15, 374-390. 

Free J.B., Spencer-Booth Y. (1960). Chill-coma and cold death temperatures of Apis mellifera. Ent. 

Exp. et Ap. 3, 222_230 DOI 10.1111/j.1570-7458.1960.tb00451. 

Free J. B., Spencer-Booth Y. (1961) Effect of feeding sugar syrup to honey-bee colonies. J. Agric. 

Sci. 57, 147-151. 

Garibaldi L.A., Steffan-Dewenter I., Winfree R., Aizen M.A.,  Bommarco R., Cunningham S.A., 

Kremen C., Carvalheiro L.G., Harder L.D., Afik O., Bartomeus I., Benjamin F.,  Boreux V., 

Cariveau D., Chacoff N.P.,  Dudenhöffer J.H., Freitas B.M., Ghazoul J., Greenleaf S., Hipólito 



87 
 

J.,  Holzschuh A., Howlett B., Isaacs R.,  Javorek S.K., Kennedy C.M., Krewenka K.M., 

Krishnan S., Mandelik Y., Mayfield M.M.,  Motzke I., Munyuli T.,  Nault B.A., Otieno M.,  

Petersen J.,  Pisanty G.,Potts S.G., Rader R., Ricketts T.H.,  Rundlöf M., Seymour C.L., 

Schüepp C.S., Szentgyörgyi H.,  Taki H., Tscharntke T., Vergara C.H., Viana B.F., Wanger 

T.C., Westphal C. Williams N., Klein A.M. (2014). Wild pollinators enhance fruit set of crops 

regardless of honey bee abundance. Science 339, 1608-1611. 

Geslin B., Aizen M.A., Garcia N., Pereira A-J, Vaissière B.E., Garibaldi L.A. (2017). The impact of 

honey bee colony quality on crop yield and farmers’ profit in apples and pears. Agr. Eco. & 

Envi. 248, 153-161. 

Gisder S., Aumeier P., Genersch E. (2009). Deformed wing virus: replication and viral load inmites 

(Varroa destructor). J. Gen. Virol. 90, 463-467. 

Glinski Z., Jarosz J. (1984). Alterations in haemolymph proteins of drone honey bee larvae parasitized 

by Varroa jacobsoni. Apidologie 15, 329-338. 

Goulson D., Nicholls E., Botías C., Rotheray E.L. (2015). Bee declines driven by combined stress 

from parasites, pesticides, and lack of flowers. Science 347, 6229. 

Groh C., Tautz J., Roessler W. (2004). Synaptic organization in the adult honeybee brain is influenced 

by brood-temperature control during pupal development. Proc. Natl. Acad. Sci. USA 101, 

4268–4273. 

Gong Y., Diao Q. (2016). Current knowledge of detoxification mechanisms of xenobiotic in honey 

bees. Ecotoxcology. 26, 1-12, doi: 10.1007/s10646-016-1742-7. 

Gross M. (2013). EU ban puts spotlight on complex effects of neonicotinoids. Curr. Biol. 23, R462-

R464. 

Grozinger M.C., Flenniken M.L. (2019). Bee Viruses: Ecology, Pathogenicity, and Impacts. Annu. 

Rev. Entomol.. 64, 205-226.  



88 
 

Hagler J.R., Buchmann S.L., (1993). Honey bee (Hymenoptera: Apidae) foraging responses to 

phenolic-rich nectars. J. Kansas Ento. Soc. 66, 223-230. 

Haydak M. H. (1970). Honey bee nutrition. Annu. Rev. Entomol.  15, 143-156. 

Hayden M.S., Ghosh, S. (2008). Shared principles of NF-kB signaling. Cell. 132, 344-362. 

Hansen M., Chandra A., Mitic L.L., Onken B., Driscoll M., Kenyon C. (2008). A role for autophagy 

in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24, 

10.1371/journal.pgen.0040024. 

Hedtka K., Jensen P.M., Jensen A.B., Genersch E. (2011). Evidence for emerging parasites and 

pathogens influencing outbreaks of stress-related diseases like chalkbrood. J. Invertebr. Pathol. 

108, 167-173. 

Heinrich B. (1993). The hot-blooded insects: mechanisms and evolution of thermoregulation. 

Cambridge: Harvard University Press. 

Henry M., Béguin M., Requier F., Rollin O., Odoux J.F., Aupinel P., Aptel J., Tchamitchian S., 

Decourtye A. (2012). A common pesticide decreases foraging success and survival in honey 

bees. Science 336, 348-350. 

Hung K-L.J., Kingston J.M., Albrecht M., Holway D.A., Kohn J.R. (2018). The worldwide 

importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B. 285, 20172140. 

Ifantidis M.D. (1983). Ontogenesis of the mite Varroa jacobsoni in worker and drone honey bee 

brood cells. J. Apic. Res. 22, 200-206. 

Intergovernmental Panel on Climate Change. (2012). Managing the Risks of Extreme Events and 

Disasters to Advance Climate Change Adaptation. Cambrige University Press. 

Jachimowicz T., El Sherbiny G. (1975). Zur Problematik der Verwendung von Invertzucker fur die 

Bienenfutterung, Apidologie 6, 121-143. 



89 
 

Johnson R.M., Pollock H.S., Berenbaum M.R. (2009) Synergistic interactions between in-hive 

miticides in Apis mellifera. J. Econ. Entomol. 102, 474-479. 

Johnson S.C., Rabinovitch P.S., Kaeberlein M. (2013). mTOR is a key modulator of ageing and age 

– related disease. Nature 493, 338-345. 

Jones C.J., Helliwell P., Beekman M., Maleszka R., Oldroyd B.P. (2005). The effects of rearing 

temperature on developmental stability and learning and memory in the honeybee, Apis 

mellifera. J. Comp. Physiol. A. 191, 112-1129. 

Kaeberlein M., Burtner C.R., Kennedy B.K. (2007). Recent developments in yeast aging. PLoS 

Genet. 3, e84, 10.1371/journal.pgen.0030084. 

Kaeberlein M., Kennedy B.K. (2008). Protein translation. Aging Cell. 7, 777-782. 

Kapahi P., Zid B.M., Harper T., Koslover D., Sapin V., Benzer S. (2004). Regulation of lifespan in 

Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885-890. 

Kearns C.A., Inouye D.W., (1997). Pollinators, flowering plants, and conservation biology. 

Bioscience 47, 297-307. 

Klein A.M., Vaissière B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., 

Tscharntke T. (2007). Importance of pollinators in changing landscapes for world crops. Proc. 

R. Soc. B. 274, 303-313. 

Kohler A., Pirk C.W.W., Nicolson S.W. (2012). Honeybees and nectar nicotine: Deterrence and 

reduced survival versus potential health benefits. J. Insect Physiol. 58, 286-292. 

Krainer S., Brodschneider R., Vollmann J., Crailsheim K., Riessberger-Galle U. (2016). Effect of 

hydroxymethylfurfural (HMF) on mortality of artificially reared honey bee larvae (Apis 

mellifera carnica), Ecotoxicology 25, 320-328. 

Kralj J., Fuchs S. (2006). Parasitic Varroa destructor mites influence flight duration and homing 

ability of infested Apis mellifera foragers. Apidologie 37, 577-587. 



90 
 

Kralj J., Brockman A., Fuchs S., Tautz J. (2007). The parasitic mite Varroa destructor affects non 

associative learning in honey bee foragers, Apis mellifera L. J. Comp. Physiol. 193, 363-370. 

Lafferty K. (2010). Interacting parasites. Science 330, 187-188. 

Lanzi G., De Miranda J.R., Boniotti M.B., Cameron C.E., Lavazza A., Capucci L., Camazine S.M., 

Rossi C., (2006). Molecular and biological characterization of Deformed wing virus of 

honeybees (Apis mellifera L.). J. Virol. 80, 4998-5009. 

Lamming D.W. (2012). Rapamycin-induced insulin resistance is mediated by mTORC2 loss and 

uncoupled from longevity. Science 335, 1638-1643. 

LeBlanc B.W., Eggleston G., Sammataro D., Cornett C., Dufault R., Deeby T., Cyr E.S., (2009) 

Formation of hydroxymethylfurfural in domestic high- fructose corn syrup and its toxicity to 

the honey bee (Apis mellifera), JAFC. 57, 7369-7376. 

Le Conte Y., Navajas M. (2008). Climate change: impact on honey bee populations and diseases. 

Rev. Sci. Tech. 27, 499-510.  

Le Conte Y., Ellis M., Ritter W. (2010). Varroa mites and honey bee health: can Varroa explain part 

of the colony losses? Apidologie 41, 353-363. 

Levine B. (2005). Eating oneself and uninvited guests: Autophagy-related pathways in cellular 

defense. Cell 120, 159-162. 

Li P., Yin Y. L., Li D., Kim S.W., Wu G. (2007) Amino acids and immune function. Br. J. Nutr. 98, 

237-252, doi:10.1017/S000711450769936X. 

Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using Real-Time 

Quantitative PCR and the 2-ΔΔCT method. Methods 25, 402-408. 

Lochmiller R.L., Deerenberg C. (2000). Trade-offs in evolutionary immunology: just what is the cost 

of immunity? Oikos 88, 87-98, doi:10.1034/j.1600-0706.2000. 880110. 



91 
 

Luong N., Davies C.R., Wessells R.J., Graham S.M., King M.T., Veech R., Bodmer R., Oldham S.M. 

(2006). Activated FOXO-mediated insulin resistance is blocked by reduction of TOR activity. 

Cell Metab. 4, 133-142. 

Lum J.J., DeBerardinis R.J., Thompson C.B. (2005). Autophagy in metazoans: cell survival in the 

land of plenty. Nat. Rev. Mol. Cell Biol. 6, 439-448. 

Martin S. (1998). A population model for the ectoparasitic mite Varroa jacobsoni in honey bee (Apis 

mellifera) colonies. Ecol. Model. 109, 267-281. 

Martin S.J., Highfield A.C., Brettel L., Villalobos E.M., Budge G.E., Powell M., Nikaido S., 

Schroeder D.C.  (2012). Global honey bee viral landscape altered by a parasitic mite. Science 

336, 1304-1306. 

McGovern J.A., Benowitz N.L. (2011). Cigarette Smoking, Nicotine, and Body Weight. Clin 

Pharmacol. Ther. 90, 164-168, doi: 10.1038/clpt.2011.105. 

McKinsty M., Chung C., Truong H., Johnston B.A., Snow J.W. (2017). The heat shock response and 

humoral immune response are mutually antagonistic in honey bees. Sci. Rep. 7, 8850, doi: 

10.1038/s41598-017-09159-4. 

Medrzycki P., Sgolastra F., Bortolotti L., Bogo G., Tosi S. (2009). Influence of brood rearing 

temperature on honey bee development and susceptibility to poisoning by pesticides. J. Apic. 

Res. 49, 52-60. 

Mondet F., de Miranda J.R., Kretzschmar A., Le Conte Y., Mercer A.R. (2014). On the Front Line: 

Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion 

Front of the Parasite Varroa destructor. PLoS Pathog. 10, e1004323, doi: 

10.1371/journal.ppat.1004323. 

Montero-Castano A., Vilà M. (2012). Impact of landscape alteration and invasions on pollinators: a 

meta-analysis. J. Ecol. 100, 884-893. 



92 
 

Moritz R.F.A., de Miranda J., Fries I., Le Conte Y., Neumann P., Paxton R.J. (2010). Research 

strategies to improve honeybee health in Europe. Apidologie 41, 227-242. 

Mullin C.A., Frazier M., Frazier J.L., Ashcraft S., Simonds R. (2010). High levels of miticides and 

agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5, 

e9754. 

Münch D., Amdam G.V. (2010). The curious case of aging plasticity in honey bees. FEBS Lett. 584, 

2496-2503. 

Mutti N.S.,  Dolezal A.G., Wolschin F., Mutti J.S., Gill K.S., Amdam G.V. (2011). IRS and TOR 

nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Evol. 

Biol. 214, 3977-3984. 

National Research Council of the National Academies (2007). Status of pollinators in North America. 

National Academies Press, Washington, DC. 

Nazzi F., Milani N. (1994). A technique for reproduction of Varroa jacobsoni Oud. under laboratory 

conditions. Apidologie 25, 579-584. 

Nazzi F., Brown S.P., Annoscia D., Del Piccolo F., Di Prisco, G., Varricchio P., Della Vedova G., 

Cattonaro F., Caprio E., Pennacchio F. (2012). Synergistic Parasite-Pathogen Interactions 

Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies. PLoS Pathog. 8, 

e1002735. 

Nazzi F., Pennacchio F. (2014). Disentaling multiple interactions in the hive ecosystem. Trends 

Parasitol. 30, 556-561. 

Nazzi F., Le Conte Y. (2016). Ecology of Varroa destructor, the major ectoparasite of the western 

honey bee, Apis mellifera. Annu. Rev. Entomol. 61, 417-432. 



93 
 

Nazzi F., Pennacchio F. (2018). Honey Bee Antiviral Immune Barriers as Affected by Multiple Stress 

Factors: A Novel Paradigm to Interpret Colony Health Decline and Collapse. Viruses 10, E159, 

doi: 10.3390/v10040159. 

Neumann P., Carreck L. (2010). Honey bee colony losses. J. Apic. Res. 49, 1-6. 

Ongus J.R., Peters D., Bonmatin J.-M., Bengsch E., Vlak J.M., van Oers M.M. (2004). Complete 

sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. 

J. Gen. Virol. 85, 3747-3755.  

Pernal S.F., Currie R.W. (2000). Pollen quality of fresh and 1-year-old single pollen diets for worker 

honey bees (Apis mellifera L.). Apidologie 31, 387-409. 

Potts S.G., Biesmeijer J.C., Kremen C., Neumann P., Schwiger O., Kunin W.E. (2010a). Global 

pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345-353. 

Potts S.G., Roberts S.P. M., Dean R., Marris G., Brown M.A., Jones H.R., Neumann P., Settele J. 

(2010b). Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15-22, 

doi: 10.3896/IBRA.1.49.1.02. 

Povey S., Cotter S.C., Simpson S.J., Wilson K. (2013). Dynamics of macronutrient self‐medication 

and illness‐induced anorexia in virally infected insects. J. Anim. Ecol. 83, 245-255, doi: 

10.1111/1365-2656.12127. 

Pusceddu M., Floris I., Mura A., Theodorou P., Cirotto G. Piluzza G., Bullitta S., Angioni A., Satta 

A. (2018). The effects of raw propolis on Varroa-infested honey bee (Apis mellifera) workers. 

Parasitol. Res. 117: 3527-3535. 

Ramsey S.D., Ochoa R., Bauchan G., Gulbronson C., Mowery J.D., Cohen A., Lim D., Joklik J., 

Cicero J.M., Ellis J.D., Hawthorne D., vanEngelsdrop D. (2019). Varroa destructor feeds 

primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA. 116, 

1792-1801. 



94 
 

Ratnieks F.L., Carreck N.L. (2010). Clarity on honey bee collapse? Science 327, 152-153.  

Ravikumar B., Vacher C., Berger Z., Davies J.E., Luo S., Oroz L.G., Scaravilli F., Easton D.F., 

Duden, R., O’Kane C.J., Rubinsztein D.C. (2004). Inhibition of mTOR induces autophagy and 

reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. 

Nat. Genet. 36, 585-595. 

Rehm S.M., Ritter W., (1989). Sequence of the sexes in the offspring of Varroa jacobsoni and 

resulting consequences for the calculation of the developmental period. Apidologie 20, 339-

343. 

Rennie J., White P.B., Harvey E.J. (1921). Isle of Wight Disease in hive bees. Transactions of the 

Royal Society of Edinburgh 52, 737-779. 

Ribière M., Ball B.V., Aubert M. (2008). Natural history and geographic distribution of honey bee 

viruses. In: Aubert, M. et al. (Eds.), Virology and the Honey Bee. European Communities, 

Luxembourg, 15-84. 

Rosenkranz P., Aumeier P., Ziegelmann B. (2010). Biology and control of Varroa destructor. J. 

Invertebr. Pathol. 103, S96-S119. 

Russo L. (2016). Positive and negative impacts of non – native species around the world. Insects 7, 

69. 

Sarbassov D.D., Ali S.M., Sengupta S., Sheen J.H., Hsu P.P., Bagley A.F., Markhard A.L., Sabatini, 

D.M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. 

Cell 22, 159-168. 

Schatton-Gadelmayer K., Engels W. (1988). Blood proteins and body weight of newly-emerged 

worker honeybees with different levels of parasitization of brood mites. Entomol. Gener. 14, 

93-101. 



95 
 

Schmehl D.R., Teal P.E.A., Frazier J.L., Grozinger C.M. (2014). Genomic analysis of the interaction 

between pesticide exposure and nutrition in honeybees (Apis mellifera). J. Insect Physiol. 71, 

177-190. 

Schmid-Hempel P. (2005). Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 

50, 529-551, doi: 10.1146/annurev.ento.50.071803.130420. 

Seeley T.D., Heinrich B. (1981) The Mechanisms and Energetics of Honeybee Swarm Temperature 

Regulation. J. Exp. Biol. 91, 25-55. 

Selman C., Tullet J.M., Wieser D., Irvine E., Lingard S.J., Choudhury A.I., Claret M., Al-Qassab H., 

Carmignac D., Ramadani F., Woods A., Robinson I.C., Schuster E., Batterham R.L., Kozma 

S.C., Thomas G., Carling D., Okkenhaug K., Thornton J.M., Partridge L., Gems D., Withers 

D.J. (2009). Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 

326, 140-144. 

Semkiw P., Skubida P. (2016) Suitability of starch syrups for winter feeding of honeybee colonies, J. 

Apic. Sci. 60, 141-152. 

Silverman N., Maniatis T. (2001). NF-kappaB signaling pathways in mammalian and insect innate 

immunity. Genes Dev. 15, 2321-2342. 

Singaravelan N., Ne’eman G., Inbar M., Izhaki I. (2005). Feeding responses of freeflying honeybees 

to secondary compounds mimicking floral nectars. J. Chem. Ecol. 31, 2791-2804. 

Sponsler D.B., Johnson R.M. (2017). Mechanistic modeling of pesticide exposure: the missing 

keystone of honey bee toxicology. Environ. Toxicol. Chem. 36, 871-881. 

Smart M., Pettis J., Rice N., Browning Z., Spivak M. (2016). Linking measures of colony and 

individual honey bee health to survival among apiaries exposed to varying agricultural land use. 

PLoS One 11, e0152685. 



96 
 

Smodiš Škerl M.I., Gregorc A. (2014). A preliminary laboratory study on the longevity of A. m. 

carnica honey bees after feeding with candies containing HMF. J. Apic. Res. 53, 422-423. 

Stabentheiner A., Kovac H., Brodschneider R. (2010). Honeybee Colony Thermoregulation – 

Regulatory Mechanisms and Contribution of Individuals in Dependence on Age, Location and 

Thermal Stress. PLoS One 5, e8967 

Standifer L.N., Moeller F.E., Kauffeld N.M., Herbert E.W., Shimanuki H. (1977). Supplemental 

Feeding of Honey Bee Colonies, U.S. Dep. Agric. Bull. 413. 

Steiner J., Dittmann F., Rosenkranz P., Engels W. (1994). The first gonocycle of the parasitic mite 

(Varroa jacobsoni) in relation to preimaginal development of its host, the honey bee (Apis 

mellifera carnica). Invertebr. Rep. Develop. 25, 175-183. 

Steppuhn A., Gase K., Krock B., Halitschke R. Baldwin I.T. (2004). Nicotine’s defensive function in 

nature. PLoS Biol. 2, e217. 

Sumpter D.J.T., Martin S.J. (2004). The dynamics of virus epidemics in Varroa infested honey bee 

colonies. J. Anim. Ecol. 73, 51-63. 

Sumpter R., Levine B. (2010).  Autophagy and innate immunity: Triggering, targeting and tuning. 

Seminars in Cell and Developmental Biology.  21, 699-711. 

Tautz J., Maier S., Groh C., Roessler W., Brockmann A. (2003). Behavioral performance in adult 

honey bees is influenced by the temperature experienced during their pupal development. Proc. 

Natl. Acad. Sci. USA. 100, 7343-7347. 

Tentcheva D., Gauthier L., Zappulla N., Dainat B., Cousserans F., Colin M.E., Bergoin M. (2004). 

Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor 

mite populations in France. Appl. Environ. Microbiol. 70, 7185-7191. 



97 
 

Tentcheva D., Gauthier l., Bagny l., Fievet J., Dainat B., Cousserans F., Colin M.E., Bergoin M. 

(2006) Comparative analysis of deformed wing virus (DWV) RNA in Apis mellifera and 

Varroa destructor. Apidologie 37: 41-50. 

Thom C., Gilley D.C., Tautz J. (2003). Worker piping in honey bees (Apis mellifera): the behavior 

of piping nectar foragers. Behav. Ecol. and Sociobi. 53: 199-205. 

Tomizawa M., Casida J.E. (2003). Selective toxicity of neonicotinoids attributed to specificity of 

insect and mammalian nicotinic receptors. Annu. Rev. Entomol. 48, 339-364. 

Tsukada M., Ohsumi Y. (1993). Isolation and characterization of autophagy – defective mutants of 

Saccharoyces cerevisae. FEBS Lett. 333, 169-174. 

Um S.H., D’Alessio D., Thomas G. (2006). Nutrient overload, insulin resistance, and ribosomal 

protein S6 kinase 1, S6K1. Cell Metab. 3, 393-402. 

Underwood R., vanEngelsdorp D. (2007). Colony Collapse Disorder: have we seen this before? Bee 

Cult. 35, 13-18. 

Vanikova S., Noskova A., Pristas P., Judova J., Javorsky P. (2015). Heterotrophic bacteria associated 

with Varroa destructor mite. Apidologie 46, 369-379. 

van Dooremalen C., Stam E., Gerritsen L., Cornelissen B., van der Steen J., van Langevelde F., 

Blacquiere T. (2013). Interactive effect of reduced pollen availability and Varroa destructor 

infestation limits growth and protein content of young honey bees. J. Insect Physiol. 59, 487-

493. 

vanEngelsdorp D., Underwood R., Caron D., Hayes J. Jr. (2007). An estimate of managed colony 

losses in the winter of 2006–2007: a report commissioned by the Apiary Inspectors of America. 

Am. Bee J., 147, 599-603. 



98 
 

vanEngelsdorp D., Meixner M.D. (2009). A historical review of managed honey bee populations in 

Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. doi: 

10.1016/j.jip.2009.06.011.  

vanEngelsdrop D., Hayes J.J., Underwood R.M., Pettis J.S. (2010). A survey of honey bee colony 

losses in the United States, fall 2008 to spring 2009. J. Apic. Res. 49, 7-14, doi: 

10.3896/IBRA.1.49.1.03. 

Vaudo A.D., Tooker J.F., Grozinger C.M., Patch H.M. (2015). Bee nutrition and floral resource 

restoration. Curr. Opin. Insect Sci. 10, 133-141. 

Wang Y., Amdam G.V., Rueppell O., Wallrichs M., Fondrk M.K., Kaftanoglu O. (2009). Page REJ: 

PDK1 and HR46 gene homologs tie social behavior to ovary signals. PLoS One, 4, e4899.  

White J.W. (1975). Composition of honey in: Crane E. (Ed.), Honey: A comprehensive Survey, 

Heinemann, London, pp. 180-194. 

Wilfert L., Long G., Leggett H.C., Schmid-Hempel, Butlin R., Martin S.J., Boots M. (2016). 

Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 

351, 594-597. 

Winston M.L. (1987). The biology of the Honeybee. Harvard University Press, Cambrige. 

Yang X., Cox-Foster D.L. (2005). Impact of an ectoparasite on the immunity and pathology of an 

invertebrate: evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. 

Sci. USA 102, 7470-7475, doi: 10.1073/pnas.0501860102. 

Yamashina S., Mizui T., Kon K., Ikejima K., Kitamura T., Takei Y., Watanabe S., (2008). Effect of 

nicotine on innate antiviral pathways and HCV replication. Gastroenterology 134, A786-A787. 

Zanni V., Galbraith D.A., Annoscia D., Grozinger C.M., Nazzim F. (2017). Transcriptional signatures 

of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). 

Insect. Biochem. Mol. Biol. 87, 1-13. 



99 
 

Zanni V., Degirmenci L., Annoscia D., Scheiner R., Nazzi F. (2018). The reduced brood nursing by 

mite-infested bees depends on their accelerated behavioural maturation. J. Insect Physiol. 109, 

47-54, doi: https://doi.org/10.1016/j.jinsphys.2018.06.006. 

Zirbes L., Kim Nguyen B., de Graaf D., De Meulenaer B., Reybroeck W., Haubruge E., Saegerman 

C. (2013). Hydroxymethylfurfural: A possible emergent cause of honey bee mortality? J. Agric. 

Food Chem. 61, 11865-11870. 

Zóltowska K., Lipinski Z., Dmitryjuk M. 2007. Effects of Varroa destructor on sugar levels and their 

respective carbohydrate hydrolase activities in honey bee drone prepupae. J. Apic. Res. 46(2), 

110–113 

  



100 
 

6. APPENDIX: OTHER WORKS AND COLLABORATIONS 

 

6.1. Attachment 1 

 

Annoscia D., Brown S.P., Di Prisco G., De Paoli E., Del Fabbro S., Frizzera D., Zanni V., Galbraith 

D.A., Caprio E., Grozinger C.M., Pennacchio F. and Nazzi F. (2019). Haemolymph removal by 

Varroa mite destabilizes the dynamical interaction between immune effectors and virus in bees, as 

predicted by Volterra’s model. Proc. R. Soc. B, 286, 20190331. 

http://dx.doi.org/10.1098/rspb.2019.0331 



101 
 



102 
 



103 
 



104 
 



105 
 



106 
 



107 
 



108 
 



109 
 

 

 



110 
 

6.2. Attachment 2 

Ortis G., Frizzzera D., Seffin E., Annoscia D., Nazzi F. (2019). Honeybees use various criteria to 

select the site for performing the waggle dances on the comb. Behavioral Ecology and Sociobiology 

73, 58. https://doi.org/10.1007/s00265-019-2677-9 



111 
 



112 
 



113 
 



114 
 



115 
 



116 
 



117 
 



118 
 



119 
 

 

 

 



120 
 

6.3. Attachment 3 

Frizzera D., Del Fabbro S., Ortis G., Zanni V., Bortolomeazzi R., Nazzi F., Annoscia D. Possible 

side effects of sugar supplementary nutrition on honey bee health.  

Under rewiev, Apidologie. 

 

 

 

Possible side effects of sugar supplementary nutrition on honey bee health  

 

Authors: Davide FRIZZERA1, Simone DEL FABBRO1, Giacomo ORTIS2, Virginia ZANNI1, 

Renzo BORTOLOMEAZZI1, Francesco NAZZI1, Desiderato ANNOSCIA1* 

 

1Dipartimento di Scienze AgroAlimentari, Amientali e Animali, University of Udine, Udine, Italy 

2 Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente – DAFNAE, 

University of Udine, Italy 

Authors e-mails: frizzera.davide@spes.uniud.it, simone.delfabbro@uniud.it, 

giacomo.ortis@studenti.unipd.it, virginia.zanni@uniud.it, renzo.bortolomeazzi@uniud.it, 

francesco.nazzi@uniud.it, 

Corresponding Author: Desiderato Annoscia,  

via delle Scienze 206, Udine (UD), 33100, Italy  phone. 0432558515 desiderato.annoscia@uniud.it 

 

 

 

 

 



121 
 

 

 

 

 

ABSTRACT 

Food shortage, along with biotic stressors is a leading factor of winter honey bee colony losses. To 

support honey bee colonies, beekeepers normally supply homemade syrups which could contain 

compounds (e.g. hydroxymethylfurfural, HMF) with possible negative side effects. In this study we 

investigated the toxicity of HMF at doses consistent with literature data both to healthy bees and bees 

challenged with their most important ectoparasite (i.e. Varroa destructor). To strengthen available 

data on HMF concentration in sugar syrups, we also investigated HMF formation in homemade 2:1 

inverted sugar syrup, considering, in particular, the influence of temperature or boiling time on 

different homemade sugar syrups according to their acidity.  

We show that doses of HMF similar to those reported as sublethal in the literature appear to be non-

toxic even to mite infested bees. However, the amount of HMF that can be found in homemade syrups, 

which increases with temperature and acidity, can be much higher and can cause significant bee 

mortality. Moreover, we highlighted the detrimental effect of syrups acidity on honeybee survival. 

Our results suggest a responsible approach to homemade colony nutrition. 

 

Keywords: honey bee,/hydroxymethylfurfural,/sugar syrup/acidity 

 

 

1. INTRODUCTION 

Nutrition plays a fundamental role in maintaining strong and healthy honey bee colonies. Honey bees 

use carbohydrates to obtain energy, proteins for growth and development, lipids for energy reserves, 

whereas minerals, vitamins and water are needed for optimal survival (Standifer et al., 1977). Honey 
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bees gather these substances by collecting nectar, pollen and water from the natural environment. 

However, in some periods of the year and in some areas, natural resources can be limited and not 

match the colony’s needs. For this reason, beekeepers normally sustain colonies with additional 

sources of carbohydrates (Haydak, 1970; Brodschneider and Crailsheim, 2010; Krainer et al., 2016), 

using homemade inverted sugar syrups, high fructose corn syrup (HFCS) or starch syrup 

(Jachimowicz and El Sherbiny, 1975; LeBlanc et al., 2009; Brodschneider et al., 2010; Brodschneider 

and Crailsheim 2010; Krainer et al., 2016). Additional sources of proteins, consisting of pollen 

supplements or pollen substitutes (Standifer et al., 1977), can also be provided. Carbohydrate rich 

supplementary food provides an alternative source of energy, increases colony strength, prevents 

starvation and may reduce wintering losses (Emsen and Dodologlu, 2014). Indeed, a mixture of 

sucrose and water is commonly used to feed honey bees (Free and Spencer-Booth, 1961; Barker, 

1971; Semkiw and Skubida, 2016) especially in the Autumn–Winter period in temperate areas, when 

honey bees may suffer from low nectar flow and bad weather. The most common diet consists in 

inverted sugar syrup obtained by mixing sugar and water in a 2:1 ratio to which a variable amount of 

an acidifying agent is added (Bailey, 1966; Standifer et al., 1977; Genc and Aksoy, 1993); very often, 

beekeepers produce this food themselves, boiling a water sugar solution acidified with vinegar or 

lemon juice. 

Supplementary nutrition, especially in the Autumn period, has eventually become standard practice 

in temperate climates since important winter colony losses caused by a number of interacting stress 

factors and, in particular, the ectoparasite Varroa destructor and the associated pathogenic deformed 

wing virus (DWV), are common (Genersch et al., 2010; Nazzi et al., 2012). In fact, several lines of 

evidence suggest that the capacity of the colony to face both biotic and abiotic stressors can be 

enhanced by maintaining a high colony strength through a convenient supply of nutrients (Haydak, 

1970; Michener, 2007; Annoscia et al., 2017). In general, these recent advancements fit well within 

an integrated concept of colony health, including both the potential stressors the bee colony must 

cope with and the available resources (Nazzi and Pennacchio, 2014). 
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However, a responsible approach to bee health, requires that also the possible detrimental side effects 

of any intervention, including supplementary nutrition, are investigated. This issue was investigated 

for some types of sugar syrup as HFCS, starch syrups and inverted sugar syrup and sugar candy 

(Barker and Lehner, 1978; Rinderer and Baxter, 1980; Severson and Erickson, 1984; Von der Ohe 

and Schönberger, 2002; Ceksteryte and Racys, 2006; Le Blanc et al., 2009; Sammataro and Weiss, 

2013; Smodiš Škerl and Gregorc, 2014; Semkiw and Skubida, 2016). However, despite the use of 2:1 

sucrose – water sugar syrup is very common (Bailey, 1966; Standifer et al., 1977; Genc and Aksoy, 

1993) only limited scientific information is available on its possible side effects. In fact, to our 

knowledge, only Bailey (1966) and Jachimowicz and El Sherbiny (1975) thoroughly studied the 

possible side effects of a supplementary sugar nutrition based on inverted 2:1 sucrose – water 

solutions. In particular, Bailey found that 2:1 acid-hydrolysed carbohydrates are toxic to bees but 

their mode of action remained rather obscure. Moreover, Bailey excluded the possibility that 

hydroxymethylfurfural (HMF) and/or its degradation compounds (i.e. laevulinic acid and formic 

acid), at the concentration found in syrups (0.04 - 0.2 %) could be the cause of the recorded toxicity. 

HMF, is an organic compound consisting of a furan ring containing both an aldehyde and an alcohol 

function, which has been proved to be harmful to adult bees at 150 ppm (Jachimowicz and El 

Sherbiny, 1975) and 8000 ppm in sugar solution (Krainer et al., 2016), 250 ppm in HFCS syrup 

(LeBlanc et al., 2009) and 915 ppm in sugar candies (Smodiš Škerl and Gregorc, 2014); while 

negative effects on larvae were observed at concentrations higher than 750 ppm (Krainer et al., 2016). 

This compound can be formed both through the Maillard reaction and the thermal and acid-catalyzed 

degradation of sugars and carbohydrates (Zirbes et al., 2013; Krainer et al., 2016). Thus, HMF can 

be found in many foods and, in particular, HMF in honey represent a quality-determination compound 

(Spano et al., 2008); indeed, HMF is normally absent in fresh honey but concentration increases with 

time, storage methods and excessive heat (Tomasini et al., 2012). Nevertheless, HMF toxicity risk in 

sugar syrup is still debated and unclear (Zibres et al., 2013). Indeed, Zirbes et al. (2013) states that it 
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is currently impossible to establish a maximal concentration limit for HMF in relation to honey bee 

health and standardized experiments are currently lacking. 

To further contribute to understanding the real harmfulness of HMF, we investigated the toxicity of 

HMF at doses consistent with literature data (Jachimowicz and El Sherbiny, 1975; LeBlanc et al., 

2009, Krainer et al., 2016) both in healthy bees and bees challenged with their most important 

ectoparasite (i.e. V. destructor). To strengthen available data on HMF concentration in sugar syrups, 

we also investigated HMF formation in homemade 2:1 inverted sugar syrup, considering, in 

particular, the influence of temperature or boiling time on different homemade sugar syrups according 

to their acidity. Finally, we fed honey bees with these syrups to disentangle the role of various factor 

(e.g. HMF, acidity, other possible compounds) on honey bees survival. 

 

2. MATERIALS AND METHODS 

2.1.Honey bees and Varroa mites used in this study 

Experiments were carried out between May 2016 and September 2018. Newly emerged adult bees 

and mites were collected randomly from several colonies of the experimental apiary of the 

Dipartimento di Scienze AgroAlimentari, Ambientali e Animali of the University of Udine 

(46°04′53.3″ N, 13°12′33.1″ E). Previous studies indicated that local honey bee colonies are hybrids 

between Apis mellifera ligustica Spinola and Apis mellifera carnica Pollmann (Comparini and 

Biasiolo, 1991). 

 

2.2.Homemade syrups preparation 

Homemade syrups were prepared according to a standard recipe which suggests to add the juice 

obtained from a lemon to a 2:1 sucrose/water solution obtained by dissolving 1800 g of sucrose 

(brand: “Maxi”, 100% sucrose) in 900 mL of water (brand “Sant’Anna”, dry residue: 22 mg/L, water 

hardness: 0.9 °F) and then to stir the mixture while heating. Since heating time differ from one recipe 

to another, with some suggesting to boil the solution for up to 30 minutes, we prepared our homemade 
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syrups at three different temperatures (25 °C, 50 °C and 110 °C, in this latter case the solution was 

left to boil for 10 minutes). 

To assess the role of lemon juice, two groups of solutions were created: in one group we added a dose 

of lemon corresponding to 1/10 of ten squeezed lemons (variety: Femminello, organic) while the 

other group was prepared without lemon. 

The concentration of HMF was quantified using a reflectometer (Reflectometer RQflex®plus 

Reflectoquant®) one day after the preparation of homemade syrups since the compound needs about 

24 hours to reach a stable concentration. Three technical replicates were made for each sample. pH 

was assessed at room temperature (20°C) using a pHmeter (XS 8 series, resolution ± 0.1/0.01 pH). 

The experiment was replicated three times. 

 

2.3.Effects of homemade syrups on the survival of honey bees 

To investigate the possible side effects of wintering supplementary food on the survival of bees, we 

fed honey bees with homemade syrups produced in the previous experiment (“Homemade syrups 

preparation”).   

To this aim, the day before the experiment several combs containing emerging bees were randomly 

collected from the apiary and stored overnight in a climatic chamber (34.5 °C, 75% R.H., dark). The 

day after, newly emerged honey bees were transferred into plastic cages (185 x 105 x 85 mm) and 

maintained under the same controlled conditions. Bees were fed ad libitum with water and the 

homemade syrups. Homemade syrups consisted in: 2:1 sucrose solution produced at 25 °C (labeled 

as “L-25 °C” in figures), 2:1 sucrose solution with lemon produced at 25 °C (“L+25 °C”), sucrose 

solution, boiled for 10 minutes at 110 °C (“L- BOILED”), sucrose solution with lemon, boiled for 10 

minutes at 110 °C (“L+ BOILED”), 2:1 sucrose solution with lemon and HMF (“L+25 °C HMF”), 

2:1 sucrose solution with HMF (“L-25 °C HMF”). The concentration of HMF in L+25 °C HMF and 

L-25 °C HMF corresponded to the concentration of HMF found in the sucrose solution added with 
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lemon and boiled for 10 minutes at 110 °C (L+ BOILED). The concentration of HMF was 95 mg/L, 

83 mg/L and 77 mg/L in the three replicates of the experiment, respectively. 

To assess the composition of the feeding solutions as altered by the thermal treatment, an aliquot of 

the L+ BOILED syrup and L-25 °C syrup were analysed by High Performance Liquid 

Chromatography (HPLC). For this purpose, 1 g of syrup was diluted with 4 mL of water in order to 

reduce the viscosity of the sample before the loading on a 1 g Strata C18-E Solid Phase Extraction 

(SPE) column (Phenomenex, Italy) previously conditioned with 5 mL of methanol and 5 mL of water. 

After loading, the column was washed with 3 mL of water and this fraction containing the 

carbohydrates was discarded, the less polar compounds were then eluted with 4 mL of methanol. The 

volume of the methanolic fraction was reduced to about 0.5 mL under a nitrogen stream and the 

sample was then transferred to an autosampler vial for the HPLC-UV analysis.  

An UHPLC Shimadzu Nexera R (Shimadzu, Milan, Italy), coupled to a SPD-M20A Photo Diode 

Array detector and equipped with a degasser, a thermostated autosampler and a column oven was 

used. The chromatographic separation was performed with an Agilent Poroshell 120 EC-C18, 4.6 × 

150 mm, 2.7 μm particle size, column (Agilent Technologies, Italy), thermostated at 30 °C. Elution 

was carried out at a flow rate of 0.45 mL min-1, using as mobile phase a mixture of water (solvent A) 

and acetonitrile (solvent B) with the following gradient: 0–2 min, isocratic condition at 5% B; 2–30 

min, linear gradient from 2 to 95% B. The injection volume was 5 µL. HMF was identified on the 

basis of the retention time and UV spectrum of a standard HMF solution. 

 

 

2.4.Effects of syrup acidity on the survival of honey bees 

To confirm the effects of acidity on honey bee survival, newly emerged honey bees collected and 

reared with the same protocol used in previous experiments were fed ad libitum with three different 

solutions: 2:1 sucrose solution produced at 25 °C (labeled as “L-25 °C” in figures), 2:1 sucrose 
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solution with lemon produced at 25 °C (“L+25 °C”) and 2:1 sucrose solution produced at 25 °C and 

acidified with HCl (“HCl 25 °C”). 

The homemade syrup solutions used here were the same as those used before, except HCl 25 °C 

solution that was originally an aliquote of L-25 °C acidified with HCl to reach the same pH of L+25 

°C (pH=2.80).  

Three replicates using three different cages were made (each replicate corresponded to one cage). 

 

To further investigate the effects of acidity on honey bees, we performed a quantitative real time PCR 

(qRT-PCR) assessing the relative expression of Vitellogenin (Vg) (forward: 5’-

TTGACCAAGACAAGCGGAACT-3’; reverse: 5’-AAGGTTCGAATTAACGATGAA-3’), 

Apidaecin (forward: 5’-TTTTGCCTTAGCAATTCTTGTTG-3’; reverse: 5’-

GAAGGTCGAGTAGGCGGATCT-3’) and deformed wing virus (DWV) (forward: 5’-

GGTAAGCGATGGTTGTTTG-3’; reverse: 5’-CCGTGAATATAGTGTGAGG-3’) relative load. 

Vitellogenin was selected as a generic marker of stress (Dolezal et al., 2016; Smart et al., 2016; Zanni 

et al., 2017); the antimicrobial peptide Apidaecin was used to investigate the possible effects on honey 

bees’ immune-competence, while DWV was studied since it represents a constant pathogenic threat 

for honey bees (Nazzi and Pennacchio, 2018). 

RNA extractions were performed with Rneasy® Plus Mini Kit (Quiagen), cDNA synthesis with 

Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV RT, Promega) and real-time PCR 

using the CFX96™ optical reaction module (Bio-Rad) and the C1000 Touch™ thermal cycler (Bio-

Rad). Β-Actin (forward: 5’-TGCCAACACTGTCCTTTCT -3’; reverse: 5’-

AGAATTGACCCACCAATCCA-3’) was used as housekeeping gene. 

 

2.5.Toxicity of low HMF doses on healthy and mite infested bees 



128 
 

To assess the possible negative effects of HMF in homemade wintering food, we investigated the 

survival of uninfested and mite infested honey bees at doses similar to those developed in our 

homemade syrups and also compatible with those reported in literature.  

For this purpose, sealed brood combs from several colonies of the apiary were transferred into the lab 

and stored in a net cage to collect emerging bees as they eclosed from brood cells; then, newly 

emerged bees were transferred into plastic cages (185 x 105 x 85 mm) and maintained in a climatic 

chamber (34.5 °C, 75% R.H., dark). Bees were fed ad libitum with water and different diets and 

mortality was recorded daily. Diet consisted in a sugar solution (glucose 61%, fructose 39%; Thom 

et al., 2003) added with 0, 50, 100, 200, 400 mg/L of HMF. The experiment was replicated twice. A 

total of fifty bees per group were used. 

Since the experiments revealed no negative effect of this dose on uninfested bees, the toxicity of HMF 

to mite infested honey bees was studied using the highest dose tested on healthy bees. To do so, we 

collected mature bee larvae from brood cells capped in the preceding 15 hours and transferred them 

into gelatin capsules (Agar Scientific Ltd., 6.5 mm Ø) with no mites (V−) or one mite (V+) that had 

been collected from recently sealed brood cells (Nazzi and Milani, 1994; Nazzi et al., 2012); bees 

were maintained in an environmental chamber at 34.5 °C, 75% R.H., dark, for 12 days. Upon 

eclosion, newly emerged adult bees were separated from the infesting mite and transferred into plastic 

cages (185 × 105 × 85 mm), maintained in a climatic chamber at 34.5 °C, 75% R.H., dark. Bees were 

fed ad libitum with water and sugar solution (0 mg/L HMF) and sugar solution (glucose 61%, fructose 

39%) with 400 mg/L of HMF (400 mg/L HMF). The experiment was replicated twice. From 62 up 

to 80 honey bees per experimental group were used in total. 

 

2.6.HMF concentration in relation to pH and boiling time 

Since our experiments showed that HMF concentration is enhanced in sugar syrups acidified with 

lemon and boiled for 10 minutes, we carried out another experiment to better study the HMF 

formation in relation to pH and boiling time. 
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To this aim, three sucrose syrups acidified with HCl at 2, 3 and 4 pH were boiled for 40 minutes at 

110 °C. To follow HMF formation, every 10 minutes, from the beginning of boiling till 40 minutes 

after, 20 mL of each syrup were sampled to assess HMF concentration as described above. 

 

2.7.Effects of high HMF doses on honey bees 

To investigate the effect on honey bees of high HMF doses that could develop at low pH and 

prolonged boiling time, we studied the survival of caged honey bees fed with 10000 mg/L of HMF 

in sugar syrup. This concentration was selected based on the experiment described before which 

showed that up to 6000-12000 ppm of HMF are formed in sugar syrup after 30 and 40 minutes of 

boiling, respectively. Indeed, many beekeeper recipes suggest to boil syrups for 30 minutes or more. 

Moreover this dose is comparable to that used by Krainer et al. (2016) in their experiments.  

For the purpose, bees were fed ad libitum with two different solutions: 2:1 sucrose solution produced 

at 25 °C (labeled as “SUCROSE” in figures) and 2:1 sucrose solution produced at 25 °C added with 

10000 mg/L of HMF (“HMF 10000”). 

 

2.8.Effects of different monosaccharides on honey bees  

To verify the need to invert sucrose in homemade syrups and thus the importance of lemon juice 

addition, we studied the survival of bees fed either with monosaccharide or disaccharide sugars. We 

therefore reared newly emerged honey bees obtained as above and provided either a water and a 

sucrose solution ad libitum (labeled as “SUCROSE” in figures) or a 1:1:1 water, glucose and fructose 

solution (“GLUCOSE & FRUCTOSE”). Three replicates with three different cages were made for 

this experiment (each replicate corresponded to one cage). 

 

2.9.Statistical analysis 

All statistics analysis were performend with Minitab 16®. Each survival curve was compared with 

its control using the Log-Rank test. Since in the experiment “Effects of homemade syrups on honey 
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bee” several groups were compared, we applied a correction according to Benjamini and Hochberg 

(1995), setting the false discovery rate at 0.1. 

 

3. RESULTS 

 

3.1. Acidity and HMF concentration of sugar syrups 

In the first replicate of the experiment 10 squeezed lemons produced 490 mL of lemon juice, whereas 

in the second and third replication 337 and 311 mL were produced, respectively. Since we used 1/10 

of the squeezable juice, 49, 33.7 and 31.1 mL of lemon juice were added respectively to the sugar 

solution in each replicate, reaching a pH ranging from 2.87 and 2.96 (Tab. I). However, it is worth 

noting that, in previous preliminary experiments, a pH as low as 1.65 in one case and 2.61 in another 

case was obtained, using the same lemon variety and procedure; therefore, it is safe to conclude that 

the addition of one lemon to one liter of a sugar solution can reduce the pH to 2 or even less. Both 

acidity and heating affected HMF formation but only at high temperatures (Tab. II); in fact, acidified 

sugars syrups, boiled for 10 minutes, reached an average HMF concentration of 85 mg/L ± 9.17 ppm 

(the high standard deviation could be partly related to the accuracy of the reflectometer (± 2.5)). The 

HLPC analysis (Fig. 1) confirmed the presence of high concentrations of HMF in the acidified boiled 

sucrose solution (L+BOILED); other minor peaks were observed as well in this solution that were 

absent from the sucrose solution produced at 25 °C (L-25 °C). 

 

3.2.Effects of homemade syrups on the survival of honey bees 

The highest survival was observed in bees fed with sugar syrup to which no lemon was added, 

regardless of heating (L-25 °C, L-BOILED, L-25 °C HMF; Fig. 2). In this group no significant 

differences were found among the three treatments, and, in particular, between L-25 °C and L-25 °C 

HMF (Tab. III, comparisons n. 1, 2, 3).  
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An intermediate survival was observed in bees fed with acidified but not boiled sugar syrup (L+25 

°C, L+25 °C HMF; Fig. 2); again the addition of HMF did not affect the survival at this stage (Tab. 

III, comparison 4). 

Finally, the lowest survival was observed in bees fed with an acidified solution boiled for 10 minutes 

(L+BOILED, Fig. 2). 

The survival of bees belonging to each of three groups was significantly different from that of bees 

belonging to the other groups (Tab. III, comparisons from 5 to 15). 

 

3.3.Effects of syrup acidity on the survival of honey bees 

Since the previous experiment suggested a negative effect of acidity of the sugar syrup on the survival 

of bees, we tested this effect using both lemon and hydrogen chloride. 

Bees fed with a sugar solution acidified to the same pH (2.80) either with lemon or hydrogen chloride 

showed a significantly reduced survival as compared to bees fed the same sugar solution without an 

acidic addition (Fig. 3; L-25 °C vs. HCl 25 °C, Log Rank (Chi-Square = 25.059, d.f. = 1, P = 0.000); 

L-25 °C vs. L+25 °C Log Rank (Chi-Square = 47.852, d.f. = 1, P = 0.000)). No significant difference 

was found between the survival of bees fed with solutions acidified with lemon or hydrogen chloride 

(Log Rank (Chi-Square = 1.103, d.f. = 1, P = 0.294)).  

qRT-PCR analysis highlighted a significant lower expression of Apidaecin in honey bees fed with 

HCl added syrup as compared to control bees fed standard syrup (Fig. 4; L-25 °C vs. HCl 25 °C, 

Mann Whitney (n1 = 6 ; n2 = 6; U = 7; P = 0.039)). No significant differences were found in 

Vitellogenin expression between honey bees fed with acidified syrups and control bees. A lower 

DWV infection level was found in bees fed with HCl 25 °C syrup as compared to control bees, 

although significance was not reached in this case (HCl 25 °C vs. L-25 °C, Mann Whitney (n1 = 6 ; 

n2 = 6; U = 8; P = 0.055)); however, no difference was found in the relative viral load between control 

syrup and the one acidified with lemon (L-25 °C vs. L+25 °C, Mann Whitney (n1 = 6 ; n2 = 6; U = 

16; P = 0.37). 
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3.4.Toxicity of low HMF doses on healthy and mite infested bees 

To confirm the results of the first experiment, showing no apparent effect of the addition of HMF to 

the toxicity of sugar solutions, we tested if doses similar to those observed in that trial or found in the 

literature can affect the bees’ survival. 

No significant differences and no apparent negative effects on the survival of uninfested bees were 

observed with HMF doses similar to those found in our sugar syrups and to those reported in literature 

(0, 50, 100, 200, 400 mg/L of HMF) (Fig. 5A).  

As expected, bees artificially infested with V. destructor showed a reduced lifespan as compared to 

un-infested bees (V+ 0 mg/L HMF vs V- 0 mg/L HMF , Log Rank (Chi-Square = 10.539, d.f. = 1, P 

= 0.001) and V-400HMF vs. V+400HMF, Log Rank (Chi-Square = 6.001, d.f. = 1, P = 0.014)) (Fig. 

5B). 

Moreover, we observed a notable difference in the shape of the curves between uninfested (Fig. 5A) 

and mite infested bees (Fig. 5B), with the first group of bees following a type 1 curve and the second 

following a type 2 survival curve, possibly caused by the different handling of bees during artificial 

infestation. 

In any case, 400 mg/L of HMF did not negatively affect the survival of bees; actually, an increased 

survival was observed in infested bees (V+ 400 mg/L HMF vs. V+0 mg/L HMF, Log Rank (Chi-

Square = 5.052, d.f. = 1, P = 0.025)). This trend was not confirmed in uninfested honey bees were 

the survival of honey bees treated with 400 mg/L of HMF was not different from the control (V- 400 

mg/L HMF vs. V- 0 mg/L HMF, Log Rank (Chi-Square = 1.264, d.f. = 1, p-value = 0.261)). These 

results nicely match the results reported above and obtained in a separate experiment (Fig. 2). 

 

3.5.HMF concentration in relation to pH and boiling time 

Considering the results presented above regarding the effect of boiling acidified sugar solutions on 

HMF formation, and the non-significant effect of low doses of HMF, we wondered if a prolonged 
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heating of acid solutions may result in higher concentration of HMF that could be toxic to bees. To 

answer to this question, we prepared sugar syrups with different acidity (pH: 2, 3, 4) and assessed 

HMF formation in relation to increasing boiling time. 

We found that boiling time did not strongly affect HMF formation at pH 3 and 4, causing 

concentrations that, according to our previous results, are non-toxic to bees. However, at pH 2, the 

heating process triggers the formation of a much higher HMF concentrations, ranging from 1786.7 

mg/L, after 10 minutes of boiling to 12,005.3 mg/L thirty minutes later (Fig. 6A). 

 

3.6.Effects of high HMF doses on the survival of honey bees 

Feeding bees with a sugar syrup containing an HMF concentration similar to that obtained after 

boiling an acidic solution for a few minutes (i.e. 10000 mg/L of HMF) caused a strong significant 

reduction in the lifespan of bees; indeed, 100% of mortality was recorded after only 15 days, while 

control bees lived until the 34th day (SUCROSE vs HMF 10000, Log Rank (Chi-Square = 16.452, 

d.f. = 1, P = 0.000)) (Fig. 6B). 

 

3.7.Effects of a monosaccharide based diet on honey bees  

Since acidification of sugar syrups appears to be critical for bee survival, and the purpose of this 

treatment is to obtain the inversion of disaccharide sugars into monosaccharides, we tested if feeding 

bees with a sucrose solution instead of glucose and fructose influences their survival. 

We found that bees fed with  sucrose syrup (the same recipe as that used in previous experiments) 

had a longer survival than bees fed with a 1:1:1 water, glucose and fructose solution (GLUCOSE & 

FRUCTOSE vs SUCROSE, Log Rank (Chi-Square = 7.440, d.f. = 1, P = 0.006)) (Fig. 7). 

 

4. DISCUSSION 

Doses of HMF similar to those reported as sublethal in the literature (Jachimowicz and El Sherbiny, 

1975; Le Blanc et al., 2009) and found in our home made sugar syrups when heating treatment is 
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restricted, seem to be non-toxic both for uninfested and mite infested bees. This result suggests that, 

at low concentrations, in the range of 10-400 ppm, HMF does not influence bee health, even in 

presence of the most common additional stressor of bees: the ectoparasite V. destructor and the 

viruses that are normally associated to it. 

However, our data show that the lower acidity that can be found in homemade syrups because of 

lemon addition, negatively affects bees’ survival, as confirmed by comparing the survival of bees fed 

a sugar solution acidified or not with lemon. The similar results obtained after changing the acidifying 

agent support the notion that acidity per se, rather than any toxic compounds from lemon, is 

responsible for the observed effect. Molecular analysis shows an interesting down-regulation of 

Apidaecin in bees fed with HCl acidified syrups, suggesting an interaction with the bee’s immune 

system. However, we did not find a similar significant pattern in bees fed with lemon, supporting the 

view that it is not acidity but rather the quality of the acidifying agent that matters in this case.  

Vitellogenin expression, which did not differ between groups, indicates that the abiotic stress of 

acidity has no effects on the gene expression of this lipoprotein, which, in this case, does not appear 

a good marker of stress. The same consideration can be drawn for DWV load, which revealed no 

differences between the different experimental groups. 

Our experiments further showed that acidified sugar solutions may reach much higher concentrations 

of HMF if a prolonged heating is applied and a low pH level (e.g. pH=2) is reached after lemon 

addition; in fact, both acidity and the amount of lemon juice are influenced by seasonality, climate 

and the stage of ripeness of the lemon (Bartholomew, 1923), and such low pH level can easily be 

reached. Since the very high concentrations of HMF that can be produced under the above mentioned 

conditions can be very toxic to bees (i.e. above 10000 ppm), a great care should be used while making 

homemade syrups. This last data is consistent with the results obtained by Krainer and co-workers 

(2016) who observed that concentration of 8000 ppm of HMF is toxic for adult honey bees. 

Lemon addition is normally done to facilitate the inversion of disaccharide sugars to obtain the 

purportedly more digestible monosaccharides, glucose and fructose. Indeed, hydrolysed sucrose is 
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commonly believed to be nutritionally better for honey bees (Bailey, 1966). The negative effect of 

lemon addition obtained here suggested to test if lemon addition is really necessary; we found that 

sucrose can be as effective as glucose and fructose to sustain a normal survivorship under laboratory 

condition. This would suggest that lemon addition may be not necessary as normally thought, possibly 

because bees are able to invert disaccharides themselves, thanks to α-invertase (White, 1975). 

However, we can not exclude that other results could be obtained under field condition, where 

nutritional requirements of bees can be different. Nevertheless, our results support a careful 

evaluation of this aspect. 

A further interesting result obtained in this study is the much-reduced survival observed in bees fed 

an acidified sugar solution after boiling for only 10 minutes. This result can neither be explained by 

the negative effect of lemon addition (that it is lower), nor by the HMF concentration that could be 

reached in this case (that is lower than the harmful one). Indeed, our HPLC analysis showed that 

acidified-boiled syrups contain other substances, further than HMF, that can be related to the toxicity 

of these solutions, as already suggested by Bailey (1966), who found that acid-hydrolysed 

carbohydrates are toxic for bees due to the formation of unknown compounds in these solutions. 

In conclusion, we provided convincing evidence that homemade sugar syrups can hide several 

possible negative side effects for bees that can impair normal survival. These negative effects can be 

related to the possible formation of high doses of HMF, to the acidity and to the formation of further 

compounds, whose identity has not been studied so far. 

The golden rule of medicine “primum non nocere” (first do no harm), attributed to Hyppocrates, 

underlines the need of carefully considering the possible negative side effects of the treatments we 

may apply to sustain the health of an individual. Bees are currently exposed to a number of interacting 

stress factors (vanEngelsdorp et al., 2009; Hedtka et al., 2011; Dainat et al., 2012; Nazzi et al., 2012; 

Nazzi and Pennacchio, 2014,) that may affect bee health in a complex and often unpredictable way 

(Di Prisco et al., 2013; Doublet at al., 2015; Nazzi and Pennacchio, 2018). Here we wanted to point 

the attention to the undesirable effects of supplementary nutrition since this has become a common 
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practice due to the increased fragility of bees underlined above. We sincerely hope that a balanced 

equilibrium can be found between the need of sustain bee colonies and the risk of perturbing their 

normal functioning. 

 

Figures 

 

Figure 1 – HPLC analysis of an acidified boiled sugar solution and a sugar solution produced at 25 

°C, no acidity. 
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Figure 2 - Effects of different sugar syrups on honey bees survival. 

 

 

Figure 3 - Effects of acidity on honey bees survival. 
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Figure 4 - Relative expression of Apidecin in honey bees treated with different acidified sugar 

solutions. 
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Figure 5 - Survival rate of uninfested adult honey bees fed with sugar syrup containing different 

concentrations of HMF (A) and survival rate of adult bees infested (or not) with 1 mite during the 

pupal stage and fed with a sugar syrup containing (or not) 400 mg/L of HMF (B). 
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Figure 6. HMF formation in relation to heat treatment and acidity (A); survival rate of honeybees 

fed or not with a very high dose of HMF (B). 
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Figure 7. Survival rate of honeybees fed with a diet based on monosaccharides or disaccharides. 
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Table 3. pH of homemade sugar solutions according to the preparation method. 
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STD-DEV. 0.5 0.6 1.3 

MEAN 
L+ 

2.4 

0.7 

2.8 

0.2 

85.0 

9.2 STD-DEV. 

Table 2. HMF (mg/kg) produced in homemade sugar solutions. 
 

 

 Comparison Chi-Square DF P value 

1 L-25 °C VS L-25 °C HMF 0.56708 1 0.451 

2 L-25 °C VS L-BOILED 0.57005 1 0.450 

3 L-BOILED VS L-25 °C HMF 0.01982 1 0.888 

4 L+25 °C VS L+25 °C HMF 1.35442 1 0.245 

5 L+25 °C VS L-25 °C 22.4025 1 0.000 

6 L+25 °C VS L-25°C HMF 17.8190 1 0.000 

7 L+25 °C VS L-BOILED 29.4064 1 0.000 

8 L+25 °C VS L+BOILED 28.2390 1 0.000 

9 L+25 °C HMF VS L-25°C 11.9552 1 0.001 

10 L+25 °C HMF VS L-25°C HMF 93.9784 1 0.002 

11 L+25 °C HMF VS L-BOILED 15.5093 1 0.000 

12 L+25 °C HMF VS L+BOILED 36.2876 1 0.000 

13 L+BOILED VS L-25 °C 61.1796 1 0.000 

14 L+BOILED VS L-25 °C HMF 45.1172 1 0.000 

15 L+BOILED VS L- BOILED 62.7928 1 0.000 

Table 3. Statistical analysis (Log-Rank test) related to the survival of honeybees fed with different 

sugar syrups (Fig. 2). 
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