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 8 

Abstract 9 

Unconventional formulation and baking conditions were exploited for obtaining omega-3 polyunsaturated fatty acids 10 

enriched biscuits. A monoglyceride-flaxseed oil-water gel was used to obtain biscuits which had physical and chemical 11 

properties analogous to those of a control sample prepared with palm oil. To reduce fat oxidation and acrylamide and 12 

furan formation, the dough was baked at different temperature, time and pressure (i.e. varying from 101.33 to 0.15 kPa) 13 

conditions according to a central composite design. Baking at high temperature and reduced pressure allowed to obtain 14 

biscuits with acceptable water content and colour, while minimizing omega-3 fatty acids oxidation and acrylamide and 15 

furan formation. The biscuits best responding to these characteristics were obtained by applying the combination 174 16 

°C-3.99 kPa-45 min. The low pressure generated inside the oven likely exerted a stripping effect towards acrylamide 17 

and furan as well as oxygen thus preventing toxicants to accumulate and lipid oxidation to occur. This study highlighted 18 

that the use of monoglyceride-flaxseed oil-water gel combined with baking under reduced pressure is potentially 19 

applicable at the industrial level to obtain nutritionally enhanced biscuits, while simultaneously preventing the 20 

occurrence of degradation reactions and toxic molecules formation. Due to the worldwide diffusion of cereal-based 21 

foods, including sweet biscuits, this formulation and process strategy could have a great economic impact. 22 

 23 
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Introduction 28 

The health benefits associated with the consumption of omega-3 polyunsaturated fatty acids (PUFAs) are well 29 

documented and include the reduction of the occurrence of certain chronic diseases as well as the improvement of brain, 30 

retina and nervous system functions (Huang et al. 2004; Salem and Eggersdorfer 2015; Guichardant et al. 2015; Tani et 31 

al. 2015; Koh et al. 2015). The most important omega-3 PUFAs of our diet are -linolenic acid, eicosapentaenoic acid 32 

and docosahexaenoic acid. Fish, fish oils, some vegetable oils, and microalgae are sources of omega-3 fatty acids (Xie 33 

et al., 2015). However, current dietary habits, especially in Western countries, have considerably decreased the daily 34 

intake of these foods and thus omega-3 PUFAs below the recommended dose (Salem and Eggersdorfer 2015; Ferguson 35 

et al. 2014; Ferguson et al. 2010). The development of functional foods enriched with omega-3 PUFAs can help to 36 

promote a correct dietary style by delivering appropriate amounts of these nutrients, while meeting consumer 37 

preferences and habits. Bakery products, such as sweet biscuits, could be good candidates for such fortification since an 38 

improvement of their healthy properties would have great impact on a large portion of population due to their high 39 

frequency of consumption. In the effort to develop omega-3 PUFAs fortified foods, one of the most frequently applied 40 

strategy is the addition in the formulation of oil naturally containing omega-3 fatty acids (i.e. cod liver oil, flax-seed oil, 41 

canola oil) (Santhanam et al. 2015), although other omega-3 fatty acids sources can be also used (e.g. microalgal 42 

biomasses) (Gouveia et al. 2008). 43 

Different issues have to be overcome in the attempt to develop bakery products incorporating omega-3 rich oils. A 44 

major issue is represented by omega-3 PUFAs susceptibility to oxidation (Kamal-Eldin and Yanishlieva 2002). Besides 45 

nutrient depletion and undesired changes of the food sensory properties, oxidative reactions may be responsible for the 46 

formation of toxic compounds. For instance, the oxidation of PUFAs results in significant generation of dietary 47 

advanced lipid oxidation end-products (ALEs), that may exert cytotoxic and genotoxic effects (Kanner 2007; Awada et 48 

al. 2012). In addition, the substitution of plastic fats with liquid oil could greatly affect the baking performances and 49 

thus the product quality (Brooker 1996). An emerging strategy to mimic the structure provided by plastic fats is the use 50 

of oils structured by molecules able to generate self-assembling networks (Pernetti et al. 2007). Saturated 51 

monoglyceride-based gels are among the most promising fat-substitutes able to bring new or improved functionality to 52 

food products (Batte et al. 2007; Marangoni et al. 2007). Different examples of the use of monoglyceride gels as 53 

structuring phase in bakery products have been reported in the literature, especially in the attempt to reduce the 54 

saturated fat content (Goldstein and Seetharaman 2011; Manzocco et al. 2012a and b; Calligaris et al. 2013). Results 55 

demonstrated that this structural approach could be a pursuable strategy along with a careful re-set up of the processing 56 

conditions. In fact, the substitution of a lipid phase with a monoglyceride-oil-water gel, by favoring precursor’s 57 

encounter in the water phase surrounding monoglyceride lamellas, resulted in an increase of acrylamide formation 58 
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(Anese et al. 2011; Manzocco et al. 2012b). As known, high levels of the toxic and suspected carcinogenic acrylamide 59 

and furan are formed in a wide range of staple foods during heating, including cereal-based products. Average 60 

acrylamide and furan concentrations of 333 μg/kg and 18 μg/kg, respectively, are reported for these products (EFSA 61 

2011; EFSA 2012). It has been recently demonstrated that cereal-based products contribute on average about 9% to 62 

total acrylamide dietary intake (Friesling et al. 2013), and have been identified as major contributors to furan exposure 63 

in the children and adolescent population (EFSA 2011). A number of ways have been suggested to reduce the levels of 64 

acrylamide and furan in foods, as recently reviewed by Zhang and Zhang (2007), Pedreschi et al. (2014), Curtis et al. 65 

(2014) and Anese et al. (2013). We have previously demonstrated that heating under reduced pressure could allow 66 

acrylamide formation in coffee to be minimized (Anese et al., 2014). 67 

The objective of the present study was to exploit formulation and baking conditions suitable for obtaining omega-3 68 

PUFAs enriched short dough biscuits. In particular, a monoglyceride-flaxseed oil-water gel was developed and 69 

characterized, and subsequently used instead of palm oil to prepare the dough. After moulding, the dough was subjected 70 

to baking under different process conditions. Temperature, time and pressure (the latter ranging from the atmospheric 71 

value to 0.15 kPa) were varied according to a three variable face centred central composite design and the effects of 72 

these variables on water content, colour and peroxide value were evaluated. Moreover, this study was designed to 73 

investigate whether baking under reduced pressure could allow acrylamide and furan formation in biscuits to be 74 

minimized.  75 

 76 

Materials and methods 77 

 78 

Materials 79 

 80 

MyverolTM saturated monoglyceride (MG) (fatty acid composition: 1.4% C14:0, 59.8% C16:0, 38.8% C18:0; melting 81 

point 68.05 ± 0.5 °C) was kindly donated by Kerry Ingredients and Flavour (Bristol, United Kingdom).  82 

Isooctane, 1-butanol and sodium bicarbonate were from Carlo Erba Reagents (Milano, Italy); methanol, ethyl ether 83 

stabilized with 2% of ethanol, 2,3,3[2H3] acrylamide (d3-acrylamide), anhydrous sodium sulphate, co-surfactant mixture 84 

of palmitic and stearic acids 1:1 (w/w) were from Sigma-Aldrich (Milano, Italy); barium chloride and ferrous sulphate 85 

were from Panreac (Barcellona, Spain); ammonium thiocyanate was from Emsure (Damstadt, Germany). Type 0 wheat 86 

flour, sucrose, eggs, skimmed milk powder, table salt, sodium bicarbonate, baking powder, palm oil were purchased in 87 

a local market. Flaxseed oil was from Solimè (Cavriago, Italy). According to producer indications, total omega-3 fatty 88 

acids in flaxseed oil were 53.4%.  89 
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Preparation of the monoglyceride–flaxseed oil–water gel 90 

 91 

The monoglyceride–flaxseed oil–water gel, hereafter called hydrogel was prepared according to the slightly modified 92 

method of Calligaris et al. (2010). Myverol™ saturated monoglyceride (MG) was mixed with a co-surfactant mixture of 93 

palmitic and stearic acids 1:1 (w/w) in a ratio of 5:1 (w/w). The water phase consisted of 1 mM NaHCO3 in deionized 94 

milli-Q water to promote the partial neutralization of the co-surfactant mixture and obtain a properly swollen phase. The 95 

hydrogel was obtained by mixing the flaxseed oil, previously heated at 70 °C, with the MG/co-surfactant mixture up to 96 

complete dissolution, followed by the addition of the heated (70 °C) water solution. The two phases were then 97 

homogenized by using a high speed homogenizer (D125, Ika-Werke, Staufen, Germany) at 59,000 × g for 90 s. 98 

Afterwards, the mixture was cooled at 4 °C in an ice bath and then stored at 4 °C for 24 h before use. The concentration 99 

by weight of each constituent in the monoglyceride–flaxseed oil–water gel was as follows: MG/co-surfactant, 4.8%, 100 

flaxseed oil, 47.6%, water solution, 47.6%.  101 

 102 

Short dough biscuits preparation 103 

 104 

The non-water ingredients consisted of wheat flour, sucrose, eggs, skimmed milk powder, table salt, baking powder, 105 

palm oil or MG-hydrogel and were added to the recipe at 54, 15, 0.7, 0.3, 0.2, 1.1, and 29% on total weight, 106 

respectively. The fat concentration of the hydrogel added to the formulation corresponded to 15%. All the ingredients 107 

except the palm oil or hydrogel and the wheat flour were first mixed for 15 min by using a kneader (Hobart, N50CE, 108 

Ohio, USA). Afterwards, the palm oil or hydrogel was incorporated and mixed for 5 min, followed by the addition of 109 

the wheat flour and kneaded for further 15 min. 110 

After mixing, the dough was sheeted to 8 mm thickness and cut to a diameter of 50 mm. The samples were baked in an 111 

oven (5Pascal, VS-25 SC, Trezzano S/N, Milano, Italy) connected to a rotary vacuum pump (BOC Edwards, E2M40, 112 

Crawley, West Sussex, UK) able to achieve a pressure of 1.33 Pa in few seconds when the oven was empty. Once the 113 

desired temperature was reached, two dough biscuits, previously weighed (approximately 5 g each), were introduced in 114 

the central rear part of the oven on a plate and the vacuum pump was immediately switched on. The time needed to 115 

achieve the desired vacuum was less than 10 s. Computation of treatment duration started once the set pressure value 116 

was achieved. Baking was carried out at different pressures, temperatures and times according to a central composite 117 

design. Preliminary trials, were carried out at 180 °C and atmospheric pressure for 20 min. After the treatments, 118 

samples were immediately removed from the oven and cooled to room temperature. Afterwards they were transferred 119 

into plastic vessels with pressure lid and stored at -18 °C until analyses were performed.  120 
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Temperature monitoring and thermal effect computation 121 

 122 

Temperature changes during baking were measured by a copper-constantan thermocouple probe (Ellab, Denmark), 123 

whose tip (2.0 mm) was placed on the sample surface. The thermal effect F (min) was computed using the following 124 

equation (Ball, 1923): 125 

dtF
t zTT ref  



0

/)(
10   eq. 1 126 

where Tref is the reference temperature, which was chosen equal to 200 °C, a baking process being generally carried out 127 

at temperatures around 200 °C, T is the actual temperature of the treatment (°C), t is the time (min) of the treatment, and 128 

z represents the increase in temperature that causes a 10-fold increase in the reaction rate, which was reported to be 129 

equal to 56 °C for the browning reaction (Sacchetti et al. 2009).  130 

 131 

Acrylamide analysis 132 

 133 

Acrylamide determination was carried out according to the method of Anese et al. (2009). Briefly, 1000 µL of an 134 

aqueous solution of 2,3,3[2H3] acrylamide (d3-acrylamide) (0.20 µg/mL) as internal standard and 15 mL of water Milli 135 

Q (Millipore, Italy) were added to 1 g of finely ground biscuit weighed into a 100 mL centrifuge tube. After extraction 136 

at 60 °C for 30 min under magnetic stirring, the mixture was centrifuged at 12,000 x g for 15 min at 4 °C (Beckman, 137 

Avanti Centrifyge J-25, Palo Alto, CA, USA). Aliquots of 10 mL of the clarified aqueous extract were cleaned-up by 138 

solid phase extraction (SPE) on an Isolute Env+, 1 g (Biotage, Sweden). The volume of the eluted fraction was reduced 139 

under vacuum, to about 1.5 – 2 mL by using a rotary evaporator (Laborata 4001, Heidolph, Schwabach, Germany) at a 140 

temperature of 80 °C and filtered through a 0.45 m membrane filter before the HPLC-MS analysis. LC-ESI-MS-MS in 141 

positive ion mode analyses were performed by a Finnigan LXQ linear trap mass spectrometer (Thermo Electron 142 

Corporation, San Josè, CA, USA) coupled to a Finnigan Surveyor LC Pump Plus equipped with a thermostated 143 

autosampler and a thermostated column oven. The analytical column was a Waters Spherisorb ODS2 (250 x 2.0 mm, 5 144 

m). Elution was carried out at a flow-rate of 0.1 mL/min, in isocratic conditions at 30 °C using as mobile phase a mixture 145 

of 98.9% water, 1% methanol and 0.1% formic acid (v/v/v). Full scan MS/MS was carried out by selecting the ions at 146 

m/z 72 and m/z 75 as precursor ions for acrylamide and d3-acrylamide respectively. The area of the chromatographic 147 

peaks of the extracted ion at m/z 55, due to the transition 72 > 55, and at m/z 58, due to the transition 75 > 58, were used 148 

for the quantitative analysis. The quantitative analysis was carried out with the method of the internal standard. The 149 
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relative response factor of acrylamide with respect to d3-acrylamide was calculated daily by analyzing a standard 150 

solution. For each run, analyses were made at least in duplicate. Acrylamide concentration was expressed as ng/g of dry 151 

matter. 152 

 153 

Furan analysis 154 

 155 

Furan analysis was carried out by combining SPME and GC-MS analysis according to slight modifications executed on 156 

the method of Bianchi et al. (2006). SPME experiments were performed with a 85 mm carboxen-polydimethylsiloxane 157 

(CAR-PDMS) fibre (Supelco, Bellfonte, PA, USA). Aliquots of 2 g of sample were added with 2 mL NaCl 20% (w/w) 158 

water solution of d4-furan (internal standard with a concentration equal to 30 µg/kg) and were placed in 20 mL sealed 159 

vials. After 5 min incubation at 40 °C, the fibre was exposed to the vial headspace at 40 °C for 20 min, under constant 160 

magnetic stirring. Desorption was carried out at 270 °C for 2 min. Two fiber blanks were run between each sample to 161 

avoid potential “memory effects”. An Ultra-Thermo TRACE GC (Thermo Scientific, Waltham, MA, USA) equipped 162 

with a DSQ II detector (Thermo Scientific, Waltham, MA, USA) was used for GC-MS analysis. Helium was used as the 163 

carrier gas at a flow rate of 1 mL/min; the gas chromatograph was operated in splitless mode with the PTV injector 164 

maintained at 270 °C and equipped with a PTV multi-baffled liner (i.d. 1.5 mm, Thermo Scientific, Waltham, MA, 165 

USA). A Rxi-5ms (5% diphenyl 95% dimethylpolysiloxane) (30 m x 0.25 mm, 0.5 µm) capillary column (Thermo 166 

Scientific, Waltham, MA, USA) was used. The following GC oven temperature program was applied: 40 °C for 5 min, 167 

15 °C/min to 300 °C. Transfer line and source were maintained at 270 °C and 200 °C, respectively. The mass 168 

spectrometer was operated in selected-ion monitoring mode (SIM) by recording the current of the following ions: m/z 169 

68 and 39 for furan and m/z 72 and 42 for d4-furan. The relative response factor of furan with respect to d4-furan was 170 

calculated daily by analyzing a standard solution. For each run, analyses were made in duplicate. Furan concentration 171 

was expressed as ng/g of dry matter. 172 

 173 

Colour analysis 174 

 175 

Colour analysis was carried out on five different points of sample surface using a tristimulus colorimeter (Chromameter-176 

2 Reflectance, Minolta, Osaka, Japan) equipped with a CR-400 measuring head. The instrument was standardized 177 

against a white tile before measurements. Colour was expressed in L*, a* and b* scale parameters and a* and b* were 178 

used to compute the hue angle (tan-1 b*/a*) (Clydesdale 1978).  179 

 180 
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Total solid content determination 181 

 182 

Total solid content was determined by gravimetric method by drying the samples in a vacuum oven (1.32 kPa) at 75 °C 183 

until a constant weight.  184 

 185 

Lipid extraction 186 

 187 

Lipids were extracted following the methodology described by Kristensen et al. (2000). About 10 g sample was 188 

transferred to a 100 mL centrifuge tube and 30 mL of isooctane was added. The sample was homogenized using a high 189 

speed homogenizer (D125, Ika-Werke, Staufen, Germany) at 9,000 rpm for 2 min. The blend was then transferred to an 190 

Erlenmeyer flask and added with 30 mL of isooctane, 30 mL of methanol and 60 mL of ethylic ether. Subsequently, the 191 

mixture was stirred at room temperature at 700 rpm for 20 min and then let statically settle. The liquid part was 192 

transferred to another Erlenmeyer flask and added with anhydrous sodium sulphate. The supernatant was filtered 193 

through Whatman n. 1 filter paper and evaporated using a rotary evaporator (Laborata 4001, Heidolph, Schwabach, 194 

Germany) at 120 rpm and 50 °C, decreasing the pressure from 900 mbar to 15 mbar in 30 min. Finally, the lipid fraction 195 

was transferred to a 10 mL vial, saturated with nitrogen, sealed and stored at -30 °C until analyses were performed. 196 

 197 

Peroxide value determination  198 

 199 

Peroxide value was determined following the method of Shanta and Decker (1994). Lipid samples (0.016 g) were 200 

weighted into 10 mL vials, added with 2.8 mL of methanol/butanol solution (2:1 v/v) and vortexed until the lipid 201 

fraction was dissolved. Subsequently, 0.015 mL of ferrous ion solution (prepared through the mixture of 0.033 M BaCl2 202 

and 0.036 M FeSO4) and 0.015 mL of 3.94 M ammonium thyocianate were added in the vial and vortexed for 5 s. After 203 

20 min of incubation at room temperature, absorbance was measured at 510 nm with a UV-2501 PC spectrophotometer 204 

(Shimadzu, Kyoto, Japan) coupled with a CSP-Controller thermostat (Shimadzu, Kyoto, Japan) and a CPS-240A cell 205 

positioner (Shimadzu, Kyoto, Japan). Data were acquired using a UV-Probe v.2.31 (Shimadzu, Kyoto, Japan) software. 206 

Sample absorbance was corrected using a blank sample prepared mixing all the reagents except for the extracted lipids 207 

and incubated for 20 min at room temperature. The peroxide value (PV) expressed as milliequivalents of oxygen per 208 

kilogram of fat was calculated by using the following equation: 209 

284.55

)(

0 




m

mAA
PV bs     eq. 2   210 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 
 

where As is the absorbance of the sample, Ab is the absorbance of the blank, m is the slope of the calibration curve of 211 

Fe3+ concentration vs absorbance, m0 is the mass in grams of the sample and 55.84 is the atomic weight of iron. 212 

  213 

Rheology  214 

 215 

A Stresstech Rheometer (Reologia Instruments AB, Lund, Sweden) equipped with a 40 mm parallel-plate geometry and 216 

application software Stresstech v. 4 was used. The temperature was kept at 20 °C by using a circulating coolant 217 

connected to a thermostat. An aliquot of monoglyceride-flaxseed oil-water gel was placed on the measuring plate and 218 

the measuring gap was set at 2 mm. To determine the linear viscosity range for the samples, dynamic stress sweep 219 

measurement at a frequency of 1 Hz from 0.1 Pa to 100 Pa was conducted at 20 °C. G′ and G″ moduli were obtained for 220 

a frequency scan from 0.1 to 10 Hz using a fixed stress value included in the linear viscoelastic region. Measurements 221 

were carried out in duplicate on two replicated experiments. 222 

 223 

Firmness 224 

 225 

Biscuit firmness was measured using an Instron 4301 (Instron LTD. High Wycombe, UK). The instrumental settings 226 

and operations were accomplished using the software Automated Materials Testing System (version 5, Series IX, 227 

Instron LTD, High Wycombe, UK). The instrument was equipped with a 5 kN load cell. Biscuits were positioned on 228 

two bars and broken by applying a cross-head speed of 5 mm/s to the blade edge. Firmness was defined as the 229 

maximum force required to break the biscuit. From each baking experiment, six biscuits were analyzed. 230 

 231 

Polynomial equations and statistical analysis 232 

 233 

Modelling was aimed at describing the variation of water content, colour, peroxide value, acrylamide, and furan 234 

concentrations as a function of the variables of the central composite design. In particular, a 3 factors face centred 235 

central composite design was used, here after called CCF. The three considered factors were baking temperature, time 236 

and pressure. For each factor, extreme, lower and upper values were identified and combined to form the factorial part 237 

of the design (8 factorial points). To complete the CCF, 6 axial points (combinations of the extreme value of one factor 238 

and the intermediate level for the others) and 1 central point (combination of the intermediate values of the three factors) 239 

were defined.  240 
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All the factorial and axial points were replicated once, while the central point was replicated 6 times. The full set of 241 

sampling points is reported in Table 1. As pressure values of different magnitude were considered, they were expressed 242 

in logarithmic scale for data modelling. A software package (Statistica for Windows v. 10, StatSoft, Inc.) was used to fit 243 

the second order response surface to the observed data according to the following equation: 244 

 245 

𝑦 = 𝐵0 + ∑ 𝐵𝑖𝑥𝑖
𝑘
𝑖=1 +∑ 𝐵𝑖𝑖𝑥𝑖

2𝑘
𝑖=1 + ∑ 𝐵𝑖𝑗𝑥𝑖𝑥𝑗

𝑘
𝑗>𝑖≥1   eq. 3 246 

 247 

where B0 is a constant, and Bi, Bii, Bij are regression coefficients of the model, xi and xj are the independent variables in 248 

coded values, and k is the number of factors.  249 

Shapiro-Wilk test was used to evaluate normality of the data, while the possible presence of outliers and the 250 

homogeneity of variance were evaluated by residual analysis. Goodness of fit was measured with the adjusted 251 

determination coefficient (R2
adj). p-values for the coefficients of the response surface were defined using standard t-test.  252 

Three-dimensional surface plots were drawn to illustrate the effects of the considered factors on the responses. To this 253 

purpose, the values of the response were plotted on the z-axis against the two most relevant factors, keeping the third 254 

one fixed to a constant value (the central one). 255 

 256 

Results and discussion 257 

 258 

Hydrogel formulation and its incorporation in the dough  259 

 260 

To incorporate flaxseed oil in the dough, a monoglyceride-flaxseed oil-water gel, hereafter called hydrogel, was 261 

developed. A maximum amount of 47.6% (w/w) of flaxseed oil was incorporated into the gel. As expected, the flaxseed 262 

oil-based hydrogel presented gel-like properties, the G′ modulus being higher than the G″ modulus (8.88 ± 0.11 kPa and 263 

2.46 ± 0.14 kPa, respectively), in agreement with the literature for monoglyceride-oil-water systems (Batte et al. 2007; 264 

Calligaris et al. 2010). As well documented in the literature, the hydrogel elasticity is attributable to the monoglycerides 265 

that, while self-assembling, may form a network of crystallized vesicles containing oil (Batte et al. 2007). The hydrogel 266 

was added to the dough formulation at 29% on total weight and its performance visually evaluated and compared with a 267 

control biscuit containing palm oil. After baking at 180 °C for 20 min at atmospheric pressure, a hydrogel containing 268 

biscuit regular in shape and colour (L* = 65 ± 2 and hue angle = 74 ± 1, and L* = 69 ± 1 and hue angle = 78 ± 1, for the 269 

hydrogel and palm oil containing biscuits, respectively) was obtained. The firmness of the hydrogel containing biscuit 270 

was slightly lower than that of the palm oil containing control sample (38 ± 8 N and 52 ± 10 N, respectively), although 271 
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they did not differ significantly in water content (< 3% w/w). These results indicate that the use of the hydrogel allowed 272 

biscuits with desired quality to be obtained, in agreement with previous findings (Goldstein and Seetharaman 2011; 273 

Anese et al. 2011; Manzocco et al. 2012b). Therefore, the hydrogel was used to further prepare omega-3 PUFAs 274 

enriched samples to be subjected to baking according to the CCF. 275 

 276 

Identification of baking conditions at reduced pressure of omega-3 PUFAs enriched biscuits 277 

 278 

Table 2 shows the water content, hue angle, peroxide value as well as acrylamide and furan concentrations of biscuits 279 

containing the hydrogel subjected to baking under different conditions according to the CCF.  280 

The regression coefficients and their relative analysis of variance of the polynomial models for the dependent variables 281 

are presented in Table 3. R2
adj values for the responses were higher than 0.882. 282 

As it can be observed in Table 2, all factor combinations, except that including the highest factors values (run 4), 283 

allowed furan accumulation to be prevented. In fact, in contrast with the biscuit baked at atmospheric pressure and 197 284 

°C for 45 min that presented a furan concentration of 174 ng/g, furan levels were always lower than 32 ng/g and in most 285 

cases below the quantification limit (10 ng/g) for this molecule. As a consequence, it was not possible to find an 286 

appropriate model to describe these data.  287 

The results showed that temperature as well as the linear and quadratic terms of log pressure had a significant effect on 288 

moisture content, showing p-values lower than 0.001, 0.01, and 0.001, respectively. To evaluate the effects of the 289 

independent variables on the dependent ones and to predict the optimum values of each variable for 290 

maximum/minimum yield, three-dimensional response surface plots were generated. Fig. 1 shows the response surface 291 

plot relevant to the effect of temperature and pressure on water content changes occurring in the biscuits during baking. 292 

As expected, the lowest moisture contents were achieved at the highest temperature and pressure conditions. Results 293 

also show that baking at reduced pressure slightly favoured moisture removal. This can be attributable to a stripping 294 

effect towards water, that was promoted by the low pressure inside the oven. Moreover, Fig. 1 shows that, in our 295 

experimental conditions, the minimum water content was obtained at pressure values of 0.15 kPa (corresponding to 3.6 296 

Log Pa). It is noteworthy that a 3% moisture, that is the highest water content acceptable for biscuits, was also achieved 297 

by 40 min baking at the lowest temperature (150 °C) and pressure (0.15 kPa). 298 

As known colour is an important quality parameter for biscuits. Colour development is the result of the formation of 299 

brown polymers (i.e. melanoidins) in the advances stages of non-enzymatic browning reactions. As colour development 300 

has been associated to acrylamide formation, light brown is considered an acceptable colour for biscuits (Food Drink 301 

Europe 2013). Biscuits colour changes were assessed by means of colour measurements and expressed as hue angle. A 302 
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decrease in hue angle is an index of browning development. According to the results shown in Table 3, temperature and 303 

pressure as both linear and quadratic terms, significantly affected the hue angle of the biscuits, although the influence of 304 

pressure quadratic term was lower than that of the other factors. Fig. 2 shows the response surface plot of the effect of 305 

temperature and pressure on the hue angle of the biscuits subjected to baking. Baking at the lowest temperature and 306 

pressure conditions led to the least coloured biscuits, while lower hue angle values (i.e. the higher colour development) 307 

were achieved at temperatures higher than 190 °C at both high and low pressure values. It is noteworthy that baking at 308 

ambient pressure allowed colour development to occur at lower temperature as compared to the vacuum process. These 309 

results suggest that moisture and colour values acceptable for biscuit production can be actually achieved at reduced 310 

pressure conditions. 311 

As already pointed out, due to its chemical feature, omega-3 PUFAs are very susceptible to oxidative reactions, that 312 

may be favoured by the high baking temperature. To study the influence of the independent variables on the oxidation 313 

of omega-3 fatty acids, the peroxide value of the biscuit lipid fraction was measured (Table 2). As shown in Table 3, 314 

temperature and pressure as linear and interactive terms were the major factors influencing this parameter (p<0.001), 315 

while time and the interaction between time and temperature had a lower effect (p<0.05). As shown in Fig. 3, the 316 

maximum peroxide value was achieved at the highest temperature and pressure values. No peroxide formation was 317 

detected in biscuits subjected to baking at any temperature when the pressure was kept at intermediate or low values. It 318 

can be suggested that when baking was performed at reduced pressure conditions, the low oxygen concentration present 319 

inside the oven would prevent oxidative reactions to occur.  320 

The effect of the process variables on acrylamide formation in the biscuits was also evaluated. As already stated, 321 

considerably high amounts of this heat-induced toxic molecule can form upon baking of cereal products (Claus et al. 322 

2008). In particular, acrylamide formation proceeds faster in the final steps of baking in correspondence of low moisture 323 

contents (Bråthen and Knutsen 2005) along with brown development (Gökmen and Şenyuva 2006). The ANOVA 324 

showed that all the process variables, except the quadratic term of time, affected the formation of the toxic molecule, 325 

although with different significance (Table 3). Temperature and pressure as linear and interactive terms were the 326 

process variables most affecting the acrylamide yields, as indicated by their smaller p-values. The effects of the 327 

interactions between pressure and temperature on acrylamide formation are shown in Fig. 4. A maximum acrylamide 328 

level was attained at the highest pressure and temperature values. Acrylamide levels lower than 500 ng/g, that is the 329 

maximum recommended concentration in biscuits (EFSA 2013), were formed at any temperature when pressure was 330 

reduced from atmospheric to intermediate or low values.  331 

Overall, these results suggest that, within the margins of the present study, baking at high temperature and reduced 332 

pressure allowed to obtain biscuits with acceptable water content and colour, while minimizing omega-3 PUFAs 333 
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degradation by oxidative reaction as well as acrylamide and furan formation. In particular, the combination 174 °C-3.99 334 

kPa-45 min allowed biscuits responding to these characteristics to be obtained.  335 

In order to compare the impact of pressure on non-enzymatic browning reaction independently of the combination of 336 

temperature and time experienced by the sample during baking, data relevant to hue angle and acrylamide (Table 2) 337 

were further elaborated. In particular, they were plotted against the thermal effect F, that is the time-temperature 338 

combination received by the dough at each baking time (Fig. 5). Table 4 shows the rate constants computed from the 339 

slopes of the linear regression of hue angle and acrylamide concentration of short dough biscuits subjected to baking 340 

under different pressure conditions vs F. The computed rate constants showed statistical differences from 0 (p<0.05). 341 

The pseudo zero order rate constant of hue angle in the biscuits baked at atmospheric pressure was higher (i.e. 342 

indicating a slower browning development) than those found for the biscuits obtained at lower pressures. In particular, 343 

discrepancies in hue angle among the biscuits were higher at low F values and decreased with the increasing of F, 344 

becoming similar at approximately 38 min (i.e. the highest F value received by the samples). Moreover, no significant 345 

differences between the rate constant computed for the baking processes carried out at 3.99 and 0.15 kPa were found 346 

(p>0.05). This lower value of hue angle rate constant (i.e. higher rate of colour development) at low pressure can be 347 

attributed to faster water removal due to the low pressure inside the oven (Table 2). In addition, as exemplified in Table 348 

4, the rate of acrylamide formation for increasing F values was greater for the biscuits baked at ambient pressure than 349 

for samples cooked at reduced pressure. Similar results have been previously found for coffee subjected to roasting 350 

under low pressure conditions (Anese et al. 2014). These data seem to suggest that (a) lower acrylamide is formed at 351 

reduced pressure conditions or (b) as soon as the toxic molecule is generated, the low pressure generated inside the oven 352 

would promote acrylamide removal, thus preventing its accumulation. Moreover, in the latter case, as acrylamide is a 353 

water soluble molecule, it is likely that its removal occurs along with that of water. Similar mechanisms can be 354 

suggested for furan. In this case, all the baking conditions at reduced pressure were effective in keeping furan levels 355 

below the quantification limit (Table 2). According to the removal mechanism, it can be suggested that as soon as furan 356 

is formed, it is almost quantitatively removed due to its higher volatility as compared with acrylamide.  357 

 358 

Conclusions 359 

 360 

The results of the present study indicate that baking at high temperature and reduced pressure allowed to obtain biscuits 361 

with acceptable water content and colour, while minimizing omega-3 PUFAs degradation by oxidative reaction as well 362 

as acrylamide and furan levels. In particular, results of the experimental plan showed that the combination 174 °C-3.99 363 

kPa-45 min resulted effective in producing biscuits with acrylamide concentration and peroxide value below 100 ng/g 364 
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and 2 meqO2/kgfat respectively, as well as furan at negligible levels. As compared with the conventionally baked sample 365 

(200°C-101.3 kPa-35 min), these baking conditions led to an acceptable reduction in brown development. It is 366 

noteworthy that this is in line with the indications given by the Food Drink Europe association stating that producing 367 

lighter coloured biscuits, without increasing the moisture content, could represent a strategy to reduce acrylamide 368 

content. Moreover, as the application of baking at low pressure conditions may be responsible for the removal of 369 

desired flavor compounds, sensory analysis has to be performed. 370 

Although further research should be conducted at pilot and industrial scale to find optimum process conditions, these 371 

results suggest that baking under reduced pressure could have a great economic impact, due to the large diffusion of this 372 

food category; not only the conventional bakery products but also the functional ones are becoming very popular. 373 
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Figure captions 479 

 480 

Fig. 1 Response surface plot showing the effect of baking temperature and pressure on water content of short dough 481 

biscuits. A constant value (central point) was imposed to the third independent variable (time) of the CCF  482 

 483 

Fig. 2 Response surface plot showing the effect of baking temperature and pressure on hue angle of short dough 484 

biscuits. A constant value (central point) was imposed to the third independent variable (time) of the CCF   485 

 486 

Fig. 3 Response surface plot showing the effect of baking temperature and pressure on peroxide value of the lipid 487 

fraction of short dough biscuits. A constant value (central point) was imposed to the third independent variable (time) of 488 

the CCF   489 

 490 

Fig. 4 Response surface plot showing the effect of baking temperature and pressure on acrylamide concentration of 491 

short dough biscuits. A constant value (central point) was imposed to the third independent variable (time) of the CCF 492 

 493 

Fig. 5 Hue angle and acrylamide concentration of short dough biscuits subjected to baking under reduced pressure 494 

conditions as a function of the thermal effect F 495 

  496 
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Table 1 Combinations of time, temperature and pressure of different runs of a three factors face centred central 497 

composite design 498 

Run  Temperature  

(°C) 

Pressure  

(Log Pa) 

Time  

(min) 

    

1 150 5.00 45 

2 150 5.00 35 

3 197 5.00 35 

4 197 5.00 45 

5 150 2.17 45 

6 150 2.17 35 

7 197 2.17 45 

8 197 2.17 35 

9 174 2.17 40 

10 174 5.00 40 

11 174 3.60 45 

12 174 3.60 35 

13 197 3.60 40 

14 150 3.60 40 

15 174 3.60 40 

16 174 3.60 40 

17 174 3.60 40 

18 174 3.60 40 

19 174 3.60 40 

20 174 3.60 40 

 499 
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Table 2 Experimental results ± standard deviation of a 3 factors face centred central composite design 501 

Run  Water content 

(% w/w) 

Hue angle 

(tan-1b*/a*) 

Peroxide value 

(mEq O2/kgfat) 

Acrylamide  

(ng/g) 

Furan  

(ng/g) 

1 6.03 ± 0.16 79.2 ± 0.3 3.07 ± 0.03 125.7 ± 4.4 10 ± 2 

2 9.06 ± 0.13 81.3 ± 0.5 2.40 ± 0.01 51.3 ± 1.9 11 ± 2 

3 2.49 ± 0.01 71.8 ± 0.5 20.12 ± 0.71 419.2 ± 18.8 27 ± 4 

4 0.48 ± 0.06 67.7 ± 2.3 10.92 ± 3.60 709.3 ± 31.5 174 ± 24 

5 5.14 ± 0.01 90.9 ± 0.4 3.07 ± 0.02 10.0 ± 1.1 20 ± 3 

6 5.09 ± 0.02 90.8 ± 0.5 2.40 ± 0.01 9.0 ± 0.7 9 ± 1 

7 0.40 ± 0.02 67.8 ± 2.7 2.30 ± 0.08 225.7 ± 6.4 9 ± 2 

8 0.54 ±  0.07 73.8 ± 2.6 2.62 ± 0.02 199.6 ± 4.5 12 ± 2 

9 1.59 ± 0.12 90.8 ± 0.6 2.60 ± 0.01 19.2 ± 1.6 9 ± 2 

10 5.25 ± 0.09 75.1 ± 0.6 5.15 ± 0.21 220.5 ± 6.9 9 ± 2 

11 0.82 ± 0.25 85.7 ± 2.3 1.75 ± 0.02 75.1 ± 2.4 9 ± 1 

12 1.31 ± 0.10 90.1 ± 2.0 4.72 ± 0.59 42.7 ± 0.6 9 ± 1 

13 0.38 ± 0.04 69.3 ± 3.2 6.00 ± 0.41 255.5 ± 3.5 11 ± 2 

14 2.42 ± 0.08 92.0 ± 0.2 2.57 ± 0.01 7.8 ± 1.2 9 ± 2  

15 0.87 ± 0.16 88.1 ± 1.9 4.05 ± 0.05 51.5 ± 2.5 10 ± 1 

16 1.47 ± 0.02 91.6 ± 1.2 1.92 ± 0.02 86.0 ± 3.0  9 ± 1 

17 0.71 ± 0.05 90.0 ± 1.5 1.62 ± 0.02 31.9 ± 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              10 ± 2 

18 0.53 ± 0.01 88.1 ± 4.4 2.02 ± 0.07 77.6 ± 0.8 9 ± 2 

19 0.83 ±0.03 87.9 ± 3.6 2.72 ± 0.05 94.6 ± 3.5 31 ± 5 

20 1.23 ± 0.19 90.4 ± 1.6 2.55 ± 0.00 42.8 ± 2.0 13 ± 3 
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Table 3 Regression coefficients of the models for water content, hue angle, peroxide value and acrylamide  506 

Variable Water content Hue angle Peroxide value Acrylamide 

Intercept 40.204 -219.914 70.835 7538.511 

Temp  -0.305*** 4.108*** -0.766*** -61.552*** 

Temp2  0.0006 -0.012** 0.003 0.146** 

LogP -2.371** 0.551** -13.007*** -766.073*** 

LogP2 1.174*** -2.199* 0.605 38.846* 

Time  0.053 -0.301 0.592* -83.160** 

Time2 -0.0001 0.022 0.022 0.324 

Temp x LogP 0.010 0.062 0.097*** 2.039*** 

Temp x Time 0.0009 -0.011 -0.012* 0.256* 

LogP x Time -0.087 0.038 -0.156 5.930** 

R2 adj 0.882 0.884 0.871 0.953 

* : p<0.05; ** : p<0.01; *** : p<0.001  507 
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Table 4 Rate constants ± 95% confidence interval errors computed from the slopes of the linear regression of hue angle 508 

and acrylamide concentration of short dough biscuits subjected to baking under different pressure conditions vs the 509 

thermal effect 510 

Parameter  Pressure  

(kPa) 

Rate constant  

(tan-1b*/a* min-1; 

ng/g min-1) 

R2
adj 

Hue angle 101.3 -0.36 ± 0.15a 0.936 

 3.99 -0.77 ± 0.17b 0.927 

 0.15 -0.72 ± 0.27b 0.947 

Acrylamide  101.3 17.29 ± 6.17a’ 0.952 

 3.99 7.91 ± 1.97b’ 0.904 

 0.15 7.05 ± 2.66b’ 0.960 

a,b: For each parameter considered, significant difference is indicated by different letters (p<0.05) 511 
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