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dak, Žiga Virk and Takamitsu Yamauchi for the great opportunities to success-
fully spend research periods at their institutions, bringing back home priceless
knowledge and experience.

i



Abstract

The topic of the manuscript is coarse geometry, also known as large-scale
geometry, which is the study of large-scale properties of spaces. It found ap-
plications in geometric group theory after the work of Gromov, and in Novikov
and coarse Baum-Connes conjectures.

The thesis is divided into three distinct parts. In the first one, we provide a
foundational and categorical approach to coarse geometry. Large-scale geome-
try was originally developed for metric spaces and then Roe introduced coarse
structures as a large-scale counterpart of uniformities. However, coarse spaces
are innerly symmetric objects, and thus are not suitable to parametrise asym-
metric objects such as monoids and quasi-metric spaces. In order to fill the
gap, we introduce quasi-coarse spaces. Moreover, we consider also semi-coarse
spaces and entourage spaces. The latter notion generalises both quasi-coarse
spaces and semi-coarse spaces. These objects induce para-bornologies, quasi-
bornologies, semi-bornologies, pre-bornologies (also known as bounded struc-
tures) and bornologies, and this process is similar to the definition of uniform
topology from a (quasi-)uniform space. We study all the notions introduced
and recalled to find extensions of classical results proved for metric or coarse
spaces, and similarities with notions and properties for general topology. Fur-
thermore, we study the categories of those objects and the relations among
them. In particular, since all of them are topological categories, we have a
complete understanding of their epimorphisms and monomorphisms, and the
description of many categorical constructions. Among them, of particular in-
terest are quotients. We then focus our attention on Coarse, the category of
coarse spaces and bornologous maps, discussing its closure operators and the
cowellpoweredness of its epireflective subcategories, and its quotient category
Coarse/∼, which turns out to be balanced and cowellpowered.

The second part is dedicated to study the large-scale geometry of algebraic
objects, such as unitary magmas, monoids, loops and groups. In particular,
we focus on coarse groups (groups endowed with suitable coarse structures)
and we investigate their category. We study different choices, underlining ad-
vantages and drawbacks. With some restrictions on the coarse groups that
we are considering, if we enlarge the class of morphisms to contain bornolo-
gous quasi-homomorphisms (and not just bornologous homomorphisms), every
coarse inverse of a homomorphism which is a coarse equivalence is a quasi-
homomorphism. This observation is connected to the notion of localisation of
a category and could provide a categorical justification to the notion of quasi-
homomorphism. Once the categories of coarse groups are fixed, inspired by the
notion of functorial topologies, we can introduce functorial coarse structures on
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Grp, the category of groups and homomorphisms, and on TopGrp, the cate-
gory of topological groups and continuous homomorphisms. Among them, we
pay attention to the ones induced by cardinal invariants, and to those associ-
ated to the family of relatively compact subsets. As for the latter functorial
coarse structure, we study the transformation of large-scale properties (e.g.,
metrisability, asymptotic dimension) along Pontryagin and Bohr functors.

Finally, the third part is devoted to coarse hyperspaces, which are suitable
coarse structures on power sets of coarse spaces. This construction was intro-
duced following the work of Protasov and Protasova and miming the classical
notion of uniform hyperspace. We see how properties of the initial coarse space
are reflected on the hyperspace (e.g., cellularity). Since the coarse hyperspace
is highly disconnected, it is convenient to consider some special subspaces of
it. For example, if the base space is a coarse group, it is natural to consider
the subspace structure induced on the lattice of subgroups, called subgroup
exponential hyperballean. We show that both the subgroup exponential hyper-
ballean and the subgroup logarithmic hyperballean, another coarse structure on
the subgroup lattice, capture many important properties of the group.
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Chapter 1

Introduction

Coarse geometry, also known as large-scale geometry, is the study of large-
scale properties of spaces, ignoring their local, small-scale ones. The origin
of large-scale geometry goes back to Milnor’s problems, Gromov’s ideas from
geometric group theory, and Mostow’s rigidity theorem ([121]).

Intuitively, two spaces are considered equivalent in coarse geometry if they
look alike for an observer whose point of view is getting further and further
away. For example, every bounded space is indistinguishable from a one-point
space. Another example is the pair given by the integer numbers Z and the real
numbers R. From a topological perspective, these equivalences seem to loose
too much information of the spaces. In fact, ‘small holes’ and ‘small discontinu-
ities’ are ignored, and, for example, we can identify a discrete space, Z, with a
connected one, R. However, and somehow unexpectedly, this theory found ap-
plications in several branches of mathematics, for example in geometric group
theory (following the work of Gromov on finitely generated groups endowed with
their word metrics), in Novikov conjecture, and in coarse Baum-Connes conjec-
ture. We refer to [127] for a comprehensive introduction to large-scale geometry
of metric spaces, and to [93] for applications to geometric group theory.

This thesis is divided into three parts. In the first one, our aim is to provide
the foundations of the coarse geometry of spaces, developing also a categorical
approach. In the second part, we apply those techniques to the world of algebraic
objects (magmas, loops, monoids and groups). Furthermore, we investigate
the large-scale geometry of topological groups associated to the family of all
relatively compact subsets. Finally, the third part is devoted to the study of
coarse hyperspaces, in particular, of those induced on groups.

1.1 A foundational and categorical approach to

coarse geometry

We have said that coarse geometry is the study of those properties of spaces
that are preserved for an observer whose point of view is getting further and
further away. Let us now more precisely describe the equivalences involved.

A map f : (X, dX)→ (Y, dY ) between metric spaces is said to be:

1



1.1 A foundational and categorical approach to coarse geometry 2

• large-scale Lipschitz if there exist L > 0 and C ≥ 0 such that dY (f(x), f(y)) ≤
LdX(x, y) + C, for every x, y ∈ X;

• bornologous if, for every R ≥ 0, there exists SR ≥ 0 such that dY (f(x), f(y)) ≤
SR if dX(x, y) ≤ R, for every x, y ∈ X.

Note that every large-scale Lipschitz map is bornologous.

Two maps f, g : S → (X, d) from a set to a metric space are close if there
exists R ≥ 0 such that d(f(x), g(x)) ≤ R, for every x ∈ X. If f and g are close,
we write f ∼ g.

Definition 1.1.1. Let f : X → Y be a map between two metric spaces. Then
f is called a:

• quasi-isometry if there exists another map g : Y → X such that both f and g
are large-scale Lipschitz maps, and f ◦ g ∼ idY and g ◦ f ∼ idX ;

• coarse equivalence if there exists another map g : Y → X, called coarse in-
verse, such that both f and g are bornologous, and f◦g ∼ idY and g◦f ∼ idX .

If f is a quasi-isometry (a coarse equivalence), then the spaces X and Y are
called quasi-isometric (coarsely equivalent, respectively).

A quasi-isometry is, in particular, a coarse equivalence. The converse impli-
cation is not true in general. For example, the metric spaces {n2 | n ∈ N} and
{n3 | n ∈ N}, with their metrics inherited by the family of non-negative integers
N, are coarsely equivalent, but they are not quasi-isometric. On the other hand,
if two metric spaces X and Y are coarsely equivalent to geodesic metric spaces,
then X is coarsely equivalent to Y if and only if X is quasi-isometric to Y (see
[127]).

Let us consider some easy examples of quasi-isometries. Every bounded
metric space (X, d) (i.e., there exists R ∈ R≥0 = {x ∈ R | x ≥ 0} such that
X = Bd(x,R) = {y ∈ X | d(x, y) ≤ R}, for every x ∈ X) is quasi-isometric to
a one-point space {∗} (just take any inclusion f : {∗} → X and the constant
map g : X → {∗}). The metric spaces Z and R, endowed with their canonical
euclidean metrics are quasi-isometric. In fact, we can take the inclusion map
i : Z → R and the floor map ⌊·⌋ : R → Z such that, for every x ∈ R, ⌊x⌋ =
max{n ∈ Z | n ≤ x}. Another choice for a suitable map g : Y → X is the ceiling
map g = ⌈·⌉, where, for every x ∈ R, ⌈x⌉ = min{n ∈ Z | n ≥ x}.

Before giving more interesting examples of quasi-isometries, let us introduce
two important classes of metric spaces.

Example 1.1.2. Let Γ = (V,E) be a non-directed connected graph. Then the
set of vertices V can be endowed with the path metric dΓ defined as follows: for
every x, y ∈ X,

dΓ(x, y) = min{n ∈ N | ∃x0 = x, x1, . . . , xn = y ∈ V :

∀i = 1, . . . , n, {xi−1, xi} ∈ E}.

Since Γ is connected, dΓ : V × V → R≥0 = {x ∈ R | x ≥ 0}. If we consider also
non-connected non-directed graphs, we can extend the path metric by putting
dΓ(x, y) = ∞ if and only if the vertices x and y are in different connected
components.

Example 1.1.3. Let G be a group. We say that G is finitely generated if there
exists a finite subset Σ of G such that, for every g ∈ G, there exist n ∈ N and
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σ1, . . . , σn ∈ Σ ∪ Σ−1 which satisfy g = σ1 · · ·σn (i.e., G = 〈Σ〉). If a group
G is finitely generated by a finite subset Σ, we always assume without loss of
generality that Σ = Σ−1 and the identity eG of G belongs to Σ. In fact, we can
replace Σ with Σ ∪ Σ−1 ∪ {eG}.

Let G be a group which is generated by the finite subset e = eG ∈ Σ = Σ−1.
Let us define the (left) word metric dΣ as follows: for every pair of elements
x, y ∈ G,

dΣ(x, y) = min{n | ∃σ1, . . . , σn ∈ Σ : y = xσ1 · · ·σn}.

Note that dΣ is left-invariant, i.e., for every x, y, z ∈ G, dΣ(zx, zy) = dΣ(x, y).
Finally, let us point out that also the right word metric dρΣ can be defined on G.
However, it provides no further information since the inverse map i : (G, dΣ)→
(G, dρΣ), where, for every g ∈ G, i(g) = g−1, is an isometry.

To every finitely generated group G and every finite generating set Σ, we
can associate a non-directed graph Cay(G,Σ) = (G,E), called Cayley graph of
G associated to Σ, where a pair {g, h} ∈ G×G belongs to E if and only if there
exists σ ∈ Σ such that h = gσ. Note that the map idG : (G, dΣ)→ (G, dCay(G,Σ))
is an isometry.

A finitely generated group G can be endowed with several word metrics, in
fact, they strongly depend on the finite generating set associated. However,
from the large-scale point of view, they coincide as the following result shows.

Proposition 1.1.4. Let G be a finitely generated group, and Σ and ∆ be two
symmetric finite generating subsets of G. Then the identity map idG : (G, dΣ)→
(G, d∆) is a quasi-isometry.

Proposition 1.1.4 can be interpreted as follows: every finitely generated
group has precisely one large-scale geometry. Finitely generated groups are a
very important object in geometric group theory where the large-scale approach
turned out to be fruitful (see, for example, [90] and [93] for a wide discussion of
the subject).

An extremely important coarse invariant (i.e., a cardinal associated to every
metric space in such a way that two coarsely equivalent metric spaces are associ-
ated to the same cardinal) is the asymptotic dimension which was introduced by
Gromov ([90]) as the large-scale counterpart of the classical Čech-Lebesgue cov-
ering dimension. Before giving the definition of the asymptotic dimension, let
us recall the classical topological notion. We refer to [74] for more information
on this topic.

Let U be a cover of a topological space X. A refinement V of U is a cover of
X such that for every V ∈ V there exists an element U ∈ U such that V ⊆ U .
The cover U is open if its elements are open sets. Moreover, we can define the
order of U ordU as the value:

ordU = sup
x∈X
|{U ∈ U | x ∈ U}| .

Definition 1.1.5. Let X be a T4 topological space. Then we define its covering
dimension, or Čech-Lebesgue dimension, with the following properties:

• dimX ≤ n for some n ∈ N if, for every finite open cover U of X, there exists a
finite open cover V which forms a refinement of U and satisfies ordV ≤ n+1;
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• dimX = n if we have both dimX ≤ n and dimX > n− 1;
• dimX =∞ if there is no n ∈ N such that dimX ≤ n.

Let us now provide the definition of asymptotic dimension.

Definition 1.1.6. Let X be a metric space and n ∈ N. Then
• asdimX ≤ n if, for every R ≥ 0, there exists S ≥ 0 and a cover U =
U0 ∪ · · · ∪Un of X such that, for every U ∈ U and every x ∈ U , U ⊆ Bd(x, S),
and, for every i = 0, . . . , n and U, V ∈ Ui, Bd(U,R) ∩ V 6= ∅ if U 6= V ;
• the asymptotic dimension of X is n (and we write asdimX = n) if asdimX ≤
n and asdimX > n− 1;

• asdimX =∞ if, for every m ∈ N, asdimX > m.

We refer to [18, 19] for a comprehensive introduction of this notion and
for other, equivalent, characterisations. Let us just mention for now that, as
promised, if X and Y are two coarsely equivalent metric spaces, then asdimX =
asdimY .

We have already stated that coarse geometry has application in coarse Baum-
Connes and Novikov conjecture. In the first results in that direction (due to
Yu), the asymptotic dimension played a fundamental role.

Theorem 1.1.7 ([173]). The coarse Baum-Connes conjecture is true for every
proper metric space with finite asymptotic dimension.

Theorem 1.1.8 ([173]). Finitely generated groups of finite homotopy type with
finite asymptotic dimension satisfy the Novikov conjecture.

In [174], Yu noticed that for a proper metric space, the existence of a coarse
embedding in a Hilbert space (property which is weaker than having finite
asymptotic dimension) still implies that the coarse Baum-Connes conjecture
holds. We refer to the monograph [127] and to the paper [169] for a wide bibli-
ography and deep discussion of the topic.

The definition of asymptotic dimension, which takes inspiration from the cov-
ering dimension, is a clear example of a paradigm in coarse geometry. Namely,
several notions of coarse geometry were created as a large-scale counterpart of
small-scale notions (see, for example, the discussion in [28]).

1.1.1 Uniform spaces

A classical generalisation of the notion of metric space is the one of uniform
space. Uniform spaces have been widely studied since their introduction by the
work of Weil and Tukey in the first half of the last century, and successfully
applied in different areas. If X is a set, every subset U ⊆ X × X is called an
entourage. For every pair of entourages U, V , we define the composite of U and
V as the entourage

U ◦ V = {(x, z) | ∃y ∈ X : (x, y) ∈ U, (y, z) ∈ V },

and the inverse of U as

U−1 = {(y, x) | (x, y) ∈ U}.
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Definition 1.1.9 ([104]). A uniform space is a pair (X,U), where X is a set
and U is a uniformity over it, i.e., a family of subsets of X × X that satisfies
the following properties:

(U1) U is a filter (i.e., a family closed under taking finite intersections and
supersets);

(U2) for every U ∈ U , ∆X = {(x, x) | x ∈ X} ⊆ U ;
(U3) for every U ∈ U , U−1 ∈ U ;
(U4) for every U ∈ U , there exists V ∈ U such that V ◦ V ⊆ U .

For instance, if (X, d) is a metric space, then, the family

Ud = {V ⊇ U
d
R | R ≥ 0}, where, for every R > 0,

UdR =
⋃

x∈X

({x} ×Bd(x,R)),
(1.1)

is a uniformity over X, called metric uniformity. If there is no risk of ambiguity
and the metric considered is clear, we simply write UR instead of UdR. The metric
uniformity captures the small-scale properties (e.g., the topological properties)
of metric spaces (see Remark 3.1.4).

A family of entourages B of X is a base of a uniformity if the closure UB of
B under taking supersets is a uniformity.

If (X,U) is a uniform space, we can endow a subset Y of X with the subspace
uniformity

U|Y = {U ∩ (Y × Y ) | U ∈ U}.

The pair (Y,U|Y ) is a uniform subspace.

Let f : X → Y be a map between sets. Denote by f×f : X×X → Y ×Y the
map defined by the law (f × f)(x, y) = (f(x), f(y)), for every (x, y) ∈ X ×X.

A map f : (X,UX)→ (Y,UY ) between uniform spaces is:

• uniformly continuous if, for every U ∈ UY , there exists V ∈ UX , such that
(f × f)(V ) ⊆ U ;

• a uniform isomorphism if it is bijective and both f and f−1 are uniformly
continuous;

• a uniform embedding if the corestriction of f to its image endowed with the
subspace uniformity is a uniform isomorphism.

In order to generalise the large-scale properties of metric spaces, Roe in-
troduced coarse spaces ([157]), as a counterpart of Weil’s definition of uniform
spaces via entourages, and Protasov and Banakh ([144]) defined balleans, gen-
eralising the ball structure of metric spaces. Furthermore, Dydak and Hof-
fland with large-scale structures ([72]) and Protasov with asymptotic proximities
([140]) independently developed the approach via coverings, as Tukey did for
uniform spaces. As for the definition of coarse structures and coarse spaces, we
refer to Definition 3.1.1. The notions of bornologous maps, closeness and coarse
equivalences that we gave for metric spaces can be extended to the framework
of coarse spaces (see §3.1.1 and [157]). Among all the large-scale properties of
metric spaces whose definition is generalised to arbitrary coarse spaces, let us
also mention the asymptotic dimension for its importance (see [18, 88] and §6
for a brief introduction).
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1.1.2 Generalisations of metric spaces and uniformities

In mathematics some generalisations of metric spaces appeared. Let X be
a set and d : X × X → R≥0 ∪ {∞} be a map such that d(x, x) = 0, for every
x ∈ X. The map d is a semi-positive-definite map. Moreover d is a

• pseudo-semi-metric if, for every x, y ∈ X, d(x, y) = d(y, x);
• pseudo-quasi-metric if, for every x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y) (with
the convention that ∞+ a = a+∞ =∞, for every a ∈ R).

In particular, a pseudo-metric is both a pseudo-semi-metric and a pseudo-quasi-
metric. Note that we allow that the distance between two points is infinite.
Usually, the prefix ‘pseudo’ is dropped if, for every x, y ∈ X, d(x, y) = 0 if and
only if x = y. However, for the sake of simplicity, we call a pseudo-semi-metric
a semi-metric, a pseudo-quasi-metric a quasi-metric, and a pseudo-metric a
metric. The pair (X, d) is a semi-metric space if d is a semi-metric, a quasi-
metric space if d is a quasi-metric, and a metric space if d is a metric (in this
broader meaning).

Let us now give some examples of quasi-metric spaces in order to motivate
our interest in those structures. The first example (Example 1.1.10) is due
to Hausdorff himself, while Examples 1.1.12 and 1.1.13 are the asymmetric
counterparts of Examples 1.1.2 and 1.1.3, respectively.

Example 1.1.10 ([94]). Let (X, d) be a metric space. On the power set P(X)
of X we define a map dqH : P(X) × P(X) → R≥0 ∪ {∞} as follows: for every
Y, Z ⊆ X,

dqH(Y, Z) = inf{R ≥ 0 | Z ⊆ Bd(Y,R)},

where inf ∅ = ∞. The map dqH is actually a quasi-metric, called Hausdorff
quasi-metric.

Example 1.1.11. Let (X,≥) be a preordered set. Then the preorder ≥ induces
a quasi-metric d≥ on X, called preorder quasi-metric, defined as follows: for
every x, y ∈ X,

d≥(x, y) =

{
0 if x ≥ y,

∞ otherwise.

Example 1.1.12. Let Γ = (V,E) be a directed graph. Then the set of vertices
V can be endowed with the path quasi-metric dΓ defined as follows: for every
x, y ∈ X,

dΓ(x, y) = min{n ∈ N | ∃x0 = x, x1, . . . , xn = y ∈ V :

∀i = 1, . . . , n, (xi−1, xi) ∈ E}.

Again min ∅ =∞, and thus dΓ(x, y) =∞ if and only if there is no directed path
from x to y. It is easy to check that dΓ is actually a quasi-metric.

Before introducing the next example, let us recall some algebraic definitions.
A magma is a pair (M, ·), where M is a set and · : M ×M → M is a map.
A magma (M, ·) is called unitary if there exists a neutral element e ∈ M such
that g · e = e · g = g, for every g ∈ M . A unitary magma is a monoid if · is
associative.
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Example 1.1.13. Let M be a monoid. We say that M is finitely generated if
there exists a finite subset Σ of M such that, for every g ∈M there exist n ∈ N
and σ1, . . . , σn ∈ Σ which satisfy g = σ1 · · ·σn.

Let M be a monoid which is finitely generated by Σ. Let us define the left
word quasi-metric dλΣ as follows: for every pair of elements x, y ∈M ,

dλΣ(x, y) = min{n | ∃σ1, . . . , σn ∈ Σ : y = xσ1 · · ·σn}.

The map dλΣ : M ×M → N ∪ {∞} is actually a quasi-metric. Similarly, one
can define a quasi-metric dρΣ on M , called right word quasi-metric: for every
x, y ∈M ,

dρΣ(x, y) = min{n | ∃σ1, . . . , σn ∈ Σ : y = σ1 · · ·σnx}.

Moreover, note that dλΣ is left-non-expanding, i.e., for every x, y, z ∈ M ,
dλΣ(zx, zy) ≤ dλΣ(x, y), and, similarly, dρΣ is right-non-expanding, i.e., for ev-
ery x, y, z ∈M , dρΣ(xz, yz) ≤ d

ρ
Σ(x, y). The left word quasi-metric and the right

word quasi-metric are no longer isometric, as in the case of finitely generated
groups, and they can be very different.

It is possible to extend the notion of Cayley graph, which is a useful tool
to represent a finitely generated group, in the framework of finitely generated
monoids. Let M be a monoid and Σ ⊆ M a finite subset which generates
M . Then the left Cayley graph of M associated to Σ is the directed graph
Cayλ(M,Σ) = (M,E), where (x, y) ∈ E if and only if there exists σ ∈ Σ such
that y = xσ or, equivalently, dλΣ(x, y) = 1. Similarly Cayρ(M,Σ), the right
Cayley graph, can be constructed. Also in this case, the maps idM : (M,dλΣ)→
(M,dCayλ(M,Σ)) and idM : (M,dρΣ)→ (M,dCayρ(M,Σ)) are isometries.

We refer to [171] for a general introduction to the subject of quasi-metric
spaces. Quasi-metrics are innerly non symmetric, so, if we consider the family
Ud as in (1.1), then (U3) may not be satisfied. In order to fill the gap, quasi-
uniform spaces were introduced: a quasi-uniform space is a pair (X,U), where
U is a quasi-uniformity over the set X, i.e., a family of entourages that satisfies
(U1), (U2) and (U4). There is a wide literature investigating those structures
and also important applications to computer science were discovered (see the
monograph [78] and the survey [112] for a wide-range introduction and a broad
bibliography). Similarly, a semi-uniform space is a pair (X,U), where U is a
semi-uniformity over the set X, i.e., a family of entourages that satisfies (U1)–
(U3) (see, for example, [27]).

1.1.3 Weak neighbourhood systems and topologies

Topologies are another, different generalisation of (quasi-)uniformities. In
order to recall how a topology is induced by a uniformity, let us introduce a
more general structure.

Definition 1.1.14 ([119]). Let X be a set. A weak neighbourhood system
ϑ = {ϑ(x) | x ∈ X} is a family of non-empty filters of subsets of X such that,
for every x ∈ X, x ∈

⋂
ϑ(x). If x ∈ X, then an element V of ϑ(x) is called a

neighbourhood of x.
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Let ϑ be a weak neighbourhood system on a set X. An open neighbourhood
is a subset V of X such that, for every x ∈ V , V ∈ ϑ(x). A weak neighbour-
hood system ϑ on a set X is a neighbourhood system if it satisfies the following
property: for every x ∈ X and U ∈ ϑ(x), there exists x ∈ V ⊆ U which is an
open neighbourhood.

If ϑ is a neighbourhood system of the set X, then the family τϑ of all open
neighbourhoods of ϑ is a topology on X. Conversely, if τ is a topology on X,
the family ϑτ = {ϑτ (x) | x ∈ X}, where, for every x ∈ X, ϑτ (x) is the family of
the usual neighbourhoods of x, is a neighbourhood system. Moreover, τ = τϑτ

and ϑ = ϑτϑ , for every topology τ and neighbourhood system ϑ of X.

Every quasi-uniform space (X,U) carries a topology τU of X. In order to
describe it, we need to introduce some more notation. For every entourage U ,
every x ∈ X and A ⊆ X, we denote

U [x] = {y ∈ X | (x, y) ∈ U}, and U [A] =
⋃

x∈A

U [x].

In the sequel, the subsets U [x] and U [A] just defined will be called the ball
centred in x with radius U and the ball centred in A with radius U , respectively.

Let now (X,U) be a semi-uniform or a quasi-uniform space. Then the family
ϑU = {ϑU (x) | x ∈ X}, where, for every x ∈ X, ϑU (x) = {U [x] | U ∈ U}, is a
weak neighbourhood system. Moreover, if U is a quasi-uniformity, then ϑU is a
neighbourhood system, and thus we can associate a topology τU = τϑU

, called
quasi-uniform topology.

It is not true in general that, for every topology τ on a set X, there exists
a uniformity U on X such that τ = τU . A topology with this property is called
uniformisable. It is a classical result that a T0 topology is uniformisable if it
satisfies the axiom T3,5. On the contrary, for every topology τ , there exists a
quasi-uniformity U such that τ = τU (see [75, 112]).

A uniform space (X,U) is Hausdorff (or separated) if
⋂
U = ∆X . Moreover,

a uniform space (X,U) is Hausdorff if and only if τU is T0 if and only if τU is
T3,5.

1.1.4 The large-scale generalisations of metric spaces

We have already mentioned that Roe introduced coarse spaces as the large-
scale counterpart of uniform spaces. Moreover, bounded structures (also known
as pre-bornologies, which are a generalisation of the classical notion of bornolog-
ical spaces,also known as bornological sets, see Remark 2.1.3 for their usual def-
initions) were introduced to relax the definition of coarse spaces. However, both
coarse spaces and bounded structures are innerly symmetric objects and they
are not suitable to parametrise, for example, quasi-metric spaces. The initial
segment of the first part is devoted to the study of the large-scale counterparts
of topological spaces, quasi-uniform spaces and semi-uniform spaces.

In order to define a suitable counterpart of the notion of topological spaces,
we ‘dualise’ the notion of weak neighbourhood systems, and introduce para-
bornological spaces (Definition 2.1.1). Para-bornological spaces are very weak
notions. Hence, sometimes it is convenient to consider some reinforcements of
their definition, namely semi-bornological spaces and quasi-bornological spaces.
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A space which is both a semi-bornological space and a quasi-bornological space
is a pre-bornological space. In order to study para-bornological spaces, we look
for similarities with topology. For example, the place of the classical separa-
tion axioms is taken by connectedness axioms (Definition 2.2.5), which describe
how connected the spaces are, how the points of the spaces can be reached.
Pushing forward this approach, we study local simple ends (Definition 2.3.1),
the large-scale counterpart of converging nets, and use them to characterise the
morphisms of those spaces (Theorem 2.3.5). This characterisation resembles the
one of continuous maps via converging nets. Local simple ends are also used
to show that the notion of local finiteness is similar to the one of sequential
compactedness since, while the latter definition involves converging sequences,
we characterise the first one using local simple ends (Theorem 2.4.2).

We introduce large-scale counterparts of quasi-uniform spaces and semi-
uniform spaces, respectively, in order to generalise coarse spaces. In partic-
ular, we define quasi-coarse spaces and semi-coarse spaces (Definition 3.1.1).
Moreover, in order to provide a more comprehensive introduction to these new
objects, we consider also entourage spaces, which are structures that gener-
alise both quasi-coarse spaces and semi-coarse spaces. First of all, scratching
the surface of this topic, we focus on adapting basic notions of coarse geom-
etry (e.g., morphisms, as bornologous maps, connectedness, boundedness) to
this more general setting. Moreover, we present a different characterisation of
those structures by using ball structures ([144]). We motivate our interest in
quasi-coarse spaces and semi-coarse spaces by providing a wide list of examples
in which those structures naturally appear (see also Examples 1.1.10–1.1.13).
Most of them are extensions of some classical examples of coarse spaces. In par-
ticular, we prove that also every finitely generated monoid can be endowed with
precisely just two word quasi-metrics up to asymorphism (Proposition 3.3.6),
which coincide if the monoid is abelian. This result is a generalisation of the
classical situation involving finitely generated groups endowed with word met-
rics (Proposition 1.1.4).

Furthermore, we provide a generalisation of the notion of coarse equivalence
between spaces in the realm of asymmetric objects, namely, the Sym-coarse
equivalence. Using this equivalence, we were able to provide important char-
acterisations of some classes of quasi-coarse spaces: metric entourage spaces
induced by extended-quasi-metrics and graphic quasi-coarse spaces, giving an
answer to a problem posed by Protasov and Banakh ([144, Problem 9.4]).

Let us also mention that in [168] the notion of asymptotic dimension is
extended to quasi-coarse spaces, with a particular focus on its applications to
preordered sets.

1.1.5 A categorical approach

In order to study coarse spaces, (pre-)bornological spaces and their general-
isations, it is useful to consider their categories. Let us start with considering
the category of coarse spaces. At the level of morphisms of the category of
coarse spaces, several possible choices have been used (see for example [157],
[116], [24] and [88]), but often the choice is so restrictive, that even products
are not available (as the natural projections are not morphisms). For the same
reason, pullbacks are not available either, while only very special maps (e.g.,
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those with uniformly bounded fibers, see [151, 9]) admit quotients. This rules
also out some standard constructions, as adjunction spaces. Recently coarse
quotient mappings between metric spaces were studied by Sheng Zhang ([178]).

In [65], a more relaxed condition on the morphisms compared to [157] and
[151] has been adopted (asking the maps to be only bornologous and not nec-
essarily proper). This choice turns out to be quite fruitful, since the category
Coarse (with objects the coarse spaces and morphisms the bornologous maps)
proves to be topological (i.e., admits initial and final structures), so arbitrary
products, coproducts, as well as pullbacks and pushouts exist. Once the cat-
egory of coarse spaces was fixed, the categories Entou (of entourage spaces),
SCoarse (of semi-coarse spaces), and QCoarse (of quasi-coarse spaces) were
easily introduced in [176]. Also these categories turned out to be topological
(Theorem 4.2.1), and so a complete characterisation of their epimorphisms and
monomorphisms could be provided.

The categories PrBorn and Born of pre-bornological spaces and bornolog-
ical spaces were already defined and studied. For example, see [103] and [11],
respectively. We extend here this approach by defining the categories PaBorn,
SBorn and QBorn, of para-bornological spaces, semi-bornological spaces and
quasi-bornological spaces, respectively. Also all these categories are topological,
as shown in Theorem 4.2.1.

We then look for connections between Entou and its three subcategories,
and, separately, PaBorn and its three subcategories. The existence of several
functors between the four categories of entourage spaces turned out to be very
useful. First of all, they have been used to prove that QCoarse is a reflec-
tive subcategory in Entou (but it is not co-reflective), SCoarse is a reflective
and co-reflective subcategory in Entou, Coarse is a reflective subcategory in
SCoarse (but it is not co-reflective), and Coarse is a reflective and co-reflective
subcategory in QCoarse (see Theorem 4.2.4 and §4.3.3). A similar situation
can be provided for the subcategories of PaBorn. Using different functors,
we can show that QBorn is a reflective subcategory in PaBorn (but it is not
co-reflective), SBorn is a reflective and co-reflective subcategory in PaBorn,
PrBorn is a reflective subcategory in SBorn (but it is not co-reflective), and
PrBorn is a reflective and co-reflective subcategory in QBorn (see Theorem
4.1.5 and §4.3.2). These results just described help in defining some limits (e.g.,
products, pullbacks and equalisers) and colimits (e.g., coproducts and quotients)
in the various categories, which always exist since all of them are topological.

A particular emphasis is given to one of the basic construction, namely
quotients. The difficulties with quotients of uniform spaces are well known, we
shall cite Plaut ([137]): ‘The notion that quotients of uniform spaces always have
a uniform structure compatible with the quotient topology has been described
not only as being false, but “horribly false” [104] and leading to “unavoidable
difficulties” [107].’ In §4.3.3 we study the counterpart of this problem in the
realm of coarse spaces. More precisely, for a coarse space (X, E) and a surjective
map q : X → Y , similarly to the case of uniformities, the ‘image’ q(E) of the
coarse structure E under the map q needs not be a coarse structure on Y . In case
q satisfies the quite restrictive condition of uniform boundedness of the fibers
([151, 9]), q(E) turns out to be a coarse structure (necessarily, the quotient coarse
structure of Y ). As mentioned above, the properness of q, usually imposed so far,
was giving as a consequence the uniform boundedness of the fibers of q ‘for free’,
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so the issue of when q(E) is a coarse structure never appeared before explicitly,
as the maps were necessarily ‘too good’. We characterise the maps q such that
q(E) is a coarse structure are characterised. We notice that a similar approach
can be used to describe the quotients of QCoarse (Coarse is coreflective in
QCoarse), while the situation for the categories SCoarse and Entou is way
less complex. Furthermore, we find a similar situation in the categories of para-
bornological spaces. We describe in §4.3 these constructions with all the needed
details.

The notion of closeness between morphisms of Coarse is a congruence, and
thus its quotient category Coarse/∼ can be defined and studied. For example,
in §5.3.2, its epimorphisms and monomorphisms are characterised, and it is
proved that it is a balanced category, i.e., if a map is both a monomorphisms
and an epimorphism, then it is an isomorphism (i.e., a coarse equivalence).
Furthermore, the functors between the categories of entourage spaces are a
fundamental tool to transport the notion of closeness from coarse spaces, to the
other, weaker structures, inducing congruences, and thus quotient categories.
Among them, the notion of Sym-closeness and Sym-coarse equivalence, already
presented at the end of §1.1.4, in the realm of quasi-coarse spaces is particularly
relevant.

The characterisation of the epimorphisms of a category opens the problem of
discussing its cowellpoweredness. In a category X , two epimorphisms e1 : X →
Y1 and e2 : X → Y2 are equivalent if there exists an isomorphism h : Y1 → Y2
such that e2 = h ◦ e1. The category X is cowellpowered if, for every object
X of X , the class of all epimorphisms with domain X (which can be even a
proper class) may be labelled up to equivalence by a set. A classic example of
a cowellpowered category is the category Haus of Hausdorff spaces, where the
epimorphisms are the continuous maps with dense image. The epimorphisms of
Top0, the category of T0 topological spaces, were discussed in [16] and [123].

In 1971, Herrlich asked if there exists a non-cowellpowered subcategory of
Top. Herrlich himself found the first example of such a subcategory ([97])
and, later, an easier example was provided by Schröder ([160]): the Urysohn
spaces Ury is not cowellpowered. In Schröder’s example, the θ-closure plays a
fundamental role, a fact that motivated Dikranjan’s and Giuli’s study of closure
operators as means to describe epimorphisms in subcateogires of Top and decide
about their cowellpoweredness ([46]).

Closure operators, whose origin seems to date back to foundational work
in analysis by Moore and Riesz, have been used in different branches of math-
ematics. For examples they appear in algebra, in topology, where the leading
example is the (Kuratowski) closure of a subspace of a topological space, in logic
and in lattice theory. In the monograph [60] a detailed bibliography is provided.
In [48] the authors described how to introduce closure operators in a categorical
setting. The interest to this topic is still alive: recently, Dikranjan and Tholen
introduced the notion of dual closure operator ([61]).

In [35], a rather general description of the epimorphisms of subcategories
of topological categories was given. Closure operators, and in particular those
which are regular ([159], [105]), were fundamental tools to test cowellpowered-
ness of some subcategories of Top. For example, they were used in [160], [49],
and [63] to prove cowellpoweredness of subcategories defined by separation ax-
ioms which are stronger than the Hausdorff property, while in [84] and in [165]
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cowellpoweredness was proved for subcategories containing Haus. In [84] the
authors extended the subcategory defined in [86]. Another example of a non-
cowellpowered subcategory of Top which contains Haus can be found in [47].
Moreover, we refer to the following papers: [51], where closure operators and
epimorphisms of quasi-uniform spaces were studied; [106], where epimorphisms
and cowellpoweredness of universal algebras were considered; and [31], which fo-
cusses on separated metrically generated theories. For more examples, see [60,
Chapter 8] and, in particular, [60, Section 8.9] for more algebraic applications.

If a category is topological, then its epimorphisms are surjective morphisms,
and thus it is trivially cowellpowered. This observation rules out all the eight
categories, Entou, SCoarse, QCoarse, Coarse, PaBorn, SBorn, QBorn,
and PrBorn, that we consider, which are trivially cowellpowered. Inspired by
Herrlich’s question, we address the problem of the existence of a non-cowellpowered
subcategories of Coarse. The negative answer was provided by mean of a com-
plete characterisation of the closure operators of Coarse. In the same paper,
the cowellpoweredness of Coarse/∼ (as well as its wellpoweredness, the dual
notion of cowellpoweredness) was proved. We report these results in Chapter 5,
where, for convenience, the category Ballean of balleans, which is isomorphic
to Coarse, is widely used.

We have already mentioned that it is not true in general that every topology
τ on a set X is induced by a uniformity on X, while, there always exists a quasi-
uniformity on X inducing τ . We discuss in §4.4 the large-scale counterpart of
this problem. In particular, we prove that every para-bornology is induced by an
entourage structure, every quasi-bornology is induced by a quasi-coarse struc-
ture (Theorem 4.4.1), and every pre-bornology is induced by a coarse structure
(Theorem 4.4.5).

1.2 Coarse geometry of algebraic objects

Proposition 1.1.4 states that finitely generated groups can be seen as metric
spaces in an essentially unique way. This approach in their study has been
extremely fruitful in geometric group theory. However, a problem immediately
emerged. In fact, it is not true in general that a subgroup of a finitely generated
group is finitely generated. In order to overcome this problem, in [70], a solution
is described. Recall that a metric d on a set X is proper if every closed ball is
compact. In the cited paper, it is noticed that every countable group endowed
with the discrete topology can be endowed with a left-invariant proper (i.e.,
the balls are finite) metric. Let us explicitly construct this metric, following
[70]. Let G be a countable group and Σ be a symmetric set of generators (not
necessarily finite). A weight function is a map w : Σ → R≥0 which satisfies the
following properties:

• w is proper, i.e., |w−1([0, R])| <∞, for every R ≥ 0 (equivalently, limw =∞);
• for every σ ∈ Σ, w(σ) = w(σ−1).

Then w induces a left-invariant proper metric dw on G defined as follows: for
every x, y ∈ G,

dw(x, y) = min

{ n∑

i=1

w(σi) | n ∈ N, σ1, . . . , σn ∈ Σ : y = xσ1 · · ·σn

}
. (1.2)
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Proposition 1.2.1 ([70]). Let d and d′ be two proper left-invariant metrics on
a group G inducing the same topology. Then the identity map idG : (G, d) →
(G, d′) is a coarse equivalence.

In particular, Proposition 1.2.1 can be applied to countable discrete groups,
showing that every countable group can be endowed with just one left-invariant
proper metric, up to coarse equivalence. Note that this class of groups is trivially
closed under taking subgroups.

Among the studies of countable groups, let us just cite the paper [13], where
the authors provide a complete classification of countable abelian groups up to
coarse equivalence. Recall that, for an abelian group G, its free-rank, denoted
by r0(G), is the cardinality of the maximal independent subset of G (a subset
X of G is independent if, for every n ∈ N, x1, . . . , xn ∈ X, and m1, . . . ,mn ∈ Z,
if
∑n
i=1mixi = 0, then mi = 0, for all i = 1, . . . , n, where we denote by 0 the

neutral element of an abelian group). Equivalently, r0(G) = dimQG/Tor(G)⊗
Q, where Tor(G) is the torsion subgroup of G, i.e., the subgroup of G consisting
of all its finite-order elements.

Theorem 1.2.2. ([13, Theorem 1]) For two discrete countable abelian groups G
and H endowed with proper left-invariant metrics, the following three statements
are equivalent:

(a) G and H are coarsely equivalent;
(b) asdimG = asdimH and G and H are both finitely generated or both in-

finitely generated;
(c) r0(G) = r0(H) and G and H are either both finitely generated or both

infinitely generated.

A further step into generalisation was provided by Cornulier and de la Harpe
(see their monograph [32] for a comprehensive discussion). They noticed that
in the realm of σ-compact locally compact groups the metric approach can
be generalised. In fact, every σ-compact locally compact group has a left-
invariant proper pseudometric that is locally bounded (i.e., every point has a
neighbourhood of finite diameter), and every pair of such pseudometrics are
coarsely equivalent.

In order to go beyond those cases, the metric approach is not enough and it is
necessary to introduce some special coarse structures on groups and topological
groups. As uniform structures are a useful tool to parametrise topological groups
(recall that a topological group is a group G endowed with a topology τ that
makes both the inverse map i : g 7→ g−1 and the multiplication · : (g, h) 7→ gh
continuous), one can use some special classes of coarse structures to study the
large-scale properties of groups. We require that those coarse structures agree
with the algebraic structures of the supporting group and this idea leads to
the definition of left (right) group coarse structures (and thus to left and right
coarse groups). If a coarse structure on a group is both a left and right group
coarse structure, we say that it is a uniformly invariant group coarse structure
and the coarse group is called a bilateral coarse group. If there is no risk of
ambiguity, for the sake of simplicity, we will refer to left group coarse structures
as group coarse structures. The study of coarse groups was started by Protasov
and Protasova in [145], where this notion was introduced by using balleans. In
the same paper they highlighted the fact that coarse groups are uniquely deter-
mined by particular ideals of subsets of the group, called group ideals (Definition
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7.1.1). The idea is similar to the fact that every group topology is uniquely de-
termined by the filter of neighbourhoods of the identity. More recently, Nicas
and Rosenthal ([125]) developed the same approach via entourages.

1.2.1 Large-scale geometry of generalisations of groups

We have already seen that some classical constructions in the realm of groups
(see Example 1.1.3 and the definition of Cayley graph of a finitely generated
group) can be extended to some weaker structures (Example 1.1.13 and the
left and right Cayley graphs of finitely generated monoids). In this thesis we
push forward this idea, aiming for a more comprehensive approach to large-scale
geometry of algebraic objects.

We have already defined unitary magmas and monoids. Let us present an-
other generalisation of groups. A unitary magma (M, ·) is a loop if, for every
a, b ∈M there exist a unique x ∈M and a unique y ∈M such that

a · x = b and y · a = b. (1.3)

Since e · e = e, (1.3) implies that e is the only neutral element. By (1.3), for
every g ∈ M , there exist two elements gρ, gλ ∈ M such that g · gρ = e and
gλ · g = e. Note that (gρ)λ = (gλ)ρ = g, for every g ∈M (in fact, (gρ)λ · gρ = e,
gλ(gλ)ρ = e, g · gρ = e, and gλ · g = e and the conclusions follow by uniqueness
of the solution of (1.3)). A loop (M, ·) has right inverse property if, for every
g, h ∈M , (g · h) · hρ = g. Similarly, a loop (M, ·) has left inverse property if, for
every g, h ∈M , gλ · (g · h) = h. A loop has inverse property if it has both right
and left inverse property. A loop M is said to have two-side inverses if gλ = gρ,
for every g ∈M , and, in this case, we denote the inverse of g by g−1.

Let f : M → N be a map between two unitary magmas. Then f is called
a homomorphism if, for every g, h ∈ M , f(gh) = f(g)f(h) and f(eM ) = eN .
Moreover, f is an isomorphism if it is bijective and both f and f−1 are homo-
morphisms. If that is the case, we say that M and N are isomorphic and we
write M ≃ N .

Similarly to how groups represent a good environment for defining coarse
structures, monoids, loops and unitary magmas, are suitable objects for defining
some ‘compatible’ quasi-coarse structures, semi-coarse structures and entourage
structures respectively. The beginning of Section 7.1 is devoted to the definition
of these structures. Moreover, the particular algebraic structure of the underlin-
ing space implies that many large-scale properties can be described by looking
at some specific families of subsets of the algebraic object.

1.2.2 Coarse groups and categories of coarse groups

We aim to define categories of coarse groups. The first choice is l-CGrp,
whose objects are (left) coarse groups and whose morphisms are bornologous
homomorphisms. Taking the quotient category l-CGrp/∼ of l-CGrp under
the closeness relation would be the next step. However, we face some undesired
consequences even dealing with basic examples. Before describing the critical
point, let us recall what happens in small-scale. Let us define the following
categories:
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• Grp is the category of groups and homomorphisms between them;
• Top is the category of topological spaces and continuous maps between them;
• TopGrp is the category of topological groups and continuous homomor-
phisms between them.

Denote by U: TopGrp → Top the forgetful functor that forgets about the
group structure. Note that, if f is a morphism of TopGrp, f is an isomorphism
(i.e., it is a topological isomorphism) provided that U f is an isomorphism (i.e., a
homeomorphism). Similarly to the small-scale situation, there exists a forgetful
functor U: l-CGrp/∼ → Coarse/∼. However, there exist morphisms [f ]∼ of
l-CGrp/∼ that are not isomorphisms, but such that U[f ]∼ is an isomorphism
of Coarse/∼. For example, the inclusion homomorphism i : Z → R, where
both groups are endowed with the usual euclidean metric, is one of the first
examples of coarse equivalences (it is, in particular, a quasi-isometry). However,
there is no coarse inverse of i which is a homomorphism. Hence [i]∼ is not an
isomorphism of l-CGrp/∼. In order to overcome this problem we need the
notion of quasi-homomorphism.

A quasi-homomorphism (also called quasi-morphism) is a map f : G → R
from a group into the real line which is somehow ‘close’ to be a homomorphism,
i.e., there exists a constant K ≥ 0 such that |f(x)+f(y)−f(xy)| < K, for every
x, y ∈ G. The notion of quasi-homomorphism dates back to some questions
posed by Ulam ([166]) in the realm of linear functional equations. We refer to
[166], [109] and [110] for an introduction to this classical subject.

Rosendal ([158]) noticed that the classical notion of quasi-homomorphism
can be described and extended to other settings using the large-scale notion of
closeness (see Definition 7.3.1 for a rigorous definition). Also in Fujiwara and
Kapovich’s paper [81], where the authors followed some older sources, there is
a generalisation of the classical notion of quasi-homomorphism.

Following [66], we study quasi-homomorphisms in Rosendal’s definition in
order to refute Kotschick’s point of view: ‘the notion of a quasi-morphism does
not have much to do with category theory’ ([109]). We prove that, in the class
of bilateral coarse groups (that properly contains all abelian coarse groups),
maps close to quasi-homomorphisms are quasi-homomorphisms (Proposition
7.3.4), and composites of bornologous quasi-homomorphisms are bornologous
quasi-homomorphisms (Proposition 7.3.6). Finally, in the same class of coarse
groups, we show that coarse inverses of quasi-homomorphisms that are coarse
equivalences are quasi-homomorphisms. In particular, every coarse inverse of
the inclusion map i : Z → R is a quasi-homomorphism (for example, the floor
map ⌊·⌋ and the ceiling map ⌈·⌉).

We then define the quotient category CGrpQ/∼ of bilateral coarse groups
and equivalence classes of bornologous quasi-homomorphisms between them.
In this category, the equivalence class of a homomorphism which is a coarse
equivalence is an isomorphism. We study the localisation CGrp/∼[W

−1] of the
quotient category CGrp/∼, of bilateral coarse groups and equivalence classes of
bornologous homomorphisms, by the family W of equivalence classes of homo-
morphisms which are coarse equivalences. The category CGrp/∼[W

−1], pro-
vided that it exists, is the ‘smallest’ category containing CGrp/∼ for which all
morphisms of W are isomorphisms. We then ask whether it exists and if it
coincides with CGrpQ/∼. As for the existence, we provide in Corollary 8.4.5 a
positive answer in the case of κ-group coarse structures (in particular, of the one
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associated to the ideal of finite subsets, called finitary-group coarse structure),
for which a nice characterisation of morphisms is provided.

1.2.3 Functorial coarse structures

Once that categories of coarse groups are fixed, we can address the notion
of functorial coarse structures. This should be compared with the notion of
functoriality, which appeared in the category of topological groups as follows.
A functorial topology is a functor F: Grp → TopGrp that assigns to every
abstract group G a group topology TG so that F: G 7→ (G, TG) is a functor
F: Grp→ TopGrp, i.e., every group homomorphism f : G→ H in Grp gives
rise to a continuous group homomorphism f : (G, TG) → (H,TH) in TopGrp

([41, 117]).

Following the topological notion, we introduce the concepts of functorial
coarse structures on Grp and on TopGrp. Informally, a functorial coarse
structure on Grp (on TopGrp) associates to every group (to every topological
group) a coarse structure making every homomorphism (every continuous ho-
momorphism, respectively) bornologous. Moreover, we show that a functorial
coarse structure onGrp can be seen as a functorial coarse structure on TopGrp

in a canonical way, endowing every group with its discrete topology.

Among the functorial coarse structures on Grp, particularly relevant is the
finitary-group coarse structure. Moreover, in §9.2 we generalise the construc-
tion and introduce coarse structures induced by cardinal invariants using ideals
generated by subgroups (linear coarse structures), that are often functorial on
Grp (see §9.2.1).

In §9.3 we scrutinise abelian groups under the looking glass of the functorial
coarse structure induced by the free-rank, establishing a kind of ‘rigidity’ of
the class of divisible groups with respect to homomorphisms that are coarse
equivalences. Let us recall the definition and the basic facts concerning divisible
groups.

An abelian group G is divisible if, for every y ∈ G and every n ∈ N \ {0},
there exists x ∈ G such that nx = y. Every abelian group G has a largest
divisible subgroup d(G). Examples of divisible groups are the additive group of
the rational numbers Q and, for every prime p, the Prüfer p-group Zp∞ , i.e., the
subgroup Zp∞ = 〈{1/pn | n ∈ N}〉 ≤ T, where T denotes the one-dimensional
torus. A group G is called reduced if d(G) = {0}. Finite groups are reduced
and so, in particular, they are not divisible provided that they are non-trivial.
Let us recall, that a divisible subgroup H of an abelian group G always splits,
i.e., there exists another subgroup K of G such that G ≃ H ⊕K. The class of
divisible groups is stable under taking quotients, products and direct sums.

For a group G and n ∈ N, let G[n] = {x ∈ G | xn = 0}. Note that if G is
abelian, then G[n] is a subgroup of G. For a prime p let rp(G) be the p-rank of
G (defined as dimZ/pZG[p]), and r(G) = r0(G) +

∑
p rp(G). Finally, we denote

by π(G) the set of primes {p | rp(G) > 0}. Finally, divisible abelian groups are
completely characterised by their ranks, as the following folklore fact shows.
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Fact 1.2.3 ([79]). If G is a divisible abelian group, then

G ≃ Qr0(G) ⊕

( ⊕

p∈π(G)

(Zp∞)rp(G)

)
.

As an example of the above mentioned ‘rigidity’ of divisible groups, in The-
orem 9.3.3 we prove that if a fully decomposable torsion-free abelian group G is
coarsely equivalent (i.e., ‘as close as possible’ from the large-scale point of view)
to a divisible group, then G is also ‘as close as possible’ to a divisible group from
algebraic point of view (i.e., r0(G/d(G)) < ω), in case G is either uncountable
or homogeneous. These results go close, more or less, to the spirit of Theorem
1.2.2.

A very important functorial coarse structure on TopGrp is the one associ-
ated to the family of all relatively compact subsets, called compact-group coarse
structure. We say that a subset Y of a topological space X is relatively compact
if its closure Y in X is compact. This particular group coarse structure, to
whose investigation Chapter 10 is devoted, has been studied, for example, in
[125] and in [32]. Of a particular interest is studying this coarse structure in the
realm of locally compact abelian groups, considering its behaviour in connection
with the Pontryagin duality.

1.2.4 Pontryagin and Bohr functors

First of all, let us recall the definition of the Pontryagin functor. Let G be a
topological abelian group. Denote by Ĝ the family of all continuous characters
χ : G → T. With the pointwise operation, Ĝ is actually an abelian group. We
can endow Ĝ with the compact-open topology τ̂ , defined by the base

{WĜ(K,U) | K ⊆ G compact, U ∈ ϑ(0T)}, where,

for every compact subset K ⊆ G and every U ⊆ ϑ(0T),

WĜ(K,U) = {χ ∈ Ĝ | χ(K) ⊆ U}.

With this topology, Ĝ is a topological abelian group, called dual group of G.
For every continuous homomorphism f : G → H between topological abelian
groups, there exists a continuous homomorphism f̂ : Ĥ → Ĝ defined by the law
f̂(χ) = χ ◦ f , for every χ ∈ Ĥ. The Pontryagin-van Kampen duality theorem
states that the functor ·̂ : LCA → LCA, called Pontryagin functor, induces
a duality, where LCA is the category of locally compact abelian groups and
continuous homomorphisms between them (see [138] for details).

By using the Pontryagin duality, the following fact can be deduced (see [53]).

Theorem 1.2.4. Let G be a locally compact abelian group. Then G is of the
form G = Rn × G0, where G0 has an open compact subgroup K. If G is con-
nected, then G0 = K is connected as well.

The inspiration of considering the compact-group coarse structure in rela-
tion with the Pontryagin duality comes from a beautiful result due to Nicas and
Rosenthal ([126]), where that functor represents as a bridge between small-scale
and large-scale dimensions of locally compact abelian groups. More precisely,
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their result states that the covering dimension of a locally compact abelian
group (see [4, 37, 161] for a surveys on dimension theory of topological groups)
coincides with the asymptotic dimension of its dual. Let us recall that Pasynkov
([130]) proved that in the realm of locally compact groups the covering dimen-
sion coincides with both the small inductive dimension and the large inductive
dimension.

After briefly investigating the asymptotic dimension of generic topological
groups (in particular, in Theorem 10.1.8 we provide a characterisation of locally
compact groups with asymptotic dimension 0), in §10.2 we continue the study of
the asymptotic dimension of locally compact abelian groups, providing also an
alternative computation making no recourse to the dual group Ĝ (see (10.3)).
This allows us to obtain, among others, also a new self-contained proof of Nicas
and Rosenthal’s result. As another consequence of Theorem 10.2.1, we improve
the additivity result for the asymptotic dimension of discrete abelian groups due
to Dranishnikov and Smith ([70]) by extending it to the realm of locally compact
abelian groups endowed with their compact-group coarse structure (Corollary
10.2.3).

According to results of Grave ([89]), there is no relation between asdim(X, EX)
and asdim(Y, EY ) of coarse spaces provided with a bornologous injective map
f : (X, EX) → (Y, EY ). In contrast with this situation in the general case of
coarse spaces, we show in §10.2.2 that whenX and Y are locally compact abelian
groups equipped with their compact-group coarse structure and f is continuous
homomorphism with dense image (i.e., an epimorphism in the category LCA),
then

asdimX ≥ asdimY. (1.4)

In particular, if X and Y have the same support X and f = idX (i.e., the topol-
ogy of X is finer than the one of Y ), then (1.4) holds. We give numerous exam-
ples witnessing the failure of this property in the class of precompact abelian
groups. We provide also the “dual result’, stating that, for every monomor-
phism f : G→ H of locally compact abelian groups, dimG ≤ dimH (Theorem
10.2.10).

The Pontryagin duality functor provides a bridge also between other pairs
of small-scale and large-scale properties. For example, we prove that a locally
compact abelian group is metrisable if and only if the compact-group coarse
structure of its dual is metrisable (Theorem 10.2.16), and a locally compact
abelian group is compact if and only if the compact-group coarse structure
of its dual is locally finite (Proposition 10.2.17). Moreover, in Appendix B
the same functor is used in order to connect the coarse entropy of surjective
endomorphisms of discrete abelian groups with the topological entropy of the
dual morphisms.

The Bohr functor is another endofunctor of the category TopAbGrp of
topological abelian groups and continuous homomorphisms between them in
which we are interested. A subset B of an abelian group G is big if there exists
a finite subset F of G such that G = FB. A topological abelian group is totally
bounded if every open non-empty subset of G is big.

Every topological group (G, τ) admits a finest totally bounded group topol-
ogy τ+, called the Bohr topology of (G, τ), such that τ+ ⊆ τ . Clearly, (G, τ),
idG : (G, τ) → (G, τ+) is continuous. The Bohr functor ·+ : TopAbGrp →
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TopAbGrp associates to every topological group the same group endowed with
its Bohr topology. It is well-defined since, for every continuous homomorphism
f : (G, τ) → (H, δ) between topological groups, the map f+ = f : (G, τ+) →
(H, δ+) is continuous homomorphism. For the sake of simplicity, in the sequel
we denote by G+ the topological group (G, τ+), where τ is a group topology on
G, if there is no risk of ambiguity.

In §10.3 we study the impact of the Bohr functor on the compact-group
coarse structure with particular emphasis on the preservation of the asymptotic
dimension. To this end we introduce the class B of topological abelian groups G
such that G and G+ have the same compact-group coarse structure. The class
B is obviously contained in the larger class H of topological abelian groups G
such that asdimG = asdimG+. The choice to introduce this class was inspired
by a theorem of Hernández ([95]) regarding the equality dimG = dimG+ for
locally compact abelian groups G. In order to obtain a better description of
the smaller class B, we connect it to the class G of Glicksberg groups (see
Definition 10.3.2, Proposition 10.3.11 and Theorem 10.3.12). Let us briefly
mention here that these groups are usually considered within the class MAP
of maximally almost periodic groups. Here we propose generalizations that go
beyond maximal almost periodicity (they appear here at two distinct levels, see
Definition 10.3.2).

1.3 Coarse hyperspaces and related structures

Let (X, d) be a metric space. In Example 1.1.10 we have seen how one can
induce a quasi-metric on the power set P(X) of X. Alternatively, we can say
that, for every Y, Z ⊆ X and R ≥ 0,

dqH(Y, Z) ≤ R if and only if Z ⊆ Bd(Y,R).

Furthermore, Hausdorff provided a metric on the power set P(X) of X as fol-
lows: for any two subsets Y, Z ⊆ X, the Hausdorff distance between them is the
value

dH(Y, Z) = inf{R ≥ 0 | Y ⊆ Bd(Z,R), Z ⊆ Bd(Y,R)}.

The pair (P(X), dH) is called metric hyperspace. We can characterise the Haus-
dorff metric in a more convenient way for our purpose of extending the notion of
hyperspace to both uniform and coarse spaces. Let Y and Z be two subsets of
X and R ≥ 0. Then, according to (1.1), the following properties are equivalent:

(a) dH(Y, Z) ≤ R;
(b) (Y, Z) ∈ UdHR ;
(c) Z ⊆ Bd(Y,R) and Y ⊆ Bd(Z,R);
(d) Z ⊆ UdR[Y ] and Y ⊆ UdR[Z];
(e) dqH(Y, Z) ≤ R and dqH(Z, Y ) ≤ R.

Suppose now that we have a uniform space (X,U). Inspired by the equiv-
alence (b)↔(d) in the above list, for an entourage U ∈ U , we can define a
new entourage expU satisfying the following property: for every Y, Z ⊆ X,
(Y, Z) ∈ expU if and only if Z ⊆ U [Y ] and Y ⊆ U [Z]. Then the fam-
ily expBU = {expU | U ∈ U} is a base of a uniformity expU . The pair
(P(X), expU) is called uniform hyperspace (also known as Hausdorff-Bourbaki
hyperspace).
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Since we have not used the fact that U is an entourage of an uniformity, the
definition of expU can be carried out in a wider setting, which will be useful
when we will discuss the coarse hyperspace (§11.1). Let X be a set and W be
an entourage of X. Then

expW = {(Y, Z) ∈ P(X)× P(X) | Y ⊆W [Z], Z ⊆W [Y ]}. (1.5)

Note that, (expW )−1 = expW .

It is easy to check that the definition of uniform hyperspace agrees with
the Hausdorff metric. More explicitly, if (X, d) is a metric space, we have
exp(Ud) = UdH (actually, for every R ∈ R≥0, expU

d
R = UdHR ).

Let us now present some properties of the uniform hyperspace. Denote by
ı : X → P(X) the map that associates to every point x ∈ X the singleton {x}.
The following fact, concerning the map just defined is straightforward.

Fact 1.3.1. If (X,U) is a uniform space, then ı : X → P(X) is a uniform
embedding.

Denote by S(X) the family of all singletons of a set X. Then, for every
uniform space X and every family S(X) ⊆ A(X) ⊆ P(X), Fact 1.3.1 implies
that the corestriction ı : X → A(X), where A(X) is endowed with the subspace
uniformity induced by the uniform hyperspace, is a uniform embedding.

The uniform hyperspace is not Hausdorff in general, even if the initial uni-
form space is Hausdorff. In the following proposition we discuss conditions
implying the preservation of that property. Denote by F(X) the family of all
closed subsets of a topological space X. If X is a uniform space, F(X) denotes
the subsets that are closed with respect to the uniform topology.

Proposition 1.3.2. Let (X,U) be a Hausdorff uniform space and A(X) ⊆
P(X) be a family closed under finite unions and such that S(X) ⊆ A(X). Then
the following properties are equivalent:

(a) (A(X), expU|A(X)) is Hausdorff;
(b) A(X) ⊆ F(X).

Proof. The implication (b)→(a) is a classical result (see, for example, [104]).
Conversely, suppose that A ∈ A(X) is not closed. Hence, there exists x /∈ A
such that, for every U ∈ U , U [x] ∩A 6= ∅. Then, for every U ∈ U ,

A ⊆ U [A ∪ {x}] and A ∪ {x} ⊆ U [A],

and so (A(X), expU|A(X)) is not Hausdorff.

In the statement of Proposition 1.3.2, the request that S(X) ⊆ A(X) is
to ensure that the corestriction ı : X → A(X) is defined and thus it is still a
uniform embedding.

Proposition 1.3.2 is the reason why many authors consider (F(X), expU|F(X))
as the hyperspace of a uniform space (X,U).

1.3.1 Coarse hyperspaces

Inspired by the uniform hyperspace and the paper [146], we introduce in
§11.1 the coarse hyperspace expX of a coarse space X, a coarse structure on
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the power set of X that generalises the large-scale geometry of the metric hy-
perspace.

As connectedness for coarse spaces is the large-scale counterpart of the Haus-
dorff property for uniform spaces, it is natural to study connectedness in the
coarse hyperspace. As one may have expected, the coarse hyperspace is highly
disconnected even in simple cases. For example, we compute the number of
connected components for some coarse hyperspaces. In particular, we consider
the hyperspace of an ideal coarse structure (Corollary 11.2.2) and of a group
endowed with the finitary-group coarse structure (Proposition 11.3.9). In the
latter case, if the group is infinite, the number of connected components coin-
cides with the cardinality of the power set of the group.

In order to work with more manageable objects, as we have done for the
uniform hyperspace, we can consider some subspaces of the whole coarse hyper-
space. For a coarse space X and a family of subsets A(X) ⊆ P(X), we denote
by A-expX the subspace of the coarse hyperspace induced on the subspace
A(X), and we call it the A-coarse hyperspace. We discuss how the properties
of coarse spaces can be described by means of the coarse hyperspaces or their
subspaces. In particular, we are interested in A-coarse hyperspaces induced by
notion of sizes.

Combinatorial size of subsets of a group or semigroup has long been studied
in combinatorial group theory and harmonic analysis. The fundamental paper
[20] of Bella and Malykhin introduced and studied largeness, smallness and
extra-largeness in groups as well as their relation in a systematic way. This
paper, as well as the consequent ones [21, 5, 54, 91, 118], proposed various
challenging problems, many of them arising in the framework of topological
groups. Furthermore, Protasov and Banakh showed that balleans provide a
nice and unifying way to describe size in a sufficiently general setting. The sizes
and various cardinal invariants of balleans related to size have been intensively
studied by the Ukrainian school ([114, 115, 135, 139, 141, 148, 149, 150]). The
survey [142] is very helpful to get a better idea on the topic. Moreover, we also
cite [64], where a comprehensive discussion about sizes in balleans and their
preservations along morphisms is provided.

Among the notion of sizes, the family ♭(X) of bounded subsets of a coarse
space X is particularly useful in this context. In fact, we prove in Proposition
11.1.10 that the family ♭(X) plays the role of the family F(X) for the uniform
hyperspace in Proposition 1.3.2. More explicitly, the ♭-coarse hyperspace is
connected provided that the starting coarse space X is connected and ♭(X)
is the largest family preserving that property. Let us also point out that the
♭-coarse hyperspace was already introduced in [146] in terms of balleans.

Finally, let us add some remarks on the asymptotic dimension of the coarse
hyperspace. Since a coarse space can be seen as a subspace of its coarse hy-
perspace, the asymptotic dimension of the coarse hyperspace is bounded from
below by the asymptotic dimension of the original space. Moreover, we show
that, if a coarse space X has asymptotic dimension 0, then also its coarse hyper-
space has asymptotic dimension 0 (Proposition 11.2.7). In [169], it is shown that
the situation is completely different if we assume that a metric space has a cer-
tain subspace with positive asymptotic dimension. In particular, if a connected
geodesic metric space (e.g., a non-directed connected graph endowed with its
path metric) has positive asymptotic dimension, then its ♭-coarse hyperspace is
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not coarsely embeddable into a Hilbert space, and this property implies having
infinite asymptotic dimension. However, in the same paper is proved that, if
we consider the subspace of the metric hyperspace (P(X), dH) induced on the
family [X]≤n = {A ⊆ X | |A| ≤ n}, then many infinite-dimensional properties
are preserved (as for having finite asymptotic dimension, we refer to [154, 111]).

1.3.2 Coarse structures on the subgroup lattice of a group

Previously, we have suggested to consider some subspaces of a coarse hy-
perspace based on sizes. For example, the restriction of it to the family of all
bounded subsets is particularly interesting. However, if we are dealing with a
coarse group, another canonical choice can be made. For a group G, define L(G)
as the subgroup lattice of G, i.e., the family of all subgroups of G. In Chapter
12 we investigate the restriction of the coarse hyperspace of a coarse group G
to the family L(G). In order to study this coarse space, it is useful to work in
the realm of balleans, that provide an equivalent description of the large scale
geometry.

Let B be a ballean. We denote by expB the ballean, called hyperballean,
associated to the coarse hyperspace of the coarse space induced by B. If BG

is the ballean associated to the finitary-group coarse structure on G, we can
consider the subballean L(G) = expBG|L(G), called the subgroup exponential
hyperballean. The second ballean structure on L(G), denoted by ℓ-L(G), is
called the subgroup logarithmic hyperballean. The latter can be characterised as
follows: it is the ballean structure on L(G) induced by the metric

d(H,K) = log(max{|H : H ∩ K|, |K : H ∩K|}),

where H and K are two subgroups of G. Actually, we provide a ballean struc-
ture, ℓ- expBG, on the entire power set of G such that ℓ-L(G) is the restriction of
ℓ- expBG to L(G). The balleans L(G) and ℓ-L(G) have also the same connected
components determined by the property that two subgroups are in the same
connected component if and only if they are commensurable. In particular, the
existence of isolated points (i.e., points in L(G) whose connected components
is just a singleton) is closely related to divisibility. In fact, we show that a
subgroup H of G is isolated if and only if it is divisible and has a torsion-free
direct summand.

Moreover, while all examples of subgroup exponential hyperballeans we con-
sidered have asymptotic dimension 0, the computation of asymptotic dimension
of subgroup logarithmic hyperballeans is much more interesting. In particular,
we compute it for some well known groups, such as Z (asdim ℓ-L(Z) = ∞) or
the Prüfer p-group Zp∞ (asdimZp∞ = 1), where p is a prime, we find nec-
essary conditions on an abelian groups G that imply asdim ℓ-L(G) < ∞ (G
has to be torsion and layerly finite), and we characterise those groups G with
asdim ℓ-L(G) = 0 (G has to be torsion, reduced and with all p-ranks finite).

The last part of Part III is focused on answering the following natural ques-
tion. If G and H are two isomorphic groups, then L(G) and L(H) are asy-
morphic (i.e., isomorphic in the category of balleans and coarse maps) and we
write L(G) ≈ L(H). Moreover, the isomorphism between G and H yields also
ℓ-L(G) ≈ ℓ-L(H). However, the converse is not true in general. As a ‘rigidity
result’ we mean a set of conditions that imply that these converse implications
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holds. In other words, it is a collection of properties that implies that G is
isomorphic to H whenever L(G) ≈ L(H) or ℓ-L(G) ≈ ℓ-L(H). Note that this
is not the usual notion of rigidity in large-scale geometry (see, for example,
[157]). In particular, we focus on some special cases, namely, for a group G,
we investigate the hypothesis L(G) ≈ L(Z), L(G) ≈ L(Zp∞), ℓ-L(G) ≈ ℓ-L(Z),
and ℓ-L(G) ≈ ℓ-L(Zp∞), for some p prime, and we obtain the following results.

Theorem 1.3.3. Let G be a group.

(a) Suppose that G has an element of infinite order. Then L(G) ≈ L(Z) if and
only if G ≃ Z.

(b) Suppose that G is abelian, then L(G) ≈ L(Z) if and only if either G ≃ Z or
G ≃ Zp∞ , for some prime p.

Theorem 1.3.4. Let G be a group and p be a prime.

(a) ℓ-L(G) ≈ ℓ-L(Z) if and only if G ≃ Z;
(b) ℓ-L(G) ≈ ℓ-L(Zp∞) if and only if G ≃ Zq∞ , for some prime q.

1.4 Structure of the thesis

We now want to briefly discuss the structure of the thesis. In diagram (1.6),
we summarise the relationships among the content of the various chapters. An
arrow from chapter X to chapter Y means that the content of X strongly depends
on the notions and results discussed in Y, while, if the arrow is dashed, then
the dependency from the material of chapter Y is only partial.

2. Para-bornologies

3. Coarse spaces and
their generalisations

OO✤
✤

4. Categories of
para-bornologies and
entourage spaces

OO

55

6. Asymptotic
dimension

OO✤
✤
✤

hh

5. The categories
Coarse and
Coarse/∼

hh◗◗◗◗◗◗◗◗

7. Structures on
algebraic objects

OO

77

◗
◆

❏
✼
✤
✞

t
♣

77

77

❖
▼

▲
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✶
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✤
✖
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☎
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✈
t
r
q
♦

11. Coarse hyperspaces,
connectedness and
their subspaces

44❥❥❥❥❥❥❥❥❥❥
8. Categories of
coarse groups

OO

;;✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇✇

12. Ballean structures
on the subgroup
lattice of a group

OO

10. The compact-group
coarse structure

OO

9. Linear coarse
structures

hh◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

B. Coarse entropy

OO✤
✤
✤

88
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⑥
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✤
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❋
❍

(1.6)
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Part of this thesis content is collected in some papers. The results of Chapter
3, and partially of Chapters 4 and 7 are contained in [176]. The content of §5
is divided between [65] and [175]. The paper [66] collects the results of Chapter
9 and, partially, of Chapter 8. The remaining part of the latter chapter is
contained in [67], together with the content of §10. Some results of Chapter
11 are a translation in terms of coarse spaces of those contained in [55] and
[56]. The latter paper collects also the results of Chapter 12. The notion of
the coarse entropy, given in Appendix B, is described in [177]. Finally, for the
reader convenience, all the necessary categorical background, mainly taken from
[1], is provided in Appendix A.



Part I

A foundational and

categorical approach to

coarse geometry
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Chapter 2

Para-bornologies

2.1 Para-bornologies: objects and morphisms

An ideal I on a set X is a family of subsets of X which is closed under taking
subsets and finite unions. For example, for every set X and every cardinal κ,
[X]<κ = {F ⊆ X | |F | < κ} is an ideal. We call [X]<ω the finitary ideal on
X. Note that, an ideal I on X is a cover of X (i.e.,

⋃
I = X) if and only if it

contains the finitary ideal on X.

Definition 2.1.1. Let X be a set. A para-bornology is a collection β = {β(x) |
x ∈ X} of ideals on X such that {x} ∈ β(x), for every x ∈ X. The pair (X, β)
is a para-bornological space. An element A ∈ β(x) is said to be bounded from x.
Conversely, an element A /∈ β(x) is said to be unbounded from x. Moreover, a
subset B of X is bounded if it is bounded from each of its points.

When the para-bornology is clear, we denote a para-bornological space (X, β)
by its support X.

If F is a family of subsets of a set X, denote by cl(F) its completion, i.e.,
cl(F) = {A ⊆ X | ∃F ∈ F : A ⊆ F}. If X is a set, a family of families of subsets
B = {B(x) | x ∈ X} of X is a base for a para-bornology if cl(B) = {cl(B(x)) |
x ∈ X} is a para-bornology.

If (X, β) is a para-bornological space, then we can consider the following
global properties that link the ideals β(x), where x ∈ X, with each other:

(G1) for every x, y ∈ X, if {y} ∈ β(x), then {x} ∈ β(y);
(G2) for every x, y ∈ X and every A ∈ β(y), if {y} ∈ β(x), then A ∈ β(x).

Definition 2.1.2. If a para-bornological space (X, β) satisfies (G1), then β is
called a semi-bornology and (X, β) a semi-bornological space, while, if (X, β)
satisfies (G2), then β is called a quasi-bornology and (X, β) a quasi-bornological
space. Finally, if (X, β) satisfies both (G1) and (G2), then β is a pre-bornology
and (X, β) is a pre-bornological space.

It is important to notice that a non-empty subset of a pre-bornological space
is bounded from a point if and only if it is bounded.

Remark 2.1.3. Since the notion of pre-bornology can be found in the litera-
ture (see, for example, [103]), we need to clarify the terminology introduced in

26
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Definition 2.1.2. Note, in fact, that the notion of pre-bornology can be found
in literature. According to [103], a pre-bornology (while it can be found also in
[10] under the name bounded structure) B on a set X is a family of subsets of
X satisfying the following properties:

(a) B is a cover of X;
(b) B is closed under taking subsets;
(c) for every A,B ∈ B, A ∪B ∈ B provided that A ∩B 6= ∅.

If B is a family of subsets satisfying (a)–(c), then the family βB = {βB(x) | x ∈
X}, where, for every x ∈ X, βB(x) = cl({A ∈ B | x ∈ A}), is a pre-bornology
according to Definition 2.1.2. Conversely, if (X, β) is a pre-bornological space,
then the family Bβ =

⋃
x∈X β(x) satisfies (a)–(c). Since this correspondence is

one-to-one, without loss of generality, we can use the term pre-bornology for
both notions interchangeably.

Pre-bornologies are a generalisation of the notion of bornology (see, for ex-
ample, [11]). Let us recall the classical definition of bornology. A bornology on
a set X is a family B of subsets of X which forms both a cover and an ideal.
Hence the only difference with the definition of pre-bornology is the fact that a
bornology is closed under taking arbitrary finite unions. We will discuss a bit
more this notion in our setting in §2.2.

Let (X, β) be a para-bornological space and Y be a subset of X. Then Y can
be endowed with the subspace para-bornology β|Y defined as follows: for every
y ∈ Y , β|Y (y) = {B ∩ Y | B ∈ β(y)}. In this case, the pair (Y, β|Y ) is called
para-bornological subspace of X. Moreover, it is easy to check the following
implications:

• β|Y is a semi-bornology if β is;
• β|Y is a quasi-bornology if β is;
• β|Y is a bornology if β is.

Example 2.1.4. (a) LetX be a set. Then there are always two para-bornologies
(actually, two pre-bornologies) onX, namely the discrete pre-bornology βdis,
where, for every x ∈ X, βdis(x) = {{x}, ∅}, and the trivial (or indiscrete)
pre-bornology βtriv, where, for every x ∈ X, βtriv(x) = cl({X}). More-
over, a singleton {∗} can be endowed just one para-bornology: βdis(∗) =
βtriv(∗) = cl({{∗}}).

(b) Similarly to what happens for topological spaces, metrics and their gener-
alisations define para-bornologies. Namely, if X is a set endowed with a
semi-positive-definite map d, then family βd = {βd(x) | x ∈ X}, where, for
every x ∈ X,

βd(x) = cl({B(x,R) | R > 0}),

is a para-bornology, called metric para-bornology.
Furthermore, if d is a semi-metric, then βd is a semi-bornology, while, if d
is a quasi-metric, then βd is a quasi-bornology. In particular, note that, if
d is a metric, then βd is a pre-bornology. The previous implications cannot
be reverted. For example, consider the quasi-metric d1 and the semi-metric
d2 on N defined as follows: for every two points m,n ∈ N,

d1(m,n) = max{|m−n|−1, 0}, and d2(m,n) =

{
n−m if m ≤ n,

2(m− n) otherwise.

(2.1)
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Although d1 does not satisfy the triangular inequality, and d2 is not sym-
metric, both βd1 and βd2 coincide with the metric para-bornology induced
by the usual metric, and so they are pre-bornologies.
Finally, note that this definition is precisely the ‘dualisation’. In fact, if d is
a quasi-metric, then the metric topology is induced by the neighbourhood
system ϑd = {ϑd(x) | x ∈ X}, where, for every x ∈ X, ϑd(x) = {V ⊆ X |
∃R > 0 : x ∈ V ⊆ B(x,R)}.
As in topology, actually metric para-bornologies lose information about their
‘uniform structure’. This problem will be considered in §3, where we intro-
duce the large-scale counterparts of uniform spaces and their generalisations.

Question 2.1.5. What conditions on a para-bornology β ensure the existence
of a semi-positive-definite map d such that β = βd? In particular, if β is a
pre-bornology, what conditions imply that exists a metric d such that β = βd?

2.1.1 Morphisms between para-bornological spaces

If f : X → Y is a map between sets, and A and B are two families of
subsets of X and Y , respectively, we denote by f(A) = {f(A) | A ∈ A} and
f−1(B) = {f−1(B) | B ∈ B}.

Definition 2.1.6. Let f : (X, βX)→ (Y, βY ) be a map between para-bornological
spaces. The map f is:

• boundedness preserving in x, where x ∈ X, if images of subsets that are
bounded from x are bounded from f(x), i.e., f(βX(x)) ⊆ βY (f(x));

• boundedness preserving if f is boundedness preserving in x, for every x ∈ X;
• weakly boundedness copreserving if, for every x ∈ X and A ∈ βY (f(x)),

there exists A′
z ∈ βX(z), for every z ∈ f−1(f(x)), such that f(

⋃
{Az | z ∈

f−1(f(x))}) = A ∩ f(X) (or, equivalently, f(
⋃
{Az | z ∈ f−1(f(x))}) ⊇

A ∩ f(X));
• boundedness copreserving if, for every x ∈ X and A ∈ βY (f(x)), there exists
A′ ∈ βX(x) such that f(A′) = A∩f(X) (or, equivalently, f(A′) ⊇ A∩f(X));

• proper if, for every y ∈ Y and every A ∈ βY (y), f
−1(A) ∈ βX(z), for every

z ∈ f−1(y);
• a large-scale embedding if it injective, boundedness preserving and proper;
• a large-scale isomorphism if it is bijective and both f and f−1 are boundedness

preserving.

Let us first give some easy examples of the properties just introduced.

Example 2.1.7. Let f : (X, βX) → (Y, βY ) be a map between two para-
bornological spaces. Then the following properties trivially hold:

(a) if βX is the discrete coarse structure, then f is boundedness preserving;
(b) if βY is the discrete coarse structure, then f is boundedness copreserving;
(c) if βX is the trivial coarse structure, then f is proper;
(d) if βY is the trivial coarse structure, then f is boundedness preserving.

Let us add some remarks on Definition 2.1.6.

Remark 2.1.8. (a) Composites of boundedness preserving maps are bound-
edness preserving.
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(b) Let f : (X,βX)→ (Y, βY ) be a map between para-bornological spaces. Sup-
pose that both βX and βY are pre-bornologies. Then f is boundedness
preserving if and only if f(

⋃
βX) ⊆

⋃
βY .

(c) A trivial, although useful, example of a boundedness preserving map is the
following: if f : X → Y is a map between para-bornological spaces and
x ∈ X, then f is boundedness preserving in x if Y is bounded from f(x).
If X is bounded, then f is trivially boundedness copreserving. Another
trivial property is that a bijective map f between para-bornological spaces
is boundedness copreserving if and only if f−1 is boundedness preserving.

(d) For a map between para-bornological spaces, the following chain of impli-
cations is trivial:

proper −→ boundedness copreserving −→ weakly boundedness copreserving.
(2.2)

Those implications cannot be reverted in general (Example 2.1.9). However
this three concepts coincide if the map is injective.

(e) Let X be a para-bornological space. Then X is bounded if and only if every
constant map f : X → Y (i.e., |f(X)| = 1) is proper.

(f) Thanks to item (d), we can give different characterisations to large-scale
isomorphisms. For a bijective map f : X → Y between para-bornological
spaces, it is easy to check that the following properties are equivalent: f is
boundedness preserving if and only if f−1 is proper. Hence, f is a large-
scale isomorphism if and only if f is bijective, bornologous and f is either
proper or boundedness copreserving or weakly boundedness copreserving.

Let us show that the implications in (2.2) cannot be reverted in general.
In particular, Example 2.1.9(a) shows that the first arrow cannot be reverted,
while Example 2.1.9(b) proves that the second one cannot be reverted.

Example 2.1.9. (a) Let X be a two point space and Y just a singleton. En-
dow X with the discrete para-bornology. Then the map f : X → Y is
boundedness copreserving, but it is not proper.

(b) Let X = {a, b, b′, c} and Y = {a, b, c}. Let us endow X and Y with the
para-bornologies βX and βY , defined as follows:

βX(a) = βX(b) = cl({{a, b}}), βX(b′) = βX(c) = cl({{b′, c}}),

βY (a) = {{a}, ∅}, βY (c) = {{c}, ∅}, and βY (b) = cl({Y }),

Consider the map f : X → Y such that f(a) = a, f(b) = f(b′) = b, and
f(c) = c. Then f is weakly boundedness copreserving, but it is not bound-
edness copreserving.

Let us now introduce another notion which will be studied in §2.4.

Definition 2.1.10. A para-bornological space (X,β) is locally finite at x, where
x ∈ X, if β(x) ⊆ [X]<ω. Moreover, (X, β) is locally finite if it is locally finite at
every point.

Proposition 2.1.11. Let f : (X, βX)→ (Y, βY ) be a map between para-bornological
spaces.

(a) If f is proper, then f is boundedness copreserving and every fibre of f is
bounded.
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(b) Suppose that X has the property (G2) and is locally finite. If f is weakly
boundedness copreserving and every fibre of f is bounded, then f is proper.

Proof. (a) The first part of the statement follows from (2.2). Moreover, for
every x ∈ X, f−1(f(x)) ∈ βX(x).

(b) Let x ∈ X and A ∈ βY (f(x)), with A ⊆ f(X). Since f−1(f(x)) is
bounded, then it is finite because of the assumption. Let us denote f−1(f(x)) =
{z1 = x, z2, . . . , zn}. Moreover, since f is weakly boundedness copreserving,
for every i = 1, . . . , n, there exist Ai ∈ βX(zi) (and thus Ai ∈ βX(x) since
{zi} ∈ βX(x)) such that A = f(B), where B =

⋃n
i=1Ai. Finally, since the

union is finite and X is a quasi-bornological space, B ∈ βX(x).

In Example 2.1.12, we show that the further hypothesis of Proposition
2.1.11(b) cannot be relaxed.

Example 2.1.12. (a) Let X = {0, 1, 2, 3} and

β(0) = cl({{3, 0, 1}}), β(1) = cl({{0, 1, 2}}), β(2) = cl({{1, 2, 3}}),

and β(3) = cl({{2, 3, 0}}).

Note that X is trivially locally finite and it satisfies (G1). Consider the map
f : (X, β) → ({0, 1}, βtriv) such that f(0) = f(1) = 0 and f(2) = f(3) = 1.
Then f has bounded fibres and it is boundedness copreserving, although
f−1({0, 1}) /∈ β(x), for every x ∈ X.

(b) Let Y = Z and X = Z×Z. Let f be the first canonical projection p1 : X →
Z, i.e., f(x, y) = x, for every (x, y) ∈ X. Endow Y with the trivial pre-
bornology βY = βtriv. Moreover, for every (x, y) ∈ X, define βX((x, y)) =
{A ⊆ X | |f(A)| < ∞}, and, with this choice, βX is a pre-bornology
(actually a bornology, see §2.2). Then f is weakly boundedness copreserving
and has bounded fibres. However, f is not even boundedness copreserving
(and so, in particular, it is not proper).

(c) As in the previous item, let X = Z, Y = Z× Z, and f = p1. Again endow
Y with the trivial pre-bornology βY = βtriv. For every I, J ∈ [Z]<ω, define
the following subset:

AJI =
( ⋃

j∈J

({j} × Z)
)
∪
(⋃

i∈I

(Z× {i})
)
.

Then take βX = cl({AJI | I, J ∈ [Z]<ω}), which is a pre-bornology (actually
a bornology, see §2.2) on X. With these choices, f has bounded fibres and
it is bounded copreserving, but it is not proper since f−1(Y ) = X, which is
not bounded from any point.

As expected, properties (G1) and (G2) are invariant under large-scale iso-
morphisms.

Proposition 2.1.13. Let f : (X, βX) → (Y, βY ) be a large-scale isomorphism.
Then X satisfies (G1) ((G2)) if and only if Y satisfies (G1) ((G2), respectively).

Proof. Suppose that X satisfies (G1) and let f(x) and f(y) be two arbitrary
points of Y . Suppose that {f(y)} ∈ βY (f(y)). Since f−1 is boundedness pre-
serving, it implies that {y} = f−1({f(y)}) ∈ βX(f−1(f(x))) = βX(x) and thus,
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since X has (G1), {x} ∈ βX(y). Finally, an application of the boundedness
preserving map f implies the claim.

Now suppose that X satisfies (G2), let f(x) and f(y) be two arbitrary points
of Y and f(A) ∈ βY (f(y)). Since f

−1 is boundedness preserving, we have that
{y} ∈ βX(x) and A ∈ βX(y), which imply that A ∈ βX(x). Once again, the
application of the boundedness preserving map f implies that f(A) ∈ βY (f(x)).

Remark 2.1.14. Let f : (X,βX)→ (Y, βY ) be a map between para-bornological
spaces, and Z be a subset of X. Then it is easy to check the following implica-
tions:

(a) if f is boundedness preserving, then so is the restriction f |Z : (Z, βX |Z)→
(Y, βY );

(b) if f is proper, then so is f |Z .

However, if f is boundedness copreserving, f |Z is not even necessarily weakly
boundedness copreserving. In Example 4.3.7 an explicit counter-example will
be provided.

Let β and β′ be two para-bornologies on a set X. Then β is finer than β′

(and β′ is coarser than β) if idX : (X, β) → (X, β′) is boundedness preserving.
Moreover, if we fix a set X, then discrete pre-bornology on X, is the finest para-
bornology, while the trivial pre-bornology on X, is the coarsest one. Denote by
PB(X) the family of all para-bornologies on X. Note that PB(X) is actually
a set and we can endow it with the preorder ≤ defined as follows: β ≤ β′ if
and only if β is finer than β′. Hence, βtriv is the top element, while βdis is the
bottom element.

For a set X, if β, β′ ∈ PB(X), we define their supremum β∨β′ = {β∨β′(x) |
x ∈ X} and their infimum β ∧ β′ = {β ∧ β′(x) | x ∈ X} as follows: for every
x ∈ X

β ∨ β′(x) = {A ∪B | A ∈ β(x), B ∈ β′(x)} and β ∧ β′(x) = β(x) ∩ β′(x).

It is not hard to check that the families just defined are actually para-bornologies.

Proposition 2.1.15. Let X be a set and β, β′ ∈ PB(X).

(a) Suppose that β and β′ satisfy (G1). Then both β ∨ β′ and β ∧ β′ satisfy
(G1).

(b) Suppose that β and β′ satisfy (G2). Then β ∧ β′ satisfies (G2).

Proof. Item (a) is trivial. Let us focus on item (b). Let x and y be two points of
X, {y} ∈ β ∧ β′(x), and A ∈ β ∧ β′(y). Since A ∈ β(y), {y} ∈ β(x), A ∈ β′(y),
and {y} ∈ β′(x), we can apply the property (G2) to both β and β′, and thus
A ∈ β(x) and A ∈ β′(x), which yields to the desired claim.

It is useful to consider also the infinite meet of a family of para-bornologies
{βi}i∈I on the same set X: it is the para-bornology

∧
i βi = {

∧
i βi(x) | x ∈ X},

where
∧
i βi(x) =

⋂
i βi(x), for every x ∈ X. Proposition 2.1.15 can be extended

also for arbitrary meets: if βi has property (G1) ((G2)), for every i ∈ I, then∧
i βi has property (G1) ((G2), respectively).
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Example 2.1.16. Proposition 2.1.15(b) cannot be extended for quasi-bornological
spaces. In fact, consider X = {0, 1, 2} and two quasi-bornologies β and β′, such
that:

β(0) = cl({{0, 1}}), β(1) = {{1}, ∅}, β(2) = {{2}, ∅},

β′(0) = {{0}, ∅}, β′(1) = cl({{1, 2}}), β′(2) = {{2}, ∅}.

Note that, {1} ∈ β ∨ β′(0) and {2} ∈ β ∨ β′(1), although {2} /∈ β ∨ β′(0).

2.2 Connectedness axioms

Let (X, β) be a para-bornological space and let x and y be two points of X.
If {y} ∈ β(x), then we write x ↓ y. Then ↓ is a reflexive relation. Denote by
↑=↓−1 its inverse relation, i.e., for every x, y ∈ X; x ↑ y if and only if y ↓ x.
Moreover, let ց (ր) be the transitive closure of ↓ (of ↑, respectively), and !

be the smallest equivalence relation containing ↓ (equivalently, ↑).

If X is a quasi-bornological space, we call ↓=ց the large-scale specialisation
preorder of X (which can be seen as the large-scale counterpart of the classical
specialisation preorder in topological spaces).

Let (X, β) be a para-bornological space. For every subset A of X, we denote:

Q↓
X(A) =

⋃{⋃
β(x) | x ∈ A

}
= {y ∈ X | ∃x ∈ A, x ↓ y},

Q↑
X(A) = {y ∈ X | ∃x ∈ A, y ↓ x}, Qց

X (A) = {y ∈ X | ∃x ∈ A, xց y},

Qր
X (A) = {y ∈ X | ∃x ∈ A, y ց x}, and

QX(A) = Q!
X (A) = {y ∈ X | ∃x ∈ A, y ! x}.

(2.3)
When A is just a singleton, we usually omit the brackets, for example, QX(x) =
QX({x}), for a point x ∈ X.

Let (X, β) be a para-bornological space. Since the relation ! is an equiva-
lence relation, X can be partitioned in its equivalence classes {QX(x) | x ∈ X},
called connected components. Moreover, denote by dsc(X,β) the number of
connected components of X. Let us note the following trivial facts.

Fact 2.2.1. If X and Y are two large-scale isomorphic para-bornologies, then
dscX = dscY .

Fact 2.2.2. Let β and β′ be two para-bornologies on a set X. If β ≤ β′, then
dsc(X, β) ≥ dsc(X, β′).

Fact 2.2.3. Let X be a para-bornological space.

(a) If X satisfies (G1), then ↓=↑, and ց=ր=!.
(b) If X satisfies (G2), then ↓=ց, and ↑=ր.
(c) If X satisfies both (G1) and (G2), then ↓=↑=ց=ր=!.

Remark 2.2.4. Let f : X → Y be a boundedness preserving map between two
para-bornological spaces. Fix two points x, y ∈ X. Then it is trivial to check
that the following implications hold:

(a) f(x) ↓ f(y) if x ↓ y, and f(x) ↑ f(y) if x ↑ y;
(b) f(x)ց f(y) if xց y, and f(x)ր f(y) if xր y;
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(c) f(x) ! f(y) if x! y.

Hence, in particular, we have that, for every A ⊆ X,

f(Q↓
X(A)) ⊆ Q↓

Y (f(A)), f(Q↑
X(A)) ⊆ Q↑

Y (f(A)),

f(Qց
X (A)) ⊆ Qց

Y (f(A)), f(Qր
X (A)) ⊆ Qր

Y (f(A)),

and f(Q!
X (A)) ⊆ Q!

Y (f(A)).

(2.4)

This property of those operators is called continuity property, which is funda-
mental for the definition of closure operators and will be formally discussed in
§5.2.

Definition 2.2.5. Let (X, β) be a para-bornological space. Then X satisfies:

• C1 if, for every x, y ∈ X, x! y (equivalently, for some x ∈ X (equivalently,
for every x ∈ X), QX(x) = X);

• C2 if, for every x, y ∈ X, x ց y or y ց x (equivalently, for every x ∈ X,

Qց
X (x) ∪ Qր

X (x) = X);
• C3′ if, for every x, y ∈ X, x ց y and y ց x (equivalently, for every x ∈ X,

Qց
X (x) ∩ Qր

X (x) = X);
• C3′′ if, for every x, y ∈ X, x ↓ y or y ↓ x (equivalently, for every x ∈ X,

Q↓
X(x) ∪ Q↑

X(x) = X);
• C4 if, for every x, y ∈ X, x ↓ y and y ↓ x (equivalently, for every x ∈ X,

Q↓
X(x) ∩ Q↑

X(x) = X).

We call C1–C4 connectedness axioms.

The connectedness axioms play the role of the large-scale counterpart of
separation axioms in topology. We will discuss a bit more this parallelism in
Remarks 2.4.4 and 3.1.7.

Note that the following implications trivially hold:

C3′′

!!❈
❈❈

❈❈
❈❈

❈

C4

==④④④④④④④④

!!❈
❈❈

❈❈
❈❈

❈ C2
// C1

C3′

==④④④④④④④④

(2.5)

Those implications cannot be reverted in general and this can be shown with
very basic examples (Example 2.2.6). However, as consequence of Fact 2.2.3, if
a para-bornological space X satisfies (G1), then (2.5) becomes

C4
// C3′′

//oo C3′
// C2

//oo C1,oo (2.6)

while, if X satisfies (G2),

C4
// C3′

//oo C3′′
// C2

//oo C1. (2.7)

Finally, if X is a pre-bornological space, then all the operators defined in (2.3)
and the connectedness axioms C1–C4 coincide. For example, if (X, d) is a metric
space, then βd is a pre-bornology, and, furthermore, βd satisfies C1 if and only if
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it satisfies C4 if and only if d does not assume the value ∞. Moreover, if (X, β)
is a para-bornological space that satisfies C4, then it trivially satisfies (G1).

Let (X, β) be a pre-bornological space. If X satisfies C1 (equivalently, C4),
then we say that β is a bornology and (X, β) is a bornological space. It is
easy to check that, if (X, β) is a bornological space, then, for every x, y ∈ X,
[X]<ω ⊆ β(x) = β(y). In particular, if a subset A of X is bounded from a point,
it is bounded from every point of the space. Finally, by following the same
reasoning as in Remark 2.1.3, the notion of bornology given here is equivalent
to the classical one.

Example 2.2.6. Let us show that the implications of (2.5), (2.6) and (2.7)
cannot be reverted in general.

(C1 6→C2) Consider the following para-bornological space (X, β), where X =
{0, 1, 2} and β(0) = {{0}, ∅}, β(1) = cl({{1, 0}}), and β(2) = cl({{2, 0}}). Then
(X, β) satisfies C1, but not C2. Note that (X, β) satisfies also (G2).

(C2 6→C3′) and (C3′′ 6→C4) Let X = {0, 1}, β(0) = {{0}, ∅} and β(1) =
cl({{0, 1}}). Then, the para-bornological space (X, β) satisfies C3′′ (and thus
C2), while it does not satisfy C3′ (and thus it does not satisfy C4 either). More-
over, (X,β) has the property (G2).

(C2 6→C3′′) and (C3′ 6→C4) Let X = {0, 1, 2}, β(0) = cl({{0, 1}}), β(1) =
cl({X}) and β(2) = cl({{1, 2}}). Then (X, β) is a counter-example to the two
implications we want to refute. Moreover, (X, β) satisfies (G1).

Proposition 2.2.7. Let (X,β) be a para-bornological space. Then:

(a) X satisfies C1 if and only if every boundedness preserving map f : (X, β)→
({0, 1}, βdis) is constant;

(b) X satisfies C3′ if and only if every boundedness preserving map f : (X, β)→
({0, 1}, β′), where β′(0) = {{0}, ∅} and β′(1) = cl({{0, 1}}), is constant.

Proof. (a) If X does not satisfy C1, then there are two points x, y ∈ X such
that QX(y) ∩ QX(x) 6= ∅. Then the map f : (X, β) → ({0, 1}, βdis) defined be
the law

f(z) =

{
x if z ∈ QX(x),

y otherwise,

for every z ∈ X, is boundedness preserving. Conversely, (2.4) implies that
the image of a para-bornological space satisfying C1 through a boundedness
preserving map satisfies C1. Since ({0, 1}, βdis) has not this property, then the
claim follows.

(b) If X satisfies C3′ , then f is trivially constant because of (2.4) as in item
(a). Conversely, if X has not the property C3′ , then there exist two points
x, y ∈ X such that x 6ց y or y 6ց x. Without loss of generality, assume that
x 6ց y. Then consider the map g : X → {0, 1} defined as follows: for every
z ∈ X,

g(z) =

{
0 if z ∈ Qց

X (x),

1 otherwise.

Since y /∈ Qց
X (x), then g is not constant. Moreover, g is boundedness preserving.

In fact, let z ∈ X and A ∈ β(z). If z ∈ Qց
X (x) then A ⊆ Qց

X (x) and thus



2.3 Local simple ends and boundedness preserving maps 35

g(A) = 0. Otherwise, there is nothing to prove, since {0, 1} is bounded from
1.

Let us isolate a property that has been used in the proof of Proposition
2.2.7(a).

Proposition 2.2.8. Let f : (X, βX) → (Y, βY ) be a boundedness preserving
map between para-bornological spaces.

(a) If A ⊆ X satisfies C1, then f(A) ⊆ Y satisfies C1.
(b) If B ⊆ Y is a connected component of Y , then f−1(B) is a union of con-

nected components of X.

Proof. Item (a) follows from (2.4). Moreover, because of item (a), if a point
belongs to f−1(B), then its entire connected component in X is contained in
f−1(B), since B is a connected component.

2.3 Local simple ends and boundedness preserv-

ing maps

Let us first recall a definition due to Dydak ([71]). A sequence {xn}n∈N in a
pre-bornological space X is a simple end if, for every bounded subset A of X, A
contains at most a finite number of elements of {xn}n. Note that simple ends
can exist only in infinite spaces. Here we propose a similar, although slightly
different, notion in the realm of para-bornological spaces. Let us recall that a
directed set is a preordered set with the further property that every two elements
have an upper bound. More explicitly, a pair (I,≥) of a set and a preorder on
it is a directed set if, for every x, y ∈ I, there exists z ∈ I such that z ≥ x and
z ≥ y. A net in a set X is a family of points of X indexed by a directed set.

Definition 2.3.1. A net {xi}i∈I in a para-bornological space X is a local simple
end from x if, for every subset B of X which is bounded from x, there exists
iB ∈ I such that, for every k ≥ iB , xk /∈ B.

In other words, a local simple end from a point x is a net that eventually
escapes from every subset which is bounded from x. For example, if a space is
bounded from a point, then it cannot contain any local simple end from that
specified point. Note the similarity with the notion of converging nets in classical
topology. A net in a topological space converges to a point if it eventually enters
in every neighbourhood of that point.

Remark 2.3.2. Let (X, β) be a quasi-bornological space. Let x, y ∈ X such
that y ↓ x. Then a net {xi}i∈I is a local simple end from x if it is a local
simple end from y. In fact, suppose that {xi}i is not a local simple end from x
and let A ∈ β(x) such that {xi}i cannot eventually escape from A. Then the
property (G2) implies that A ∈ β(y) and thus the claim follows. In particular,
if X satisfies C4 (and thus X is a bornology), then a net is a local simple end
from a point if it is a local simple end from any other one.

The next remark relates the notion of local simple end to the one of simple
end.
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Remark 2.3.3. Let {xn}n be a sequence of points in a pre-bornological space
X.

(a) The sequence {xn}n is a simple end if and only if {xn}n is a local simple
end from every point x ∈ X.

(b) Let x ∈ X. The following properties are equivalent:
(b1) {xn}n is a simple end if and only if {xn}n is a local simple end from

x;
(b2) X satisfies C1 (equivalently, C4).
In fact, if X does not satisfy C1, then there exists a point y ∈ X such that
y /∈ QX(x). Hence, the constant sequence {xn}n, where, for every n ∈ N,
xn = y is a local simple end from x, although it is not a simple end. The
opposite implication follows from Remark 2.3.2 and item (a).

We now want to prove a characterisation of boundedness preserving maps
using local simple ends, which is similar to the one of continuous maps using
converging nets. In order to do that, we need a preliminary result.

Lemma 2.3.4. Let (X, β) be a para-bornological space, x ∈ X be a point, and
A be a subset of X. Then the following properties are equivalent:

(a) A is unbounded from x;
(b) there exists a local simple end {xi}i∈I from x such that xi ∈ A, for every

i ∈ I.

Proof. The implication (b)→(a) can be trivially shown by considering its con-
trapositive. Let us now prove the opposite implication. The set β(x) endowed
with the partial order defined by the inclusion is a directed set. In fact, for
every pair of elements A,B ∈ β(x), A,B ⊆ A ∪ B ∈ β(x). First of all, suppose
that β(x) has a biggest element M . Then there exists x ∈ A \ M , since A
is unbounded. Thus the constant sequence {xn}n such that, for every n ∈ N,
xn = x satisfies the desired properties. Otherwise, for every B ∈ β(x), let xB
be a point in A \B, which exists, since A /∈ β(x). Hence, {xB}B∈β(x) is a local
simple end from x.

Theorem 2.3.5. Let f : (X, βX)→ (Y, βY ) be a map between para-bornological
spaces.

(a) Let x ∈ X be a point. Then f is boundedness preserving in x if and only if,
for every net {xi}i∈I of X, {xi}i is a local simple end from x provided that
{f(xi)}i is a local simple end from f(x).

(b) The map f is boundedness preserving if and only if, for every point x ∈ X,
and every net {xi}i in X, {xi}i is a local simple end from x provided that
{f(xi)}i is a local simple end from f(x).

Proof. Item (b) trivially descends from item (a). Let us now prove (a). The ‘only
if’ direction is trivial. In fact, if we suppose that f is boundedness preserving
and {xi}i is not a local simple end from x, then it cannot eventually escapes
from a subset A ∈ β(x) and thus {f(xi)}i cannot escapes from f(A) ∈ β(f(x)).
As for the opposite implication, suppose that f is not boundedness preserving
from x. Hence, there exists B ∈ β(x) such that f(B) /∈ β(f(x)). Lemma 2.3.4
implies that exists a local simple end {yi}i∈I from f(x) that lays in f(B). For
every i ∈ I, let xi ∈ B be an element such that f(xi) = yi. Then {xi}i is not a
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local simple end from x, since it is contained in a subset which is bounded from
x, while {f(xi)}i is a local simple end from f(x).

2.4 Local finiteness

Let us now focus on the notion of local finiteness, introduced in Definition
2.1.10. We start our study enlisting in the following remark some observations.

Remark 2.4.1. (a) Finite para-bornological spaces are trivially locally finite.
More precisely, if X is a para-bornological space such that, for come x ∈ X,
Q↓
X(x) is finite, then X is locally finite at x.

(b) Let f : (X, βX) → (Y, βY ) be a boundedness copreserving surjective map
between para-bornological spaces. Then Y is locally finite, whenever X has
the same property. In fact, let x ∈ X and A ∈ βY (f(x)). Then there exists
B ∈ βX(x) such that f(B) = A. Hence, since B is finite, also A has this
property. In particular, if f is a large-scale isomorphism, then X is locally
finite if and only if Y is locally finite.
Furthermore, note that, if f is a weakly boundedness copreserving map,
which is not boundedness copreserving, then the thesis does not hold. In
fact, let us define X =

⋃
n∈N{0, 1, . . . , n} × {n} and endow it with the

pre-bornology βX defined as follows: for every (m,n) ∈ X, βX(m,n) =
cl({{0, . . . , n} × {n}}). Let Y = N with the trivial pre-bornology and
f : (m,n) 7→ m. Then f has the desired properties, while X is locally
finite, but Y is not locally finite.

(c) Let f : X → Y be a map between para-bornological spaces. Suppose that
Y satisfies C4, and thus [Y ]<ω ⊆ βY (y), for every y ∈ Y . Then, for every
x ∈ X for which X is locally finite at x, f is boundedness preserving in
x. In particular, two locally finite para-bornological spaces that satisfy C4

are large-scale isomorphic if and only if the have the same cardinality. For
example, if d is the usual euclidean metric, (Z, βd) and (Zn, βd) are large-
scale isomorphic, for every n ∈ N.

Theorem 2.4.2 shows a similarity between of local finiteness in para-bornologies
and sequential compactedness in topologies. This connection is furthermore dis-
cussed in Remark 2.4.4 and in Proposition 10.2.17.

Theorem 2.4.2. Let X be an infinite para-bornological space and let x be a
point of X. Then X is locally finite at x if and only if, for every sequence
{xn}n of points of X forming an infinite subset of X, there exists a subsequence
{xkn}n of {xn}n which is a local simple end from x.

Proof. If X is not locally finite at x, then there exists a infinite subset B of X,
which is bounded from x. If {xn}n is a sequence of distinct infinite points of B,
then no subsequence can be a local simple end from x.

Conversely, suppose that X is locally finite at x. Define a map ϕ : N → N
by the following law: for every n ∈ N,

ϕ(n) = min{m ∈ N | xm /∈ {xϕ(i) | i = 0, . . . , n− 1}}.

Then ϕ is a strictly increasing function with the property that {xϕ(n)}n visits
every point of {xn}n exactly once. Then {xϕ(n)}n is a subsequence of {xn}n
which is also a local simple end from x since X is locally finite at x.
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Corollary 2.4.3. Let X be an infinite para-bornological space. Then the fol-
lowing properties are equivalent:

(a) X is locally finite;
(b) for every x ∈ X, every sequence of points in X with an infinite support has

a subsequence which is a local simple end from x;
(c) every sequence of points in X with an infinite support has a subsequence

which is a local simple end from every point of X.

Proof. Implication (c)→(b) is trivial, while implication (b)→(a) follows from
Theorem 2.4.2. As for the implication (a)→(c), it is enough to notice that, in
the notation of the proof of Theorem 2.4.2, the subsequence {xϕ(n)}n is a local
simple end from every point at which X is locally finite.

Let us conclude this chapter with a remark that relates properties of para-
bornologies to their counterparts in classical topology.

Remark 2.4.4. (a) Let (X, β) be a para-bornological space, and x ∈ X be a
base point. Then we define a neighbourhood system ϑx on the one point
completion X = X ∪ {∞} of X as follows: ϑx(x) = {A ⊆ X | x ∈ A},
for every x ∈ X, while ϑx(∞) = {(X \ A) ∪ {∞} | A ∈ β(x)}. The fact
that ϑx is a neighbourhood system can be easily shown. Moreover, every
neighbourhood of the point∞ is trivially an open neighbourhood, and note
that (X,ϑx) is always T1, since every point of X can be separated from ∞.
The following equivalences are easy to check:
(i) Q↓

X(x) =
⋃
β(x) = X if and only if (X,ϑx) is Hausdorff;

(ii) a net {xi}i ⊆ X is a local simple end from x if and only if {xi}i
converges to ∞ in X;

(iii) X is locally finite in x if and only if X is compact.
(b) In the notation of the previous item, we can define another neighbourhood

system ϑ on X as follows: for every z ∈ X, ϑ(z) =
⋂
{ϑx(z) | x ∈ X}. In

particular, ϑ(∞) = {(X \ A) ∪ {∞} | A ∈ β(x), ∀x ∈ X}. Every neigh-
bourhood of the point ∞ is trivially an open neighbourhood. Also, (X,ϑ)
is always T1. In the sequel of this example, X will always be endowed with
ϑ.
(i) The space X is C4 if and only if, for every x ∈ X, {x} ∈ β(y), for

every y ∈ X. Equivalently, we have that (X \ {x}) ∪ {∞} ∈ ϑ(∞)
which is equivalent to the fact that X is Hausdorff.

(ii) If X locally finite, then X is trivially compact. Conversely, suppose
that X is a bornological space. We claim that X is locally finite if X
is compact. Suppose that X is not locally finite. Then there exists an
infinite A ∈ β(x), for some x ∈ X. However, since X is a bornology,
A is bounded from every point and thus (X \A)∪{∞} ∈ ϑ(∞). Then
the open cover {(X \A)∪{∞}}∪{{a} | a ∈ A} has no finite subcover.

(iii) Every local simple end in X from a point x converges to ∞ in X.
Conversely, suppose that X is a bornological space. Then we claim
that a net {xi}i ⊆ X is a local simple end from any point of x if {xi}i
converges to ∞ in X. If {xi}i converges to ∞, it eventually enter
every neighbourhood of ∞, which means that it eventually gets out
from every subset A ∈

⋂
x∈X β(x). However, since X is a bornology,

β(x) = β(y), for every x, y ∈ X, and thus {xi}i is a local simple end
from every point.



Chapter 3

Coarse spaces and their

generalisations

3.1 Coarse spaces and their generalisations

Definition 3.1.1. Let X be a set. A family E ⊆ P(X × X) is an entourage
structure over X if it is an ideal on X × X that contains the diagonal ∆X .
Moreover, an entourage structure E over X is

• a semi-coarse structure if E−1 ∈ E , for every E ∈ E ;
• a quasi-coarse structure if E ◦ F ∈ E , for every E,F ∈ E ;
• a coarse structure if it is both a semi-coarse and a quasi-coarse structure.

The pair (X, E) is an entourage space (a semi-coarse space, a quasi-coarse space,
a coarse space) if E is an entourage structure (a semi-coarse structure, a quasi-
coarse structure, a coarse structure, respectively) over X.

If E is an entourage structure on a set X, then also E−1 = {E−1 | E ∈ E}
is an entourage structure. Of course, E = E−1 if and only if E is a semi-coarse
structure. Moreover, if E is a quasi-coarse structure, then E−1 is a quasi-coarse
structure.

Let (X, E) be an entourage space and Y be a subset of X. Then Y can be
endowed with the subspace entourage structure E|Y = {E ∩ (Y × Y ) | E ∈ E},
and (Y, E|Y ) is called an entourage subspace of (X, E). If E is a quasi-coarse
structure (semi-coarse structure), then E|Y is a quasi-coarse structure (semi-
coarse structure, respectively).

If X is a set, a family B of subsets of X × X such that E = cl(B) is an
entourage structure (semi-coarse structure, quasi-coarse structure, coarse struc-
ture, respectively) is a base of the entourage structure (base of the semi-coarse
structure, base of the quasi-coarse structure, base of the coarse structure, respec-
tively) E .

Let us now give some example of these structures.

Example 3.1.2. (a) Every set X can be endowed with two entourage struc-
tures which are actually coarse structures: the discrete coarse structure
Edis = cl({{∆X}}), and the trivial (or indiscrete) coarse structure Etriv =

39
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P(X×X). Moreover, the discrete and the trivial coarse structures coincide
if the set is a singleton.

(b) A leading example of entourage structures is the metric entourage structure.
Let (X, d) be a set endowed with an extended semi-positive-definite map d.
We define the following entourage structure:

Ed = cl({UdR ⊆ X ×X | R ≥ 0}), (3.1)

see (1.1) for the definition of the entourages UdR, for every R ≥ 0. Even
though it is not precise, for the sake of simplicity, we call Ed a metric
entourage structure. If d is a semi-metric, then Ed is a semi-coarse structure,
while, if d is a quasi-metric, then Ed is a quasi-coarse structure. There
are non-symmetric quasi-metrics and semi-metrics that do not satisfy the
triangular inequality which induce coarse structures (the maps defined in
(2.1) provide the desired examples). In the sequel, for the sake of simplicity
and for consistency with the previous literature, if d is a metric, we call Ed
a metric coarse structure.

More examples of entourage spaces will be given in §3.3. However, let us
anticipate another classical example of coarse structure.

Example 3.1.3. Let X be a set and I be an ideal on a set X. We define the
ideal coarse structure to be the family

EI = cl({EI | I ∈ I}), where, for every I ∈ I, EI = ∆X ∪ (I × I).

Note that, for every I, J ∈ I, E−1
I = EI , EI ∪EJ ⊆ EI∪J and EI ◦EJ ⊆ EI∪J ,

which imply that EI is actually a coarse structure. The above construction can
be carried out in the presence of a filter ϕ of subsets of the set X. Then the
family Iϕ = {X \ V | V ∈ ϕ} is an ideal. The coarse structure induced by a
filter ϕ is also called filter coarse structure. These structures have been defined
and widely studied in [134]. However, the authors used balleans in order to
introduce them. We devote §3.2 to their introduction.

Remark 3.1.4. While uniformities capture the small-scale properties of spaces,
coarse structures encode their large-scale behaviour. In order to clarify this idea,
let us consider the following constructions. Let (X, d) be a metric space, and
let us derived two more metrics from d: for every x, y ∈ X,

d1(x, y) = min{d(x, y), 1}, and d2(x, y) =

{
0 if x = y,

max{d(x, y), 1} otherwise.

From the large-scale point of view, d1 loses a lot of information, in fact Ed1 =
Etriv, while it keeps all the important features from the small-scale point of
view, and, in fact, Ud = Ud1 . Conversely, the metric space (X, d2) is discrete
and Ud 6= Ud2 , but Ed = Ed2 .

Similarly to how uniformities and their generalisations induce (weak) neigh-
bourhood systems, entourage structures induce para-bornologies. Let (X, E) be
an entourage space. Then the uniform para-bornology βE is defined as follows:
for every x ∈ X,

βE(x) = {E[x] | E ∈ E}. (3.2)
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Remark 3.1.5. (a) If E is a semi-coarse structure (a quasi-coarse structure),
then βE is a semi-bornology (a quasi-bornology, respectively).

(b) Let X be a set. Then βdis = βEdis
and βtriv = βEtriv .

(c) Let d be an extended semi-positive-definite map d on a set X. Then βd =
βEd

.

Let (X, β) be a para-bornological space.

• The para-bornology β is said to be a uniformisable para-bornology if there
exists an entourage structure E over X such that β = βE .

• If β is a semi-bornology, then β is said to be a uniformisable semi-bornology
provided that there exists a semi-coarse structure E over X such that β = βE .

• If β is a quasi-bornology, then β is said to be a uniformisable quasi-bornology
provided that there exists a quasi-coarse structure E over X such that β = βE .

• If β is a pre-bornology, then β is said to be a uniformisable pre-bornology
provided that there exists a coarse structure E over X such that β = βE .

An important notion in coarse geometry is boundedness. A subset A of a
coarse space (X, E) is called bounded if it satisfies one of the following equivalent
properties:

(B1) there exists x ∈ A and E ∈ E such that A ⊆ E[x] (equivalently, A is
bounded from x with respect to the uniform para-bornology βE);

(B2) for every x ∈ A, there exists Ex ∈ E such that A ⊆ Ex[x] (equivalently, A
is bounded with respect to the uniform para-bornology βE);

(B3) there exists E ∈ E such that, for every x ∈ A, A ⊆ E[x] (equivalently,
A×A ∈ E).

Moreover, the pre-bornology βE , seen as family of subsets of X (see Remark
2.1.3) consists of the bounded subsets ofX. However, ifX is an entourage space,
although the implications (B3)→(B2)→(B1) hold, (B1)–(B3) are not equivalent
any more, as Example 3.1.6 shows.

Example 3.1.6. (a) Let X = {0, 1, 2} and consider the semi-coarse structure
E1 = cl({{(0, 1), (0, 2), (1, 0), (2, 0)} ∪∆X}) and the quasi-coarse structure E2 =
cl({{(0, 1), (0, 2)}∪∆X}). Then the whole space X satisfies (B1) in both E1 and
E2, but it does not satisfy (B2).

(b) Let X = N and d and d′ be a semi-metric and a quasi-metric defined as
follows: for every m,n ∈ N,

d(m,n) =

{
0 if m = n,

min{m,n} otherwise,
and d′(m,n) =

{
0 if n > m,

m− n otherwise.

Then X satisfies (B2) in both the semi-coarse structure Ed and the quasi-coarse
structure Ed′ , but it does not satisfy (B3).

Let (X, E) be an entourage space. ThenX is locally finite if the uniform para-
bornological space (X, βE) is locally finite. Let us introduce also the ‘uniform’
version of this property. The space X has bounded geometry if there exists a
map ϕ : E → N such that, for every E ∈ E and x ∈ X, |E[x]| ≤ ϕ(E).

Let (X, E) be a locally finite entourage structure. Then a subset A of X
satisfies (B2) if and only if it satisfies (B3). In fact, if X is locally finite, then
every subset A satisfying (B2) is finite. Hence E =

⋃
x∈AEx ∈ E and this

entourage shows that A satisfies (B3).
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A family {Ai}i∈I of subsets of an entourage space (X, E) is uniformly bounded
if there exists E ∈ E such that, for every i ∈ I and every x ∈ Ai, Ai ⊆ E[x]. In
particular, every element of a uniformly bounded family satisfies (B3).

Similarly to what we have done for the notion of local finiteness, we can lift
all the properties defined for para-bornological spaces to entourage spaces: an
entourage space has the property P if the associated uniform para-bornological
space has the property P . Hence, for example, an entourage space has the
property C1 if the associated uniform para-bornological space has it. Similarly
all the other connectedness axioms can be induced. The same reasoning can be
applied to the operators defined in (2.3) that are inherited by entourage spaces,
and to the notion of connected component. If (X, E) is an entourage space, then
denote dsc(X,βE) by dsc(X, E).

Remark 3.1.7. Let (X, E) be a coarse space. Then βE satisfies C1 if and only
if βE satisfies C4 if and only if

⋃
E = X × X. In that case, the coarse space

is called connected also in [157]. This remark shows another similarity between
connectedness axioms and separation axioms in toplogy. In fact, if (X,U) is
a uniform space, the induced topology τU on X satisfies (T1) if and only if it
satisfies (T3,5) if and only if

⋂
U = ∆X .

Example 3.1.8. One may ask whether there are quasi-coarse spaces that satisfy
C4, but they are not semi-coarse spaces.

Let (X, d) be a metric space and let h : X → R be an arbitrary function.
Then the function dh : X → R≥0, defined by the law

dh(x, y) =

{
d(x, y) + h(y)− h(x) if h(y)− h(x) ≥ 0,

d(x, y) otherwise,

for every x, y ∈ X, is a quasi-metric.

Let now X = Z, d be the usual euclidean metric, and h(x) = x3. Then
(Z, Edh) is a quasi-coarse space, since dh is a quasi-metric, and it is C4. However,
it is not a coarse space. In fact, for every R ≥ 0 and every z ∈ R, dh(z+R, z) =
R, while dh(z, z+R) = R(1+3z2 +3zR+R2), and the latter strongly depends
on the point z. Hence, even though {(z+R, z) | z ∈ Z} ⊆ ER ∈ Ed, there exists
no S ≥ 0 such that {(z, z +R) | z ∈ R} ⊆ ES .

In Example 3.1.2 we introduced metric entourage structures. We now want
to characterise those structures.

Let (X, E) be an entourage structure. Define its cofinality as follows: cf E =
inf{|B| | cl(B) = E}.

Proposition 3.1.9. Let (X, E) be an entourage space.

(a) There exists an extended semi-positive-definite map d on X such that E = Ed
if and only if cf E ≤ ω.

(b) Suppose that E is a semi-coarse structure. Then there exists a semi-metric
d on X such that E = Ed if and only if cf E ≤ ω.

Proof. First of all, the ‘only if’ implications in both items (a) and (b) are trivial
since he family {Udn | n ∈ N}, in the notation of (3.1), is a base of Ed.

(a,←) Let {Fn | n ∈ N} be a countable base of E , and, without loss of
generality, we can ask that F0 = ∆X and Fn ⊆ Fn+1, for every n ∈ N. Then



3.1 Coarse spaces and their generalisations 43

define a map d : X ×X → N as follows: for every x, y ∈ X,

d(x, y) =

{
min{n | y ∈ Fn[x]} if it exists,

∞ otherwise.
(3.3)

It is easy to check that d satisfies the required properties.

(b,←) Suppose that E is a semi-coarse structure with cf E ≤ ω. Then we
can choose a base {Fn | n ∈ N} as in item (a) with the further property that
Fn = F−1

n , for every n ∈ N. Then the map d defined as in (3.3) satisfies the
desired properties.

Note that the maps d in Proposition 3.1.9 do not assume value ∞ if and
only if (X, E) is C4.

The case where the entourage space is a quasi-coarse space (or a coarse space,
in particular, which is a classical result) will be discussed in §3.4.1.

3.1.1 Morphisms between entourage spaces

Let us now introduce the morphisms between those spaces, which are the
‘uniform’ versions of the ones in Definition 2.1.6.

Definition 3.1.10. A map f : (X, EX) → (Y, EY ) between entourage spaces is
said to be

• bornologous (or uniformly boundedness preserving, coarsely uniform, coarse)
if (f × f)(E) ∈ EY , for every E ∈ EX ;

• uniformly weakly boundedness copreserving if, for every E ∈ EY , there exists
F ∈ EX such that (f × f)(F ) = E ∩ (f(X)× f(X));

• uniformly boundedness copreserving if, for every E ∈ EY , there exists F ∈ EX
such that, for every x ∈ X, E[f(x)] ∩ f(X) ⊆ f(F [x]);

• effectively proper (or uniformly proper) if, for every E ∈ EY , (f × f)
−1(E) ∈

EX ;
• a coarse embedding if it is both bornologous and effectively proper;
• an asymorphism if it is bijective and both f and f−1 are bornologous.

Let us underline that the term coarse usually has a meaning which is different
from the one given in Definition 3.1.10 (and used in some papers, like, for
example, [55]). For example in [157], a map between coarse spaces is coarse if it
is both bornologous and proper (i.e., the induced map between the corresponding
pre-bornological space is proper).

Note that all the properties introduced in Definition 3.1.10 can be checked
just for all the entourages that belong to some base of the entourage structures.

Remark 3.1.11. Let f : (X, dX) → (Y, dY ) be a map between metric spaces.
Then the following properties hold:

(a) f : (X, dX) → (Y, dY ) is bornologous (as a map between metric spaces, as
defined in §1.1) if and only if f : (X, EdX ) → (Y, EdY ) is bornologous (as a
map between coarse spaces, Definition 3.1.10);

(b) f : (X, dX) → (Y, dY ) is a coarse equivalence (as a map between metric
spaces, as defined in §1.1) if and only if f : (X, EdX ) → (Y, EdY ) is a coarse
equivalence (as a map between coarse spaces, Definition 3.1.10).
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Similarly to Example 2.1.7, we can provide first trivial examples of the prop-
erties enlisted in Definition 3.1.10.

Example 3.1.12. Let f : (X, EX)→ (Y, EY ) be a map between two entourage
spaces. Then the following properties trivially hold:

(a) if EX is the discrete coarse structure, then f is bornologous;
(b) if EY is the discrete coarse structure, then f is uniformly boundedness co-

preserving;
(c) if EX is the trivial coarse structure, then f is effectively proper;
(d) if EY is the trivial coarse structure, then f is bornologous;
(e) if EX is discrete and f is effectively proper, then f is an injective coarse

embedding;
(f) if EX and EY are both discrete or both trivial, then f is an asymorphism if

and only if it is bijective.

Let us show that the notions in Definition 2.1.6 are the uniform version of
Definition 3.1.10. Let us start with a preliminary result.

Lemma 3.1.13. Let f : X → Y be a map between sets, and E ⊆ X×X. Then,
for every x ∈ X, (f × f)(E)[f(x)] =

⋃
z∈f−1(f(x)) f(E[z]).

Proof. Let us prove the inclusion (⊇). In order to do that, it is enough to show
that (f × f)(E)[f(x)] ⊇ f(E[x]). Consider an arbitrary y ∈ f(E[x]) and take
z ∈ f−1(y) such that (x, z) ∈ E. Then (f(x), y) = (f(x), f(z)) ∈ (f × f)(E),
which shows that y ∈ ((f × f)(E))[f(x)].

Conversely, let f(y) ∈ (f × f)(E)[f(x)]. Since (f(x), f(y)) ∈ (f × f)(E),
there exists z, w ∈ X such that (z, w) ∈ E, f(x) = f(z), and f(y) = f(w).
Hence f(y) = f(w) ∈ f(E[z]), and z ∈ f−1(f(x)).

Proposition 3.1.14. Let f : (X, EX) → (Y, EY ) be a map between entourage
spaces.

(a) If f is bornologous, then f : (X, βEX
)→ (Y, βEY

) is boundedness preserving.
(b) If f is uniformly weakly boundedness copreserving, then f : (X, βEX

) →
(Y, βEY

) is weakly boundedness copreserving.
(c) If f is uniformly boundedness copreserving, then f : (X, βEX

)→ (Y, βEY
) is

boundedness copreserving.
(d) If f is effectively proper, then f : (X,βEX

)→ (Y, βEY
) is proper.

Proof. The desired implications are easy to check. Let us just show for example
item (c). Let x ∈ X, and A ∈ βEY

(f(x)). Then there exists E ∈ EY such
that A = E[f(x)]. Since f is uniformly weakly boundedness copreserving, there
exists F ∈ EX such that E ∩ (f(X) × f(X)) = (f × f)(F ). Then, thanks to
Lemma 3.1.13, we have the following chain

A ∩ f(X) = E[f(x)] ∩ f(X) ⊆ (E ∩ (f(X)× f(X))[f(x)] =

= (f × f)(F )[f(x)] =
⋃

z∈f−1(f(x))

f(F [z]),

where F [z] ∈ βEX
(z).

It is easy to check that composites of bornologous maps are bornologous.
Moreover, we have the following result.
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Proposition 3.1.15. Let f : (X, EX) → (Y, EY ) be a map between entourage
spaces. Then:

(a) if f is effectively proper, then f is uniformly boundedness copreserving;
(b) if f is uniformly boundedness copreserving, then f is uniformly weakly

boundedness copreserving.

Proof. (a) Suppose that f is effectively proper and let E ∈ EY . Then, for every
x ∈ X, E[f(x)]∩f(X) ⊆ f((f ×f)−1(E)[x]). In fact, for every y ∈ X such that
(f(x), f(y)) ∈ E, (x, y) ∈ (f × f)−1(E) and so f(y) ∈ f((f × f)−1(E)[x]).

(b) Suppose now that f is uniformly boundedness copreserving and let E ∈
EY . Let F ∈ EX be an entourage such that, for every x ∈ X, E[f(x)] ∩ f(X) ⊆
f(F [x]). We claim that E ∩ (f(X) × f(X)) ⊆ (f × f)(F ). Let (u, v) ∈ E ∩
(f(X) × f(X)). There exists z ∈ f−1(u), and so v ∈ E[f(z)] ∩ f(X), which
implies that there exists w ∈ F [z] ∩ f−1(v). Finally, note that (z, w) ∈ F and
(u, v) = (f(z), f(w)) ∈ (f × f)(F ).

If f is injective, then both implications of Proposition 3.1.15 can be easily
reverted. Proposition 3.1.16 gives another condition that implies their reversibil-
ity.

Note that a map f : (X, EX) → Y from an entourage space to a set has
uniformly bounded fibres if and only if Rf = {(x, y) ∈ X ×X | f(x) = f(y)} ∈
EX . We call such a map large-scale injective.

Proposition 3.1.16. Let f : (X, EX) → (Y, EY ) be a map between entourage
spaces. If f is effectively proper, then f is large-scale injective. Moreover, if EX
is a quasi-coarse structure, then the following properties are equivalent:

(a) f is large-scale injective and it is uniformly weakly boundedness copreserv-
ing;

(b) f is large-scale injective and it is uniformly boundedness copreserving;
(c) f is effectively proper.

Proof. The first statement can be easily proved: since ∆Y ∈ EY , then Rf =
(f × f)−1(∆Y ) ∈ EX .

In view of Proposition 3.1.15, we just need to show the implication (a)→(c).
Suppose now that f is uniformly weakly boundedness copreserving and Rf ∈
EX . Let E ∈ EY and (x, y) be an arbitrary pair in (f × f)−1(E). Let F ∈ EX
such that (f × f)(F ) = E ∩ (f(X)× f(X)). Then there exists (z, w) ∈ F such
that (f(x), f(y)) = (f(z), f(w)) and thus

(x, y) = (x, z) ◦ (z, w) ◦ (w, y) ∈ Rf ◦ F ◦Rf ∈ EX .

Trivially, for a bijective map f : (X, EX)→ (Y, EY ) between entourage spaces
the following properties are equivalent:

• f is an asymorphism;
• f is bornologous and uniformly weakly boundedness copreserving;
• f is bornologous and uniformly boundedness copreserving;
• f is bornologous and effectively proper.

Let (X, EX) and (Y, EY ) be two asymorphic entourage spaces. Then EX is a
semi-coarse structure (quasi-coarse structure) if and only if EY is a semi-coarse
structure (quasi-coarse structure, respectively). For the proof of this fact, we
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address to [144], where the authors used the equivalent approach through ball
structures (see §3.2 for the introduction of these structures).

Furthermore, if X and Y are two asymorphic entourage spaces, then X
satisfies Ci, where i ∈ {1, 2, 3

′, 3′′, 4}, if and only if Y satisfies Ci.

Some properties of entourage spaces are preserved even if the map is not
necessarily an asymorphism, as the following result shows.

Proposition 3.1.17. Let f : (X, EX) → (Y, EY ) be a uniformly boundedness
copreserving surjective map between entourage spaces. Then Y has bounded
geometry (Y is locally finite) whenever X has bounded geometry (X is locally
finite, respectively).

Proof. Suppose that ϕ : EX → N is a map that demonstrates that (X, EX) has
bounded geometry. Let E ∈ EY . Then there exists F ∈ EX such that, for
every x ∈ X, E[f(x)] ⊆ f(F [x]). Hence, |E[f(x)]| ≤ |F [x]| ≤ ϕ(F ). The other
implication can be similarly proved.

Remark 3.1.18. Let us discuss the uniform counterpart of Remark 2.1.14. Let
f : (X, EX) → (Y, EY ) be a map between entourage spaces, and Z ⊆ X. One
can easily shows that:

(a) if f is bornologous, then so is f |Z ;
(b) if f is effectively proper, then so is f |Z ;
(c) if f is large-scale injective, then so is f |Z .

However, in Example 4.3.7 we provide a uniformly boundedness copreserving
map between entourage spaces whose restriction is not even uniformly weakly
boundedness copreserving.

Let X be a set. Similarly to what we have done for the family PB(X) of
para-bornologies on X, we can construct the lattice of entourage structures on
X. Denote that family by E(X). The lattice E(X) is ordered by inclusion.
More precisely, let X be a set and E , E ′ ∈ E(X) be two entourage structures.
Then we say that E is finer than E ′ if E ⊆ E ′ (and E ′ is coarser than E).
Equivalently, E is finer than E ′ if and only if the map idX : (X, E) → (X, E ′)
is bornologous. Moreover, E(X) has the trivial coarse structure as top element
and the discrete coarse structure as minimum element. Finally, E(X) is a com-
plete lattice. In fact, for every family {Ei}i∈I of entourage structures,

⋂
i Ei

is an entourage structure and so their meet
∧
i Ei. Moreover, if Ei is a semi-

coarse structure (quasi-coarse structure), for every i ∈ I, then also
⋂
i Ei is a

semi-coarse structure (quasi-coarse structure, respectively). Hence, the join of a
family of entourage structures (semi-coarse structures, quasi-coarse structures,
coarse structures) {Ei}i∈I on a set X can be defined as the entourage structure∨
i Ei (semi-coarse structure, quasi-coarse structure, coarse structure, respec-

tively) generated by
⋃
i Ei, i.e., the finest structure that contains Ei, for every

i ∈ I.

Let X be a set and E , E ′ ∈ E(X). According to Proposition 3.1.14, if E
is finer that E ′, then also βE is finer than βE′ . However the converse is not
true. In Example 4.3.7(b) we provide two entourage structures E1 and E2 that
are not compatible (i.e., E1 6⊆ E2 and E2 6⊆ E1) although they induce the same
para-bornology.
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3.2 Approach via ball structures

Let (X, E) be an entourage space. Then we can associate to E a triple
BE = (X,PE , BE), where PE = {E ∈ E | ∆X ⊆ E} and BE(x,E) = E[x], for
every x ∈ X and every E ∈ P . It is an example of ball structure.

Definition 3.2.1. ([144, 151]) A ball structure is a triple B = (X,P,B) where
X and P are sets, P 6= ∅, and B : X×P → P(X) is a map, such that x ∈ B(x, r)
for every x ∈ X and every r ∈ P . The setX is called support of the ball structure,
P – set of radii of a ball structure, and B(x, r) – ball of center x and radius r.
In case X = ∅, the map B is the empty map.

The terminology and the intuition come from the metric setting: if (X, d) is
a metric space, then Bd = (X,R≥0, Bd) is a ball structure, called metric ballean.

For a ball structure (X,P,B), x ∈ X, r ∈ P and a subset A of X, one puts

B∗(x, r) = {y ∈ X | x ∈ B(y, r)} and B(A, r) =
⋃
{B(x, r) | x ∈ A}.

A ball structure B = (X,P,B) is said to be:

• weakly upper multiplicative if, for every pair of radii r, s ∈ P there exists t ∈ P
such that B(x, r) ∪B(x, s) ⊆ B(x, t), for every x ∈ X;

• upper multiplicative if, for every pair of radii r, s ∈ P there exists t ∈ P such
that B(B(x, r), s) ⊆ B(x, t), for every x ∈ X;
• upper symmetric if, for every pair of radii r, s ∈ P there exist r′, s′ ∈ P such

that B∗(x, r) ⊆ B(x, r′) and B(x, s) ⊆ B∗(x, s′), for every x ∈ X.

It is trivial that upper multiplicativity implies weak upper multiplicativity since
every ball contains its center.

Definition 3.2.2. A ball structure is

• a semi-ballean if it is weakly upper multiplicative and upper symmetric;
• a quasi-ballean if it is upper multiplicative;
• a ballean ([144]) if it is both a semi-ballean and a quasi-ballean.

For every entourage space (X, E), BE is indeed a weakly upper multiplicative
ball structure. Moreover, if E is a semi-coarse structure, then BE is a semi-
ballean, while, if E is a quasi-coarse structure, then BE is a quasi-ballean.

We have seen how we construct ball structures from entourage structures.
Let us now discuss the opposite construction. Let B = (X,P,B) be a weakly
upper multiplicative ball structure. Then we can define an associated entourage
structure EB of X as follows: for every r ∈ P ,

Er =
⋃

x∈X

({x} ×B(x, r)),

and the family {Er | r ∈ P} is a base for the entourage structure EB. Moreover,

• if B is a semi-ballean, then EB is a semi-coarse structure;
• if B is a quasi-ballean, then EB is a quasi-coarse structure;
• if B is a ballean, then EB is a coarse structure.

Let B and B′ be two weakly upper multiplicative ball structures on the same
support X. Then we identify those two ball structures and we write B = B′,
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if EB = EB′ . We soon give a characterization of the equality between ball
structures. Hence, for every entourage space (X, E) and every weakly upper
multiplicative ball structure B on X,

EBE
= E and BEB

= B.

The equivalence between coarse structures and balleans have been widely dis-
cussed for example in [151, 65].

In the sequel of this thesis, we are going to use ball structures and entourage
structures interchangeably. Hence, it will be convenient to translate some of
the notions already defined in terms of balls. More notions will be translated in
§5.1.

Let B = (X,PX , BX) and BY = (Y, PY , BY ) be two weakly upper multi-
plicative ball structures and f : X → Y be a map. The map f is bornologous if
the following equivalent properties are fulfilled:

• f : (X, EBX
)→ (Y, EBY

) is bornologous;
• for every radius r ∈ PX , there exists s ∈ PY such that f(BX(x, r)) ⊆
BY (f(x), s), for every x ∈ X.

Similarly, f is uniformly boundedness copreserving if the following equivalent
properties are satisfies:

• f : (X, EBX
)→ (Y, EBY

) is uniformly boundedness copreserving;
• for every s ∈ PY , there exists r ∈ PX such that BY (f(x), s) ∩ f(X) ⊆
f(BX(x, r)), for every x ∈ X.

Thanks to the previous characterisation of being uniformly boundedness
copreserving, it is clear that this notion generalises the one of ≻-mapping ([151]).
A map f : (X,PX , BX) → (Y, PY , BY ) between balleans is a ≻-mapping if, for
every s ∈ PY , there exists r ∈ PX such that BY (f(x), s) ⊆ f(BX(x, r)), for
every x ∈ X. Of course, a surjective map is uniformly boundedness copreserving
if and only if it is a ≻-mapping. However, the second definition is very restrictive
when the map is not surjective. In fact, if a map f : (X, EX)→ (Y, EY ) is a ≻-
mapping, then, if (f(x), y) ∈ E for some E ∈ EY , x ∈ X and y ∈ Y , then
y ∈ f(X) (equivalently, QY (f(X)) = f(X)).

Finally, let us give the promised characterisation of the equality between ball
structures on the same support. If B and B′ are two ball structure on a set X,
then B is finer than B′ and we write B ≺ B′ if idX : B → B′ is bornologous.
Moreover,

B = B′ if and only if B ≺ B′ and B′ ≺ B

if and only if idX : B→ B′ is an asymorphism,
(3.4)

i.e., a bijective and bornologous map whose inverse is bornologous.

Remark 3.2.3. Let (X, E) be an entourage space and B be a base of E . Then
we can associate to B a ball structure BB = (X,PB, BB) as follows: PB = {E ∈
B | ∆X ⊆ E} and, for every x ∈ X and E ∈ PB, BB(x,E) = E[x]. Then, using
the fact that B is a base of E , it is easy to see that actually BB = BE .

We have briefly recalled how coarse spaces and balleans are equivalent con-
structions. In the literature, there is a third way to describe coarse spaces by
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using coverings: the so-called large-scale structures ([72], also know as asymp-
totic proximities in [140]). Those are large-scale counterpart of the classical ap-
proach to uniformities via coverings (see [104]). Moreover, in [136], the authors
presented a way to use the covering approach to describe quasi-uniformities.
Hence the following question naturally arises.

Question 3.2.4. Is it possible to give a characterisation of entourage structures,
semi-coarse structures or quasi-coarse structures through coverings?

3.3 Examples of entourage spaces

In this section we enlist some examples of entourage spaces.

3.3.1 Relation entourage structures and para-bornologies

Let R be a reflexive relation over a set X. In other words, R ⊆ X ×X is
an entourage containing the diagonal ∆X . Then we can canonically define an
entourage structure ER = cl({R}), which is called relation entourage structure.
Moreover, R is symmetric if and only if ER is a semi-coarse structure, while
R is transitive if and only if ER is a quasi-coarse structure. Furthermore, note
that, (ER)−1 = ER−1 , where R−1 denotes the inverse of R as an entourage.

Remark 3.3.1. Note that, if (X,≥) is a preordered set and d≥ is defined as in
Example 1.1.11, then Ed≥ = E≥.

Another entourage structure that can be defined from a reflexive relation R

on a set X is the following: Efin
R

= cl([R]<ω ∪ {∆X}).

The previous entourage structures defined on a set X endowed with a re-
flexive relation R induce two different para-bornologies: βR = βER

and βfin
R

=

βEfin
R

. More explicitly, for every x ∈ X, βR(x) = cl({R[x]}), while βfin
R

(x) =

[R[x]]<ω.

It is easy to verify the following result.

Proposition 3.3.2. Let f : (X,RX)→ (Y,RY ) be a map between sets endowed
with reflexive relations. Then the following properties are equivalent:

(a) f preserves the relation (i.e., for every x, y ∈ X, f(x)RY f(y) provided that
xRXy);

(b) f : (X, ERX
)→ (Y, ERY

) is bornologous;
(c) f : (X, (ERX

)−1)→ (Y, (ERY
)−1) is bornologous;

(d) f : (X, Efin
RX

)→ (Y, Efin
RY

) is bornologous;

(e) f : (X, (Efin
RX

)−1)→ (Y, (Efin
RY

)−1) is bornologous;
(f) f : (X, βRX

)→ (Y, βRY
) is boundedness preserving;

(g) f : (X, β
R

−1
X

)→ (Y, β
R

−1
Y

) is boundedness preserving;

(h) f : (X, βfin
RX

)→ (Y, βfin
RY

) is boundedness preserving;

(i) f : (X, βfin
R

−1
X

)→ (Y, βfin
R

−1
Y

) is boundedness preserving.

An equivalence similar to (b)↔(f) of Proposition 3.3.2 can be stated also for
other properties of maps.
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Proposition 3.3.3. Let f : (X,RX)→ (Y,RY ) be a map between sets endowed
with reflexive relations. Then the following properties hold:

(a) f : (X, ERX
) → (Y, ERY

) is uniformly weakly boundedness copreserving if
and only if f : (X, βRX

)→ (Y, βRY
) is weakly boundedness copreserving;

(b) f : (X, ERX
)→ (Y, ERY

) is uniformly boundedness copreserving if and only
if f : (X, βRX

)→ (Y, βRY
) is boundedness copreserving;

(c) f : (X, ERX
) → (Y, ERY

) is effectively proper if and only if f : (X, βRX
) →

(Y, βRY
) is proper.

We have discussed how one can construct entourage structures from reflexive
relations. Now, we focus on the opposite process. Let (X, E) be an entourage
space. Then we define RE =

⋃
E , which is a reflexive relation since ∆X ∈ E .

Moreover, if E is a semi-coarse structure, then RE is symmetric, and, if E is a
quasi-coarse structure, then RE is transitive.

Note that, if R is a reflexive relation on X, then

R = RER
= REfin

R

.

Meanwhile, if (X, E) is an entourage space, then

Efin
RE
⊆ E ⊆ ERE

. (3.5)

The inclusions in (3.5) can be strict. Consider, for example, R endowed with

the usual metric d. Then Efin
REd

( Ed ( EREd
. Furthermore, note that E = ERE

if and only if
⋃
E ∈ E and, thus, every entourage structure E on a finite set X

is a relation entourage structure. This observation will be used also in Remark
3.4.9.

Let us now consider a para-bornological space (X,β). Then we can associate
to it a relation Rβ , namely the reflexive relation ↓. Note that, if β is a uniform
para-bornology, induced by the entourage structure E , then Rβ = RE =

⋃
E .

The relation Rβ symmetric if and only if β satisfies (G1), and is transitive if β
satisfies (G2). Actually, there exist para-bornologies without (G2) that induce
transitive relation. For example, take X = N, β(0) = [N]<ω and, for every
n ∈ N \ {0}, β(n) = cl({N}).

Also for a para-bornological space (X, β) we can deduce a chain similar to
(3.5):

βfin
Rβ
≤ β ≤ βRβ

; (3.6)

moreover, βfin
Rβ

= β if and only if β is locally finite and β = βRβ
if and only if,

for every x ∈ X,
⋃
β(x) ∈ β(x). Furthermore, also the relations in (3.6) can be

strict, and this can be again shown by considering R endowed with the usual
metric.

3.3.2 Graphic quasi-coarse structures

In Example 1.1.12, we described how the family of vertices of a directed
graph can be endowed with a quasi-metric, namely, the path quasi-metric. The
induced metric entourage structure Ed, which is a quasi-coarse structure, is
called graphic quasi-coarse structure.
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The graphic quasi-coarse space can be extended to the points on the graph
edges, by identifying every edge with the interval [0, 1] endowed with the relation
quasi-coarse structure associated to the usual order ≤ on [0, 1]. More precisely,
if Γ = (V,E) is a directed graph and (v, w) ∈ E, then we identify 0 with v and 1
with w, respectively. This new quasi-coarse structure is called extended graphic
quasi-coarse structure.

Let f : Γ(V,E) → Γ′(V ′, E′) be a map between oriented graphs. Then f is
said to be a graph homomorphism if, for every (x, y) ∈ E, either f(x) = f(y) or
(f(x), f(y)) ∈ E′. If f : Γ(V,E)→ Γ′(V ′, E′) is a graph homomorphism, then f
sends directed paths into non-longer directed paths. Hence f : (V, d) → (V ′, d)
is non-expanding (i.e., d(f(x), f(y)) ≤ d(x, y), for every x, y ∈ V ), and thus
f : (V, Ed)→ (V ′, Ed) is bornologous.

3.3.3 Entourage hyperstructures

Let (X, E) be an entourage structure. We define the following two entourage
structures on P(X):

H(E) = cl({H(E) | ∆X ⊆ E ∈ E}) and

exp E = cl({expE | ∆X ⊆ E ∈ E}) = H(E) ∩H(E)
−1,

where, for every E ∈ E ,

H(E) = {(A,B) | B ⊆ E[A]} and exp(E) = H(E) ∩H(E)−1,

named entourage hyperstructure and semi-coarse hyperstructure, respectively.
The way we obtained semi-coarse hyperstructures from entourage hyperstruc-
tures will be generalised in §4.2.

Remark 3.3.4. Let (X, d) be a metric space. In Example 1.1.10, we described
the Hausdorff quasi-metric dqH on P(X). It is easy to prove that actually EdqH =
H(Ed).

First of all, note that, if E is an entourage structure, then both H(E) and
exp E are entourage structures since H(E)∪H(F ) ⊆ H(E∪F ), for every E,F ∈
E . More precisely, exp E is actually a semi-coarse structure. Furthermore, if E
is quasi-coarse structure, then H(E) is a quasi-coarse structure, while exp E is
a coarse structure. In fact, for every E,F ∈ E , if (A,C) ∈ H(E) ◦ H(F ), there
exists B ⊆ X such that (A,B) ∈ H(E) and (B,C) ∈ H(F ). Then B ⊆ E[A]
and C ⊆ F [B], which implies that C ⊆ F [E[A]] = (F ◦ E)[A] and so (A,C) ∈
H(F ◦E). Note that H(E) is not a semi-coarse structure, unless the support X
of E is empty: in fact, (X, ∅) ∈ H(∆X), although, for every E ∈ E , E[∅] = ∅.
Moreover, even if we consider the subspace (P(X) \ {∅},H(E)|P(X)\{∅}), it is a
semi-coarse structure if and only if X satisfies (B3). In fact, (X, {x}) ∈ H(∆X),
for every x ∈ X.

Every map f : X → Y between sets can be extended to a map f : P(X) →
P(Y ) such that, for every A ∈ P(X), f(A) = f(A) ∈ P(Y ).

Proposition 3.3.5. Let f : (X, EX) → (Y, EY ) be a map between entourage
spaces. The following properties are equivalent:

(a) f : (X, EX)→ (Y, EY ) is bornologous;
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(b) f : (P(X),H(EX))→ (P(Y ),H(EY )) is bornologous.

Proof. As for the implication (a)→(b), if f is bornologous, then the inclusion
(f×f)(H(E)) ⊆ H((f×f)(E)), for every E ∈ EX , holds, and the thesis follows.
Conversely, (b)→(a) is a consequence of the fact that, for every entourage space
(Z, EZ), if E ∈ EZ and x, y ∈ Z, then (x, y) ∈ E if and only if ({x}, {y}) ∈
H(E).

3.3.4 Finitely generated monoids

In this subsection we want to briefly discuss the existence of precisely two
inner quasi-coarse structures on a finitely generated monoid (see Proposition
3.3.6). The proof we give is similar to the proof of Proposition 1.1.4, which is
the case of finitely generated groups (see, for example, [92]).

Let M be a monoid which is finitely generated by Σ. In Example 1.1.13 we
defined the left, dλΣ, and the right, dρΣ, word quasi-metrics. These quasi-metrics
induce quasi-coarse structures on the monoid.

Proposition 3.3.6. Let M be a monoid and Σ and ∆ be two finite subsets of
M which generate the whole monoid. Then EdλΣ = Edλ∆ and EdρΣ = Edρ∆ .

Proof. Define k = max{dλ∆(e, σ) | σ ∈ Σ} and l = max{dλΣ(e, δ) | δ ∈ ∆}.
Let x, y ∈ M , suppose that dλΣ(x, y) = n and let σ1, . . . , σn ∈ Σ such that
y = xσ1 · · ·σn. Suppose that σi = δi,1 · · · δi,ki , for every i = 1, . . . , n, where
ki = dλ∆(e, σi) and δi,j ∈ ∆, for every i = 1, . . . , n and j = 1, . . . , ki. Then

y = xσ1 · · ·σn = xδ1,1 · · · δ1,k1δ2,1 · · · δn,kn

and so dλ∆(x, y) ≤
∑n
i=1 ki ≤ nk = kdλΣ(x, y). Hence, EdλΣ ⊆ Edλ∆ . Similarly,

dλΣ(x, y) ≤ ldλ∆(x, y) and then Edλ∆ ⊆ EdλΣ . A similar proof shows that EdρΣ =
Edρ∆ .

3.4 The Sym-coarse equivalence

In this section we focus on quasi-coarse spaces. We want to introduce another
equivalence notion, which will be more flexible than the one of asymorphism.
In order to do that, we need to fix some terminology and notation. Two maps
f, g : S → (X, E) from a set to a quasi-coarse space are Sym-close, and we denote
it by f ∼Sym g, if {(f(x), g(x)), (g(x), f(x)) | x ∈ X} ∈ E . Note that the Sym-
closeness relation just defined is an equivalence relation. In §4.2.1 we provide a
categorical justification to this definition.

Remark 3.4.1. Let f, g : S → (X, E) be two maps from a set to a quasi-coarse
space. If f = g, then f ∼Sym g. The converse implication is not always true.
However, if EY is the discrete coarse structure over Y , then f ∼Sym g if and
only if f = g.

Remark 3.4.2. It will be useful to check that some large-scale properties of a
map are shared by all the maps in its equivalent class under Sym-closeness. Let
us fix a pair of Sym-close maps f, g : (X, EX) → (Y, EY ) between quasi-coarse
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spaces. Since they are Sym-close, M = {(f(x), g(x)), (g(x), f(x)) | x ∈ X} ∈
EY . This remark will be used in §5.3.

(a) We claim that f is bornologous if and only if g is bornologous. In fact, let
us assume that f is bornologous, and let E ∈ EX be an arbitrary entourage.
Then, for every (x, y) ∈ E

(g×g)(x, y) = (g(x), f(x))◦ (f(x), f(y))◦ (f(y), g(y)) ∈M ◦ (f ×f)(E)◦M,

which shows that (g × g)(E) ⊆M ◦ (f × f)(E) ◦M ∈ EY .
(b) Similarly to what we have done for the item (a), we can prove that f

is effectively proper if and only if g is effectively proper. In fact, if f is
effectively proper, for every E ∈ EY , (g× g)

−1(E) ⊆ (f × f)−1(M ◦E ◦M).
(c) The map f is large-scale surjective if and only if g is large-scale surjective.

Let E ∈ EY be an entourage such that E[f(X)] = Y . Then

(M ◦ E)[g(X)] = E[M [g(X)]] ⊆ E[f(X)] = Y.

Let f : X → Y be a map between quasi-coarse spaces. Then a map g : Y →
X is a Sym-coarse inverse of f if g ◦ f ∼Sym idX and f ◦ g ∼Sym idY .

Definition 3.4.3. Let f : (X, EX) → (Y, EY ) be a map between quasi-coarse
spaces. Then f is a Sym-coarse equivalence if it is bornologous and has a Sym-
coarse inverse g : Y → X which is bornologous.

Two quasi-coarse spaces are Sym-coarsely equivalent if there exists a Sym-
coarse equivalence between them.

In Theorem 3.4.6 we give other characterisations of Sym-coarse equivalences.

A subset L of a quasi-coarse space (X, E) is Sym-large if there exists a
symmetric entourage E = E−1 ∈ E such that E[L] = X. A map f : (X, EX)→
(Y, EY ) between quasi-coarse spaces is large-scale surjective if f(X) is Sym-
large in Y . If f is also large-scale injective, then it is large-scale bijective. The
following result characterises large-scale bijective maps between quasi-coarse
spaces.

Proposition 3.4.4. Let f : (X, EX) → (Y, EY ) be a map between quasi-coarse
spaces. Then f is large-scale bijective if and only if it has a Sym-coarse inverse.
In particular, every Sym-coarse inverse is large-scale bijective.

Proof. (→) Let M = M−1 ∈ EY be an entourage such that M [f(X)] = Y .
For every y ∈ Y , there exists xy ∈ X such that (y, f(xy)) ∈ M . If y ∈ f(X),
suppose that xy ∈ f

−1(y). Define g : Y → X with the following law: g(y) = xy,
for every y ∈ Y . Then (f(g(y)), y) ∈ M for every y ∈ Y , which witnesses that
f◦g ∼Sym idY . The fact that f is large-scale injective proves that g◦f ∼Sym idX .

(←) Let now g : Y → X be a Sym-coarse inverse of f . Let M =M−1 ∈ EX
and N = N−1 ∈ EY be two entourages showing that g ◦ f ∼Sym idX and
f ◦ g ∼Sym idY , respectively. Note that, for every y ∈ Y , f(g(y)) ∈ f(X) and
(y, f(g(y))), (f(g(y)), y) ∈ N . Hence f is large-scale surjective. Moreover, since
Rf = {(x, y) ∈ X ×X | f(x) = f(y)} ⊆M ◦M , f is large-scale injective.

The last assertion is trivial since, if g is a Sym-coarse inverse of f , then f is
a Sym-coarse inverse of g.



3.4 The Sym-coarse equivalence 54

Proposition 3.4.5. Let f : (X, EX) → (Y, EY ) be a large-scale bijective map
between quasi-coarse spaces and let g be a Sym-coarse inverse of f . Then, the
following properties are equivalent:

(a) f is bornologous;
(b) g is uniformly weakly boundedness copreserving;
(c) g is uniformly boundedness copreserving;
(d) g is effectively proper.

Moreover, every other Sym-coarse inverse h of g satisfies h ∼Sym f .

Proof. Since g is large-scale injective, the equivalences (b)↔(c)↔(d) descend
from Proposition 3.1.16. Suppose now that f is bornologous. Let E ∈ EX and
consider (g × g)−1(E). Denote by M = M−1 the entourage of EY such that
(f(g(z)), z) ∈M , for every z ∈ Y . Then, for every (x, y) ∈ (g × g)−1(E),

(x, y) = (x, f(g(x)))◦(f(g(x)), f(g(y)))◦(f(g(y)), y) ∈M ◦(f×f)(E)◦M ∈ EY .

Conversely, suppose that g is effectively proper. Denote by N = N−1 ∈ EX the
entourage showing that g ◦ f ∼Sym idX . Let E ∈ EX and (x, y) ∈ E. Then

(g(f(x)), g(f(y))) = (g(f(x)), x) ◦ (x, y) ◦ (y, g(f(y))) ∈ N ◦ E ◦N ∈ EX

and thus (f(x), f(y)) ∈ (g × g)−1(N ◦ E ◦N) ∈ EY .

Finally, if h is another Sym-coarse inverse of g, then, for every x ∈ X,
(g(f(x)), g(h(x))) = (g(f(x)), x)◦(x, g(h(x))) ∈ N ◦K, where K = K−1 ∈ EX is
an entourage that shows that g◦h ∼Sym idX . Hence (f(x), h(x)) ∈ (g×g)−1(N ◦
K) and so f ∼Sym h since (g × g)−1(N ◦K) = ((g × g)−1(N ◦K))−1 ∈ EY .

Note that, with an easy variation of the proof of Proposition 3.4.5, one can
prove that every large-scale injective map f : (X, EX)→ Y from a quasi-coarse
space to a set has a partial Sym-coarse inverse, i.e., a map g : Y ′ → (X, EX),
where Y ′ ⊆ Y , such that g ◦ f ∼Sym idX .

Theorem 3.4.6. Let f : (X, EX) → (Y, EY ) be a map between quasi-coarse
spaces. Then the following are equivalent:

(a) f is a Sym-coarse equivalence;
(b) f : (X, EX) → (Y, EY ) is large-scale bijective, bornologous and uniformly

weakly boundedness copreserving;
(c) f : (X, EX) → (Y, EY ) is large-scale bijective, bornologous and uniformly

boundedness copreserving;
(d) f : (X, EX) → (Y, EY ) is large-scale surjective, bornologous and effectively

proper.

Proof. The equivalences (b)↔(c)↔(d) follow from Proposition 3.1.16.

(a)→(b) Since f has a Sym-coarse inverse g, it is large-scale bijective, thanks
to Proposition 3.4.4. Moreover, g is bornologous and thus Proposition 3.4.5
implies that f is uniformly weakly boundedness copreserving.

(d)→(a) Let us construct a map g : Y → X with the desired properties.
Since f is large-scale surjective, there exists M = M−1 ∈ EY such that Y =
M [f(X)]. Hence, for every point y ∈ Y , we can fix another point x ∈ X with
the property that (f(xy), y) ∈ M . Define the map g by putting g(y) = xy, for
every y ∈ Y . Let now x ∈ X. Then (f(x), f(g(f(x)))) = (f(x), f(xf(x))) ∈ M ,
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and so (x, g(f(x))) ∈ (f × f)−1(M) ∈ EX since f is effectively proper. Thus
g◦f ∼Sym idX . If now y ∈ Y , the pair (y, f(g(y))) ∈M because of the definition
of g, which implies that f ◦ g ∼Sym idY , and so g is a Sym-coarse inverse of f .
The conclusion then follows from Proposition 3.4.5.

Theorem 3.4.7. Let (X, EX) and (Y, EY ) be two quasi-coarse spaces. Then
X and Y are Sym-coarsely equivalent if and only if there exist two subspaces
X ′ ⊆ X and Y ′ ⊆ Y , which are Sym-large in X and in Y , respectively, and an
asymorphism f ′ : X ′ → Y ′.

Proof. (→) Let assume that there exists a Sym-coarse equivalence f : X →
Y . According to Theorem 3.4.6, f is large-scale surjective, bornologous and
effectively proper. LetX ′ ⊆ X be a subset with the following property: for every
x ∈ X, |X ′ ∩ f−1(f(x))| = 1. Then f ′ = f |X′ : X ′ → Y ′, where Y ′ = f(X) =
f(X ′), is bijective. Moreover, f ′ : (X ′, EX |X′)→ (Y ′, EY |Y ′) is bornologous and
effectively proper, since it is a restriction of f . Finally, since f : X → Y is
large-scale injective (Proposition 3.1.16), X ′ is Sym-large in X.

(←) Let M = M−1 ∈ EX be an entourage such that M [X ′] = X. Then
define a map h : X → X ′ as follows: if x ∈ X ′, then h(x) = x, and, if otherwise
x ∈ X \ X ′, then h(x) is a point such that (h(x), x) ∈ M . Similarly we can
define a map k : Y → Y ′. We claim that h and k are bornologous. Let E ∈ EX .
Then note that (h× h)(E) ⊆M ◦E ◦M ∈ EX and thus h is bornologous. The
same property can be similarly proved for k. Then the maps f = f ′ ◦ h and
g = (f ′)−1 ◦ k are bornologous. We claim that g is a Sym-coarse inverse of f .
For every x ∈ X, since k|Y ′ = idY ′ ,

(x, g(f(x))) = (x, (f ′)−1(k(f ′(h(x))))) = (x, (f ′)−1(f ′(h(x)))) = (x, h(x)) ∈M,

and thus g ◦ f ∼Sym idX . The other request can be similarly proved.

Proposition 3.4.8. Let (X, EX) and (Y, EY ) be two Sym-coarsely equivalent
quasi-coarse spaces. If (X, EX) is a coarse space, then so it is (Y, EY ).

Proof. Let f : X → Y be a Sym-coarse equivalence and let g : Y → X be a Sym-
coarse inverse of f . Moreover, let E = E−1 ∈ EX and F−1 = F ∈ EY be two
symmetric entourages which witness that g ◦ f ∼Sym idX and f ◦ g ∼Sym idY ,
respectively. Then, for every K ∈ EY and (x, y) ∈ K,

(y, x) = (y, f(g(y))) ◦ (f(g(y)), f(g(x))) ◦ (f(g(x)), x) ∈

∈ F ◦ (f × f)(((g × g)(K))−1) ◦ F ∈ EY ,

and then K−1 ∈ EY .

Remark 3.4.9. Let (X, E) be a finite quasi-coarse space. According to the
discussion contained in §3.3.1, there exists a pre-order ≥ on X such that E =
E≥ (actually, ≥=

⋃
E). Moreover, ≥ induces an equivalence relation ∼= on

X in the usual way: for every x, y ∈ X, x ∼= y if and only if x ≥ y and
y ≥ x. Let q : X → X/∼= be the quotient map. Then ≥ induces a partial order
≥ = (q × q)(≥) on X = X/∼=. Moreover, the map q : (X, E≥) → (X, E≥) is a
Sym-coarse equivalence. Hence, finite quasi-coarse spaces from the large-scale
point of view are just partial ordered sets.
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3.4.1 Characterisation of some special classes of quasi-

coarse spaces

Let (X, E) be a quasi-coarse space. Then (X, E) is monogenic if there exists
an entourage E ∈ E such that the family {En | n ∈ N} forms a base of E , where
En is the composite of n copies of E. In the realm of coarse spaces, monogenicity
is a classical notion (see, for example [157]). In particular, every monogenic
quasi-coarse space has a countable base. Note that, if (X, E) is an entourage
space such that there exists E ∈ E with the property that cl({En | n ∈ N}) = E ,
then E is a quasi-coarse structure. An example of a monogenic quasi-coarse
space is a directed graph endowed with its graphic quasi-coarse structure.

Proposition 3.4.10. Let X and Y be two Sym-coarsely equivalent quasi-coarse
spaces. Then:

(a) if i ∈ {1, 2, 3′, 3′′, 4}, X satisfies Ci if and only if Y satisfies Ci;
(b) X is monogenic if and only if Y is monogenic.

Proof. First of all, note that all those properties are invariant under asymor-
phism. Thanks to Theorem 3.4.7, it is enough to prove the claim when Y is a
Sym-large subspace of X, and, in this case, item (a) is not hard to shown. Let
us now prove item (b).

Suppose that X is monogenic and E ∈ EX is an entourage such that {En |
n ∈ N} is a base of EX . Let F ∈ EX |Y . Then there exists nF ∈ N such that
F ⊆ EnF . Let (x, y) ∈ F . Thus there exist z0 = x, z1, . . . , zn = y ∈ X such that
(zi, zi+1) ∈ E, for every i = 0, . . . , n − 1. Moreover, for every i = 1, . . . , n − 1,
there exists z′i ∈ Y such that (zi, z

′
i) ∈ M . Then, if we define z′0 = x and

z′n = y, for every i = 0, . . . , n − 1, (z′i, z
′
i+1) ∈ (M ◦ E ◦M) ∩ (Y × Y ). Hence

{((M ◦ E ◦M) ∩ (Y × Y ))n | n ∈ N} is a base of EY .

Conversely, suppose that Y is monogenic and {En | n ∈ N} is a base of
EY , for some E ∈ EY . By using a similar argument, it is easy to show that
{(M ◦ E ◦M)n | n ∈ N} is a base of EX .

Lemma 3.4.11. Let (X, EX) and (Y, EY ) be two Sym-coarsely equivalent quasi-
coarse spaces. Then cf EX = cf EY .

Proof. By applying Theorem 3.4.7, we can assume that Y is an entourage sub-
space of X and the inclusion map i : Y → X is large-scale surjective. It is
trivial that cf EY ≤ cf EX . Let f : X → Y be a Sym-coarse inverse of i and
M = M−1 ∈ EX be an entourage such that (x, f(x)) ∈ M , for every x ∈ X.
Then, for every base {Ei}i∈I of EY , we claim that {M ◦ Ei ◦M}i is a base of
EX , and thus cf EX ≤ cf EY . In fact, let F ∈ EX and i ∈ I be an index such
that (M ◦ F ◦M)|Y×Y ⊆ Ei. Then F ⊆M ◦ Ei ◦M .

We are now ready to prove the generalisations of some classical classification
results in the framework of quasi-coarse spaces ([144, Theorems 9.1, 9.2], [151,
Theorem 2.11]). The following results, together with Proposition 3.1.9, give a
complete characterisation of metric entourage structures.

Theorem 3.4.12. Let (X, E) be a quasi-coarse space. The following properties
are equivalent:

(a) there exists a quasi-metric d : X ×X → [0,∞] on X such that E = Ed;
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(b) there exists a quasi-metric space (Y, d) which is Sym-coarsely equivalent to
(X, E);

(c) cf E ≤ ω.

Proof. The implications (a)→(b)→(c) are trivial: in particular, (b)→(c) is im-
plied by Lemma 3.4.11.

(c)→(a) Let {Fn}n be a base of E as in the proof of Proposition 3.1.9(a) with
the following further property: for every m,n ∈ N, Fm ◦ Fn ⊆ Fm+n. We claim
that the map d : X × X → [0,∞] defined as in (3.3) is a quasi-metric and, in
order to show it, proving that d satisfies the triangle inequality is enough. Let
x, y, z ∈ X be three arbitrary points. The inequality d(x, z) ≤ d(x, y) + d(y, z)
trivially holds if d(x, y) = ∞ or d(y, z) = ∞. Suppose now that d(x, y) ≤ m
and d(y, z) ≤ n. Then (x, z) = (x, y) ◦ (y, z) ∈ Fm ◦ Fn ⊆ Fm+n and thus
d(x, z) ≤ m+ n. Finally, the equality E = Ed can be easily proved.

A quasi-coarse space satisfying the hypothesis of the previous theorem is
called quasi-metrisable. Since the extended quasi-metric defined in the proof
of Theorem 3.4.12 does not assume the value ∞ if and only if the quasi-coarse
space is strongly connected, in view of Proposition 3.4.10, Theorem 3.4.12 can
be specialised as follows.

Corollary 3.4.13. Let (X, E) be a quasi-coarse space. The following properties
are equivalent:

(a) there exists a quasi-metric d on X which does not assume the value ∞ and
satisfies E = Ed;

(b) there exists a quasi-metric space (Y, d) which does not assume the value ∞
and is Sym-coarsely equivalent to (X, E);

(c) (X, E) satisfies C4 and cf E ≤ ω.

[151, Proposition 2.1.1] implies that the quasi-metrics in Theorem 3.4.12 and
in Corollary 3.4.13 can be taken as metrics if and only if the initial space is a
coarse space.

Finally we can answer to a problem posed by Protasov and Banakh [144,
Problem 9.4].

Theorem 3.4.14. Let (X, E) be a connected quasi-coarse space. Then the fol-
lowing properties are equivalent:

(a) (X, E) is a graphic quasi-coarse space;
(b) (X, E) is Sym-coarsely equivalent to a graphic quasi-coarse space;
(c) (X, E) is monogenic.

Proof. The implication (a)→(b) is trivial. As for the implication (b)→(c), since
graphic quasi-coarse spaces are monogenic, Proposition 3.4.10(b) implies that
also (X, E) has the same property.

(c)→(a) Let ∆X ⊆ E ∈ E be an entourage such that cl({En | n ∈ N}) = E .
Consider the directed graph Γ = (X,E) whose set of edges is the entourage
E (i.e., a pair of points (x, y) of X is an edge of Γ if and only if (x, y) ∈ E).
Then the graphic quasi-coarse space associated to the graph Γ is asymorphic to
(X, E).



Chapter 4

Categories of

para-bornologies and

entourage spaces

Let us now discuss the categories of the objects introduced in the previous
chapters. Denote by PaBorn be the concrete category of all para-bornological
spaces and boundedness preserving maps between them. Let us also consider
the following full subcategories of PaBorn:

• SBorn, whose objects are semi-bornological spaces;
• QBorn, whose objects are quasi-bornological spaces;
• PrBorn, whose objects are pre-bornological spaces.

Large-scale isomorphisms are actually the isomorphisms of the categories just
defined.

Similarly, let Entou be the concrete category of all entourage spaces and
bornologous maps,

• SCoarse be the full subcategory of Entou whose objects are semi-coarse
spaces,

• QCoarse be the full subcategory of Entou whose objects are quasi-coarse
spaces, and

• Coarse be the full subcategory of Entou whose objects are coarse spaces.

The isomorphisms of these categories are the asymorphisms.

As already mentioned, all the previously defined categories are concrete,
which means that, if X is one of them, there is a faithful functor UX : X → Set.
Moreover, for every full subcategory Y of a category X , we have a forgetful
functor UY

X : Y → X . Finally, the definition of the uniform para-bornology
induces a functor UEntou

PaBorn : Entou → PaBorn. Moreover, Remark 3.1.5 im-
plies that we have the following restrictions: USCoarse

SBorn : SCoarse → SBorn,

UQCoarse
QBorn : QCoarse → QBorn, and UCoarse

PrBorn : Coarse → PrBorn. These
are faithful functors since the triangles created with the forgetful functors to
Set commute (for instance, UEntou = UPaBorn ◦U

Entou
PaBorn). In the following

58
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diagram the forget functors are represented:

Set

PaBorn

UPaBorn

OO

SBorn

USBorn
PaBorn

88♣♣♣♣♣♣♣♣♣♣♣
Entou

UEntou
PaBorn

OO

QBorn

UQBorn

PaBorn

kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

SCoarse

USCoarse
SBorn

OO

USCoarse
Entou

88qqqqqqqqqqq
PrBorn

UPrBorn
QBorn

88qqqqqqqqqqUPrBorn
SBorn

kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
QCoarse

UQCoarse

QBorn

OO
UQCoarse

Entou

kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

Coarse.

UCoarse
PrBorn

OO

UCoarse
QCoarse

88♣♣♣♣♣♣♣♣♣♣UCoarse
SCoarse

kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

(4.1)
For the sake of simplicity, in (4.1) not all the forgetful functors appear. However,
those with Set as target that are not inserted in the diagram can be recover as
composition of the represented ones. For example,

UCoarse = UPaBorn ◦U
Entou
PaBorn ◦U

SCoarse
Entou ◦UCoarse

SCoarse .

When there is no risk of ambiguity, we drop the indices and simply write U
for the forgetful functor that we are taking into account.

4.1 Categories of para-bornological spaces

In this section, let us focus our attention on the four categories PaBorn,
SBorn, QBorn and PrBorn. First of all, we want to prove that those are
topological (according to Brümmer’s definition, see [23]). In order to prove it,
we need to show how we can induce para-bornologies through maps.

Let f : X → (Y, β) be a map from a set to a para-bornological space. Define
the initial para-bornology f∗(β) = {βf (x) | x ∈ X}, where

βf (x) = cl({f−1(A) | A ∈ β(f(x))}),

for every x ∈ X. It is easy to check that βf (x) is an ideal, for every x ∈
X. Moreover, f : (X, f∗β) → (Y, β) is boundedness preserving and proper.
Furthermore,

• if X is a semi-bornology, then f∗(β) is a semi-bornology, and
• if X is a quasi-bornology, then f∗(β) is a quasi-bornology.

Theorem 4.1.1. PaBorn, SBorn, QBorn and PrBorn are topological cat-
egories.

Proof. If X is one of the enlisted categories, it is easy to show that the forgetful
functor UX is amnestic and transportable, and it has small fibres. Moreover, the
constant maps are boundedness preserving maps. The only non trivial request
is that every source has an initial lifting. Let {fi : X → (Xi, βi)}i∈I be a family



4.1 Categories of para-bornological spaces 60

of maps from a fixed set X to a family of para-bornological spaces {(Xi, βi)}i∈I
that are objects in X . Then, according to the previous observations, the para-
bornology β =

∧
i((fi)∗(βi)) satisfies the desired properties.

As a consequence of Theorem 4.1.1, we have a complete characterisation
of the monomorphisms and the epimorphisms of PaBorn, SBorn, QBorn,
and PrBorn. In fact, the monomorphisms and the epimorphisms are the in-
jective and surjective boundedness preserving maps, respectively. Hence a bi-
morphism is a bijective boundedness preserving map, for example, the map
idX : (X, βdis) → (X, βtriv) is a bimorphism. This also shows that those cate-
gories are not balanced since the just defined map is not a large-scale isomor-
phism (i.e., an isomorphism of the category) provided that X has at least two
elements. Furthermore, note that those categories are trivially cowellpowered.

Question 4.1.2. Does there exist an (epireflective) subcategory of PaBorn

which is not cowellpowered?

We want to study the relationships between PaBorn, SBorn, QBorn, and
PrBorn, and, in order to do that, we define some useful functors between
the four categories, which will be summarised in the diagram (4.2). All these
functors will only be defined on the objects, since the morphisms are ‘fixed’ (i.e.,
if F: X → Y is one of the functors that we are going to define and f : X → Y
is a morphism of X , then UY(F f) = UX f). Before defining them, we need
to introduce a notion. Let (X, β) be a para-bornological space, and fix a point
x ∈ X. Then a subset B of X is called balloon of X starting in x if there
exist m ∈ N, and x1 = x, x2, . . . , xm ∈ X such that, for every i = 1, . . . ,m− 1,
xi+1 ∈ β(xi), and B ∈ β(xm). Let us now introduce the announced functors.

• B-wSym: PaBorn→ SBorn is defined by the law

B-wSym(X, β) = (X,B-wSym(β)),

for every (X, β) ∈ PaBorn, where B-wSym(β) = {B-wSym(β)(x) | x ∈ X},

and, for every x ∈ X, B-wSym(β)(x) = {A ∩ Q↑
X(x) | A ∈ β(x)}.

• B-USym: PaBorn→ SBorn is defined by the law

B-USym(X, β) = (X,B-USym(β)),

for every (X, β) ∈ PaBorn, where B-USym(β) = {B-USym(β)(x) | x ∈ X},

and, for every x ∈ X, B-USym(β)(x) = {A ∪B | A ∈ β(x), B ∈ [Q↑
X(x)]<ω}.

• B-W: PaBorn→ QBorn is defined by the law

B-W(X, β) = (X,B-W(β)),

for every (X, β) ∈ PaBorn, where B-W(β) = {B-W(β)(x) | x ∈ X}, and,
for every x ∈ X, a subset of X belongs to B-W(β)(x) if it is a finite union of
balloons of X starting in x. Similarly, B-W: SBorn→ PrBorn is defined.

• B-Sym: QBorn→ PrBorn is defined by the law

B-Sym(X, β) = (X,B-Sym(β)),

for every (X, β) ∈ QBorn, where B-Sym(β) = {B-Sym(β)(x) | x ∈ X}, and,
for every x ∈ X, a subset A ∈ β(x) belongs to B-Sym(β)(x) if and only if
A ∪ {x} is bounded.
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Let us show that those maps just introduced are actually well-defined and
functors.

Proposition 4.1.3. B-wSym,B-USym: PaBorn→ SBorn, B-W: PaBorn→
QBorn, B-W: SBorn→ PrBorn, and B-Sym: QBorn→ PrBorn are func-
tors.

Proof. Once we prove that those maps are well-defined, it will be easy to check
that they are functors. Well-definition is not hard to show either, and, for
instance, we prove that, if X is a semi-bornology, B-W(X) is a quasi-bornology,
and that, if X is a quasi-bornology, B-Sym(X) is a pre-bornology.

Let then (X, β) be a semi-bornology. Then B-W(X) is trivially a para-
bornology. Let us show first that B-W(X) is a semi-bornology. Fix x, y ∈ X
such that {y} ∈ B-W(β)(x). Then there exist m ∈ N, and x1 = x, x2, . . . , xm =
y ∈ X such that, for every i = 1, . . . ,m − 1, xi+1 ∈ β(xi). Since X has the
property (G1), for every i = 1, . . . ,m − 1, xi ∈ β(xi+1), which shows that
{x} ∈ B-W(β)(y), and so B-W(X) is a semi-bornology. Consider now a subset
A ∈ B-W(β)(y). Since B-W(β)(y) is closed under finite unions, we can assume
without loss of generality that A is a balloon starting in y. Then there exists
n ∈ N, and y1 = y, y2, . . . , yn ∈ X such that, for every i = 1, . . . , n − 1,
yi+1 ∈ β(yi), and A ∈ β(yn). If we define

z1 = x1 = x, . . . , zm = xm = y1 = y, zm+1 = y2, . . . , zm+n−1 = yn,

then A is a balloon starting in x, and this observation implies the desired prop-
erty.

Consider now a quasi-bornology (X, β). Fix a point x ∈ X. The family
B-Sym(β)(x) trivially contains the singleton {x} and it is closed under taking
subsets. Pick now two subsets A,B ⊆ X such that A ∪ {x} and B ∪ {x} are
bounded. If a ∈ A, then {x} ∈ β(a), and, since B ∈ β(x) and β is a quasi-
bornology, A ∪ B ∈ β(a). Similarly A ∪ B is bounded from every point of
B. Since A ∪ B is also bounded from x, A ∪ B ∈ B-Sym(β)(x). Moreover,
B-Sym(β) has trivially the property (G1). Consider now another point y ∈ X
and A ⊆ X such that {y} ∈ B-Sym(β)(x) and A ∈ B-Sym(β)(y). Then A is
bounded from x because β has the property (G2). Furthermore, for every a ∈ A,
A ∈ β(a). Finally, since {y} ∈ β(a) and {y} ∈ β(x), {x} ∈ β(a) by applying
both properties (G1) and (G2).

Note that, in the proof of Proposition 4.1.3, in order to prove that, if X is
a quasi-bornology, B-Sym(X) is a para-bornology, the property (G2) of X is
applied.

If we also consider the composite functor B-W ◦B-USym ◦UQBorn
PaBorn : QBorn→

PrBorn, the situation can be represented by the following diagram:

PaBorn

B-wSymuu

B-USym

~~

B-W

&&▼▼
▼▼▼

▼▼▼
▼▼▼

SBorn

B-W

&&▼▼
▼▼▼

▼▼▼
▼▼

QBorn

B-W ◦B-USym ◦Uvv

B-Sym

~~
PrBorn.

(4.2)
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Moreover, note that, if F: X → Y is one of the functors represented in (4.2),
then F ◦UY

X = 1Y .

In the following example we provide a semi-bornology that admits two max-
imal pre-bornologies that are finer than the original one.

Example 4.1.4. Consider the following semi-metric d on Z2: for every pair of
points (x, y), (z, w) ∈ Z2,

d((x, y), (z, w)) =





|x− z| if y = w,

|y − w| if x = z,

∞ otherwise.

Then (Z2, βd) is a semi-bornological space. We claim that there are two different
maximal pre-bornologies β1 and β2 on Z2 which are finer then βd. Define the
following metrics d1 and d2 on Z2 as follows: for every (x, y), (z, w) ∈ Z2,

d1((x, y), (z, w)) =

{
|x− z| if y = w,
∞ otherwise,

and

d2((x, y), (z, w)) =

{
|y − w| if x = z,
∞ otherwise.

Then β1 = βd1 and β2 = βd2 satisfy the desired properties.

The functors previously defined can be used to prove the following theorem.

Theorem 4.1.5. (a) QBorn is a reflective subcategory in PaBorn;
(b) SBorn is a reflective and co-reflective subcategory in PaBorn;
(c) PrBorn is a reflective subcategory in SBorn;
(d) PrBorn is a reflective and co-reflective subcategory in QBorn.

Proof. The thesis follows by proving the following assertions:

• B-W is a reflector of UQBorn
PaBorn;

• B-USym is a reflector and B-wSym is a co-reflector of USBorn
PaBorn;

• B-W is a reflector of UPrBorn
SBorn ;

• B-W ◦B-USym ◦UQBorn
PaBorn is a reflector and B-Sym is a co-reflector of UPrBorn

QBorn ;

which are easy checks of the definitions.

4.2 Categories of entourage spaces

Similarly to what we have done for the categories of para-bornological spaces,
first of all we want to prove that the categories Entou, SCoarse, QCoarse

and Coarse are topological. Also in this case we need to introduce the notion
of initial entourage structure.

Let f : X → (Y, E) be a map between a set and an entourage space. We define
the initial entourage structure f∗E as the entourage structure over X generated
by the base {(f × f)−1(E) | E ∈ E}. If E is a semi-coarse structure (quasi-
coarse structure), then f∗E is a semi-coarse structure (quasi-coarse structure,
respectively). Moreover, f : (X, f∗E) → (Y, E) is bornologous and effectively
proper.
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Theorem 4.2.1. The categories Entou, SCoarse, QCoarse and Coarse are
topological.

Proof. Similarly to the situation of Theorem 4.1.1, we only need to show that all
the sources in these categories admit initial liftings. Let {fi : X → (Yi, Ei)}i∈I
be a source of maps from a set to a family of entourage spaces. Define the
entourage structure E over X as E =

⋂
i∈I(fi)∗Ei. If Ei is a semi-coarse structure

(a quasi-coarse structure), for every i ∈ I, then E is a semi-coarse structure (a
quasi-coarse structure, respectively).

Thanks to Theorem 4.2.1, in those categories the monomorphisms are in-
jective morphisms (i.e., injective bornologous maps), and the epimorphisms are
surjective morphisms (i.e., surjective bornologous maps). In particular those
four categories are not balanced since the bimorphisms are bijective bornolo-
gous maps, the isomorphisms are asymorphisms, and the map idX : (X, Edis)→
(X, Etriv) is not an asymorphism provided that X has at least two elements.

Since the epimorphisms of Entou, SCoarse, QCoarse, and Coarse are
surjective morphisms, those categories are cowellpowered. Moreover, in the
sequel (namely in Section 5.2) we prove that every epireflective subcategory of
Coarse is cowellpowered. Hence the following question naturally arises.

Question 4.2.2. Does there exist a subcategory of Entou containing Coarse

which is not cowellpowered?

We want to study the relationships between Entou, SCoarse, QCoarse,
and Coarse, and, in order to do that, we define some useful functors between
the four categories, which will be summarised in the diagram (4.3). All these
functors will only be defined on the objects, since the morphisms are fixed in the
same sense described for the functors between the categories of para-bornological
spaces that were introduced in §4.1.

• Sym: Entou → SCoarse is defined by the law Sym(X, E) = (X, Sym(E)),
where Sym(E) = cl({E∩E−1 | E ∈ E}) = E ∩E−1, for every (X, E) ∈ Entou.
In a similar way, Sym: QCoarse→ Coarse is defined.

• USym: Entou→ SCoarse is defined by the law USym(X, E) = (X,USym(E)),
where USym(E) = cl({E ∪ E−1 | E ∈ E}), for every (X, E) ∈ Entou.

• W: Entou → QCoarse is defined by the law W(X, E) = (X,W(E)), for
every (X, E) ∈ Entou, where W(E) = cl({En | n ∈ N, E ∈ E}). Similarly,
W: SCoarse→ Coarse is defined.

If we also consider the composite functor W ◦USym ◦UQCoarse
Entou : QCoarse →

Coarse, the situation can be represented by the following diagram:

Entou

Symuu

USym

}}

W

&&◆◆
◆◆◆

◆◆◆
◆◆◆

SCoarse

W

&&▼▼
▼▼▼

▼▼▼
▼▼▼

QCoarse

W ◦USym ◦Uuu

Sym

}}
Coarse.

(4.3)

Similarly to what we noticed for the functors represented in (4.2), if F: X → Y
is one of the functors that can be found in (4.3), then F ◦UY

X = 1Y .
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There is another endofunctor J of Entou that it is worth mentioning. Every
entourage space (X, E) is associated to J(X, E) = (X, E−1) and every morphism
f ∈ MorEntou(X,Y ) is fixed, i.e., U f = U(J f). Since, for every entourage E of
X, (f×f)(E−1) = ((f×f)(E))−1, J f is bornologous whenever f is bornologous,
and so J is a functor. Note that J |SCoarse is the identity functor of SCoarse.

Remark 4.2.3. (a) Note that the functor Sym generalises the definition of the
semi-coarse hyperstructure from the entourage hyperstructure (see §3.3.3
for the definitions). More precisely, if (X, E) is an entourage space, then
Sym(P(X),H(E)) = (P(X), exp E).

(b) It is not true in general that, ifX is a quasi-coarse space, expX = exp(SymX).
In fact, let X = Z with the relation entourage structure induced by the
usual order relation, which is a quasi-coarse structure. Then SymX is X
endowed with the discrete coarse structure since the original relation en-
tourage structure is induced by an antisymmetric relation (actually a total
order). However, 2Z and 2Z + 1 belong to the same connected component
of expX.

Example 4.1.4 provides also a semi-coarse structure that admits two maximal
coarse structures that are finer than the original one.

The functors previously defined can be used to prove the following theorem.

Theorem 4.2.4. (a) QCoarse is a reflective subcategory in Entou;
(b) SCoarse is a reflective and co-reflective subcategory in Entou;
(c) Coarse is a reflective subcategory in SCoarse;
(d) Coarse is a reflective and co-reflective subcategory in QCoarse.

Proof. The thesis follows by proving the following assertions:

• W is a reflector of UQCoarse
Entou ;

• USym is a reflector and Sym is a co-reflector of USCoarse
Entou ;

• W is a reflector of UCoarse
SCoarse;

• W ◦USym ◦UQCoarse
Entou is a reflector and Sym is a co-reflector of UCoarse

QCoarse;

which are easy checks of the definitions.

Embeddings of reflective subcategories preserve limits (e.g., products), while
embeddings of co-reflective subcategories preserve colimits (e.g., coproducts and
quotients). See [1] for details. In §4.3, we prove that QCoarse (QBorn) is not
a co-reflective subcategory in Entou (PaBorn, respectively), and that Coarse

(PrBorn) is not a co-reflective subcategory in SCoarse (SBorn, respectively)
since they do not preserve some colimits.

4.2.1 F-coarse equivalences and quotient categories

A very important notion in coarse geometry is the one of coarse equivalence
([157]). Let f, g : X → (Y, E) be two maps from a set to a coarse space. Then f
and g are close, and we denote this fact by f ∼ g, if {(f(x), g(x)) | x ∈ X} ∈ E .
Since E is a coarse space, then ∼ is an equivalence relation. A map f : (X, EX)→
(Y, EY ) between coarse spaces is a coarse equivalence if it is bornologous and
there exists another bornologous map g : Y → X, called coarse inverse such
that g ◦ f ∼ idX and f ◦ g ∼ idY .
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Let us show that ∼ is actually a congruence in the category Coarse, so that
the quotient category Coarse/∼ can be defined.

Lemma 4.2.5. If (X, EX), (Y, EY ) and (Z, EZ) are quasi-coarse spaces, and
the pairs f, f ′ ∈ MorCoarse(X,Y ), g, g′ ∈ MorCoarse(Y, Z) satisfy f ∼ f ′ and
g ∼ g′, then g ◦ f ∼ g′ ◦ f ′.

Proof. Since f ∼ f ′, {(f(x), f ′(x)) | x ∈ X} ∈ EY and then

M = {(g(f(x)), g(f ′(x))) | x ∈ X} ∈ EZ ,

because g is bornologous. Moreover, g ∼ g′ and thenN = {(g(f ′(x)), g′(f ′(x))) |
x ∈ X} ∈ EZ . Finally we have

{(g(f(x)), g′(f ′(x))) | x ∈ S} ⊆M ◦N ∈ EZ .

Suppose that F is a functor from a category X to Coarse. Then a notion
of closeness can be inherited by X from Coarse. Let f, g : X → Y be two
morphisms of X . We say that f is F-close to g (and we write f ∼F g) if F f
is close to F g in Coarse. These new relations are equivalences. Moreover, a
morphism k : W → Z of X is a F-coarse inverse of a morphism h : Z → W if
k◦h ∼F idZ and h◦k ∼F idW . Thanks to this notion, we can define equivalences
between the objects of Entou, SCoarse and QCoarse.

Definition 4.2.6. Suppose that X is a subcategory of Entou and F is a functor
from X to Coarse. A map f : (X, EX) → (Y, EY ) between two objects of X is
a F-coarse equivalence if f : (X, EX) → (Y, EY ) is bornologous and it has a
bornologous F-coarse inverse g : (Y, EY ) → (X, EX). In this case, (X, EX) and
(Y, EY ) are called F-coarsely equivalent.

The concept just introduced induces an equivalence relation between ob-
jects of X . Note that the Sym-coarse equivalence introduced in Definition 3.4.3
coincides with the one induced by the functor Sym: QCoarse → Coarse ac-
cording to Definition 4.2.6. This observation explains the name choice for that
equivalence relation.

Furthermore, note that, if X is a category containing Coarse as a full sub-
category and F: X → Coarse is the identity functor on Coarse, then the in-
duced notion of F-coarse equivalence extends the usual coarse equivalence. More
precisely, if, for every coarse space X, FX = X, then a map f between coarse
spaces is a F-coarse equivalence if and only if it is a coarse equivalence. In partic-
ular, this observation can be applied to the functor Sym: QCoarse→ Coarse,
and thus the Sym-coarse equivalence coincides with the coarse equivalence if we
restrict to coarse spaces.

Another notion that we have introduced was actually borrowed from the
framework of coarse spaces using the functor Sym: QCoarse → Coarse. A
subset Y of a coarse space (X, E) is large in X ([157]) if there exists E ∈ E such
that E[Y ] =

⋃
y∈Y E[y] = X. Then a subset Y of a quasi-coarse space X is

Sym-large in X if and only if it is large in Sym(X).

Let X be one of the categories Entou, SCoarse or QCoarse and let
F: X → Coarse be a functor. As it is shown in the first part of this sec-
tion, an equivalence relation ∼F on X can be induced, which is actually a
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congruence (it easily follows, since F is a functor and ∼ is a congruence, Lemma
4.2.5). Hence it is natural to produce the quotient category X/∼F . The quotient
category Coarse/∼ will be studied in §5.3. Moreover, among the others, also
QCoarse/∼Sym

is worth being investigated.

4.3 Categorical constructions

4.3.1 Products, coproducts and pullbacks

Let {Xi}i∈I be a family of sets. Denote by pj : ΠiXi → Xj , where j ∈ I, the
canonical projection into the j-th component, while denote by ik : Xk →

⊔
iXi

the canonical inclusion of Xk into the disjoint union. For the sake of simplicity,
if {Xi}i is a family of sets and, for every i ∈ I, Ai ⊆ Xi, we denote by ΠiAi the
subset

⋂
i p

−1
i (Ai).

Let us first introduce products in the eight categories we consider.

Let {(Xi, βi)}i∈I be a family of para-bornological spaces. The product
Πi(Xi, βi) of the family {(Xi, βi)}i∈I of para-bornological spaces is the para-
bornological space (X,β), with X = Πi∈IXi and β = Πiβi = {β(x) | x ∈ X}
(called product para-bornology), where, for every x ∈ X, β(x) = cl({ΠiAi |
Ai ∈ βi(x), ∀i ∈ I}). We can check that (X, β) is the product in PaBorn. As
we have already pointed out, since PrBorn is reflective in both SBorn and
QBorn, which are reflective in PaBorn, these categories are stable under tak-
ing products. Hence, the same construction leads to the product in SBorn,
QBorn and PrBorn.

Let {(Xi, Ei)}i∈I be a family of entourage spaces. Let X = ΠiXi. Then the
product entourage structure E = ΠiEi is defined as

E = cl

({⋂

i∈I

(pi × pi)
−1(Ei) | Ei ∈ Ei, ∀i ∈ I

})
.

Then the pair (X, E) = Πi(Xi, Ei), called product entourage space is the product
in Entou. Similarly to the previous situation, since Coarse is reflective in both
SCoarse and QCoarse, which are reflective in Entou, the product entourage
structure provide also the product in SCoarse, QCoarse and Coarse. The
products in Coarse are well-known objects (see, for instance, [151, 65]).

Note that, if {(Xi, Ei)}i∈I is a family of entourage spaces, then βE = ΠiβEi .
Moreover, the product entourage structure is trivial (discrete) if all the coarse
structures composing it are trivial (discrete, respectively).

Remark 4.3.1. Let {Xi}i∈I be a family of sets, and, for every i ∈ I, βi and
Ei be a para-bornology and an entourage structure of Xi, respectively. Denote
by β and E the product para-bornology of the family {βi}i and the product
entourage structure of the family {Ei}i, respectively. Then, for every j ∈ I,
pj : (ΠiXi, β) → (Xj , βj) is boundedness preserving and copreserving, while
pj : (ΠiXi, E)→ (Xj , Ej) is bornologous and uniformly boundedness copreserv-
ing.

The projection maps are rarely proper maps. More precisely, in the previous
notations, pj is proper if and only if, for every i ∈ I \ {j}, (Xi, βi) is bounded.
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This observation implies that the category R of coarse spaces and bornologous
proper maps between them (see [157, 151]) does not have products.

Let f : X → Y be an application between sets. Then we can define the graph
of f to be the subset Graph(f) = {(x, f(x)) | x ∈ X} ⊆ X × Y .

Proposition 4.3.2. Let f : X → Y be a map between sets.

(a) Let βX and βY be para-bornologies of X and Y , respectively. Then i : (X, βX)→
(Graph(f), βX × βY |Graph(f)) is a proper bijection. Moreover, i is a large-
scale isomorphism if and only if f is boundedness preserving.

(b) Let EX and EY be entourage structures of X and Y , respectively. Then
i : (X, EX)→ (Graph(f), EX×EY |Graph(f)) is an effectively proper bijection.
Moreover, i is an asymorphism if and only if f is bornologous.

Proof. Let us show item (a), and item (b) can be proved similarly. Since i−1 is
the restriction of the projection p1 : X×Y → X to Graph(f), it is boundedness
preserving and thus i is proper. As for the second assertion, suppose that
f is boundedness preserving. Then, for every x ∈ X and every A ∈ β(x),
i(A) ⊆ A× f(A) ∈ β((x, f(x))), which shows that i is boundedness preserving,
and thus a large-scale isomorphism. Conversely, if i is a large scale isomorphism,
then f = p2◦i is boundedness preserving since p2 is boundedness preserving.

Proposition 4.3.3. Let B and D denote the set {0, 1} endowed with the trivial
and the discrete coarse structure, respectively.

(a) Every coarse space is trivial if and only if it is isomorphic to some subspace
of a product of copies of B.

(b) Every coarse space is discrete if and only if it is isomorphic to some subspace
of a product of copies of D.

Proof. Let X be a coarse space. Let us define a map i : X → {0, 1}X which
associates to every point x ∈ X its characteristic function χx ∈ {0, 1}

X . Recall
that BX is trivial and DX is discrete. Example 3.1.12 implies that, if X is
trivial (discrete), i : X → i(X) ⊆ BX (i : X → i(X) ⊆ DX , respectively) is an
asymorphism. The converse implications are trivial.

Let us now introduce the coproducts. The coproduct
⊕

i(Xi, βi) of the family
{(Xi, βi)}i∈I of para-bornological spaces is the para-bornological space (X, β),
with X =

⊔
iXi and β =

⊕
i βi = {β(ik(x)) | k ∈ I, x ∈ Xk} (called coproduct

para-bornology), where, for every k ∈ I and x ∈ Xk, β(ik(x)) = ik(βk(x)). It is
easy to check that the pair (X,β) is the categorical coproduct in the categories
PaBorn, SBorn, QBorn, and PrBorn.

Let {(Xk, Ek)}k∈I be a family of entourage spaces. On the disjoint union
X =

⊔
kXk of the supports, we define the coproduct entourage structure E =⊕

k Ek as follows:

E = cl
({
EJ,ϕ | J ∈ [I]<∞, ϕ : J →

⋃

k∈I

Ek, ϕ(k) ∈ Ek, ∀k ∈ I
})

and, for every such a J and ϕ, EJ,ϕ = ∆X ∪

( ⋃

j∈J

(ij × ij)(ϕ(j))

)
.

(4.4)
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It is not hard to check that (X, E) =
⊕

k(Xk, Ek), called coproduct entourage
space, is actually the coproduct in Entou, SCoarse, QCoarse and Coarse.
Furthermore, note that, in this notation, βE =

⊕
i βEi .

Let us underline that we could not have concluded as in the product case
that, once we provide the coproduct of PaBorn (Entou), then it would auto-
matically be the coproduct of the other categories. In fact, QBorn (QCoarse)
is not co-reflective in QBorn (Entou, respectively) and PrBorn (Coarse) is
not co-reflective in SBorn (SCoarse, respectively).

Proposition 4.3.4. Let X =
⊕

k∈I Xk be a coproduct entourage space and let
Y be another entourage space. Denote by ik : Xk → X the canonical inclusions,
for every k ∈ I. A map f : X → Y is bornologous if and only if f |ik(Xk) is
bornologous for every k ∈ I.

In Proposition 4.3.4, the fact thatX is a coproduct is necessary. For example
the identity id{0,1} : B→ D, as defined in Proposition 4.3.3, is not bornologous,
although both id{0,1}|{0} and id{0,1}|{1} are bornologous.

The following result can be shown by checking the definitions.

Proposition 4.3.5. Let {fi : Xi → Yi}i∈I be a family of maps between en-
tourage spaces. Denote by Πifi : ΠiXi → ΠiYi and by

⊕
k fk :

⊕
kXk →

⊕
kXk

the maps defined as follows: for every (xi)i ∈ ΠiXi, (Πifi)(xi)i = (fi(xi))i,
and, for every ij(x) ∈

⊕
kXk,

⊕
k fk(ij(x)) = ij(fj(x)), respectively. Then the

following properties are equivalent:

(a) Πifi is bornologous;
(b)

⊕
i fi is bornologous;

(c) for every i ∈ I, fi is bornologous.

Remark 4.3.6. (a) Let {Xi}i∈I be a family of sets, and, for every i ∈ I, βi
and Ei be a para-bornology and an entourage structure of X, respectively.
Denote by X = ⊔iXi, by β =

⊕
i βi, and by E =

⊕
i Ei. Then, for every

k ∈ I, the map ik : (Xk, βk)→ (X, β) is a large-scale embedding, while the
map ik : (Xk, Ek)→ (X, E) is an injective coarse embedding.

(b) Let (X, β) be a para-bornological space. Denote by {Xi}i∈I its connected
components. Then (X, β) =

⊕
i∈I(Xi, β|Xi

). However, the situation is
different if we consider an entourage space. Let (X, E) be an entourage
space, and {Xi}i∈I be its connected components. While it is true that⊕

i E|Xi is finer then E , and if I is finite, then
⊕

i E|Xi = E , they do not
coincide in general.
Endow N with the discrete coarse structure and the pair {0, 1} with the
trivial one. Let then X be the product entourage space N×{0, 1}, which is
a coarse space. The connected components of X are the subsets {n}×{0, 1},
for every n ∈ N. However, the coarse structure of X is strictly coarser than
the one of

⊕
n({n} × {0, 1}).

(c) If ϕ : X → Y is an asymorphism of entourage structures, then ϕ determines
a bijection between the family of non-trivial connected components ofX and
its counterpart in Y , so one can index both families with the same index
set I = dscX = dscY and write X =

⋃
i∈I QX(xi) and Y =

⋃
i∈I QY (yi),

assuming without loss of generality that ϕ(xi) = yi and the restriction of
ϕ determines asymorphisms between QX(xi) and QY (yi). All these are
only necessary conditions for the existence of an asymorphism between X
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and Y (i.e., the bare fact that dscX = dscY and QX(xi) is asymorphic to
QY (yi), for all i ∈ I, need not imply that X and Y are asymorphic, see
the previous item). Indeed, the asymorphism between X and Y imposes a
‘uniform coarseness’ of the asymorphisms QX(xi) ≈ QY (yi).
Moreover, if dscX = dscY is finite, then they are indeed sufficient condi-
tions, since, in that case, both X and Y coincide with the coproducts of
their connected components using Proposition 4.3.5.

(d) In the case of quasi-coarse spaces, the previous item can be generalised as
follows. Let ϕ : X → Y be a Sym-coarse equivalence between two quasi-
coarse spaces. Then dscX = dscY . Moreover, ϕ induces Sym-coarse equiv-
alences between the connected components ofX and Y , respectively. Hence,
in particular, for every x ∈ X, QX(x) is bounded if and only if QY (ϕ(x))
is bounded.
Similarly to the previous item, the fact that dscX = dscY and the existence
of Sym-coarse equivalences between the connected components of X and Y ,
respectively, are only necessary conditions for the existence of a Sym-coarse
equivalence between X and Y . However, those conditions are also sufficient
if dscX = dscY <∞.

Example 4.3.7. In this example we want to provide the counter-examples
promised in Remarks 2.1.14 and 3.1.18.

(a) Consider the following pre-bornological spaces: X = {0, 1} endowed with
the discrete pre-bornology βX and Y = {a, b} endowed with the trivial
pre-bornology βY . Let f = p2 : (X, βX) × (Y, βY ) → (Y, βY ). Then f is
boundedness copreserving. However, if we consider Z = {(0, b), (1, a)} ⊆
X×Y , then {a, b}, which is bounded from b, cannot by covered by a subset
of A ⊆ Z which is bounded from (0, b). Hence f is not weakly boundedness
copreserving.
Since the spaces involved are finite, according to §3.3.1, each pre-bornology
is induced by only one coarse structure, namely, the associated entourage
structure. Then Proposition 3.3.3 implies that the previous example is a
uniformly boundedness copreserving map whose restriction is not uniformly
weakly boundedness copreserving.

(b) We now can easily define two coarse structures on a set X that are not
comparable, even if they induce the same pre-bornology. In fact, if we take
two different coarse structures E and E ′ on a set X such that βE = βE′ ,
then E ⊕ E ′ and E ′ ⊕ E are not comparable, although βE⊕E′ = βE′⊕E (e.g.,
let X = R, E be the euclidean metric coarse structure and E ′ be the ideal
coarse structure associated to the bornology βE).

Since all the categories in which we are interested (PaBorn,SBorn, QBorn,
PrBorn, Entou, SCoarse, QCoarse, and Coarse) are topological categories,
they have equalisers of pairs of morphisms f, g : X → Y defined by eq(f, g) =
{x ∈ X | f(x) = g(x)} (more precisely, by the inclusion map eq(f, g) →֒ X).
Since they have also products, this yields the existence of pullbacks of pairs of
morphisms f : X → Y , e : Z → Y defined by the following diagram:

X
f

−−−−→ Y

u

x
xe

P
v

−−−−→ Z.

(4.5)
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The pullback can be built as follows, using the product X×Z and the equalizer
P = eq(f ◦ p1, e ◦ p2) → X × Z of the pair of morphisms f ◦ p1, e ◦ p2, where
p1 : X × Z → X and p2 : X × Z → Z are the projections of the product. The
morphisms u, v of the pullback are obtained by u = p1|P and v = p2|P .

4.3.2 Quotients of para-bornological spaces

Let q : (X, β) → Y be a surjective map from a para-bornological space to
a set. We want to define the quotient para-bornology β

q
on Y , which exists

since PaBorn is topological. More explicitly, β
q
is the finest para-bornology

on Y making the map q : (X,β)→ (Y, β
q
) boundedness preserving. First of all,

consider the family

q(β) = {q(β)(y) | y ∈ Y }, where, for every y ∈ Y ,

q(β)(y) = {q(A) | A ∈ β(x), x ∈ q−1(y)}.

Of course, for every y ∈ Y , q(β)(y) ⊆ β
q
(y), however, q(β) is not a para-

bornology in general since, even though, for each y ∈ Y , q(β)(y) contains {y}
and is closed under taking subsets, it is not necessarily closed under finite unions.
In Example 4.3.8 we explicitly provide a surjective map q : (X, β) → Y from a
pre-bornology to a set such that q(β) is not a para-bornology. In the previous
notation, β

q
is the finest para-bornology generated by q(β). Note that, for every

y ∈ Y , β
q
(y) is the closure under finite unions of q(β)(y) since q(β)(y) is closed

under taking subsets. Moreover, since SBorn is co-reflective in PaBorn, the
same construction leads to the quotient of the category SBorn.

Example 4.3.8. Let Z = {0, 1}, (X, β) = (Z, βtriv) ⊕ (Z, βtriv), and Y =
{0, 1, 2}. Consider then the map q : X → Y , where q(i1(0)) = 0, q(i1(1)) =
q(i2(0)) = 1 and q(i2(1)) = 2. Then q(β) is not a para-bornology since
{0, 1}, {1, 2} ∈ q(β)(1), but Y /∈ q(β)(1). We can easily compute β

q
= {β

q
(y) |

y ∈ Y }:

β
q
(0) = cl({{0, 1}}) β

q
(2) = cl({Y }), and β

q
(2) = cl({{1, 2}}).

Note that β
q
does not have the property (G2), although β is a pre-bornology.

Example 4.3.8 has another important consequence. Since a colimit (actually,
constructing a quotient) is not preserved if we move from PaBorn to QBorn

or from SBorn to PrBorn, neither QBorn is co-reflective in PaBorn nor
PrBorn is co-reflective in SBorn. In the previous notation, the quotient in
QBorn and inPrBorn is B-W(β

q
), which is called the quotient quasi-bornology.

We have noticed that, if q : (X, β) → Y is a surjective map from a para-
bornological space to a set, the family q(β) is not a para-bornology in general.
We now want to discuss some properties ensuring that q(β) is actually a para-
bornology.

A surjective map q : (X, β) → Y from a para-bornological space to a set is
soft if, for every x ∈ X, y ∈ q−1(q(x)), and A ∈ β(x), there exists B ∈ β(y)
such that q(B) = q(A).

Proposition 4.3.9. Let q : (X, β) → Y be a surjective map from a para-
bornological space to a set. Then q(β) is a para-bornology provided that one
of the following properties holds:
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(a) q is soft;
(b) β is a quasi-bornology and, for every y ∈ Y , the quasi-bornological subspace

Fy = {x ∈ q−1(y) | Q↓
X(x) 6= {x}} of X has the property C3′′ .

Proof. Suppose that the hypothesis (a) holds, and let A,B ∈ q(β)(q(x)), for
some x ∈ X. Since q is soft, there exist A′, B′ ∈ β(x) such that q(A′) = A and
q(B′) = B. Then A′ ∪B′ ∈ β(x) and thus A ∪B = q(A′ ∪B′) ∈ q(β)(q(x)).

Assume now item (b). Let y ∈ Y and A,B ∈ q(β)(y). If A = {y} or
B = {y}, there is nothing to prove. Otherwise, there exist x, x′ ∈ Fy and
A′ ∈ β(x) and B′ ∈ β(x′) such that q(A′) = A and q(B′) = B. Since Fy
satisfies C3′′ , we can assume without loss of generality that {x′} ∈ β(x). Thus,
the property (G2) implies that B′ ∈ β(x) and so A′ ∪ B′ ∈ β(x). Hence,
A ∪B = q(A′ ∪B′) ∈ q(β)(y).

Remark 4.3.10. (a) Let q : (X, β) → Y be a surjective map from a para-
bornological space to a set. Note that, if q(β) is a para-bornology (e.g., if
one of the assumptions of Proposition 4.3.9 is fulfilled), then q : (X, β) →
(Y, q(β)) is trivially boundedness copreserving. This is not true in general for
the quotient para-bornology. In fact, the map q : (X, β) → (Y, β

q
) defined

in Example 4.3.8 is not boundedness copreserving.
(b) Using an argument similar to the one followed in the proof of Proposition

4.3.9, we can prove that, if q : (X, β) → Y is a surjective soft map from a
quasi-bornological space to a set, then also q(β) is a quasi-bornology.

(c) In the notation of Proposition 4.3.9, it is not true in general that q(β)
satisfies (G2) even if the assumptions (b) are fulfilled. In fact, let X =
{0, 1, 2, 3} and β = βR, where R = ∆X ∪ {(1, 0), (1, 2), (3, 2)}. Since R is
a partial order, then β is a quasi-bornology. Define q as the map q : X →
{0, 1, 2} such that q(0) = 0, q(1) = q(2) = 1 and q(3) = 2. Then, although
this choice satisfies all the requests of Proposition 4.3.9(b), q(β) is not a
quasi-bornology, which is easy to show.

4.3.3 Quotients of entourage spaces

We now want to construct quotients in Entou and its three subcategories
that we are considering. Let q : (X, E) → Y be a surjective map from an en-
tourage space to a set. Then the quotient entourage structure on Y is q(E) =
{(q × q)(E) | E ∈ E}. Note that the quotient entourage structure is actually a
an entourage structure since, in the previous notation, ∆Y ∈ q(E) because q is
surjective, q(E) is trivially closed under inclusions, and (q×q)(E)∪(q×q)(F ) =
(q × q)(E ∪ F ), for every E,F ∈ E . Moreover, the map q : (X, E)→ (Y, q(E)) is
automatically uniformly weakly boundedness copreserving.

Furthermore, in the previous notation, if E is a semi-coarse structure, then
(Y, q(E)), called quotient entourage space, is a semi-coarse space and thus it is
also the quotient structure in SCoarse. However, even if E is a coarse struc-
ture, then q(E) is not a quasi-coarse structure in general (see Example 4.3.8).
Then the quotient structure in QCoarse (in Coarse) is E

q
, where E

q
is the

finest quasi-coarse structure (coarse structure, respectively) which contains q(E),
namely W((Y, q(E))). See also [88] for the quotient of coarse structures. Hence,
in particular, QCoarse is not co-reflective in Entou and Coarse is not co-
reflective in SCoarse.
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Remark 4.3.11. Let q : (X, E) → Y be a surjective map from an entourage
space to a set. Note that, while q(E) is an entourage structure, and thus βq(E) is
a para-bornology on Y , q(βE) is not necessarily a para-bornology (see Example
4.3.8). Moreover, since the map q : (X, E)→ (Y, q(E)) is bornologous, according
to Proposition 3.1.14, q : (X, βE) → (Y, βq(E)) is boundedness preserving, and

thus βE
q
≤ βq(E).

The next task is to study sufficient conditions implying that the quotient
entourage structure is actually a quasi-coarse structure or a coarse structure.

The following relations between entourages and the equivalence relation Rq
will be needed in the sequel.

Proposition 4.3.12. If Rq is the equivalence relation associated to a surjective
map q : X → Y and E ⊆ X ×X, then

(q × q)(E) = (q × q)(Rq ◦ E) = (q × q)(E ◦Rq) = (q × q)(Rq ◦ E ◦Rq), (4.6)

(q × q)(E) ◦ (q × q)(E) = (q × q)(E ◦Rq ◦ E). (4.7)

and

(q×q)(E)◦(q×q)(E)◦(q×q)(E)◦(q×q)(E) = (q×q)(E◦Rq◦E◦Rq◦E◦Rq◦E).
(4.8)

Moreover, if F is another subset of X ×X such that (q × q)(F ) ⊆ (q × q)(E),
then F ⊆ Rq ◦ E ◦Rq. Consequently, (q × q)−1((q × q)[E]) = Rq ◦ E ◦Rq.

Proof. To prove (4.6) note first that E ⊆ Rq ◦ E ⊆ Rq ◦ E ◦ Rq and E ⊆
E ◦ Rq ⊆ Rq ◦ E ◦ Rq, since Rq ⊇ ∆X . Therefore, it suffices to check the
inclusion (q×q)(E) ⊇ (q×q)(Rq ◦E ◦Rq). Pick (x, y) ∈ Rq ◦E ◦Rq. Then there
exists (z, u) ∈ E such that q(x) = q(z) and q(u) = q(y). Then, (q(x), q(y)) =
(q(z), q(u)) ∈ (q × q)(E).

To prove (4.7), assume (y, y′) ∈ (q × q)(E) ◦ (q × q)(E). Then there exist
x, x′, z, z′ ∈ X such that

y = q(x), y′ = q(x′), (x, z), (z′, x′) ∈ E and q(z) = q(z′),

consequently, (z, z′) ∈ Rq. This yields x
′ ∈ E◦Rq◦E[x], i.e., (x, x′) ∈ E◦Rq◦E.

Therefore, (y, y′) = (q(x), q(x′)) ∈ (q× q)(E ◦Rq ◦E). This proves the inclusion
⊆ in (4.7).

Now assume that (y, y′) ∈ (q× q)(E ◦Rq ◦E). Then y = q(x) and y′ = q(x′)
for (x, x′) ∈ E ◦ Rq ◦ E. So there exist z, u ∈ X such that (x, z), (u, x′) ∈ E
and (z, u) ∈ Rq, i.e., q(z) = q(u). Then the pair (q(x), q(x′)) belongs to (q ×
q)(E)◦ (q×q)(E), as (q(x), q(z)) = (q(x), q(u)) ∈ (q×q)(E), and (q(z), q(x′)) =
(q(u), q(x′)) ∈ (q × q)(E). Therefore, (y, y′) = (q(x), q(x′)) ∈ (q × q)(E) ◦ (q ×
q)(E). This proves (4.7).

We deduce (4.8) from (4.7) as follows. Let E1 = (q× q)(E). Then E1 ◦E1 =
(q × q)(Rq ◦ E ◦Rq) by (4.7). Applying once again (4.7) to

E2 = E1 ◦ E1 = (q × q)(E ◦Rq ◦ E) ◦ (q × q)(E ◦Rq ◦ E)

we deduce that

E1 ◦ E1 ◦ E1 ◦ E1 = E2 ◦ E2 = (q × q)(E ◦Rq ◦ E ◦Rq ◦ E ◦Rq ◦ E).
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This proves (4.8).

To prove F ⊆ Rq ◦E ◦Rq, under the assumption of (q× q)(F ) ⊆ (q× q)(E),
pick (x, y) ∈ F . Then (q(x), q(y)) ∈ (q × q)(E), by our hypothesis. Thus, there
exists (u, v) ∈ E, such that (q(x), q(y)) = (q(u), q(v)). Then (x, u) ∈ Rq and
(v, y) ∈ Rq and this yields (x, y) ∈ Rq ◦ E ◦Rq, as required.

The last assertion follows from the last proven inclusion and (4.6).

Corollary 4.3.13. Let q : (X, E) → Y be a surjective map from an entourage
space to a set. The quotient entourage structure q(E) on Y is bounded (i.e.,
it coincides with the trivial coarse structure on Y ) if and only if there exists
E ∈ EX such that X × X = Rq ◦ E ◦ Rq. In such a case, q(E) is a coarse
structure.

Proof. Clearly, q(E) on Y is bounded if and only if there exists E ∈ EX such
that (q × q)(E) = Y × Y = (q × q)(X ×X). According to the last assertion of
Proposition 4.3.12, this occurs precisely when X ×X = Rq ◦ E ◦Rq.

We propose now two natural sufficient conditions ensuring that the quotient
entourage structure of a quasi-coarse space is a quasi-coarse structure.

Definition 4.3.14. Let (X, E) be a quasi-coarse space and q : X → Y be a
surjective map. We say that q is:

(a) uniformly soft (simply soft in [65]) if for all E ∈ E there exists a F ∈ E such
that Rq ◦ E ⊆ F ◦Rq;

(b) weakly uniformly soft (weakly soft in [65]) if for all E ∈ E there exists a
F ∈ E such that E ◦Rq ◦ E ⊆ Rq ◦ F ◦Rq;

(c) 2-uniformly soft (2-soft in [65]) if for all E ∈ E there exists a F ∈ E such
that

E ◦Rq ◦ E ◦Rq ◦ E ◦Rq ◦ E ⊆ Rq ◦ F ◦Rq ◦ F ◦Rq.

Remark 4.3.15. Let q : (X, E) → Y be a surjective map from a quasi-coarse
space to a set.

(a) The property Rq ◦E ⊆ F ◦Rq in the definition of uniform softness reminds
a (very) weak form of commutativity between E and Rq in the monoid of
all entourages of X ×X with respect to the composition law ◦, taken into
account the fact that F can be chosen with E ⊆ F .

(b) Obviously, Rq ◦ E ⊆ F ◦Rq implies

Rq ◦ E ◦Rq ⊆ F ◦Rq ◦Rq = F ◦Rq, (4.9)

as Rq ◦ Rq = Rq. On the other hand, (4.9) implies Rq ◦ E ⊆ F ◦ Rq as
Rq ◦ E ⊆ Rq ◦ E ◦ Rq. Hence, q is uniformly soft if and only if for every
E ∈ EX there exists a F ∈ EX such that (4.9) holds.
Similarly, one can show that q is weakly uniformly soft (respectively, 2-
uniformly soft) if and only if for every E ∈ EX there exists a F ∈ EX such
that

E ◦Rq ◦ E ◦Rq ⊆ Rq ◦ F ◦Rq

(respectively, E ◦Rq ◦ E ◦Rq ◦ E ◦Rq ◦ E ◦Rq ⊆ Rq ◦ F ◦Rq ◦ F ◦Rq).
(4.10)
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(c) As one may expect, if the map q is uniformly soft, then q : (X,βE) → Y is
soft. In fact, fix two points x, y ∈ X with (x, y) ∈ Rq and a subset A which
is bounded from x. Then there exists E ∈ E such that A = E[x]. Let F ∈ E
be an entourage such that Rq ◦E ⊆ F ◦Rq. Finally, since, for every C ⊆ X,
q(Rq[C]) = q(C),

q(A) = q(E[x]) ⊆ q(E[Rq[y]]) = q((Rq ◦ E)[y]) ⊆ q(Rq[F [y]]) = q(F [y]),

and this shows the claim since F [y] ∈ βE(y).

Proposition 4.3.16. Let q : X → Y a surjective map from a quasi-coarse space
(X, E). Then the following implications hold:

(a) if q is large-scale injective (i.e., Rq ∈ E), then it is uniformly soft;
(b) if q is uniformly soft, then it is weakly uniformly soft;
(c) if q is weakly uniformly soft, then it is 2-uniformly soft.

Proof. (a) As Rq ◦ E ⊆ Rq ◦ E ◦ Rq for every E ∈ E , our claim follows from
Rq ◦ E ∈ E .

(b) If E ∈ EX and F ∈ EX satisfies Rq ◦ E ⊆ F ◦Rq, then

E ◦Rq ◦ E ⊆ E ◦ F ◦Rq ⊆ Rq ◦ (E ◦ F ) ◦Rq.

(c) It is an easy application of the definition of weak uniform softness and
of the fact that Rq ◦Rq = Rq.

The above lemma gives the following implications between the above four
properties of a map:

uniformly bounded fibres −→ uniformly soft −→

−→ weakly uniformly soft −→ 2-uniformly soft. (4.11)

Counter-examples witnessing that none of these implications is reversible are
given in Example 5.3.5.

The next results justify our interest in the notions introduced in Definition
4.3.14.

Theorem 4.3.17. Let q : (X, E) → Y be a surjective map from a quasi-coarse
space to a set. Denote by E

q
the quotient quasi-coarse structure on Y . Then

the following properties are equivalent:

(a) E
q
= q(E);

(b) q(E) is a quasi-coarse structure;
(c) q is weakly uniformly soft;
(d) q : (X, E)→ (Y, E

q
) is uniformly weakly boundedness copreserving.

Proof. The equivalence (a)↔(b) is trivial, while (a)↔(d) is easy to check. In
fact, as for (d)→(a), if q is uniformly weakly bounded copreserving, then, ap-
plying the definition, we can show that E

q
⊆ q(E).

(c)→(b) Suppose that q is weakly uniformly soft. It is enough to show that
the family q(E) is a quasi-coarse structure. In order to do that, we need to only
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check the the property (q × q)(E) ◦ (q × q)(E) ∈ q(E) whenever E ∈ E . Pick
F ∈ E such that E ◦Rq ◦ E ⊆ Rq ◦ F ◦Rq. Therefore, (4.7) and (4.6) imply

(q× q)(E)◦ (q× q)(E) = (q× q)(E ◦Rq ◦E) ⊆ (q× q)(Rq ◦F ◦Rq) = (q× q)(F ),
(4.12)

i.e., (q × q)(E) ◦ (q × q)(E) ∈ q(E).

(b)→(c) Assume that q(E) on Y is a quasi-coarse structure. Then (q×q)(E)◦
(q × q)(E) ∈ q(E) for every E ∈ E . By (4.7), (q × q)(E ◦Rq ◦ E) ∈ E

q
, so there

exists F ∈ E such that

(q × q)(E ◦Rq ◦ E) ⊆ (q × q)(F ). (4.13)

In view of Proposition 4.3.12, (4.13) implies

E ◦Rq ◦ E ⊆ Rq ◦ F ◦Rq.

This proves that q is weakly uniformly soft.

Proposition 4.3.18. Let q : (X, E) → Y be a surjective map from a quasi-
coarse space to a set. Denote by E

q
the quotient quasi-coarse structure on Y .

Then q is soft if and only if the map q : (X, E)→ (Y, E
q
) is uniformly bounded-

ness copreserving.

Proof. If q is soft, then it is in particular weakly uniformly soft, and so E
q
= q(E),

according to Theorem 4.3.17. Take an arbitrary entourage (q × q)(E) ∈ q(E) =
E
q
and let F ∈ E be an entourage satisfying Rq ◦ E ⊆ F ◦ Rq. Fix now

x ∈ X and an arbitrary element q(w) ∈ (q × q)(E)[q(x)]. Since (q(x), q(w)) ∈
(q × q)(E), (x,w) ∈ Rq ◦ E ◦ Rq ⊆ F ◦ Rq, and thus q(w) ∈ q((F ◦ Rq)[x]) =

q(Rq[F [x]]) = q(F [x]), which implies that q : (X, E) → (Y, E
q
) is uniformly

boundedness copreserving.

Conversely, assume that q : (X, E) → (Y, E
q
) is uniformly boundedness cop-

reserving. Since, in particular, q is uniformly weakly boundedness copreserving,
Theorem 4.3.17 implies that E

q
= q(E). Consider an entourage E ∈ E and

pick an F ∈ E such that, for every x ∈ X, ((q × q)(E))[q(x)] ⊆ q(F [x]), which
exists since q is uniformly boundedness copreserving. If a pair (y, z) ∈ Rq ◦ E,
then there exists w ∈ X such that (y, w) ∈ Rq and (w, z) ∈ E. In particular,
(q(y), q(z)) = (q(w), q(z)) ∈ (q× q)(E), and q(z) ∈ ((q× q)(E))[q(y)] ⊆ q(F [y]).
Thus, there exists t ∈ F [y] such that q(z) = q(t), and so, finally, (y, z) =
(y, t) ◦ (t, z) ∈ F ◦Rq.

Corollary 4.3.19. Let {(Xi, Ei)}i∈I be a family of quasi-coarse spaces. Denote
by (X, E) the product quasi-coarse space. Then, for every i ∈ I, the canonical
projection pi : (X, E)→ Xi is soft.

Proof. Thanks to Proposition 4.3.18 and Theorem 4.3.17, since the projection
map pi : (X, E) → (Xi, Ei) is uniformly boundedness copreserving, it is enough
to prove that E

q
= q(E). However, this is easy to show. In fact, for every E ∈ Ei,

the entourage F = E × (Πj∈I\{i}∆Xj
) satisfies (q × q)(F ) = E.

Theorem 4.3.20. Let q : (X, E) → Y be a surjective map from a quasi-coarse
space to a set. Denote by E

q
the quotient quasi-coarse structure on Y . Then the

family of entourages E∗Y = {(q × q)(E) ◦ (q × q)(E) | E ∈ EX} is a quasi-coarse
structure if and only if q is 2-uniformly soft.
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Proof. The ‘only if’ implication can be shown by applying Proposition 4.3.12.
Conversely, suppose that q is 2-uniformly soft. We have to check that the family
of entourages E∗Y is a quasi-coarse structure. The argument is similar to that of
the one of the proof of Theorem 4.3.17. Indeed, suppose that q is 2-uniformly
soft. Let us check that (q×q)(E)◦(q×q)(E)◦(q×q)(E)◦(q×q)(E) ∈ E∗Y whenever
E ∈ EX . Pick F ∈ E such that E ◦Rq ◦E ◦Rq ◦E ◦Rq ◦E ⊆ Rq ◦F ◦Rq ◦F ◦Rq.
Therefore, (4.6), (4.7) and (4.8) imply

(q × q)(E)◦ (q × q)(E) ◦ (q × q)(E) ◦ (q × q)(E) =

= (q × q)(E ◦Rq ◦ E ◦Rq ◦ E ◦Rq ◦ E) ⊆

⊆ (q × q)(Rq ◦ F ◦Rq ◦ F ◦Rq) = (q × q)(F ◦Rq ◦ F ) =

= (q × q)(F ) ◦ (q × q)(F ) ∈ E∗Y .

Let us add one more similar result.

Proposition 4.3.21. Let q : (X, E) → Y be a surjective map from a quasi-
coarse space to a set. Then the following properties are equivalent:

(a) q is large-scale injective;
(b) the map q : (X, E)→ (Y, E

q
) is effectively proper;

(c) the map q : (X, E)→ (Y, E
q
) is a Sym-coarse equivalence.

Proof. The implications (b)→(c)→(a) follow from Theorem 3.4.6 since q : (X, E)→
(Y, E

q
) is bornologous and surjective. Let us now show the last implication,

(a)→(b). If Rq ∈ E , then q is weakly uniformly soft and E
q
= q(E), accord-

ing to Theorem 4.3.17. Moreover, for every E ∈ E , (q × q)−1((q × q)(E)) =
Rq ◦E ◦Rq ∈ E since E is a quasi-coarse structure. The opposite implication is
trivial.

Proposition 4.3.21 implies that for a quotient map q with uniformly bounded
fibres E

q
is bounded if and only if (X, E) is bounded. Moreover, note that, ifX is

bounded, then trivially Rq ∈ E . This witnesses how restrictive is the hypothesis,
usually imposed in the literature (see [151, 9]), of uniformly bounded fibres, to
define quotients.

We give now an explicit construction of quotients of quasi-coarse spaces in
the general case.

Proposition 4.3.22. Let (X, E) be a quasi-coarse space and let q : X → Y be
a surjective map. Denote by Rq the relation entourage structure on X, actually
a coarse structure, induced by the entourage Rq, and let E# = E ∨ Rq. Then

q(E#) = E
q
.

Proof. Applying Propositions 4.3.16 and 4.3.21 to q : (X, E#) → Y , we deduce
that the quotient entourage structure q(E#) is a quasi-coarse structure, as q has
uniformly bounded fibres, in view of Rq ∈ E

#.

It is easy to see that E# is generated by the entourages of the form Wn =
E ◦ Rq ◦ E ◦ · · · ◦ E ◦ Rq ◦ E, where E ∈ E participates n-times, E runs over
E and n ∈ N. According to an obvious counterpart of (4.8) from Proposition
4.3.12, (q × q)(Wn) = (q × q)(E) ◦ . . . ◦ (q × q)(E), where the composition on
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the right-hand side has n components. Since this is a typical entourage of E
q
,

the quasi-coarse structure generated by q(E) coincides with the one having the
family of all (q × q)(Wn) as a base, which in turn coincides with q(E#).

The previous results (Theorems 4.3.17 and 4.3.20, and Propositions 4.3.18,
4.3.21 and 4.3.22) hold also for quotients in Coarse since Coarse is co-reflective
in QCoarse.

Remark 4.3.23. The result of Theorem 4.3.17 is closely related to a similar
fact about uniformities (defined by means of a family of entourages) established
in [99]: if (X,U) is a uniform space and q : X → Y is a surjective map, then the
family of entourages q(U) = {(q×q)(U) | U ∈ U} is a uniformity precisely when
for every V ∈ U there exists U ∈ U such that U ◦Rq ◦U ⊆ (q× q)−1((q× q)(V ))
(taking into account that (q × q)−1((q × q)(V )) = Rq ◦ V ◦ Rq, according to
Proposition 4.3.12).

4.4 Functors from PaBorn to Entou

In Sections 4.1 and 4.2, we have studied functors that connect separately
categories of para-bornological spaces and categories of entourage spaces, re-
spectively. The goal of this section is to further discuss connections between
para-bornological spaces and entourage spaces.

Following this spirit, first of all, we want to provide adjoints to the functors
UEntou

PaBorn, U
QCoarse
QBorn , and UCoarse

PrBorn. While providing the desired adjoints, we
also prove that all para-bornologies, quasi-bornologies and pre-bornologies are
uniform.

Let X be a set and U = {Ux | x ∈ X} be a family of ideals on X. Then we
can define the ideal entourage structure EU as follows:

EU = cl({EI,ψ | I ∈ [X]<ω, ψ : I →
⋃
U : ψ(x) ∈ Ux, ∀x ∈ I}),

where, for every such I and ψ, EI,ψ = ∆X ∪

( ⋃

x∈I

(
{x} × ({x} ∪ ψ(x))

))
.

(4.14)
Of course the construction described in (4.14) can be carried out when U is a
para-bornology on X. If β is a para-bornology on X, we can assume that we
consider only those maps ψ : I →

⋃
β, where I is a finite subset of X, such that

{x} ⊆ ψ(x), for every x ∈ I. In that case we can slightly simplify the definition
of EI,ψ.

For the sake of simplicity, we prove the fact that the ideal entourage structure
is indeed an entourage structure only for para-bornologies, even though it could
be easily generalised to arbitrary families of ideals.

Theorem 4.4.1. Let β be a para-bornology on a set X.

(a) Eβ is an entourage structure such that βEβ
= β.

(b) If E is an entourage structure on X such that βE = β, then Eβ ⊆ E.
(c) If β is a quasi-bornology, then Eβ is a quasi-coarse structure.

Proof. (a) Let I and J be two finite subsets of X and let ψI , ψJ : I →
⋃
β such

that {x} ⊆ ψI(x) ∈ β(x) and {y} ⊆ ψJ(y) ∈ β(y), for every x ∈ I and y ∈ J .
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We want to show that EI,ψI
∪EJ,ψJ

∈ Eβ . Define K = I ∪J and ψK : K →
⋃
β

as follows: for every z ∈ K,

ψK(z) =





ψI(z) if z ∈ I \ J ,

ψJ(z) if z ∈ J \ I,

ψI(z) ∪ ψJ(z) otherwise.

One can easily verify that ψK satisfies the desired properties and that EI,ψI
∪

EJ,ψJ
⊆ EK,ψK

. Finally, the equality β = βEβ
is trivial.

(b) Let E an arbitrary element of Eβ . Without loss of generality, we can
assume that E = EI,ψ for some I ∈ [X]<ω and ψ : I →

⋃
β with the desired

properties. Since β = βE , for every x ∈ I, there exists Ex ∈ E such that
ψ(x) = Ex[x]. Then EI,ψ ⊆

(⋃
x∈I Ex

)
∪∆X ∈ E .

(c) Similarly to item (a), let I and J be two finite subsets of X and let
ψI , ψJ : I →

⋃
β such that {x} ⊆ ψI(x) ∈ β(x) and {y} ⊆ ψJ(y) ∈ β(y), for

every x ∈ I and y ∈ J . We want to show that EI,ψI
◦ EJ,ψJ

∈ Eβ . Define
K = I ∪ J and ψK : K →

⋃
β as follows: for every z ∈ K,

ψK(z) =





ψI(z) ∪

( ⋃

y∈ψI(z)∩J

ψJ(y)

)
if z ∈ I,

ψJ(z) otherwise.

Since, for every x ∈ I, ψJ(x)∩ J is finite and β satisfies (G2) the union still be-
longs to β(x) and so ψK is actually a map that satisfies the requested properties.
Finally, let us show that EI,ψI

◦ EJ,ψJ
⊆ EK,ψK

. Suppose that (x, y) ∈ EI,ψI

and (y, z) ∈ EJ,ψJ
. If x = y or y = z, there is nothing to prove, because of the

inclusion EI,ψI
∪EJ,ψJ

⊆ EK,ψK
. Otherwise, we have x ∈ I, y ∈ ψI(x)∩ J and

z ∈ ψJ(y), which implies that z ∈ ψK(x).

Proposition 4.4.2. Let f : (X, βX)→ (Y, βY ) be a map between para-bornological
spaces. Then f : (X, βX) → (Y, βY ) is boundedness preserving if and only if
f : (X, EβX

)→ (Y, EβY
) is bornologous.

Proof. If f is bornologous, then it is boundedness preserving because of Propo-
sition 3.1.14, and βEβX

= βX and βEβY
= βY . Conversely, it is trivial that, for

every I ∈ [X]<ω and ψ : I →
⋃
βX ,

(f × f)(EI,ψ) ⊆ Ef(I),ψ∗ , where, for every x ∈ I,

ψ∗(f(x)) = f

( ⋃

y∈Rf [x]∩I

ψ(y)

)
.

Theorem 4.4.1 proves, in particular, that every para-bornology is uniform
(item (a)) and also every quasi-bornology is uniform (item (c)). Moreover,
thanks to both Theorem 4.4.1 and Proposition 4.4.2, we can define a functor
F: PaBorn → Entou that associates to every para-bornological space (X, β)
the entourage structure F(X,β) = (X, Eβ). Moreover, we can also consider
its restriction FQ = F |QBorn : QBorn → QCoarse. Furthermore, note that
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UEntou
PaBorn ◦F = 1PaBorn, where 1X is the identity functor of the category X , and

thus UQCoarse
QBorn ◦FQ = 1QBorn.

Unfortunately, it is not true that, if β is a semi-bornology, then Eβ is a semi-
coarse structure. In fact, consider (R, βd), where d is the usual metric. Then,
E = {(0, x) | x ∈ Bd(0, 1)} ∈ Eβ , although E

−1 /∈ Eβ , since Bd(0, 1) is infinite.
As we have seen, infinite balls can create problems. In fact, the following result
holds.

Proposition 4.4.3. Let (X, β) be a semi-bornological space. Then Eβ is a semi-
coarse structure if and only if X is locally finite. In particular, if (X, β) also
satisfies (G2), then Eβ is a coarse structure.

Proof. Let us assume that Eβ is a semi-coarse structure. Then, for every x ∈ X
and every B ∈ β(x), ∆X ∪ ({x} ×B) ∈ Eβ , and thus

F = (∆X ∪ ({x} ×B))−1 = ∆X ∪ {(y, x) | y ∈ B} ∈ Eβ .

Because of the definition of Eβ , there exists J ∈ [X]<ω and ψ : J →
⋃
β such

that

F ⊆ EJ,ψ = ∆X ∪

( ⋃

y∈I

(
{y} × ({y} ∪ ψ(y))

))
,

which implies that B \ {x} ⊆ J and thus B itself is finite. Since both x and
B ∈ β(x) can be arbitrarily taken, we deduce that (X, β) is locally finite.

Conversely, suppose that β is locally finite, and let E ∈ Eβ . Without loss
of generality, we can assume that E = EI,ψ, where I ∈ [X]<ω and ψ : I →

⋃
β

with the desired properties. Define J =
⋃
x∈I ψ(x), which is a finite subset of

X, since (X, β) is locally finite, and ψ : J →
⋃
β as follows: for every x ∈ J ,

ψ(x) = {y ∈ I | x ∈ ψ(y)}. Note that, for every x ∈ J , ψ(x) =
⋃
{{y} | y ∈

I, {x} ∈ β(y)} ∈ β(x) because of the property (G1). We claim that E−1
I,ψ ⊆ EJ,ψ.

Let (x, y) ∈ EI,ψ. If x = y, there is nothing to prove. Otherwise, x ∈ I and
y ∈ ψ(x). Thus y ∈ J and x ∈ ψ(y), which implies that (y, x) ∈ EJ,ψ.

The last assertion follows from Theorem 4.4.1(c).

Question 4.4.4. Explicitly describe the finest semi-coarse structure, if it exists,
that induces a given semi-bornology.

Proposition 4.4.3 is not fully satisfying also for pre-bornological spaces. Let
β be a pre-bornology on a set X. According to Remark 2.1.3, we can assume
that β is a cover of X, which is closed under taking both subsets and finite
unions provided that the elements have non-empty intersection. We assume this
form of pre-bornologies and bornologies for the remaining part of this section.
The pre-bornological space (X, β) can be seen as coproduct

⊕
i∈I(Xi, βi) of

its connected components (Remark 4.3.6(b)). For every index i ∈ I, consider
the ideal coarse structure Eβi (see Example 3.1.3). Finally, define the coarse
structure ECβ =

⊕
i∈I Eβi

.

Theorem 4.4.5. Let (X, β) be a pre-bornological space. Then β is uniform,
and, more precisely, β = βEC

β
. Moreover, for every coarse structure E of X such

that βE = β, ECβ ⊆ E.
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Proof. If we prove the statements for a bornology, then the claim follows by
coproduct’s properties. So, we assume that β is a bornology on X, which implies
that the ideal coarse structure Eβ is actually a coarse structure. Moreover, for
every x ∈ X and x ∈ B ∈ β, B = EB [x] = ∆X ∪ (B × B)[x] (in the notation
of Example 3.1.3). Hence β ⊆ βEC

β
. However, since the family of entourages of

the form EB , where B ∈ β, form a base of ECβ , the opposite inequality is also

satisfied and β = βCEβ
.

Let now E be a coarse structure of X such that βE = β. Let E ∈ ECβ and we
can assume, without loss of generality, that E = EB = ∆X ∪ (B ×B) for some
B ∈ β. Thus E ∈ E since β = βE consists of subsets satisfying (B3).

Proposition 4.4.6. Let f : (X, βX)→ (Y, βY ) be a map between pre-bornological
spaces. Then f : (X, βX) → (Y, βY ) is boundedness preserving if and only if
f : (X, ECβX

)→ (Y, ECβY
) is bornologous.

Proof. If f is bornologous, then f is boundedness preserving by Proposition
3.1.14. Conversely, it is not hard to check that, ifA ∈

⋃
βX , (f×f)(EA) ⊆ Ef(A)

(in the notation of Example 3.1.3) and f(A) ∈
⋃
βY since f is boundedness

preserving.

According to Theorem 4.4.5 and Proposition 4.4.6, we can define a functor
FC : PrBorn → Coarse as follows: for every (X, β) ∈ PrBorn, FC(X, β) =
(X, ECβ ). Also in this case, UCoarse

PrBorn ◦FC = 1PrBorn. Finally, by checking the
definitions, the following result can be deduced.

Corollary 4.4.7. F is an adjoint for UEntou
PaBorn, FQ is an adjoint for UQCoarse

QBorn ,

and FC is an adjoint for UCoarse
PrBorn.

In this section we have shown that every para-bornology is uniform. How-
ever, many of them can be induced by several entourage structures.

Problem 4.4.8. Characterise the family of all entourage structures (semi-
coarse structures, quasi-coarse structures, or coarse structures) that induce the
same para-bornology.

Question 4.4.9. Which are the para-bornologies that are induced by just one
entourage structure (semi-coarse space, quasi-coarse space, or coarse space)?

In the diagram (4.15) we represent the functors that connect the categories
PaBorn, SBorn, QBorn, PrBorn, Entou, SCoarse, QCoarse andCoarse,
merging the diagrams (4.1), (4.2) and (4.3), and the functors defined in this
subsection.
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PaBorn

B-wSym

rr

B-USym

��

F

��

B-W

))
SBorn

U

::✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉

B-W

((

Entou

Sym
ss

USym

��

U

JJ

W

((

QBorn

B-Sym

ss

B-W ◦B-USym ◦U

��

FQ

��

U

hh

SCoarse

U

OO

U

::✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉

W

((

PrBorn

FC

��

U

::✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉

U

hh

QCoarse

U

KK

Sym

rr

W ◦USym ◦U

��

U

hh

Coarse

U

JJ

U

::✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉

U

hh

(4.15)



Chapter 5

The categories Coarse and

Coarse/∼

5.1 The category Ballean

Let us define another category Ballean. An object of Ballean is an equiv-
alence class of ballean {(X,Pi, Bi)}i∈I on the same support, where the equiva-
lence relation that we consider here is the one defined in (3.4). A morphism be-
tween two of such equivalence classes, {(X,PXi , B

X
i )}i∈I and {(Y, P

Y
λ , B

Y
λ )}λ∈Λ,

is a map f : X → Y which is bornologous, whenever X and Y are endowed with
one, equivalently all, ballean structure from their own equivalence classes. By
abuse of notation, in the sequel we consider balleans as objects of Ballean:
each ballean carries its equivalence class. The connection described in [151] and
widely discussed in [65] (see §3.2) shows that Coarse and Ballean are isomor-
phic categories. This fact allows us to use the name Coarse when we refer to
Ballean and this choice is done for consistency with Chapter 4, and in order
to unify the notation with the papers [65, 175].

Since balleans and coarse spaces are two faces of the same coin, as shown
in §3.2, the properties we have defined and studied so far for coarse spaces
can be also introduced for balleans in the following canonical way: if P is some
property defined for coarse spaces, then a ballean B on a set X has the property
P if (X, EB) has property P. For example, a discrete ballean is a ballean B =
(X,P,B) which is equivalent to BEdis

= (X,PEdis
, BEdis

), while a trivial or
bounded ballean is a ballean B = (X ′, P ′, B′) which is equivalent to BEtriv

=
(X ′, PEtriv , BEtriv ). Let us give a direct characterisation of discrete and trivial
balleans: a ballean (X,P,B) is

• discrete if and only if, for every r ∈ P , B(x, r) = {x}, for every x ∈ X, and
• trivial if and only if there exists r ∈ P such that X = B(x, r), for every
x ∈ X.

Since balleans will be substantially used in the sequel, it is convenient to
translate some of the notion introduced using the coarse space terminology.
Before starting, let us consider a convenient property of balleans that will be
taken as a carpet assumption in the sequel.

82
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Remark 5.1.1. Let B = (X,P,B) be a ballean, and E = EB the coarse
structure associated to it. Then it is easy to see that the family B = {E∪E−1∪
∆X | E ∈ E} is a base of E . Therefore, according with Remark 3.2.3, BB = BE ,
and, moreover, BB is symmetric, where a ball structure B1 = (X1, P1, B1) is
called symmetric if, for every x ∈ X1 and r ∈ P1, B

∗
1(x, r) = B1(x, r). Of

course, symmetry implies upper symmetry. Hence, without loss of generality,
every ballean can be assumed to be symmetric.

Let B = (X,P,B) be a ballean and Y ⊆ X. Then Y inherits the subballean
structure

B|Y = BEB|Y = (Y, P,B|Y ), where B|Y (y, r) = B(y, r) ∩ Y,

for every y ∈ Y and r ∈ P .

Let f, g : S → B = (X,P,B) be two maps from a set to a ballean. Then
f : S → (X, EB) and g : S → (X, EB) are close if and only if there exists r ∈ P
such that, for every x ∈ X, g(x) ∈ B(f(x), r). In this case, we will usually write
f ∼r g, underlining the role of the radius r.

Let f : BX = (X,PX , BX)→ BY = (Y, PY , BY ) be a map between balleans.
Then f : (X, EBX

)→ (Y, EBY
) is

• large-scale injective if and only if there exists r ∈ PX such that, for every
x ∈ X, f−1(f(x)) ⊆ BX(x, r);

• large-scale surjective if and only if f(X) is large in BY if and only if there
exists r ∈ PY such that BY (f(X), r) = Y .

Remark 5.1.2. Let {Bi = (Xi, Pi, Bi)}i∈I be a family of balleans. Then we
can associate to them a family {(Xi, Ei)}i∈I of coarse spaces as described in §3.2.
In §4.3.1 the product Πi(Xi, Ei) and the coproduct

⊔
i(Xi, Ei) of that family of

coarse spaces. We want to rewrite the balleans associated to the product and
the coproduct coarse spaces conveniently.

(a) The product ballean is the triple B = (X,P,B) = ΠiBi, where X = ΠiXi,
P = ΠiPi, and, for every (xi)i ∈ X and (ri)i ∈ P ,

B((xi)i, (ri)i) = ΠiBi(xi, ri).

(b) The coproduct ballean is the triple B = (X,P,B) =
⊕

iBi, where X =⊔
iXi,

P = {(rj)j ∈ Πj∈JPj | J ∈ [I]<ω},

and, for every ik(x) ∈ X and (rj)j∈J ∈ P ,

B(ik(x), (rj)j) =

{
ik(Bk(x, rk)) if k ∈ J,

{ik(x)} otherwise.

Let us end this section with a remark in which we translate some of the
notions introduced in §4.3.3 in terms of ball structures. This approach will be
widely used in §5.3.1 in order to introduce the adjunction space.

Remark 5.1.3. (a) Let q : X → Y be a surjective map from an entourage
space (X, E) to a set. We want to describe the ball structure Bq(E) associ-
ated to the family q(E). Fix a radius (q × q)(E), where ∆X ⊆ E ∈ E and
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hence ∆Y ⊆ (q× q)(E). Then, for every point x ∈ X, one has the following
chain of equalities:

Bq(E)(q(x), (q × q)(E)) = ((q × q)(E))[q(x)] =

= {q(z) ∈ Y | ∃w ∈ Rq[x] : (w, z) ∈ E} =

= q(BE(Rq[x], E)).

(5.1)

The equalities (5.1) suggest the definition of the quotient of a ball structure
BX = (X,PX , BX) with respect to a surjective map q : X → Y . To define
the quotient ball structure on Y use the same radii set PY = PX and for
every y ∈ Y and r ∈ PY let

BqY (y, r) = q(BX(q−1(y), r)).

In other words, if y = q(x), then BqY (q(x), r) = q(BX(Rq[x], r))). More
generally, one has

q(BX(Rq[A], r)) = BqY (q(A), r), (5.2)

for arbitrary subsets A of X and not only singletons {x} in X. This yields
q−1(BqY (q(A), r)) = Rq[BX(Rq[A], r)] for A ⊆ X.
This defines a ball structure q(B) = (Y, PY , B

q
Y ) on Y , which we call

quotient ball structure. The chain of equalities (5.1) proves that actually
q(B) = Bq(E). Obviously, this is the finest ball structure on Y making q
bornologous.

(b) Now we reformulate the properties from Definition 4.3.14 in terms of quasi-
ballean.
If we use the quasi-ballean form of X, q is uniformly soft if and only if for
all r ∈ PX there exists s ∈ PX such that BX(Rq[x], r) ⊆ Rq[BX(x, s)] for
every x ∈ X. By applying q to both sides of the previous inclusion, one
obtains the inclusion

BqY (q(x), r) = q(BX(Rq[x], r)) ⊆ q(BX(x, s)) (5.3)

for every x ∈ X. Conversely, if we take the preimages, (5.3) implies that

Rq[BX(Rq[x], r)] ⊆ Rq[BX(x, s)],

for every x ∈ X, which is equivalent to (4.9).
Focusing on weakly uniformly soft maps, q is weakly uniformly soft if and
only if for every r ∈ PX there exists s ∈ PX such that

BX(Rq[BX(x, r)], r) ⊆ Rq[BX(Rq[x], s)]

for every x ∈ X. Thus we can apply q and obtain that

BqY (B
q
Y (q(x), r), r) ⊆ B

q
Y (q(x), s) (5.4)

for every x ∈ X. (5.4) is equivalent to weak uniform softness, since appli-
cation of the preimage of q leads to

Rq[BX(Rq[BX(x, r)], r)] ⊆ Rq[BX(Rq[BX(Rq[x], r)], r)] ⊆ Rq[BX(Rq[x], s)]
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for every x ∈ X, which is equivalent to (4.10).
Similarly, by using (4.10), q is 2-uniformly soft if and only if for every r ∈ PX
there exists s ∈ PX such that

BqY (B
q
Y (B

q
Y (B

q
Y (q(x), r), r), r), r) ⊆ B

q
Y (B

q
Y (q(x), s), s)

for every x ∈ X.

Let X be a category andM be a family (possibly a proper class) of monomor-
phisms of X . For every object X of X , letM/X be the family of the monomor-
phisms ofM whose codomain is X. Define a relation ≤ onM/X as follows: if
f, g ∈M/X, then

f ≤ g if and only if there exists a morphism h of X such that f = g ◦ h.
(5.5)

Since f is a monomorphisms, also h is a monomorphism. Two monomorphisms
f and g are equivalent, and we write f ∼= g, if both f ≤ g and g ≤ f . In this
situation, if h is a morphism such that f = g ◦ h, then h is an isomorphism of
X .

A subobject of an object X of Coarse is the equivalence class of an extremal
monomorphism m : M → X. Note that, for every n : N → X such that m ∼= n,
m(M) = n(N). Moreover, m ∼= im(M), where im(M) is the inclusion map of the
subballean m(M) into X. Hence, without loss of generality, a subobject [m]∼=
of an object X of Coarse can be identified with the image of im(M).

It is useful to introduce some subcategories of Coarse. These subcate-
gories Y are full (i.e., for every pair of objects X and Y in Y, MorY(X,Y ) =
MorCoarse(X,Y )) and then it is enough to characterise their objects.

Definition 5.1.4. • Singleton is the subcategory whose objects are one point
balleans.

• Bounded is the subcategory whose objects are trivial balleans.
• Discrete is the subcategory whose objects are discrete balleans.
• UBounded is the subcategory whose objects are those balleans (X,P,B)

such that there exists a radius r ∈ P with the property that B(x, r) = QX(x),
for every x ∈ X.

• Connected is the subcategory whose objects are connected balleans.

5.2 Closure operators in Coarse and cowellpow-

eredness

Closure operators can be defined in a wide range of categories ([60]), by
using the notion of M-pullback (see §5.4.2). However, for the purpose of this
chapter, it is enough to specialise this concept in Coarse.

Definition 5.2.1. A categorical closure operator C = (CX)X∈Coarse onCoarse

assigns to every subobject M of an object X another subobject CX(M) with
the following properties:

(Extension) M ⊆ CX(M);
(Monotonicity) if M is a subobject of N , which is a subobject of X, then

CX(M) ⊆ CX(N);
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(Continuity) if f : X → Y is a morphism of Coarse and M a subobject of X,
then f(CX(M)) ⊆ CY (f(M)).

As in every concrete category, there exist three closure operators:

• the discrete operator D, such that DX(M) = M for every object X and
subobject M of X;

• the trivial operator T, such that TX(M) = X for every object X and subob-
ject M of X;

• the indiscrete operator G, such that

GX(M) =

{
X if M 6= ∅,

∅ otherwise,

for every object X and subobject M of X.

In the conglomerate CL(Coarse) of all closure operators of Coarse, let us
consider the preorder relation defined as follows: C ≤ C′ if and only if, for every
X ∈ Coarse and every subspace M of X, CX(M) ⊆ C′

X(M). Moreover, we
write C = C′ if C ≤ C′ and C′ ≤ C, while C < C′ stands for C ≤ C′ and C′ � C.

Note that D < G < T: D and T are the bottom and the top elements in
the conglomerate CL(Coarse), respectively, while G is the top element with
respect to the property of being grounded, i.e., G(∅) = ∅ (see [60] for the general
definition of the groundedness property). Those three closure operators, D, G
and T, are called improper. Any closure operator which is not improper is called
proper.

A closure operator C on Coarse is called

• idempotent if CX(CX(M)) = CX(M) for every object X and every subspace
M of X;

• hereditary if CY (M) = CX(M) ∩ Y , whenever M is a subobject Y of a
subobject of an object X;

• fully additive if CX(M) =
⋃
x∈M CX({x}), whenever M is a subobject of an

object X;
• symmetric if y ∈ CX({x}) if and only if x ∈ CX({y}), whenever x, y are two

points of an object X;
• productive if, for every product {pi : X → Xi}i∈I of Coarse and every family

of subobjects {Mi ⊆ Xi}i∈I , CX(ΠiMi) = Πi CXi(Mi).

5.2.1 Classification of the closure operators

Let (X,P,B) be a ballean, x ∈ X, and Y ⊆ X be a subspace. It is easy
to check that QX(x) = Q(X,EB) =

⋃
r∈P B(x, r), and QX(Y ) =

⋃
r∈P B(Y, r).

The operator Q = (QX)X∈Coarse is a closure operator in Coarse.

Theorem 5.2.2. Q is a closure operator in Coarse. Moreover, Q is hereditary,
fully additive, symmetric, idempotent and productive.

Proof. The only property one needs to check, in order to assure that Q is a
closure operator, is the continuity, which follows from Proposition 2.2.8.

As for the second assertion, by the definition of subballean, hereditariness
easily follows. Full additivity and symmetry are trivial and idempotency is
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a consequence of upper multiplicativity of balleans. Finally, the definition of
product ballean implies the productivity of Q.

Suppose now that there exists a closure operator C on Coarse such that
D 6= C and so D < C. The aim of this section is to prove that C = Q, C = G
or C = T. Since D < C, there exists an object X of Coarse and a subset M of
X such that DX(M) =M ( CX(M). Lemma 5.2.4 and Corollary 5.2.5 discuss
properties of the pair X and M and they will be used to prove the more general
Theorem 5.2.6.

Lemma 5.2.3. Let (X,PX , BX) and (Y, PY , BY ) be two balleans and f : X → Y
be a bornologus map. Let {ai ∈ X | i ∈ I} be a family of distinct points and let
{yi ∈ Y | i ∈ I} be another family such that there exists a radius u ∈ PY with

the property that yi ∈ BY (f(ai), u) for every i ∈ I. Then the map f̃ : X → Y
defined by the law

f̃(x) =

{
yi if x = ai,

f(x) otherwise,

where x ∈ X, is bornologous.

Proof. Let r ∈ PX be an arbitrary radius, s ∈ PY be a radius such that
f(BX(x, r)) ⊆ BY (f(x), s), for every x ∈ X, and t ∈ PY be a radius which

satisfies BY (BY (BY (y, u), s), u) ⊆ BY (y, t), for every y ∈ Y . Then f̃ is bornol-
ogous, since, for every x ∈ X,

f̃(BX(x, r)) ⊆ BY (f(BX(x, r)), u) ⊆ BY (BY (f(x), s), u) ⊆

⊆ BY (BY (BY (f̃(x), u), s), u) ⊆ BY (f̃(x), t).

Lemma 5.2.4. Let C be a closure operator in Coarse. Suppose that there
exists an object (X,P,B) and a subobject M ⊆ X such that M ( CX(M).
Then QX(CX(M) \M) ⊆ CX(M). Moreover:

(a) if M ( QX(M) ∩ CX(M), then QX(M) ⊆ CX(M);
(b) if CX(M) \ QX(M) 6= ∅, then CX(M) = TX(M) = X.

Proof. Let y be an arbitrary point in QX(CX(M) \M) and z ∈ CX(M) \M be
a point such that y ∈ QX(z). We define a map f : X → X such that f(z) = y
and f |X\{z} = idX\{z}. Since z ∈ B(y, r) for some r ∈ P , f is bornologous by
Lemma 5.2.3. Hence, QX(CX(M) \M) ⊆ CX(M), since

y = f(z) ∈ f(CX(M)) ⊆ CX(f(M)) = CX(M).

(a) Let x ∈ (QX(M)∩CX(M))\M and let us suppose by contradiction that
there exists a point y ∈ QX(M) \ CX(M). In particular QX(x) ⊆ CX(M) by
the first statement of this Lemma. If m ∈ X is an arbitrary point which belongs
to the non-empty subset M ∩QX(y), then the following map f : X → X can be
defined: for every z ∈ X

f(z) =





y if z ∈ QX(x) \M ,

m if z ∈ QX(x) ∩M ,

z otherwise.
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This map is bornologous by Proposition 4.3.4 and Remark 3.1.12, in fact the
image of f |QX(x) is {y,m}, which is bounded. One obtains the following chain
of inclusions:

y ∈ f(QX(x) \M) ⊆ f(QX(x)) ⊆ f(CX(M)) ⊆ CX(f(M)) ⊆ CX(M),

a contradiction, since y /∈ CX(M).

(b) Let x ∈ CX(M) \ QX(M). In particular QX(x) ⊆ CX(M), since x ∈
CX(M) \M . For every point y ∈ X, the map fy : X → X defined by the laws
fy|X\QX(x) = idX\QX(x) and fy(QX(x)) = {y} is bornologous (by Proposition
4.3.4 and Remark 3.1.12) and then

y ∈ fy(QX(x)) ⊆ fy(CX(M)) ⊆ CX(fy(M)) = CX(M).

Corollary 5.2.5. Let C be a closure operator in Coarse. Suppose that there
exist an object X and a subobject M ⊆ X such that M ( CX(M). Then
QX(M) ⊆ CX(M). Moreover, if QX(M) ( CX(M), then CX(M) = X.

Proof. Since M ( CX(M), if M ( QX(M)∩C(X), then QX(M) ⊆ CX(M) by
applying Lemma 5.2.4(a). Otherwise, if M = QX(M)∩CX(M), then CX(M) \
QX(M) 6= ∅ and so QX(M) ⊆ X = CX(M) by Lemma 5.2.4(b). The last
assertion follows again from Lemma 5.2.4(b).

Theorem 5.2.6. The only proper closure operator in Coarse is Q.

Proof. If we suppose that D < C, then there exists a ballean (X,PX , BX) and
a subobject M ⊆ X such that M ( CX(M). By Corollary 5.2.5, QX(M) ⊆
CX(M).

We claim that, for every ballean Y and every subobject N ⊆ Y , QY (N) ⊆
CY (N). For every n ∈ N and y ∈ QY (n), the map gn,y : X → Y , defined by
the law

gn,y(x) =

{
n if x ∈M ,

y otherwise,

for every x ∈ X, is bornologous (by Remark 3.1.12) and

y ∈ gn,y(CX(M) \M) ⊆ gn,y(CX(M)) ⊆ CY (gn,y(M)) = CY ({n}) ⊆ CY (N).

Hence, in particular, Q ≤ C.

Suppose now that Q < C. Then there exist a ballean X and a subobject M
of X such that QX(M) ( CX(M). By Corollary 5.2.5, CX(M) = X. Let Y be
an arbitrary ballean and N ⊆ Y be a subobject. Let x ∈ X \ QX(M), y and n
be two arbitrary points of Y and N , respectively, and hn,y : X → Y be a map
such that, for every z ∈ X,

hn,y(z) =

{
y if z ∈ QX(x),

n otherwise.

The map hn,y is bornologous by Proposition 4.3.4 and Remark 3.1.12. Thus
Y ⊆ CY (N), since

y ∈ hn,y(X) = hn,y(CX(M)) ⊆ CY (hn,y(M)) = CY ({n}) ⊆ CY (N).

Theorem 5.2.6 is inspired by the results in [62].
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5.2.2 Epireflective subcategories and delta-subcategories

of Coarse

A full subcategory X of Coarse is epireflective if it is closed under formation
of subobjects and of products. This is not the usual definition of epireflective
subcategory, but it is equivalent in this context (see [1]). All the subcategories
listed in Definition 5.1.4 are epireflective. Of course, also Coarse is an epire-
flective subcategory of Coarse itself.

Epireflective subcategories of Coarse are in connection with closure op-
erators of Coarse and in this subsection we explore their relationship. This
connection still holds in a more general context, see for example [60].

Let C be a closure operator in Coarse. A subobject Y of a ballean X is:

(a) C-closed in X if CX(Y ) = Y ;
(b) C-dense in X if CX(Y ) = X.

If C is a closure operator of Coarse, denote by ∆(C) the full subcategory of
Coarse of all the objects X such that ∆X is C-closed in X×X. A subcategory
X of Coarse is called a Delta-subcategory if there exists a closure operator C
on Coarse such that X = ∆(C).

Example 5.2.7. ∆(D) = Coarse, ∆(Q) = Discrete and ∆(T) = ∆(G) =
Singleton.

The only non-trivial assertion is ∆(Q) = Discrete. Let X be an object of
∆(Q). Hence, QX×X(∆X) = ∆X and then, since Q is productive, X is the
trivial ballean.

Proposition 5.2.8. Let X be an epireflective subcategory of Coarse. Then:

(a) if Singleton ⊆ X ⊆ Discrete, then X = Singleton or X = Discrete;
(b) if Singleton ⊆ X ⊆ Bounded, then X = Singleton or X = Bounded;
(c) if X properly contains Discrete, then Bounded ⊆ X ;
(d) if Bounded ⊆ X and Discrete ⊆ X , then UBounded ⊆ X .

Proof. Items (a), (b) and (c) follow from Proposition 4.3.3. If X contains an
object with at least two points, which is discrete, then every discrete object is
in X . Similarly, if X has an object with at least two points, which is bounded,
then every bounded object is in X . Finally, if X has an object with a connected
component with at least two points, then B belongs to X and so every bounded
ballean is an object of X .

(d) For every object X of UBounded, consider its representation X =⊔
k∈I Xk as disjoint union of its connected components. We define two balleans:

Xb is the bounded ballean on the support X and It is the discrete ballean on
the support I. The ballean Y = Xb×It belongs to UBounded. If ik : Xk → X
are the canonical inclusions, for every k ∈ I, it is easy to check that the map
f : X → Y such that, for every ik(x) ∈ X, f(ik(x)) = (ik(x), k), where ik(x) can
obviously be identified with its image in Xt, is an injective coarse embedding
and so X is a subobject of Y .

Item (c) of Proposition 5.2.8 cannot be ‘symmetrised’, since there exist epire-
flective subcategories X of Coarse with the property that Bounded ( X , but
Discrete * X . For example take X = Connected. Moreover, it is remarkable
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that item (d) uses only the closedness of X under taking subobjects and finite
products.

Denote by E({Xi}i∈I) the epireflective hull of a family of objects {Xi}i∈I of
Coarse, i.e., the smallest epireflective subcategory X of Coarse such that Xi

is an object of X , for every i ∈ I.

Corollary 5.2.9. The following equalities hold:

E(B) = Bounded, E(D) = Discrete,

and E(B,D) = UBounded.

Proof. The equalities E(B) = Bounded and E(D) = Discrete follow from
Proposition 4.3.3, while Proposition 5.2.8(d) implies the last one.

5.2.3 Regular closure operators in Coarse

In order to describe how to construct closure operators from epireflective
subcategories, we need the concept of equalizer m = eq(f, g) of a pair of mor-
phisms f, g : X → Y . Since Coarse is a topological category, for every two
morphisms f, g : X → Y , their equalizer can be characterized as the subobject
eq(f, g) = {x ∈ X | f(x) = g(x)} of X.

Let X be an epireflective subcategory of Coarse. Let us define regX =
(regXX)X∈Coarse, where

regXX(M) =
⋂
{eq(f, g) | Y ∈ X , f, g ∈ MorCoarse(X,Y ), f |M = g|M},

for every objectX and every subobjectM ofX. Then regX is a closure operator,
called X -regular closure operator of Coarse. Since X is epireflective, one can
prove that, for every object X of Coarse and every subobject M , there exist
two morphisms f, g : X → Y , such that f |M = g|M and Y is an object of X ,
with the property that regXX(M) = eq(f, g).

An immediate fact relates regular closure operators to epimorphisms. In
[159] the same result was proved for Top and its subcategories.

Fact 5.2.10. Let X be an epireflective subcategory of Coarse and f : X → Y
be a morphism of X . Then f is an epimorphism of X if and only if f(X) is
regX -dense in Y .

Regular closure operators of Coarse are idempotent and, moreover, they
satisfy the following monotonicity condition: if X ⊆ Y are two epireflective
subcategories of Coarse, then regY ≤ regX .

Theorem 5.2.11. (a) regBounded = D, regDiscrete = Q and regSingleton = T.
(b) If X is an epireflective subcategory of Coarse such that Bounded ⊆ X ,

then regX = D.

Before proving the result, we give a diagram, (5.6), that summarises the
situation. On the left hand side there are some relevant epireflective subcate-
gories of Coarse, ordered by inclusion, while on the right hand side there are
the closure operators in Coarse, with their order. The dashed arrows point out
the relationships between these two lattices: a dashed arrow from a subcategory
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X to a closure operator C means that C = regX , while a dashed arrow from a
closure operator C to a subcategory X means that X = ∆(C).
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(5.6)

Proof of Theorem 5.2.11. (a) First of all, the equality regSingleton = T is trivial.

The next goal is to prove that regBounded = D. Let X be a ballean and
M ⊆ X be an arbitrary subspace of X. We claim that regBounded

X (M) = M ,
and so regBounded = D. Suppose, without loss of generality, that M 6= X.
Let B the bounded ballean defined in Proposition 4.3.3. We define two maps
f, g : X → B as follows:

f(x) =

{
0 if x ∈M ,

1 otherwise,

and g(x) = 0, for every x ∈ X. Since f and g are bornologous (Remark 3.1.12)
and f |M = g|M , then

M ⊆ regBounded
X (M) ⊆ eq(f, g) =M.

Let X be a ballean and M be a subobject of X such that M ( QX(M) (
X. It suffices to show that QX(M) ⊆ regDiscrete

X (M) ( X to conclude that
regDiscrete = Q by Theorem 5.2.6. Let Y be a discrete ballean and f, g : X → Y
be two bornologous maps such that f |M = g|M . Let us define the bornologous
map f × g : X → Y × Y , where, for every x ∈ X, (f × g)(x) = (f(x), g(x)).
Since Y ×Y is discrete, Proposition 2.2.8 implies that eq(f, g) = (f × g)−1(∆Y )
is union of connected components of X. Moreover, M ⊆ eq(f, g) and thus
QX(M) ⊆ eq(f, g). Since f and g are arbitrary,M ( QX(M) ⊆ regDiscrete

X (M).
Now, let us consider the discrete ballean D (Proposition 4.3.3) and define a
morphism g : X → D by the law

g(x) =

{
0 if x ∈ QX(M),

1 otherwise,

for every x ∈ X. Then both the constant map f : X → {0} ⊆ D and the mor-
phism g are bornologous (Remark 3.1.12 and Proposition 4.3.4), they coincide
on M and so they show that regDiscrete

X (M) ⊆ eq(f, g) = QX(M) ( X.

(b) Let X be an epireflective subcategory of Coarse such that Bounded ⊆
X . Then, by the monotonicity condition, D ≤ regX ≤ regBounded = D and so
regX = D.
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By combining Example 5.2.7, Proposition 5.2.8, and Theorem 5.2.11 the
following result can be proved.

Corollary 5.2.12. All epireflective subcategories X of Coarse have regX = D,
except X = Discrete and X = Singleton, which satisfy regDiscrete = Q and
regSingleton = T.

5.2.4 Consequences for the category Coarse

Let E be a family of morphisms of a category X (possibly a proper class),
denote by X/E the family of morphisms of E whose domain is the object X of
X . A category X is E-cowellpowered, where E is a family of morphisms of X ,
if, for every object X of X , X/E has a set of representatives with respect to
isomorphisms (i.e., there exists a set X/E ′ ⊆ X/E such that, for every e ∈ X/E ,
there exists e′ ∈ X/E ′ and an isomorphism f of X such that e = f ◦ e′). A
category is cowellpowered if it is EpiX -cowellpowered.

Corollary 5.2.13. For every epireflective subcategory X of Coarse, the epi-
morphisms are surjective. Consequently, X is cowellpowered.

Proof. By Corollary 5.2.12, if X 6= Discrete and X 6= Singleton, regX = D
and so, by Fact 5.2.10, the epimorphisms of X are the morphisms with D-
dense image, i.e., the surjective morphisms. The other two cases similarly
follow, once one notices that regSingleton |Singleton = T |Singleton = D and
regDiscrete |Discrete = Q|Discrete = D.

The second assertion is a trivial consequence of the first.

In the category Coarse we have been able to classify all closure operators
and to prove the cowellpoweredness of all epireflective subcategories. One may
ask what happens in related categories.

Question 5.2.14. (a) Classify all closure operators of R, the Roe category of
coarse spaces and proper bornologous maps between them.

(b) Classify all closure operators of PaBorn, SBorn, QBorn, PrBorn, Entou,
SCoarse, and QCoarse.

(c) Is there a non cowellpowered (epireflective) subcategory of R, of PaBorn

or of Entou?

A subcategory A of a topological category X is called extremely epireflective
if it is epireflective and closed under monomorphisms, i.e., if m : M → A is
a monomorphism of X such that A is an object of A, then M belongs to A.
In Theorem 5.2.15 we recall a necessary condition for this property. For a
generalization of this result, see [60]. A generator of a category X is an object
G of X such that for every pair of distinct morphisms f, g : X → Y of X there
exists a morphism h : G→ X such that f ◦h 6= g ◦h. An object T of a category
X is terminal if, for every other object X of X , MorX (X,T ) has exactly one
element.

Theorem 5.2.15 (Diagonal Theorem). Let A be an extremely epireflective sub-
category of a topological category X . Then A is a ∆-subcategory and, in partic-
ular, A = ∆(regA).
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Proof. Since a one point space is both terminal and a generator in a topological
category, [85, Corollary 1.2] can be applied to prove the result.

There are few extremely epireflective proper subcategories ofCoarse, namely
Discrete and Singleton: in fact, one can easily prove that those two subcate-
gories have that property and Proposition 5.2.8, Corollary 5.2.12, and Theorem
5.2.15 imply that they are the only ones. In Example 5.2.16 two epireflective
non-extremely epireflective subcategories are presented.

Example 5.2.16. (a) Because of the previous assertion, the epireflective sub-
categoryBounded is not extremely epireflective and so there exists a monomor-
phismm : M → Y of Coarse such that Y belongs to Bounded, but X is not an
object of that subcategory. It is enough to put M = D, Y = B and m = id{0,1}.

(b) Again because of the previous assertion, UBounded is not extremely
epireflective. In fact, if B = (X,P,B) is an unbounded connected ballean
and B′ = (X,P ∪ {∗}, B′), where B′|X×P = B and B′(x, ∗) = X for every
x ∈ X, then idX : B → B′ is a monomorphism, B′ belongs to Bounded ⊆
UBounded, while the only connected component of B is unbounded.

Closure operators induce notions of compactness. Let C be a closure operator
in Coarse. A map f : X → Y between balleans is C-closed if the images of C-
closed subobjects ofX is C-closed in Y . An objectX ofCoarse is C-compact (or
categorically compact with respect to C) if, for every other object Y of Coarse,
the canonical projection p : X×Y → Y is C-closed. Unfortunately, this approach
provides no useful notions, as Theorem 5.2.18 shows.

Lemma 5.2.17. Let f : (X,PX , BX) → (Y, PY , BY ) be a surjective uniformly
boundedness copreserving map between balleans. Then f is Q-closed.

Proof. Fix a point x ∈ X. Since f is a uniformly boundedness copreserving
map (see §3.2 for the characterisation of this notion in terms of balleans), for
every radius s ∈ PY , there exists a radius rs ∈ PX such that BY (f(z), s) ⊆
f(BX(z, rs)), for every z ∈ X. Hence,

QY (f(x)) =
⋃

β∈PY

BY (f(x), s) ⊆
⋃

β∈PY

f(BX(x, rs)) ⊆

⊆ f

( ⋃

s∈PY

BX(x, rs)

)
⊆ f(QX(x)) ⊆ QY (f(x))

and so f(QX(x)) = QY (f(x)). Thus, since f is also surjective, images of
connected components of X are connected components of Y , and so f is Q-
closed.

Theorem 5.2.18. In Coarse, every object is categorically compact with respect
to any closure operator.

Proof. Let C be a closure operator in Coarse. The cases C = D, C = G and
C = T are trivial. As for C = Q, the claim follows from Lemma 5.2.17 and
from the fact that every projection map from a product ballean to one of its
component is uniformly boundedness copreserving.
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5.3 The quotient category Coarse/∼

In this section we study the quotient categoryCoarse/∼ ofCoarse. In order
to characterise the epimorphisms of that category, we first need to introduce the
notion of adjunction space.

5.3.1 The adjunction space

Theorem 4.3.17 gives the description of the quotient ballean of a weakly
uniformly soft map, namely this is the quotient ball structure (see Example
5.3.5 (c) for an example of a weakly uniformly soft map that is not uniformly
soft). We aim to describe the quotient ballean B

q
, in a wider range of quotient

maps. Here we do it in the case of the quotient map defining the adjunction space
X ⊔LX which will be substantially used in the sequel. As we show in Theorem
5.3.4 this map is very rarely weakly uniformly soft (the theorem provides a
description of the cases when that quotient map can be weakly uniformly soft).

Definition 5.3.1. Let BX = (X,PX , BX) be a ballean and L a subset of X.
Let i1, i2 : X → X ⊔X be the canonical inclusions of X into the disjoint union
X ⊔ X. Let X ⊔L X be the quotient space (X ⊔ X)/ ∼L obtained from the
equivalence relation

x ∼L y ⇔





x = i1(l), y = i2(l) with l ∈ L,

y = i1(l), x = i2(l) with l ∈ L,

x = y.

If L = ∅, X ⊔LX coincides with X ⊔X, this is why we assume from now on
that L 6= ∅. Our aim is to describe the quotient ballean structure X ⊔LX of the
quotient of coproduct ballean BX ⊕BX under the canonical map q : X ⊔X →
X⊔LX defined by the equivalence relation∼L. For every k = 1, 2, put jk = q◦ik,
so that X ⊔L X = j1(X) ∪ j2(X).

Let p : X ⊔L X → X be the map defined by p(jk(x)) = x for all x ∈ X
(this definition is correct as both jk are injective, j1|L = j2|L and X ⊔L X =
j1(X) ∪ j2(X)). Let σ be the obvious involution (symmetry) of the coproduct
X⊔X and σ′ be the involution ofX⊔LX induced by σ (so that σ′(j1(x)) = j2(x)
and σ′(j2(x)) = j1(x) for every x ∈ X). All these maps are conveniently
represented in Figure 5.1.

Example 5.3.5(a) shows that the quotient ball structure q(B) on X ⊔L X
need not be a ballean in general. This is why we define a new ball structure
Ba
X⊔LX

, called adjunction space, on X ⊔L X with radii set PX and balls defined
by

BX⊔LX(jk(x), r) =

{
jk(BX(x, r)) if BX(x, r) ∩ L = ∅,

j1(BX(x, r)) ∪ j2(BX(x, r)) otherwise,

(5.7)
for every x ∈ X, k = 1, 2, r ∈ PX .

Theorem 5.3.2. Ba
X⊔LX

is the quotient ballean structure on X ⊔L X.

Proof. We have to prove that Ba
X⊔LX

is upper multiplicative and upper sym-
metric, q is bornologous and Ba

X⊔LX
has quotient’s universal property.
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X

X ⊔X

X ⊔L X

i1(L) i2(L)

X

i1 i2

qj1 j2

p

j1(L) = j2(L)

idid

Figure 5.1: A representation of the adjunction space.

First we want to show that it is the upper mulplicative. Fix two radii
r, s ∈ PX and let t ∈ PX be an element such that BX(BX(x, r), s) ⊆ BX(x, t)
for every x ∈ X. Then it is easy to check that

BX⊔LX(BX⊔LX(jk(x), r), s) ⊆ BX⊔LX(jk(x), t), for k = 1, 2 and x ∈ X,

since the property BX(BX(x, r), s) ∩ L 6= ∅ implies BX(x, t) ∩ L 6= ∅.

The second thing we want to prove is the upper symmetry. Let us first
note that for both embeddings jk : X → X ⊔L X the ball structure induced on
jk(X) coincides with the original ballean structure transported by jk. With-
out loss of generality we can assume the ballean BX to be symmetric (Remark
5.1.1). Without loss of generality, fix a point j1(x) ∈ Y , where x ∈ X, and a
radius r ∈ P . Let jk(x

′) ∈ BX⊔LX(j1(x), r) for some x′ ∈ X and k = 1, 2. If
BX(x, r) ∩ L = ∅, it is trivial to check that j1(x) ∈ BX⊔LX(jk(x

′), r), since we
have BX⊔LX(j1(x), r) = j1(BX(x, r)) and BX⊔LX(jk(x

′), r) ⊇ j1(BX(x′, r)).
We consider the case BX(x, r) ∩ L 6= ∅ in the sequel. Note that one has
σ′(BX⊔LX(jl(z), r)) = BX⊔LX(jl(z), r) whenBX(z, r)∩L 6= ∅, for every l = 1, 2,
where z ∈ X. Applying p we obtain x′ = p(jk(x

′)) ∈ p(BY (jk(x), r)) =
BX(x, r). Hence, so x ∈ BX(x′, r) by the symmetry of the ball BX(x, r).
Thus, j1(x) ∈ j1(BX(x′, r)) ⊆ BX⊔LX(jk(x

′), r), in case BX(x′, r) ∩ L 6= ∅
or k = 1. Otherwise, if BX(x′, r) ∩ L = ∅ and k = 2, we use the fact that
j1(x) ∈ BX⊔LX(σ′(j1(x)), r) and σ

′(j1(x)) ∈ j2(BX(x′, r)) ⊆ BX⊔LX(j2(x
′), r).

Therefore, j1(x) ∈ BX⊔LX(BX⊔LX(j2(x
′), r), r) and we conclude by upper mul-

tiplicativity.

So far we have checked that the ball structure Ba
X⊔LX

is a ballean. Since

q(B) ≺ Ba
X⊔LX

, in order to conclude we only need to check that Ba
X⊔LX

≺ B
q
.

As B
q
is the finest coarse structure containing q(B) (i.e., q(B) ≺ B

q
), this

will imply that Ba
X⊔LX

= B
q
. In fact, assume that z ∈ BX⊔LX(y, r) for some

y ∈ X ⊔L X and r ∈ P . Assume that y = q(x) and z = q(x′) for some
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x, x′ ∈ X ⊔ X. According to Proposition 4.3.22, it is enough to find a finite
chain of points x0 = x′, x1, . . . , xn = x in X ⊔ X, such that each xi is either
contained in the ball BX⊔X(xi+1, r), or xi ∈ Rq[xi+1] (i.e., q(xi) = q(xi+1)).
We can assume without loss of generality that x = i1(u) ∈ i1(X) and x′ =
ik(u

′) ∈ ik(X) for u, u′ ∈ X and k = 1, 2 (so that y = j1(u), z = jk(u
′)). If

k = 1 we deduce that u′ ∈ BX(u, r), so x′ ∈ BX⊔X(x, r), so we can simply
take n = 1. If k = 2, then L ∩ BX(x, r) 6= ∅ so there exists l ∈ L ∩ BX(u, r),
consequently, i1(l) ∈ BX⊔X(x, r). By the symmetry of the balls u ∈ BX(l, r).
Hence, σ(x) ∈ BX⊔X(i2(l), r). As x′ ∈ BX⊔X(σ(x), r), and i2(l) ∈ Rq[i1(l)], we
can put n = 4 and let x0 = x′, x1 = σ(x), x2 = i2(l), x3 = i1(l), x4 = x to
conclude that

x′ ∈ BX⊔X(BX⊔X(Rq[BX⊔X(x, r)], r), r).

This concludes the proof of the equality Ba
X⊔LX

= B
q
, i.e., Ba

X⊔LX
is the

quotient ballean structure on X ⊔L X.

Remark 5.3.3. (a) The pair of maps j1, j2 : X → Y = X ⊔L X associated to
the subspace L of X is usually referred to as cokernel pair of the inclusion
map m : L → X in category theory. In categorical terms, it means that
j1, j2 : X → Y is the pushout of the pair m,m : L→ X (in other words, it
satisfies j1 ◦m = j2 ◦m and for every pair of bornologous maps u1, u2 : X →
Z with u1 ◦m = u2 ◦m there exists a unique bornologous map t : Y → Z
such that uk = t◦jk for k = 1, 2). Certainly, cokernel pairs exist in Coarse,
as it is co-complete (being a topological category, by Theorem 4.2.1). The
knowledge of its concrete (simple) form described in Theorem 5.3.2, is the
relevant issue in this case.

(b) While for a non-empty space X the coproduct X⊔X is never connected, the
adjunction space Y = X ⊔L X is connected precisely when X is connected
and L 6= ∅. This follows from the fact that X ⊔L X = j1(X) ∪ j2(X), both
jk(X) are connected and the union is not disjoint.

The next theorem will provide, among others, more examples showing that
the quotient ball structure of a ballean may fail to be a ballean. To this end
the quotient map defining the adjunction space, as well as its restrictions, will
be used.

Theorem 5.3.4. For a ballean X and a subballean Y the restriction q1 of the
quotient map q : X⊔X → X⊔Y X to X⊔Y is weakly uniformly soft. Moreover,
the following are equivalent:

(a) X = Y ⊔X \ Y ;
(b) the quotient ball structure q(B) on X ⊔Y X is a ballean;
(c) q1 is uniformly soft.

Proof. It suffices to check that the quotient ball structure of X ⊔Y Y coincides
with the (ballean) structure of X, then Theorem 4.3.17 will imply that q is
weakly uniformly soft. To check this we note that the map j1 : X → X ⊔Y Y =
j1(X) is bijective. Moreover, for every r ∈ P one has

j1(BX(x, r)) = Bq1j1(X)(j1(x), r) (5.8)

This remains true also when y ∈ Y , then j1(y) = j2(y), so again (5.8) holds true
for j1(y) = j2(y). Since these balls define the ball structure of both spaces, our
claim is proved.
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(a)→(b) To prove that the quotient ball structure on X ⊔Y X is a ballean
we need to check that it is upper multiplicative. Pick r, t ∈ P and find a s ∈ P
such that BX(BX(x, r), t) ⊆ BX(x, s) for all x ∈ X. It is enough to show that
for every z ∈ Z = X ⊔Y X one has BqZ(B

q
Z(z, r), t) ⊆ B

q
Z(z, s). We can assume

without loss of generality that z = j1(x) for some x ∈ X. If x ∈ Y , then
BqZ(z, r) = j1(BX(x, r)) ∪ j2(BX(x, r)). Hence,

BqZ(B
q
Z(z, r), t) = j1(BX(BX(x, r), t)) ∪ j2(BX(BX(x, r), t)) ⊆

⊆ j1(BX(x, s)) ∪ j2(BX(x, s)) = BqZ(z, s).

In case x 6∈ Y , BqZ(z, r) = j1(BX(x, r)) as BX(x, r) ∩ Y = ∅. Hence,
BqZ(B

q
Z(z, r), t) = BqZ(j1(BX(x, r)), t). Since, our assumption x 6∈ Y yields

BX(BX(x, r), t) ∩ Y = ∅, one has

BqZ(j1(BX(x, r)), t) = j1(BX(BX(x, r), t)) ⊆ j1(BX(x, s)) ⊆ BqZ(z, s).

(b)→(a) Assume that there exists r ∈ P and y ∈ Y , x ∈ X \ Y with
y ∈ B(x, r). Then

j2(x) ∈ B
q
X⊔YX

(BqX⊔YX
(j1(x), r), r),

but j2(x) /∈ j1(X) ⊇ BqX⊔YX
(j1(x), s) for every s ∈ P , a contradiction.

(a)→(c) To check that q is soft pick an element z ∈ Z = X ⊔ Y . We have to
check that

Rq[BZ(Rq[z], r)] ⊆ BZ(Rq[z], r) (5.9)

for every r ∈ P . If z = (u, k) with u ∈ X and k = 1, 2, consider two cases. If
u 6∈ Y , then necessarily k = 1 and BX(u, r) ∩ Y = ∅. Therefore, Rq[z] = {z}
and Rq[BZ(Rq[z], r)] = i1(BX(u, r)) = BZ(Rq[z], r). Hence, (5.9) is proved in
this case.

If u ∈ Y , then Rq[z] = {i1(u), i2(u)}, so BZ(Rq[z], r) = i1(BX(u, r)) ∪
i2(BX(u, r)), therefore, Rq[BZ(Rq[z], r)] = BZ(Rq[z], r). This proves again
(5.9).

(c) → (a) Assume that y ∈ Y ∩ BX(x, r) for some r ∈ P and some x 6∈ Y .
Then Rq[x] = {x}. To see that softness at x fails, note that Rq[i1(BX(x, r))] 6⊆
i1(BX(x, s)) ⊆ i1(X), since otherwise for y ∈ BX(x, r) one would have

i2(y) ∈ Rq[i1(y)] ⊆ Rq[i1(BX(x, r))] ⊆ i1(X),

a contradiction.

The examples provided below show, among others, that none of the impli-
cations in (4.11) can be inverted.

Example 5.3.5. (a) Theorem 5.3.4 shows that the quotient ball structure on
X ⊔L X is not a ballean in general (choose L in such a way that X is not
a coproduct of L and X \ L). Therefore, the map q : X ⊔X → X ⊔L X is
not weakly uniformly soft.

(b) Applying Theorem 5.3.4 in the extreme case when Y = X we obtain an
example of a uniformly soft map with unbounded fibres. if (X, E) is an
unbounded coarse space, then the quotient map q : X ⊕X → X that glues
together the two copies of X is soft, but its fibres are not bounded. This
example shows also that the first implication in (4.11) cannot be inverted.
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(c) Theorem 5.3.4 provides also an example of a weakly uniformly soft map that
is not uniformly soft showing that the second implication in (4.11) cannot
be inverted (choose L in such a way that X is not a coproduct of L and
X \ L and consider the weakly uniformly soft map q1).

(d) Let us see now that the map q : X⊔X → Y = X⊔LX is 2-uniformly soft. In
conjunction with item (a) this will provide an example witnessing that the
last implication in (4.11) cannot be inverted. According to Remark 5.1.3(b),
the ball structure B∗

Y = BE∗
Y
of the quotient Y given by the ‘doubled’ balls

BqY (B
q
Y (y, r), r) (r ∈ P ) is a ballean precisely when the map q is 2-uniformly

soft. On the other hand, it is not hard to realize that the ball structure B∗
Y

is asymorphic to Ba
X⊔LX

, shown to be a ball structure in Theorem 5.3.2.
Therefore, B∗

Y is itself is a ballean, so q is 2-uniformly soft.

5.3.2 Epimorphisms and monomorphisms in the coarse

category Coarse/∼

The morphisms in Coarse/∼ are equivalence classes of morphisms f : X →
Y in Coarse, nevertheless, we shall often speak of properties of morphisms
of Coarse/∼ having in mind some specific representative f in Coarse of the
equivalence class [f ]. In some cases, that property is available regardless of the
choice of the representative f (see Remark 3.4.2), in other cases this may fail
(Remark 5.3.10).

Theorem 5.3.6. Let BX = (X,PX , BX) be a ballean and L be a subset of X.
Then the following are equivalent.

(a) L is large;
(b) every pair of bornologous maps f, g : X → Y with f |L ∼ g|L are close;
(c) every pair of bornologous maps f, g : X → Y with f |L = g|L are close.

Consequently, a morphism f : X → Y in Coarse is an epimorphism in Coarse/∼
if and only if f(X) is large in Y .

Proof. (a)→(b) Assume that L is large inX and let f, g : X → Y be bornologous
maps to a ballean BY = (Y, PY , BY ) with f |L ∼ g|L. Pick r ∈ PX such that
BX(L, r) = X. Since the maps f, g are bornologous, there exist s ∈ PY be such
that

f(BX(y, r)) ⊆ BY (f(y), s) and g(BX(y, r)) ⊆ BY (g(y), s) for all y ∈ X.
(5.10)

Since f |L ∼ g|L, there exists t ∈ PY such that g(l) ∈ BY (f(l), t) for every l ∈ L.
Let u ∈ PY be a radius such that, for every y ∈ Y , BY (BY (BY (x, s), t), s) ⊆
BY (x, u).

Pick arbitrarily x ∈ X. As L is large, one can find l ∈ L such that
x ∈ BX(l, r). Applying (5.10) to y = l we deduce that f(x) ∈ f(BX(l, r)) ⊆
BY (f(l), s) and g(x) ∈ f(BX(l, r)) ⊆ BY (f(l), s). Hence,

g(x) ∈ BY (g(l), s) ⊆ BY (BY (f(l), t), s) ⊆

⊆ BY (BY (BY (f(x), s), t), s) ⊆ BY (f(x), u),

and so f and g are close.

(b)→(c) This implication is trivial.
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(c)→(a) Consider the canonical maps jk : X → X ⊔L X, for k = 1, 2, asso-
ciated to the adjunction space Y = X ⊔L X. As j1|L = j2|L, our hypothesis
implies that j1 and j2 are close. Let this be witnessed by r ∈ PX . Now we show
that X = BX(L, r). Since, for every x ∈ X, j2(x) ∈ BY (j2(x), r), (5.7) implies
that BX(x, r) ∩ L 6= ∅, and thus x ∈ BX(L, r).

Theorem 5.3.7. Let (X, EX) and (Y, EY ) be two coarse spaces and h : X → Y
a bornologous map between them. Then the following are equivalent:

(a) h is a coarse embedding, i.e., for every E ∈ EY , (h× h)
−1(E) ∈ EX ;

(b) for every coarse space (Z, EZ) and every pair of bornologous maps f, g : Z →
X, if h ◦ f ∼ h ◦ g, then f ∼ g.

Consequently, a morphism h : X → Y in Coarse is a monomorphism in Coarse/∼
if and only if h is a coarse embedding.

Proof. (a)→(b) Assume that f, g : Z → X are bornologous maps with h◦f ∼ h◦
g. To establish f ∼ g we need to check that M = {(f(z), g(z)) | z ∈ Z} belongs
to EX . As h◦f ∼ h◦g, one has (h×h)(M) = {(h(f(z)), h(g(z))) | z ∈ Z} ∈ EY .
Consequently, M ⊆ (h× h)−1((h× h)(M)) ∈ EX .

(b)→(a) Suppose for a contradiction that h is not a coarse embedding. This
means that there exists an entourage E ∈ EY such that E′ = (h×h)−1(E) /∈ EX .

Let Z = E′ endowed with the discrete coarse structure EZ = {∆Z}. Consider
the maps p1, p2 : Z → X defined by p1 : (x, y) 7→ x and p2 : (x, y) 7→ y. These
maps are bornologous, because (Z, EZ) is discrete (Example 3.1.12). Moreover,
{(p1(z), p2(z)) | z ∈ Z} = E′ /∈ EX . This means that p1 and p2 are not close.

On the other hand,

{((h ◦ p1)(z), (h ◦ p2)(z)) | z ∈ Z} = {(h(p1(z)), h(p2(z))) | z ∈ Z} =

= {(h× h)(e) | e ∈ E′} ⊆ E ∈ EY ,

and so {(h ◦ p1)(z)), (h ◦ p2)(z))) | z ∈ Z} ∈ EY . Therefore, h ◦ p1 ∼ h ◦ p2. This
contradicts our hypothesis (b).

As in the previous theorem, the last assertion follows from Remark 3.4.2.

In particular Theorem 5.3.6 shows that morphisms with large image are epi-
morphisms in Coarse/∼, while Theorem 5.3.7 implies that the monomorphisms
are the coarse embeddings. If we apply Theorem 3.4.6, then we can deduce that
the category Coarse/∼ is balanced.

Corollary 5.3.8. Let f : X → Y a morphism in the category Coarse/∼. Then
f is a bimorphism if and only if it is an isomorphism. Hence, the category
Coarse/∼ is balanced.

Stability of epimorphisms under pullback is an important issue in category
theory. This is why we are interested to determine here those morphisms
f : X → Y in Coarse such that [f ] is an epimorphism in Coarse/∼ and for
every morphism e : Z → Y in Coarse such that [e] is an epimorphisms in
Coarse/∼ the class [u] of the pullback u : P → X in (4.5) is an epimorphism in
Coarse. We shall shortly refer to this property in the sequel by simply saying
‘epimorphisms are preserved under taking pullback along f ’. As we shall see,
this property is not invariant under ∼ (see Remark 5.3.10).
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A morphism f : X → Y in the category Coarse is said to be LA-reflecting,
if f−1(L) is large in X for every large set L of Y . The properties of maps to
preserve or to reflect size properties (for example largeness) is studied in [64]
(more definitions from that paper are recalled in §11.1).

A subset A of a ballean X is called extra-large if, for every large subset L of
X, the intersection A∩L is still large in X ([144]). The relevance of this notion
from categorical point of view is revealed in the following corollary.

Corollary 5.3.9. Let f : X → Y a representative of an epimorphism in the
category Coarse/∼. Then the following are equivalent:

(a) the epimorphisms are preserved under taking pullback along f ;
(b) the co-restriction map f : X → f(X) is LA-reflecting and f(X) is extra-

large in Y .

Proof. We shall simplify the proof by reducing the argument to the case of epi-
morphisms that are simply inclusions. To this end consider a pullback diagram
(4.5), put Z1 = f−1(e(Z)) and let e1 : Z1 →֒ X be the inclusion map. Let us
see next that

Z1 = u(P ). (5.11)

If u(p) ∈ u(P ) for some p ∈ P , then obviously f(u(p)) = e(v(p)) ∈ e(X),
so u(p) ∈ Z1. On the other hand, if x ∈ Z1, then f(x) = e(z) for some
z ∈ Z, hence (x, z) ∈ P (see the construction of P as an equalizer in §3). Then
x = u(x, z) ∈ u(P ). This proves (12.7).

Let j : e(Z) →֒ Y be the inclusion map. Then one can easily see that

X
f

−−−−→ Y

e1

x
xj

Z1
f |Z
−−−−→ e(Z).

(5.12)

is a pullback diagram.

It easily follows from Theorem 5.3.6 that

• u is an epimorphisms if and only if e1 : u(P ) = Z1 →֒ X is an epimorphism.
• e is an epimorphism precisely when j is an epimorphism.

This makes it clear that the epimorphisms are preserved under taking pull-
back along f precisely when pullbacks along f of epimorphisms that are inclu-
sions in Y are preserved and the general pullback diagram (4.5) can be replaced
by the pullback diagram (5.12), where the vertical arrows are inclusions.

(a)→(b) Assume that epimorphisms are preserved under taking pullback
along f . To check that f(X) is extra-large in Y pick a large subset L of Y .
Then the inclusion map j : L →֒ Y is an epimorphism in Coarse/∼ by Theo-
rem 5.3.6. Hence, the pullback j1 : f

−1(L) → X must be an epimorphism on
Coarse/∼. Hence, f−1(L) is large in X by Theorem 5.3.6. It easily follows from
the definition of largeness (see [144, Lemma 11.3]), that f(f−1(L)) = f(X) ∩L
is large in f(X). As f(X) is large in Y (again by Theorem 5.3.6, as f is an
epimorphism), we deduce that f(X) ∩ L is large in Y . This proves that f(X)
is extra-large in Y .

The fact that f : X → f(X) is LA-reflecting follows directly from the defi-
nitions.
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(b)→(a) Suppose that f(X) is extra-large in Y and let e : Z → Y be an
epimorphism. Let us prove that e1 = f−1(e) : Z1 → X is an epimorphism in
Coarse/∼. By Theorem 5.3.6, L = e(Z) is large in Y . Then L ∩ f(X) is large
in Y . Consequently, L∩f(X) is large in f(X). Hence, f−1(L) = f−1(L∩f(X))
is large in X, by hypothesis. As f−1(L) = e1(Z1) is large in X, by Theorem
5.3.6 we conclude that e1 is an epimorphism in Coarse/∼.

Remark 5.3.10. Unlike Theorems 5.3.6 and 5.3.7, where the characterizing
property of the morphism in Coarse is available for all representatives of the
∼-equivalence class (see Remark 3.4.2), the property of item (b) from the above
corollary fails to be invariant under closeness. Indeed, the floor map f : R→ R
defined by f(x) = ⌊x⌋ does not satisfy (b), as Z = f(R) is not extra-large in R.
Nevertheless, f ∼ idR and idR obviously satisfies (b). This example shows that
the property (a) is also ‘fragile’ in this sense. This is explained by the fact that
while epimorphisms are taken in Coarse/∼, the pullbacks are taken in Coarse.

One can prove that a surjective map that is either effectively proper or
uniformly soft is LA-reflecting, while a surjective weakly uniformly soft map
need not be LA-reflecting ([64]). This gives the following corollary.

Corollary 5.3.11. Let f : X → Y a morphism in the category Coarse such that
f(X) is extra-large in Y . If the co-restriction map f : X → f(X) is uniformly
soft, then the epimorphisms are preserved under taking pullback along f .

5.4 Cowellpoweredness and wellpoweredness of

Coarse/∼

In Theorem 5.3.6 the epimorphisms of Coarse/∼ have been completely char-
acterised. Hence, the question whether Coarse/∼ is an epireflective category or
not naturally arises.

Before discussing the cowellpoweredness of Coarse/∼, let us start this sec-
tion with an important observation. Since Coarse/∼ is a balanced category
(Corollary 5.3.8), all monomorphisms are extremal and so the two, a priori
different, classes MonoCoarse/∼ and ExtMonoCoarse/∼ coincide.

5.4.1 Products, subobjects, and wellpoweredness of Coarse/∼

Let X be a category and {fi : X → Xi}i∈I be a source in X .

(a) {fi}i is a mono-source if, for every pair of morphisms g, h : Y → X, g = h
whenever fi ◦ g = fi ◦ h for every i ∈ I.

(b) If ≈ is a congruence, {fi}i is a ≈-mono-source if, for every pair of morphisms
g, h : Y → X, g ≈ h whenever fi ◦ g ≈ fi ◦ h for every i ∈ I.

Those two notions relate to each other: {fi}i∈I is a ≈-mono-source in X if and
only if {[fi]≈}i∈I is a mono-source in X/∼.

Example 5.4.1. Consider the category Coarse and the closeness relation ∼.
Then every product {pi : X → Xi}i∈I of Coarse is a ∼-mono-source. Let
f, g : Y → X be two morphisms of Coarse such that pi ◦ f ∼ pi ◦ g for every
i ∈ I and ri ∈ PXi be a radius such that pi ◦ f ∼ri pi ◦ g, for every index
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i ∈ I. Then, by the definition of the product structure, for every y ∈ Y ,
g(y) ∈ BX(f(y), (ri)i) and so f ∼ g.

Proposition 5.4.2. Let X be a category and ≈ be a congruence. Suppose that
X has (finite) products and they are ≈-mono-sources. Then X/∼ has (finite)
products.

Proof. Let {Xi}i∈I be an indexed family of objects of X/∼. Since they are
objects of X too, there exists their product X =

∏
iXi and the projections

pi : X → Xi in X . We claim that {[pi]∼ : X → Xi}i∈I is the product of {Xi}i∈I
in X/∼. Suppose that there exists a source of morphisms [fi]≈ : Y → Xi, where
i ∈ I, of X/∼. Then by the universal property of the product of X there exists
a unique morphism f : Y → X such that fi = pi ◦ f , for every i ∈ I. Thus,
for every gi ∈ [fi]≈, gi ≈ pi ◦ f and so [fi]≈ = [pi]≈ ◦ [f ]≈. One should prove
that [f ]≈ is the unique morphism of X/∼ such that [pi]≈ ◦ [f ]≈ = [fi]≈. Let
[g]≈ be a morphism of X/∼ such that [pi]≈ ◦ [g]≈ = [fi]≈, for every i ∈ I. Then
pi ◦ g ≈ fi ≈ pi ◦ f for every index i ∈ I and so g ≈ f , since {pi : X → Xi}i∈I
is a ≈-mono-source.

Proposition 5.4.2 and Example 5.4.1 imply the following result. Some appli-
cations of this corollary will be shown in the next subsection, once we will have
introduced all the needed notions.

Corollary 5.4.3. Coarse/∼ has arbitrary products.

A skeletonM0 of a class of monomorphismM is a subclass ofM such that,
for every object X and every morphism m ∈ M/X, there exists m0 ∈ M0/X
such that m ∼= m0 (see (5.5) for the equivalence relation).

Proposition 5.4.4. The family M0 of all the elements [i]∼, where i varies in
ExtMonoCoarse, is a skeleton of ExtMonoCoarse/∼ .

Proof. Let [m]∼ : M → X be a monomorphism ofCoarse/∼. Sincem is a coarse
embedding, m has uniformly bounded fibres. By using the axiom of choice, we
define a subobject M0 of M in Coarse by choosing just one element for every
fibre of m. If i : M0 →M is the inclusion, [i]∼ is both a monomorphism and an
epimorphism of Coarse/∼, since m has uniformly bounded fibres. Hence [i]∼
is an isomorphism. Define m0 = m ◦ i, which is bornologous and injective, and
note that [m0] = [m]∼ ◦ [i]∼ and so [m0]∼ ≤ [m]∼. Conversely, if j is a coarse
inverse of i, then [j]∼ shows that [m]∼ ≤ [m0]∼.

If X is an object of Coarse/∼, a subobject of X is an equivalence class of
monomorphism of (ExtMonoCoarse/∼)/X under the equivalence relation ∼=. By
Proposition 5.4.4, for every subobject [[m]∼]∼= of an object X of Coarse, there
exists a representative i ∈ (ExtMonoCoarse)/X such that [m]∼ ∼= [i]∼.

Another consequence of Proposition 5.4.4 is the fact thatCoarse/∼ is wellpow-
ered (Corollary 5.4.5). Wellpoweredness is the dual notion of cowellpoweredness.
A category X is M-wellpowered, where M is a family of morphisms of X , if
M/X has a set of representatives with respect to isomorphisms. X is wellpow-
ered, if it is MonoX -wellpowered.

Axiom of choice implies that a category X is wellpowered if and only if, for
every sink of monomorphisms {mi : Mi → X}i∈I , where I can be even a proper
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class, there exists a set J ⊆ I with the property that, for every i ∈ I, there
exists j ∈ J such that mi

∼= mj .

Corollary 5.4.5. The category Coarse/∼ is wellpowered.

Proof. LetM = {[mi]∼ : Mi → X}i∈I be a sink of monomorphisms ofCoarse/∼.
Proposition 5.4.4 states thatM0 is a skeleton of ExtMonoCoarse/∼ and then, in
particular,M0/X is a skeleton ofM (without loss of generality, one can assume
that M0/X ⊆ M). The conclusion follows from the fact that M0/X is a set
since every monomorphism M0/X has a different injective coarse embedding
into X as a representative.

5.4.2 Coarse/∼ has neither pullbacks along coarse embed-

dings nor equalizers

The closure operators of Coarse have been widely studied in §5.2. It is
desirable to apply those tools also in the quotient category Coarse/∼. In par-
ticular those closure operators could be a powerful instrument in order to tackle
the problem of cowellpoweredness of Coarse/∼. Unfortunately the category
Coarse/∼ is a hostile environment to closure operators, as we will prove in this
subsection.

Since Coarse/∼ has products, the existence of all equalizers is equivalent
to the existence of all pullbacks ([1, Propositions 11.11, 11.14]). In [73], the
authors give an explicit example of a pair of morphisms for which the pullback
does not exists, hence, not all equalizers exist either.

If M is a class of monomorphism of a category X , we say that X has M-
pullbacks if, for every morphism f : X → Y of X and every n ∈M/Y , a pullback
diagram

M
f ′

//

m

��

N

n

��
X

f // Y

exists in X with m ∈M/X.

As already mentioned in §5.2, M-pullbacks are a key tool in the standard
way of introducing closure operators in a category. In Examples 5.4.6(a) and
5.4.7(a), we provide two pairs of morphisms of Coarse/∼ which do not have
ExtMonoCoarse/∼ -pullbacks. With some effort, we show in Examples 5.4.6(b)
and 5.4.7(b) that those pairs do not have equalizers either.

Example 5.4.6. Consider two balleans X and Y defined as follows: X is the
discrete ballean over R≥0 and Y is the product ballean of X and R≥0 with the
Euclidean metric ballean structure. Let N be the radii set of Y . Define two
maps f, g : X → Y , such that, for every x ≥ 0, f(x) = (x, 0) and g(x) = (x, x),
which are coarse embeddings by Remark 3.1.12. Since f 6∼ g, [f ]∼ 6= [g]∼.

(a) Let us suppose by contradiction that the pair of morphisms [f ]∼ and
[g]∼ has an ExtMonoCoarse/∼ -pullback: a triple (P, [u]∼, [v]∼), where [u]∼ is
a monomorphism, such that [f ]∼ ◦ [u]∼ = [g]∼ ◦ [v]∼. Since also [f ]∼ is a
monomorphism, then [f ]∼ ◦ [u]∼ and so [v]∼ are monomorphisms.
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Without loss of generality one can assume that u is an injection. In fact, by
Proposition 5.4.4, there exists a monomorphism u′ : P ′ → X of Coarse such
that [u′]∼ ∼= [u]∼. Let [h]∼ : P ′ → P be an isomorphism of Coarse/∼ such that
[u′]∼ = [u]∼ ◦ [h]∼. By defining v′ = v ◦ h, one has a pullback (P ′, [u′]∼, [v

′]∼)
with the desired properties.

For every n ∈ N, the inclusion in : [0, n] → X, where [0, n] is endowed
with the discrete ballean structure, is a monomorphism of Coarse such that
f ◦ in ∼ g ◦ in and so, by the universal property of the pullback, there exists
a unique arrow [hn]∼ : [0, n] → P such that both the triangles in the following
diagram commute:

[0, n]

[hn]∼

❉❉
❉

!!❉
❉❉

[in]∼

##

[in]∼

��

P
[u]∼ //

[v]∼
��

X

[f ]∼
��

X
[g]∼ // Y.

Since [in]∼ = [u]∼ ◦ [hn]∼ and [in]∼ is a monomorphism, then also [hn]∼ is a
monomorphism and so hn is an injection, by applying Remark 3.1.12. Since
also u is an injective coarse embedding, P can be identified with a subspace
of X which contains a copy of [0, n], for every n ∈ N. Hence, P = X and v,
which is a coarse embedding, is injective by Remark 3.1.12. Moreover, since X
is discrete and in ∼ v ◦hn and in ∼ u ◦hn, Remark 3.4.1 implies that, for every
n ∈ N, in = v ◦ hn and in = u ◦ hn.

Finally we show that f ◦ u 6∼ g ◦ v, which is a contradiction. Let m ∈
PY be an arbitrary radius, one has to prove that f ◦ u 6∼m g ◦ v. The point
hm+1(m+1) ∈ P is such that f ◦ u(hm+1(m+1)) = f(m+1) = (m+1, 0) and
g ◦ v(hm+1(m+ 1)) = g(m+ 1) = (m+ 1,m+ 1) and so f ◦ u 6∼m g ◦ v.

(b) Let us suppose that there exists the equalizer of [f ]∼ and [g]∼ and let
[m]∼ be a representative of the subobject [eq([f ]∼, [g]∼)]∼= such thatm : M →֒ X
is an inclusion (Proposition 5.4.4). In particular the ballean structure on M is
the one inherited by X.

For every n ∈ N, consider the inclusion jn : [0, n] →֒ X, which is a coarse
embedding, provided that [0, n] is endowed with the discrete ballean structure.
Then [f ]∼◦[jn]∼ = [g]∼◦[jn]∼. Hence, by the universal property of the equalizer,
there exists an arrow [h]∼ such that the diagram

[0, n]

[h]∼

��

[jn]∼

!!❉
❉❉

❉❉
❉❉

❉

M
[m]∼

// X
[g]∼

//
[f ]∼ //

Y

commutes.

We recall that the map [h]∼ is a monomorphism of Coarse/∼ and so h is
a coarse embedding. Since [0, n] is discrete, h is injective by Remark 3.1.12.
Hence, for every n ∈ N, M contains [0, n] as a subspace and M can be assumed
contained in X, thus M = X and m = idX .
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The fact that f = f |M 6∼ g|M = g is a contradiction, since M is taken to be
the equalizer of [f ]∼ and [g]∼.

Now we modify Example 5.4.6 to the Example 5.4.7 having nicer and more
natural properties (e.g., X and Y are connected). The proofs will only be
sketched.

Example 5.4.7. Let us define two balleans X and Y as follows: X is the ideal
ballean over R≥0 associated to the finitary ideal (i.e., the ballean associated
to the ideal coarse structure over R≥0 induced by the finitary ideal) and Y
is the product ballean between X and R≥0 with the Euclidean metric ballean
structure. We define two maps f, g : X → Y , such that, for every x ≥ 0, f(x) =
(x, 0) and g(x) = (x, x). The fact that both f and g are coarse embeddings can
be easily verified. Since f 6∼ g, [f ]∼ 6= [g]∼.

(a) Let us suppose by contradiction the existence of an ExtMonoCoarse/∼ -
pullback (P, [u]∼, [v]∼) of the pair [f ]∼ and [g]∼, where [u]∼ is a monomorphism.
Hence, also [v]∼ is a monomorphism. As in Example 5.4.6(a), u can be consid-
ered injective, so that P is a subobject of X and, for every n ∈ N, there exists
monomorphism [hn]∼ : [0, n] → P , where [0, n] is a subobject of X. Then, for
every n ∈ N there exists a finite subset Fn of X such that hn|[0,n]\Fn

is injective
and let F be another finite subset of P such that v|P\F is injective. Hence,
there exists a countable subset N of R≥0 such that R≥0 \N ⊆ P and v|R≥0\N

is injective. Finally, for every radius (K,m) ∈ [X]<ω × N of Y , there exists a
point of R≥0 \N ⊆ P which witnesses that f 6∼(K,m) g.

(b) Let, by contradiction, [m]∼ : M → X be a representative of the equalizer
of [f ]∼ and [g]∼ such that m is an injection. By following the same steps of
Example 5.4.6(b), it is possible to prove that, for every n ∈ N, there exists a
coarse embedding hn : [0, n] → M , where [0, n] inherits the ballean structure
from X, and so there exists a finite subset Fn of [0, n] such that hn|[0,n]\Fn

is
injective. Hence,

M ⊇
⋃

n∈N

(
[0, n] \ Fn

)
⊇ R≥0 \N,

where N is a countable subset of R≥0. Hence, for every m ∈ N and every finite
subset F ⊆ X, there exists a point xm ∈ R≥0 \ (N ∪ F ) such that xm > m and
so xm witnesses that f 6∼(F,m) g and this is a contradiction.

Since every pair of bounded balleans are isomorphic in Coarse/∼, it is not
hard to prove that the epireflective subcategory Bounded/∼ of Coarse/∼ has
equalizers, pullbacks and ExtMonoBounded/∼ -pullbacks.

Question 5.4.8. Which (epireflective) subcategories Y of Coarse/∼ have equal-
izers, pullbacks or ExtMonoY -pullbacks?

The objects of a subcategory Y of Coarse/∼ which has equalizer, pullbacks
or ExtMonoY -pullbacks have to be connected (Example 5.4.6). However the
subcategory of all connected spaces has not this property (Example 5.4.7) and
so Y has to be a proper subcategory ofConnected/∼, i.e., the quotient category
ofConnected under the closeness relation, which is a subcategory ofCoarse/∼.
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5.4.3 Cowellpoweredness of a quotient category

As we have already mentioned in the previous subsection, since Coarse/∼
does not admit all the ExtMonoCoarse/∼ -pullbacks, we cannot use regular clo-
sure operators to investigate cowellpoweredness of Coarse/∼. Hence, we have
to follow a different path in order to answer this question.

Lemma 5.4.9. Let (X , U) be a topological category. Let us suppose that F is
a class of objects of X such that UX and UY are isomorphic in Set, for every
X,Y ∈ F . Then there exists a set F ′ of objects of F such that, for every X ∈ F
there exists an element FX ∈ F

′ which is isomorphic to X in X .

Proof. Let F be a class of objects of X which satisfies the hypothesis and X
be an object of this class. We denote A = UX. Since U has small fibres, the
class F ′ of all the objects Y of X such that UY = A is a set. Without loss of
generality one can assume F ′ ⊆ F . Then F ′ has the desired property. In fact,
let Z be an arbitrary object of F and let h : UZ → A be an isomorphism of
Set. Since U is transportable, h can be lifted to an isomorphism h : Z →W of
X , where W ∈ F ′.

Let X be a category,M be a subclass of monomorphisms of X and ≈ be a
congruence. Then ≈ is said to be M-to-Mono if, for every m ∈ M, [m]≈ is a
monomorphism of X/∼. The closeness relation ∼ is ExtMonoCoarse-to-Mono,
while Example 5.4.10 shows that a congruence in a category X need not be
ExtMonoX -to-Mono in general.

Example 5.4.10. There exists a topological category X and a congruence ≈,
which is not ExtMonoX -to-Mono.

Let us take X = Top and as X/∼h
the homotopical category hTop, namely

the quotient of X obtained via the homotopy equivalence relation ∼h. Let
m be the inclusion of the circle S into the unit ball B, which is an extremal
monomorphism of Top. On the other hand, for the maps f = idS and g = ∗
(any constant self-map of S) one certainly has f 6∼h g, while m ◦ f ∼h m ◦ g (as
any pair of maps with target B are homotopic).

Proposition 5.4.11. Let (X , U) be a topological category and ≈ be a congruence
of X . Suppose that X/∼ is balanced and ≈ is ExtMonoX -to-Mono. Then X/∼
is cowellpowered.

Proof. Let {[ei]≈ : A → Xi}i∈I be a source of epimorphisms of X/∼ and, for
every i ∈ I, let

A

e′i
��

ei // Xi

Mi

mi

==⑤⑤⑤⑤⑤⑤⑤⑤

be an (EpiX ,ExtMonoX )-factorization (see Appendix A), which exists since X
is topological. In particular, [mi]≈ is a monomorphism of X/∼. Moreover, since
[ei]≈ = [mi]≈ ◦ [e

′
i]≈ is an epimorphism, [mi]≈ is an epimorphism and thus an

isomorphism, by the hypothesis.

Let us divide the class F = {Mi}i∈I into equivalence classes of isomorphism
of Set. Since the epimorphisms of X are surjective, there is only a set {Fλ |
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λ ≤ κ} of such classes, where κ is a cardinal. Lemma 5.4.9 implies that, for
every λ ≤ κ, there exists a set F ′

λ ⊆ Fλ such that, for every Z ∈ Fλ, there
exists an element FZ ∈ F

′
λ which is isomorphic to Z in X . We define two sets:

F ′ =
⋃
λ≤κ F

′
λ and I ′ = {i ∈ I |Mi ∈ F

′}.

Finally, for every i ∈ I there exists j ∈ I ′ such that Mi and Mj are isomor-
phic in X and then, in particular,Mi andMj are isomorphic in X/∼. Since [mi]≈
and [mj ]≈ are isomorphisms of X/∼, Xi and Xj are isomorphic in X/∼.

Corollary 5.4.12. The category Coarse/∼ is cowellpowered.

Proof. The result follows from Proposition 5.4.11, since the extremal monomor-
phisms of Coarse are injective coarse embeddings and their equivalence classes
are monomorphisms of Coarse/∼ (Theorem 5.3.7).

Remark 5.4.13. By a careful look to the proofs of both Lemma 5.4.9 and
Proposition 5.4.11, the reader may notice that the cowellpoweredness of X/∼
holds also under weaker hypotheses. Namely, one can suppose that (X , U) is
a concrete category and ≈ is a congruence of X such that U is transportable,
the fibres of U are small, X/∼ is balanced and every morphism of X has a
(E ,M)-factorization, where E is a class of morphisms with the property that
X is E-cowellpowered andM is a class of monomorphisms of X such that ≈ is
M-to-Mono. Then X/∼ is cowellpowered.

Those hypotheses are probably not the weakest sufficient set of assumptions.
However, we believe that this approach is worth mentioning.

To the best of our knowledge the following question seems to be open.

Question 5.4.14. Let ∼h be the homotopy equivalence on Top and define the
homotopy category hTop to be the quotient category Top/∼h

. Is hTop cow-
ellpowered?

There are obstacles to apply the same machinery that led us to Corollary
5.4.12: first of all, to the best of our knowledge, it is not known if hTop is
balanced or not and, moreover, in Example 5.4.10 it is shown that the homotopic
equivalence ∼h is not ExtMonoTop-to-Mono.



Chapter 6

Asymptotic dimension

In this chapter we provide the necessary background around the notion of
asymptotic dimension of coarse spaces, which is a generalisation of the Defini-
tion 1.1.6 given in the framework of metric spaces. This notion is one of the
most important invariants in coarse geometry since it has applications both to
Novikov and to coarse Baum Connes conjectures (see [19, 18, 127] for a wide
discussion of the topic).

6.1 Definition and basic properties

Definition 6.1.1. A coarse space (X, E) has asymptotic dimension at most n,
where n ∈ N, and we write asdim(X, E) ≤ n, if, for every E ∈ E there exists
a uniformly bounded cover U = U0 ∪ · · · ∪ Un such that, for every i = 0, . . . , n
and every pair of distinct elements U, V ∈ Ui, E[U ] ∩ V = ∅ (i.e., Ui is E-
separated, for every i = 0, . . . , n). We write asdim(X, E) = n, where n ∈ N,
if asdim(X, E) ≤ n and asdim(X, E) > n − 1. Finally, if, for every n ∈ N,
asdim(X, E) > n, then asdim(X, E) =∞.

This notion of asymptotic dimension extends the one provided in Defini-
tion 1.1.6 in the following sense. If (X, d) is a metric space, then the value
asdim(X, d) (as in Definition 1.1.6) coincides with asdim(X, Ed).

Theorem 6.1.2 ([89]). Let f : X → Y be a coarse embedding between coarse
spaces. Then asdimX ≤ asdimY .

Theorem 6.1.2 has two important consequences. First of all, the asymptotic
dimension is a a coarse invariant, i.e., if f : X → Y is a coarse equivalence
between coarse spaces, then asdimX = asdimY . In fact, according to Theorem
3.4.6, f and any Sym-coarse inverse g are coarse embeddings and thus the claim
follows from Theorem 6.1.2. Moreover, asymptotic dimension is monotone under
taking coarse subspaces since the canonical inclusion map is an asymorphic
embedding.

According to results of Grave ([89]), we cannot relax the hypothesis of Theo-
rem 6.1.2 by asking that the map f is just bornologous and injective. In fact, he
provided an injective bornologous map f : X → Y between coarse spaces such
that asdimX > asdimY .

108



6.1 Definition and basic properties 109

Let us enlist some examples. Every bounded coarse spaceX satisfies asdimX =
0, while, for every n ∈ N, asdimNn = asdimRn = asdimZn = n, provided that
the spaces are endowed with their usual euclidean metric coarse structures.
Moreover, every tree endowed with the path metric has asymptotic dimension
equal to one (see [127]). In particular, for every m ∈ N \ {0}, the free group Fm
with m free generators endowed with its word metrics satisfies asdimFm = 1
since its Cayley graph associated to the standard generating set, which is asy-
morphic to the group itself, is a tree.

Let us now present an example of an infinity-dimensional coarse space (see
Proposition 6.1.3) which will be useful later in this paper. If X is a set and
f ∈ {0, 1}X (i.e., f : X → {0, 1}), the support of f is the subset supt f = {x ∈
X | f(x) 6= 0}. For an infinite cardinal κ, we consider the Hamming space

Hκ = {f ∈ {0, 1}κ | |supt f | < ω}

endowed with the metric h(f, g) = |supt f△ supt g|, for every f, g ∈ Hκ, and
denote by H∗

κ the space Hκ with deleted the zero function. We identify Hκ with
the set [κ]<ω, where every function f ∈ Hκ is identified with its support.

Proposition 6.1.3. For every infinite cardinal κ, asdimHκ =∞.

Proof. It is enough to check that asdimHω = ∞ . To see that asdimHω = ∞,
we take an arbitrary n ∈ N, and we claim that there exists a copy of Nn in
Hκ. That property implies the inequality asdimHω ≥ n according to Theorem
6.1.2. Let ω =W 1 ∪ · · · ∪Wn be a partition of ω in infinite subsets. Enumerate
W i = {aim | m ∈ N} and define, for every i = 1, . . . , n and every m ∈ N,
Aim = {ai0, . . . , a

i
m}.

We define a map ϕ : Nn → Hκ as follows: for every (m1, . . . ,mn) ∈ Nn,

ϕ(m1, . . . ,mn) =

n⋃

i=1

Aimi
.

We claim that ϕ is an isometry onto its image. In fact, for every

(m1, . . . ,mn), (m
′
1, . . . ,m

′
n) ∈ Nn,

we have that

h(ϕ(m1, . . . ,mn), ϕ(m
′
1, . . . ,m

′
n)) =

n∑

i=1

|Aimi
△Aim′

i
| =

n∑

i=1

|mi −m
′
i| =

= d((m1, . . . ,mn), (m
′
1, . . . ,m

′
n)),

which shows the desired property.

Let us recall a product formula concerning the asymptotic dimension from
[88].

Theorem 6.1.4. Let X and Y be two coarse spaces. Then asdimX × Y ≤
asdimX + asdimY .

The inequality of Theorem 6.1.4 can be also strict (see [25]).
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Remark 6.1.5. Let B = (X,P,B) be a ballean. Then we define asdimB =
asdim(X, EB). It will be convenient to rewrite this definition in terms of radii
and balls. Let n ∈ N. Then asdimB ≤ n if and only if, for every radius r ∈ P ,
there exists a uniformly bounded cover U = U0 ∪ · · · ∪ Un of X (i.e., U is a
cover such that there exists s ∈ P with the property that, for every U ∈ U and
x ∈ U , U ⊆ B(x, s)) such that, for every i = 0, . . . , n and every pair of distinct
elements U, V ∈ Ui, B(U, r) ∩ V = ∅.

In [168], the authors introduce several notions of asymptotic dimensions in
the realm of quasi-coarse spaces. These concepts extend the classical notion and
are invariant under Sym-coarse equivalences.

6.2 Some examples of ballean classes: thin and

cellular balleans

In this section we focus our attention on some properties of coarse spaces
implying zero-dimensionality.

6.2.1 Thin coarse spaces

Let (X, E) be a coarse space. A subset Y of X is thin if, for every E ∈ E ,
there exists a bounded subset V ⊆ X such that |E[x] ∩ Y | = 1, for every
x ∈ Y \ V . A coarse space is thin if its whole support is thin.

Among all characterisations of thinness (for example, see [55, 151]), let us
remind the following.

Theorem 6.2.1 ([151]). A connected coarse space (X, E) is thin if and only if
E coincides with the ideal coarse structure EI , where I is the ideal of bounded
subsets of (X, E).

Thanks to Theorem 6.2.1, it is worth paying a closer attention to ideal coarse
spaces. Here we provide some properties that will be important, even though
they are easy to check.

Let I be an ideal on X. The ideal coarse structure EI is connected if and
only if I is a cover or, equivalently, [X]<ω ⊆ I.

Proposition 6.2.2. Let f : X → Y be a map between two non-empty sets, and
I and J be two ideals of X and Y , respectively. Then f : (X, EI)→ (Y, EJ ) is
bornologous if and only if f(I) ⊆ J . Hence, f is an asymorphism if and only
if f is a bijection such that f(I) ⊆ J and f−1(J ) ⊆ I.

Corollary 6.2.3. Let X and Y be two sets endowed with the ideal coarse struc-
tures induced by their families of finite subsets. Then X and Y are asymorphic
if and only if |X| = |Y |.

The notion of thinnes may seem too restrictive. In fact, one can easily see
that a non-connected coarse space is thin if and only if all but one connected
components are trivial and the non-trivial one is thin. Since some of the coarse
spaces we will be considering in this sequel are non-connected, we define the
following class. A coarse space is weakly thin if every connected component is
thin.
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6.2.2 Cellular coarse spaces

Let us now recall a characterisation of those coarse spaces that have asymp-
totic dimension 0. A quasi-coarse space (X, E) is cellular if, for every E ∈ E ,
E� =

⋃
n∈NE

n ∈ E , where, for every n ∈ N, En is obtained by composing E
with itself n times ([147, 153]). Cellular coarse spaces are precisely those with
asymptotic dimension 0 ([151]).

Thin coarse spaces and, in particular, bounded coarse spaces are cellular.
Moreover, if a weakly thin coarse space has only a finite number of connected
components, it is cellular. However, this property does not hold for weakly
thin coarse spaces with infinite number of connected components (see Example
6.2.4).

Example 6.2.4. Consider the coarse space X =
⊔
n∈N[0, n] endowed with the

following metric: for every ik(x), ik′(x
′) ∈

⊔
n[0, n],

d(ik(x), ik′(x
′)) =

{
|x− x′| if k = k′,

∞ otherwise.

Then asdimX > 0 and thus it is not cellular, although it is weakly thin. Finally,
the coproduct coarse space X =

⊕
n[0, n], where every interval is endowed

with the usual euclidean metric, is cellular and thus X and Y are not coarsely
equivalent (and, in particular, not asymorphic).

The family of cellular coarse spaces is stable under taking subspaces (thanks
to the characterisation as zero-dimensional spaces and Theorem 6.1.2) and prod-
ucts (Proposition 6.2.5).

Proposition 6.2.5. Let {(Xi, Ei)}i∈I be a family of cellular coarse spaces. Then
the product coarse space Πi(Xi, Ei) is cellular.

Proof. Let E ∈ E . Without loss of generality, we can assume that E = ΠiEi,
where Ei ∈ Ei, for every i ∈ I. Then E

� = Πi(E
�
i ) ∈ E since every component

is cellular.

Proposition 6.2.6. Let (X, EX) and (Z, EZ) be two coarse spaces such that Z
is non-empty and cellular. Then asdimX × Z = asdimX.

This proposition can be easily derived from Theorems 6.1.2 and 6.1.4. In
fact, in the notations of Proposition 6.2.6, since X can be embedded in the
product X × Z (take a point z ∈ Z and define i(x) = (x, z), for every x ∈ X),
asdimX ≤ asdim(X×Z) and the opposite inequality holds because of Theorem
6.1.4 and the zero-dimensionality of Z. However, for the sake of completeness,
we provide a direct proof of this fact.

Proof of Proposition 6.2.6. Theorem 6.1.2 implies that asdimX ≤ asdimX×Z.
We have to prove that asdimX×Z ≤ asdimX. If asdimX =∞, there is nothing
to prove. Hence, we assume that asdimX = n, for some n ∈ N.

Denote by E the product coarse structure on X×Z. Let us fix and entourage
K ∈ E . Without loss of generality, we can assume that K = E × F , where E ∈
EX and F = F� ∈ EZ are two symmetric entourages. Since X has asymptotic
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dimension n, there exists a uniformly bounded cover U = U0 ∪ · · · ∪ Un of X
such that, for every i = 0, . . . , n, Ui is E-separated. Let M ∈ EX be a uniform
bound to the family U . For every i = 0, . . . , n, we define a family of subsets of
X × Z as follows:

Wi = {U × F [z] | U ∈ Ui, z ∈ Z}.

We claim that Wi is K-separated and that W = W0 ∪ · · · ∪ Wn is a uniformly
bounded cover of X × Z, which imply that asdimX × Z ≤ n.

Let U × F [z], U ′ × F [z′] ∈ Wi such that K[U × F [z]] ∩ U ′ × F [z′] 6= ∅.
Since K = E × F , the product coarse structure implies that E[U ] × F [F [z]] ∩
U ′ × F [z′] 6= ∅. Hence E[U ] ∩ U ′ 6= ∅, which implies that U = U ′ since Ui is
E-separated. Moreover, since F = F�, F [F [z]] = F [z] and F [z] ∩ F [z′] 6= ∅
implies that F [z] = F [z′].

The family W is trivially a cover, since U is a cover and, for every i =
0, . . . , n,

⋃
Wi =

⋃
Ui × Z. Moreover, the entourage M × F is a uniform

bound to W. In fact, for every U × F [z] ∈ W and every (x, z′) ∈ U × F [z],
U × F [z] ⊆M [x]× F [z′] = (M × F )[(x, z′)] since F� = F .

Since it is going to be useful in the sequel, let us translate the notion of
cellularity in terms of balleans. For a ballean (X,P,B), n ∈ N, x ∈ X and
r ∈ P , we let

Bn(x, r) = B(B(· · ·B(B︸ ︷︷ ︸
n times

(x, r), r) · · · , r), r) and B�(x, r) =
∞⋃

n=1

Bn(x, r).

Definition 6.2.7. The triple B� = (X,P,B�) is a ballean called the cellular-
isation of B. The ballean B is said to be cellular if B = B�.

It is trivial to check that a balleanX is cellular if and only if its corresponding
coarse space is cellular.



Part II

Coarse geometry of

algebraic objects
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Chapter 7

Structures on algebraic

objects

In this chapter, we investigate the large-scale geometry of large-scale objects
and, in particular, of groups and topological groups.

7.1 Coarse groups, bornological groups and their

generalisations

Definition 7.1.1. Let M be a unitary magma and I be a family of subsets of
M .

• I is a magmatic ideal if it is an ideal on M such that {e} ∈ I.
• If M is a monoid, I is a monoid ideal if it is a magmatic ideal and, for every
H,K ∈ I, H ·K = {h · k | h ∈ H, k ∈ K} ∈ I.

• If M is a loop, a magmatic ideal I is a right loop ideal if, for every F ∈ I,
F ρ = {gρ | g ∈ F} ∈ I, I is a left loop ideal if, for every F ∈ I, Fλ = {gλ |
g ∈ F} ∈ I, and I is a loop ideal if it is both a left loop ideal and a right loop
ideal.

• If M is a group, I is a group ideal ([151]) if it is both a monoid ideal and a
loop ideal.

A unitary submagma N of a unitary magma M is a subset N ⊆ M that
contains the identity of M and it is closed under the operation. A unitary
submagmaN is a subloop of a loopM if, for every parameters in N , the solutions
of (1.3) belongs to N . A unitary submagma N of a monoid M is called a
submonoid.

If I is a monoid ideal on a monoid M , then
⋃
I is a submonoid. Similarly,⋃

I is a subgroup if I is a group ideal on a group M .

The leading examples of magmatic ideals are the finitary magmatic ideal,
the finitary monoid ideal, the finitary (left, right) loop ideal, and the finitary
group ideal.

Example 7.1.2. Let M be a unitary magma, then the family I = [M ]<ω =
{F ⊆M | F is finite} is a magmatic ideal, called finitary magmatic ideal. If M
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is a monoid, then I is a monoid ideal, called finitary monoid ideal. If M is a
loop with (right) inverse property, then I is a (right) loop ideal, called finitary
(right) loop ideal. Finally, ifM is a group, then I is a group ideal, called finitary
group ideal.

Let M be a unitary magma and I a magmatic ideal on M . If A is a subset
of M ×M , define M ·A = {(mx,my) | m ∈M, (x, y) ∈ A}. Then we can define
the left magmatic entourage structure EλI on M as follows:

EλI = cl({EλK | K ∈ I}), where, for every K ∈ I,

EλI =M({e} ×K) = {(x, xk) | x ∈M,k ∈ K}.

Similarly, we can define the right magmatic entourage structure EρI , where the
action of M is on the right:

EρI = cl({EρK | K ∈ I}), where, for every K ∈ I, EρK = ({e} ×K)M.

Proposition 7.1.3. Let M be a unitary magma and I be a magmatic ideal on
M .

(a) EλI and EρI are entourage structures.
(b) If M is a loop with the right inverse property and I is a right loop ideal

(with the left inverse property and I is a left loop ideal), then EλI is a semi-
coarse structure, called left loop semi-coarse structure (EρI is a semi-coarse
structure, called right loop semi-coarse structure, respectively).

(c) If M is a monoid and I is a monoid ideal, then EλI and EρI are quasi-coarse
structures, called left monoid quasi-coarse structure and right monoid quasi-
coarse structure, respectively.

(d) If M is a group, then EλI and EρI are coarse structures, called left group
coarse structure and right group coarse structure, respectively.

Proof. Item (a) is trivial and item (d) has already been proved ([125]).

(b) Let M be a loop with right inverse property and I be a right loop. Let
K ∈ I. Then, for every (x, xk) ∈ EλK , where x ∈ M and k ∈ K, (xk, x) =
(xk, (xk)kρ) ∈ EλKρ . Hence (EλK)−1 ⊆ EλKρ ∈ EλI . We can prove similarly the
other assertion.

Finally, item (c) follows from the observation that, for every F,K ∈ I,
EλF ◦ E

λ
K ⊆ E

λ
FK .

Of course, ifM is an abelian unitary magma and I is a magmatic ideal, then
EλI = EρI . Note that, if M is an abelian loop with the right inverse property,
then it has the inverse property. In the next remark we discuss a situation
in which the left and the right magmatic entourage structures are asymorphic,
even though the may not be equal.

Remark 7.1.4. Let G be a group and I be a magmatic ideal. Note that
I−1 = {K−1 | K ∈ I} is still a magmatic ideal and, more precisely, if I is a
loop ideal or a monoid ideal, then so it is I−1. Furthermore, it is easy to check
that EλI = (EρI−1)

−1. Consider the map i : G→ G such that i(g) = g−1, for every
g ∈ G. Then i : (G, EλI )→ (G, EρI−1) = (G, (EλI )

−1) is an asymorphism. In fact,
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for every K ∈ I and every (x, xk) ∈ EλK , (i×i)(x, xk) = (x−1, k−1x−1) ∈ EρK−1 .
The same conclusion holds if I is a loop ideal, a monoid ideal, or a group ideal.
In particular, if I is a loop ideal or a group ideal, then I = I−1 and thus (G, EλI )
and (G, EρI) are asymorphic. Hence, on a group G, if I is a loop ideal, we simply
write EI instead of both EλI and EρI when there is no risk of ambiguity.

A family of maps F between two entourage spaces (X, EX) and (Y, EY ) is
equi-bornologous if, for every E ∈ EX , there exists F ∈ EY such that (f×f)(E) ⊆
F , for every f ∈ F .

If M is a unitary magma, we define the following families of maps, which
are the left and the right shifts in M :

SλM = {sλx | x ∈M} and S
ρ
M = {sρx | x ∈M},

where, for every x, y ∈M , sλx(y) = xy and sρx(y) = yx.
(7.1)

In the following remark, we describe situations in which the families of mor-
phisms SλM and SρM are equi-bornologous.

Remark 7.1.5. (a) For every finitely generated monoid M , if Σ is a finite
generating set, then the quasi-coarse space (M, EdλΣ) makes the family SλM =

{sλx | x ∈M} equi-bornologous, since d
λ
Σ is left-non-expanding.

(b) Let M be a monoid and I be a monoid ideal on M . Then SλM and SρM
are equi-bornologous if M is endowed with the left monoid quasi-coarse
structure EλI and the right monoid quasi-coarse structure EρI , respectively.
In fact, let e ∈ K ∈ I. Then, for every x ∈M and every (y, yk) ∈ EλK ,

(sλx × s
λ
x)(y, yk) = (xy, xyk) = xy(e, k) ∈ EλK .

(c) Consider the unitary magmas Z = (Z∪ {e},−, e) and Q∗ = (Q∗ ∪ {e}, /, e),
obtained by the magmas (Z,−) and (Q∗, /), where Q∗ = Q\{0}, by adding
a neutral element e. Endow those unitary magmas with the left entourage
structures associated to their finitary magmatic ideals. Then the families
Sλ
Z
and Sλ

Q∗ are equi-bornologous. In fact, for every K ∈ [Z]<ω and x ∈ Z,

(sλx × s
λ
x)(EK) = (sλx × s

λ
x)({(y, y − k) | y ∈ Z, k ∈ K}) =

= {(x− y, x− (y − k)) | y ∈ Z, k ∈ K} ⊆ EK′ ,

where K ′ = {e, k,−k | k ∈ K \ {e}}. Similarly, for every F ∈ [Q∗]<ω and
x ∈ Q∗,

(sλx × s
λ
x)(EF ) = (sλx × s

λ
x)({(y, y/k) | y ∈ Q∗, k ∈ F}) =

= {(x/y, x/(y/k)) | y ∈ Q∗, k ∈ F} ⊆ EF ′ ,

where F ′ = {e, k, 1/k | k ∈ F \ {e}}. Those results follow from a more
general statement.

(d) LetM be a unitary magma such that there exists a map r : M →M with the
property that a(bc) = (ab)r(c), for every a, b, c ∈M . Hence, we claim that,
for every magmatic ideal I onM such that r(I) = {r(K) | K ∈ I} ⊆ I, the
family of left shifts is equi-bornologous whenever M is endowed with the
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left entourage structure associated to I. Let K ∈ I be a generic element of
the magmatic ideal. Then, for every x ∈M ,

(sλx × s
λ
x)(EK) = {(xy, x(yk)) | y ∈M,k ∈ K} =

= {(xy, (xy)r(k)) | y ∈M,k ∈ K} ⊆ Er(K).

which concludes the proof, since r(K) ∈ I.

The next proposition shows the importance of having the families of left
(right) shifts, defined in (7.1), equi-bornologous. We state the result just for
SλM , but similar conclusions hold also for SρM .

Proposition 7.1.6. LetM be a unitary magma and E be an entourage structure
over M such that SλM is equi-bornologous. Let I = {E[e] | E ∈ E} = βE(e).
Then:

(a) I is a magmatic ideal and EλI ⊆ E;
(b) if M is a loop with the inverse property and two-side inverses, and E is a

semi-coarse structure, then I is a loop ideal and EλI = E;
(c) if M is a monoid and E is a quasi-coarse structure, then I is a monoid ideal

and EλI ⊆ E;
(d) if M is a group and E is a coarse structure, then I is a group ideal and
EλI = E.

Proof. The first assertion of item (a) is trivial since {e} ∈ βE(e) which is an
ideal. Let now F ∈ E be an arbitrary entourage, and so F [e] be an arbitrary
element of I. Since SλM is equi-bornologous, there exists F ′ ∈ E such that, for
every x ∈ M , (sλx × s

λ
x)(F ) ⊆ F ′. Since, for every (x, y) ∈ EλF [e], there exists

k ∈ F [e] such that y = xk, we have

(x, y) = (x, xk) = (sλx × s
λ
x)(e, k) ∈ (sλx × s

λ
x)(F ) ⊆ F

′,

and so EλF [e] ⊆ F
′. Hence, EλI ⊆ E .

(b) Let E ∈ E and x be an arbitrary element of E[e]. Then,

(e, x−1) = (sλx−1 × sλx−1)(x, e) ∈ (sλx−1 × sλx−1)(E−1) ⊆ F,

for some F ∈ E that can be taken independently from the choice of x in E[e]
since SλM is equi-bornologous. Thus E[e]−1 ⊆ F [e] ∈ I.

Consider now an arbitrary entourage E ∈ E . We want to show that there
exists F ∈ E , such that E ⊆ EλF [e]. Let (x, y) ∈ E and denote by F ∈ E an

entourage such that (sλz × s
λ
z )(E) ⊆ F , for every z ∈M . Then

(x, y) = (sλx×s
λ
x)(e, x

−1y), where (e, x−1y) = (sλx−1×sλx−1)(x, y) ⊆ F, (7.2)

and thus (x, y) ∈ EF [e]. Note that in (7.2) we used that M has the inverse
property and two-sided inverses.

(c) Thanks to item (a), we only need to show that I is a monoid ideal. Take
E,F ∈ E and consider E[e] · F [e]. Let x ∈ E[e] and y ∈ F [e] be two arbitrary
elements, which means that (e, x) ∈ E and (e, y) ∈ F . Denote by E′ ∈ E an
entourage such that (sλx × s

λ
x)(F ) ⊆ E

′, for every x ∈M . Then

(e, xy) = (e, x) ◦ (x, xy) ∈ E ◦ (sλx × s
λ
x)(F ) ⊆ E ◦ E

′ ∈ E ,
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which shows that xy ∈ (E ◦ E′)[e], and thus E[e]F [e] ⊆ (E ◦ E′)[e] ∈ I.

Finally, item (d) descends from items (b) and (c).

Remark 7.1.7. LetM be a monoid generated by a finite subset Σ. By Remark
7.1.5 and Proposition 7.1.6, EλI ⊆ EdλΣ , where I is the family of all subsets of

(M,dλΣ) bounded from e, (i.e., I = βdλΣ(e)). More precisely, we can show that

I = [M ]<∞. We claim that EλI = EdλΣ . Let R ≥ 0 and define FR = BdλΣ(e,R) ∈

I. If dλΣ(x, y) ≤ R, then y ∈ xFR. Hence ER ⊆ EλFR
, which shows the desired

equality. Similarly, EρI = EdρΣ .

7.1.1 Coarse groups

Let us focus on coarse structures on groups. First of all, let us specialise
Proposition 7.1.6.

Corollary 7.1.8. Let G be a group and E be a coarse structure on it. Then the
following properties are equivalent:

(a) for every E ∈ E, GE = {(gx, gy) | g ∈ G, (x, y) ∈ E} ∈ E;
(b) the family SλG is equi-bornologous;
(c) there exists a group ideal I = βE(e) on G such that E = EI .

Proof. The equivalence (b)↔(c) follows from Proposition 7.1.6(d) and Remark
7.1.5(b). The equivalence (a)↔(b) is easy to check.

A coarse structure E on a group G satisfying the equivalent properties en-
listed in Corollary 7.1.8 is called a left group coarse structure and the pair (G, E)
is a left coarse group. Right group coarse structures and right coarse groups can
be defined similarly. According to Remark 7.1.4, left and right group coarse
structures are asymorphic. In the sequel we will always refer to left group
coarse structures and left coarse groups, if it is not otherwise stated, and thus
we call them briefly group coarse structures (and coarse groups) if there is no
risk of ambiguity. Moreover, every group coarse structure E on a group G is
induced by a group ideal I (i.e., E = EI), and thus it is convenient sometimes
to call E the I-group coarse structure.

There is another way to describe the group ideal of Corollary 7.1.8(c). If
G is a group, the map πλG : G × G → G such that, for every (g, h) ∈ G × G,
πλG(g, h) = h−1g is called (left) shear map ([125]). If E is a left coarse structure
satisfying the properties of Proposition 7.1.6, then I = {πλG(E) | E ∈ E}.

According to Corollary 7.1.8, coarse groups are equivalently described in
terms of group ideals. This is why it is necessary to provide examples of group
ideals. In Example 7.1.9 we provide examples that are defined on arbitrary
groups, while in Example 7.1.10 we assume some further structure on the ob-
jects.

Example 7.1.9. Let G be a group.

(a) The sigleton {{e}} is a group ideal and the {{e}}-group coarse structure is
the discrete coarse structure.

(b) On the opposite side we have the group ideal P(G), that induces the trivial
coarse structure.
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(c) The finitary group ideal [G]<ω introduced in Example 7.1.2 induces the
finitary-group coarse structure.

(d) We want to generalise the finitary group ideal. For a given infinite cardinal
κ, the family [G]<κ is a group ideal. The [G]<κ-group coarse structure is
called κ-group coarse structure. Then the finitary-group coarse structure is
the ω-group coarse structure.

Example 7.1.10. Let G be a group.

(a) Let τ be a group topology of G. Define C(G) as the family of all compact
subsets of G. Then cl(C(G)) coincides with the family rC(G) of all relatively
compact subsets ofG is a group ideal and the rC(G)-coarse structure is called
compact-group coarse structure.

(b) Let d be a left-invariant pseudo-metric on G. Then the family Bd = {A ⊆
G | ∃R ≥ 0 : A ⊆ Bd(e,R)} is a group ideal and the Bd-group coarse
structure is called metric-group coarse structure. Note that EBd

= Ed.
(c) Let G be a topological group. The group ideal

OB = {A ⊆ G | ∀d left-invariant continuous pseudo-metric,

A is d-bounded from e}.

was defined in [158], where other characterisations of OB are provided.
Then

EL = EOB =
⋂
{EBd

| d is a left-invariant continuous pseudo-metric}

is defined in [158] and named left-coarse structure. The group ideal OB
contains the family C(G) (and thus rC(G)) and it coincides with rC(G) if
G is locally compact and σ-compact ([158, Corollary 2.8]). However, there
exist locally compact groups G with rC(G) ( OB. For example, the group
Sym(N) of all permutations of N endowed with the discrete topology has
rC(Sym(N)) = [Sym(N)]<ω, while OB = P(Sym(N)) (see [158, Example
2.16]).

(d) For an infinite cardinal κ, a topological space is κ-Lindelöf if every open
cover has a subcover of size strictly less than κ (so ω-Lindelöf coincides
with compact, while ω1-Lindelöf is the standard Lindelöf property). For a
topological group G, denote by κ-L(G) the family of all κ-Lindelöf subsets
of G. Then cl(κ-L(G)) is a group ideal and the cl(κ-L(G))-group coarse
structure is called κ-Lindelöf-group coarse structure.

Remark 7.1.11. Let G be a discrete group. Then, for every infinite cardi-
nal κ, the κ-Lindelöf-group coarse structure coincides with the κ-group coarse
structure. In particular, the compact-group coarse structure coincides with the
finitary-group coarse structure.

Suppose, furthermore, that G is countable and d is the left-invariant proper
metric described in (1.2). Then the finitary-group coarse structure E[G]<ω , the
compact-group coarse structure ErC(G), the metric-group coarse structure Ed and
the left coarse structure EL coincide.

According to Remark 7.1.4, for every group G and group ideal I, (G, EλI )
and (G, EρI) are asymorphic. However, these two group coarse structures need
not coincide in general. It will be useful in the sequel to characterise those group
ideals for which these two group coarse structures coincide.
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Proposition 7.1.12. Let G be a group and E a coarse structure on it. If the
group operation · : G ×G → G is bornologous, then E is both a left and a right
group coarse structure.

Proof. For every E ∈ E , GE = (· × ·)(∆X ×E) ∈ E and EG = (· × ·)(E ×∆X),
and thus the claim follows from Corollary 7.1.8.

If K is a subset of a group G, and g ∈ G, we define Kg = g−1Kg and
KG =

⋃
h∈GK

h. A group ideal I is uniformly bilateral if KG ∈ I for every
K ∈ I. Note that, for every K ⊆ G and g ∈ G,

Kg = gg−1Kg = gKg ⊆ gKG. (7.3)

Similarly, if E ⊆ G × G, and g ∈ G be an element, we define Eg =
{(g−1xg, g−1yg) | (x, y) ∈ E} and EG =

⋃
h∈GE

h. We say that a coarse
structure E on G is uniformly invariant if EG ∈ E for every E ∈ E .

The following proposition is the analogue in realm of coarse groups of [96,
Proposition 1.2], to which we refer for the proof.

Proposition 7.1.13. Let G be a group and E is a left I-group coarse structure
on it, for some group ideal I on G. Then the following conditions are equivalent:

(a) the inverse map i : (G, E)→ (G, E) is bornologous;
(b) the multiplication map · : (G×G, E × E)→ (G, E) is bornologous;
(c) E is also a right I-group coarse structure;
(d) E is uniformly invariant;
(e) I is uniformly bilateral.

In particular, when the above conditions are fulfilled, the subgroup
⋃
I is normal.

A coarse group with uniformly invariant group coarse structure will be called
bilateral coarse group.

In particular, for every abelian group and every group ideal on it, the condi-
tions of Proposition 7.1.13 are satisfied. It is natural to expect that this remains
true for groups close to be abelian, e.g., for groups G having large centre with
respect to the finitary-group coarse structure of G. This means that the centre
Z(G) = {g ∈ G | ∀x ∈ G, gx = xg} of G has finite index in G. Then, by Shur’s
Theorem [156], the commutator subgroup G′ = 〈{g−1h−1gh | g, h ∈ G}〉 of G is
finite. As we shall below, this implies that EλI = EρI (see Corollary 7.2.12). Since
finiteness of G′ can still be considered as a rather strong restraint, we consider
now a weaker condition (but it ensures uniform invariance only of some group
coarse structures). Recall that a group G is called an FC-group, if all conjugacy
classes xG = {x}G are finite. Obviously, G is an FC-group, if G′ is finite.

The next proposition shows that this commutativity condition is the precise
measure ensuring uniform invariance of the finitary-group coarse structure. Its
easy proof will be omitted.

Proposition 7.1.14. For every group G the following conditions are equivalent:

(a) G is an FC-group;
(b) the finitary-group coarse structure of G is uniformly invariant;
(c) for every infinite cardinal κ the κ-group coarse structure of G is uniformly

invariant.
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Thanks to Proposition 7.1.13 we can easily find a coarse group for which the
multiplication is not bornologous. It is the aim of the next example.

Example 7.1.15. Consider the free group F2, generated by {a, b}.

(a) Let I = [〈a〉]<ω. Then, if we endow F2 with EλI , · is not bornologous since⋃
I is not normal.

(b) If we endow F2 with the finitary-group coarse structure, µ is not bornologous
by item (i) (or by Proposition 7.1.14, as F2 is not an FC-group, e.g., aG is
not finite).

The following example shows that the compact-group coarse structure of a
locally compact group need not be uniformly invariant.

Example 7.1.16. Fix a prime number p and let θ : Qp → Qp by the multipli-
cation by p in the p-adic numbers. Then θ is a topological automorphism of
Qp. Let G = Qp ⋊ 〈θ〉 by the semidirect product defined by means of action
determined by this automorphism. Let K = Zp be the compact group of p-adic
integers. Then K is a compact subgroup of G, yet KG coincides with Qp, so it
is not relatively compact. Hence, rC(G) is not uniformly bilateral.

7.1.2 Pre-bornological groups

Following the definition of topological groups, the definition of its large-scale
notion can be easily imagined.

Definition 7.1.17. Let G be a group. A para-bornology β on G is a group
pre-bornology if both the group operation · : (G, β) × (G, β) → (G, β) and the
inverse map i : (G, β) → (G, β) are boundedness preserving. In that case, the
pair (G, β) is called pre-bornological group.

The notion of pre-bornological group is an immediate generalisation of the
classical definition of bornological group (see, for example, [11, 143]). A bornolog-
ical group is a group G endowed with a bornology β such that both the group
operation · : G × G → G and the inverse map i : G → G are boundedness pre-
serving.

Let us first prove that, a group pre-bornology is actually a pre-bornology.

Fact 7.1.18. Let G be a group and β be a group pre-bornology. Then β is a
pre-bornology.

Proof. Let x, y ∈ G, and {y} ∈ β(x). Since the inverse map is boundedness
preserving, {y−1} ∈ β(x−1). Then, since the multiplication is boundedness
preserving, {x} ∈ β(x), and {y} ∈ β(y), we have that xy−1 ∈ β(xx−1) = β(e),
and so x = xy−1y ∈ β(y).

Let now A ⊆ G be a subset which is bounded from y. Then y−1A ∈
β(y−1y) = β(e), and so A = yy−1A ∈ β(x).

Facts 7.1.18 and 2.2.3 imply that, for a pre-bornological group all the con-
nectedness axioms coincide. This observation shows a similarity with topological
algebra. Namely, for topological groups, all the separation axioms from (T0) to
(T3,5) coincide.
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It is natural to ask whether pre-bornologies induced by group coarse struc-
tures are actually group pre-bornologies. This is true in some cases, as Propo-
sition 7.1.19 shows. Before proving that implication, let us note that, if G is a
group, I is a group ideal on it, A ⊆ G and x ∈ G, then

A ∈ βEλ
I
(x) (A ∈ βEρ

I
(x)) if and only if

there exists K ∈ I such that A ⊆ xK (A ⊆ Kx, respectively). (7.4)

Proposition 7.1.19. Let G be a a group and I be a group ideal. Suppose
that, for every A ∈ I and every g ∈ G, Ag ∈ I. Then βEλ

I
and βEρ

I
are group

pre-bornologies.

Proof. For the sake of simplicity, denote by β = βEλ
I
, while the other case can

be similarly shown. Let x, y ∈ G, A ∈ β(x), and B ∈ β(y). Thus, there
exists F,K ∈ I such that A ⊆ xF and B ⊆ yK. Then, AB ⊆ xFyK =
xyF yK ∈ β(xy), because F yK ∈ I taking into account the assumptions. Thus,
the multiplication map is boundedness preserving. Moreover, A−1 ⊆ K−1x−1 =
x−1(K−1)x

−1

∈ β(x−1), which shows that also the inverse map i is boundedness
preserving.

In particular, the hypothesis of Proposition 7.1.19, for a group G and a group
ideal I, are fulfilled if, for example, G =

⋃
I (equivalently, (G, EλI ) and (G, EρI)

are connected, see §7.2) or the ideal I is uniformly bilateral.

Corollary 7.1.20. Let G be a group, H be a subgroup of G and I = [H]<ω.
Then the following properties are equivalent:

(a) βEλ
I
is a group pre-bornology;

(b) βEρ
I
is a group pre-bornology;

(c) H is a normal subgroup of G.

Proof. Let us prove the equivalence (a)↔(c), while (b)↔(c) can be similarly
shown. Suppose that (c) holds. Then, for every K ∈ [H]<ω and every g ∈ G,
Kg is finite and Kg ⊆ H since H is normal. Hence the conclusion follows from
Proposition 7.1.19. Conversely, assume that H is not normal. Hence, there exist
k ∈ H and g ∈ G such that kg /∈ H. If βEλ

I
is a group pre-bornology, then

g−1kgk−1 ∈ β(g−1g) = β(e) if and only if g−1kgk−1 ∈ H,

which is a contradiction since it implies g−1kg ∈ Hk−1 = H.

As a consequence of Corollary 7.1.20, for every group G, βEλ
[G]<ω

and βEρ

[G]<ω

are group pre-bornologies. Furthermore, Corollary 7.1.20 provides examples of
group coarse structures that do not induce group pre-bornologies. For example,
if G = S3 and I = [〈(1, 2)〉]<ω then βEλ

I
and βEρ

I
are not group pre-bornologies

since 〈(1, 2)〉 is not normal in S3.

Theorem 7.1.21. Let G be a group and β be a para-bornology of G. Then the
following properties are equivalent:

(a) β is a group pre-bornology;
(b) β(e) is a group ideal and, for every x ∈ G, xβ(e) = β(x) = β(e)x.
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Moreover, items (a) and (b) imply the following property:

(c) there exists a left (and right) group coarse structure EI such that β = βEI
.

Furthermore, if, for every K ∈ β(e) and g ∈ G, Kg ∈ β(e), then item (c) is
equivalent to (a) and (b).

Proof. (a)→(b) Since both the multiplication and the inverse map are bound-
edness preserving, taking into account Fact 7.1.18, it is easy to check that β(e)
is a group ideal. Let now x ba a point, A ∈ β(e), and B ∈ β(x). Since
the multiplication map is boundedness preserving, Ax, xA ∈ β(x), and thus
xβ(e) ⊆ β(x) ⊇ β(e)x. Furthermore, for the same reason, x−1B,Bx−1 ∈ β(e),
and thus B = xx−1B = Bx−1x ∈ xβ(e) ∩ β(e)x.

(b)→(a) Let x, y ∈ G, A ∈ β(x) and B ∈ β(y). Then

AB = (xy)(y−1x−1Ay)(y−1B) ∈ (xy)β(e) = β(xy),

since y−1x−1Ay, y−1B ∈ β(e). Moreover, since x−1A ∈ β(e) and thus A−1x ∈
β(e), A−1 = A−1xx−1 ∈ β(x−1).

The implication (b)→(c) follows from the equalities β = βEλ
β(e)

= βEρ
β(e)

,

which are easy to deduce because of the assumptions. Moreover, assuming the
further hypothesis, Proposition 7.1.19 implies the claim.

In particular, Theorem 7.1.21 implies that, for every pre-bornological group
G, both the left and the right shifts are large-scale isomorphisms.

7.2 Description of large-scale properties by ide-

als

7.2.1 Large-scale properties of homomorphisms

Propositions 7.2.1 and 7.2.5 are relaxed versions of classical results in the
framework of coarse structures on groups ([125]).

Proposition 7.2.1. Let f : M → N be a homomorphism between unitary mag-
mas, and IM and IN be two magmatic ideals on M and N , respectively. Then
the following properties are equivalent:

(a) f(IM ) = {f(K) | K ∈ I} ⊆ IN ;
(b) f : (M, EλIM

)→ (N, EλIN
) is bornologous;

(c) f : (M, EρIM
)→ (N, EρIN

) is bornologous.

Proof. The implications (b)→(a) and (c)→(a) are trivial. In fact, for every
K ∈ IM ,

f(K) = f(EλK [eM ]) ⊆ ((f × f)(EλK))[f(eM )] = ((f × f)(EλK))[eN ].

Let us now prove (a)→(b), and (a)→(c) can be similarly shown. Let K ∈ I.
Then, for every (x, xk) ∈ EλK , (f × f)(x, xk) = (f(x), f(x)f(k)) ∈ Eλf(K), and
thus

(f × f)(EλK) ⊆ Eλf(K) ∈ E
λ
IN
. (7.5)
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Fact 7.2.2. Let M and N be two loops and f : M → N be a homomorphism
between them.

(a) f(x)λ = f(xλ) and f(x)ρ = f(xρ), for every x ∈M .
(b) f(M) is a subloop of N .
(c) If M has two-sided inverses, then f(M) has also two-sided inverses.

Proof. (a) Let x ∈M . Then

f(x)λf(x) = eN = f(eM ) = f(xλx) = f(xλ)f(x) and

f(x)f(x)ρ = eN = f(eM ) = f(xxρ) = f(x)f(xρ),

and so the conclusion follows by uniqueness of the solutions of (1.3).

(b) Let f(a) and f(b) be two elements in f(M). Then there exists a unique
x ∈ M such that ax = b and so f(a)f(x) = f(b). Moreover, the solution f(x)
is unique since N is a loop.

(c) For every f(x) ∈ N , f(x)λ = f(xλ) = f(xρ) = f(x)ρ.

Proposition 7.2.3. Let M and N be two loops, IM and IN be two magmatic
ideals on M and N , respectively, and f : M → N be a homomorphism. Sup-
pose that M has the left inverse property. Then the following properties are
equivalent:

(a) f : (M, EλIM
)→ (N, EλIN

) is uniformly boundedness copreserving;

(b) f : (M, EλIM
)→ (N, EλIN

) is uniformly weakly boundedness copreserving;
(c) for every K ∈ IH , there exists L ∈ IG such that K ∩ f(G) ⊆ f(L).

Proof. The implication (a)→(b) follows from Proposition 3.1.15.

(b)→(c) Let K ∈ IH and fix an element L ∈ IG such that EK ∩ (f(G) ×
f(G)) ⊆ (f × f)(EL). We claim that K ∩ f(G) ⊆ f(L). Let k ∈ K ∩ f(G) =
(EK ∩ (f(G) × f(G)))[e]. Then k ∈ ((f × f)(EL))[e], which means that there
exists (z, w) ∈ EL such that f(z) = e and f(w) = k. Since w ∈ zL, there exists
l ∈ L such that w = zl, and thus l = zλw. This implies the following chain of
equalities:

f(l) = f(zλw) = f(z)λf(w) = k

since f(z) = e, and so the desired claim descends.

(c)→(a) Let EK ∈ EIH
be an entourage, where K ∈ IH , and L ∈ IG

satisfying the hypothesis. We claim that, for every g ∈ G, EK [f(g)] ∩ f(G) ⊆
f(EL[g]). Fix an element g ∈ G and k ∈ K. Assume that f(g)k ∈ EK [f(g)] ∩
f(G), which means that there exists h ∈ G such that f(g)k = f(h). Then
k ∈ f(G) and so there exists l ∈ L such that f(l) = k. Finally, f(g)k =
f(g)f(l) = f(gl) ∈ f(EL[g]).

Fact 7.2.4. Let f : G → H be a homomorphism between two groups, IG and
IH be a magmatic ideal on G and a monoid ideal on H, respectively. Then the
following equivalences hold:

(a) f : (G, EλIG
)→ H is large-scale injective if and only if ker f ∈ IG;

(b) f : G → (H, EλIH
) is large-scale surjective if and only if there exists K =

K−1 ∈ IH such that f(G)K = H.

Proof. Since, for every g ∈ G, f−1(f(g)) = Rf [g] = g ker f , the desired equiva-
lence trivially follows.
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Proposition 7.2.5. Let f : M → N be a homomorphism between two loops
with inverse properties, and IM and IN be two magmatic ideals on M and
N , respectively. Assume that M has two-side inverses. Then the following
properties are equivalent:

(a) f−1(IN ) ⊆ IM ;
(b) f : (M, EλIM

)→ (N, EλIN
) is effectively proper.

Proof. Implication (b)→(a) is trivial. In fact, for every K ∈ IN , f−1(K) =
f−1(EλK [e]) ⊆ ((f × f)−1(EλK))[e] and (f × f)−1(EλK) ∈ IM . Conversely, let
e ∈ K ∈ IN and (x, y) ∈ (f × f)−1(EλK). Then f(y) ∈ f(x)K, which implies
that f(x−1y) ∈ K. Hence, x−1y ∈ f−1(K) and thus (x, y) ∈ Eλf−1(K).

Let f, g : S → M be two maps from a set to a monoid, and I be a monoid
ideal onM . Then f and g are Sym-close if and only if there exists K = K−1 ∈ I
such that, for every x ∈ X, g(x) ∈ f(x)K (or, equivalently, (f(x), g(x)) ∈ EK =
E−1
K ). In this case, we say that f and g are K-Sym-close and we write f ∼KSym g

(or, more simply, if M is a group, K-close and we write f ∼K g).

The following corollary trivially follows from Propositions 7.2.1 and 7.2.3,
Fact 7.2.4, and Theorem 3.4.6.

Corollary 7.2.6. Let f : G→ H be a homomorphism between two groups, and
IG and IH be two monoid ideals on G and H, respectively. Then f : (G, EλIG

)→

(H, EλIH
) is a Sym-coarse equivalence if and only if the following conditions hold:

(a) ker f ∈ IG;
(b) there exists K = K−1 ∈ I such that f(G)K = H;
(c) for every K ∈ IG, f(K) ∈ IH ;
(d) for every K ∈ IH , there exists L ∈ IG such that K ∩ f(G) ⊆ f(L).

Note that, even if a homomorphism between two coarse groups satisfies the
hypotheses of Corollary 7.2.6, and thus it is a coarse equivalence, it is not true
in general that there exists a coarse inverse which is a homomorphism. This
problem will be fully discussed in §7.3 and in §8.4.

Large-scale properties of homomorphisms between pre-bornological

groups

Let us now consider homomorphisms between pre-bornological groups. Re-
call that the continuity of homomorphisms between topological groups can be
checked just on the filters of neighbourhood of the identities. Similarly, the
properties of morphisms between pre-bornological groups can be just checked
on the group ideal of the subsets bounded from the identity.

Proposition 7.2.7. Let f : (G, βG) → (H,βH) be a homomorphism between
large-scale topological groups. Then:

(a) f is boundedness preserving if and only if, for every A ∈ βG(eG), f(A) ∈
βH(eH);

(b) f is weakly boundedness copreserving if and only if, for every A ∈ βH(eH)
with A ⊆ f(G), there exists Bz ∈ βG(z), for every z ∈ ker f , such that
f(
⋃
z∈ker f Bz);

(c) f is boundedness copreserving if and only if, for every A ∈ βH(eH) with
A ⊆ f(G), there exists B ∈ βG(eG) such that f(B) = A;
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(d) f is proper if and only if, for every A ∈ βH(eH), f−1(A) ∈ βG(eG).

Proof. All ‘only if’ implications are trivial. Let us now focus on the ‘if’ direction.

(a) Let g ∈ G and A ∈ βG(g). Then g−1A ∈ β(eG) and so f(g−1A) =
f(g)−1f(A) ∈ βH(eH). Finally, f(A) = f(g)f(g)−1f(A) ∈ βH(f(g)).

(b) Let g ∈ G and A ∈ βH(f(g)), with A ⊆ f(G). Then f(g)−1A ∈ βH(eH)
and f(g)−1A ⊆ f(G). Applying the hypothesis, we have a family {Bz}z∈ker f of
subsets Bz ∈ βG(eG) such that f(

⋃
z∈ker f Bz) = f(g)−1A. Define B′

gz = gBz,

for every z ∈ ker f . Note that f−1(f(g)) = g ker f . Then

f

( ⋃

z∈ker f

B′
gz

)
=

⋃

z∈ker f

f(g)f(Bz) = f(g)
⋃

z∈ker f

f(Bz) = f(g)f(g)−1A = A.

(c) Let g ∈ G and A ∈ βH(f(g)), with A ⊆ f(G). Then f(g)−1A ∈ βH(eH)
and f(g)−1A ⊆ f(G). Applying the hypothesis, there exists B ∈ βG(eH) such
that f(B) = f(g)−1A. Then gB ∈ βG(g) and f(gB) = f(g)f(g)−1A = A.

(d) Let g ∈ G and A ∈ βH(f(g)). Then f(g)−1A ∈ βH(eH) and so
f−1(f(g)−1A) ∈ βG(e). It is not hard to prove that f−1(f(g)−1A) ⊇ g−1f−1(A).
Then f−1(A) = gg−1f−1(A) ∈ βG(g).

Note that the para-bornological spaces in Example 2.1.12(b) are actually pre-
bornological groups and so the notions of weak boundedness copreservation and
boundedness copreservation do not coincide even in the realm of pre-bornological
groups (even when the fibres are bounded). This is a striking difference with
the situation in coarse groups. In fact, in Proposition 7.2.3 it is shown that the
notions of uniform weak boundedness copreservation and uniform boundedness
copreservation coincide in the realm of coarse groups.

Corollary 7.2.8. Let IG and IH be two group ideals on the groups G and
H, respectively, and f : G → H be a homomorphism. Suppose that, for every
K ∈ IG, F ∈ IH , g ∈ G, and h ∈ H, Kg ∈ IG and Fh ∈ IH . Denote by
EG = EλIG

, EH = EλIH
, βG = βEG

, and βH = βEH
. Then

(a) f : (G, EG)→ (H, EH) is bornologous if and only if f : (G, βG)→ (H,βH) is
boundedness preserving;

(b) f : (G, EG) → (H, EH) is effectively proper if and only if f : (G, βG) →
(H,βH) is proper;

(c) f : (G, EG) → (H, EH) is uniformly boundedness copreserving if and only if
f : (G, EG) → (H, EH) is uniformly weakly boundedness copreserving if and
only if f : (G, βG)→ (H,βH) is boundedness copreserving.

Proof. The proof immediately follows by applying Propositions 7.1.18, 7.2.1,
7.2.3, 7.2.5 and 7.2.7.

7.2.2 Connectedness components

Let M be a magma and I be a magmatic ideal on M . Then, if we endow
M with the entourage structure EλI , Q

↓
M (e) =

⋃
I. Moreover, for every x ∈M ,

Q↓
M (x) = x

⋃
I.
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Suppose now that G is a group and I is a magmatic ideal on G. We want
to characterise all the operators defined in (2.3) in terms of the magmatic ideal.
It is not hard to show that, for every x ∈ G,

Q↑
M (x) = x

⋃
(I−1), Qց

M (x) = x〈
⋃
I〉mon,

Qր
M (x) = x〈

⋃
I〉mon, and QM (x) = x〈

⋃
I〉grp,

where 〈A〉mon and 〈A〉grp denote the submonoid and the subgroup of G, respec-
tively, generated by a subset A of G.

Suppose now that I is a group ideal. Then, in particular, QG(e) =
⋃
I and

G is connected if and only if G =
⋃
I. Since

⋃
I is a subgroup, the partition

of G in its connected components coincides precisely with its partition in left
cosets of

⋃
I. Note that

⋃
I is not necessarily normal (as Example 7.1.15(a)

shows). Actually, if G is a group and H is a subgroup of G, then I = cl({H}) is
a group ideal on G (similar group coarse structures are examples of linear coarse
structures, §9), so providing examples of group coarse structures inducing a non-
normal connected component of the identity is very easy. This phenomenon is
in contrast with the theory of topological groups. In fact, for every topological
group, the connected component of the identity is always a normal subgroup.

7.2.3 Categorical constructions

Group ideals are useful also to describe some categorical constructions, in
particular products and quotients of coarse groups.

Let {Gi}i∈I be a family of groups, and Ei be a coarse structure on Gi, for
every i ∈ I. For the sake of simplicity, we will denote by ΠiEi the entourage⋂
i(pi × pi)

−1(Ei), where Ei ∈ Ei, for every i ∈ I. Note that, for every (xi)i ∈
ΠiGi, (ΠiEi)[(xi)i] = Πi(Ei[xi]), and thus, in particular, if, for every i ∈ I,
Ei = EIi for some group ideal Ii and Ei = EKi , where Ki ∈ Ii,

(ΠiEKi
)[e] = Πi(EKi

[e]) = ΠiKi. (7.6)

Proposition 7.2.9. Let {(Gi, EIi)}i∈I be a family of coarse groups. Then the
product coarse structure E on the direct product ΠiGi is a group coarse structure
and it is generated by the base I = {ΠiKi | Ki ∈ Ii, ∀i ∈ I}.

Proof. We want to use Corollary 7.1.8. Fix an element E ∈ E , and, without
loss of generality, suppose that E = ΠiEKi , where Ki ∈ Ii, for every i ∈ I. It
is easy to check that (ΠiGi)(ΠiEKi) = Πi(GiEKi). Since, for every i ∈ I, EIi

satisfies Corollary 7.1.8, GiEKi ∈ EIi , and thus (ΠiGi)(ΠiEKi) ∈ E . The fact
that E = EI follows from (7.6) and again Corollary 7.1.8.

Let us state a trivial, but useful, property.

Fact 7.2.10. If f : G → H is a homomorphism and I is a group ideal on G,
then f(I) is a group ideal on H.

Proposition 7.2.11. Let q : G→ G/N be a quotient homomorphism of groups,
and I be a group ideal on G. Then the map q : (G, EI)→ (G/N, Eq(I)) is bornol-
ogous and uniformly bounded copreserving, and thus uniformly soft. Moreover,
the map q is a coarse equivalence if and only if N ∈ I.
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Proof. The first claim is trivial, thanks to Propositions 7.2.1, 7.2.3 and 4.3.18. If
q is a coarse equivalence, then Proposition 7.2.5 implies that N = q−1(eG/N ) ∈
I. Let us focus on the opposite implication, which can be found also in [125].
Suppose that N = ker q ∈ I. Then, in virtue of Corollary 7.2.6, q is a coarse
equivalence since q trivially satisfies the conditions.

The fact that a quotient of a coarse group is a uniformly soft map was proved
in [65] in order to provide an example of the notion of uniformly soft map that
was introduced in that paper.

As a corollary of Proposition 7.2.11 we obtain the following result.

Corollary 7.2.12. If G is a group with finite G′, then every group coarse
structure E on G is uniformly invariant.

Proof. In order to see that EλI = EρI consider the quotient map q : G → G/G′

and equip G/G′ with the quotient group coarse structure Eλf(I) = Eρf(I) (they

coincide since the group ideal f(I) is uniformly bilateral in the abelian group
G/G′). Since

q : (G, EλI )→ (G/G′, Eλf(I)) and q : (G, EρI)→ (G/G′, Eρf(I))

are coarse equivalences and Eλf(I) = E
ρ
f(I), we deduce that the identity (G, EλI )→

(G, EρI) is a coarse equivalence (actually, an asymorphism).

Another consequence of Proposition 7.2.11 is the following Corollary 7.2.13.
A similar result can be proved for the compact-group coarse structure (see
Corollary 10.0.1), and for the left-coarse structure (see [158]).

Corollary 7.2.13. Let G be a topological group and K be a Lindelöf normal
subgroup of G. Suppose that G/K is discrete. Then q : G → G/K is a coarse
equivalence provided that both G and G/K are endowed with their ω1-Lindelöf-
group coarse structures.

Proof. According to Proposition 7.2.11, it is enough to show that

q(cl(ω1-L(G))) = cl(ω1-L(G/K)).

The inclusion (⊆) follows from general topology properties. Since G/K is dis-
crete, cl(ω1-L(G/K)) = [G/K]<ω1 . Hence, every subset L ∈ cl(ω1-L(G/K)) is
countable and thus q−1(L) is a countable union of cosets of K, which is still
Lindelöf.

7.2.4 Metrisability of coarse groups

A coarse group (G, EI) is metrisable if there exists a left-invariant metric d
such that EI = Ed.

Lemma 7.2.14. Let (G, EI) be a coarse group. Then the following properties
are equivalent:

(a) (G, EI) is metrisable as a coarse space (i.e., there exists a metric d such
that EI = Ed);
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(b) EI has a countable base;
(c) I has a countable cofinal subset with respect to inclusion, i.e., there exists

a countable family J ⊆ I such that I = cl(J );
(d) (G, EI) is metrisable as a coarse group (i.e., there exists a left-invariant

metric d such that EI = Ed).

Proof. The equivalence between items (a) and (b) is provided in Theorem 3.4.12.
The implication (d)→(a) is straightforward.

(b)→(c) Let B be a countable base of EI . We can assume, without loss of
generality, that there exists L ⊆ I such that B = {EK | K ∈ L}. Since, for
every M,N ∈ I, EM ⊆ EN if and only if M ⊆ N , cl(L) = I.

(c)→(d) Without loss of generality, we can assume that there exists a cofinal
family {Kn}n∈N of elements of I which satisfies the following properties:

• K0 = {e};
• for every n ∈ N, e ∈ Kn = K−1

n ;
• for every m,n ∈ N, KnKm ⊆ Kn+m (in particular it is an increasing se-

quence).

Then the map d : G×G→ R≥0 ∪ {∞} defined by the law

d(g, h) = min{n ∈ N | h ∈ gKn},

for every g, h ∈ G, satisfies the desired properties.

A proof of Lemma 7.2.14 for the left-coarse structure EL can be found in
[158].

7.2.5 Asymptotic dimension of coarse groups

It is easy to see that a family U of subsets of a coarse group (G, EI) is
uniformly bounded if and only if there exists K ∈ I such that U ⊆ EK [x] = xK,
for every U ∈ U and x ∈ U . If K ∈ I, we say that U is K-disjoint if, for every
pair of distinct elements U, V ∈ U , U ∩ EK [V ] = U ∩ V K = ∅.

Proposition 7.2.15. A coarse group (G, EI) has asymptotic dimension at most
n (asdim(G, EI) ≤ n), where n ∈ N, if and only if, for every K ∈ I, there exists
a uniformly bounded cover U = U0 ∪ · · · ∪ Un such that, for every i = 0, . . . , n,
Ui is K-disjoint.

If we take a coarse group (G, EI), then, for every e ∈ K = K−1 ∈ I,
EK ◦ EK = EK·K . Hence, a coarse group is cellular if and only if, for every
symmetric element K ∈ I containing the identity, E�

K = E〈K〉 ∈ EI , which
means that 〈K〉 ∈ I. We have then showed that a coarse group (G, EI) is
cellular if and only if I has a cofinal family, with respect of inclusion, consisting
of subgroups. A group coarse structure satisfying that property is called linear.
This concept will be investigated in §9. The equivalence between cellular coarse
groups and linear coarse groups was already pointed out in [133].

The following result descends as an easy consequence of the above discussion.
Recall that a group G is locally finite if every finitely generated subgroup of G
is finite.
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Fact 7.2.16. Let G be a group endowed with its finitary-group coarse structure.
Then asdimG = 0 if and only if G is locally finite. Moreover, if G is abelian,
the previous conditions are equivalent to G being torsion.

For some coarse groups we have the following criterion for cellularity, which
is also proved in [125], but with a stronger hypothesis.

Proposition 7.2.17. Let (G, EI) be a coarse group such that there exists an ele-
ment K ∈ I that algebraically generates the whole group G. Then asdim(G, EI) =
0 if and only if G ∈ I.

Proof. Without loss of generality, we can assume that K = K−1. Since G =
〈K〉, for every U ( G, U ( EK [U ] = UK. Hence, the only possible K-disjoint
cover U is U = {G}. Finally, U is uniformly bounded if and only if G ∈ I.

Proposition 7.2.18. Let (G, EI) be a coarse group and denote by H =
⋃
I =

QG(e). Then asdim(G, EI) = asdim(H, EI).

Proof. Since H is a subspace of G and EI = EI |H , the monotonicity of the
asymptotic dimension (Theorem 6.1.2) implies that asdim(H, EI) ≤ asdim(G, EI).

We need to show the opposite inequality. If asdim(H, EI) = ∞, the claim
follows. Suppose then that there exists n ∈ N with asdim(H, EI) ≤ n. We
claim that asdim(G, EI) ≤ n. Fix an element S ∈ I and let U = U0 ∪ · · · ∪ Un
be a uniformly bounded cover of H such that, for every k = 0, . . . , n, Uk is
S-disjoint. Let {gi}i∈I be a family of representatives of the cosets of H in G.
Then, for every k = 0, . . . , n, define U ′

k =
⋃
i∈I giUk, where, for every i ∈ I,

giUk = {giU | U ∈ Uk}. Then U ′
0 ∪ · · · ∪ U

′
n is trivially a uniformly bounded

cover. Suppose that there exists k ∈ {0, . . . , n} and V,W ∈ U ′
k such that

V S ∩W 6= ∅. Let i ∈ I be an index such that V ∈ giUk. Then V S ⊆ giH
and thus W ∈ giUk. Let V ′,W ′ ∈ Uk such that V = giV

′ and W = giW
′.

Because of the assumption, there exist v ∈ V ′, w ∈ W ′, and s ∈ S such that
givs = giw, which implies that vs = w and so V ′S ∩W ′ 6= ∅. Since the family
Uk is S-disjoint, then V ′ =W ′ and V =W .

Proposition 7.2.18 is a natural counterpart of the following property of
the covering dimension in compact-like topological groups (for locally compact
groups see Theorem 10.2.2, for monotonicity with respect to taking quotients
see [38]).

Theorem 7.2.19. Let G be a topological group and denote by c(G) the connected
component of the identity endowed with the subspace topology. If G is locally
compact or countably compact, then dimG = dim c(G).

The locally compact case is folklore, for the countably compact one see
[36]. Weaker levels of compactness cannot guarantee this property (see [36] for
totally disconnected pseudocompact groups of arbitrarily high dimensions and
additional compactness-like properties).

Corollary 7.2.20. Let (G, EI) be a coarse group and denote by H =
⋃
I =

QG(e). Suppose that H is normal. Then, if we denote by q the quotient map
q : G→ G/H, asdim(G, EI) = asdim(H, EI) + asdim(G/H, Eq(I)).
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Proof. The claim trivially follows from Proposition 7.2.18 and the fact that
q(I) = {{eG/H}}, which implies asdim(G/H, Eq(I)) = 0.

For example, we can apply Corollary 7.2.20 if the coarse group is bilateral.

In the notation of Corollary 7.2.20, the assumption of normality of H can be
relaxed in the following way. Even if H is not normal, the right coset space G/H
can be endowed with a coarse structure induced by the coarse space (G, EI) and
the action of G on G/H by right shifts (see [133]). By the definition of H, the
induced coarse structure is the discrete one, which has asymptotic dimension 0.
Hence Corollary 7.2.20 can be extended also to generic group ideals. Since in
these chapters we are mostly interested in groups, we do not give details of that
construction.

Let us recall this additivity result due to Dranishnikov and Smith ([70, The-
orem 2.3, Corollary 3.3], see also [17] for the case of finitely generated groups).

Theorem 7.2.21. Let G be a group and H be a normal subgroup. Then

asdimG ≤ asdimG/H + asdimH, (7.7)

where all groups are endowed with their finitary-group coarse structure. More-
over, if G is abelian,

asdimG = asdimG/H + asdimH. (7.8)

In the literature (for example in [70]), the inequality (7.7) is usually called
Hurewicz type formula.

Remark 7.2.22. The statement of Theorem 7.2.21 is given in [70] in a slightly
different, but equivalent form. In fact, in [70], the authors defined the asymp-
totic dimension of an arbitrary group G as the supremum of the asymptotic
dimensions of its finitely generated groups endowed with their word metrics. As
a consequence of [125, Theorem 3.13] we have that

asdim(G, E[G]<ω ) = sup{asdim(〈K〉, E[〈K〉]<ω ) | K ∈ [G]<ω}.

Thus, applying Remark 7.1.11 to the finitely generated subgroups of G, the def-
inition of the asymptotic dimension provided in [70] coincides with the asymp-
totic dimension of G endowed with its finitary-group coarse structure.

Easy examples show that in the non-abelian case even the inequality asdimG ≥
asdimG/H (a consequence of (7.8)) may fail.

Example 7.2.23. Let G = Fm the free group with m free generators, where
m > 1, so that Fm is not abelian. The free abelian group Zm of rank m is a
quotient of Fm; so there exists a surjective homomorphism f : G → Zm. Yet,
asdimG = 1 < m = asdimZm, if both groups are endowed with their finitary-
group coarse structures.

Another result that Dranishnikov and Smith proved for abelian groups is
the following theorem. In particular, it generalises the second assertion of Fact
7.2.16.

Theorem 7.2.24. [70, Theorem 3.2] Let G be an abelian group. Then asdimG =
r0(G), where G is endowed with the finitary-group coarse structure.
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We refer to [163] for a direct computation of the asymptotic dimension of Q
endowed with the finitary-group coarse structure (equivalently, with a proper
left-invariant metric).

7.3 Quasi-homomorphisms

Definition 7.3.1 ([158]). A map f : G → (H, EI) from a group G to a coarse
group (H, EI) is a quasi-homomorphism if the maps f ′, f ′′ : G×G→ H, where
f ′ : (g, h) 7→ f(gh) and f ′′ : (g, h) 7→ f(g)f(h), are close (equivalently, if there
exists K ∈ I such that, for every g, h ∈ G, f(gh) ∈ f(g)f(h)K).

If E ∈ EI is a symmetric entourage such that {(f(gh), f(g)f(h)) | g, h ∈
G} ⊆ E, then f is called an E-quasi-homomorphism. In case E = EM for
some M ∈ I, we briefly write M -quasi-homomorphism to say that f(gh) ∈
f(g)f(h)M , for every g, h ∈ G.

By taking (H, EI) = (R, EBd
), where d is the usual euclidean metric on R,

we recover the classical notion.

Remark 7.3.2. Let G be a group, (H, EI) be a coarse group, M ∈ I, and
f : G → H be an M -quasi-homomorphism. We can assume, without loss of
generality, that M = M−1. Since f(eG) = f(eG · eG) ∈ f(eG)f(eG)M , we
have that eH ∈ f(eG)M = f(eG)M

−1 and f(eG) ∈ eHM = M . Moreover,
for every x ∈ G, f(eG) = f(xx−1) ∈ f(x)f(x−1)M , and thus, in particular,
f(x)−1 ∈ f(x−1)Mf(eG)

−1 ⊆ f(x−1)MM . Thanks to this computation, in
the sequel when we say that f is an M -quasi-homomorphism, we assume that
M ∈ I satisfies

f(eG) ∈M, f(y)−1 ∈ f(y−1)M and f(y−1) ∈ f(y)−1M,

for every y ∈ G.

Let us start with some very easy examples.

Example 7.3.3. Let f : G → (H, EI) be a map between a group and a coarse
group.

(a) If f is a homomorphism, then f is a quasi-homomorphism.
(b) f is a quasi-homomorphism, if f is bounded (i.e., f(G) is bounded in H),

or, equivalently, if f(G) ∈ I by Remark 7.3.2. In particular, f is a quasi-
homomorphism when I = P(H). As a consequence, we have that every map
f : (G,P(G)) → (H,P(H)) is both a quasi-homomorphism and a coarse
equivalence.

(c) If I = {eH}, then f : G→ H is a quasi-homomorphism if and only if it is a
homomorphism.

(d) An asymorphism may not be a quasi-homomorphism. In fact, for example,
for every group G, endowed with the discrete coarse structure E{{e}}, every
bijective self-map f : G→ G is automatically an asymorphism. However, f
is a quasi-homomorphism if and only if f is an isomorphism, according to
item (c). Hence, a counter-example can be easily produced.

Here come two very important properties of quasi-homomorphisms.
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Proposition 7.3.4. Let f, g : G→ (H, EI) be two maps between a group G and
a coarse group (H, EI). Suppose that f ∼M g for some M ∈ I. If MH ∈ I,
then f is a quasi-homomorphism if and only if g is a quasi-homomorphism.

Proof. Suppose thatK ∈ I is an element such that f is aK-quasi-homomorphism.
Then, for every x, y ∈ G,

g(xy) ∈ f(xy)M ⊆ f(x)f(y)KM ⊆ g(x)Mg(y)MKM ⊆ g(x)g(y)MHMKM,

according to (7.3). Therefore, g is a MHMKM -quasi-homomorphism.

The opposite implication can be similarly shown.

Inspired by Proposition 7.3.4, the reader may think that every quasi-homomorphism
is close to a homomorphism. However, this is not the case, as Example 7.3.5
shows.

Example 7.3.5. (a) Let us recall the intuitive example that was briefly de-
scribed in §1.1. Consider the floor map ⌊·⌋ : R → Z, which is a quasi-
homomorphism if we endow Z with the finitary-group coarse structure.
However, since R is a divisible group, the only homomorphism from R to Z
is the null-homomorphism, which is not close to ⌊·⌋.

(b) Let f : Z → 2Z be the map that associates to every integer n the largest
even number smaller than n. If 2Z is endowed with the finitary-group coarse
structure, then f is a quasi-homomorphism. However it is not close to any
homomorphism.

Proposition 7.3.6. Let G be a group, (H, EI) and (K, EJ ) be two coarse groups,
f : G → H be a quasi-homomorphism, and g : H → K be a bornologous quasi-
homomorphism. Then g ◦ f is a quasi-homomorphism.

Proof. Suppose that f is an M -quasi-homomorphism and g is an N -quasi-
homomorphism, for some M ∈ I and N ∈ J . Then, for every x, y ∈ G,

g(f(xy)) ∈ g(f(x)f(y)M) ⊆ g(f(x))g(f(y)M)N ⊆ g(f(x))g(f(y))g(M)NN,

where g(M)NN ∈ J (according to Proposition 7.3.8), and so g◦f is a g(M)NN -
quasi-homomorphism.

Note that, without the assumption of bornology of g in Proposition 7.3.6, it is
not true that composition of quasi-homomorphisms is still a quasi-homomorphism
(see Example 7.3.7(a)). As mentioned in the introduction, this fact has pre-
vented any categorical systematization of quasi-homomorphisms up to now.

Example 7.3.7. (a) By using Example 7.3.3(b), we are able to construct two
quasi-homomorphisms whose composite is not a quasi-homomorphism. Let
G be a group and I be a group ideal on it which is different from P(G).
If f : G → (G, EI) is not a quasi-homomorphism, we have the following
situation:

G
f
−→ (G, EP(G))

idG−−→ (G, EI),

where both arrows are quasi-homomorphisms (the identity is a homomor-
phism), but their composite is not a quasi-homomorphism. For example,
set G = Z, I = [Z]<ω, and f = |·|, the absolute value.
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(b) The inverse of a bijective homomorphism is a homomorphism. However,
it is not true a similar result for quasi-homomorphisms. Let G be a group
and f : G → G be a bijective map which is not a homomorphism. Then
f : (G, E{{e}}) → (G, EP(G)) is a quasi-homomorphism, while its inverse
is not a quasi-homomorphism (using Example 7.3.3(c), f−1 is a quasi-
homomorphism if and only if it is a homomorphism, which is not true).
In Corollary 7.3.12 we give a condition that guarantees that we can revert
a bijective quasi-homomorphism obtaining a quasi-homomorphism as well.

Also quasi-homomorphisms allow us to prove a result (Proposition 7.3.8)
similar to Proposition 7.2.1.

Proposition 7.3.8. Let f : (G, EIG
) → (H, EIH

) be a quasi-homomorphism
between two coarse groups. Then

(a) f is bornologous if and only if f(I) ∈ IH , for every I ∈ IG;
(b) if IH is uniformly bilateral, then f is effectively proper if and only if f is

proper.

Proof. Both ‘only if’ implications are trivial. Suppose that f is an M -quasi-
homomorphism for some M =M−1 ∈ IH .

(a,←) Let K ∈ IG and take an arbitrary element (x, xk) ∈ EK , where x ∈ G
and k ∈ K. Then

f(xk) ∈ f(x)f(k)M ⊆ f(x)f(K)M,

which implies that (f(x), f(xk)) ∈ Ef(K)M . Thus (f×f)(EK) ⊆ Ef(K)M ∈ EIH

and so f is bornologous.

(b,←) Let K ∈ IH . Then, for every (x, y) ∈ (f × f)−1(EK), there exists
k ∈ K such that f(y) = f(x)k, and thus f(x)−1f(y) = k ∈ K. We have

f(x−1y) ∈ f(x−1)f(y)M ⊆ f(x)−1Mf(y)M ⊆

⊆ f(x)−1f(y)Mf(y)M ⊆ KMHM ∈ IH .

Finally, x−1y ∈ f−1(KMHM) ∈ IG and (x, y) = (x, xx−1y) ∈ Ef−1(KMHM),
which finishes the proof.

Theorem 7.3.9. Let f : (G, EG)→ (H, EH) be a quasi-homomorphism between
coarse groups which is a coarse equivalence with coarse inverse g : H → G. If
EH is uniformly invariant, then g is a quasi-homomorphism.

Proof. Let F ∈ EH be a symmetric entourage such that f is an F -quasi-
homomorphism. We claim that there exists E ∈ EG such that, for every
x, y ∈ H, (g(xy), g(x)g(y)) ∈ E. Let x, y ∈ H. Then, since · : H × H → H
is bornologous (Proposition 7.1.13),

(f(g(xy)), f(g(x)g(y))) = (f(g(xy)), xy) ◦ (xy, f(g(x))f(g(y))) ◦

◦ (f(g(x))f(g(y)), f(g(x)g(y))) ∈ S ◦ (· × ·)(S, S) ◦ F ∈ EH ,

where S = {(f(g(z)), z), (z, f(g(z))) | z ∈ H} ∈ EH , and thus it suffices to
define E = (f × f)−1(S ◦ (· × ·)(S, S) ◦ F ).
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Theorem 7.3.10. Let f : (G, EG)→ (H, EH) be a quasi-homomorphism between
coarse groups which is a coarse equivalence. Then:

(a) if EH is uniformly invariant, then EG is uniformly invariant;
(b) if a coarse inverse of f is a quasi-homomorphism, then EG is uniformly

invariant if and only if EH is uniformly invariant.

Proof. Item (b) follows from item (a). Assume that EH is uniformly invari-
ant and let F ∈ EH be a symmetric entourage such that f is a F -quasi-
homomorphism. Let E,E′ ∈ EG. Then, for every (x, y) ∈ E and (z, w) ∈ E′,

(f(xz), f(yw)) = (f(xz), f(x)f(z)) ◦ (f(x)f(z), f(y)f(w)) ◦

◦ (f(y)f(w), f(yw)) ∈∈ E′′ ∈ EH ,

where E′′ = F ◦ (·((f × f)(E), (f × f)(E′))) ◦ F ∈ EN , since f is bornologous.
Finally, since f is effectively proper, (· × ·)(E,E′) ⊆ (f × f)−1(E′′) ∈ EG, and
thus Proposition 7.1.13 implies the claim.

Note that the quasi-homomorphisms defined in Example 7.3.5 are coarse
inverses of the inclusions i : Z → R and i : 2Z → Z, which are homomorphisms
and coarse equivalences. Thus these two inclusions have no coarse inverses which
are homomorphisms.

In Theorem 7.3.9, the request of uniformly invariance of EH is quite re-
strictive. In fact, we cannot apply the result to a coarse group (H, EH) whose
points have unbounded orbits under conjugacy. There is a trade-off between the
uniformly invariance and the surjectivity of the map, as Corollary 7.3.12 shows.

Lemma 7.3.11. Let (G, EG) and (H, EH) be two coarse groups, E ∈ EH be a
symmetric entourage, f : G → H be a surjective E-quasi-homomorphism, and
s : H → G be one of its sections (i.e., f ◦s = idH). Suppose that (f×f)−1(E) ∈
EG. Then s is a quasi-homomorphism.

Proof. Let x, y ∈ H. Since f ◦ s = idH ,

(f(s(xy)), f(s(x)s(y))) = (f(s(xy)), f(s(x))f(s(y))) ◦

◦ (f(s(x))f(s(y)), f(s(x)s(y))) ∈ ∆H ◦ E = E,

and thus (s(xy), s(x)s(y)) ∈ (f × f)−1(E) ∈ EG.

Corollary 7.3.12. Let f : (G, EG)→ (H, EH) be a surjective quasi-homomorphism,
which is a coarse equivalence. Then there exists a coarse inverse of f which is a
quasi-homomorphism. In particular the inverse of a quasi-homomorphism which
is an asymorphism, is a quasi-homomorphism.

Proof. Since f is effectively proper, the conditions of Lemma 7.3.11 are fulfilled
and thus every section, which is a coarse inverse of f , is a quasi-homomorphism.
The second statement trivially follows.

Remark 7.3.13. Let f : G→ (H, EI) be a surjective EM -quasi-homomorphism,
for someM ∈ I, between and abelian group G and a coarse group (H, I). Then,
for every g, h ∈ G,

f(g)f(h) ∈ f(g + h)M = f(h+ g)M ⊆ f(h)f(g)MM. (7.9)
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In particular (7.9) shows that, for every k, l ∈ H, [k, l] = k−1l−1kl ∈ MM
and so the derived subgroup [H,H] is contained in the subgroup 〈M〉 generated
by M . If 〈M〉 ∈ I, then H is coarsely equivalent to the abelian coarse group
(H/[H,H], Eq(I)) since q : H → H/[H,H] is a coarse equivalence by Proposition
7.2.11.



Chapter 8

Categories of coarse groups

The aim of this chapter is to provide a categorical treatment of coarse groups.
We now introduce a list of categories of coarse groups.

• The category l-CGrpQ (r-CGrpQ) has left coarse groups as objects (right
coarse groups, respectively), and bornologous quasi-homomorphisms as mor-
phisms.

• The category CGrpQ is the intersection of l-CGrpQ and r-CGrpQ, i.e.,
its objects are coarse groups whose coarse structures are uniformly invari-
ant, and its morphisms are bornologous quasi-homomorphisms (according to
Proposition 7.1.13).

• The category l-CGrp (r-CGrp) has left coarse groups as objects (right coarse
groups, respectively), and bornologous homomorphisms as morphisms.

• The category CGrp is the intersection of l-CGrp and r-CGrp, i.e., its ob-
jects are coarse groups whose coarse structures are uniformly invariant, and
its morphisms are bornologous homomorphisms.

• For any infinite cardinal κ, the subcategory κ-CGrpQ (κ-CGrp, l-κ-CGrp,
r-κ-CGrp) of CGrpQ (of CGrp, l-CGrp, r-CGrp, respectively) whose
objects are groups endowed with κ-group coarse structures.

Thanks to Proposition 7.3.6, composites of bornologous quasi-homomorphisms
are still quasi-homomorphisms, and thus the categories whose morphisms are
bornologous quasi-homomorphisms are indeed categories.

In diagram (8.1), we enlist the categories of coarse groups just defined, where
the arrows represent forgetful functors. For the sake of simplicity, we do not
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include the categories r-CGrpQ, r-CGrp, and r-κ-CGrp.

Coarse

Grp l-CGrpQ

OO

l-CGrp

77♣♣♣♣♣♣♣♣♣♣♣

OO

CGrpQ

gg◆◆◆◆◆◆◆◆◆◆◆

l-κ-CGrp

OO

CGrp

77♣♣♣♣♣♣♣♣♣♣♣

gg◆◆◆◆◆◆◆◆◆◆◆
κ-CGrpQ

OO

κ-CGrp

77♣♣♣♣♣♣♣♣♣♣♣

OOgg◆◆◆◆◆◆◆◆◆◆◆

(8.1)

We have already introduced the quotient category Coarse/∼. In this chap-
ter, we will be also interested in other quotient categories, namely CGrpQ/∼,
κ-CGrpQ/∼, CGrp/∼, and κ-CGrp/∼, for every infinite cardinal κ (see dia-
gram (8.2)).

Coarse/∼

CGrpQ/∼

OO

CGrp/∼

88qqqqqqqqqqq
κ-CGrpQ/∼

gg❖❖❖❖❖❖❖❖❖❖❖❖

κ-CGrp/∼

ff◆◆◆◆◆◆◆◆◆◆

77♦♦♦♦♦♦♦♦♦♦♦

(8.2)

Let us enlist some considerations on the previously defined categories, dis-
cussing the consequences of some results we proved in this setting.

Remark 8.0.1. (a) The second assertion of Corollary 7.3.12 implies that, if
X,Y ∈ l-CGrpQ (X,Y ∈ r-CGrpQ) and f : X → Y is a morphism in
l-CGrpQ (r-CGrpQ) such that U f : UX → UY is an isomorphism of

Coarse, where U = Ul-CGrpQ
Coarse , then f is an isomorphism of l-CGrpQ

(r-CGrpQ, respectively).
(b) Let f : X → Y be a morphism in CGrpQ. Proposition 7.3.4 implies that,

for every other morphism g : X → Y in Coarse/∼ such that g ∼ f , g can
be seen as a morphism of CGrpQ. Thus the equivalence class of f under
closeness relation in Coarse/∼ is equal to the one in CGrpQ.

(c) Theorem 7.3.9 implies that, if X,Y ∈ CGrpQ/∼ and f : X → Y is a
morphism in CGrpQ/∼ such that U f : UX → UY is an isomorphism of

Coarse/∼, where U = U
CGrpQ/∼
Coarse/∼

, then f is an isomorphism of CGrpQ/∼.

Note that we cannot replace the category CGrpQ/∼ with CGrp/∼, in fact
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there are homomorphisms which are coarse equivalences, but they have no
coarse inverses which are homomorphisms (Example 7.3.5).

8.1 Functorial coarse structures

Definition 8.1.1. A functorial coarse structure on Grp is a concrete functor
F: Grp → l-CGrp, where concrete means that U ◦F is the identity functor,
where U = Ul-CGrp

Grp : l-CGrp→ Grp is the forgetful functor.

A functorial coarse structure on TopGrp is a functor F: TopGrp→ l-CGrp

such that the following functor diagram

TopGrp
F //

V %%❏❏
❏❏

❏❏
❏❏

❏ l-CGrp

Uzz✉✉✉
✉✉
✉✉
✉✉

Grp

commutes, where V = UTopGrp
Grp : TopGrp→ Grp.

More explicitly, a functorial coarse structure F on Grp (on TopGrp) as-
sociates to a group G (to a topological group G) a coarse structure EF(G) on
it such that, if f : G → H is a homomorphism (a continuous homomorphism,
respectively), then f : (G, EF(G))→ (H, EF(H)) is bornologous.

In Remark 8.1.2 we discuss how functorial coarse structures on Grp can be
seen also as a particular case of functorial coarse structures on TopGrp.

Remark 8.1.2. Let us first fix a functorial coarse structure F: TopGrp →
l-CGrp on TopGrp. In order to to associate to F a functorial coarse structure
on Grp in a canonical way, consider the right adjoint I : Grp → TopGrp of
the forgetful functor V: TopGrp → Grp which simply assigns to every group
the same group endowed with the discrete topology. Note that, in particular,
V ◦ I is the identity functor of the category Grp. Diagram (8.3) represents all
functors involved (G is introduced below):

TopGrp

F

&&▼▼
▼▼▼

▼▼▼
▼▼

V

��

l-CGrp.

Grp

G

88qqqqqqqqqq

I

GG (8.3)

The composition F ◦ I is a functorial coarse structure on Grp. Note that there is
a natural transformation from F ◦ I ◦V to F whose components have the identity
maps as support.

On the other hand, if G: Grp → l-CGrp is a functorial coarse structures
on Grp, then there exists a functorial coarse structure H on TopGrp with
G = H ◦ I. Indeed, the necessary functorial coarse structure on TopGrp can be
defined as H = G ◦V. In fact, obviously G = G ◦V ◦ I = H ◦ I.
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A functorial coarse structure on Grp (on TopGrp) is called perfect, if for
every morphism f : G → H in Grp (in TopGrp, respectively), the morphism
F(f) is uniformly boundedness copreserving.

Remark 8.1.3. Perfect functorial coarse structures F: TopGrp → l-CGrp

have another remarkable property, namely, for every surjective homomorphism
f , F(f) is a quotient in Coarse (and thus in l-CGrp). According to Proposi-
tions 7.2.1 and 7.2.3, an homomorphism f : (G, EIG

)→ (H, EIH
) is both bornol-

ogous and uniformly bounded copreserving if and only if f(IG) = IH∩P(f(G)).
Then, if f is surjective, f : (G, EIG

) → (H, EIH
) ∼= (G/ ker f, Eq(IG)) is a quo-

tient also in the category Coarse (and thus in l-CGrp), as it is showed in [65,
Proposition 6.5].

One can show that perfect functorial coarse structures on the category Grp

of abstract groups are completely determined by their ‘values’ on free groups
Fκ of κ generators, where κ is an arbitrary cardinal.

Proposition 8.1.4. Assume that a group ideal Iκ is assigned to each Fκ in
such a way that every homomorphism f : Fκ → Fµ is bornologous and uniformly
bounded copreserving when κ and µ vary arbitrarily. Then this assignment can
be extended to a perfect functorial coarse structure on the category Grp assign-
ing to every group G the group ideal IG = q(Iκ), provided q : Fκ → G is a
surjective homomorphism.

Proof. (a Sketch of a proof) Use the properties of Iκ in the hypotheses to show
that:

(a) IG is correctly defined (in particular, does not depend on the choice of q);
(b) G 7→ (G, IG) is a perfect functorial coarse structure.

It is enough to prove (a) since (b) will immediately follows. One can use the
following two facts. First of all, every group is a quotient of some free group, so
that every group can be endowed with a group ideal. Moreover, for every ho-
momorphism f : G→ H in Grp (including idG) and for every pair of surjective
homomorphisms q : Fκ → G and q′ : Fµ → H there is a lifting f̃ : Fκ → Fµ such
that the following diagram commutes

Fκ
f̃

−−−−→ Fµyq
yq′

G
f

−−−−→ H.

A similar result can be shown for the categoryAbGrp, of abelian groups and
homomorphisms between them, where the perfect functorial coarse structures
are determined by their ‘values’ on the free abelian groups Aκ =

⊕
κ Z.

One can take as a useful application of Proposition 8.1.4 the case of functorial
coarse structures on the class of all groups of size at most κ, where κ is a fixed
cardinal. In that case, every group G with |G| ≤ κ is a quotient of the free
group Fκ and thus one can define the group ideals of the whole class from its
group ideals Iκ that are ‘invariant’ under endomorphisms of Fκ, i.e., such that,
for every endomorphism f , f : (Fκ, EIκ)→ (Fκ, EIκ) are bornologous.
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Proposition 8.1.5. All the group-coarse structures defined in Example 7.1.9
and 7.1.10, but the metric-group coarse structure, are functorial on Grp and
on TopGrp, respectively. Moreover, the discrete, the trivial and the κ-group
coarse structures are perfect.

Proof. The proofs are trivial or follow from classical topological results. As for
the left-coarse structure, we refer to [158].

In Chapter 10 we focus on a particular functorial coarse structure onTopGrp,
namely the compact-group coarse structure. We will study the preservation of
some properties (especially related to dimensions) along the Pontryagin functor
and the Bohr functor.

8.2 Preservation of morphisms properties along

pullbacks

Several categorical constructions in the category Coarse can be carried out
in the categories of coarse groups. In particular, we focus here on pullbacks,
which will be useful in the sequel. Since Coarse is a topological category
(see Theorem 4.2.1), we have already discussed that Coarse has, in particular,
pullbacks (§4.3.1). We can also give a precise description of the pullback of

the diagram Y
f
−→ Z

g
←− X in Coarse as the triple (P, u, v) in the following

commutative diagram

P
u

−−−−→ X

v

y
yg

Y
f

−−−−→ Z,

(8.4)

where P = {(x, y) ∈ X × Y | g(x) = f(y)} is endowed with the coarse structure
inherited by X×Y , and u and v are the restrictions of the canonical projections.

Note that, if the diagram Y
f
−→ Z

g
←− X is in l-CGrp, in CGrp, in l-κ-CGrp,

or in κ-CGrp, then (8.4) belongs to l-CGrp, to CGrp, to l-κ-CGrp, or to
κ-CGrp, respectively, and thus it is a pullback also in those categories.

Proposition 8.2.1. The class V of all coarse embeddings in l-CGrp is pre-
served along pullbacks in l-CGrp, i.e., if the diagram (8.4) is a pullback where
g ∈ V, then also v ∈ V.

Proof. Denote by IY , IX , and IP the group ideals associated to Y , X, and P ,
respectively. Proposition 7.2.9 implies that IP = (IX ×IY )∩P(P ). Thanks to
Proposition 7.2.5, it is enough to show that, for every K ∈ IY , v

−1(K) ∈ IP .
For every (x, y) ∈ v−1(K), g(x) = f(y) and y ∈ K. Thus x ∈ g−1(f(K)) and
so, since g is a coarse embedding and f is bornologous,

v−1(K) ⊆ g−1(f(K))×K ∈ IX × IY ,

according to Propositions 7.2.1 and 7.2.5.

Let us now prove a variation of Proposition 8.2.1.
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Corollary 8.2.2. The class V ′ of all maps in l-κ-CGrp that are coarse equiv-
alences is preserved along pullbacks in l-κ-CGrp.

Proof. According to Proposition 8.2.1, it is enough to show that if g is large-scale
surjective, then so it is v. First of all, it is easy to check that v(P ) = f−1(g(X)).
Since g is large-scale surjective, |Z : g(X)| < κ. Thus

|Y : v(P )| = |Y : f−1(g(X))| = |f(Y ) : g(X) ∩ f(Y )| = |Z : g(X)| < κ.

We could have given a different proof of Corollary 8.2.2 without using Propo-
sition 8.2.1. In fact, since the κ-group coarse structure is functorial and per-
fect, according to Corollary 7.2.6, it is enough to show that |ker v| < κ and
|Y : v(P )| < κ.

8.3 Categorical properties of cellular coarse groups

In this section we dedicate our attention mainly to cellular coarse groups.
This study will be specialise for the compact-group coarse structure in Section
10.1.

Denote by Z the class of coarse groups G with asdimG = 0. In the sequel we
study the stability properties of this class. Let us recall that a full subcategory
A of the category l-CGrp of coarse groups is epireflective (mono-co-reflective)
if every coarse group G admits a surjective (respectively, injective) bornologous
homomorphism

rG : G→ rG (resp., cG : cG→ G) with rG ∈ A (resp., cG ∈ A)

and the ‘arrow’ rG : G → rG (respectively, cG : cG → G) is a (co-)universal
arrow to Z, i.e., every bornologous homomorphism f : G → Z ∈ Z factorises
through rG (respectively, cG) via a unique bornologous homomorphism

f ′ : rG→ A (resp., f ′ : A→ cG).

Let us see that the full subcategory Z of the category l-CGrp of coarse
groups is epireflective.

Proposition 8.3.1. The category Z is an epireflective subcategory of l-CGrp.

Proof. In order to construct rG, consider the family FG = {fi : G → Zi}i∈I
of all surjective bornologous homomorphisms to coarse groups belonging to Z.
Note that the family FG is non-empty, since it contains idG : G→ (G, Ecl({G})).
Then the product ΠiZi is a cellular (Proposition 6.2.5) coarse group (Propo-
sition 7.2.9) and then we can define rG ≤ ΠiZi as the image of the diagonal
bornologous homomorphism from G to ΠiZi (i.e., rG = {(fi(g))i | g ∈ G}).

The above proof is based on the property that the epireflective subcategory
of l-CGrp are precisely those which are stable under taking subobjects and
arbitrary direct products.

In the next proposition we check that Z is stable also under taking quotients.
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Proposition 8.3.2. Let (G, EI) be a coarse group, H be a normal subgroup of
G. If asdim(G, EI) = 0, then asdim(G/H, Eq(I)) = 0.

Proof. We have to prove that G/H is cellular. Fix an element q(K) ∈ q(I).
Then, since G is cellular, there exists a subgroup K ′ ∈ I that contains K.
Hence q(K ′) is a subgroup containing q(K). Hence G/H is cellular.

This proposition applies especially well for groups equipped with a perfect
functorial coarse structure (see [66] for its definition). Then the quotient group
G/N automatically carries the quotient coarse structure, so the proposition
applies.

Since stability under taking quotients is one of the typical properties of mono-
co-reflective subcategories, one may ask whether the category Z is not also a
mono-co-reflective subcategory of l-CGrp. The negative answer is provided by
the Example 10.1.2(a).

Let us conclude the section stating a cellularity result for the functorial
cl(κ-L(G))-group coarse structure on TopGrp.

Theorem 8.3.3. If G is a locally compact abelian group, asdim(G, Ecl(κ-L(G))) =
0 for every κ > ω.

Proof. According to Theorem 1.2.4, G = Rn × G0 for some n ∈ N and G0

containing an open compact subgroup K. Then the subgroup H = Rn × K
of G is Lindelöf (so, κ-Lindelöf as well) and G/H is discrete. Thanks to
Corollary 7.2.13, q : G → G/H is a coarse equivalence provided that both
groups are endowed with their κ-Lindelöf-group coarse structures, and thus
asdimG = asdimG/H. Since G/H is discrete, its κ-Lindelöf-group coarse
structure coincides with the κ-group coarse structure, which is linear ([66]),
i.e., asdim(G/H, E[G/H]<κ) = 0, which concludes the proof.

8.4 Localisation of CoarseGrp/∼

The reader may be disappointed by Remark 8.0.1(c). In fact, it would be
desirable to have a category where all homomorphisms which are coarse equiv-
alences are actually isomorphisms. The category CGrpQ/∼ has that property,
but is it the best choice? The aim of this section is to discuss (and give a precise
meaning to) this question.

Definition 8.4.1. Let X be a category and W be a family of morphisms of
X . A localisation of X by W (or at W) is given by a category X [W−1] and a
functor Q: X → X [W−1] such that:

(a) for every w ∈ W, Q(w) is an isomorphism;
(b) for any category Y and any functor F: X → Y such that F(w) is an iso-

morphism, for every w ∈ W, there exists a functor FW : X [W−1] → Y and
a natural isomorphism between F and FW ◦Q;

(c) for every category Y, the map between functor categories

· ◦Q: Funct(X [W−1],Y)→ Funct(X ,Y)

is full and faithful.
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The localisation of a category by a family of morphisms, if it exists, it is
unique.

Intuitively, if we localise a category X by a family of morphisms W, we
enrich the family of morphisms of X by imposing that the elements ofW become
isomorphisms. We would like to apply this idea to localiseCGrp/∼ by the family
W of all equivalence classes of homomorphisms which are coarse equivalences.

Question 8.4.2. In the previous notations, does the localisation CGrp/∼[W
−1]

exist? If yes, is it isomorphic to CGrpQ/∼?

The functor U: CGrp/∼ → CGrpQ/∼ takes every w ∈ W to an isomor-
phism U(w). Hence, ifCGrp/∼[W

−1] exists, and Q: CGrp/∼ → CGrp/∼[W
−1]

is the functor guaranteed by the definition, there exists a functor FW : CGrp/∼[W
−1]→

CGrpQ/∼ and a natural transformation between U and FW ◦Q.

The final part of this section will be devoted to construct the localisation
of κ-CGrpQ/∼, for every infinite cardinal κ, by the family W of all homomor-
phisms which are coarse equivalences.

The general definition of the localisation of a category is hard to use. How-
ever there are some special situations in which constructing it and working with
it is easier.

Definition 8.4.3 ([82]). A pair (X ,W) of a category X and a class of mor-
phismsW is said to admit a calculus of right fractions if the following conditions
holds:

(a) W contains all identities and it is closed under composition;
(b) (right Ore condition) given a morphism w : X → Z inW and any morphism

f : Y → Z in X , there exist a morphism w′ : T → Y in W and a morphism
f ′ : T → X in X such that the diagram

T
f ′

−−−−→ X

w′

y
yw

Y
f

−−−−→ Z

commutes;
(c) (right cancellability) given an arrow w : Y → Z in W and a pair of mor-

phisms f, g : X → Y such that w◦f = w◦g, there exists an arrow w′ : T → X
in W such that f ◦ w′ = g ◦ w′.

The pair (X ,W) is a homotopical category if, moreover, the following property
is fulfilled:

(iv) (2-out-of-6-property) for every triple of composable morphisms f : X →
Y , g : Y → Z and h : Z → T , if g ◦ f and h ◦ g are in W, then so are f ,
g, h (and, necessarily h ◦ g ◦ f).

If X is a category, a span (or roof, or correspondence) from an object X to

an object Y is a diagram of the form X
f
←− Z

g
−→ Y , for some morphisms f and

g of X . In this case, f (g) is the left leg (right leg, respectively) of the span.

If (X ,W) admits a calculus of right fractions, then we can construct X [W−1]
as follows. It has the same objects as X , while, as morphisms, we take the spans
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between objects of X whose left legs belong toW under the following equivalence
relation: to such spans

Z

w
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

f   ❆
❆❆

❆❆
❆❆

❆

X Y

Z ′

w′

``❆❆❆❆❆❆❆❆
f ′

>>⑥⑥⑥⑥⑥⑥⑥

are equivalent if there exist an object Z and two morphisms s : Z → Z and
t : Z → Z ′ such that all the squares in

Z

w
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

f   ❅
❅❅

❅❅
❅❅

❅

Z

s

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

t
''❖❖

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖ X Y

Z ′

w′

``❅❅❅❅❅❅❅❅
f ′

??⑦⑦⑦⑦⑦⑦⑦⑦

commute and w ◦ s = w′ ◦ t ∈ W.

In this category we define the composition of two morphisms as follows: if

X
w
←− X ′ f

−→ Y and Y
w′

←− Y ′ g
−→ Z are two representatives of their equivalence

classes, because of Definition 8.4.3(b), there exists another span X ′ w′′

←−− T
h
−→ Y ′

such that all the squares in

T

w′′

~~⑥⑥
⑥⑥
⑥⑥
⑥

h

  ❆
❆❆

❆❆
❆❆

X ′

w

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ f

  ❆
❆❆

❆❆
❆❆

❆ Y ′

w′

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ g

  ❆
❆❆

❆❆
❆❆

❆

X Y Z

commutes, where w′′ ∈ W and so does w ◦ w′′ (Definition 8.4.3(a)), and thus

we can define the composite as the equivalence class of X
w◦w′′

←−−−− T
g◦h
−−→ Z.

The functor Q: X → X [W−1] fix the objects and sends every morphism

f : X → Y of X in the span X
1X←−− X

f
−→ Y (note, in fact, that 1X ∈ W).

If we begin with a homotopical category, the functor Q is exact.

Lemma 8.4.4. LetW be the family of all equivalence classes of homomorphisms
which are coarse equivalences. Then

(a) W contains all the identities and it is closed under composition;
(b) (CGrp/∼,W) has the right cancellability property;
(c) (CGrp/∼,W) has the 2-out-of-6-property;
(d) for every infinite cardinal κ, (κ-CGrp/∼,W

′), whereW ′ =W∩κ-CGrp/∼,
satisfies the right Ore condition.
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Proof. Item (a) is trivial.

(b) Let U be the forgetful functor from CGrp/∼ to Coarse/∼. Suppose that
w : Y → Z belongs to W and f, g : X → Y is a pair of morphisms of CGrp/∼
such that w ◦ f = w ◦ g. Since U(w) is an isomorphism, f = g in Coarse/∼,
and thus f = g in CGrp/∼. Hence it is enough to put w′ = 1X .

Item (c) can be proved similarly to item (b), by using the functor U and the
fact that, for every w ∈ W, U(w) is an isomorphism of Coarse/∼.

(d) Consider the diagram Y
f
−→ Z

w
←− X in κ-CGrp, where [w] ∈ W ′. Take

the pullback

T
f ′

−−−−→ X

w′

y
yw

Y
f

−−−−→ Z

in the category κ-CGrp. Then w′ is a coarse equivalence, and [w′] ∈ W ′,
according to Corollary 8.2.2.

In Remark 8.4.7 we give a brief comment on the proof of Lemma 8.4.4(d).

From Lemma 8.4.4, the following result immediately descends.

Corollary 8.4.5. For every infinite cardinal κ, the pair (κ-CGrp/∼,W), where
W is the family of all equivalence classes of homomorphisms which are coarse
equivalences, is a homotopical category and thus (κ-CGrp/∼[W

−1],Q) exists
and the functor Q: κ-CGrp/∼ → κ-CGrp/∼[W

−1] is exact.

Let us specialise Question 8.4.2 in view of Corollary 8.4.5, using the notation
of Corollary 8.4.5:

Question 8.4.6. Is κ-CGrp/∼[W
−1] isomorphic to κ-CGrpQ/∼?

Remark 8.4.7. According to Question 8.4.2, we would like to know whether
the localisation of the whole category CGrp/∼ by the family W of all homo-
morphisms which are coarse equivalences exists or not. One way to provide a
positive answer is following the steps that led us to Corollary 8.4.5 and extend-
ing them to a more general setting. Then it is worth mentioning that Lemma
8.4.4(a)–(c) holds in general, while the only key point of the proof of Lemma
8.4.4(d) where we actually used the properties of the κ-group coarse structure
is when we showed that w′ has large image in Y . It is, in fact, the difference be-
tween Proposition 8.2.1 and Corollary 8.2.2. If one could extend the proof of just
that point, then Corollary 8.4.5 would be immediately generalised, providing a
(maybe partial) answer to Question 8.4.2.



Chapter 9

Linear coarse structures

9.1 Cardinal and numerical invariants

A topological abelian group (G, τ), and its topology τ , are called linear if τ
has a local base at 0G formed by open subgroups of G. In the non-abelian case
some authors impose normality on the open subgroups forming the local base.
Motivated by this folklore notion in the area of topological groups, we defined in
§7.2.5 the notion of a linear coarse structure. Explicitly, a group coarse structure
EI on G is linear if there exists a non-empty family B of subgroups Hi of G,
such that HiHj ∈ B and cl(B) = I (note that Hi ∪Hj ⊆ HiHj).

Note that, if we want EI to be connected, then we have to ask that I contains
all finitely generated subgroups of G.

As far as the group itself is not finitely generated (as a normal subgroup)
linear coarse structures do not look trivial. For example, if G is abelian, then for
every uncountable cardinal κ the κ-group coarse structure defined in Example
7.1.9(d) is linear. We use this example to introduce a more general construction,
namely group coarse structures which come out from cardinal and numerical
invariants.

Definition 9.1.1. A cardinal invariant i(·) for abelian groups is an assignment
G 7→ i(G) of a cardinal number i(G) to every abelian group G in such a way
that, if G ∼= H, then i(G) = i(H).

Call a cardinal invariant i

• subadditive, if i(H1 + H2) ≤ i(H1) + i(H2) whenever Hi (i = 1, 2) are sub-
groups of some abelian group G;

• additive, if i(G) = i(H) + i(G/H) whenever H is a subgroup of G;
• monotone (with respect to quotients), whenever i(G/H) ≤ i(G) for any sub-

group H of G;
• monotone (with respect to subgroups), whenever i(H) ≤ i(G) for any subgroup
H of G;

• bounded , whenever i(G) ≤ |G| for any group G;
• continuous, if i is bounded and if i(G) = supλ∈Λ i(Gλ), when G is a direct
limit of its subgroups (Gλ)λ∈Λ;

• normalised , if i({0}) = 0.

147
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Obviously, additivity implies subadditivity and monotonicity with respect
to both quotients and subgroups.

Sometimes it is convenient to consider numerical invariants instead of car-
dinal invariants. A numerical invariant for abelian groups is an assignment
G 7→ j(G) ∈ R≥0 ∪ {∞} such that j(G) = j(H) provided that G ∼= H.
One can define boundedness, (sub)additivity, continuity, monotonicity, and nor-
malisation also for numerical invariants in the same way. We say that j is a
length function, if j is continuous and additive. Every cardinal invariant i in-
duces a numerical invariant ji by ‘truncating from above’ at ω, i.e., by letting
ji(G) = min{i(G),∞}, for every abelian group G, where, for every x ∈ R≥0,
x <∞ and, for every infinite cardinal κ, we assume that ∞ ≤ κ.

Example 9.1.2. (a) The normalised cardinality, defined by

ℓ(G) =

{
|G|, if G is infinite,

log|G|, otherwise.

This, maybe somewhat unusual, modification is due to the fact that the size
|G| is a cardinal invariant, but it fails to be normalised and subadditive (as
far as finite groups are concerned).

(b) The free rank r0(G) and the p-ranks rp(G) of an abelian group G are car-
dinal invariants. Hence also the rank r(G) = max{r0(G), sup{rp(G) | p ∈
P}}, where P is the set of all prime numbers. In general, r(G) ≤ |G|, they
coincide when r(G) is infinite.

(c) Other invariants can be defined by using functorial subgroups. For example:
• ([40]) the divisible weight: wd(G) = inf{|mG| | m > 0},
• ([58]) the divisible rank: rd(G) = inf{r(mG) | m > 0}.

(d) Using the idea from item (c), for every cardinal invariant i one can define
its modification id defined similarly to divisible rank: id(G) = inf{i(mG) |
m > 0}. It is bounded (normalised), whenever i is, and it has particularly
nice properties when i is monotone with respect to taking subgroups and
quotients. Then id has the same properties and, moreover, id is subadditive,
whenever i is. This shows that rd normalise, subadditive, bounded and
monotone with respect to taking subgroups and quotients, while wd has all
these properties beyond the first one. To obtain that one too one has to
slightly modify its definition as follows

w̃d(G) = inf{ℓ(mG) | m > 0}.

It is easy to see that w̃d(G) = wd(G) is infinite for all unbounded groups,
while w̃d(G) = 0 < 1 = wd(G) for all bounded groups.

All these cardinal invariants are subadditive and bounded, the normalised
cardinality ℓ(·), the free rank r0, the divisible weight wd and the the divisible
rank rk are also monotone with respect to quotients whereas r and rp are not.

9.2 The linear coarse structures associated to a

cardinal invariant

For a cardinal invariant i we define now linear coarse structures depending
on a fixed infinite cardinal κ. To this end for any abelian group G denote by
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Bi,κ the family of all subgroups H of G with i(H) < κ. If κ is infinite and i
bounded, Bi,κ is non-empty. Here is a condition ensuring that Bi,κ is a base of
a group ideal.

Claim 9.2.1. Let i be a normalised, subadditive cardinal invariant for abelian
groups and let κ be an infinite cardinal. For every abelian group G the family
Bi,κ is a base of a group ideal Ii,κ on G.

Proof. If H,K ∈ Bi,κ, then H ∪ K ⊆ H + K ∈ Bi,κ since i is subadditive.
Moreover, for every subgroup H of G we have −H = H and thus H ∈ Bi,κ if
and only if −H ∈ Bi,κ.

The following result is trivial.

Proposition 9.2.2. Let G be an abelian groups, i be a normalised, subadditive
cardinal invariant and κ be an infinite cardinal. Then the trivial homomorphism
(G, EIi,κ)→ {0} is a coarse equivalence if and only if i(G) < κ.

For a fixed subadditive cardinal invariant i and for any abelian group G
denote by B0i the family of all subgroups H of G such that i(H) = 0. If
the cardinal invariant i is subadditive and normalised, then the family B0i is
non-empty and defines a group ideal I0i inducing a cellular coarse structure
on abelian groups. This construction can be carried out also in presence of a
numerical invariant, and, moreover, for every cardinal invariant i, B0i = B

0
ji
.

Proposition 9.2.3. Let G be a group and j be a normalised length function.
Then group ideal I0j is generated by one element I ⊆ G. Moreover, the quotient
map q : G→ G/I is a coarse equivalence, provided that both groups are endowed
with their I0j -group coarse structures.

Proof. The subgroup I =
∑
{H | H ∈ B0j} satisfies I

0
j = cl({I}). The claim is

trivial since j is continuous and then j(I) = sup{j(H) | H ∈ B0
j} = 0, which

prove that I ∈ B0j .

The second statement follows from Proposition 7.2.11 since j(I) = 0.

Let G be an abelian group. Then I0r0 is a group ideal on it, since r0({0}) = 0.
Moreover, since the numerical invariant induced by r0 is a length function, we
can apply Proposition 9.2.3 to prove that it is generated by the torsion subgroup
Tor(G) of G. Moreover, q : G → G/Tor(G) is a coarse equivalence. Note that
G/Tor(G) is torsion-free.

The next issue we intend to face is ‘how much’ the above group coarse
structures can ‘distinguish’ the groups, i.e., is there a great variety of groups
that are not coarse equivalent with respect to the linear coarse structures just
defined?

Proposition 9.2.4. Let G and H be two abelian groups, i a cardinal invariant
and κ be an infinite cardinal. If there exists an homomorphism which is a coarse
equivalence between (G, EIi,κ

) and (H, EIi,κ
) then either i(G) < κ and i(H) < κ,

or i(G) = i(H).

Example 9.3.4, with i = r0 and κ = ω, shows that the implication in the
above proposition cannot be reverted.
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9.2.1 When linear coarse structures are functorial

Theorem 9.2.5. Let i be a normalised, subadditive cardinal invariant of abelian
groups. Then the following properties are equivalent:

(a) for every group G and every subgroup H ≤ G, either i(G/H) ≤ i(G), or
i(G/H) <∞ whenever i(G) finite;

(b) for every infinite cardinal κ, EIi,κ defines a cellular functorial coarse struc-
ture in the category of abelian group, i.e., every group homomorphism f : G→
H is bornologous when G and H carry their linear coarse structures EIi,κ

.

Proof. (a)→(b) Let f : G→ H be a homomorphism between abelian groups. It
is enough to notice that for each K ⊆ G, if K ∈ Bi,κ, we have i(f(K)) =
i(K/ ker f) ≤ i(K) < κ provided i(K) is infinite. If i(K) is finite, then
i(f(K)) = i(K/ ker f) is finite as well, so i(f(K)) < κ again. Hence f is
bornologous thanks to Proposition 7.2.1.

(b)→(a) LetG be an abelian group andH be a subgroup. Let κ be an infinite
cardinal such that i(G) < κ. Since f : (G, EIi,κ

) → (G/H, EIi,κ
) is bornologous

and G ∈ Ii,κ, then G/H ∈ Ii,κ, which means that i(G/H) < κ. Since the
cardinal κ can be taken arbitrarily, then i(G/H) ≤ i(G). To check the case
when G is finite, just take κ = ω.

The property (a) of Theorem 9.2.5 is obviously implied by the fact that the
cardinal invariant i is monotone with respect to quotients. Similarly to the
proof of the implication (a)→(b) of Theorem 9.2.5 one obtains the proof of the
following result.

Proposition 9.2.6. Let i be a normalised and subadditive cardinal invariant,
which is monotone with respect to taking quotients. Then EI0

i
defines a functorial

coarse structure.

If the cardinal invariant is the free rank or the normalised cardinality, then,
for every infinite cardinal κ, EIi,κ defines a perfect functorial coarse structure.
In the general case we cannot find the precise conditions on i that ensure this
property.

Problem 9.2.7. Determine the properties of the cardinal invariant i such that
for every infinite cardinal the functorial coarse structure κ, EIi,κ

is perfect.

9.2.2 Small size vs small asymptotic dimension

For a coarse space (X, E) call a subset A of X small if one of the following
equivalent properties hold:

(a) for each large set L of X, the set L \A remains large in X;
(b) for every E ∈ E , X \ E[A] is large in X;
(c) X \A is extra-large in X.

This notion, along with other similar notions for size, is due to [144], see also
[142] for applications to groups, and [64] for further progress in this direction.
Let SM(X) denote the family of all small subsets of the coarse space X. Fur-
thermore, let D<(X) denote the family of all subsets A with asdimA < asdimX.
These two families are ideals in X.
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Small sets are considered as the large-scale counterpart of nowhere dense
subsets in topology ([15]). It is a classical result that in Rn the ideal of nowhere
dense subsets coincides with the one of those subsets that have covering di-
mension strictly less than n. Banakh, Chervak and Lyaskovska showed the
large-scale counterpart of this classical result, [12, Theorem 1.6], which states
that, for every coarse space X, the inclusion D<(X) ⊆ SM(X) holds, while
the opposite inclusion holds if X is coarsely equivalent to Rn, endowed with its
compact-group coarse structure.

Moreover, for locally compact abelian groups endowed with their compact-
group coarse structure, the authors provide the following characterisation.

Theorem 9.2.8. [12, Theorem 1.7] For a locally compact abelian group the
following properties are equivalent:

(a) D<(G) = SM(G);
(b) G is compactly generated;
(c) G is coarsely equivalent to Rn, for some n ∈ N.

They ask a description of the spaces X when the equality D<(X) = SM(X)
holds true ([12, Problem 1.3]). Obviously, it holds true when G is compact, since
then D<(X) = SM(X) = {∅}. Here we provide a wealth of counter-examples to
this equality which are based on the following trivial observation. If, for a coarse
space X, asdimX = 0, then D<(X) = {∅} consists of only the empty subset of
X. Therefore, to provide examples where the equality D<(X) = SM(X) does
not hold it suffices to find spaces X with asdimX = 0 and such that X has a
non-empty small set.

Proposition 9.2.9. Let i be an subadditive, bounded cardinal invariant, κ be an
uncountable cardinal and G be an abelian group with i(G) ≥ κ. Then [G]<κ ⊆
SM(G, EIi,κ

). In particular,

D<(G, EIi,κ) = {∅} ( [G]<κ ⊆ SM(G, EIi,κ).

Proof. Let S be a subset of G with |S| < κ. To check that S ∈ SM(G, EIi,κ
)

pick a large subset A of G and a subgroup K ∈ Bi,κ such that

A+K = G. (9.1)

The subadditivity and boundedness of i, combined with (9.1), entail

κ ≤ i(G) ≤ i(〈A〉) + i(K).

Along with i(K) < κ, this implies that κ ≤ i(〈A〉). Therefore, boundedness of
i gives

|A| = |〈A〉| ≥ i(〈A〉) ≥ κ > |S|.

Hence, there exists an element a ∈ A \ S. The set S − a = {s − a | s ∈ S}
belongs to [G]<κ, so the subgroup 〈S − a〉 +K belongs to Bi,κ. On the other
hand, it is easy to verify that (A \ S) + (〈S − a〉+K) = G (by the choice of a,
(A \ S) + (〈S − a〉+K) contains S, hence contains A as well, so (9.1) applies).
This proves that A \ S is large, so S is small.

We can refine Proposition 9.2.9 if we consider as cardinal invariant the nor-
malised cardinality. In fact, it is not hard to prove the following statement: Let
G be an infinite group with cardinality κ. Then [G]<κ ⊆ SM(G, EIκ).
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9.3 Abelian groups with the functorial coarse

structure Er0,κ

In Theorem 1.2.2, the free-rank played an important role. So it is reasonable
to focus on the linear coarse structures associated to that cardinal invariant. In
the sequel of this section we fix the functorial coarse structure Er0,ω, so every
group we consider is endowed with that functorial coarse structure.

Remark 9.3.1. Let G be a abelian group and let H be a subgroup of G. Then
the inclusion j : H → G is an asymorphic embedding.

Since r0(Tor(G)) = 0, Proposition 7.2.11 implies that every abelian group G
is coarsely equivalent, via the quotient homomorphism q : G→ G/Tor(G), to a
torsion-free abelian group. That’s why we focus on torsion-free abelian groups
in the sequel. Due to Remark 9.3.1, the study of the homomorphisms that are
coarse equivalences can be reduced to the study of large subgroups. The next
proposition provides a necessary condition for that.

Proposition 9.3.2. If a subgroup H of a torsion-free abelian group G is large,
there exists k ∈ N such that

r0(G/H) ≤ k and rp(G/H) ≤ k for every prime p. (9.2)

Proof. Suppose that there exists a subgroup S of G with H + S = G of finite
free rank k = r0(S). Then G/H ∼= S/H∩S is a quotient of a torsion-free group.
Therefore, r0(G/H) ≤ k and all p-ranks rp(G/H) = rp(S/H ∩ S) are bounded
by k. Indeed, while r0(G/H) ≤ k obviously follows from the monotonicity of
r0, the latter inequality needs more care. As k = r0(S), we can assume without
loss of generality that S is a subgroup of Qk. Hence, S/H ∩ S is a subgroup of
A = Qk/H ∩ S. So it suffices to prove that

rp(A) ≤ k. (9.3)

By the definition of rp, rp(A) = dimZ/pZA[p], where A[p] = {a ∈ A | pa = 0}.

Let S1 = {s ∈ Qk : ps ∈ H ∩ S}. Then A[p] ∼= S1/H ∩ S. To prove that
dimZ/pZ S1/H ∩ S ≤ k pick a set X with strictly more than k elements of
S1/H ∩ S. To see that it is linearly dependent, consider a lifting Y of X in
S1 ≤ Qk along the projection map q : S1 → S1/H ∩ S. As |Y | > k, Y satisfies
a non-trivial relation

∑
y∈Y kyy = 0 in S1. If not all coefficients are divisible

by p, the projection along q immediately gives a linear dependence between the
elements of X in S1/H ∩ S. If there exists some power pt dividing all ky, then

we can obtain a new linear combination
∑
y∈Y

ky
ps y = 0, as S1 is torsion-free.

By choosing the largest possible t, we obtain a linear combination in which at
least one coefficient is coprime with p, se we can argue as before. This proves
(9.3).

In particular, if the inclusion j : H →֒ G is a coarse equivalence, then (9.2)
holds for some k ∈ N. We do not know whether this necessary condition implies
that j is a coarse equivalence in the case of arbitrary pairs G, H. Yet, we can
say something in case the larger group G is divisible.
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Recall that a torsion-free group of the form

G =
⊕

i∈I

Ai, (9.4)

where all Ai are subgroups of Q, is called fully decomposable. Free groups
and divisible torsion-free groups are instances of fully decomposable torsion-
free groups. A fully decomposable group as in (9.4) is called homogeneous, if all
groups Ai are pairwise isomorphic. Note that (9.4) is reduced precisely when
all Ai are proper subgroups of Q.

Theorem 9.3.3. Let D be a divisible group and (9.4) be a fully decomposable
reduced subgroup of D. Suppose that one of the following conditions holds:

(i) I is uncountable;
(ii) G is homogeneous.

Then the following properties are equivalent:

(a) the inclusion j : G →֒ D is a coarse equivalence;
(b) there exists a homomorphism f : G→ D that is a coarse equivalence;
(c) G and D are bounded coarse spaces;
(d) r0(G) <∞ and r0(D) <∞.

Proof. Under any of the two assumptions (i) or (ii), the implication (a)→(b)
is trivial, as well as the equivalence of (c)→(d), while (c) trivially implies (a)
(actually, any homomorphism will do). It only remains to prove (b)→(d) when
either (i) or (ii) holds. The initial part of the argument coincides in both cases.

Suppose that f : G → D is a homomorphism and a coarse equivalence. By
Corollary 7.2.6, r0(ker f) < ω. Hence, K = ker f is contained in a finite direct
summand L =

⊕
i∈J Ai, with J ⊆ I, of G. Moreover, f factorises through

an injective homomorphism f0 : G/K → D and G/K ∼= L/K ⊕ G1, where
G1 =

⊕
i∈I\J Ai. Since r0(L/K) ≤ r0(L) < ∞, the projection G/K → G1 is a

coarse equivalence. Therefore, the restriction f1 : G1 → D is still an (injective)
coarse equivalence, so f(G) = f1(G1) must be a large subgroup of G. We may
assume, from now on, that G1 is simply a subgroup of D, identifying it with
f(G) = f1(G1). According to Proposition 9.3.2 and (9.2), there exists some
k ∈ N, such that

r0(D/G1) ≤ k and rp(D/G1) ≤ k for every prime p. (9.5)

If r0(D) < ∞, this implies r0(G1) < ∞ and consequently r0(G) < ∞, hence
we are done. Assume in the sequel that r0(D) is infinite. Hence, also r0(G1) is
infinite by (9.5).

Since D is divisible, the divisible hull Di = D(Ai) ∼= Q of each Ai, i ∈ I \ J ,
is contained in D along with the direct sum D′ = D(G1) =

⊕
I\J Di. Hence, the

quotient group D/G1 contains a subgroup isomorphic to D′/G1
∼=

⊕
I\J Di/Ai.

Since G is reduced, Ai 6= Di for every i ∈ I, so Di/Ai is a non-trivial torsion
(divisible) group. Therefore, rpi(Di/Ai) > 0 for some prime pi. There is some
prime q, such that pi = q for infinitely many indexes i ∈ I \J , so that rq(D

′/G1)
is infinite. In the case (i) this is clear as I is uncountable. In case (ii) this follows
from the fact that all groups Di/Ai are pairwise isomorphic, torsion and non-
trivial. This proves, that rq(D

′/G1) is infinite, hence rq(D/G1) is infinite as
well. This contradicts (9.5).
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With a slight modification the above proof we can give the following more
precise result. Suppose that f : G → D is a homomorphism that is a coarse
equivalence andG is fully decomposable, whileD is divisible. Then r0(G/d(G)) <
ω in case G is either uncountable or homogeneous. In other words, if a fully
decomposable torsion-free abelian group G is coarsely equivalent (i.e., ‘as close
as possible’ from the large-scale point of view) to a divisible group, then G is
also ‘as close as possible’ to a divisible group from algebraic point of view.

We are not aware if one can replace the group (9.4) in the above theorem
by an arbitrary reduced torsion-free group.

As a corollary we prove that there exists no homomorphism which is also a
coarse equivalence between a divisible group and a free abelian group, in case
at least one of them has infinite free-rank.

Corollary 9.3.4. Let D be a divisible torsion free abelian group of infinite free
rank. Then:

(a) there is no homomorphism which is also a coarse equivalence from D to any
reduced abelian group F ;

(b) if F is a free abelian group, then there is no homomorphism from F to D
which is also a coarse equivalence

Proof. (a) Assume the existence of a homomorphism f : D → F which is a
coarse equivalence. Since D is divisible and F is reduced, f is necessarily the
null homomorphism. In particular, the trivial homomorphism G → {0} must
be a coarse equivalence. By the above proposition, this yields r0(G) < ω, a
contradiction.

(b) Follows from Theorem 9.3.3.

Let us note that a much stronger result can be proved than just item (i) in
the above theorem: if a homomorphism f : D → G to a torsion-free group G is a
coarse equivalence, then f(D) is a finite-co-rank subgroup of G. More precisely,
G = f(D)⊕G1, where r0(G1) <∞ and f(D) ∼= D is divisible.

Example 9.3.5. It is well-known that surjective homomorphisms preserve var-
ious properties of the domain, e.g., having finite rank. Let us see that the
counterpart of this property remains true also for quasi-homomorphisms with
respect to the group coarse structure Er0,ω in the following weaker form.

Let f : G→ H be an H1-quasi-homomorphism, where, without loss of gener-
ality, we can assume that H1 is a subgroup of H with r0(H1) < ω, and suppose
that G is finitely generated. Then

r0(〈f(G)〉) < ω.

More precisely, if H1 contains the images of all (finitely many) generators of G
(that can be achieved without loss of generality), then also f(G) is contained in
H1, so has finite free rank.

Let X be the finite set of generators of G and assume that f(X) ⊆ H1. We
assume that e /∈ X. We argue by induction on n = |X|. The case n = 0, i.e.,
G = {0}, is trivial, so we may assume that n > 0 and that the assertion is proved
for n− 1. Then X 6= ∅ so we can fix an element x ∈ X and let Y = X \ {x} and
G1 = 〈Y 〉. Then f(G1) ≤ H1 by our inductive hypothesis. Take any g ∈ G =
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G1+ 〈x〉, then g = g1+kx. Therefore, f(g) ∈ f(g1)+f(kx)+H1 = f(kx)+H1,
as f(g1) ∈ H1. By our assumption, f(x) ∈ H1. If k > 0, then a simple inductive
argument shows that f(kx) ∈ H1 as well. If k < 0, then f(kx) = −f(−kx)+H1

(by Remark 7.3.2). Now −f(−kx) ∈ H1 and we are done.

This example leaves open the question on whether quasi-homomorphisms
preserve finiteness of rank.

Question 9.3.6. If f : G→ H is a quasi-homomorphism, and r0(G) < ω, is it
true that r0(〈f(G)〉) < ω as well?

In this section we have provided some results for coarse groups in which
the notion of divisibility plays an important role. Let us also mention that
divisibility have a great impact in some properties of the coarse structures on
the subgroup lattices considered in §12 (following the paper [56]).



Chapter 10

The compact-group coarse

structure

In this chapter we focus our attention on a particular functorial coarse struc-
ture on TopGrp, namely the compact-group coarse structure. We then assume
that all the topological groups involved in this chapter are implicitly endowed
with that coarse structure. Moreover, in §§10.2 and 10.3, we consider its re-
strictions to the subcategories TopAbGrp, of topological abelian groups, and
LCA, of locally compact abelian groups, (then the range of the restrictions is in
CAbGrp, the subcategory of CGrp consisting of coarse abelian groups) and
the composites with the Pontryagin functor

LCA→ LCA, G 7→ Ĝ

(in §10.2) and (in §10.3) with the Bohr functor

TopAbGrp→ TopAbGrp, G 7→ G+.

Let us start with another corollary of Proposition 7.2.11 concerning the
compact-group coarse structures (Corollary 10.0.1), which will be useful in the
sequel.

Corollary 10.0.1 ([66]). Let G be a topological group, and K be a compact
normal subgroup of G. Then the quotient map q : G → G/K is a coarse equiv-
alence provided that both G and G/K are endowed with their compact-group
coarse structures.

It is easy see that the functor G 7→ (G, ErC(G)) of the compact-group coarse
structure preserves embeddings of closed subgroups, i.e., ifH is a closed topolog-
ical subgroup of G, then the coarse structure induced from (G, ErC(G)) coincides
with ErC(H). In §10.1 we will show that this property may fail if non-closed
subgroups are involved (even if the inclusion H →֒ G is always bornologous,
due to functoriality). To this end we are going to use the criterion from Propo-
sition 7.2.17 for topological groups equipped with their compact-group coarse
structure.

156
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10.1 Cellular coarse groups

Following [37], call a topological group G o-connected, if the completion of
G is connected.

Theorem 10.1.1. Let G be a metrisable σ-compact group that is either o-
connected or precompact. Then asdimG = 0 if and only if G is compact. In
particular, a countably infinite metrisable group that is either o-connected or
precompact has asdimG > 0.

Proof. We intend to use Proposition 7.2.17, so we need to ensure that the group
is compactly generated, whereas we only have at hand the weaker assump-
tion that G is σ-compact. To this end we apply a result, due to Fujita and
Shakhmatov [80], which ensures that a σ-compact metrisable group G is com-
pactly generated whenever G is either precompact or o-connected. (Actually,
these authors showed that when G is countable, then it is generated by a se-
quence (possibly eventually constant) converging to its neutral element.) The
last assertion follows from the fact that countable groups are σ-compact and
non-compact, provided they are infinite.

Example 10.1.2. Let us highlight two properties of an example given in [125].
Let G be the abelian group Z2∞ . Then the following properties hold. All the
topological groups in this example are endowed with their compact-group coarse
structures.

(a) Endow G ≤ T with the topology inherited by the one of the torus. Since
the group G is generated by the compact set {0} ∪ {1/2n | n ∈ N}, but it is
not compact, Proposition 7.2.17 implies that asdimG > 0, while asdimT =
0. Hence the asymptotic dimension is not monotone even under taking
dense subgroups. Moreover, every finite subgroup Hn = Z(pn) of G has
asdimH = 0, while G =

⋃
Hn has asdimG > 0, according to Theorem

10.1.1. In other words, G has no maximum cellular subgroup (that would
be the case if Z were mono-co-reflective).

(b) While asdim(G, τT|G) > 0, we have that asdim(G, τdis) = 0, where τdis is
the discrete topology on G, as it is torsion (Fact 7.2.16). Hence, even though
τT|G ⊆ τdis, asdim(G, τT|G) > asdim(G, τdis). Note that τT|G is not locally
compact.

Let α be an irrational number, identified with its image α+ Z in T, and let
τα be the group topology on Z induced by T when we identify Z with the cyclic
subgroup 〈α〉 of T. Note that the groups (Z, τα) and (Z, τβ) are topologically
isomorphic only if β ∈ ±α+Z. Let dα = asdim(Z, τα). According the Theorem
10.1.1, dα > 0.

Problem 10.1.3. Compute dα. Does it depend on α? Can dα be strictly
greater than 1 or, even, infinite?

Now we show that the desired counter-examples can be found in every infinite
compact metrisable group.

Corollary 10.1.4. Every infinite compact metrisable group K contains a dense
subgroup G such that asdimG > 0, hence the inclusion G →֒ K is not a coarse
embedding.
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Proof. In order to build such a subgroup G we build a dense non-compact
compactly generated subgroup G of K. Since K is separable, there exists a
dense countable subgroup G of K. Now the final assertion of Theorem 10.1.1
applies to give asdimG > 0. The final assertion follows from the fact that
asdimK = 0 since K is compact.

In order to describe cellular coarse groups in that case, we need to introduce
functorial subgroups. The assignment of a subgroup H = r(G) to every topolog-
ical group is called a functorial subgroup (or preradical, if for every continuous
homomorphism f : G → G1 of topological groups one has f(r(G)) ≤ r(G1).
Leading examples are the connected component c(G), the quasi-component (of
the neutral element) q(G), the subgroup B(G) of compact elements of G (this
is the subgroup of G generated by all compact subgroups of G, in case G is
abelian this is simply the set of all compact elements of G, i.e., elements x ∈ G
such that 〈x〉 is compact), and the von Neumann kernel n(G), which will be
introduced in the abelian case in §10.3.1. Actually, every mono-co-reflection
cG : cG → G obviously gives rise to a functorial subgroup, namely r(G) = cG.
Note that a functorial subgroup is always fully invariant, in particular charac-
teristic (invariant under automorphisms), so normal.

We include the next simple fact only for the sake of references.

Lemma 10.1.5. Let G be a topological group equipped with their compact-group
coarse structure. Then asdimG = 0 if and only of 〈K〉 is compact, for every
compact subset K of G.

This proves that every cellular group G satisfies G = B(G), since every
singleton must be contained in a compact subgroup of G. In the case of an
abelian group, B(G) is simply the union of all compact subgroup of G. One
may ask whether an abelian topological group G with G = B(G) must be
cellular (this is the case when G is discrete, or LCA, as we shall see below in
Corollary 10.2.8). The answer is negative in the general (even abelian) case as
the following example shows.

Example 10.1.6. Here we give two examples of non-cellular groups withB(G) =
G.

(a) An example in the discrete case cannot be abelian. Indeed, even for a non-
abelian, but soluble, discrete groups G the subgroup B(G) coincides with
the set of all torsion elements of G. Moreover, B(G) is locally finite, hence
asdimG = 0 (Fact 7.2.16). To obtain an example in the discrete case one
may make recourse to a Tarskii monster T . A Tarskii monster of exponent
p, where p is a prime, is an infinite countable group whose proper subgroups
are cyclic and have order p. Olshanskii ([128]) built Tarskii monsters for
every prime p > 1075.
As T is not locally finite, Fact 7.2.16 implies that asdimT > 0.

(b) The group G = Z2∞ ≤ T given in Example 10.1.2 obviously satisfies G =
B(G), while asdimG > 0.

Now we characterise the locally compact (not necessarily abelian) groups
with asymptotic dimension 0. First of all, let us note that we can restrict
ourselves to the case of totally disconnected locally compact groups.
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Lemma 10.1.7. Let G be a locally compact group with asdimG = 0. Then
c(G) is compact, so q : G→ G/c(G) is a coarse equivalence.

Proof. Since asdimG = 0, G has no subgroups topologically isomorphic to Z.
In particular, G has no subgroups topologically isomorphic to R. This implies
that c(G) is compact, as a locally compact connected group L without lines (i.e.,
copies of R) is compact. (This follows from the fact that L is homeomorphic to a
direct product Rn×K, where K is a compact (necessarily, connected) subgroup
of L [34]. As L has no lines, n = 0 and L = K is compact.) The final assertion
follows from Corollary 10.0.1.

Theorem 10.1.8. Let G be a totally disconnected locally compact group. Then
the following properties are equivalent:

(i) asdimG = 0;
(ii) for every open compact subgroup K of G and for every x ∈ G, the subgroup
〈x,K〉 contains K as a finite index subgroup (and thus 〈x,K〉 itself is a
compact open subgroup).

Moreover, items (i) and (ii) imply the following three equivalent conditions:

(a) for every open compact subgroup K of G and for every x ∈ G, there exists
n ∈ N \ {0} such that xn ∈ K;

(b) there exists an open compact subgroup K of G such that, for every x ∈ G,
there exists n ∈ N \ {0} such that xn ∈ K;

(c) G = B(G);

which are equivalent as well.

Proof. Every totally disconnected locally compact groupG has an open compact
subgroup K (by Van Dantzig Theorem [33]). It is easy to see that every pair
K and K1 of such subgroups are commensurable, it means that the subgroup
K ∩K1 has finite index both in K and K1.

(i)→(ii) Fix open compact subgroupK ofG and x ∈ G. According to Lemma
10.1.5, the compact set {x} ∪K must be contained in a compact subgroup K1

of G which will obviously contain also the subgroup K0 = 〈x,K〉 Since K is an
open subgroup of G, it is also and open subgroup of K1. Hence, [K1 : K] is
finite, so [K0 : K] is finite as well.

(ii)→(ii) It is enough to prove that every compact subset is contained in
a compact subgroup of G. Let C be a compact subset and let K be an open
compact subgroup of G. Since K is open, C is contained in a finite union
U =

⋃n
i=0 giK of left cosets of K. We can assume without loss of generality

that g0 = eG. To prove the claim it suffices to show that whenever K is a
compact open subgroup of G, then U =

⋃n
i=0 giK is contained in a compact

subgroup of G.

The case n = 0 is trivial, so we assume n ≥ 1 in the sequel. The base case
n = 1 follows from (ii), since now U = K ∪ g1K ⊆ 〈g1,K〉 and the subgroup
〈g1,K〉 is compact, since it contains the compact subgroup K as a finite index
subgroup. Now suppose that n > 1 and the assertions is true for n − 1. Then
there exists a compact subgroup K1 containing

⋃n−1
i=1 giK. As K ≤ K1, the

compact subgroup K1 is also open. Now to K1 and U1 = K1 ∪ gnK1 apply the
inductive hypothesis to conclude that U1 ⊆ K2 for some compact subgroup K2

of G. Since obviously U ⊆ U1, we are done.
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This proves the first part of the theorem. The implication (ii)→(a) is ob-
vious. Since we prove next that (a) and (b) are equivalent, this yields that
the first two equivalent conditions imply the second group of three equivalent
conditions. Obviously, the implication (a)→(b) holds.

(b)→(c) Let x ∈ G. If the cyclic subgroup C generated by x is finite then
obviously, x ∈ B(G). Assume that C is infinite and pick an open compact
subgroup K of G with the property described in (b). By (a), xn ∈ K for some
n > 0. Let L be the compact subgroup of K generated by xn. Then, if cG(x)
denotes the centraliser of x in G, L ≤ cG(x), as x

n ∈ cG(x) and cG(x) is a
closed subgroup. Hence, the subgroup M = 〈x, L〉 generated by L and x simply
coincides with CL and [M : L] <∞. As L is a compact subgroup of M of finite
index, M is compact as well. Therefore, x ∈ B(G).

(c)→(a) Fix an arbitrary open compact subgroup K of G and x ∈ G. Let
C = 〈x〉. If C is finite, then the claim trivially follows. Suppose now that C is
infinite. If C∩K = {e}, then C is discrete since K is open, which is not allowed
because x ∈ B(G) and C ∼= Z. Hence C ∩K is non-trivial and then it contains
a power of x.

The next corollary extends the well known fact that the discrete cellular
groups are precisely the locally finite ones (Fact 7.2.16).

Corollary 10.1.9. In a cellular locally compact group every finite subset is
contained in a compact open subgroup.

Proof. Let G be a locally compact group with asdimG = 0 and let F be a finite
subset of G. Then c(G) is compact and q : G→ G/c(G) is a coarse equivalence,
by Lemma 10.1.7. Then G1 = G/c(G) is a totally disconnected locally compact
group with asdimG1 = 0. Fix an arbitrary compact open subgroup K of G1,
and applying the equivalence of (i) and (ii) in Theorem 10.1.8 to the finitely
many element of q(F ) conclude that the subgroup K1 = 〈q(F ),K〉 contains K
as a finite index subgroup. Then K1 is a compact open subgroup of G1, and
consequently q−1(K1) is a compact open subgroup of G containing F .

The second group of equivalent conditions in Theorem 10.1.8 is strictly
weaker than the first one, as witnessed by Example 10.1.6(b). It is relevant
to notice that while the (weaker) condition (∀x ∈ G)(∃n > 0)xn ∈ K is simul-
taneously valid for all (or just for some) compact open subgroups K (as the
equivalence of (a) and (b) says), the condition from (ii) holds for the trivial
subgroup K = {e} of the Tarski monster T (having B(T ) = T ), but it fails for
all non-trivial finite (cyclic) subgroup K of T (in fact, it has asdimT > 0).

Remark 10.1.10. (a) One can deduce from Theorem 10.1.8 also the following
property of cellular locally compact groups G in the separable case: for
every compact open subgroup K of G there exists an increasing chain

K0 = K ≤ K1 ≤ · · · ≤ Kn ≤ · · · , with G =

∞⋃

n=1

Kn,

of open compact subgroup such that (necessarily) each index [Kn+1 : Kn],
where n ∈ N, is finite. In fact, it is enough to apply the condition (ii) in
Theorem 10.1.8 to a family of representatives of the countable cosets of K
in an inductive way.
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(b) To conclude, we note that if G is a (necessarily locally compact) group
with a compact open normal subgroup K, asdimG = 0 if and only if G/K
is locally finite. Indeed, if asdimG = 0, then G/K is locally finite, by
Proposition 8.3.2 (or Corollary 10.0.1). Vice versa, if G/K is locally finite,
then for every x ∈ G there exists n > 0, such that xn ∈ K. Since K is
normal, this yields that the subgroup 〈x,K〉 of G contains K as finite-index
subgroup. Therefore, asdimG = 0, by Theorem 10.1.8 In particular, if K
splits, i.e., G = K⋊D, where K is compact and D ∼= G/K is discrete, then
asdimG = 0 if and only if D is locally finite.

10.2 The Pontryagin functor

In this section we focus on investigating how some properties are preserved or
transformed under the impact of the Pontryagin functor. Our interest in study-
ing this duality is motivated by a beautiful result due to Nicas and Rosenthal
([126]). In this result (Theorem 10.2.1), they connect the covering dimension of
a locally compact abelian group (recall that that Pasynkov in [130] proved that
in the realm of locally compact groups the covering dimension coincides with
both the small inductive dimension and the large inductive dimension) with the
asymptotic dimension of its dual.

Theorem 10.2.1. Let G be a locally compact abelian group. Then

asdimG = dim Ĝ and dimG = asdim Ĝ.

Before starting our section, let us recall some facts. If G is a locally compact
abelian group and H is a subgroup of G, the annihilator of H in Ĝ is the
subgroup (Ĝ,H) = {χ ∈ Ĝ | χ(H) = 0} of Ĝ, that we write also briefly H⊥

when no confusion is possible.

If H is a subgroup of a locally compact abelian group G, then

Ĝ/H ∼= (Ĝ,H) and Ĥ ∼= (G, (Ĝ,H)). (10.1)

Using the first isomorphism in (10.1) we deduce that a closed subgroup H
of G is open if and only if H⊥ is compact. Since

c(G) =
⋂
{H | H open subgroup of G}

and since ⊥ defines an antiisomorphism between the lattices of closed subgroups
of G and Ĝ, we deduce that

c(G)⊥ =
∑
{K | K compact subgroup of Ĝ} = B(Ĝ). (10.2)

Applying the equality (10.2) to Ĝ (instead of G), one obtains c(Ĝ)⊥ = B(
̂̂
G) =

B(G). Hence, B(G)⊥ = c(Ĝ)⊥⊥ = c(Ĝ).

Let us recall that Theorem 1.2.4 states that every locally compact abelian
group G is of the form Rn × G0, where G0 has an open compact subgroup K.
Since n is uniquely determined by G, it is denoted sometimes by nR(G). The
compact subgroup K is not uniquely determined by the property of being open
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in G0. That is why, it is more convenient to use the functorial subgroup B(K)
that contains K and trivially intersects Rn, as it is contained in G0. One has

B(G) = B(G0) and G/B(G) ∼= Rn ×G0/B(G),

where the discrete subgroup G0/B(G) is torsion-free. The invariant

̺0(G) = r0(G0/B(G)) = r0(G/Rn ×B(G))

coincides with the the maximum free rank of a discrete quotient group of G
(this maximum is attained by the quotient G/(Rn ×B(G)), see [7], for another
invariant ̺(G), closely related to ̺0(G), giving the smallest number of compact
sets necessary to cover G).

10.2.1 Around Theorem 10.2.1

We need a classical additivity result for the covering dimension of locally
compact groups. We refer to [122] for a proof.

Theorem 10.2.2. Let G be a locally compact group and H be a closed subgroup
of G. Then

dimG = dimG/H + dimH.

In particular, if K is another locally compact group, then

dim(G×K) = dimG+ dimK.

Thanks to Theorem 10.2.1, we can now extend Theorem 7.2.21.

Corollary 10.2.3. Let G be a locally compact abelian group and H be a closed
subgroup of G. Then

asdimG = asdimG/H + asdimH.

In particular, if K is a locally compact abelian group, then

asdim(G×K) = asdimG+ asdimK.

Proof. The first equality follows from the following chain

asdimG = dim Ĝ = dim(Ĝ/(Ĝ,H)) + dim(Ĝ,H) =

= dim Ĥ + dim Ĝ/H = asdimH + asdimG/H,

which holds because of (10.1) and of Theorem 10.2.1. The second statement
can be easily deduced.

Corollary 10.2.3 cannot be extended to arbitrary locally compact groups. In
fact the claim may fails also in the discrete case, as Example 7.2.23 shows.

Theorem 10.2.1 connects asdimG for a locally compact abelian group G
with invariants (namely, covering dimension) of the dual group Ĝ. In spite of
its evident elegance, this connection may lead to some practical troubles, due to
the fact that one has to compute the group Ĝ. Now we offer another description
of the asymptotic dimension of G in terms of invariants of the group G itself.
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Corollary 10.2.4. For every locally compact abelian group G

asdimG = nR(G) + ̺0(G). (10.3)

Proof. It is enough to prove that

dim Ĝ = R(G) + ̺0(G). (10.4)

and applying Theorem 10.2.1 to get (10.3).

Because of Theorem 1.2.4, we can assume that G has the form G = Rn×G0,
where n ∈ N and the groupG0 has an open compact subgroupK. In this setting,

̺0(G) = r0(G0/K). (10.5)

Indeed, obviously K ≤ B(G). Moreover, B(G)/K is torsion, as for every com-
pact subgroup C of G (so, of B(G)), C ∩K is open in C, so C/C ∩K is finite.
This means that mC ≤ K for some m > 0. Therefore, B(G)/K is torsion, so
r0(G0/K) = r0(G/B(G)) = ̺0(G). This proves (10.5).

Let K⊥ be the annihilator of K in the dual Ĝ0, so that (10.1) implies that
the subgroup

K⊥ ∼= Ĝ0/K (10.6)

of Ĝ0 is compact and open. In fact, we have the following short exact sequence

0→ K → G0 → G0/K → 0,

where K is compact and open and thus G0/K is discrete, which leads to the
dual short exact sequence

0← K̂ ← Ĝ0 ← Ĝ0/K ∼= K⊥ ← 0,

where K̂ is discrete and thus K⊥ is both compact and open. Moreover,

dimK⊥ = dim Ĝ0/K = r0(G0/K) = ̺0(G),

in view of (10.6). Since Ĝ ∼= Rn×Ĝ0 and dim Ĝ0 = dimK⊥ = ̺0(G), we obtain
(10.4) applying Theorem 10.2.2.

Remark 10.2.5. There is an alternative proof of (10.3) making use of the
functorial subgroup B(G) of a locally compact abelian group G. We first prove
the equality

asdimG = asdimG/B(G), (10.7)

which is a counterpart of the well known equality dimG = dim c(G) (Theorem

7.2.19). Indeed, from Theorem 10.2.1 we have asdimG = dim Ĝ = dim c(Ĝ).

Since c(Ĝ) = B(G)⊥ ≡ Ĝ/B(G), we deduce that

asdimG = dim c(Ĝ) = dim Ĝ/B(G) = asdimG/B(G).

Since G/B(G) ∼= Rn × G0/B(G) is coarsely equivalent to Zn × G0/B(G0), we
obtain again

asdimG = asdimG/B(G) = n+ r0(G/B(G)) = n+ ̺0(G).
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Question 10.2.6. Is it true that asdimG = asdimG/B(G), for every (close-
to-abelian) topological group G?

According to Remark 10.2.5, the answer is yes for locally compact abelian
groups. The same holds for a finitely generated nilpotent group G endowed
with one of its word metrics. Indeed, the subset Tor(G) of all torsion elements
of G is a subgroup and obviously, B(G) = Tor(G). To see that asdimG =
asdimG/B(G), notice that G (as well as G/B(G)) is polycylic and consequently,
asdimG = h(G) (and asdimG/B(G) = h(G/B(G))), where h denotes the
Hirsch length, by [70, Theorem 3.5]. As G is polycylic, B(G) is finite. This
implies h(G) = h(G/B(G)).

For the group G from Example 7.1.16, B(G) = Qp and G/B(G) ∼= Z, so
asdimG/B(G) = 1 and obviously, asdimG ≥ 1 (as G contains a copy of Z). We
are not aware whether asdimG = asdimG/B(G) = 1 holds in this case.

Question 10.2.7. Does the equality asdimG = asdimG/B(G) = 1 hold for
the topological group G from Example 7.1.16? Does G have finite asymptotic
dimension?

As an immediate corollary of Corollary 10.2.4 (and standard properties of
locally compact abelian groups) one obtains the following results.

Corollary 10.2.8. For a locally compact abelian group G the following are
equivalent:

(a) asdimG = 0;
(b) nR(G) = 0 and ̺0(G) = 0;
(c) every compact subset of G is contained in a compact subgroup of G;
(d) G = B(G) (i.e., G is covered by compact subgroups);
(e) G has no subgroup topologically isomorphic to Z.
In particular, every locally compact abelian group G with r0(G) = 0 has asdimG =
0.

Proof. (a)↔(b) is a trivial consequence of (10.3), while (c)→(d) is trivial.

(b)→(c) The hypothesis nR(G) = 0 implies, according to Theorem 1.2.4,
that G contains an open compact subgroup K. Let q : G → G/K be the
quotient map. Take any C ∈ C(G). Then q(C) is finite, as a compact subset of
the discrete group G/K. Then q−1(q(C)) is compact and contains C.

(d)→(e) It follows from the standard fact that every cyclic subgroup of a
locally compact group is either relatively compact or discrete.

(e)→(b) Since R contains a copy of Z, our blanket assumption implies
nR(G) = 0. To prove that ̺0(G) = 0 consider a discrete quotient G/O, where
O is an open subgroup of G. Pick an element x̄ = x + O of G/O and consider
the cyclic subgroup C = 〈x〉 of G. If C is finite, then x, as well as x̄ are torsion.
Assume that C is infinite. Since G has no subgroup topologically isomorphic
to Z, C cannot be discrete, hence C ∩ O 6= {0}. Therefore 〈x̄〉 ∼= C/C ∩ O
is finite. This proves that the group G/O is torsion, so r0(G/O) = 0. Hence,
̺0(G) = 0.

Remark 10.2.9. Here is another proof of Corollary 10.2.4 making no recourse
to Theorem 10.2.1. In the notation of the proof of Corollary 10.2.4, the quotient
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homomorphism q : G→ G/K is a coarse equivalence thanks to Corollary 10.0.1.
Therefore, asdimG = asdimG/K. But G/K ∼= Rn × G0/K, where the group
G0/K is discrete with r0(G0/K) = ̺0(G). Hence, asdimG0/K = ̺0(G), by
Theorem 7.2.24. On the other hand, Rn is coarsely equivalent to Zn. Therefore,
Rn ×G0/K is coarsely equivalent to Zn ×G0/K, with

r0(Zn ×G0/K) = n+ ̺0(G).

Hence, asdim(Zn ×G0/K) = n+ ̺0(G), by Theorem 7.2.21. This gives

asdimG = asdimG/K = asdim(Rn×G0/K) = asdim(Zn×G0/K) = n+̺0(G).
(10.8)

As a by-product, we obtain also a new self-contained proof of Theorem 10.2.1
by comparing (10.4) and (10.8).

10.2.2 Monotonicity of dim and asdim under monos and

epis of LCA

It is a well known fact that the monomorphisms in the category LCA are
the injective continuous homomorphisms, while the epimorphisms are the con-
tinuous homomorphisms with dense image [53].

The following theorem establishes monotonicity of the dimension function
dim along monomorphisms in LCA.

Theorem 10.2.10. If f : H → G is a monomorphism in LCA, then dimH ≤
dimG.

Proof. Let f : H → G be a monomorphism in LCA, i.e., injective continuous
homomorphism. Let us denote by c(G) and c(H) the connected components of
the identity in the topological groups G and in H, respectively. Since dimH =
dim c(H), dimG = dim c(G) (Theorem 7.2.19) and f(c(H)) ≤ c(G), we can
assume without loss of generality that H = c(H) and G = c(G) are connected.
Therefore, H = Rn×K, where n ∈ N and K is a compact connected group. As
f is injective, its restriction to K gives a topological isomorphism K ∼= f(K),
since K is compact. Hence, dimK = dim f(K).

The additivity of the dimension function dim (Theorem 10.2.2) gives

dimH = dimK + dimH/K and dimG = dim f(K) + dimG/f(K).

For the sake of brevity let G1 = G/f(K). In order to prove that dimH ≤ dimG
it suffices to check that n = dimH/K ≤ dimG1, where the equality comes from
the isomorphism H/K ∼= Rn.

The injective continuous homomorphism f : H → G gives rise to the contin-
uous injective homomorphism (i.e., a monomorphism) f ′ : H/K → G1. Since
H/K ∼= Rn we shall simply write f ′ : Rn → G1. We have to prove that
n ≤ dimG1.

As G1 is connected, G1 = Rm×C, for some m ∈ N and a connected compact
abelian group C. Let D = Ĉ and s = r0(D) = dimC. Then, by Theorem 10.2.2,

dimG1 = m+ dimC = m+ s. (10.9)
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Taking the dual of f ′ we get an epimorphism

h : Rm ×D → Rn

in LCA, i.e., h(Rm ×D) is dense in Rn. Let us consider the following commu-
tative diagram

D
g //� _

j

��

Rn/l(Rm)

Rm ×D h // Rn

q

OO

Rm,V6

i

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙
l

OO

where j and i are the canonical inclusions, q is the quotient map, l = h ◦ i, and
g = q ◦ h ◦ j. Denote by p : Rm ×D → D the canonical projection map. Since
both h and q are epimorphisms, g ◦p = q ◦h is an epimorphism and thus so it is
g. The restriction l : Rm → Rn of h is a continuous homomorphism. But since
both groups are divisible and torsion-free, it is also Q-linear. By continuity of
h, we deduce that l is actually R-linear. So, l(Rm) is a subspace of Rn with
dimR l(Rm) ≤ m. Hence, for U = Rn/l(Rm) one obviously has dimR U ≥ n−m.

Let s′ = r0(g(D)) ≤ s. Then

s ≥ s′ ≥ dimR U ≥ n−m. (10.10)

We only need to check the middle inequality. To this end assume that that
F is a free subgroup of g(D) of rank s′. Then the R-rank of F is at most s′,
i.e., the R-linear span W of F is isomorphic to Rk, with k ≤ s′. Since W is the
R-linear span of F and since g(D) is contained in the Q-linear span of F (as F
is a maximal rank free subgroup of g(D)), we deduce that W contains g(D), as
Rn/l(Rm) is torsion-free.

By the density of g(D) in U , W is dense in U , so W = U , so k = dimU .
Thus,

s ≥ s′ ≥ k = dimR U ≥ n−m,

which proves (10.10). Now (10.9) gives the desired inequality dimG1 ≥ n.

Remark 10.2.11. Theorem 10.2.10 shows the impact of monomorphisms on
the dimensions of their domain and codomain (namely, the dimension cannot
properly decrease). A careful analysis of the proof shows that in the case s >
0 the density of g(D) in U implies actually a strict inequality s′ > k that
leads to a strict inequality dimG > dimH. This suggest the question when
dimG = dimH. Following the proof, one can deduce that dimG = dimH
implies s = 0, so both connected components (after taking the quotient with
respect to a pair of isomorphic compact connected subgroups) become affine
groups Rm and Rn, respectively. As m = n, this is possible only if the initial
monomorphism f : H → G indices a topological isomorphism between c(H) and
c(G). Resuming, if f : H → G is monomorphism between locally compact abelian
groups, then dimH = dimG if and only if f |c(H) : c(H) → c(G) is topological
isomorphism.
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Taking the duals we obtain mononicity of asdim along epis in LCA.

Corollary 10.2.12. If f : H → G is an epimorphism in LCA, then asdimH ≥
asdimG. Moreover, r0(H) ≥ asdimH.

Proof. Since the Pontryagin duality functor takes epimorphism to monomor-
phism, f̂ : Ĝ → Ĥ is a monomorphism in LCA. By the previous theorem,
dim Ĝ ≤ dim Ĥ. Now Theorem 10.2.1 applies.

As for the second inequality, note that idH : (H, τdis)→ H is an epimorphism
and thus asdimH ≤ asdim(H, τdis) = r0(H), where the last equality is provided
by Theorem 7.2.24.

The same conclusion can be deduced without any recourse to [70], by us-
ing only standard facts from the structure theorem of locally compact abelian
groups. Indeed, if H is discrete, then asdimH = dim Ĥ = r0(H), since Ĥ is
compact. We can then assume that H is not discrete and thus one has either
r0(H) = 0 or r0(H) ≥ c ([53]), where c denotes the cardinality of the continuum.
Hence, if r0(H) > 0, then r0(H) ≥ c ≥ asdimH. On the other hand, Corollary
10.2.8 implies that asdimH = 0 whenever r0(H) = 0.

In the non-abelian case the above corollary strongly fails even for discrete
groups as Example 7.2.23 shows.

The inequality from Corollary 10.2.12 can be strict even when H and G
have the same underlying group and f is the identity of that group. In fact
the group R of real numbers has asdimR = 1 with the usual topology, but
asdim(R, τdis) =∞.

Corollary 10.2.13. Let G be an abelian group and δ and τ be two locally
compact topologies on it. If δ ⊆ τ , then

dim(G, τ) ≤ dim(G, δ) and asdim(G, τ) ≥ asdim(G, δ).

Proof. It is a straightforward application of Theorem 10.2.10 and Corollary
10.2.12 since idG : (G, τ)→ (G, δ) is a bimorphism.

Question 10.2.14. Let G be an abelian group and τ ⊆ δ two group topologies on
it. Provide properties of (G, τ) and (G, δ) necessary to conclude asdim(G, τ) ≤
asdim(G, δ). What about the case when δ is discrete?

Because of the Example 10.1.2(b), we cannot have a positive answer even
for pairs of locally precompact group topologies (i.e., group topologies having
locally compact completion) τ ⊆ δ with δ discrete. Note that the specific
properties of the group G = Z2∞ are not fully exploited in the mentioned
example. Indeed, in both items of Example 10.1.2 one only needs a dense non-
compact subgroup G of a compact group K that is compactly generated; for
item (b) one needs additionally G to be torsion. It is easy to see that every
infinite topological subgroup G of the n-dimensional torus Tn contained in the
rational torus (Q/Z)n has both these properties (with respect to the topology
τ induced by Tn), so fits both (a) and (b).

The next more generic example provides again a counter-example to Corol-
lary 10.2.13 and shows more cases when the asymptotic dimension is not mono-
tone under taking dense subgroups (i.e., can decrease under bimorphisms) in
the category of all precompact abelian groups.
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Example 10.2.15. We already saw in Corollary 10.1.4 that every infinite com-
pact metrisable group K contains a dense countable subgroup G such that
asdimG > 0 = asdimK (so the asymptotic dimension decreases under the
bimorphism G →֒ K).

In case the torsion subgroup Tor(K) of K is dense, one can choose G such
that asdim(G, τdis) = 0 < asdimG, where G carries the topology induced by
K (so the bimorphism idG : (G, τdis) → G strictly increases the asymptotic
dimension). Indeed, in this case G in the proof of Corollary 10.1.4 can be
chosen to be also torsion, since K is hereditarily separable and Tor(K) is dense.
This ensures asdim(G, τdis) = 0, in view of Fact 7.2.16.

Note that if Tor(K) is simply infinite (not necessarily dense in K), then G
can be built as above, but it will only be dense in the compact subgroup Tor(K)
of K (not necessarily in K).

The example provided by Corollary 10.1.4 does not allow us to achieve arbi-
trary gaps between the decreasing asymptotic dimensions. In order to do that
one can fix a non-trivial metrisable connected locally compact abelian group H.
Clearly 0 ≤ asdimH = nR(H) < ∞, thanks to Corollary 10.2.4. According to
Theorem 1.2.4, H = Rn×K, for a compact connected group K and n = nR(H).
Then

H/Zn ∼= Rn/Zn ×K ∼= Tn ×K

is a compact connected metrisable abelian group, hence it is monothetic, i.e.,
H/Zn has a dense cyclic subgroup C = 〈c〉 ([98, 53]). Let q : H → H/Zn be the
quotient map and let D = q−1(C), i.e., D = Zn + 〈h〉, where h ∈ H is chosen
with q(h) = c. Then D is torsion-free, as C ∼= Z (algebraically) is torsion-free
and Zn is torsion-free. Since D is finitely generated, this yields D ∼= Zn+1.
Moreover, D is a dense subgroup of H. Indeed, if K = D, then K is a closed
subgroup of H containing ker q, hence q(K) is closed in H/Zn [53]. Since q(K)
contains the dense subgroup C, this yields q(K) = H/Zn. As K ≥ ker q, this
yields K = H. As r0(D0) = n+ 1, while r0(H) = c, one can find a free abelian
subgroup F of H with F ∩D0 = {0} and with arbitrary free rank d = r0(F ) ≤ c.
Now the subgroup G = F ⊕D0 of H is dense and r0(G) = d+n+1. Therefore,
asdim(G, τdis) = d + n + 1, if d is finite; otherwise, asdim(G, τdis) = ∞. By
varying d ∈ N ∪ {∞} one can obtain all possible gaps between asdim(G, τdis)
and n = asdimH.

10.2.3 Metrisability results

Now we see that other properties are also nicely preserved under the action
of Pontryagin functor, such as metrisability.

Theorem 10.2.16. Let (G, τ) be a locally compact abelian group. Then the
following properties are equivalent:

(a) (G, τ) is metrisable;

(b) (Ĝ, E
rC(Ĝ)) is metrisable.

If the previous conditions hold, then (Ĝ, EL) is metrisable.

Proof. It is well-known that G is metrisable if and only if Ĝ is σ-compact [98].

Since Ĝ is locally compact, Ĝ is σ-compact if and only if Ĝ is hemicompact, i.e.,
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C(Ĝ) has a countable cofinal subset with respect to inclusion. Finally, Lemma

7.2.14 guarantees that this property is equivalent to (Ĝ, E
rC(Ĝ)) being metrisable.

As for the second statement, it is enough to remember that OB = rC(Ĝ) if

Ĝ is locally compact and σ-compact (see Example 7.1.9).

We want to discuss whether it is possible to extend Theorem 10.2.1 to pairs
of infinite-dimensional properties of locally compact abelian groups. A metric
space X has property C if, for every sequence {εn}n∈N of positive real numbers,
there exists an open cover U of X such that U =

⋃
n∈N Un, where Un is a

pairwise disjoint family with diamU < εn, for every n ∈ N and U ∈ Un (see
[76]). Dranishnikov, in [69], introduced the large-scale counterpart of property
C. A metric space X has asymptotic property C if, for any increasing sequence
{εn}n∈N of positive real numbers, there exists a cover U of X such that U =⋃
n∈N Un, where Un is uniformly bounded and εn-separated (i.e., Eεn -separated),

for every n ∈ N.
Let G be a locally compact abelian group. Theorem 10.2.16 implies that G

is small-scale metrisable if and only if Ĝ is large-scale metrisable. Then it is
natural to ask if it is true that such a group G has property C if and only if Ĝ
has asymptotic property C. However, this is not true, as the following example,
kindly provided by Takamitsu Yamauchi, shows. In fact, let G = ΠNT, and
thus Ĝ =

⊕
N Z. Then Ĝ has asymptotic property C ([172]), while G has not

property C (it is actually strongly infinite-dimensional).

Following this idea, let us end this section by proposing another parallelism
between small-scale and large-scale properties of groups. Before stating the re-
sult, let us just note that the following properties are equivalent for an arbitrary
coarse group (G, EI):

(a) G is locally finite a coarse group;
(b) G has bounded geometry;
(c) I ⊆ [G]<ω.

Note that a similar equivalence can be stated also for arbitrary unitary magmas
endowed with left (right) magmatic entourage structures.

Proposition 10.2.17. Let G be a locally compact abelian group. Then the
following properties are equivalent:

(a) G is compact;

(b) Ĝ is locally finite (as a coarse space);

(c) Ĝ has bounded geometry.

Proof. Item (a) holds if and only if Ĝ is discrete ([138]). If Ĝ is discrete, then
every compact subset is finite. Conversely, if every compact subset is finite,
then Ĝ is discrete, since Ĝ is locally compact, and thus G is compact. Finally,
the equivalence (b)↔(c) holds in general.

The previous proposition reinforces the idea that local finiteness is the large-
scale counterpart of sequential connectedness, which was already suggested in
Theorem 2.4.2.
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10.3 The Bohr functor and Hernández Paradigm

All groups in this section are abelian.

10.3.1 Glicksberg groups

In this section we study the preservation (and transformation) of the asymp-
totic dimension along the Bohr functor.

Let (G, τ) be a topological abelian group. We define its von Neumann kernel
to be

n(G) = {1}
τ+

=
⋂
{kerχ | χ ∈ Ĝ}.

The von Neumann kernel is a closed subgroup of G which is compact in G+

(since it is actually indiscrete in G+) and it is another example of a functorial
subgroup (see §10.2). A group G is called maximally almost periodic, briefly
MAP, (respectively, minimally almost periodic, briefly MinAP) if n(G) = {1}
(respectively, n(G) = G). It is easy to see that a group G is MAP (respectively,
MinAP) if and only if G+ is Hausdorff (respectively, indiscrete).

Following the current terminology in duality theory of abelian groups, we
say that a topological group G respects compactness, if G satisfies the equality
C(G) = C(G+) (this term is used for non-abelian groups as well, [155]). This
phenomenon was first revealed in the following well-known theorem of Glicks-
berg.

Theorem 10.3.1 ([87]). Every locally compact abelian group respects compact-
ness.

The following notion, inspired by Glicksberg, is given below in three options,
of which the second one is the usually known one. We propose the other two
since they are closely related to the topic of this section.

Definition 10.3.2. An abelian topological group G is said to be

(a) a Glicksberg (group), if G is MAP and respects compactness.
(b) a weakly Glicksberg (group), if G respects compactness;
(c) a generalised Glicksberg (group), if the group G/ n(G) is Glicksberg.

Let G (wG , G ∗, respectively) denote the class of Glicksberg groups (weakly
Glicksberg groups, generalised Glicksberg groups, respectively). Clearly

G = wG ∩MAP = G
∗ ∩MAP ⊆ wG ⊆ G

∗. (10.11)

We show in Corollary 10.3.14, that for topological abelian group with infinite
compact sets, the notions ‘weakly Glicksberg’ and ‘Glicksberg’ are equivalent.

There are many examples of Glicksberg groups beyond the class of locally
compact abelian groups, for instance all nuclear groups are Glicksberg (see [14]).
The class of nuclear groups, introduced by Banaszczyk, is stable under arbitrary
direct products and contains all locally compact abelian groups. Therefore, G

contains also many non-locally compact groups (e.g., RN). A large class of
Glicksberg groups was singled out in [6] (namely, the Schwartz groups, intro-
duced in [8]).
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10.3.2 Groups respecting relative compactness

In [95], Hernández proved that, for a locally compact abelian group G,
dimG = dimG+. In the sequel we discuss whether a similar equality holds
for the asymptotic dimension for locally compact abelian groups and eventu-
ally larger classes of groups (we briefly refer to this property as Hernández
Paradigm). First, we introduce a class of topological abelian groups G for which
the equality asdimG = asdimG+ trivially holds.

Proposition 10.3.3. For a topological abelian group G the following equivalent
conditions hold:

(a) idG : G→ G+ is an asymorphism;
(b) ErC(G)) = ErC(G+);
(c) rC(G) = rC(G+).

If G is weakly Glicksberg, then it satisfies all three properties.

Proof. The implications (c)→(b)→(a) are trivial. The implication (a)→(c) fol-
lows from Propositions 7.2.1 and 7.2.5. The last assertion follows from the
fact that C(G) = C(G+) when G is weakly Glicksberg. This equality obviously
implies (c).

Definition 10.3.4. We say that a topological abelian group G belongs to the
class B if it satisfies the equivalent conditions of Proposition 10.3.3.

By the conclusion of the above proposition, B contains wG .

Let f : G→ H a continuous homomorphism between two topological abelian
groups G,H ∈ B. Then f : (G, ErC(G))→ (H, ErC(H)) and f

+ : (G+, ErC(G+))→
(H+, ErC(H+)) are bornologous. Moreover, Proposition 10.3.3(a) implies that f
is effectively proper/an asymorphism/a coarse equivalence if and only if f+ has
the same property.

G
idG−−−−→ G+

f

y
yf+

H
idH−−−−→ H+

The following result is an immediate corollary of Proposition 10.3.3.

Corollary 10.3.5 (Hernández Paradigm). Every topological abelian group G
from the class B satisfies asdimG = asdimG+. In particular, this holds true if
G is Glicksberg.

Remark 10.3.6. A careful analysis of this corollary and Definition 10.3.4 above
suggests that the class B is maybe somewhat narrow compared with the class
H of all topological abelian groups G with the relevant property asdimG =
asdimG+. Indeed, the above corollary can be resumed in these terms in the
concise formula H ⊇ B ⊇ G that immediately follows from Definitions 10.3.2,
10.3.4 and Proposition 10.3.3. The reason we downplay the use of the precise
class H is that while we have a quite precise description of the smaller class B,
we are not aware of any reasonable description of the larger class H .

Let us state the special case of Question 10.2.14, with τ = δ+ ⊆ δ.
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Problem 10.3.7. Study the class H+ of topological abelian groups G with
asdimG ≥ asdimG+. How large is H+? Does it coincide with the class of all
topological abelian groups?

The class H+ contains all MinAP abelian groups G, as asdimG+ = 0.

Since locally compact abelian groups are Glicksberg, from Corollaries 10.2.12
and 10.3.5 and Theorem 10.2.1, we obtain the following result.

Corollary 10.3.8. Let G be a locally compact abelian group. Then we have
dim Ĝ = asdimG = asdimG+ ≤ r0(G).

Since the Bohr compactification commutes with arbitrary products [102], B

is stable for them.

The next example illustrates how the class B is placed in the category all
abelian topological groups; more precisely, item (a) shows how big is B, while
item (b) and Theorem 10.3.10 show how big is the complement of B.

Example 10.3.9. (a) Obviously, B contains all precompact groups. Since ev-
ery abelian group admits a precompact group topology ([53]), this shows
that every abelian groups admits a group topology τ such that (G, τ) ∈ B.

(b) Let G be a finitely generated group endowed with a non-compact minimally
almost periodic (MinAP) topology. Then G /∈ B. Indeed, G+ is compact
(actually, indiscrete), so asdimG+ = 0. On the other hand, G is non-
compact, so asdimG > 0, by Proposition 7.2.17. So G 6∈ B, by Corollary
10.3.5.
The same conclusion holds if G is only compactly generated, instead of
being finitely generated.

Now we show that every infinite abelian group, when equipped with appro-
priate Hausdorff group topology, does not belong to B.

Theorem 10.3.10. An abelian group G admits a Hausdorff group topology τ
such that (G, τ) 6∈ B if and only if G is infinite.

Proof. Let G be an infinite group. The proof will make use of of the Zariski
topology ZG of G (see [57] for its definition and properties, although its roots
go back to Bryant and as far back as Markov). Although (G,ZG) is not a
topological group, ZG is T1-topology that makes left and right translates, as
well as the inversion, continuous. If (G,ZG) is connected, then G admits a
MinAP group topology [59]. Since compact groups are MinAP only when they
are trivial, we deduce that (G, τ) is not compact. On the other hand, (G, τ+)
is indiscrete, hence compact. Therefore, by Proposition 10.3.3(c), (G, τ) 6∈ B.

In the general case, the connected component K = c(G) of G equipped with
the Zariski topology is a finite index subgroup of finite exponent [57] of G and K
admits a MinAP group topology τ , as (K,ZK) is connected. Equip G with the
group topology τ∗ having (K, τ) as an open topological subgroup. Then (τ∗)+

has K as an open indiscrete (so compact) subgroup, while K is not compact
in τ∗, as the induced topology coincides with the MinAP topology τ . Hence,
(G, τ) 6∈ B.

If G is finite, then every Hausdorff topology τ on G is discrete and τ+ = τ ,
so (G, τ) ∈ B.
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10.3.3 Connections between B and Glicksberg’s proper-

ties

Proposition 10.3.3(c) implies that the class G is contained in B. According
to the following proposition, these two classes coincide within the realm of MAP
groups.

Proposition 10.3.11. Let G be a topological abelian group which is MAP. Then
G ∈ B if and only if C(G) = C(G+) (which is equivalent to G ∈ G ).

Proof. Assume that G ∈ B and thus rC(G) = rC(G+). We want to show
that C(G) = C(G+). Since τ+ ⊆ τ , it is trivial that C(G) ⊆ C(G+). If K ∈
C(G+), then, in particular, it is closed in τ+ since G+ is Hausdorff, and thus
in τ . Moreover, the assumption implies that K is relatively compact in G and
thus compact since it is closed. The opposite implication has already been
discussed.

In order to give a characterisation of the class B beyond the class of MAP
groups, we make use of the classes G ∗ and wG .

Theorem 10.3.12. Let (G, τ) be a Hausdorff abelian group. Then the following
conditions are equivalent:

(a) G ∈ B;
(b) G is a generalised Glicksberg group and n(G) is compact in G.

Proof. Let us consider the following diagram,

G
idG //

q

��

G+

q+

��
G/ n(G)

idG/ n(G) // (G/ n(G))+ = G+/ n(G),

(10.12)

where q : G→ G/ n(G) and q+ : G+ → (G/ n(G))+ = G+/ n(G) are the quotient
maps. Note that, n(G) is always compact in G+. Moreover, if we assume either
(a) or (b), we claim that n(G) is compact also in G. In item (b) it is actually
required. If we assume (a), rC(G) = rC(G+) and then n(G) is relatively compact
in G. Moreover, since n(G) is closed in G+ and τ+ ⊆ τ , n(G) is closed also in
G and thus it is compact.

Thanks to Corollary 10.0.1, if we assume (a) or (b) and thus n(G) is com-
pact both in G and in G+, we can apply Proposition 7.2.11 to both q and q+,
and claim that they are coarse equivalences. Hence, since the diagram (10.12)
commutes, idG is a coarse equivalence (equivalently, since it is bijective, an
asymorphism) if and only if idG/ n(G) is a coarse equivalence (equivalently, an
asymorphism). Then, Proposition 10.3.3 implies that G ∈ B if and only if
G/ n(G) ∈ B. Since the group G/ n(G) is MAP, G/ n(G) ∈ B if and only if
G/ n(G) ∈ G by Proposition 10.3.11.

Corollary 10.3.13. Let G be a Hausdorff abelian group. If G is weakly Glicks-
berg, then G ∈ B and n(G) is finite.
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Proof. According to Proposition 10.3.3, weakly Glicksberg groups G belong to
B, i.e., satisfy rC(G) = rC(G+) and n(G) is compact, by Theorem 10.3.12.
Suppose that G is a weakly Glicksberg group with infinite von Neumann kernel.
Since n(G) is infinite by assumption, there exists a subset C of n(G) which is not
closed in G, and thus C ∈ rC(G) \ C(G). However, n(G) is actually indiscrete in
G+, hence C ∈ C(G+). Therefore, C(G+) 6= C(G), a contradiction. This proves
that n(G) is finite.

Corollary 10.3.14. For G a topological abelian group with infinite compact
sets, the following are equivalent:

(a) G is a weakly Glicksberg group;
(b) G is a Glicksberg group.

Proof. The implication (b)→(a) is clear, as Glicksberg groups are weakly Glicks-
berg group (see (10.11)). The same equation will ensure the implication (a)→(b),
if we check that a weakly Glicksberg G is MAP. So we have to prove that n(G)
is trivial.

Assume that G is not MAP, so n(G) 6= {0} and n(G) is finite, by Theorem
10.3.12. Fix an infinite compact subset K of G. As F = n(G) \ {0} is finite
and 0 6∈ F , we can choose a symmetric closed neighbourhood U of 0, such that
(U − U) ∩ F = ∅. Pick an accumulation point x ∈ K. Replacing K by K − x,
we can assume without loss of generality that 0 is an accumulation point of
the compact set K. Then 0 is an accumulation point also of the compact set
K1 = K ∩ U . Moreover, the choice of U yields

(K1 −K1) ∩ F = ∅, so K1 ∩ (K1 + F ) = ∅.

Now let
K0 = (K1 \ {0}) ∪ F.

As 0 ∈ K1 \ {0}, we deduce that 0 ∈ K0. On the other hand, obviously 0 6∈ K0.
Hence, K0 is not closed. Therefore, K0 is not compact in G.

On other hand, the canonical map q : G → G/ n(G) sends K0 onto q(K1),
i.e., q(K0) = q(K1) is compact both in G/ n(G) and (G/ n(G))+. Therefore,
q−1(q(K0)) is compact both in G and G+. Since G+ carries the initial topology
with respect to q : G → (G/ n(G))+, the compactness of q(K0) in (G/ n(G))+

yields the compactness ofK0 in G
+. Therefore, G does not respect compactness.

This contradicts our assumption that the group G is weakly Glicksberg.

Theorem 10.3.12 and its corollaries witness the importance of the following
classes of topological abelian groups.

Definition 10.3.15. Let G be a topological abelian group. We say that G is a
CMAP (respectively, AMAP) if n(G) is compact (respectively, finite).

To be precise, the term AMAP, proposed in [113], was more restrictive,
imposing by definition additionally also the non-MAP property. This slightly
modified version, including in particular the class MAP, is adapted for our
exposition.

In these terms Theorem 10.3.12 and Corollary 10.3.13 simply say that

B = G
∗ ∩ CMAP and wG ⊆ B ∩AMAP.
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These equality and inclusion can be inserted in the following longer chain of
inclusions and equalities extending (10.11):

G = wG∩MAP = G
∗∩MAP

(1)

⊆ wG
(2)

⊆ B∩AMAP
(3)

⊆ B = G
∗∩CMAP ⊆ G

∗.
(10.13)

The last inclusion is proper (witnessed by any MinAP group). The proper-
ness of the inclusions (1)–(3) will be discussed in detail §10.3.4. Here we only
mention that, due to Corollary 10.3.14, the inclusion (1) can be proper only
due to the existence of an AMAP group G that is not MAP and has no infinite
compact sets. We are not aware if such groups exist (see the discussion in the
next section), anyway for these groups one has:

Corollary 10.3.16. For G a topological abelian group without infinite compact
sets, the following properties are equivalent:

(a) G is a weakly Glicksberg group;
(b) G ∈ B and n(G) is finite;
(c) G ∈ B.

Proof. (a)→(b), by Theorem 10.3.12; the implication (b)→(c) is trivial.

Our blanket assumption gives rC(G) = C(G) = [G]<ω. Since rC(G+) =
rC(G) = [G]<ω, we deduce that C(G) = C(G+) = [G]<ω as well. Hence, G ∈ wG .
This proves the remaining implication (c)→(a).

The above corollary shows that within the class of groups without infinite
compact sets, both (2) and (3) become equalities.

Remark 10.3.17. In Corollary 10.3.14 we showed that the Glicksberg proper-
ties G and wG coincide within the class of groups with infinite compact sets.
There is a variant of Glicksberg property defined by means of convergent se-
quences (in place of compact sets): a MAP topological group G is said to have
the Schur property, if G and G+ have the same convergent sequences; more
precisely, if xn → x in G+, then also xn → x in G.

Unlike the case of the Glicksberg properties G and wG , it is well known
that imposing the Schur property on a not necessarily MAP Hausdorff topolog-
ical group G yields that G is MAP (see Propositions 19.2 and 19.3 of Xabier
Dominguez’s PhD thesis). A short proof of this fact was also kindly provided to
the authors by Vaja Tarieladze. (If a ∈ n(G), then the constant null sequence
(xn) converges to a in G+, so it must converge to a in G as well; hence a = 0,
as G is Hausdorff)

10.3.4 Questions

In this section we collect some open questions and problems.

According to Proposition 10.3.11, for a MAP group G, the equality rC(G) =
rC(G+) is equivalent to C(G) = C(G+). We are not aware whether this equiv-
alence holds in general, i.e., whether B = wG (according to Corollary 10.3.16,
this is true for groups G without infinite compact sets).

Question 10.3.18. Is the equality B = wG true? Equivalently, does rC(G) =
rC(G+) imply C(G) = C(G+), for every topological abelian group G?
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Clearly, wG = B precisely when both inclusions (2) and (3) in (10.13)
are equalities. Hence, a positive answer to this question is equivalent to the
conjunction of positive answers to Questions 10.3.19 and 10.3.20 given below
for the sake of completeness.

Question 10.3.19. Is the inclusion (2) in (10.13) an equality?

One can also ask about the inclusion (3) in (10.13), i.e.

Question 10.3.20. Does a Hausdorff abelian group G ∈ B with infinite von
Neumann kernel exist?

As already mentioned, the class B contains G which, in turn, properly con-
tains the class LCA. Indeed, all nuclear groups are Glicksberg ([14]), witness-
ing the huge gap between B and LCA. The chain (10.13) measures the gap
between the class B and the class G of Glicksberg groups. However, so far even
the ‘simpler’ question, namely whether such a gap exists at all (i.e., the problem
to distinguish the classes B and G ) seems to be open. It is equivalent to ask
(in a counter-positive form) whether all three inclusions (1)–(3) in (10.13) are
equalities simultaneously:

Question 10.3.21. Does there exist a non-Glicksberg group G ∈ B?

Equivalently (according to Theorem 10.3.12), one may ask how far is the
class of generalised Glicksberg groups G with n(G) compact from the class G

of Glicksberg groups. In these terms, we do not know even if there exists a
generalised Glicksberg groups G with compact and non-trivial n(G) (so that
G 6∈ G ) at all. Let us try to explain the difficulty of this, apparently ‘simplest’,
question.

It is not hard to realise that the class MinAP shares similar properties with
the class of connected groups (so MAP is associated with total disconnectedness,
while n(G) with is associated with c(G)). This is why one may expect that the
subgroup n(G) is MinAP (suggested by the fact c(G) is connected). To the
best of our knowledge this questions was raised by Lukásc in October 2004. A
natural way to find a counter-example was to build an AMAP non-MAP group.
The existence of such a topological abelian group (as well as its support, the
Prüfer group) was briefly conjectured in [52, Corollary 4.9], although no explicit
construction was given there, neither the specific term AMAP was used at that
time. The first examples were built by Lukásc [113] and Nguyen [124]. All known
constructions of these groups are quite entangled, using the powerful (yet rather
sophisticated) technique of T -sequence, created by Protasov and Zelenyuk [152].
Nevertheless, it turned out that AMAP non-MAP groups are quite profuse in
some sense. Namely, Gabriyelyan ([83]) proved that every abelian group with
non-trivial torsion subgroup Tor(G) admits an AMAP non-MAP group topology
(the restraint on Tor(G) is obviously necessary, as all finite subgroup of G are
contained in Tor(G)). This explains why the mere existence of an abelian group
G with non-trivial compact n(G) (regardless of the fact whether G/ n(G) ∈ G or
not) is highly non-trivial. We are not aware whether for the existing examples
of groups G with non-trivial finite n(G) satisfy G/ n(G) ∈ G .

Obviously, the compact-group coarse structure is too coarse to be useful
in some situations (e.g., when the group G itself is compact), this is why it
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makes sense to consider group ideals IG properly contained in rC(G), for a
topological group G. A good candidate can be the group ideal SG generated by
the converging sequences. Taking only finite unions of converging sequences, one
obtains an ideal, but in order to make it a group ideal, one has to add also finite
products of such unions. Then the assignment G 7→ (G, ESG

) will be a functorial
structure, as continuous homomorphisms f : G→ H preserve this kind of group
ideals, i.e., f : (G, ESG

)→ (H, ESH
) is bornologous. Call BS the class of groups

for which the Bohr functor induces an asymorphism idG : (G, ESG
)→ (G, ESG+ ).

It appears to be of some interest to investigate the connection of BS to the Shur
classes considered in Remark 10.3.17.



Part III

Coarse hyperspaces and
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Chapter 11

Coarse hyperspace,

connectedness and their

subspaces

11.1 Coarse hyperspaces

Metric hyperspaces can be generalised by defining both uniform and coarse
hyperspaces in a similar, but opposite way. Let (X, E) be a coarse space. Then
the family

exp E = cl({expE | E ∈ E})

(see (1.5) for the definition of the entourages expE), of entourages of P(X)
is a coarse structure called coarse hyperstructure and the pair (P(X), exp E) is
called coarse hyperspace. Thanks to the characterisation given in §3.3.3 and in
Remark 4.2.3, we can deduce that the coarse hyperstructure is actually a coarse
structure. However, for the sake of completeness, we prefer to give a direct proof
of this fact.

Proposition 11.1.1. If (X, E) is a coarse space, then exp E is a coarse struc-
ture.

Proof. It is trivial to check that ∆P(X) = exp∆X ∈ exp E , and that exp E is
closed under taking subsets and inverses (note that, for every E ∈ E , expE is
symmetric). Fix now two entourages of exp E and, without loss of generality,
we can assume that those are of the form expE and expF , for some E,F ∈
E . As for the closure under taking finite unions, it is enough to check that
expE ∪ expF ⊆ exp(E ∪ F ). Finally, if (Y, Z) ∈ expE ◦ expF , there exists
W ⊆ X such that (Y,W ) ∈ expE and (W,Z) ∈ expF , which implies that, in
particular,

Y ⊆ E[W ] ⊆ E[F [Z]] and Z ⊆ F [W ] ⊆ F [E[Y ]].

Thus expE ◦ expF ⊆ exp((E ◦ F ) ∪ (F ◦ E)) ∈ exp E .

179
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Let us note that the definition of coarse hyperspace agrees with the metric
hyperspace. In fact, it is easy to check that, if (X, d) is a metric space, we have
exp(Ed) = EdH , where dH is the Hausdorff metric induced on P(X) by d.

Recall that ı : X → P(X) is the map that associates to every point x ∈
X the singleton {x}. The following fact, concerning the map just defined is
straightforward.

Fact 11.1.2. If (X, E) is a coarse space, then ı : X → P(X) is an asymorphic
embedding.

Let f : X → Y be a map between sets. Then there is a natural extension
exp f : P(X) → P(Y ), defined as exp f(A) = f(A), for every A ⊆ X. The
following result can be easily verified.

Proposition 11.1.3. Let f : X → Y be a map between coarse spaces. Then

(a) f is bornologous if and only if exp f is bornologous;
(b) f is effectively proper if and only if exp f is effectively proper;
(c) f is an asymorphic embedding if and only if exp f is an asymorphic embed-

ding;
(d) f is an asymorphism if and only if exp f is an asymorphism;
(e) f is a coarse equivalence if and only if exp f is a coarse equivalence.

Proposition 11.1.3 implies that we have a functor exp: Coarse → Coarse

that associates to every coarse space its coarse hyperspace.

Let us consider another consequence of Proposition 11.1.3. LetX be a coarse
space and Y be a subspace of X. Then the inclusion map j : Y → X is an asy-
morphic embedding. Thanks to Proposition 11.1.3, also exp j : expY → expX
is an asymorphic embedding, and thus we can identify the coarse hyperspace of
Y as a coarse subspace of the coarse hyperspace of X.

It is useful to study also some coarse subspaces of coarse hyperspaces. In
fact, for example, we will see that the coarse hyperspace is not connected in
general (see Proposition 11.1.10 and Remark 11.1.11) and, moreover, it could
be highly disconnected even in simple cases (Corollary 11.2.2 and Proposition
11.3.9).

Definition 11.1.4. Let (X, E) be a coarse space and A(X) be a family of
subsets of X. Then the A-coarse hyperspace A-expX is the coarse subspace
A-expX = (A(X), exp E|A(X)).

We will discuss in particular some special subspaces of coarse hyperspaces
induced by size notions. We have already introduced the notions of boundedness,
largeness and smallness. In the next definition we add more size properties.

Definition 11.1.5 ([151, 64]). Let (X, E) be a coarse space. A subset A of X
is called:

(a) slim in X if it is not large in X;
(b) piecewise large in X if it is not small in X;
(c) meshy in X if there exists E ∈ E such that, for every x ∈ X, E[x] \ A 6= ∅

(equivalently, X \A is large in X).

Let ♭(X), LA(X), SM(X), SL(X), PL(X), andME(X) be the families of
all non-empty bounded, large, small, slim, piecewise large, and meshy subsets
of X, respectively.
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A map between f : X → Y is LA-preserving if f(LA(X)) ⊆ LA(Y ). Sim-
ilarly, the notions of ♭-preserving, SM-preserving, SL-preserving, and PL-
preserving maps can be introduced (see [64]).

Let us recall the following result concerning some of the previously intro-
duced families defined by sizes.

Theorem 11.1.6. A coarse equivalence is ♭-preserving, LA-preserving, SM-
preserving, SL-preserving, and PL-preserving.

Proof. The first assertion is trivial since every coarse equivalence is, in particu-
lar, a boundedness preserving map between the induced pre-bornological spaces.
For a proof of the other claims we refer to [64].

Remark 11.1.7. Let (X, E) be a coarse space. Then LA-expX is connected.
In fact, because of the definition of largeness, we have LA(X) = QexpX(X).
On the contrary, the ♭-coarse hyperspace is not connected in general. Let us
focus a bit more on the ♭-coarse hyperspace. We claim that QexpX(ı(X)) =
♭(X). In fact, a non-empty subset A ⊆ X belongs to ♭(X) if and only if there
exists E ∈ E and x ∈ A such that A ⊆ E[x], which is equivalent to A ∈
expE[{x}]. Since connectedness is preserved under taking asymorphic images
and subspaces, ♭-expX is connected if and only if X is connected.

Proposition 11.1.8. Let (X, E) be a connected coarse space. Then the following
properties are equivalent:

(a) X is unbounded;
(b) every finite subset of X is small in X;
(c) there is a singleton of X which is small in X;
(d) LA-expX is unbounded.

Proof. To prove the implication (a)→(b) pick x ∈ X and an entourage E ∈ E ,
our aim is to prove that Y = X \ E[x] is large in X. Since X is unbounded,
there exists y ∈ Y . As X is connected, {(y, x)} ∈ E , and note that E[x] = F [y],
where F = {(y, x)} ◦ E. Hence F [Y ] = X. This proves that all singletons of X
are small. We are done as finite unions of small sets are small ([144]).

The implication (b)→(c) is trivial.

Assume now item (c) and fix a point x such that {x} is small in X. We
claim that, for every E = E−1 ∈ E , expE[X] 6= LA(X) and so LA-expX is
unbounded. Pick an arbitrary entourage E = E−1 ∈ E . Since {x} is small,
X \ E[x] ∈ LA(X). However, X \ E[x] /∈ expE[X].

Let us prove now the implication (d)→(a). If X is bounded, then LA(X) =
P(X)\{∅} and it is easy to check that every singleton is large in LA-expX and
so, LA-expX is bounded.

The equivalence of items (a), (b) and (c) of Proposition 11.1.8 was proved
in [64].

Remark 11.1.9. Let us add some remarks on Proposition 11.1.3. Let f : X →
Y be a map between coarse spaces and A(X) and B(Y ) be two family of subsets
of X and Y , respectively.
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(a) If f is bornologous and exp f(A(X)) ⊆ B(Y ), then exp f |A(X) : A-expX →
B-expY is defined and thus bornologous. In particular, this implication
holds for the families ♭(X) and ♭(Y ). Hence, we have a functor

♭-exp: Coarse→ Coarse.

(b) Recall that S(X) denotes the family of singletons of the coarse space X.
If S(X) ⊆ A(X), S(Y ) ⊆ B(X), and exp f |A(X) : A-expX → B-expY is
bornologous, then f : X → Y is defined and then bornologous since it is the
restriction of exp f to S(X).

(c) Suppose that f is a coarse equivalence and let g : Y → X be a coarse
inverse of f . Then Theorem 11.1.6, applied to both f and g, implies that
the restrictions

exp f |♭(X) : ♭-expX → ♭-expY,

exp g|♭(Y ) : ♭-expY → ♭-expX,

exp f |LA(X) : LA-expX → LA-expY,

exp g|LA(Y ) : LA-expY → LA-expX,

exp f |SM(X) : SM-expX → SM-expY,

exp g|SM(Y ) : SM-expY → SM-expX,

exp f |SL(X) : SL-expX → SL-expY,

exp g|SL(Y ) : SL-expY → SL-expX,

exp f |PL(X) : PL-expX → PL-expY, and

exp g|PL(Y ) : PL-expY → PL-expX

are defined and thus coarse equivalences in view of Proposition 11.1.3(e).

Proposition 11.1.10. Let (X, E) be a coarse space and A(X) ⊆ P(X) be a
family such that S(X) ⊆ A(X). Then the following properties are equivalent:

(a) A-expX is connected;
(b) A(X) ⊆ ♭(X).

Proof. Let Y ∈ A(X) and suppose that Y /∈ ♭(X). If Y = ∅, then A-expX
is not connected, in fact QexpX(∅) = {∅} (see also Remark 11.1.11). If Y is
non-empty and then unbounded, it cannot be contained in a ball centred in a
singleton. Conversely, for every pair of non-empty bounded subsets A and B
of X, there exists an entourage E such that A ⊆ E[B] and B ⊆ E[A]. In fact,
pick two points x ∈ A and y ∈ B, and, since A and B belong to ♭(X), there
exist Ex ∈ E and Ey ∈ E such that A ⊆ Ex[x] and B ⊆ Ey[y]. Moreover,
since X is connected, F = {(x, y), (y, x)} ∈ E . Hence it is enough to define
E = F ◦ (Ex ∪ Ey).

Note that Proposition 11.1.10 is the large-scale counterpart of Proposition
1.3.2, which holds in the realm of uniform spaces. Also in this case, the request
that S(X) ⊆ A(X) is justified in order to have the corestriction ı : (X, E) →
A-expX defined and so an asymorphic embedding.

Remark 11.1.11. Let us note some basic results concerning the number of
connected components of the coarse hyperspace. Recall that dscX denote the
number of connected components of a coarse space X.
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(a) Since, for every coarse space (X, E) and every E ∈ E , E[∅] = ∅, QexpX(∅) =
{∅} and thus dsc expX ≥ 2 provided that X is non-empty. Moreover, it is
trivial that dsc expX ≤ |expX| = 2|X|.

(b) A coarse space (X, E) has dsc expX = 2 if and only if X is non-empty and
bounded. Suppose that X is non-empty and bounded. Since X is non-
empty, item (a) implies that dsc expX ≥ 2. Moreover, there exists E ∈ E
such that, for every x ∈ X, expE[{x}] = P(X) \ {∅}. Conversely, item (a)
implies that X has to be non-empty. Moreover, for every x ∈ X, {x} and
X have to be in the same connected component of expX, which means that
there exists E ∈ E such that X ⊆ E[x] and thus the claim follows.

(c) For every coarse spaceX, if Y is a coarse subspace ofX, then dscX ≥ dscY .
In particular, it is true that dsc expX ≥ dsc expY .

Later in this chapter we will compute the number of connected components
of the coarse hyperspace for particular classes of coarse spaces. In particular,
we show that the upper bound provided in Remark 11.1.11(a) can be achieved.

Remark 11.1.12. Since it is going to be very useful later on, let us characterise
the coarse hyperspace in terms of balleans (§3.2). Let B = (X,P,B) be a
ballean. Then the hyperballean expB = Bexp EB

can be characterised as follows:
expB = (P(X), P, expB), where, for every Y ⊆ X, and r ∈ P ,

expB(Y, r) = {Z ⊆ X | Y ⊆ B(Z, r) and Z ⊆ B(Y, r)}.

If B = (X,P,B) is a ballean and A(X) is a family of subsets of X, then the
A-hyperballean A-expB is the subballean A-expB = expB|A(X). In the sequel
we will use the characterisation with coarse spaces or balleans interchangeably.

The notion of hyperballean was introduced in [55]. The authors had been in-
spired from a previous paper ([146]), where only the ♭-hyperballean was defined,
under the name hyperballean.

11.2 Hyperspace of thin and cellular coarse spaces

and balleans

11.2.1 Thin coarse spaces and their hyperspaces

We have introduced thin coarse spaces in §6.2.1. Moreover, according to
Theorem 6.2.1, every thin coarse space is equivalent to an ideal coarse structure.
It is important to focus on the coarse hyperspace of ideal coarse structures.

Let X be a set and I be an ideal on it. Recall that the ideal coarse structure
EI is generated by the family of entourages EK = ∆X ∪ (K ×K), where K ∈ I
(see Example 3.1.3). Let K ∈ I and Z ∈ (expEK)[Y ] for some Y ⊆ X. Then,

Z ⊆ EK [Y ] =

{
Y ∪K if Y ∩K 6= ∅,
Y otherwise,

and

Y ⊆ EK [Z] =

{
Z ∪K if Z ∩K 6= ∅,
Z otherwise.

Thus, if Y ∩K = ∅, Z = Y , and, otherwise, Y \K ( Z ⊆ Y ∪K. Then we have
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computed the subsets

(expEK)[Y ] =

{
{Y } if Y ∩K = ∅,

{Z ⊆ X | Y \K ( Z ⊆ Y ∪K} otherwise.
(11.1)

Proposition 11.2.1. Let X be a set and I be a proper ideal (i.e., X /∈ I) on
it which is also a cover. Then two subsets Y, Z ⊆ X are in the same connected
component of exp(X, EI) if and only if X△Y ∈ I.

Proof. First of all note that the hypothesis leads to the fact that [X]<ω ⊆ I. If
there exists K ∈ I such that Z ∈ (expEK)[Y ], then, in particular Z ⊆ Y ∪K
and Y ⊆ Z ∪ K, which imply that Z \ Y ⊆ K ⊇ Y \ Z and thus Y△Z ⊆
K ∈ I. Conversely, suppose that Y△Z ∈ I. Then, if y ∈ Y and z ∈ Z,
K = Y△Z ∪{y}∪ {z} ∈ I has non-empty intersection with both Y and Z, and
(11.1) implies that Z ∈ (expEK)[Y ].

Corollary 11.2.2. Let X be an infinite set and I = [X]<ω. Then

dsc exp(X, EI) = 2|X|.

Proof. According to Proposition 11.2.1, for every Y ⊆ X, |Qexp(X,EI)(Y )| =

|[X]<ω| = |X|, since X is infinite. However, |P(X)| = 2|X|, and thus we have
dsc exp(X, EI) = 2|X|.

For a coarse space (X, E), we define a map C : X → P(X) by putting C(x) =
X \ {x}.

Lemma 11.2.3. Let (X, E) be a connected unbounded coarse space. If Y is a
subset of X, then C(Y ) is bounded in expX if and only if there exists E ∈ E
such that |E[y]| > 1, for every y ∈ Y .

Proof. (→) Since C(Y ) is bounded in expX, there exists E = E−1 ∈ E such
that, for every x, y ∈ Y with x 6= y, C(y) ∈ expE[C(x)]. Hence y ∈ X \ {x} ⊆
E[X \ {y}] and x ∈ X \ {y} ⊆ E[X \ {x}], in particular, y ∈ E[Y \ {y}] and
x ∈ E[Y \ {x}], from which the conclusion descends.

(←) Since, for every y ∈ Y , there exists z ∈ Y \ {y} such that y ∈ E[z],
C(y) ∈ expE[X]. Hence C(Y ) ⊆ expE[X], and the latter is bounded.

Theorem 11.2.4. Let (X, E) be an unbounded connected coarse space. Then
the following properties are equivalent and define a thin coarse space:

(a) (X, E) is thin;
(b) (X, E) = (X, EI), where I = ♭(X);
(c) if A ⊆ X is meshy in X, then A is bounded;
(d) ME-expX is connected;
(e) the map C : X → P(X) is an asymorphism between X and C(X).

Proof. The implication (c)→(d) is trivial, since item (c) implies thatME-expX =
♭-expX (note that ♭(Y ) ⊆ ME(Y ) fo a generic coarse space Y ) and the latter
is connected. Furthermore, (a)↔(b) can be found in Theorem 6.2.1.

(d)→(c) Assume that A ⊆ X is meshy. Fix arbitrarily a point x ∈ X.
The singleton {x} is bounded, hence meshy. By our assumption,ME-expX is
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connected and both A and {x} are meshy, so there must be a ball centred at x
and containing A. Therefore, A is bounded.

(e)→(a) If (a) is not satisfied, then there is an unbounded subset Y of X
satisfying Lemma 11.2.3. Since C(Y ) is bounded in expX, we see that C is not
an asymorphism.

(b)→(e) Suppose that E = EI . Fix an element V ∈ I. Since the family of all
EU , where U ∈ I such that |U | > 1, forms a base of EI , we can assume that V
has at least two elements. Now, pick an arbitrary point x ∈ X. Since |V | > 1,
for every A ∈ C(X), A ∩ V 6= ∅. Hence (11.1) implies that

(expEI
V )[C(x)] ∩ C(X) = {X \ {y} | (X \ {x}) \ V ( X \ {y} ⊆

⊆ (X \ {x}) ∪ V }.
(11.2)

Moreover, if x ∈ V , (11.2) implies

(expEI
V )[C(x)] ∩ C(X) = {X \ {y} | X \ V ( X \ {y}} = C(EI

V [x]).

On the other hand, if x /∈ V , then (11.2) implies

(expEI
V )[C(x)] ∩ C(X) = {X \ {y} | X \ (V ∪ {x}) ( X \ {y} ⊆ X \ {x}} =

= C(EI
V [x]).

(a)→(c) Suppose that item (a) is satisfied and A is an unbounded subset of
X. We claim that A is not meshy. Fix an entourage E ∈ E and let V ⊆ X
be a bounded subset of X such that E[x] = {x}, for every x /∈ V . Since A is
unbounded, there exists a point xE ∈ A \ V . Hence E[xE ] = {xE} ⊆ A, which
shows that A is not meshy.

(c)→(a) Suppose that item (i) is not satisfied. Then, there exists E ∈ E
such that, for every bounded subset V of X, there exists xV /∈ V which verifies
|E[xV ]| ≥ 2.

We want to construct, by transfinite induction, a subset A = Aκ = {yλ | λ <
κ}, for some limit ordinal κ, and a family of symmetric entourages {Eλ}λ<κ (an
entourage F is symmetric if F−1 = F ) with the following properties:

(i) A is unbounded;
(ii) for every λ < κ, Aλ = {yλ′ | λ′ < λ} is bounded;
(iii) Eλ ⊆ Eλ′ , for every λ < λ′ < κ such that there exist a limit ordinal ϑ

and two natural numbers m,n with the property that λ = ϑ + m and
λ′ = ϑ+ n;

(iv) Eλ * Eλ′ , for every λ′ < λ < κ;
(v) for every λ < κ, yλ /∈ Eλ[Aλ];
(vi) E ( Eλ, for every λ < κ;
(vii) |E[yλ]| ≥ 2, for every λ < κ.

Indeed, such an A is unbounded (by item (i)) and X \A is large, since, for every
y ∈ A, |E[y]| ≥ 2 (by item (vii)) and E[y] ∩ A = {y} (by items (iii)–(vi)) and
thus there exists a point z ∈ E[y] \ A, which shows that y ∈ E[z] ⊆ E[X \ A].
Hence A is meshy.

First of all, note that there exists no Emax ∈ E such that F ⊆ Emax, for
every F ∈ E , since, otherwise, X is bounded.

Let E1 ∈ E be an arbitrary symmetric entourage such that E ( E1 and fix
a point y1 ∈ X such that |E[y1]| ≥ 2.
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Let now κ be an ordinal and suppose that yν and Eν are defined, for every
ν < κ, and satisfy properties (ii)–(vii).

Suppose that κ is not a limit ordinal and thus let λ be an ordinal such that
λ+1 = κ. Let Eκ be a radius such that Eλ ⊆ Eκ. Since Aκ is bounded by item
(ii), there exists a point yκ /∈ Eκ[Aκ] such that |E[yκ]| ≥ 2.

Conversely, suppose now that κ is a limit ordinal. If Aκ is unbounded, then
we are done. Suppose then that Aκ is bounded. Hence there exists F ∈ E
such that Aκ ⊆ F [y1]. It is not hard to prove that Fκ = {Eλ | λ < κ} is not
a base of E since, otherwise, Aκ is unbounded by item (v). Thus there exists
Eκ = E−1

κ ∈ E such that Eκ * Eλ, for every λ < κ, F ( Eκ, and E ( Eκ. Since
Eκ[Aκ] is bounded, there exists a point yκ /∈ Eκ[Aκ], such that |E[yκ]| ≥ 2.

Since |Aκ| = κ ≤ |X| and X is unbounded, A = Aκ is unbounded for some
limit ordinal κ ≤ |X|. And so A satisfies (i)–(vii).

We refer to [55] for a different proof of Theorem 11.2.4. In the same paper
it is shown that we cannot substitute item (c) of Theorem 11.2.4 by asking that
all the small subsets are bounded. In fact it is a strictly weaker condition.

Remark 11.2.5. Let (X, E) be an unbounded connected coarse space. Consider
the map CB : ♭-expX → expX such that CB(A) = X \ A, for every bounded
A. It is trivial that C = CB|X , where X is identified with the family S(X)
of all its singletons. Hence, if CB is an asymorphic embedding, then C is an
asymorphic embedding too, and thus X is thin, according to Theorem 11.2.4.
However, we claim that CB is not an asymorphic embedding if X is thin and
then item (v) in Theorem 11.2.4 cannot be replaced with this stronger property.

Since (X, E) is thin, we can assume that E = EI (Theorem 11.2.4) for
some ideal I on X. Fix an element V ∈ I of expXI and suppose, with-
out loss of generality, that V has at least two elements. For every other
W ∈ I, pick an element AW ∈ I such that AW ⊆ X \ (W ∪ V ). Hence,
CB−1((expEI

V )[CB(AW )]) * (expEI
W )[AW ] = {AW }, which implies that CB

is not effectively proper. In fact, since AW ∪ V ∈ I,

(expEI
V )[CB(AW )] = {Z ⊆ X | X \ (AW ∪ V ) ( Z ⊆ X \AW } ⊆ CB(♭(X)),

and thus |(expEI
V )[CB(AW )] ∩ CB(♭(X))| > 1.

11.2.2 Hyperspaces of cellular balleans

Since the inclusion ı : X → expX is an asymorphic embedding, for every
ballean X, Theorem 6.1.2 implies that

asdimX ≤ asdim expX. (11.3)

The equality asdimX = asdim expX is not available in general and may strongly
fail (see [154, 169]). However, that equality holds for spaces with asymptotic
dimension 0, as we will show in Proposition 11.2.7.

Lemma 11.2.6. Let (X,P,B) be a ballean. Let ∅ 6= Y ⊆ X and α be an
arbitrary element of expX and of P , respectively. Then

(expB)n(Y, α) ⊆ {Z ∈ expX | Z ⊆ Bn(Y, α), Y ⊆ Bn(Z, α)}. (11.4)
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Hence, in particular,

(expB)�(Y, α) ⊆ {Z ∈ expX | Z ⊆ B�(Y, α), Y ⊆ B�(Z, α)} = exp(B�)(Y, α).

Proof. We prove (11.4) by induction. As for the base step, suppose that n = 2
and then Z ∈ expB(expB(Y, α), α). Thus, there exists W ∈ expB(Y, α) such
that Z ∈ expB(W,α), i.e.,

W ⊆ B(Y, α), Y ⊆ B(W,α), Z ⊆ B(W,α), W ⊆ B(Z, α).

Hence, in particular, Y ⊆ B(B(Z, α), α) and Z ⊆ B(B(Y, α), α).

Suppose now that (11.4) holds for n and let Z ∈ expBn+1(Y, α). There exists
W ∈ expB(Y, α) such that Z ∈ expBn(W,α) and so, by using the inductive
hypothesis,

W ⊆ B(Y, α), Y ⊆ B(W,α), Z ⊆ Bn(W,α), W ⊆ Bn(Z, α),

from which the claim follows.

Proposition 11.2.7. If a ballean (X,P,B) is cellular, then expX is cellular.

Proof. Let α be an arbitrary radius and let β ∈ P be another radius such that
B�(x, α) ⊆ B(x, β), for every x ∈ X. Then, by using Lemma 11.2.6, for every
Y ∈ expX,

expB�(Y, α) ⊆ {Z ∈ expX | Y ⊆ B�(Z, α), Z ⊆ B�(Y, α)} ⊆

⊆ {Z ∈ expX | Y ⊆ B(Z, β), Z ⊆ B(Y, β)} = expB(Y, β).

11.3 Other ballean structures on the power set

of a group

In this section, we study ballean structures on the power set of a group
G. Denote by BG the ballean, called group ballean, associated to the finitary
group coarse structure EG, i.e., BG = BEG

. More explicitly, we can characterise
BG as the triple (G, [G]<ω, BG), where, for every g ∈ G and K ∈ [G]<ω,
BG(g,K) = g(K ∪ {e}).

First of all, we can consider the hyperballean expBG. Concerning this
hyperballean, we have the following trivial fact which will be used in the sequel.

Fact 11.3.1. Let G be a group and e be its neutral element. Then every ball
of expBG centred in {e} is finite. Hence, for every subset X of G such that
X ∈ QexpBG

({e}), and every finite subset F of G, the ball expBG(X,F ) is
finite.

Proof. It is enough to note that, for every finite subset F of G, X ⊆ F provided
that X ∈ expBG({e}, F ). The second statement follows, since expBG is upper
multiplicative.
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11.3.1 The logarithmic hyperballean ℓ- expG

Let us now introduce another ballean structure on P(G), where G is a group.

Definition 11.3.2. For a group G, we define a function d : P(G) × P(G) →
N∪{∞} as follows. If Y, Z ⊆ G are two subsets which are in distinct connected
components of expBG then d(Y, Z) =∞. Otherwise, we define

µ(Y, Z) = min{max{|F |, |S|} | FY ⊇ Z, SZ ⊇ Y,

F ∈ [G]<ω, S ∈ [G]<ω, e ∈ F ∩ S}

and put
d(Y, Z) = log µ(Y, Z).

The next claim is not hard to check, yet we give an argument for the sake
of completeness.

Claim 11.3.3. The function d is a metric.

Proof. In fact, the only non-trivial property is the triangular inequality. Fix
then three subsets X,Y, Z of G such that d(X,Y ) ≤ log n and d(Y, Z) ≤ logm.
Pick four finite subsets F1, F2,K1,K2 ⊆ G such that

(a) e ∈ F1 ∩ F2 ∩K1 ∩K2,
(b) |F1|, |F2| ≤ n,
(c) |K1|, |K2| ≤ m,
(d) X ⊆ F1Y and Y ⊆ F2X,
(e) Y ⊆ K1Z and Z ⊆ K2Y .

In particular X ⊆ F1Y ⊆ F1K1Z and, similarly, Z ⊆ K2F2Y . Since both
|F1K1| ≤ mn and |F2K2| ≤ mn, this proves the claim.

Finally we define the logarithmic hyperballean as the metric ballean induced
by d, namely

ℓ- expBG = (P(G),R≥0, Bd), where, for every Y ⊆ G and R ≥ 0,

Bd(Y,R) = {Z | d(Y, Z) ≤ R}.

The metric d is invariant under left and right actions of G on P(G), i.e., the
maps F 7→ gF and F 7→ Fg, for every g ∈ G and every F ⊆ G, are isometries.

Furthermore, if G and H are two isomorphic groups, then ℓ- expBG and
ℓ- expBH are asymorphic.

Remark 11.3.4. (a) Clearly, the connected components of the balleans expBG

and ℓ- expBG coincide.
(b) For every group G, expBG is finer than ℓ- expBG. In fact, if two subsets

X and Y of G satisfy X ∈ BG(Y, F ) for some finite subset F ∈ [G]<ω, then
d(X,Y ) ≤ log|F |.

(c) If G is infinite, then expBG is strictly finer than ℓ- expBG. First of all, note
that, for every two distinct singletons {x} and {y} of G, d({x}, {y}) = 1
and thus Bd({x}, 1) ⊇ {{z} | z ∈ G}. However, a subset K of G such that
{x} ⊆ {y}K, for every x, y ∈ G, must satisfy K = G, which is not a radius
of expBG since G is infinite.
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(d) If G is abelian, then the ℓ- expBG can also be defined by the metric d′,
where, for every two subsets Y, Z ⊆ G,

d′(Y, Z) = logmin{|S| | S + Y ⊆ Z, S + Z ⊆ Y, S ∈ [G]<ω, 0 ∈ S},

if Y, Z are in the same connected component of expBG, and d
′(Y, Z) =∞,

otherwise.

Remark 11.3.5. Let G be a group of cardinality κ. We consider two ballean
structure on the family [G]<ω \ {∅}, which is equal to ♭(G) if G is endowed
with the group ballean structure BG. The first one is the subballean structure
♭-ℓ-BG = ℓ- expBG|♭(G), while the second one is given by the identification of
♭(G) withH∗

κ, i.e., the metric ballean induced by h, where, for everyX,Y ∈ ♭(G),
h(X,Y ) = |X△Y | (see §6.1).

We claim that H∗
κ is finer than ♭-ℓ-BG and, moreover, if G is infinite, it is

strictly finer. Let R ∈ N and X,Y ∈ ♭(G) such that h(X,Y ) ≤ R. Fix two
elements x ∈ X and y ∈ Y and define

F = {xy−1 | x ∈ X \ Y } ∪ {e} and K = {yx−1 | y ∈ Y \X}.

Then |F |, |K| ≤ R+ 1 and

X ⊆ (X \ Y ) ∪ Y = Fy ∪ Y ⊆ FY and

Y ⊆ (Y \X) ∪X = Kx ∪X ⊆ KX,

which implies the first part of the statement. Suppose now that G is infinite.
Then, for every n ∈ N, there exists F ∈ ♭(G) and g ∈ G such that F ∩ gF = ∅.
Then d(F, gF ) = 1, while h(F, gF ) = 2n. Since n can be chosen arbitrarily, H∗

κ

is strictly finer than ♭-ℓ-BG.

Question 11.3.6. (a) For a countable group G, are ♭-ℓ-BG and H∗
ω asymor-

phic? Coarsely equivalent?
(b) If the answer to item (a) is affirmative then, if G and H are countable

groups, are ♭-ℓ-BG and ♭-ℓ-BH asymorphic? In particular, what does it
happen if G = Z and H is the countable group of exponent 2?

11.3.2 The G-hyperballean G- expBI

Definition 11.3.7. Let G be a group, X be a G-space with action G×X −→ X,
(g, x) 7−→ gx, and I be a group ideal on G. The ballean B(G,X, I) is defined
as (X, I, B), where B(x,A) = Ax ∪ {x} for all x ∈ X, A ∈ I.

By [133, Theorem 1], every ballean B with support X is asymorphic to
B(G,X, I) under appropriate choice of G as a subgroup of the group SX of all
permutations of X and a group ideal I.

Note that the finitary ballean BG on a group G is precisely B(G,G, [G]<ω)
with the action of G on G by left shifts.

For B = B(G,X, I), we introduce a G-hyperballean G- expB as

G- expB(P(X), I, G- expB), where

G- expB(Y,A) = {Y } ∪ {gY | g ∈ A},
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for every Y ⊆ X and every A ∈ I. Since G acts by bijections, if Y and Z are
two subsets of X, then

|Y | = |Z| if there exists {g} ∈ I such that Z ∈ G- expB(Y, {g}). (11.5)

Proposition 11.3.8. For every ballean B = B(G,X, I), G- expB ≺ expB.
Moreover, the following properties are equivalent:

(a) G- expB = expB;
(b) each ball in expB around a singleton consists of sigletons;
(c) B is discrete.

Proof. Fix a radius A ∈ I and assume, without loss of generality, that it satisfies
A = A−1. Then, for every subset Y of X, if Z ∈ G- expB(Y,A), then Z = gY
for some g ∈ A. Thus

Z = gY ⊆ AY and Y = g−1Z ⊆ AZ,

which implies that Z ∈ expB(Y,A).

The implications (b)→(c)→(a) are trivial. Suppose now that G- expB =
expB. Then, for every {x} ⊆ X and every A ∈ I, |Y | = 1, provided that
Y ∈ expB({x}, A), because of (11.5).

Proposition 11.3.9. For an infinite group G, dsc(G- expBG) = dsc(expBG) =
2|G|.

Proof. We use [30] to choose a thin subset T of G such that |T | = |G|.

Since T is a thin subset of G, Proposition 6.2.1 implies that BG|T coincides
with the ideal ballean BI , where I is the ideal of all bounded subsets of T (i.e.,
all finite subsets of T ). By [55, Proposition 4.1] the equivalence relation A ∼ B,
where A,B ⊆ T , if and only if A△B is finite, is precisely the equivalence relation
of belonging to the same connected component in exp(BG|T ). Hence, each
connected component of exp(BG|T ) has cardinality precisely |T | = |G|, and thus
there are 2|G| such connected components. Finally, since G- expBG ≺ expBG,
we can apply Fact 2.2.2 and so

2|G| ≥ dsc(G- expBG) ≥ dsc(expBG) ≥ dsc(exp(BG|T )) = 2|G|.

Example 11.3.10. Denote by Sω the group of all permutations of ω. Let us
take the ballean B = B(Sω, ω, [Sω]

<ω) and show that expB has only three
connected components: the singleton {∅}, the family of all non-empty finite
subsets of ω, and the family of all infinite ones.

For any two non-empty finite subset X1, X2 of ω and each x ∈ X1, y ∈ X2,
let sx,y be the transposition with support {x, y}, i.e., sx,y(x) = y, sx,y(y) =
x and sx,y|X\{x,y} = id|X\{x,y}. We take an arbitrary infinite subset Y of
ω, partition Y into infinite subsets Y = Y1 ∪ Y2, and partition ω = W1 ∪
W2 so that Y1 ⊆ W1, Y2 ⊆ W2. Then we choose two permutations f1, f2
of ω so that f1(Y1) = W2, f2(Y2) = W1 and put F = {idω, f1, f2}. Then
ω ∈ expB(Y, F ). In contrast to expB, the ballean G- expB(Sω, ω,FSω

) has
countably many connected components: for every n ∈ N, the families {F ⊂ ω |
|F | = n} and {Y ⊆ ω | |ω\Y | = n}, and the family {Y ⊆ ω | |Y | = |ω\Y | = ω}.
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In Chapter 12, we study ballean structures on the subgroup lattice L(G) of
a group G. In particular, we consider the subballeans induced by the balleans
on the power set that have been introduced in this chapter. However, since
non-trivial cosets of a subgroup are never subgroups, for every group G, the
subballean G- expBG|L(G) is trivial and so not interesting for our purpose in
Chapter 12.



Chapter 12

Ballean structures on the

subgroup lattice of a group

According to Proposition 11.3.9, the hyperspace of a group is highly discon-
nected, and thus it is a hard object to study. However, since we are dealing with
groups, it is natural to consider the subballeans whose supports are the family
of all subgroups. Recall that, for every group G, we denote by L(G) the lattice
of all subgroups of G. In this chapter we focus on the following subballeans of
expB(G) and ℓ- expB(G):

• the subgroup exponential hyperballean L(G) = L- expBG = expBG|L(G), and
• the subgroup logarithmic hyperballean ℓ-L(G) = ℓ- expB(G)|L(G).

For the sake of brevity, in the sequel we write X ≈ Y if the two balleans X
and Y are asymorphic.

12.1 Connected components of the subgroup hy-

perballeans L(G) and ℓ-L(G)

First of all, we want to give a different and useful characterisation of the sub-
group logarithmic hyperballean ℓ-L(G) = ℓ- expBG|L(G), where G is a group,
and, in order to do that, we need the following result.

Lemma 12.1.1. Let G be a group and let A,B be subgroups of G such that
B ⊆ SA for some subset S of G. Then |B : (A ∩B)| ≤ |S|.

Proof. We split the proof in three cases.

Case 1. Assume that S ⊆ B. Given any b ∈ B, we pick s ∈ S such
that b ∈ sA. Then s−1b ∈ A ∩ B and B ⊆ S(A ∩ B). This proves that
|B : (A ∩B)| ≤ |S|.

Case 2. Assume that S ⊆ BA. Let Sa = S ∩ Ba and note that our
assumption provides a partition S =

⋃
a∈A Sa. Let S

∗ =
⋃
a∈A,Sa 6=∅ Saa

−1 and
note that:
(a) SA = S∗A; (b) |S∗| ≤ |S|; (c) S∗ ⊆ B (as Saa

−1 ⊆ B when Sa 6= ∅).

By (a) and our blanket assumption B ⊆ SA, B ⊆ S∗A, so by (c) we can

192
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apply Case 1 to A,B and S∗ to claim |B : A ∩B| ≤ |S∗|. Now (b) allows us to
conclude that |B : (A ∩B)| ≤ |S|.

Case 3. In the general case let S1 = S ∩ BA. Then obviously, B ⊆ S1A
and S1 ⊆ BA. By case 2, applied to A,B and S1 we have |B : A ∩ B| ≤ |S1|.
Since obviously |S1| ≤ |S|, this yields |B : A ∩B| ≤ |S|.

Definition 12.1.2. We recall that two subgroups of a group G are commensu-
rable if the indices |A : A ∩B| and |B : A ∩B| are finite.

By Lemma 12.1.1 and Remark 11.3.4(a), two subgroups A and B of G are
in the same connected component of L(G) (ℓ-L(G), equivalently) if and only if
A and B are commensurable.

Moreover, Lemma 12.1.1 also implies a different characterization of ℓ-L(G),
which is much more manageable. Namely, for every group G and every pair of
subgroups A and B of G, define

d′(A,B) =

{
logmax{|A : A ∩B|, |B : A ∩B|} if A and B are commensurable,

∞ otherwise,

which is a metric on L(G). By Lemma 12.1.1, the metric ballean on L(G)
induced by d′ coincides with ℓ-L(G).

Thanks to the previous characterisation of the subgroup logarithmic hyper-
ballean, we can easily provide an example of a group G such that ℓ-L(G) has
some infinite ball (see Example 12.2.20).

Remark 12.1.3. Fix n ≥ 2. We want to take a closer look at the structure
of L(Zn). First of all note that two commensurable subgroups H and K of Zn

have same free rank. Moreover, every subgroup H of Zn is commensurable with
a pure subgroup sat(H) of Zn, namely its saturation defined by

sat(H) = {x ∈ Zn | mx ∈ H for some non-zero m ∈ Z}

(denoted also by H∗ by some authors; recall that a subgroup H of an abelian
group G is pure, whenever mH = mG ∩H for every m > 0 [pure subgroups of
Zn split as direct summands]). For every H,K ≤ Zn, sat(H) is commensurable
with sat(K) if and only if sat(H) = sat(K). Then L(Zn) has a countable number
of connected components. Namely, they are:

• QL(Zn)({0}) = {0},
• QL(Zn)(Zn),
• for every 0 < k < n, a countable number of connected components asymorphic
to the subballean QL(Zn)(Zk) of L(Zn) which is asymorphic to the subballean

QL(Zk)(Zk) of L(Zk).
In particular, by Fact 2.2.1 and Proposition 3.1.14, for every n > 1, neither

L(Z) ≈ L(Zn), nor ℓ-L(Z) ≈ ℓ-L(Zn).
Note that L(Z) has two connected components, while, according to Propo-

sition 11.3.9, dsc(expBZ) = dsc(ℓ-LBZ) = 2ω.

12.1.1 IsoL(G): the chase for isolated points of L(G) and

ℓ-L(G)

According to Remark 11.3.4(a), the isolated points of L(G) and ℓ-L(G) co-
incide. We denote this set of common isolated points by IsoL(G).
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In this subsection we show how the existence of isolated points is related to
divisibility. The equivalence of (a) and (b) in the following claim is folklore, yet
we give a proof for the sake of completeness.

Claim 12.1.4. For an abelian group G the following are equivalent:

(a) G is divisible;
(b) G has no proper subgroups of finite index;
(c) {G} ∈ IsoL(G).

Proof. (a)→(b) It suffices to note that if H is a proper subgroup of G of finite
index, then the quotient G/H is a non-trivial finite group, so cannot be divisible,
while divisibility is preserved under taking quotients.

(b)→(a) If G is not divisible, then pG 6= G for some prime p. Hence, G/pG
is a non-trivial abelian group of exponent p, i.e., a vector space over Z/pZ. Then
G/pG admits a non-zero homomorphism G/pG → Z/pZ, which is necessarily
surjective, so provides a quotient of G isomorphic to Z/pZ.

Finally, (b) and (c) are obviously equivalent.

Proposition 12.1.5. For a subgroup A of an abelian group G the following are
equivalent:

(a) A ∈ IsoL(G);
(b) A is divisible and G ≃ A⊕B, where B is a torsion-free subgroup of G.
(c) Tor(G) ≤ A ≤ d(G) and A is divisible;

Proof. (b)→(a)

If G = A ⊕ B, with A divisible and B torsion-free, then A has no proper
subgroup of finite index (Claim 12.1.4). So if C is a subgroup of B commen-
surable with A, then C ∩ A = A, i.e., A ≤ C. Since A is divisible, this gives
C = A ⊕ C1, for some subgroup C1 of B. As C and A are commensurable,
C1 ≃ C/A is finite. Since B is torsion-free, this yields C1 = {0}, i.e., C = A.
Thus, A ∈ IsoL(G).

(a)→(b) Now assume that A ∈ IsoL(G). Then A has no proper subgroups
of finite index, so A is divisible, by Claim 12.1.4. Then there exists a subgroup
B of G such that G = A ⊕ B. If b ∈ B were a non-zero torsion element of B,
then A⊕〈b〉 and A are commensurable, so our hypothesis implies that 〈b〉 = {0}.
This proves that B is torsion-free.

Finally, the equivalence (b)↔(c) is trivial.

Corollary 12.1.6. The following are equivalent for an abelian group G:

(a) IsoL(G) 6= ∅;
(b) G/d(G) is torsion-free;
(c) Tor(G) ≤ d(G);
(d) d(G) ∈ IsoL(G).

Proof. (a)→(b) Assume that IsoL(G) 6= ∅ and pick A ∈ IsoL(G). Then G ≃
A ⊕ B, where B is a torsion-free subgroup of G. As A ≤ d(G), one has also
G = d(G) ⊕ R(G), and one can arrange to have R(G) a subgroup of B, so
R(G) ≃ G/d(G) is torsion-free.

The implications (b)→(c)→(d)→(a) are obvious (the second one in view of
Proposition 12.1.5).
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In particular, one can easily isolate the following sufficient conditions for the
(non-)existence of isolated points.

Corollary 12.1.7. For an abelian group G one has:

(a) G ∈ IsoL(G) (so IsoL(G) 6= ∅) whenever G is divisible;
(b) if G is reduced, then IsoL(G) = ∅ if and only if G is not torsion-free;

otherwise, if IsoL(G) 6= ∅, then IsoL(G) = {{0}} is a singleton.

Proof. (a) follows from Proposition 12.1.5(c).

(b) If G is reduced, then d(G) = {0}, so IsoL(G) 6= ∅ precisely when
Tor(G) = {0}, according to the above corollary. The last assertion again follows
from Corollary 12.1.6.

Now we provide a sharper result that complements the previous corollaries
which characterised when IsoL(G) = ∅. More precisely, we show that the size
of IsoL(G) is completely determined by the free-rank r0(d(G)).

Proposition 12.1.8. Let G be an abelian group with IsoL(G) 6= ∅ (i.e., Tor(G) ≤
d(G)). Then:

(a) IsoL(G) has size 1 (more precisely, IsoL(G) = {d(G)}) if and only if
r0(d(G)) = 0, i.e., d(G) = Tor(d(G)) is torsion;

(b) IsoL(G) has size 2 (more precisely, IsoL(G) = {Tor(d(G)), d(G)}) if and
only if r0(d(G)) = 1, i.e., d(G) = Tor(d(G))⊕D with D ≃ Q torsion-free;

(c) |IsoL(G)| = ω if and only if 1 < r0(d(G)) = n < ω (then d(G) =
Tor(d(G))⊕D with D ≃ Qn); and

(d) IsoL(G) is uncountable (more precisely, |IsoL(G)| = 2r0(d(G))) if and only
if r0(d(G)) ≥ ω.

Proof. Items (a), (b) and (c) follow from the above corollaries, Fact 1.2.3, and
the fact that Qn has countably many divisible subgroups when 1 < n < ω.
Similar arguments work for (d).

Proposition 12.1.8, along with Fact 2.2.1 and Proposition 3.1.14, provides a
large series of non-asymorphic pairs of spaces, like:

L(Zn) 6≈ L(Q) 6≈ L(Qm) and L(Zn) 6≈ L(Q⊕ Z) 6≈ L(Qm),

for any n and m > 1, and the same holds for the corresponding subgroup
logarithmic hyperballeans.

In the next remark we discuss further some other immediate consequences
of the above results concerning (only) the set IsoL(G) isolated points of an
abelian group G on the group structure of G.

Remark 12.1.9. (a) Let G be a virtually divisible abelian group (i.e., d(G) is
a finite index subgroup of G) and D be a divisible abelian group. Then G
is divisible, provided that either L(G) ≈ L(D) or ℓ-L(G) ≈ ℓ-L(D). In fact,
since IsoL(D) is non-empty, G/d(G) must be torsion-free, by Corollary
12.1.6. On the other hand, G/d(G) must be finite (hence, torsion), since G
be a virtually divisible. Thus, G = d(G) is divisible.
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(b) Let G be a divisible abelian group and H be a finitely generated abelian
group such that L(G) ≈ L(H) or ℓ-L(G) ≈ ℓ-L(H). Then G is torsion
and H is free. In fact, assume first of all that both G and H are non-
trivial. By Corollary 12.1.7, IsoL(G) 6= ∅, so IsoL(H) 6= ∅ as well. Since
H is reduced, this fact implies (by the same corollary) that H is torsion-
free. Hence H ≃ Zn, for some n ≥ 0, so |IsoL(H)| = 1. This yields
|IsoL(G)| = 1. Since G is divisible, Proposition 12.1.8 applies to entail
that G must be torsion.

(c) Let G be a divisible torsion-free abelian group. Then Proposition 12.1.8
implies that G ≃ Q, provided that L(G) ≈ L(Q) or ℓ-L(G) ≈ ℓ-L(Q).

(d) Under the assumption of the Generalised Continuum Hypothesis, if G,D
are divisible torsion-free abelian group such that at least one of them has
infinite rank, then the following statements are equivalent:
(d1) L(G) ≈ L(D);
(d2) ℓ-L(G) ≈ ℓ-L(D);
(d3) |IsoL(G)| = |IsoL(D)|;
(d4) r0(G) = r0(D);
(d5) G ≃ D.
The implications (d5)→(d1)→(d3) and (d5)→(d2)→(d3) are trivial and were
already discussed. Implication (d3)→(d4) follows from Proposition 12.1.8,
in particular the equality |IsoL(G)| = 2r0(d(G)), and GCH. The implication
(d4)→(d5) follows from the fact that divisible torsion-free abelian groups
are determined by their free-rank up to isomorphism (see Fact 1.2.3).

The assertions in Remark 12.1.9(c) and (d) are examples of what we call
‘rigidity results’, to which Section 12.3 is devoted. It is trivial that, if G and
H are two isomorphic groups, then L(G) ≈ L(H) (more precisely, expBG ≈
expBH), and ℓ-L(G) ≈ ℓ-L(H). The converse implication is not true (Corollar-
ies 12.2.2 and 12.2.9). A rigidity result is a list of conditions on balleans L(G)
and L(H) (ℓ-L(G) and ℓ-L(G)), where G and H are two groups, which imply
that G ≃ H, provided that L(G) ≈ L(H) (ℓ-L(G) ≈ ℓ-L(H), respectively). We
mention here that there is another, more common meaning of rigidity in the
coarse context (see [157]).

12.2 Asymptotic dimension of the subgroup hy-

perballeans L(G) and ℓ-L(G)

12.2.1 The subgroup exponential hyperballean L(G)

First of all, we provide some basic, although very important, examples of
L(G). For example, if G is a finite group, then both BG and expBG|P(G)\{∅}

are bounded. In particular, L(G) is bounded as well.

Proposition 12.2.1. Let G be one of the groups Z and Zp∞ for some prime p.
Then:

(a) all balls in L(G) are finite;
(b) L(G) has two connected components, of which one is a singleton (namely,
{{0}}, when G = Z, otherwise {G});

(c) L(G) is thin and thus asdimL(G) = 0 since it is cellular.
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Proof. Items (a) and (b) are trivial.

(c) Case G = Z. To show that G = L(Z) is thin take an arbitrary finite
subset F of Z and choose m so that F ⊆ [−m,m] ∩ Z. Pick n > 3m. We
claim that BL(Z)(nZ, F ) = {nZ}. We carry out the proof for F = [−m,m] ∩ Z,
obviously, this implies the general case.

Consider the quotient map q : Z→ Z(n) = Z/nZ and notice that the subset
q(F ) of Z(n) contains no non-trivial subgroups, by the assumption 3m < n.
Pick H ∈ B(〈n〉, F ), then q(H) ⊆ q(F ), so q(H) = {0} in Z/nZ, hence H ≤ nZ.
Thus, H = lZ for some multiple l of n. Since nZ ∈ B(H,F ), with l ≥ n ≥ 3m,
the previous argument implies nZ ≤ H. Therefore, H = nZ.

Case G = Zp∞ . We consider now the group G = Zp∞ , where p is a prime.
Denote by Hn the subgroup of Zp∞ of order pn, take an arbitrary finite subset
F of Zp∞ and choose m so that F ⊆ Hm. Then B(Hn, F ) = {Hn} for each
n > m.

Corollary 12.2.2. L(Z) and L(Zp∞) are asymorphic, for every prime p.

Proof. By Proposition 12.2.1(b), both L(Z) and L(Zp∞) have two connected
components, namely,

QL(Z)(Z), QL(Z)({0}) = {0}, QL(Zp∞ )(Zp∞) = {Zp∞}, and QL(Zp∞ )({0}).

Moreover, |QL(Z)(Z)| = |QL(Zp∞ )({0})| = ω. Since L(Z) and L(Zp∞) are thin,
in particular, also QL(Z)(Z) and QL(Zp∞ )({0}) are thin. Hence, Proposition
6.2.1 implies that QL(Z)(Z) and QL(Zp∞ )({0}) coincide with the ideal balleans
associated to the ideals of all their bounded subsets, i.e., finite subsets, namely

QL(Z)(Z) = BI and QL(Zp∞ )({0}) = BJ , (12.1)

where I = [QL(Z)(Z)]<ω and J = [QL(Zp∞ )({0})]
<ω.

Fix a bijecton ϕ : L(Z) → L(Zp∞) such that ϕ({0}) = Zp∞ . We claim that
ϕ is an asymorphism. We can apply Remark 4.3.6(c) and the claim follows once
we prove that both ϕ|QL(Z)({0}) and ϕ|QL(Z)(Z) are asymorphisms. While the first
restriction is trivially an asymorphism, Fact 6.2.2 and (12.1) imply that also the
second one is an asymorphism.

In contrast to L(Z), for n > 1 L(Zn) is not weakly thin, and, in particular,
it is not thin. To see that L(Zn), n > 1, has a non-thin connected component,
we put F = {(1, 0, . . . , 0), (0, . . . , 0)} and note that 2Z × S ∈ B(Z × S, F ) for
each subgroup S of Zn−1.

Question 12.2.3. Is L(Zn) cellular for every n ∈ N?

For every n ∈ N, denote by R(Zn) the subballean of L(Zn) whose support is
the family R(Zn) of rectangular subgroups of Zn, i.e., R(Zn) = {k1Z×· · ·×knZ |
k1, . . . , kn ∈ Z}. Then, for every n ∈ N, R(Zn) is cellular. In fact, it is trivial
that R(Zn) ≈ Πni=1L(Z) and products of cellular balleans are cellular.

For every locally finite group G, the ballean BG is cellular, equivalently,
asdimBG = 0, so expBG and L(G) are cellular (Proposition 11.2.7).

Question 12.2.4. Is the ballean L(G) cellular for an arbitrary group G?
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Theorem 12.2.5. Let n ∈ N. Then L(Z2) ≈ L(Zn) if and only if n = 2.

Proof. We have already proved that L(Z) 6≈ L(Z2).

Now suppose that n ≥ 3. Fix, by contradiction, an asymorphism ϕ : L(Z2)→
L(Zn). As recalled in Remark 4.3.6(c), ϕ induces asymorphisms between the
connected components of those two balleans. Because of Remark 12.1.3, one of
those restrictions is an asymorphism between QL(Z)(Z) and QL(Z2)(Z2). How-
ever, this is an absurd, since the first ballean is thin, while the second one has
not that property.

Question 12.2.6. Is it true that L(Zn) ≈ L(Zm) if and only if n = m?

Remark 12.2.7. Let G be an arbitrary group. According to Fact 11.3.1, all
balls in L(G) centered at {eG} are finite. Nevertheless, this is not true for
all balls of L(G). One can find examples of abelian groups G such that some
balls in L(G) centred at G are infinite. For example, let G = Πn∈NGn, where
Gn ≃ Z/2Z, for every n ∈ N. For every n ∈ N, denote by an the element of G
such that pn(an) = 1 and, for every i 6= n, pi(an) = 0. Then, for every n ∈ N,
〈{ai | i ∈ N \ {1, n}} ∪ {an + a1}〉 ∈ BL(G)(G, 〈a1〉) and thus this ball contains
infinitely many elements.

12.2.2 The subgroup logarithmic hyperballean ℓ-L(G)

Proposition 12.2.8. For every prime p, ℓ-L(Zp∞) is asymorphic to the co-
product of N and a singleton.

Proof. It is easy to check that the subspace S of all finite subgroups of Zp∞
is isometric to (log p)N with the metric d(x, y) = |x − y|, for every x, y ∈
(log p)N.

Corollary 12.2.9. For every pair of prime numbers p, q, asdim ℓ-L(Zp∞) ≈
asdim ℓ-L(Zq∞). Moreover,

asdim ℓ-L(Zp∞) = 1.

Theorem 12.2.10. asdim ℓ-L(Z) =∞.

Proof. For distinct primes p1, . . . , pn, we put Sn = {pm1
1 · · · p

mn
n Z | mi ∈ N, ∀i =

1, . . . , n}, and let ψ(pm1
1 · · · p

mn
n Z) = (m1, . . . ,mn) ∈ Nn. In the sequel we

denote the n-tuples

(m1, . . . ,mn), (m
′
1, . . . ,m

′
n) ∈ Nn

by m̄, m̄′, and the n-tuple (max{m1,m
′
1}, . . . ,max{mn,m

′
n}) by max{m̄, m̄′}.

Equip Nn with the taxi driver metric dT , defined by

dT (m̄, m̄
′) = Σi|mi −m

′
i|,

for every pair (m̄, m̄′) ∈ Nn.
We prove below that ψ : Sn → Nn is an asymorphism. Since asdimNn = n,

this asymorphism will provide subballeans of arbitrary finite asymptotic dimen-
sion of ℓ-L(Z), hence asdim ℓ-L(Z) =∞.



12.2 Asymptotic dimension of L(G) and ℓ-L(G) 199

Consider now a second metric on Nn, namely the logarithmic metric dlog,
induced from Sn through the bijection ψ. More precisely,

dlog(m̄, m̄
′) = dℓ-L(Z)(ψ

−1(m̄), ψ−1(m̄′)),

for any pair m̄, m̄′ ∈ Nn. We can assume without loss of generality that
p1, . . . , pn are greater or equal than the base of the logarithm. We claim that
those two metrics induce the same ballean structures on Nn.

First of all, we want to prove that

dlog(m̄, m̄
′) =





n∑

i=1

log(pi)max{mi −m
′
i, 0} if pm1

1 · · · p
mn
n ≥ p

m′
1

1 · · · p
m′

n
n ,

n∑

i=1

log(pi)max{m′
i −mi, 0} otherwise.

(12.2)

For m̄ ∈ Nn, let Am̄ = pm1
1 · · · p

mn
n Z = ψ−1(m̄). Then, for m̄, m̄′ ∈ Nn,

Am̄ ∩Am̄′ = Amax{m̄,m̄′}, hence

max{|Am̄ : (Am̄ ∩Am̄′)|, |Am̄′ : (Am̄ ∩Am̄′)|} = |As̄ : Amax{m̄,m̄′}| =

=

n∏

i=1

p
max{mi,m

′
i}−si

i =

=

n∏

i=1

p
max{mi−si,m

′
i−si}

i ,

(12.3)

where

s̄ =

{
m̄′ if pm1

1 · · · p
mn
n ≥ p

m′
1

1 · · · p
m′

n
n ,

m̄ otherwise.
(12.4)

Hence, (12.2) can be obtained by combining (12.3) and (12.4).

We are left with the proof of BdT = Bdlog . Fix R ≥ 0 and consider a pair
m̄, m̄′ ∈ Nn with dT (m̄, m̄

′) ≤ R. Let K = max{log(pi) | i = 1, . . . , n}. By our
assumption, K ≥ 1. Then

dlog(m̄, m̄
′) ≤

n∑

i=1

log(pi)|mi −m
′
i| ≤ RK,

witnessing that BdT ≺ Bdlog .

Conversely, let S ≥ 0 and fix a pair m̄, m̄′ ∈ Nn with dlog(m̄, m̄
′) ≤ S. Split

I = {1, . . . , n} = I+ ∪ I−, with I+ = {i ∈ I | mi ≥ m′
i} and I− = {i ∈ I | mi <

m′
i} and consider two cases, according to (12.2).

Suppose first that Πi∈Ip
mi
i ≥ Πi∈Ip

m′
i

i . Then I+ 6= ∅ (if I− = ∅ we set∏
i∈I−

pmi
i = 1 below). Hence

( ∏

i∈I+

pmi
i

)( ∏

i∈I−

pmi
i

)
≥

( ∏

i∈I+

p
m′

i
i

)( ∏

i∈I−

p
m′

i
i

)
,

equivalently, ∏

i∈I+

p
mi−m

′
i

i ≥
∏

i∈I−

p
m′

i−mi

i . (12.5)
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In particular, (12.5) implies p
m′

j−mj

j ≤ Πi∈I+p
mi−m

′
i

i , for every j ∈ I−, so

|mj −m
′
j | = m′

j −mj = logpj (p
m′

j−mj

j ) ≤
∑

i∈I+

(mi −m
′
i) logpj pi ≤

≤ T
∑

i∈I

(log pi)max{mi −m
′
i, 0} ≤ TS,

(12.6)

where T = max{logpi(pj) | i, j ∈ I} ≥ 1. Since, for every k ∈ I+,

|mk −m
′
k| = mk −m

′
k ≤ (mk −m

′
k) log pk ≤

≤
∑

i∈I

(log pi)max{mi −m
′
i, 0} ≤ S,

the inequalities (12.6) imply that dT (m̄, m̄
′) ≤ nTS.

The remaining case Πi∈Ip
mi
i < Πi∈Ip

m′
i

i is similar. Hence, Bdlog ≺ BdT .
This proves the equality BdT = Bdlog .

In particular, Corollary 12.2.9 and Theorem 12.2.10 imply that ℓ-L(Zp∞)
is not even coarsely equivalent to ℓ-L(Z). Note the difference with Corollary
12.2.2.

As we have already noticed, for n > 1, ℓ-L(Zn) and ℓ-L(Z) are not asy-
morphic because ℓ-L(Z) has two connected components but ℓ-L(Zn) infinitely
(countably) many. It will be nice to answer the following less obvious question:

Question 12.2.11. Are ℓ-L(Zn) and ℓ-L(Zm) asymorphic for all distinct n,m >
1?

In order to characterise the abelian groups G with asdim ℓ-L(G) < ∞ we
need to rule out the groups that are not finitely layered. For a group G and
n ∈ N let

Xn = {x ∈ G | o(x) = n} =
⋃

d|n

Xd.

Note that, even if G is abelian, then Xn is not necessarily a subgroup of
G (unlike G[n]). Call G layerly finite, if the set Xn is finite for every n (or
equivalently, when G[n] is finite for each n).

Theorem 12.2.12. Let G be an abelian group, and p be a prime number. If
the subgroup G[p] is infinite then asdim ℓ-L(G) =∞.

Proof. We take a subgroup H =
⊕

ωHn of G which is a direct sum of ω copies
Hn of Zp, denote by S the set of all subgroups of H of the from HF =

⊕
n∈F Hn,

where F is a finite subset of ω,
⊕

n∈∅Hn = {0}. Then the correspondence
HF 7→ F defines an asymorphism between S and the Hamming space Hω.
According to Proposition 6.1.3, asdim Hω = ∞. Therefore, asdim S = ∞.
This yields asdim ℓ-L(G) =∞.

Corollary 12.2.13. Let G be an abelian group with asdim ℓ-L(G) <∞. Then
G is torsion and layerly finite.

Proof. By asdim ℓ-L(G) < ∞ and by Theorem 12.2.10, G is a torsion group.
By Theorem 12.2.12, G is layerly finite.
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We can characterise now the abelian groups G such that asdim ℓ-L(G) = 0
as the reduced torsion finitely layered abelian groups. For a prime p we denote
by Sp the Sylow p-subgroup of G, i.e., is the maximal p-subgroup of G.

Theorem 12.2.14. For an abelian group G, asdim ℓ-L(G) = 0 if and only if G
is a torsion group and for every prime p the Sylow p-subgroup Sp of G is finite.

Proof. By Theorem 12.2.10 and Corollary 12.2.13, G is a torsion layerly finite
group. If some Sp is infinite then Sp has a subgroup isomorphic to Zp∞ but
asdim ℓ-L(Zp∞) = 1.

We assume that each Sp is finite and show that ℓ-L(G) is cellular. Let
G =

⊕
p∈π(G) Sp. We take an arbitrary n ∈ N and put Gn =

⊕
{Sp | p ∈

π(G), log p > n}. If A,B ∈ L(G) and dℓ-L(G)(A,B) ≤ n then A∩Gn = B∩Gn.
It follows that B✷(A, n) ⊆ B(A,m), where m =

∑
{log|Sp| | p ∈ π(G), log p ≤

n}.

Now we show that for every n ∈ N one can easily build a (divisible) abelian
group G with

asdim ℓ-L(G) = n.

Example 12.2.15. (a) For distinct primes p1, . . . , pn consider the group G =
Zp∞1 ⊕ . . .⊕ Zp∞n . Then

ℓ-L(G) ≈
n∏

i=1

ℓ-L(Zp∞) =

n∐

i=0

( (ni)∐

j=1

Nn−i
)
,

so in particular asdim ℓ-L(G) = n. For a proof one has to use the fact that the
lattice L(G) is isomorphic to the direct product of the lattices L(Zp∞1 ) × . . . ×
L(Zp∞n ) since every subgroup H of G has the form

H =

n⊕

i=1

Hpi , where Hpi is a subgroup of Zp∞i .

(b) More generally, for a set π of primes let Gπ =
⊕

p∈π Zp∞ . Then
asdimGπ = |π|. Indeed, for finite π this follows from (a). Otherwise, con-
sider subsets πn ⊆ π with |πn| = n and apply again (a) to the subgroup Gπn

to
deduce asdimGπn = n and conclude asdimGπ =∞.

Remark 12.2.16. Let G be an abelian group, n ∈ N. If asdim ℓ-L(G) = n
then G is torsion and there exist distinct primes p1, . . . , pm, m ≤ n, a layerly
finite subgroup G1 of G which is a direct sum of cyclic subgroups, such that

G ≃ Zp∞1 ⊕ · · · ⊕ Zp∞m ⊕G1. (12.7)

Indeed, by Corollary 12.2.13, G is torsion and finitely layered. Hence, its
maximal divisible subgroup d(G) = Zp∞1 ⊕ · · · ⊕ Zp∞m has r(G) = m ≤ n. So G
splits as in (12.7). Furthermore, letting G2 = Zp∞1 ⊕ · · · ⊕ Zp∞m , one may have
π(G1) ∩ π(G2) 6= ∅, but it is possible to split G1 = G∗

1 ⊕ F , where F is a finite
group, such that, with G∗

2 = G2 ⊕ F , one has

G = G∗
1 ⊕G

∗
2 , G∗

2 = Zp∞1 ⊕ · · · ⊕ Zp∞m ⊕ F and π(G∗
1) ∩ π(G

∗
2) = ∅.
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More precise results depend on the following:

Problem 12.2.17. Compute asdim ℓ-L(Zp∞ ⊕ Zp∞).

Note that ℓ-L(Zp∞⊕Zp∞) contains, as a subspace, the family S of all proper
subgroups of the form H = H1⊕H2, where Hi is a subgroup of Zp∞ for i = 1, 2.
Since S ≈ N2, asdim ℓ-L(Zp∞ ⊕ Zp∞) ≥ asdimN2 = 2.

We do not state in Remark 12.2.16 that the converse implication is true.
More precisely, if G is as in Remark 12.2.16 with primes p1, . . . , pm not neces-
sarily distinct, we cannot claim that asdim ℓ-L(G) = n is finite with n ≥ m. In
case asdim ℓ-L(Zp∞⊕Zp∞) =∞ occurs for all primes p (see Remark 12.2.19), we
can claim that asdim ℓ-L(G) = n entails that the primes p1, . . . , pm are pairwise
distinct (and so, m = n).

Proposition 12.2.18. Let G be a p-group. Consider the subballean of ℓ-L(G)
whose support is the family C(G) of all cyclic subgroups of G. Then asdimC(G) ≤
1. Moreover, asdimC(G) = 0 if and only if G has finite exponent.

Proof. We claim that C(G) is asymorphic to a tree, which implies asdimC(G) ≤
1 (see [157, Proosition 9.8]). Define a graph T having C(G) as set of vertices
and, for X,Y ∈ C(G), the pair {X,Y } is an edge if and only if X ≤ Y and
|Y : X| = p, or Y ≤ X and |X : Y | = p. Then T is trivially asymorphic
to C(G). Obviously, (T,≤) is also a partially ordered set, where the order is
defined by the inclusion of subgroups. We want to show that T is actually a tree.
Consider X,Y, Z ∈ C(G) such that Y, Z ≤ X. Let X = 〈x〉. Since Y, Z ∈ C(G),
Y = 〈xp

y

〉, and Z = 〈xp
z

〉, for some y, z ∈ N. If z ≤ y, then Y ≤ Z since

xp
y

= (xp
z

)p
y−z

. Similarly, if y ≤ z, then Z ≤ Y . Since the set TX of vertices
below this fixed vertex X is finite, hence it is well-ordered. This shows that the
partially ordered set (T,≤) is a tree with root the trivial subgroup of G and
height equal to the (logarithm of the) exponent of G, hence at most ω.

Finally, asdimC(G) = 0 if and only if T is bounded and this is equivalent
to G having finite exponent.

For G = Zp∞ ⊕ Zp∞ we proved asdimC(G) = 1 in Proposition 12.2.18.
However, asdimQℓ-L(G)({0}) ≥ 2.

Let us conclude our discussion about Remark 12.2.16 with a final remark
towards an answer to the question whether asdim ℓ-L(Zp∞

⊕
Zp∞) =∞.

Remark 12.2.19. Unlike the group Zp∞ ⊕ Zq∞ , with primes p 6= q, the group
Zp∞ ⊕ Zp∞ has c many subgroups, actually c many divisible subgroups isomor-
phic to Zp∞ .

One can easily see that G = Zp∞ ⊕ Zp∞ has three types of subgroups:

(a) finite subgroups;
(b) infinite proper divisible subgroups, they are all isomorphic to Zp∞ ;
(c) infinite proper non-divisible subgroups, they are all isomorphic to Z(pn) ⊕

Zp∞ .

There are countably many finite subgroups and c many subgroups of each
type (b) and (c).
We conjecture that asdim ℓ-L(Zp∞ ⊕ Zp∞) =∞.
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Example 12.2.20. Let T be a Tarskii monster of exponent p, where p is a suit-
able prime. Since every proper subgroup is finite, then L(T ) = {T}⊔QL(T )({e}),
where L(T ) can be endowed both with the subgroup exponential hyperballean
structure and with the subgroup logarithmic hyperballean structure.

(a) First of all, we focus on the subgroup exponential ballean L(T ). Fact 11.3.1
implies that every ball centred in a proper subgroup of T is finite. We are
not aware whether L(T ) is thin. Since L(T ) = {T}⊔QL(T )({e}), if L(T ) is
thin, then QL(T )({e}) = BI , where I = [QL(T )({e})]

<ω.
(b) We now consider ℓ-L(T ). The definition of T implies that the ball centred

at the identity of radius log p contains all proper subgroups of the group,
which are infinitely many. Hence, ℓ-L(T ) = {T} ⊔ V , where V is the family
of all proper subgroups of T , and V is bounded. In particular, ℓ-L(T ) is
thin and 0-dimensional.

Remark 12.2.21. For every group G, there is a natural map i : G→ L(G) that
sends every element g ∈ G in the subgroup 〈g〉. (One may consider also the
co-restriction G → C(G) of i, where C(G) is the family of all cyclic subgroups
of G.) The cardinalities of its fibres have a uniform bound (i.e., i has uniformly
bounded fibres) if and only if there is an upper bound for the size of of all finite
cyclic subgroups of G (e.g., the groups of finite exponent as well as torsion-free
groups have this property). Hence, one might think that i could be a coarse
embedding if L(G) is endowed with a subgroup hyperballean structure. For
example, if G is finite, then i is trivially a coarse equivalence. However, if G is
infinite this may fail even in simple cases. For G = Z the map i : G → L(G)
is surjective, with asdimG = 1, yet asdimL(G) = 0 and asdim ℓ-L(G) = ∞;
hence i is not a coarse equivalence in both cases.

If G is infinite and has finite exponent n, then i : G→ ℓ-L(G) is not proper.
In fact, every cyclic subgroup belongs to the ball in ℓ-L(G) centred in {e} with
radius log n (see also Example 12.2.20) and those subgroups are infinitely many.
Hence, i−1(Bℓ-L({e}, log n) is unbounded in BG, i.e., infinite.

12.3 Rigidity results

As we have already mentioned (see comments on Remark 12.1.9), if two
groups G and H are isomorphic, then L(G) ≈ L(H) and ℓ-L(G) ≈ ℓ-L(H).
However, the converse is not true in general (for example, L(Z) ≈ L(Zp∞) ≈
L(Zq∞) and ℓ-L(Zp∞) ≈ ℓ-L(Zq∞)). In this section we want to determine
conditions that ensures that the opposite implication holds.

Let us start with some technical results which hold for the subgroup hyper-
balleans L(G) and ℓ-L(G).

Lemma 12.3.1. Let X be a ballean.

(a) If X is asymorphic to L(Z) or to ℓ-L(Z), then X has two connected com-
ponents. Moreover, one connected component is a singleton, while the other
one is infinite and unbounded.

(b) If X is coarsely equivalent to L(Z) or to ℓ-L(Z), then X has two con-
nected components. Moreover, one connected component is bounded, while
the other one is unbounded.
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Proof. The proof is an application of Remarks 4.3.6(d) and 12.1.3, and Propo-
sition 12.2.1(b).

An infinite group is said to be quasi-finite if every proper subgroup is finite.
Example of quasi-finite groups are the Prüfer p-groups and the Tarskii monsters
(see Example 12.2.20). Moreover, if an abelian group is quasi-finite, then it is
isomorphic to Prüfer p-group for some prime p.

Proposition 12.3.2. Let G be a group. Suppose that L(G) (ℓ-L(G), equiva-
lently) has precisely two connected components, one of them is a singleton and
the other one is infinite. Then G must be infinite. Moreover:

(a) if G contains an element of infinite order, then G ≃ Z;
(b) if G is a torsion group, then G is quasi-finite.

Proof. The first statement is trivial, since, otherwise, L(G) and ℓ-L(G) would
be bounded.

(a) Let g be element of infinite order of G. Then 〈g〉 ∈ L(G) is infinite,
〈g〉 ∈ QL(G)(G) and thus QL(G)(G) is infinite (as it contains the subgroups of

the form 〈gk〉, where k ∈ N), while QL(G)({eG}) = {eG}. Since each infinite
subgroup of G is, in particular, large in G, it has finite index and, by Fedorov’s
theorem ([77]), G ≃ Z.

(b) Since G is torsion, for every g ∈ G, 〈g〉 is a finite subgroup and thus be-
longs to the connected component QL(G)(eG). Hence, the connected component
of G is a singleton and every proper subgroup is finite.

12.3.1 Rigidity results on the subgroup exponential hy-

perballean L(G)

Corollary 12.3.3. If a group G contains an element of infinite order, then
L(G) ≈ L(Z) if and only if G ≃ Z.

Proof. Lemma 12.3.1(a) implies that L(G) has two connected components, one
is infinite and the other one is just a singleton. Hence the conclusion follows
from 12.3.2(a).

Theorem 12.3.4. For an abelian group G, L(G) ≈ L(Z) if and only if either
G ≃ Z or G ≃ Zp∞ , for some p is prime.

Proof. The ‘if part’ of the statement is proved in Corollary 12.2.2.

Conversely, let us divide the proof in two cases. If G is torsion, then Lemmas
12.3.1(a) and 12.3.2(b) imply that every proper subgroup of G is finite. Hence,
since G is abelian, G ≃ Zp∞ , for some prime p. Otherwise, there exists and
element g ∈ G of infinite order and then the claim follows from Corollary 12.3.3.

Can we relax the hypothesis of Theorem 12.3.4? Namely, we wonder whether
the request ofG being abelian can be relaxed or not. Let us state it as a question.

Question 12.3.5. Let G be a torsion group such that L(G) and L(Z) are
asymorphic. Is G ≃ Zp∞ for some prime p?
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An affirmative answer to the question of Example 12.2.20, along with a
proof similar to that of Corollary 12.2.2, would show that ℓ-L(T ) ≈ ℓ-L(Z), for
a Tarskii monster T . This would provide a negative answer to Question 12.3.5.

12.3.2 Rigidity results on the subgroup logarithmic hy-

perballean ℓ-L(G)

Theorem 12.3.6. Let G be a group and p be a prime.

(a) ℓ-L(G) ≈ ℓ-L(Z) if and only if G ≃ Z;
(b) ℓ-L(G) ≈ ℓ-L(Zp∞) if and only if G ≃ Zq∞ for some prime q.

Proof. (a) Assume that ℓ-L(G) is asymorphic to ℓ-L(Z). If G has an element
of infinite order then G ≃ Z, by Lemma 12.3.1(a) and Proposition 12.3.2(a).
Suppose now, by contradiction, that G is a torsion group. By Proposition
12.3.2(b), G is quasi-finite. We show thatG is layerly finite. If A,B are subgroup
of order n then A ⊆ AB, B ⊆ BA so dℓ-L(G)(A,B) ≤ log n. If someXn is infinite
then ℓ-L(G) has an infinite ball of radius log n, but each ball in ℓ-L(Z) is finite.
By [29], G either has a subgroup H,H ≃ Zp∞ or G is the subdirect product
of finite groups. Since this implies the existence of proper (normal) subgroups
of finite index and G is quasi-finite, the second case is impossible. So we are
left with H ≃ Zp∞ . Since H is infinite and G is quasi-finite, H ≃ G. This
contradicts the conjunction of Corollary 12.2.9 & Theorem 12.2.10.

(b) Corollary 12.2.9 implies that ℓ-L(Zp∞) ≈ ℓ-L(Zq∞) for every pair of
primes p and q. Conversely, suppose that ℓ-L(G) ≈ ℓ-L(Zp∞). If, by contra-
diction, G contains an element of infinite order, then G ≃ Z, by Proposition
12.3.2(a). This contradicts ℓ-L(Zp∞) 6≈ ℓ-L(Z) established in Corollary 12.2.9
and Theorem 12.2.10. Hence G is torsion. Using Proposition 12.3.2(b) as above,
we conclude that G is quasi-finite and layerly finite, and consequently, H ≃ Zq∞
for some prime q.

Note that in Theorem 12.3.6 we do not require that the group is abelian.

12.3.3 Rigidity results and questions on divisible and finitely

generated abelian groups

We pointed out in §12.1.1 that divisibility of a group is related to some
strong property of its hyperballean. So it is natural to ask if we can find some
rigidity result in this setting.

Lemma 12.3.7. For no cardinal κ, ℓ-L(Qκ) has a connected component asy-
morphic to N.

Proof. LetH be an arbitrary subgroup of Qκ and suppose thatH is not divisible
since, otherwise, QL(Qκ)(H) = {H} 6≈ N. Since H is not divisible, there exists
n ∈ N such that nH � H. Note that, this is equivalent to H � (1/n)H. Hence,
in particular, we can construct a chain of subgroups as follows:

· · · � nkH � · · · � n2H � nH � H �
1

n
H �

1

n2
H � · · · �

1

nk
H � · · · .
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Note that this chain is asymorphic to Z, which is not asymorphic to N and this
observation concludes the proof.

Proposition 12.3.8. Let D and D′ be two divisible abelian groups. Then D is
torsion-free if and only if D′ is torsion-free, provided that ℓ-L(D) ≈ ℓ-L(D′).

Proof. Suppose that D is torsion-free. Let D′ have torsion. Then, by Theorem
1.2.3,

D′ ≃ Qr0(D
′) ⊕ Zp∞ ⊕H,

where p is a prime and H ≤ t(D′). Define K = Qr0(D
′) ⊕ {0} ⊕ H. Then

Qℓ-L(D′)(K) ≈ N. As D is torsion-free, D ≃ Qr0(D) and there is no connected
component asymorphic to N, by Lemma 12.3.7.

Moreover, we can prove a stronger version of Remark 12.1.9(c) and (d).

Corollary 12.3.9. Let G be a divisible group.

(a) Then ℓ-L(G) ≈ ℓ-L(Q) if and only if G ≃ Q.
(b) Suppose that κ is an infinite cardinal. Then, under the assumption of the

Generalised Continuum Hypothesis, ℓ-L(G) ≈ ℓ-L(Qκ) if and only if G ≃
Qκ.

Proof. Proposition 12.3.8 implies that G is torsion-free and thus we can apply
Remark 12.1.8 to prove both claims.

Question 12.3.10. Let G be an abelian group and D be a divisible abelian
group. Is it true that G is divisible, provided that ℓ-L(G) ≈ ℓ-L(D)?

As an evidence for a possible positive answer to this question, consider G
and D as in Question 12.3.10. Then G ≃ d(G)⊕H for some subgroup H of G.
By Corollary 12.1.7, IsoL(D) 6= ∅. This, along with Corollary 12.1.6, implies
Tor(H) = {0}. A full positive answer would simply give H = {0}.

Question 12.3.11. Let G be an abelian group such that t(d(G)) = {0}. Is it
true that G ≃ Q, provided that either L(G) ≈ L(Q) or ℓ-L(G) ≈ ℓ-L(Q)?

Question 12.3.12. Is it true that L(Q) ≈ L(Q⊕ Zp∞)?

Question 12.3.13. Is it true that L(Q⊕ Z) ≈ L(Q) or ℓ-L(Q⊕ Z) ≈ ℓ-L(Q)?

Question 12.3.14. Let G be an abelian group and H be a finitely generated
abelian group. Suppose that ℓ-L(G) ≈ ℓ-L(H). Is it true that G is finitely
generated?

Note that L(Zp∞) ≈ L(Z), where Z is finitely generated and it is not divis-
ible, while Zp∞ is not finitely generated, although it is divisible. This is why
we formulate Questions 12.3.10 and 12.3.14 only for the subgroup logarithmic
hyperballean ℓ-L(G)
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12.3.4 Results on coarsely equivalent subgroup exponen-

tial hyperballeans

Lemma 12.3.15. Let G and H be two groups.

(a) If there exist two homomorphisms f : G → H and g : H → G such that
f ◦ g ∼ idH and g ◦ f ∼ idG, then f : BG → BH is a coarse equivalence,
with coarse inverse g : BH → BG, and L(f) = exp f |L(G) : L(G) → L(H)
is a coarse equivalence, with inverse L(g) : L(H)→ L(G).

(b) Let H be a finite normal subgroup of G. Then the quotient map q : L(G)→
L(G/H) is a coarse equivalence and, moreover, L(q) : L(G) → L(G/H) is
a coarse equivalence.

Proof. (a) Note that f : BG → BH is trivially a coarse equivalence. Moreover,
it is easy to check that exp f : expBG → expBH is a coarse equivalence with
coarse inverse exp g : expBH → expBG (see also [55]). Since both f and g are
homomorphisms, the restrictions L(f) and L(g) are well-defined and thus they
are coarse equivalences.

(b) Since q is a surjective homomorphism, the finitary group coarse structure
is perfect, and ker q = H ∈ [G]<ω, q : BG → BG/H is a coarse equivalence (see
Corollary 7.2.6). In particular,

L(q) = exp q|L(G) : L(G)→ L(G/H),

which is well-defined, is bornologous. Moreover, g : L(G/H)→ L(G) defined by
the law g(K) = q−1(K), where K ≤ G/H, is bornologous and a coarse inverse
of L(q).

Theorem 12.3.16. Let a group G contain an element g of infinite order. Then
L(G) and L(Z) are coarsely equivalent if and only if G has a finite normal
subgroup H such that G/H ≃ Z.

Proof. (→) Assume that L(G) and L(Z) are coarsely equivalent. Lemma 12.3.1(b)
implies that L(G) has two connected components: one is unbounded (hence, in-
finite) and one is bounded. Let us see that the connected component C =
QL(G)({e}) of {e} is the bounded one. To prove that C is bounded it is enough
to observe that it does not contain the infinite subgroup 〈g〉 as well as its in-
finitely many proper subgroups 〈gn〉, where n ≥ 2. Since this family is certainly
unbounded in L(G), C must be the bounded component. Consequently, C is
finite being contained into a ball around {e} (see Fact 11.3.1).

Since C contains all finite order elements h ∈ G, this implies that the set
H of all the elements of finite order of G is finite. By Ditsman’s lemma ([68]),
H is a subgroup. Moreover, since conjugacy does not change the order of an
element, H is normal in G. Then G/H is torsion free.

Since L(G/H) is coarsely equivalent to L(G) (Lemma 12.3.15(b)) and thus
to L(Z), in particular, we can apply again the usual argument and prove that
every proper subgroup K of G/H is large in G/H and so |G/H : K| is finite.
By Fedorov’s theorem, G/H is isomorphic to Z.

(←) On the other hand, if H is finite and G/H ≃ Z then G = 〈a〉H, 〈a〉 ≃ Z
and L(〈a〉) is large in L(G), so L(G) and L(Z) are coarsely equivalent.

Lemma 12.3.17. Let G be a group.
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(a) If H is a subgroup of G of finite index, then G has only finitely many
subgroups containing H.

(b) If H is a family of subgroups of G stable under under finite intersections,
and there exists n ∈ N such that |G : H| ≤ n for every H ∈ H, then H is
finite.

Proof. (a) Let HG be the core of H in G (i.e., the biggest normal subgroup of
G which is contained in H), which has still finite index in G. Consider the map
q : G→ G/HG. Then q induces a bijection between the family of subgroups of
G containing HG and the one of the subgroups of G/HG. Since the latter is
finite, we are done.

(b) Assume for contradiction that H has infinitely many pairwise distinct
members {Hm}m∈N. One can assume, without loss of generality that they
form a decreasing chain (indeed, using (a) just replace Hm by the intersection
H1 ∩ · · · ∩Hm). As |G : Hm| is bounded, this decreasing chain stabilises. Let
us call that common intersection K (obviously, K ∈ H). Since all Hm contain
K, this contradicts Lemma 12.3.17.

Theorem 12.3.18. For an abelian group G, L(G) and L(Z) are coarsely equiva-
lent if and only if there exists a finite subgroup H of G such that either G/H ≃ Z
or G/H ≃ Zp∞ , for some prime p.

Proof. Assume that L(G) and L(Z) are coarsely equivalent. If G has an element
of infinite order then we apply Theorem 12.3.16. Otherwise, suppose that G is
a torsion group. Since L(G) and L(Z) are coarsely equivalent, we deduce from
Lemma 12.3.1, that L(G) has two connected components and one of them is
bounded, while the other one is unbounded. Since G is torsion, Fact 11.3.1
implies that QL(G)({0}) must be unbounded. Hence, the family H of all finite
index subgroups of G satisfies the hypothesis of Lemma 12.3.17(b) and thus H
is finite and, in particular, has a minimum element K. Then G/K is finite and
K is quasi-finite. Thus, since G is abelian, K ≃ Zp∞ , for some prime p. Hence
the claim follows.

We cannot state similar results for the subgroup logarithmic hyperballean,
since the balls centred at {0} can have infinitely many elements (see Example
12.2.20).
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Appendix A

Basic notions in category

theory

In this appendix let us collect and recall some background in category theory
that is used in this work. All the definitions and facts here enlisted can be found
in [1].

Let X be a category. For every pair of objects X,Y ∈ X , denote by
MorX (X,Y ) the class of morphisms betweenX, the domain, and Y , the codomain,
in X . A functor F: X → Y between two categories is called

• faithful if, for every X,Y ∈ X and every f, g ∈ MorX (X,Y ), F f = F g if
f = g;

• full if, for every X,Y ∈ X and every g ∈ MorY(FX,FY ), there exists f ∈
MorX (X,Y ) such that F f = g.

Let X and Y be two categories. Define the class Funct(X ,Y) as the family
of functors from X to Y. Moreover, if Z is another category and F: X → Z
is a functor, then we can define a map · ◦ F: Funct(Z,Y) → Funct(X ,Y) that
associates to every G ∈ Funct(Z,Y) the composite functor G ◦F.

A subcategory Y of a category X is full if the inclusion functor I : Y → X is
full.

Denote by Set the category of sets and maps between them. Following [1],
a forgetful functor is a faithful functor. Usually we use this term to consider
functors from a category to Set, but it is useful to consider also a more general
setting (see, for example, Chapter 4).

A morphism α : X → X ′, in a category X , is called:

• an isomorphism if there exists another morphism β : X ′ → X of X such that
α ◦ β = idX′ and β ◦ α = idX ;

• an epimorphism if every pair of morphisms β, γ : X ′ → X ′′ such that β ◦ α =
γ ◦ α satisfies β = γ;

• a monomorphism if every pair of morphisms β, γ : X ′′ → X such that α ◦β =
α ◦ γ satisfies β = γ;

• a bimorphism if it is both epimorphism and monomorphism.

Denote by MonoX and EpiX the classes of all monomorphisms and all epimor-
phisms of X , respectively. In any category X , an isomorphism is, in particular,
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a bimorphism, but the converse implication does not hold in general. The cat-
egory X is called balanced if bimorphisms are exactly the isomorphisms.

It is easy to check that, if a composite morphism g ◦ f is an epimorphism (a
monomorphism), then g is an epimorphism (f is a monomorphism, respectively).

A monomorphism m of a category X is called extremal, if, for every factor-
ization m = f ◦ e in X , e is an isomorphism, whenever e is an epimorphism.
Denote by ExtMonoX the class of all extremal monomorphisms of X .

A category X has an (E ,M)-factorisation, if every morphism f of X fac-
torises as f = m ◦ e, for some m ∈ M and e ∈ E . Although the standard
definition of (E ,M)-factorisation is, in general, stronger (see [60]), this relaxed
version is strong enough for the purpose of this work.

A concrete category (X , U) is a pair where X is a category and U: X → Set

is a faithful functor. In that situation, for every set A the fibre of A is the family
of all X in X such that UX = A. If (X ,U) is a concrete category and X and Y
are two objects of X , a morphism f : UX → UY is a X -morphism with respect
to X and Y whenever there exists f ∈ MorX (X,Y ) such that U f = f .

A source in a category X is a family (possibly a proper class) {fi : X →
Xi}i∈I of morphisms of X . Dually, a sink in a category X is a family {fi : Xi →
X}i∈I of morphisms, where X and Xi, for every i ∈ I, are objects of X .

Suppose now that (X ,U) is a concrete category. A source {fi : X → Xi}i∈I
of X is initial if, for every morphism f : UA → UX of Set, such that fi ◦
U f : UA → UXi is an X -morphism, then f is an X -morphism. An initial
lifting of a source {fi : A → UXi} in Set, where, for every i ∈ I, Xi is an
object of X , is an initial source {gi : B → Xi}i∈I of X such that UB = A and
U gi = fi, for every i ∈ I.

Definition A.0.1 ([23]). A concrete category (X ,U) is topological if:

(a) U is amnestic (i.e. f = 1X , whenever f : X → X is an isomorphism of X
such that U f = 1UX);

(b) U is transportable (i.e., for every object A of X and every isomorphism
h : UA → X of Set, there exists an object B of X and an isomorphism
f : A→ B of X such that U f = h);

(c) constant maps are morphisms of X ;
(d) U has small fibres (i.e., the fibres are sets);
(e) every source {fi : A→ UXi}i∈I of Set, has an initial lifting.

The set of conditions given in Definition A.0.1 is not optimal and there are
some logical dependencies. In fact, for example, item (b) is implied by the
remaining properties (see [1]). However, we prefer to enlist it since it is going
to be explicitly used in this work.

Let us enlist some consequences of being a topological category (see [1]). Let
X be a topological category. Then:

• the epimorphisms of X are the surjective morphisms;
• the monomorphisms of X are the injective morphisms;
• the bimorphisms of X are the bijective morphisms;
• X has an (EpiX ,ExtMonoX )-factorisation;
• X is complete, i.e., it has all limits (e.g., products, pullbacks and equalisers,
see §A.1 for the definitions), and co-complete, i.e., it has all colimits (e.g.,
coproducts and quotients, §A.1).
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A.1 Categorical constructions

Let X be a category and {Xi}i∈I be a family of objects of X . A source
{pi : X → Xi}i∈I , where X is an object of X , is the product of {Xi}i∈I in X
if it satisfies the following universal property: for every other source {fi : Y →
Xi}i∈I , where Y is another object of X , there exists a unique morphism f : Y →
X such that fi = pi ◦ f , for every i ∈ I.

Let X be a category and {Xk}k∈I be a family of objects of X . A sink
{ik : Xk → X}k∈I , where X is an object of X , is the coproduct of {Xk}k∈I in X
if it satisfies the following universal property: for every other sink {fk : Xk →
Y }k∈I , where Y is another object of X , there exists a unique morphism f : X →
Y such that fk = f ◦ ik, for every k ∈ I.

Let (X ,U) be a concrete category. Let X be an object of X , A be a set,
and f : UX → A be an epimorphism in Set (i.e., a surjective map). Then the
quotient of f and X is a morphism f : X → Y of X with U f = f , and that
satisfies the following universal property: for every other morphism g : UY →
UZ of Set, g is an X -morphism, provided that g ◦ f is an X -morphism.

Let X be a category and f, g : X → Y be two morphisms between two objects
of X . A morphism m : M → X is the equaliser of the pair f and g and we write
m = eq(f, g) if f ◦m = g ◦m and m satisfies the following universal property:
if n : N → X is another morphism such that f ◦ n = g ◦ n, then there exists
a unique morphism h : N → M such that the n = m ◦ h. Every equaliser is a
monomorphism.

Let X be a category, f : X → Z and g : Y → Z be two morphisms. The
pullback of the pair f and g consists of an object P and two morphisms u : P →
X and v : P → Y of X such that f ◦ u = g ◦ v, and which, moreover, satisfy the
following universal property: if W is an object and u′ : Z → X and v′ : Z → Y
are two morphisms of X such that f ◦ u′ = g ◦ v′, then there exists a unique
morphism h : W → P such that all the triangles of the following diagram

W

h
❆

❆

  ❆
❆

u′

##

v′

��

P
u //

v

��

X

f

��
Y

g // Z.

commute.

If a category X has (finite) products, then the existence of pullbacks is
equivalent to the existence of equalisers. In fact, suppose that a category X
has finite products. If X has equalisers (e.g., X is topological), the pullback of
the pair of morphisms f : X → Z and g : Y → Z is the equaliser of the pair of
morphisms f ◦ p1 : X × Y → Z and g ◦ p2 : X × Y → Z. Vice versa, suppose
that X has pullbacks, and let f, g : X → Y be a pair of morphisms. We define
the maps 〈f, g〉 : X → Y × Y by the law 〈f, g〉(x) = (f(x), g(x)) ∈ Y × Y , and
〈1Y , 1Y 〉 similarly. Then the equaliser of f and g is the map u in the following
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pullback diagram:
E //

u

��

Y

〈1Y ,1Y 〉

��
X

〈f,g〉// Y × Y.

A.2 Adjoints and co-adjoints, and reflective and

co-reflective subcategories

Let F,G: X → Y be two functors between two categories. A natural trans-

formation η from F to G (in symbols, F
η
−→ G) associates to each object X

of X , a morphism ηX : FX → GX of Y such that, for every other morphism
f : X → X ′ of X , the following diagram commutes:

FX
ηX //

F f

��

GX

G f

��
FX ′

ηX′ // GX ′.

Let now G: X → Y and F: Y → X be two functors. Then F is co-adjoint for
G and G is adjoint for F if there exist two natural transformations η : idY →
G ◦F (called unit) and ε : F ◦G→ idX (called co-unit) such that the following
two triangular identities hold: for every object X ∈ X and every Y ∈ Y, the
following triangles commutes,

GX
ηGX//

idGX $$❏❏
❏❏❏

❏❏❏
❏❏

GFGX

G εX
��

GX,

and FX
F ηY //

idFY $$❏❏
❏❏

❏❏
❏❏

❏ FGFY

εFY

��
FY.

Let Y be a full subcategory of a category X . Then Y is reflective in X if
there exists a functor G: X → Y, called reflector, which is a co-adjoint for the
inclusion functor I : Y → X . Dually, Y is co-reflective in X if there exists a
functor G: X → Y, called co-reflector, which is an adjoint for I : Y → X .

A.3 Quotient categories

Let X be a category and ∼ be a congruence on X , i.e., for every X,Y ∈ X , ∼
is an equivalence relation in MorX (X,Y ) such that, for every f, g ∈ MorX (X,Y )
and h, k ∈ MorX (Y, Z), h ◦ f ∼ k ◦ g, whenever f ∼ g and h ∼ k. Hence the
quotient category X/∼ can be defined as the one whose objects are the same
of X and whose morphisms are equivalence classes of morphisms of X , i.e.,
MorX/∼(X,Y ) = {[f ]∼ | f ∈ MorX (X,Y )}, for every X,Y ∈ X/∼. For the
sake of simplicity, if f ∈ MorX (X,Y ) is a representative of the equivalence class
[f ]∼, we often write simply f instead of [f ]∼.



Appendix B

Coarse entropy

In 1865 Clausius defined the notion of entropy in physics, but it was only in
1948 that Shannon ([162]) introduced it in mathematics, and, more precisely, in
information theory. Inspired by that concept, several other entropies have been
introduced in mathematics so far. For example, let us cite Kolmogorov ([108])
and Sinai’s ([?]) measure theoretic entropy in ergodic theory, and Adler, Kon-
heim and McAndrew’s topological entropy ([2]). Other notions of topological
entropy were given by Bowen ([22]) and Hood ([101]). In algebraic dynamics, we
can cite the work of Adler, Konheim and MacAndrew ([2]), the entropy defined
by Weiss in [170], and the one introduced by Peters ([131], and deeply studied in
[50]), that was then generalised in [44] for endomorphisms of abelian groups (we
refer to [42] for the definition in the non-abelian case, while to [45] for the exten-
sion to endomorphisms of semigroups). Later, Peters in [132] gave an extension
of the algebraic entropy defined in [131] for topological automorphisms of lo-
cally compact abelian groups. This definition was generalised by Virili ([167])
to all endomorphisms of locally compact abelian groups. This definition can be
found in [42] also for non-abelian groups. We finally mention the paper [45],
where a unifying approach to several notions of entropy is provided by using
normed semigroups. More recently the entropy generated by actions of amenable
semigroups and groups have been studied. In particular, Ornstein and Weiss
introduced topological and measure entropy of amenable group actions ([129]),
whose approach was extended to the case of actions of amenable cancellative
semigroups by Ceccherini-Silberstein, Coornaert and Krieger ([26]), Hofmann
and Stoyanov studied topological entropy of locally compact semigroup actions
on metric spaces ([100]), and Dikranjan, Fornasiero and Giordano Bruno in
[39] defined and discussed the algebraic entropy of an action of an amenable
cancellative semigroup on an abelian group.

In this appendix we introduce coarse entropy hc(f) (Definition B.1.1), de-
fined on the class of bornologous self-maps f of locally finite quasi-coarse spaces.
Let us also mention that, more recently, Misiurewicz and Geller defined a dif-
ferent notion of coarse entropy inspired by Bowen’s entropy ([120]).

The definition of the coarse entropy involves a limit superior, which is not a
limit even when we consider the identity map (Example B.1.3), and two supre-
mum operations. The first one is among all entourages, while the second one is
among all base points. As for the first one, we show that it is enough to consider

214



215

just a base of the quasi-coarse structure, while in the second one we just need to
evaluate the points that are maximal in the large-scale specialisation preorder
(Proposition B.1.2). We then prove basic properties of coarse entropy, such
as the weak logarithmic law (Proposition B.2.3), how it behaves while taking
products (weak addition theorem) and coproducts (Theorem B.2.5), and the
monotonicity under taking invariant coarse subspaces (Corollary B.2.8).

As for conjugation invariance results, that play an important role in the the-
ory of entropy, we have to distinguish two cases. If we consider asymorphisms as
isomorphisms, then we obtain a conjugation invariance result for all bornologous
self-maps of locally finite quasi-coarse spaces (Corollary B.2.9(a)). If, otherwise,
we consider Sym-coarse equivalences as isomorphisms then we prove the desired
result for quasi-coarse spaces with bounded geometry and for some particular
bornologous self-maps (Corollary B.2.9(b)).

Among the maps for which the conjugation invariance result for Sym-coarse
equivalences holds, of a particular interest is the identity map. We can rewrite
this specific case as follows: if X and Y are two Sym-coarsely equivalent quasi-
coarse spaces with bounded geometry, then hc(idX) = hc(idY ) (Corollary B.3.1).
Moreover, for every locally finite quasi-coarse space X, hc(idX) ∈ {0,∞} (The-
orem B.3.4). Those results play a key role in connecting the coarse entropy with
the growth of metric spaces ([3]), extending the known results for finitely gener-
ated groups ([93, 42]). In particular, we show that, if X is a monogenic metric
space and Y is a bounded geometry skeleton of X, then the coarse entropy of
the identity idY can tell whether X has subexponential or exponential growth
type (Theorem B.3.9).

Every monoid endowed with its monoid-quasi-coarse structure has bounded
geometry. Hence, it is natural to compare in this setting the coarse entropy
with the algebraic entropy (in the definition provided in [44]). It turns out
that the algebraic entropy provides an upper bound to the coarse entropy, while
they coincide if the endomorphism is surjective (Theorem B.4.2). We also pro-
vide examples in which the two notions differ for non-surjective endomorphisms
(Examples B.4.3 and B.4.4). Thanks to this result and using the Pontryagin
duality, we are able to connect the coarse entropy with the topological entropy
and the measure entropy in particular cases (Corollaries B.4.9 and B.4.12).

The appendix is organised as follows. Section B.1 is devoted to introducing
the coarse entropy, discussing thoughtfully the definition and providing the first
non-trivial examples, i.e., left shifts of monoids and groups (Example B.1.6).
In Section B.2 we collect the basic properties of the coarse entropy, such as
the logarithmic law, theorems involving products and coproducts, monotonicity
under taking invariant subspaces and conjugation invariance results. The focus
of Section B.3 is discussing the coarse entropy of the identity, providing also
connections with the growth of metric spaces. Finally, Section B.4 is dedicated
to describing connections with other known entropies, such as the algebraic
(§B.4.1), the topological and the measure entropies (§B.4.2). Moreover, the
coarse entropy of some group endomorphisms is computed in §B.4.1.

In this appendix, all monoids and groups will be endowed with the left
monoid quasi-coarse structures and with the left group coarse structures induced
by the finitary monoid ideals and finitary group ideals, respectively. For the
sake of simplicity, we simply call them monoid-quasi-coarse structure and group-
coarse structure, respectively. Moreover, if M is a monoid and G is a group, we
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denote them by EM and EG, respectively.

B.1 Definition of coarse entropy

Let (X, E) be a quasi-coarse space and f : X → X be a bornologous self
map. Then, for every x ∈ X and E ∈ E , define the following families of subsets
recursively as follows:

{
T1(f, x,E) = E[x],

Tn+1(f, x,E) = (fn × fn)(E)[Tn(f, x,E)], for every n ∈ N.
(B.1)

More explicitly, for every n ∈ N, x ∈ X, E ∈ E ,

Tn+1(f, x,E) = (E◦(f×f)(E)◦· · ·◦(fn−1×fn−1)(E)◦(fn×fn)(E))[x], (B.2)

which is called the n + 1-coarse trajectory Tn+1(f, x,E) with respect to x and
E. When there is no risk of ambiguity, we will simply call it n + 1 trajectory.
Note that, if X is locally finite, for every bornologous self-map, every trajectory
is a finite subset according to (B.2).

Before defining the coarse entropy, in the notation above, let us focus a bit
more on the entourages of the form (fn×fn)(E). For every self-map g : X → X
and every subset A ⊆ X, we have that

(g × g)(E)[A] = g(E[g−1(A)]) ⊆ g(X). (B.3)

In particular, if A ∩ g(X) = ∅, then (g × g)(E)[A] = ∅. Moreover, even if
∆X ⊆ E, (B.3) implies that the trajectories can decrease.

Note that, for every n ∈ N \ {0}, x ∈ x, and E ∈ E ,

Tn(f, x,E) ⊆ Q↓
X(x) ∩ fn−1(X). (B.4)

In fact, if y /∈ fn−1(X), then, for every other z ∈ X, (z, y) /∈ (fn−1× fn−1)(E).

Let us define the coarse entropy.

Definition B.1.1. Let (X, E) be a locally finite quasi-coarse space and f : X →
X be a bornologous self map. If x ∈ X, E ∈ E , and n ∈ N \ {0}, we define

dn =
log|Tn(f, x,E)|

n
, Hc(f, x,E) = lim sup

n→∞
dn, (B.5)

Hlocc (f, x) = sup
E∈E

Hc(f, x,E), and, finally, hc(f) = sup
x∈X

Hlocc (f, x). (B.6)

The value Hlocc (f, x) and hc(f) are called the local entropy of f in x and the
coarse entropy of f , respectively.

Proposition B.1.2 discusses more in detail the two supremum operations in
(B.6).

Proposition B.1.2. Let (X, E) be a locally finite quasi-coarse space and f : X →
X be a bornologous self-map.
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(a) If E,F ∈ E are two entourages such that E ⊆ F , then, for every x ∈
X, Hc(f, x,E) ≤ Hc(f, x, F ). In particular, if F is a base of E, then
Hlocc (f, x) = sup{Hc(f, x, F ) | F ∈ F}, for every x ∈ X.

(b) If x ↓ y, then Hlocc (f, x) ≥ Hlocc (f, y). In particular, if X has a maximum x,
then hc(f) = Hlocc (f, x).

Proof. (a) Since, if E ⊆ F ∈ E , then, for every n ∈ N, (fn × fn)(E) ⊆ (fn ×
fn)(F ), the conclusion is trivial.

(b) Let E ∈ E . Define E′ = {(x, y) ◦E}∪E and then, for every n ∈ N \ {0},

Tn(f, x,E
′) = (fn−1 × fn−1)(E′)[· · · [(f × f)(E′)[E′[x]]] · · · ] ⊇

⊇ (fn−1 × fn−1)(E)[· · · [(f × f)(E)[E[y]]] · · · ] = Tn(f, y, E)

since E′[x] = ({(x, y)} ◦ E)[x] = E[y], which shows the desired inequality. The
second part of the assertion trivially follows.

The reader may wonder if the limit superior in (B.5) is a limit or not. In
Example B.1.3 we provide a locally finite metric space (Example B.1.3(a)) and a
metric space with bounded geometry (Example B.1.3(c)) such that, for suitable
inputs, the sequence dn defined in (B.5) has no limit.

Example B.1.3. (a) We want to define a non-directed graph X = (V,E),
where V ⊆ N×N and a pair {(m,n), (m′, n′)} ∈ E, where (m,n), (m′, n′) ∈
V , if and only if |m − m′| = 1. In order to define the set V , we need to
inductively construct a sequence {Kn}n of natural numbers. Let K0 = 1.
Suppose that we have defined K0, . . . ,Km−1. Then

Km =





1 if

m−1∑

i=0

Ki > 2m,

2m −
m−1∑

i=0

Ki otherwise.

(B.7)

Finally V =
⋃
m∈N({m} × {0, . . . ,Km}).

Endow X with its path metric and then with the induced metric coarse
structure. In particular, X is locally finite, even though it has not bounded
geometry. Let us consider the map idX . Since X is connected, in order
to compute its coarse entropy, we can just consider the trajectories centred
in (0, 0). Thanks to the definition of X, there exists a strictly increasing
sequence (an)n of natural numbers such that

an−1∑

i=0

Ki ≤ 2an and

an∑

i=0

Ki = 2an .

Then

lim inf
n→∞

log|Tn(idX , (0, 0), 1)|

n
≤ lim
n→∞

log(2n+ 1)

n
= 0, and

lim sup
n→∞

log|Tn(idX , (0, 0), 1)|

n
≥ lim
n→∞

log(2n)

n
= log 2.
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Hence the limit does not exist. Moreover, hc(idX) ≥ log 2. Actually, we
will show that hc(idX) can only take values in {0,∞} (Theorem B.3.4), and
thus hc(idX) =∞.

(b) Let us slightly modify item (a), by changing the sequence {Kn}n in (B.7)
to

Km =





1 if
m−1∑

i=0

Ki > 2m,

mm −
m−1∑

i=0

Ki otherwise.

(B.8)

The induced coarse space X is still locally finite. However, it can be easily
proved that Hc(idX , (0, 0), 1) =∞.

(c) We want to provide now an example of a metric space with bounded geom-
etry for which the sequence dn does not have a limit even when we consider
the identity map.
We will define a non-directed graph X and endow it with its path metric.
For every n ∈ N, denote by Tn the complete 3-ary tree of height n + 1,
by an its root, and by xn1 , . . . , x

n
3n its leaves. Let in and jn be the two

canonical inclusions of Tn in the disjoint union Tn ⊔ Tn. Note that |Tn| =∑n
i=0 3

i. Consider the smallest equivalence relation ∼n on Tn⊔Tn satisfying
in(x

n
i ) ∼n jn(x

n
i ), for every i = 1, . . . , 3n, and define Dn = (Tn ⊔ Tn)/∼n

.
Moreover, for every n ∈ N, denote by Ln the graph consisting of n+1 points
yn0 , . . . , y

n
n with the edges {yni , y

n
i+1}, for every i = 0, . . . , n− 1.

Let us now describe the graph X through a limit process. Define k′0 = 1
and X0 = L1 = Lk′0 . Then, for every n ∈ N, let

kn+1 = min{k ∈ N | |X2n|+
k∑

i=1

3i ≥ 2diam(X2n)+k}, and

X2n+1 = (X2n ⊔Dkn+1)/≈n , where ≈n is the finest equivalence

relation satisfying y
k′n
k′n
≈n ikn+1

(akn+1
),

(B.9)

and

k′n+1 = min{k ∈ N | |X2n+1|+ k ≤ 2(diam(X2n+1) + k)}, and

X2n+2 = (X2n+1 ⊔ Lk′n+1
)/≈′

n
, where ≈′

n is the finest equivalence

relation satisfying jkn+1(akn+1) ≈
′
n y

k′n+1

0 .

(B.10)

For the sake of simplicity, for every n ∈ N, in (B.9) and (B.10) we have
identified the points of Dkn+1

and Lk′n+1
with their images in X2n ⊔Dkn+1

and in X2n+1 ⊔Lk′n+1
, respectively. Then the graph X is the direct limit of

the family {Xn}n∈N of finite graphs (with the family of obvious inclusion
maps). In Figure B.1 a representation of this space is provided. The metric
space associated with the graph X has bounded geometry since every vertex
has degree at most 4.
Similarly to what we have done for item (a), it is not hard to prove that, in
the notation of (B.5), if E = E1 and x = y10 , then

lim inf
n→∞

dn = 0 < log 2 ≤ lim sup
n→∞

dn.
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Lk′0

ik1(Tk1)

jk1(Tk1)

Dk1

Lk′1

ik2(Tk2)

jk2(Tk2)

Dk2

Lk′2 ik3(Tk3) jk3(Tk3)

Dk3

X0

X1

X2

X3

X4

X5

Figure B.1: A representation of the graphX defined in Example B.1.3(c), under-
lining the different pieces composing the elements of the family of finite graphs
{Xn}n.
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Hence the sequence {dn}n has no limit.

In Example B.1.3(b) we provided an example of a locally finite coarse space
(X, E) for which there exist x ∈ X and E ∈ E with Hc(idX , x, E) = ∞. Note
that, if (Y, E ′) is a quasi-coarse space with bounded geometry, then, for every
point y ∈ Y and every E′ ∈ E ′, Hc(idY , y, E

′) <∞. More precisely, if δ(E′) is a
uniform bound to the cardinality of the balls with radius E′ (i.e., |E′[x]| ≤ δ(E′),
for every x ∈ X), then

Hc(idY , y, E
′) ≤ lim sup

n→∞

log(δ(E′)n−1)

n
= log(δ(E′)).

However, the answer to the following question is not known.

Question B.1.4. Let (X, E) be a quasi-coarse space with bounded geometry
and f : X → X be a bornologous self-map. Is it true that, for every x ∈ X and
E ∈ E , Hc(f, x,E) <∞?

Remark B.1.5. Let (X, E) be a locally finite quasi-coarse space and f : X → X
be a bornologous self-map.

(a) Suppose that f is a map such that, for a base F of E , it satisfies (f ×
f)(F ) = F , for every F ∈ F . Then, for every n ∈ N \ {0}, x ∈ X and
F ∈ F , Tn(f, x, F ) = Tn(id, x, F ) and thus, according to Proposition B.1.2,
hc(f) = hc(id). If, otherwise, there exists a base H of E such that H ⊇
(f × f)(H) ∈ H, for every H ∈ H, then hc(f) ≤ hc(id).

(b) Let E ′ be another quasi-coarse structures on X such that E is finer than
E ′. Denote fE : (X, E) → (X, E) and fE′ : (X, E ′) → (X, E ′)). If fE′ is
bornologous, then hc(fE) ≤ hc(fE′) since, for every x ∈ X, Hlocc (fE , x) ≤
Hlocc (fE′ , x).

(c) If X is cellular, then hc(id) = 0 since the trajectories stabilise, more pre-
cisely, for every choice of E ∈ E , and x ∈ X, the n-th trajectory is contained
in a subset, namely E�[x], which is bounded from x and thus finite. Note
that a monoid, endowed with the monoid-quasi-coarse structure is cellular
if and only if it is locally finite (i.e., for every K ∈ [M ]<ω, the submonoid
generated by K is still finite).

Example B.1.6. Let M be a monoid endowed with the monoid-quasi-coarse
structure and x ∈ M . We want to discuss the entropy of the left shift f =
sλx : y 7→ xy. First of all, let us note that, for every K ∈ [M ]<ω,

(f × f)(EK) ⊆ EK , (B.11)

which shows, in particular, that f is bornologous. Since the neutral element e
is a maximum in M , then we just need to consider the trajectories with respect
to e (Proposition B.1.2).

(a) Suppose that x is an invertible element of M . Then f is an asymorphism
with inverse sλx−1 . Moreover, it is easy to see that (B.11) becomes an equality
and thus Remark B.1.5(a) implies that hc(f) = hc(idM ). In particular this
equality holds if M is a group.

(b) Let M be left-cancellative (i.e., for every y ∈ M , the left shift sλy is in-
jective) and commutative. Split K = (K ∩ f(M)) ∪ (K \ f(M)). Note
that (f × f)(EK)[K] = (f × f)(EK)[K ∩ f(M)], according to (B.3). Hence,
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without loss of generality, we can assume that K = xF , for some non-empty
F ∈ [M ]<ω. By using induction, (B.3), and the commutativity ofM , we can
prove that, for every n ∈ N, Tn(f, e, EK) = nx+nF , where nF is the family
of elements of M that can be written as sum of n elements of F . More-
over, since M is left-cancellative, |Tn(f, e, EK)| = |nF | = |Tn(id, e, EF )| =
|Tn(id, e, EK)|. Thus Hc(f, e, EK) = Hc(id, e, EK) = Hc(id, e, EF ).

(c) Let M be the free monoid generated by two elements a and b, and x = a.
We claim that hc(f) =∞. Because of Proposition B.1.2 we can restrict our-
selves to study the base {EB(e,m) | m ∈ N}, where B(e,m) = Bdλ

{a,b}
(e,m),

for every m ∈ N. If K = B(e,m), we claim that

Tn+1(f, e, EK) = an+1B(e, (n+1)m−(n+1))+anbB(e, (n+1)m−(n+1)).
(B.12)

If n = 0, then (B.12) is trivial. Suppose now that (B.12) holds for some
n ∈ N. Then

Tn+2(f, e, EK) = ((fn+1 × fn+1)(EK))[Tn+1(f, e,K)] =

= ((fn+1 × fn+1)(EK))[an+1B(e, (n+ 1)m− (n+ 1))+

+ anbB(e, (n+ 1)m− (n+ 1))] =

= fn+1(EK [(fn+1)−1(an+1B(e, (n+ 1)m− (n+ 1))+

+ anbB(e, (n+ 1)m− (n+ 1)))]) =

= an+1B(e, (n+ 1)m− (n+ 1))B(e,m) =

= an+1B(e, (n+ 2)m− (n+ 1)) =

= an+2B(e, (n+ 2)m− (n+ 2))+

+ an+1bB(e, (n+ 2)m− (n+ 2)),

which shows (B.12). Then,

Hc(f, e, EB(e,m)) ≥ lim sup
n→∞

log(2nm−(n−1))

n
≥ (m− 1) log 2,

and so the claim since m can be arbitrarily taken.

B.2 Basic properties of the coarse entropy

Before computing more, less trivial, examples of the coarse entropy (in Sec-
tion B.4 many examples appear, in relation with the algebraic entropy), we
focus on proving some standard properties of the coarse entropy.

Proposition B.2.1. Let (X, E) be a locally finite quasi-coarse space, f : X → X
be a bornologous self-map and x ∈ X.

(a) If there exists F ∈ E such that Q↓
X(x) = F [x], then Hlocc (f, x) = 0.

(b) If there exists E ∈ E and n ∈ N such that fn(X) ⊆ E[x], then hc(f) = 0.

(c) If there exists n ∈ N such that x /∈ Q↑
X(fn(X)), then Hlocc (f, x) = 0.

(d) If x /∈
⋂
nQ

↑
X(fn(X)), then Hlocc (f, x) = 0.

Proof. Items (a) and (b) trivially follow from (B.4) and from the fact that X is
locally finite and thus F [x] and E[x] are finite. Finally, it is enough to show item
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(c) in order to prove item (d). If x /∈ Q↑
X(fn(X)), then Q↓

X(x) ∩ fn(X) = ∅.

Hence, (B.4) implies that, Tn+1(f, x,E) ⊆ Q↓
X(x) ∩ fn−1(X) = ∅, for every

E ∈ E . Morevoer, for every k > n, fk(X) ⊆ fn(X), and thus Tk(f, x,E) = ∅.
Hence, Hc(f, x,E) = 0 and Hlocc (f, x) = 0.

Let X be a locally finite quasi-coarse space, and f : X → X be a bornologous
self-map. A subset Y of X is called f -invariant if f(Y ) ⊆ Y .

Corollary B.2.2. Let (X, E) be a locally finite quasi-coarse space and f : X →

X be a bornologous self-map. The subspace Y =
⋂
nQ

↑
X(fn(X)) is f -invariant

and hc(f) = hc(f |Y ).

Proof. Let y ∈ Y . Then, for every n ∈ N, there exists xn ∈ X such that
{(y, fn(xn))} ∈ E . In particular, since f is bornologous, {(f(y), fn+1(xn))} ∈ E ,

which implies that y ∈ Q↑
X(fn+1(X)). Since the chain {Q↑

X(fn(X)) | n ∈ N}
is decreasing, f(y) ∈ Q↑

X(f(X)) and thus the first statement is proved. The
equality follows from Proposition B.2.1(d).

Proposition B.2.3 (Weak logarithmic law). Let (X, E) be a locally finite quasi-
coarse space and f : X → X be a bornologous self-map. If f is surjective, for
every k > 0, hc(f

k) ≤ k · hc(f).

Proof. Fix a positive integer k > 0. Then, for every n ∈ N, x ∈ X, and
∆X ⊆ E ∈ E , Tn(f

k, x, E) ⊆ Tkn−k+1(f, x,E) since the surjectivity of f implies
that ∆X ⊆ (fs × fs)(E), for every s ∈ N, and so

Hc(f
k, x, E) = lim sup

n→∞

log|Tn(f
k, x, E)|

n
≤

≤ lim sup
n→∞

log|Tkn−k+1(f, x,E)|

kn− k + 1
·
kn− k + 1

n
≤

≤ kHc(f, x,E) ≤ k hc(f),

from which the stated inequality follows.

Question B.2.4. Does the opposite inequality in Proposition B.2.3 hold?

The next result, Theorem B.2.5, states that the coarse entropy behaves as
expected in relation with (finite) products and coproducts of quasi-coarse spaces.
We consider only finite products since arbitrary products of locally finite quasi-
coarse spaces are not necessarily locally finite.

Theorem B.2.5. (a) Let (X, EX) and (Y, EY ) be two locally finite quasi-coarse
spaces and f : X → X and g : Y → Y be two bornologous self-maps. Then
hc(f × g) = hc(f) + hc(g).

(b) Let {(Xk, Ek)}k∈I be a family of locally finite quasi-coarse spaces and, for
every k ∈ I, fk : Xk → Xk be a bornologous self-map. Then hc(

⊕
k fk) =

supk∈I hc(fk).

Proof. (a) Because of Proposition B.1.2(a), we can just evaluate the trajectories
Tn(f × g, (x, y), E × F ), where n ∈ N \ {0}, (x, y) ∈ X × Y , E ∈ EX and
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F ∈ EY . Note that (E × F )[(x, y)] = E[x]× F [y], ((f × g)× (f × g))(E × F ) =
(f × f)(E)× (g × g)(F ), and (f × g)k = fk × gk, for every k ∈ N. Then

Tn(f × g, (x, y), E × F ) = ((f × g)n−1 × (f × g)n−1)(E × F )[· · ·

· · · [((f × g)× (f × g)(E × F ))[E × F [(x, y)]]] · · · ] =

= ((fn−1 × fn−1)(E)× (gn−1 × gn−1)(F ))[· · ·

· · · [((f × f)(E)× (g × g)(F ))[E × F [(x, y)]]] · · · ] =

= Tn(f, x,E)× Tn(g, y, F ),

and thus

|Tn(f × g, (x, y), E × F )| = |Tn(f, x,E)| · |Tn(g, y, F )|,

from which the equality Hc(f × g, (x, y), E×F ) = Hc(f, x,E) +Hc(g, y, F ) and
the desired claim follows.

Item (b) trivially follows from the observation that, for every n ∈ N \ {0},
ij(x) ∈

⊔
kXk, and EJ,ϕ ∈

⊕
k Ek, defined as in (4.4), where J ∈ [I]<ω and

ϕ : J →
⋃
k Ek with the desired properties,

Tn

(⊕

k∈I

fk, ij(x), EJ,ϕ

)
= ij(Tn(fj , x, F )), where F =

{
Ej if j ∈ J ,

∆Xj
otherwise.

Conjugation results are particularly important in developing entropies (see
also Remark B.2.10). The final part of this section is devoted to prove conjuga-
tion results for the coarse entropy.

Lemma B.2.6. Let X be a set and h : X → X be a self-map. Then:

(a) if E,F ⊆ X ×X, then (h× h)(E ◦ F ) ⊆ (h× h)(E) ◦ (h× h)(F );
(b) if E ⊆ X ×X and x ∈ X, then h(E[x]) ⊆ ((h× h)(E))[h(x)].

Proof. (a) Let (h(x), h(z)) ∈ (h×h)(E ◦F ) such that (x, z) ∈ E ◦F . Then there
exists y ∈ X such that (x, y) ∈ E and (y, z) ∈ F , which implies (h(x), h(y)) =
(h(x), h(y)) ◦ (h(y), h(z)) ∈ (h× h)(E) ◦ (h× h)(F ).

(b) Consider an arbitrary y ∈ h(E[x]) and take z ∈ h−1(y) such that (x, z) ∈
E. Then (h(x), y) = (h(x), h(z)) ∈ (h × h)(E), which shows that y ∈ ((h ×
h)(E))[h(x)].

Theorem B.2.7. Let (X, E) and (Y, EY ) be two locally finite quasi-coarse spaces,
f : X → X and g : Y → Y be two bornologous self-maps, and h : X → Y be a
bornologous map such that the following diagram commutes:

X
f //

h
��

X

h
��

Y
g // Y.

(B.13)

If there exists K ∈ N such that sup{|h−1(y)| | y ∈ Y } ≤ K, then hc(f) ≤ hc(g).
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Proof. Let x ∈ X, E ⊆ EX , and x ∈ X. Then, by applying Lemma B.2.6 and
the commutativity of (B.13), for every n ∈ N \ {0}, we have

Tn(f, x,E) ⊆ h−1(h(Tn(f, x,E))) =

= h−1(h((E ◦ (f × f)(E) ◦ · · · ◦ (fn−1 × fn−1)(E))[x])) ⊆

⊆ h−1((h× h)(E ◦ (f × f)(E) ◦ · · · ◦ (fn−1 × fn−1)(E))[h(x)]) ⊆

⊆ h−1((h× h)(E) ◦ (h× h)((f × f)(E)) ◦ · · ·

· · · ◦ ((h× h)(fn−1 × fn−1)(E))[h(x)]) =

= h−1((h× h)(E) ◦ (g × g)((h× h)(E)) ◦ · · ·

· · · ◦ (gn−1 × gn−1)((h× h)(E))[h(x)]) =

= h−1(Tn(g, h(x), (h× h)(E))).

The computation shows that

Hc(f, x,E) = lim sup
n→∞

log|Tn(f, x,E)|

n
≤

≤ lim sup
n→∞

log(K|Tn(g, h(x), (h× h)(E))|)

n
=

= lim sup
n→∞

logK + log|Tn(g, h(x), (h× h)(E)|

n
=

= Hc(g, h(x), (h× h)(E))

because of the assumption on the fibres of h. Then, since both E ∈ E and x ∈ X
are arbitrary, hc(f) ≤ hc(g).

Corollary B.2.8. Let (X, E) and (Y, EY ) be two locally finite quasi-coarse
spaces, f : X → X and g : Y → Y be two bornologous self-maps, and h : X → Y
be a bornologous map such that the diagram (B.13) commutes. Suppose, more-
over, that one of the following properties holds:

(a) h is injective;
(b) (X, E) has bounded geometry and h is large-scale injective.

Then hc(f) ≤ hc(g).

Proof. We want to apply Theorem B.2.7. If h is injective, then we can set
K = 1. If h is large-scale injective, then Rh = (h × h)−1(∆Y ) ∈ EX . Since X
has bounded geometry, there exists K ∈ N such that K ≥ |Rh[x]| = |h

−1(h(x))|,
for every x ∈ X.

As an immediate consequence of Corollary B.2.8 we have the monotonicity
of the coarse entropy under taking invariant subspaces. Let (X, E) be a locally
finite quasi-coarse space, f : X → X be a bornologous self-map, and Y be a f -
invariant subset of X, then hc(f |Y ) ≤ hc(f). Moreover, the same result implies,
in the case of coarse spaces with bounded geometry, the monotonicity of the
coarse entropy under taking coarse embeddings. In fact, in the notation of
Corollary B.2.8, if h is a coarse embedding, then item (b) is fulfilled.

From Corollary B.2.8 the following important invariance result trivially fol-
lows.



B.3 Coarse entropy and growth of quasi-coarse spaces 225

Corollary B.2.9 (Invariance under conjugation). Let (X, E) and (Y, EY ) be two
locally finite quasi-coarse spaces, f : X → X and g : Y → Y be two bornologous
self-maps, and h : X → Y be a map such that the diagram (B.13) commutes.
Suppose, moreover, that one of the following properties holds:

(a) h is an asymorphism;
(b) X and Y have bounded geometry, h is a Sym-coarse equivalence with a

Sym-coarse inverse k : Y → X such that f ◦ k = k ◦ g.

Then hc(f) = hc(g).

Remark B.2.10. Let X be a category. We define the category FlowX of
flows in X . As objects, it has pairs (X, f), where X ∈ X and f : X → X is
a morphism of X . Moreover, a morphism between two such pairs (X, f) and
(Y, g) is a map h : X → Y in X such that h ◦ f = g ◦ h. Moreover h is an
isomorphism in FlowX is h is an isomorphism in X .

Denote by LF-QCoarse the full subcategory of QCoarse of locally finite
quasi-coarse spaces. Consider then the category FlowLF-QCoarse. Thanks
to Corollary B.2.9, if (X, f) and (Y, g) are two isomorphic flows, then hc(f) =
hc(g). Hence, hc associates a value in R≥0 ∪ {∞} to every isomorphism class of
flows in FlowLF-QCoarse.

B.3 Coarse entropy of the identity and growth

of quasi-coarse spaces

Let us focus on the identity map of a quasi-coarse space. Corollary B.2.8
implies that, the coarse entropy of the identity map is an invariant under Sym-
coarse equivalence in the realm of quasi-coarse spaces with bounded geometry.

Corollary B.3.1. Let X and Y be two Sym-coarsely equivalent quasi-coarse
spaces with bounded geometry. Then hc(idX) = hc(idY ).

Proof. Let f : X → Y be a Sym-coarse equivalence. Then we can easily apply
Corollary B.2.8, which implies that hc(idX) ≤ hc(idY ). The opposite inequality
can be similarly proved.

We want to show that the identity function cannot have arbitrary values.
More precisely, if X is a quasi-coarse space, then hc(idX) ∈ {0,∞}.

Lemma B.3.2. Let {an}n and {bn}n be two sequences of non-negative real
numbers such that the limit of {an}n exists and it is strictly positive. Then

lim sup
n→∞

anbn = ( lim
n→∞

an)(lim sup
n→∞

bn). (B.14)

Proof. Since, the two sequences have non-negative values, for every n ∈ N,
supk≥n(akbk) ≤ supk≥n ak · supk≥n bk and thus the inequality (≤) in (B.14)
follows. As for the opposite inequality, fix a value 0 < ε < l = limn→∞ an.
Then there exists N ∈ N such that, for every n ≥ N , an > l − ε. Then, for
every k ≥ N ,

sup
n≥k

anbn ≥ sup
n≥k

(l − ε)bn = (l − ε) sup
n≥k

bn
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since l − ε > 0, and thus

lim sup
k→∞

akbk ≥ (l − ε) lim sup
k→∞

bk = ( lim
n→∞

an − ε) lim sup
k→∞

bk. (B.15)

Since ε can be arbitrarily taken, (B.15) implies the desired inequality.

Lemma B.3.3. Let {an}n be an increasing sequence of positive real numbers. If
we denote by l = lim supn→∞ log an/n, then we have lim supn→∞ log(atn)/n =
tl, for every t ∈ N \ {0}.

Proof. If t = 1, then there is nothing to prove. For the sake of simplicity, we
prove the result for t = 2, but the argument can be easily generalised.

Fix n ≥ 1 and define two sequences {unk}k≥n and {vns }s≥2n−1 as follows:

unk =
log(a2k)

k
, and vns =

log(as)

⌈s/2⌉
, for every k ≥ n and s ≥ 2n− 1.

Since, for every k ≥ n, unk = vn2k, supk≥n u
n
k ≤ sups≥2n−1 v

n
s . We want to show

the opposite inequality. Let then s ≥ 2n − 1. If s = 2k for some k ≥ n, then
vns = unk . Otherwise, if s is odd, vns ≤ u

n
(s+1)/2 and thus

sup
k≥n

unk = sup
s≥2n−1

vns = sup
s≥2n−1

log(as)

s
·

s

⌈s/2⌉
. (B.16)

Then, since (B.16) holds for every n ≥ 1 and the sequence {n/⌈n/2⌉}n converges
to 2, by applying Lemma B.3.2, we obtain that

lim sup
n→∞

log(a2n)

n
= lim
n→∞

n

⌈n/2⌉
· lim sup
n→∞

log(an)

n
= 2l.

Theorem B.3.4. Let (X, E) be a locally finite quasi-coarse space, f : X → X
be a bornologous self-map, ∆X ⊆ E ∈ E, and x ∈ X. Then, Hc(id, x, E

k) =
kHc(id, x, E), for every k ∈ N. In particular, hc(id) ∈ {0,∞}.

Proof. Fix a point x ∈ X, ∆X ⊆ E ∈ E , and k ∈ N. Consider the sequence
an = |Tn(id, x, E)| = |En−1[x]|, for every n ∈ N. Since ∆X ⊆ E, {an}n
is increasing and non-negative. Hence, Lemma B.3.3 implies the claim since
Hc(id, x, E) = lim supn→∞ log(an)/n.

From Proposition B.1.2(a) and Theorem B.3.4 we can deduce an easy corol-
lary.

Corollary B.3.5. Let (X, E) be a locally finite quasi-coarse space. Then hc(idX) =
∞ if and only if there exists x ∈ X and F ∈ E such that Hc(idX , x, F ) > 0.
Moreover, if X is monogenic, E ∈ E is an entourage such that {En | n ∈ N} is
a base of E, and x ∈ X. Then:

(a) Hlocc (id, x) = 0 if and only if Hc(id, x, E) = 0;
(b) Hlocc (id, x) =∞ if and only if Hc(id, x, E) > 0.
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Let us now connect the coarse entropy with the growth of a metric space.
Here we present a generalisation of the approach for metric spaces that can be
found in [3]. A quasi-coarse space (X, E) has a bounded geometry skeleton if
there exists a subset Y (called bounded geometry skeleton) of X such that

• (Y, E|Y ) has bounded geometry;
• Y is Sym-large in X (i.e., Y is large in Sym(X)).

In [3], this notion is given only for metric spaces under the name quasi-lattice,
and a metric space is said to have coarse bounded geometry if it has a quasi-
lattice.

Not every quasi-coarse space has a bounded geometry skeleton, as the fol-
lowing examples show.

Example B.3.6. (a) Let X be an infinite set. Fix a point x ∈ X and define
the quasi-coarse structure E defined by the base {∆X ∪ ({x} ×X)}. Then
∆X is the only symmetric entourage in E and thus X itself is the only
Sym-large subset. However X is not (uniformly) locally finite.

(b) Let X be an uncountable group (e.g., take X = R) and consider the group
ideal [X]<ω1 = {Y ⊆ X | |Y | < ω1}. For the induced group-coarse struc-
ture, if a subset Y of X is Sym-large, then it is uncountable. Then there are
countable infinite subsets of Y , which are balls. Hence Y is not (uniformly)
locally finite.

Question B.3.7. Does there exist a locally finite quasi-coarse space without a
bounded geometry skeleton?

Let X be a quasi-coarse space having a bounded geometry skeleton. We
define hbgc (X) = hc(idY ), where Y is a bounded geometry skeleton of X. Note
that hbgc (X) is well-defined. In fact, if Y and Z are two bounded geometry
skeletons of X, then Y is Sym-coarsely equivalent to Z, and thus Corollary
B.3.1 implies that hc(idY ) = hc(idZ).

Because of the monotonicity of the coarse entropy under taking invariant
subspaces, hbgc (X) ≤ hc(idX). Moreover, there exists a locally finite quasi-coarse
space X such that hbgc (X) < hc(idX). In order to find an example showing the
strict inequality, we have to choose X without bounded geometry. Let X as in
Example B.1.3(a). Then Theorem B.3.4 implies that hc(idX) = ∞. However,
Y = N× {0} is Sym-large in X and hc(idY ) = 0. Hence hbgc (X) = 0.

Let us recall the classical notion of growth type of non-decreasing functions
from N to R≥0. Let u, v : N → R≥0 be two non-decreasing functions. We say
that v dominates u, and we write u ≤ v, if there are a, b ≥ 1 and c > 0 such
that, for every n ≥ c, u(n) ≤ av(bn). Then u and v have the same growth type
(u ∼= v) if u ≤ v ≤ u.

Let u : N→ R≥0 be a non-decreasing function. Then the growth type of u is:

• polynomial if u is dominated by a polynomial function of some exact degree;
• sub-exponential if u does not dominate any exponential function n 7→ an;
• exponential if u dominates an exponential function n 7→ an.

We can characterise the previous classes of growth types as follows. If u is
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a non-decreasing function, then

u has polynomial growth type if and only if lim sup
n→∞

log u(n)

log(n)
<∞,

u has sub-exponential growth type if and only if lim sup
n→∞

log u(n)

n
= 0, and

u has exponential growth type if and only if 0 < lim inf
n→∞

log u(n)

n
<∞.

(B.17)

Definition B.3.8 ([3]). Let (X, d) be a connected metric space having a bounded
geometry skeleton. Define the growth rate of X as the growth type of the func-
tion

γ(n) = |BY (y, n)|, where n ∈ N,

for every bounded geometry skeleton Y of X and any point y ∈ Y .

It is proved in [3] that the growth rate of a metric space does not depend on
the bounded geometry skeleton and on the point chosen.

We want to estimate the growth rate of a coarse space X having a bounded
geometry skeleton Y which is monogenic. However, thanks to Proposition
3.4.10(b), the existence of such a Y ensures thatX itself is monogenic. Hence we
can consider monogenic quasi-coarse spaces having bounded geometry skeletons.

Theorem B.3.9. Let (X, d) be a metric space such that (X, Ed) is monogenic
and connected, and has a bounded geometry skeleton Y . Let E ∈ E|Y be an
entourage such that {En | n ∈ N} is a base of E|Y , and y ∈ Y .

(a) If X has polynomial growth type then Hc(idY , y, E) = 0 and hbgc (X) =
hc(idY ) = 0.

(b) X has sub-exponential growth type if and only if Hc(idY , y, E) = 0 if and
only if hbgc (X) = hc(idY ) = 0.

(c) X has exponential growth type if and only if Hc(idY , y, E) > 0 if and only
if hbgc (X) = hc(idY ) =∞.

Proof. Item (a) and the first equivalences of items (b) and (c) follow from (B.17).
Corollary B.3.5 and Proposition B.1.2(b) imply the other two equivalences.

B.4 Relationships with other entropies

In this section we discuss the relationships of the coarse entropy with other
well-known entropy notions in other branches of mathematics. In particular, we
consider the coarse entropy of endomorphisms of groups and we connect it with
the algebraic entropy (in §B.4.1) and, through the Pontryagin functor, with the
topological and the measure entropy (in §B.4.2).

B.4.1 Relationship with the algebraic entropy

Let M be a monoid and f : M →M be an endomorphism of M . Fix a finite
subset K ∈ [M ]<ω, and n ∈ N \ {0}. Then the n-algebraic trajectory of f with
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respect to K is the subset

Talgn (f,K) = K · f(K) · · · · · fn−1(K).

Definition B.4.1 ([44]). Let M be a monoid, and f : M → M be an endo-
morphism of M . Then the algebraic entropy of f with respect to K is defined
as

Halg(f,K) = lim
n→∞

log|Talgn (f,K)|

n
. (B.18)

Finally, the algebraic entropy of f is halg(f) = sup{Halg(f,K) | K ∈ [M ]<ω}.

A standard approach to prove that the limit in (B.18) exists is by using
Fekete’s Lemma (see, for example, [42]). We refer to [42] for a comprehensive
survey on the algebraic entropy.

In this subsection, every monoid is endowed with its monoid-quasi-coarse
structure. Since every monoid endomorphism is automatically bornologous, it
is natural to compare its algebraic entropy with its coarse entropy.

Theorem B.4.2. If M is a monoid and f : M →M is an endomorphism, then

hc(f) ≤ halg(f).

Moreover, if f is surjective, then

hc(f) = halg(f).

Proof. Note that {EK | K ∈ [M ]<ω} is cofinal in EM , and thus Proposition
B.1.2(a) implies that we just need to compute Hlocc (f, x) = sup{Hc(f, x,EK) |

K ∈ [M ]<ω}, for every x ∈ M . Moreover, since Q↓
M (e) = M , Proposition

B.1.2(b) implies that hc(f) = Hlocc (f, e). For every K ∈ [M ]<ω and n ∈ N \ {0},
according to (7.5), we have that

Tn(f, e, EK) = (fn−1 × fn−1)(EK)[· · · [(f × f)(EK)[EK [x]]] · · · ] ⊆

⊆Efn−1(K)[· · · [Ef(K)[EK [e]]] · · · ] =

= eKf(K) · · · fn−1(K) = Talgn (f,K).

(B.19)

Hence Hc(f, e, EK) ≤ Halg(f,K) and thus

hc(f) = Hlocc (f, e) = sup{Hc(f, e, EK) | K ∈ [M ]<ω} ≤

≤ sup{Halg(f,K) | K ∈ [M ]<ω} = halg(f).

Moreover, if f is surjective, (f × f)(EK) = Ef(K), for every K ∈ [M ]<ω,
and thus the inclusion in (B.19) becomes an equality, which proves the desired
equality.

Thanks to Theorem B.4.2, we can reinterpret what we have obtained so
far as generalisations, in the case of a surjective homomorphism of monoids, of
classical results in the realm of the algebraic entropy. Results that can be seen
from this point of view are Proposition B.1.2(a), Remark B.1.5(c), Proposition
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B.2.3, Theorem B.2.5(a), Corollary B.2.9, Theorem B.3.4, and Theorem B.3.9
in the case of finitely generated groups (see [42] for a comprehensive survey on
algebraic entropy containing the mentioned results).

Let M be a monoid and f : M → M be an endomorphism. We want to
specialise formula (B.1) in this setting. Let K be a finite subset of M . Then

(g × g)(EK)[A] = g(EK [g−1(A)]) = g(g−1(A)K) = (A ∩ g(M))g(K). (B.20)

The inequality in Theorem B.4.2 may be strict, as Examples B.4.3 and B.4.4
show.

Example B.4.3. Let G be a finitely generated group endowed with one of its
word metrics d. Consider the homomorphism f :

⊕
n∈NG →

⊕
n∈NG, called

the right Bernoulli shift, such that f(x0, x1, x2, . . . ) = (0, x0, x1, . . . ), for every
(xn)n ∈

⊕
nG. We claim that hc(f) = 0, while, for example, if G = Zm, the

finite cyclic group with m elements, then halg(f) = logm.

For every (i,m, n) ∈ N3, define the subset

A(i,m, n) = {0} ⊕ · · · ⊕ {0}︸ ︷︷ ︸
i times

⊕Bd(e,m)⊕ · · · ⊕Bd(e,m)︸ ︷︷ ︸
n times

⊕{0} ⊕ · · · .

Note that {A(0,m,m)}m∈N forms a base of the group ideal [
⊕

nG]
<ω and thus

Proposition B.1.2 implies that, in order to compute the coarse entropy, we can
restrict ourselves to just consider the values Hc(f, 0, EA(0,m,m)), for everym ∈ N.
Note that, if m ∈ N, T1(f, 0, EA(0,m,m)) = A(0,m,m), and, moreover, we claim
that, for every 0 ≤ n ≤ m,

Tn+1(f, 0, EA(0,m,m)) =

m∏

i=m−n

A(n,m, i). (B.21)

Suppose that, for some 0 ≤ n < m, (B.21) holds. Then, according to (B.20),

Tn+2(f, 0, EA(0,m,m)) =

(
Tn+1(f, 0, EA(0,m,m)) ∩ f

n+1

(⊕

n∈N

G

))
·

· fn+1(A(0,m,m)) =

=

(( m∏

i=m−n

A(n,m, i)

)
∩ fn+1

(⊕

n∈N

G

))
·

· fn+1(A(0,m,m)) =

=

( m∏

i=m−n

A(n+ 1,m, i− 1)

)
A(n+ 1,m,m) =

=

m∏

i=m−(n+1)

A(n+ 1,m, i).

Hence, we have proved (B.21), for every 0 ≤ n ≤ m. By substituting n = m,
we have

Tm+1(f, 0, EA(0,m,m)) =

m∏

i=0

A(m,m, i).
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Applying again (B.20), we can show that, for every k ∈ N,

Tm+k+1(f, 0, EA(0,m,m)) =

m∏

i=0

A(m+ k,m, i),

and so |Tm+1(f, 0, EA(0,m,m))| = |Tm+k+1(f, 0, EA(0,m,m))|. Since the cardinal-
ity of the trajectories stabilises, Hc(f, 0, EA(0,m,m)) = 0, for every m ∈ N, and
thus hc(f) = 0.

Example B.4.4. Let G = Z, and, for k ∈ N \ {0}, define the endomorphism
f = fk : x 7→ kx of G. We claim that hc(f) = 0, while halg(f) = log k.

The case k = 1 easily follows, since f1 = idZ and hc(f1) = halg(f1) = 0
according to Theorem B.4.2, so we can assume that k > 1. Since G is connected,
we can consider the trajectories centred at 0 (Proposition B.1.2(b)). Moreover,
the family {[−m,m]}m∈N forms a base of the group ideal [G]<ω and thus we
can restrict ourselves to considering only those induced entourages (Proposition
B.1.2(a)). According to (B.19) and the definition of algebraic trajectories, for
every n ∈ N,

Tn(f, 0, E[−m,m]) ⊆ Talgn (f, [−m,m]) =

[
−m

( n−1∑

i=0

ki
)
,m

( n−1∑

i=0

ki
)]
. (B.22)

Hence, (B.22) and (B.20) imply that, for every n ∈ N,

Tn+1(f, 0, E[−m,m]) ⊆ (Talgn (f, [−m,m]) ∩ fn(G)) + fn([−m,m]),

and thus

|Tn+1(f, 0, E[−m,m])| ≤

∣∣∣∣
[
−m

( n−1∑

i=0

ki
)
,m

( n−1∑

i=0

ki
)]
∩ fn(M)

∣∣∣∣ · (2m+ 1) ≤

≤

⌈
1 +

1

kn
2m

n−1∑

i=0

ki
⌉
(2m+ 1) ≤ (2m+ 2)2.

Since the trajectories have bounded cardinality, Hc(f, 0, E[−m,m]) = 0 and thus
hc(f) = 0.

Furthermore, if we consider the group H = Q and the endomorphism f =
fk : H → H, since f is surjective, hc(f) = halg(f) = log k (Theorem B.4.2).
Hence, there is no Addition Theorem for the coarse entropy. In fact, consider
the following diagram

Z i //

f |Z

��

Q
q //

f

��

Q/Z

f

��
Z i // Q

q // Q/Z,

where i and q are the canonical inclusion and quotient, respectively, and f |Z
is the restriction of f to Z and f is the projection of f . While halg(f) =
log k = halg(f |Z) + halg(f) (an instance of the Addition Theorem for the al-
gebraic entropy, see for example [44]), hc(f) = log k, while hc(f |Z) = 0 and
hc(f) = halg(f) = 0, since f is surjective, and thus hc(f) 6= hc(f |Z) + hc(f).
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Example B.4.5. Let F2 be the free group freely generated by two letters a
and b. Consider the injective endomorphism f : F2 → F2 such that f(a) = a2

and f(b) = b2. We claim that hc(f) = 0.

Thanks to Proposition B.1.2, we can just consider the trajectories with re-
spect to e and EB(e,m), where m ∈ N and F2 is endowed with the word metric
associated with the standard generating set {a, b, a−1, b−1}. Let us inductively
define a sequence of natural numbers {gn}n as follows:

{
g0 = 0,

gn+1 = m+ ⌊gn/2⌋.

By induction, it is easy to see that the sequence {gn}n is bounded by 2m.

We claim that, for every n ∈ N,

Tn+1(f, e, EB(e,m)) = fn(B(e, gn+1)). (B.23)

If n = 0, then (B.23) is satisfied. Suppose that for some n ∈ N, (B.23) holds.
Then, applying (7.5),

Tn+2(f, e, EB(e,m)) = ((fn+1 × fn+1)(EB(e,m)))[Tn+1(f, e, EB(e,m))] =

= fn+1(f−n−1(fn(B(e, gn+1)))B(e,m)) =

= fn+1(B(e, ⌊gn+1/2⌋)B(e,m)) = fn+1(B(e, gn+2)).

Finally, (B.23) implies that

Hc(f, e, EB(0,m)) = lim sup
n→∞

log(|B(e, gn+1)|)

n+ 1
≤ lim sup

n→∞

gn+1 log 5

n+ 1
= 0

since gn+1 ≤ 2m. Hence, hc(f) = 0.

In Examples B.4.3, B.4.4, and B.4.5 we provided an endomorphism of group
f : G → G such that

⋂
n f

n(G) = {e} and hc(f) = 0. Hence the following
question naturally arises.

Question B.4.6. Let f : M → M be a endomorphism of a monoid M such
that

⋂
n f

n(M) is finite. Is it true that hc(f) = 0?

Note that, in the notation of Example B.1.6(c), even though
⋂
n f

n(M) = ∅,
hc(f) =∞, but f is not an endomorphism.

B.4.2 Relationship with the topological and the measure

entropy

In this subsection we want to relate the coarse entropy with the topologi-
cal entropy and the measure entropy, using the Pontryagin duality. We have
already noticed in Section 10.2 that the Pontryagin duality is a powerful tool
to translate concepts and results from the small-scale geometry to the large-
scale geometry of locally compact abelian groups. Moreover, in the realm of
entropies, the Pontryagin duality plays an important role since it connects the
algebraic entropy with the topological entropy (see Theorem B.4.8).
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Let U and V be two covers of a set X. Then we define

U ∨ V = {U ∩ V | U ∈ U , V ∈ V}.

Let now X be a compact space. Denote by cov(X) the family of all open
covers of X. For every cover U ∈ cov(X), denote by N(U) the minimum of the
cardinalities of finite subcovers of U . For every U ∈ cov(X), define the entropy
of U as H(U) = logN(U).

Definition B.4.7 ([2]). Let f : X → X be a continuous self-map of a compact
space. For U ∈ cov(X), define the topological entropy of f with respect to U as

Htop(f,U) = lim
n→∞

H(U ∨ f−1(U) ∨ · · · ∨ f−n+1(U))

n
.

Then the topological entropy of f is

htop(f) = sup{Htop(f,U) | U ∈ cov(X)}.

Theorem B.4.8 (Bridge theorem, [43]). Let f : G → G be an endomorphism
of a group G. Then

halg(f) = htop(f̂).

By combining Theorems B.4.2 and B.4.8 we obtain the following result.

Corollary B.4.9. Let f : G→ G be an endomorphism of a group G. Then

hc(f) ≤ halg(f) = htop(f̂).

Moreover, if f is surjective, then

hc(f) = halg(f) = htop(f̂).

Before ending the section, let us connect the coarse entropy also with the
measure entropy. Let (X,B, µ) be a measure space and ξ = {Ai | i = 1, . . . , n}
be a measurable partition of X. Define the entropy of ξ by

H(ξ) = −
n∑

i=1

µ(Ai) log(µ(Ai)).

Definition B.4.10 ([108, ?]). Let X be a measure space and f : X → X be
a measure preserving map. If ξ is a measurable partition of X, the measure
entropy of f with respect to ξ is

Hmes(f, ξ) = lim
n→∞

H(ξ ∨ f−1(ξ) ∨ · · · ∨ f−n+1(ξ))

n
.

The measure entropy of f is

hmes(f) = sup{Hmes(f, ξ) | ξ measurable partition of X}.
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In the realm of compact groups, the following result was proved by Stoyanov.

Theorem B.4.11 ([164]). Let G be a compact metrisable group and f : G →
G be a continuous surjective homomorphism. If G is endowed with its Haar
measure, then

htop(f) = hmes(f).

Corollary B.4.12. Let f : G → G be an automorphism of a countable group
G. Then

hc(f) = halg(f) = htop(f̂) = hmes(f̂).

Proof. Corollary B.4.9 states the first two equalities. Since G is countable and
discrete, (G, ErC(G)) = (G, EG) is metrisable ([70]). Hence Theorem 10.2.16

implies that Ĝ is metrisable as topological group. Moreover, since f is an
isomorphism, also f̂ is an isomorphism and so we can apply Theorem B.4.11 to
get the desired claim.
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