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Abstract: The morphological evolution of tidal flats has been widely investigated in recent years as it
represents a very important topic which is highly related to the climate-driven environmental changes.
The period over which geomorphological changes can be noted is a multi-year up to pluri-decennial
time scale, defined as medium-long period. This work presents a new conceptual model which is
able to predict and estimate a limit depth between an erosion condition and a no-erosion condition
for tidal flats. The domains of applicability are shallow and confined basins, where tidal flats are
characterized by near-horizontal topography, as occurs inside lagoons. The theoretical approach
provides a general equation which relates the limit depth of tidal flats to current velocity and critical
erosion shear stress. The procedure, followed through to its development, takes into account the
important role of the bottom friction dissipation in wind wave generation process for shallow water.
The relationship between tidal flat depth, current velocity and critical shear stress is provided in three
different configurations, depending on the direction of the wave motion compared to the current. The
limit depth compared to the measured depth can suggest if tidal flats tend or not towards an erosion
state over a medium-long period. In this sense, the conceptual model provides a relevant contribution
to the comprehension of morphodynamics of these important environments. This approach has been
validated with its application to a real context and the results are provided in the paper.

Keywords: finite depth wind waves; bottom friction dissipation; dynamic equilibrium; tidal flats;
bottom shear stress

1. Introduction

Tidal flat landforms in coastal and estuarine systems include a great variety of environments, which
are constantly shaped by complex physical and biological factors [1,2]. As transitional environments,
tidal flats are periodically submerged and exposed under tide and wave driven processes which deeply
affect the sediment transport mechanisms [3-9]. Moreover, sediment supply and fluvial inflow as well
as organic and anthropic activities can alter their morphology [10-13]. According to Friedrichs [5],
sediment transport mechanisms induced by tides and waves also involve the gradual morphological
transition beyond low tide level. For this reason, in this paper the term “tidal flats” is used in its
dynamic meaning, which includes both the actual tidal-flats, in the strict sense, and the sub-tidal flats.

Due to their particular nature, tidal flats are fundamental to estuarine and lagoon morphodynamics
and their ecological and socio-economic importance is widely recognized [14-16]. At the same time,
the fragile balance of these environments can interfere with human-induced changes, such as shoreline
protection intervention or dredging operations for the maintenance of waterways navigability. Within
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this context, the possible configurations of tidal flats over a medium-long period, become an essential
element for the management and sustainability of coastal areas [17]. The term “medium-long” refers to
a multi-year up to a pluri-decennial time scale over which the geomorphological changes can be noted.

Many studies have investigated morphological changes over a medium-long period occurring
in coastal lagoon and tidal flat environments, in order to assess the erosional/accretionary pattern,
and the relative sediment budget. These studies consider geomatics techniques based on historical
cartography, photogrammetry, topography [18-22] or on the satellite image processing [23]. Direct
measurements and monitoring of bed level changes in tidal flats are quite difficult to carry out, due to
the complexity of the environment and the lack of appropriate measuring equipment and methods [24].
Only recent studies have provided detailed quantification of high-resolution short-term (from daily to
seasonal time scale) bed level dynamics, coupled with hydrodynamic data [24-27].

In order to improve understanding and predicting of how a tidal flat can evolve over amedium-long
time scale, theoretical and numerical approaches have been developed, which need monitoring and
measurement data in order to be applied. This research is based on a proper definition of an equilibrium
pattern which can lead to a stable morphology [4,5,7,28-31]. In fact, tides, wind and wave climate
operate over a wide range of scales, from that of a storm, to the semidiurnal or diurnal cycle to
seasonal, annual or decade long periods. In this sense, the concept of quasi-equilibrium [4] or dynamic
equilibrium [5,28-30] is preferred as opposed to an unrealistic static condition in which no sediment is
transported. Equivalently, this means that erosion is balanced by deposition at each point of the tidal
flat, when considered over a suitably long period [4,30].

Starting from this assumption, the cross-shore profile shapes of tidal flats exposed to the sea, typical
of estuarine environments, have been widely investigated through experimental observations [32-34],
and numerical solutions [4,5,17,35-37]. Given the complexity of the processes involved, the results
obtained are generally only qualitative and strongly conditioned by the necessary simplifications that
have been made.

Among the first studies, Friedrichs and Aubrey [38] proposed the dynamic equilibrium theory,
based on a simplified analytical approach, useful to explain the morphological responses of intertidal
systems. This method assumes that the cross-shore profile of a tidal flat is stable when the maximum
bed shear stress during a tidal cycle is uniform over space, ensuring no net deposition or erosion
anywhere in the system. Taking into account annual or longer time scales, the profile approximates a
concave shape if it is purely wave-dominated, while it results convex if the tide is prevailing in the
overall balance. If a shorter timescale is considered, tidal flat morphology can evolve dynamically
between these two configurations depending on the bed shear stress variability.

Subsequent and more complex models [4,8,35,39] have been used to simulate the mudflat profile
shapes in the 2D-vertical plane, finding results which qualitatively agree with those of Friedrichs and
Aubrey [38]. Hu et al. [28] have extended the dynamic equilibrium theory by explicitly taking into
account a spatiotemporal bed shear stress variation to predict tidal flat morphodynamics. In this
sense, the developed model overcomes the limit of the original analytical solution of Friedrichs and
Aubrey [38] that is based on the assumption of a uniform bed shear stress distribution that may not
occur in reality.

A similar choice of a reference shear stress for long-term modeling is also followed by Mariotti and
Fagherazzi [40] who proposed a dynamic model to study the morphological evolution of fetch-limited
basins or lagoons. The analyzed configuration is typical of tidal flats which are sheltered from the
sea by barrier islands. In these cases, tidal flats are inherently horizontal with a very small slope and
such that they can be characterized in a sufficient area by a uniform depth value. Moreover, the wave
motion is locally generated here and it presents lower periods and wave heights [41-45]. Mariotti and
Fagherazzi [46] feature the non-monotonic relationship between wave shear stress and depth, which
represents the focus point of a previous conceptual model, which was proposed by Fagherazzi et al. [47].
This non-monotonic distribution of the bed shear stress with depth is then compared to a critical erosion
threshold for cohesive sediments and a fixed deposition rate. The conceptual approach has been



Water 2019, 11, 1176 30f 22

subsequently improved taking into account the effects of a collinear current shear stress and different
sediment inputs [48]. Starting from similar assumptions some numerical applications to the Venice
Lagoon have been conducted with the aim to describe the morphological evolutionary trend through
hypsometry, which corresponds to frequency area distribution related to bottom elevation [18,49].

A recent line of research deals with the role played both by bottom friction and wave period
on the wave bottom shear stress, which is fundamental in coastal morphodynamics [45,50]. It has
been numerically shown that the bottom friction dissipation can severely limit the wave field with
the consequence that the relative curve of bed shear stress loses the bell shape, tending instead
to decrease monotonically with the water depth [45]. In this sense, the wave motion is able to
induce sediment transport only when very strong winds are considered, which are however rare.
Experimental findings [29] support this outcome, that necessarily leads to reviewing the processes that
drive sediment transport over a tidal cycle or a longer time scale, in order to identify the conditions for
the morphodynamic equilibrium of tidal flats. For these reasons, the conceptual model briefly recalled
can be revised and extended.

In the present paper a new theoretical approach is proposed with the aim of providing a reasonable
morphodynamic trend over a medium-long period for tidal flats in sheltered environments. This
method gives the equation to derive a limit depth value that can suggest if the tidal flat tends, or not
towards an erosion state. The maximum shear stress caused both by the wave motion and the current
field is compared to the critical threshold of erosion which represents the resistance of the bottom
to sediment mobilization. The wave shear stress is numerically computed by means of a generation
process with a morphologically representative wind speed and a proper representation of bottom
dissipation. The relationship between tidal flat depth, current velocity and critical shear stress is
provided in three different configurations, depending on the direction of the wave motion compared to
the current.

With the aim of validating the new conceptual model, an application to the Marano and Grado
lagoon in the Northern Adriatic Sea (Italy) has been conducted, starting from two bathymetries
detected 45 years apart and numerical data obtained from a previous application by means of a
spectral-morphodynamic coupled model [51].

2. Tidal Flat Morphodynamics: Some Preliminary Considerations

Within lagoons and sheltered areas, tidal currents are undoubtedly dominant for sediment
transport close to tidal inlets and inside the main channels, where higher current velocities can
profoundly incise the bed [52-58]. On the other hand, wave motion is decisive in the resuspension
of sediments from the tidal flats bottom, where shallow depths limit current velocities and the
corresponding values of shear stress [3,9,40,48,51,54,55]. Even the small waves generated by local
moderate winds can contribute to morphological stability in the long-term period, the wave orbital
motion being able to penetrate down to the water depth [3,7,9].

The generation process of wind waves on shallow depths leads to quite different characteristics
from offshore waves developed on deep waters, as the friction dissipation severely restricts the
maximum value that wave heights and periods can reach [3,45]. This particular aspect has been
verified both experimentally and numerically and it has led to a set of equations formulated for
wave forecasting in shallow water [43,59]. However, the growth curves, extensively used in many
applications [40,46,55,60], may not be exhaustive in order to correctly interpret the wave field. In fact,
they have been determined by adopting a low friction factor, generally representative of very smooth,
homogenous and flat beds.

In the presence of a more irregular bottom, characterized by bedforms (uneven granulometry
with coexistence of sand and mud, and vegetation), the wave friction factor can considerably increase.
This result was achieved by the authors in a previous study [45], performing a numerical generation
process by means of the third generation spectral model SWAN [61], based on the complete wave
action balance equation.
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A regular computational grid has been chosen to reproduce the generation process in a microtidal
limited-fetch environment, where the tidal flats are characterized by near-horizontal topography, such
the Marano and Grado or the Venice lagoons mapped in Figure 1.
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Figure 1. Venice lagoon and Marano and Grado lagoon depicted in the (a) European context and (b) in
the Northern Adriatic Sea.

Several configurations of depth, wind speed and bed roughness have been set to establish the
role played by bottom friction and to identify the spectral approach that better reproduces the energy
dissipation of locally generated waves. The comparison between the available formulations in SWAN,
has outlined that the Madsen model [62] is more suitable to be applied in such coastal and transitional
environments. The previously mentioned study by Pascolo et al. [45] has verified that an equivalent
roughness of a few centimeters is sufficient to considerably limit the wave orbital velocity U, computed
at the bottom.

As depicted in Figure 2a for different wind speed values, these wave velocities tend to follow an
almost constant trend on the tidal flat depths, herein indicated as d, commonly included in the range
0.5-2 m below still water level.
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Figure 2. (a) Root mean square value of the maxima of the bottom orbital velocity and (b) wave bed
shear stress computed on different depths d by means SWAN [61]. The equivalent roughness height is
0.05 m. The dashed line indicates the critical erosion threshold adopted by Fagherazzi et al. [47] and is
evaluated as a mean value for the tidal flats of the Venice lagoon [63,64], while the continuous line is
the non-monotonic curve that the same authors proposed for a wind speed equal to 8 m/s.
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Pascolo et al. [45] have also shown that the shallow water generation process is substantially
independent from the fetch length, as the fully developed sea state can be reached on very short
distances, less than 5 km.

The more relevant consequence, decisive for morphodynamic processes, is the considerable
reduction of the wave bottom shear stress acting on the sediment grains. The wave bottom shear stress
depends on the wave velocity according to the following quadratic law:

1
Tw = Epfwuin @
where p is the water density, f;, is the friction factor and Uy, the maximum wave bottom orbital velocity.
The friction factor is evaluated by means of the Soulsby formulation [65]:

-0.52
A) , @)

fw= 1.39(5
A = Uy T/27 being one half of the horizontal orbital excursion, T the wave period, zg = Kn/30, and Ky
the equivalent Nikuradse roughness. This last parameter is generally taken as a function of the median
diameter if the bed is composed of coarse grains, while for fine cohesive grains or mud-beds, Ky can
be set equal to a few millimeters as an approximation of the mud protrusions height [66].

Figure 2b highlights how the bed shear stress computed assuming Ky = 0.005 m, tends to
be quite flat and homogeneous for the analyzed depths. These trends are very different from the
non-monotonic curve suggested by Fagherazzi et al. [47] for a wind speed of 8 m/s, as already discussed
by Pascolo et al. [45]. The reason could be attributable to the assumptions of a Ky value equal to 5 X
107> m and above all monochromatic wind waves, generated with an imposed constant wave period.

The dashed line refers to a critical shear stress for cohesive sediments of 0.7 Pa evaluated as a mean
value for the tidal flats of the Venice lagoon [63,64]. The same value has been adopted successfully in
several applications in some coastal environments of the North Adriatic Sea [47,48,51,54,67]. It can be
noticed that the non-monotonic curve derived by Fagherazzi et al. [47] exceeds the critical shear stress
over the whole analyzed domain. On the other hand, the wave stress component on rougher bed, is
sufficient to resuspend sediments from the bottom only for high wind speeds and therefore extreme
events. This means that the current velocity becomes truly decisive in triggering the transport process
in presence of moderate winds, which are considered representative for the morphological evolution
over timescale longer than that of a storm [5,40]. The new conceptual model, which is proposed in the
present paper, is precisely based on these assumptions.

3. Conceptual Model

The conceptual model starts from the computation of the maximum total bed shear stress due to
the non-linear interaction of wave and current shear stresses, as suggested by Soulsby [65]:

Tinax = \/ (T + Tweos ) + (Tusing)?, 3

where the mean bottom shear stress 7, and the current contribution 7. are respectively equal to:

Tmw= T 1+12( w )3'2 @)
m — C . Tc +Tw 7
2172
pgn-U
W= = gn ©)

U, being the absolute value of the current velocity, ¢ the angle between the wave motion direction and
the current, ¢ the gravity acceleration, n the Manning coefficient, and d the water depth.
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The wave bed shear stress component 74, is computed through the Equations (1) and (2), where
the wave friction factor derives from an equivalent Nikuradse roughness of 0.005 m and the wave
bottom velocity is the result of the numerical generation process achieved performing SWAN in
stationary mode on a regular grid. In Table 1, a summary has been reported of the main applied source
terms and their relative formulation references and set parameters. The wind speed range, chosen for
the wave generation, is from 6 m/s to 14 m/s as deduced from data collected inside the Marano and
Grado lagoon [51]. This range is coherent with values observed inside the Venice lagoon [47,48,54], the
Virginia Coast Reserve in Virginia [55] and the Willapa Bay in Washington State [46], taken as examples.

Table 1. Summary of the source terms used in SWAN simulation for the wind wave generation process
and their relative formulation references and set parameters.

Source Term Formula Parameters

Wind input: Cavaleri and }
linear growth Malanotte-Rizzoli [68]
Wind input:

exponential growth Janssen [69] )

. . cdsl =4.5 rate of dissipation
White capping Janssen [69] 5=05 dependency on wave number
Bottom friction dissipation Madsen [62] kn =0.05m equivalent roughness height
Surf breaking Battjes and Janssen [70] vy=0.78 breaker index

Once the wave bottom shear stress has been determined on all the considered tidal flats depths, the
maximum bed shear stress is computed adding the current contribution by means of Equation (5) for
different current velocity values. In the present study the Manning coefficient n, representative of the
bed resistance to the flow field inside tidal channels and over tidal flats, is taken equal to 0.0285 s/m"/3.
This value has been calibrated in a previous hydrodynamic modeling study of the Marano and Grado
lagoon [51]. The current velocity is assumed variable in an appropriate range, taking into account that
generally it rarely exceeds 0.25 m/s on the tidal flats in shallow and confined basins [3,9,46,48].

Figure 3 shows the effects of the combination of waves and current under three different scenarios
between the flow direction and the wave rays, and suggests current velocities which lead to maximum
shear stress greater than the chosen critical threshold. The wave component in this case is relative to a
wind speed of 10 m/s.

Tnax (Pa) — collinearity

Tnax (Pa) —middle condition Tmax (Pa) —orthogonality
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Figure 3. Comparison between the erosion critical threshold (dashed red line) and the maximum total
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bed shear stress due to the combination of the wave contribution obtained from a wind speed of 10 m/s

and different values of current velocity as a function of depth d. The angle between waves and current

direction is respectively equal to: (a) 0°, (b) 45°and (c) 90°.
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The analyzed configurations refer to the limit conditions of respectively collinearity and
orthogonality between waves and current, with the addition of the middle angle of 45°. The
presence of the flow field enhances the bottom shear stress, shifting the wave component upwards.
When a collinearity is considered, even low velocities of the order of 0.10-0.20 m/s can give a shear
stress component with magnitude comparable to the wave motion. The existence of an angle between
the two components attenuates the resultant forcing until considerably reducing it in a condition close
to the orthogonality, for which the current contribution is much lower.

From another point of view, it is possible to compute the depth at which the maximum bottom
shear stress achieves the assigned critical threshold, at varying currents. In this way, the conceptual
model provides a depth value which can be compared to the actual depth of a tidal flat in order to
determine if it tends to deepen or to remain stable. The procedure followed to establish this limit depth
value is illustrated in the flow chart in Figure 4.

Current velocity Wind speed : Wind waves
Uc* Uwim:lj'= Hs; Tpl Uw

Current shear stress Current shear stress

(p*
T (d, U*) \ l / i

Maximum o= -
Critical threshold

l Wave-current angle

total shear stress
T
Tmax (dr Uc*r l‘Iwind*! (P*)

ok
crit

/

d*: Trnax (d*: Uc*i Uwind*l (P*) = Terit
*

conceptual model

\ i Trnax

dimUes Uing™s ©%, Tene™)

Y /"Tmax (d- Uc*' med*) (P*)
Toe ™
. cri
no-erosion _ _____
d* erosion i
: Td* d
V T 3 «-
L2 U, erosion | no-erosion
I

Figure 4. Scheme of the conceptual model, which provides the limit depth value dj;,, between an
erosion condition and a no-erosion condition. The limit depth is a function of the current velocity U,
the wind speed Uy;,,4, the angle ¢ between generated wind waves and the current flow, and the critical
erosion shear stress 7.,;;. The asterisked variables inside the rectangles represent the values assigned as
input to the model.

The asterisked variables inside the rectangles represent the values which the conceptual model
requires as input. The maximum total bed shear stress can be computed at varying depth once the
current velocity U *, the wind speed U;;,s* and the angle ¢* between the resultant wind waves and
tidal current, have been established. The depth d* corresponds to the value for which this maximum
shear stress is equal to the critical erosion threshold 7.,;;*. In this manner, a limit depth separates two
conditions: an erosion condition for depths lower than 4* and a no-erosion condition for depths greater
than 4*. The conceptual model provides the theoretical curve of this limit depth djj,, (Uc, Uyping®, ¢*,
Torit) at varying current velocities and for different assigned values of Uying®, @%, Terit™.

For a better comprehension of this procedure, first the example with a wind speed of 10 m/s and a
critical shear stress of 0.7 Pa is followed. Figure 5a shows the discrete values of the limit depth in the
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three cases of vector composition between waves and current, i.e., for angles of respectively 0°, 45°,
and 90°.

Wind speed—10 m/s
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Figure 5. (a) Limit water depth obtained by the conceptual model with a wind speed of 10 m/s and
the critical erosion shear stress is 0.7 Pa. (b) Case of collinearity between waves and current. The
dashed lines are regression curves. The arrows indicate the tidal flat tendency to deepen or to be filled
if sediments supply is available.

Observing the dashed lines, which represent the regression curves of the obtained points, two
different trends can be clearly recognized: the former exponential and the latter linear. The transition
between these two conditions is placed around a depth of about 1.5 m.

The applicability of the conceptual model becomes clearer from Figure 5b where the collinearity
curve is taken as an example. The curve subdivides the plane into two zones: the lower represents
conditions for which depths tend to deepen; the upper one indicates depths which can be considered
dynamically stable or under a depositional trend if sediment supply is available. This latter condition,
for which the bed tends to fill up, can go on until it reaches the limit depth on the curve, given the
current speed value U*. Therefore, the continuous arrows direction shows the tendency of the flat bed
to deepen, while the dotted arrows suggest the depth can be reduced by a potential deposition.

This procedure has been performed by computing the total bed shear stress for different wind
speeds and comparing it with some values of the erosion critical shear stress, among those proposed
in literature [63-66]. In this manner, many curves representative of the limit depths between erosion
conditions and not, have been obtained. In all these cases, the three angles of 0°, 45° and 90° between
waves and current directions have been analyzed.

Figure 6 shows the results for a critical shear stress equal to 0.7 Pa and a wind speed respectively
of 8 m/s and 12 m/s.

Both the wind speeds of 6 m/s and 14 m/s cannot be considered representative for a morphological
evolution over a medium-long period, the former being too low while the latter is quite high but rare.

As shown by the grey band, the exponential trends for depths lower than about 1.5 m and the
linear ones for greater values are confirmed, suggesting substantial independence from the wind
conditions, at least among those examined.

The regression curves can be expressed in a dimensional form by the following equations:

dlim?exp = Arexp(BiUe), (6)

Alim_tin = A2Uc + By, ()

diim_exp and djiy_jin being respectively the limit depth given by the exponential and the linear trends,
for which the relative coefficients A; and B; with i = 1, 2 can be computed by means of the least
squares method.
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Figure 6. Water depth d corresponding to the maximum bed shear stress equal to the critical threshold

of 0.7 Pa obtained for different values of the current velocity U. and angles between the wave motion

and the flow direction. The wave field is generated by a wind speed of (a) 8 m/s and (b) 12 m/s. The

dashed lines are regression curves.

These dimensional equations provide a quantitative estimate of the limit depth for a critical shear
stress of 0.7 Pa and for the analysed wind speeds. In Table 2 the values of the coefficients for the

different cases are summarized.

Table 2. Summary of the parameters entering in the Equations (6) and (7) for the specified wind speed
and angles between the flow direction and the wave motion.

Wind Speed Parameters Collinoearity Middle C(:ndition Orthog(znality
0 45 90
exponential A1 (M 0.0203 0.0163 0.0047
§ms B, (s/m) 18213 17.841 19.522
e Ay (m) 29.966 30.441 25115
B, (s/m) 55993 62116 ~5.9576
exponential A1 (@) 0.1245 0.1137 0.0348
10 By (s/m) 13.674 12.551 13.776
e Ay (m) 28526 28.699 27.688
B, (s/m) 37127 4374 —6.0564
exponential A1 (M) 0.4853 0.5103 0.3933
12 B, (s/m) 11.338 9.2039 6.4084
, Ay (m) 24.685 22104 21.241
linear B, (s/m) ~1.0692 ~1.1855 ~3.0313

Both the exponential and the linear trends are also found if the critical erosion shear stress is left as
varying while the wind speed remains set equal to 10 m/s. This substantial independence also from the
erosion threshold, as well as from the wind speed, corroborates the general validity of the approach.

The results are presented in two forms as discussed below. The curves indicated as “actual” in
Figure 7(al,bl,c1) refer to water depths derived by imposing the maximum bed shear stress equal to
different critical thresholds, here taken from 0.5 Pa up to 1.0 Pa.

Observing the arrangement of these curves, it is noted that they can be horizontally shifted
towards each other until an almost perfect overlapping is obtained as shown in Figure 7(a2,b2,c2), with
the exception of the orthogonal configuration for which there are some discrepancies. These curves are

indicated as “shifted”.

The amount by which the curves are shifted can be related to the corresponding value of the
critical shear stress. These quantities have therefore been fit through polynomial curves in order to
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provide a general equation that can give a quantitative estimate of the limit depth of erosion for a tidal
flat inside shallow lagoons, if the current velocity and the erosion threshold are known.
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Figure 7. Water depth d corresponding to the maximum bed shear stress equal to different critical

thresholds and current velocities U.. The wave field is generated by a wind speed of 10 m/s. The angles

between the wave motion and the flow direction are specified above each graph. (al) Original curves in

the condition of collinearity; (a2) shifted curves in the condition of collinearity; (b1) original curves in
the middle condition; (b2) shifted curves in the middle condition; (c1) original curves in the condition
of orthogonality; (c2) shifted curves in the condition of orthogonality.

By limiting the analysis only to the exponential component, the limit depth can be so expressed as:

dliTH_exp = A1 exp[Bl(Uc + CT2

crit

+ Dteir + E)]

®)
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C, D and E being the coefficients deriving from the polynomial regression, the values of which are
reported in Table 3 depending on the angle between the wave rays and the flow direction.

Table 3. Summary of the parameters within the Equations (8) for the specified wind speed and angle
between the flow direction and the wave motion.

Wind Speed Parameters Collinoearity Middle C(O)ndition Orthogtznality
0 45 90
Aq (m) 0.1245 0.1137 0.0348
By (s/m) 13.674 12.551 13.776
10 m/s C (sm™1-Pa~2) 0.2759 0.3750 0.4625
D (ssm~!-Pa) -0.7851 -0.9602 -1.0703
E (m/s) 0.4149 0.4893 0.5234

To test the applicability of the present conceptual model to a real context, the Marano and Grado
lagoon is taken as a case study, since the topographical differences of various portions of its tidal flats,
evaluated over a period of 45 years, are available. The 1964 hydrographic map edited by the Magistrato
alle Acque of Venice [71] has been compared to the more recent bathymetric data surveyed in 2009 [72],
making it possible to carry out morphological evaluations over the long term.

4. Study Site

The Marano and Grado lagoon is depicted in Figure 8. Together with the Venice lagoon, it is one
of the two most important coastal systems in the North East of Italy and is located between the low
Friuli Venezia Giulia plain and the Northern Adriatic Sea.

A
depth (m)

0.5

-0.67
-1.83
-3.00
-4.17
-5.33
-6.50
-7.67
-8.83
-10.0

Sant’Andrea

p Porto Buso A
Lignano Morgo™

' Primero

" ) Tagliamento river delta

>

Figure 8. Marano and Grado lagoon, Italy. The six tidal inlets, the main channels and the seagrass
distribution are highlighted. The contour refers to the more recent bathymetric data surveyed in
2009. Circles represent tidal flats that have been considered for the application of the developed
conceptual model.

Its extension roughly covers an area of 160 km? and it is bordered by the delta systems of the two
main rivers that cross Friuli Venezia Giulia: the Tagliamento on the west and the Isonzo on the east.
On the sea side, the lagoon area is bounded by a series of barrier islands alternating with six tidal inlets.
The shoreline develops from the western tidal inlet of Lignano to the eastern inlet of Primero for an
overall length of about 32 km.
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Petti et al. [51] have recently investigated the sediment transport processes of the Marano and
Grado lagoon over an annual period, by means of a morphodynamic spectral coupled model. This
study required the analyses of a large amount of wind and tide data to define a representative sequence
of waves and water levels. The mean tidal range, given by the difference between the mean high
water level (MHWL) and the mean low water level (MLWL) is about 0.76 m as resulting from the
zero-crossing technique, carried out over 24 years of recording of the Grado tide gauge [51]. The mean
range increases up to about 1.05 m during the spring tides and it is reduced to 0.22 m in the neap
tides [20,73]. The annual average tidal signal, depicted in Figure 9, consists of three main astronomical
components, the two principal semidiurnal, solar and lunar, and the lunar diurnal. It has a resultant
periodicity of 12.5 days and is consistent with the tidal ranges specified above [51].

m/s | oo 180°N wind velocity and direction
10 |
0°N 90°N  180°N 270°N 0°N 90°N 180°N 270°N
¥ [T + T
5 1 0°N 90°N  180°N 270°N 0°N 90°N 180°N 270°N

I « 22 1« 1

q 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300 312
hours

1 (m) tidal level
0.5
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M=M+ N2+ N3 (¢, = 354.9° ¢, =57.5° (5 =305.2°

Figure 9. Representative sequence of winds and water levels acting over an annual period, as deduced
from data collected inside the Marano and Grado lagoon and subsequent analyses [51]. The tidal level
variation is the sum of three main harmonic components which are defined by the respective amplitude
Aj, period T; and phase ¢;.

In order to derive also an annual average anemometric characterization, the extensive field of wind
data collected inside the lagoon area has been subdivided into appropriate classes. These classes, of
both wind speed and direction, have been combined with the tide sequence as shown in Figure 9. The
so determined hydrodynamic conditions have been used to perform the morphodynamic numerical
simulations of the lagoon bottom evolution over a period of an average year.

The comparison between the final and initial bed levels confirms that the interaction between
tidal currents and waves governs the sediment transport mechanism inside the entire lagoon area.
In particular, the most of the erosion areas are concentrated precisely on the tidal flats and near the
saltmarshes, due to the shallower depths. The wind speed of 10 m/s, corresponding to the 90th
percentile value as deduced from the duration curve, contributes significantly to cohesive sediment
resuspension from tidal flats. The following transport inside internal channels provides 75% of their
annual filling, as deduced from the simulated deposited volumes [51]. These results are in agreement
with the flattening trend of the bottom topography which has been observed in the last decades with a
net loss of fine sediments and saltmarshes surface [20].

The tidal flat composition is prevalently characterized by fine and cohesive sediments, even if
sand content progressively increases towards the tidal inlets. An extended vegetal cover by seagrass is
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present in the central lagoon [74], and in the eastern portion along the main channel departing from
the Grado inlet, as depicted in Figure 8. Seagrass has an important stabilizing effect on sediment
resuspension from the bottom, as roots increase the critical erosion shear stress that can reach quite
considerable values [63], while vegetation biomass favors mineral sediment trapping and promotes
belowground organic production [36]. Moreover, the presence of vegetation can greatly affect the
hydrodynamic field, decreasing both wave heights and current velocities, and consequently the
corresponding bed shear stress.

On the contrary, some areas in the two extreme lateral portion of the lagoon, respectively on the
west and east sides, are characterized by a greater mobility of the cohesive sediments due to several
factors, among them shellfish farming. Trawl nets and dredges produce disturbances which lead to
sediment resuspension comparable to that induced by the wave motion during storm conditions [75,76].
The different resistance degree of the bed to erosion has been taken into account in the morphodynamic
modelling, setting a spatially variable critical threshold by the comparison with the morphologies of
the Venice lagoon, for which measured values are available.

On the basis of these considerations, twenty tidal flats picked out in Figure 8 by the circles
and an identification number have been chosen as test cases for the developed conceptual model.
Their arrangement is as distributed as possible throughout the overall lagoon area, except for the
portion covered by seagrass as it deeply affects the morphodynamic balance, which therefore cannot
be considered representative for a medium-long period evolution.

5. Results

The morphological evolution of the Marano and Grado lagoon in 45 years can be shown by
the comparison between two different hypsometric distributions. These curves have been obtained
respectively from the digitalized and reconstructed bathymetry from 1964 and the one deriving from
the more recent survey of 2009. The area subtended by the curve up to a given depth represents the
percentage of the lagoon surface that was at a greater or equal depth. The shifting between the two
curves reported in Figure 10a, underlines the deepening trend of the lagoon with a loss of area at
depths shallower than 0.8 m compared to a consistent increase of greater depths from 0.9 m up to
about 1.7 m.
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Figure 10. (a) Density frequency area distributions as a function of bottom elevation 4 obtained from
the two available bathymetries respectively in 1964 and 2009. Depth accuracy is about 0.05 m [20,71,72].
(b) Characterization of the points taken inside the selected areas in term of maximum current velocities
U, during wind events of 10 m/s blowing from respectively 90° N and 180° N, and actual depth d.

The peak of the tidal flat distributions has remained fairly constant, moving in the small range
of 0.8-0.9 m, which in fact characterizes the average depth of the greatest number of points taken as
samples in the selected areas. Nowadays, more than 80% of the lagoon area is represented by tidal
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flats up to 2 m deep, while only the tidal channels are deeper, and occupy 5% of the global area. In
detail, only 25% of the tidal flats are shallower than 0.5 m and the remaining part is subtidal, confined
up to 1.5 m, rarely reaching 2.0 m. In the western and the central part of the lagoon, tidal flats extend
as intertidal talus of the fringing salt marshes and gently deepen up to becoming subtidal, towards
the secondary channels; flat beds around the bifurcation between main and secondary channels, as in
Lignano and Porto Buso, are always subtidal. In the eastern part of the lagoon, influenced by the Grado
inlet, tidal flats are variably distributed according to the complex morphological systems, consisting of
saltmarshes, islands, fish farms and channels.

In order to apply the new conceptual model, the hydrodynamic conditions are needed for each
of the analyzed points, taken as samples in the selected areas. In particular, the model requires the
representative current velocity value, its vector composition with the wind direction and the critical
erosion shear stress. These features have been deduced from the morphodynamic application of
Petti et al. [51]. As the current magnitude varies during a tidal cycle, the maximum value simulated
during wind events of 10 m/s blowing from respectively 90° N and 180° N has been chosen, according
to other applications in similar contexts [5,40,55]. These values are plotted in Figure 10b together with
the corresponding depth, and they are all less than 0.25 m/s. This result confirms the choices made
in the development of the model. The list of the preliminary parameters necessary for the use of the
conceptual model within each area is shown in Table 4.

Table 4. The list of the preliminary parameters for the conceptual model within each area, referring to
the wind condition which leads to the maximum value of the bed shear stress.

Lagoon Portion Area :Ii;’; U, (m/s) Wind Direction Wave-Current Angle

Al 0.7 0.097 90° N 0°

A2 0.7 0.092 90° N 0°

A3 0.7 0.177 90° N 0°

West A4 0.5 0.122 90° N 0°
A5 0.5 0.145 90° N 0°

A6 0.7 0.178 90° N 0°

A7 0.7 0.132 180° N 45°

A8 0.7 0.177 180° N 0°

A9 0.7 0.117 180° N 0°

A10 0.7 0.132 90° N 45°

All 0.7 0.125 180° N 0°

A12 0.7 0.187 90° N 0°

Central A13 0.7 0.149 90° N 0°
Al4 0.7 0.131 90° N 45°

A15 0.7 0.130 180° N 0°

A19 0.7 0.144 180° N 0°

A20 0.7 0.112 180° N 0°

Al6 0.5 0.053 180° N 0°

East Al7 0.5 0.056 180° N 45°
A18 0.5 0.051 180° N 45°

They refer to the wind and current conditions which lead to the maximum value of the bed shear
stress and they are obtained as average values on the set of selected points.

The wave-current angle has been established according to the wind direction and that of the
tidal flow at the maximum velocity instant and it has been associated with one of the three examined
configurations of 0°, 45° or 90°. Given that the orthogonality between waves and current leads to
much lower values of bed shear stress compared to the other two configurations, it does not figure
among the chosen settings.
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Most areas are characterized by a critical shear stress of 0.7 Pa with the exception of the tidal
flats belonging to A4 and A5 located in the western portion and to A16—-A18 in the eastern part of the
lagoon, which have a shear stress of 0.5 Pa, as justified above.

Both the wind directions contribute to the morphological evolution of the lagoon, and not only
the direction that maximizes the fetch length or that is collinear with the current field, as is usually
assumed in similar studies [48,49]. These particular features depend on the generation process of wind
waves in shallow and confined waters and on the bi-dimensional nature of the flow field. In light of
this, it is important to consider an omnidirectional distribution of winds [51] and also to check the
vector composition in relation to the current, as the present conceptual model allows us to do.

The summarized data can be combined through the Equation (8), taking into account the different
parameters specified in Table 3 according to the wave-current configuration. The conceptual model
provides the limit depth between the erosion state and the no-erosion state, as highlighted in Figure 5b.
In this way;, it is possible to compare the conceptual erosion state with the measured one, making it
possible to validate the model. The results are reported in Table 5.

Table 5. Validation of the conceptual model. Symbol x is used when the difference between the depths
are negative, suggesting an erosion state. The compared depths are those measured in 1964 (d19¢4) and
2009 (dagge) and the limit depth (dj;,,,) provided by the conceptual model.

Depth (m) Erosion State
Area
d1964 d2oo9 Alim dioes — doooo  di96a — Ay d2009 — diimm
Al 0.83 0.84 047
A2 0.83 0.77 0.44
A3 0.79 1.20 1.42 X X X
A4 0.75 0.90 >1.5 X X X
A5 0.83 0.83 >1.5 X X
A6 1.05 1.17 1.42 X X X
A7 1.05 1.07 0.61
A8 091 1.08 1.41 X X X
A9 0.82 0.83 0.62
A10 0.96 0.98 0.60
All 0.94 0.83 0.69
Al12 0.80 1.08 >1.5 X X X
Al3 0.77 0.89 0.96 X X X
Al4 0.63 0.85 0.60 X
Al15 0.54 0.79 0.74 X X
A19 0.45 0.92 0.90 X X
A20 0.67 0.96 0.58 X
Al6 0.69 0.86 0.90 X X X
Al7 0.23 0.81 0.84 X X X
Al18 0.26 0.46 0.78 X X X

The measured erosion state can be defined by the comparison between the 1964 and the 2009
depths, respectively indicated as dyges and dpgg. If the difference dygs — dpggy is negative, an erosion
trend will have been verified over the 45 years. The limit depths provided by the conceptual model
have been compared to both the measured depth in 1964 and that surveyed in 2009. Similarly, a
negative difference diggs — dj;;, means that a deepening trend should have happened over the 45 years,
while the difference dpgg9 — djiy,, suggests if the depth measured in 2009 is still under an erosion trend
or not. In all these cases, the symbol “x” is used to identify an erosion condition.

The agreement between the measured erosion states and those predicted by the conceptual
model is substantial over almost all the selected areas, referring to both the erosion trend or not. This
correspondence corroborates and validates the described procedure and the determined analytical
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solution making it therefore suitable to predict the medium-long term morphological evolution of tidal
flats in sheltered coastal environments.

It is noticeable that the stable areas are all located along the northern internal edge of the lagoon,
and they are characterized by an average depth close to the interval of 0.8-0.9 m, which effectively
corresponds to the peaks of density frequency area distributions in Figure 10a. At the same time the
current velocities do not exceed 0.13 m/s, which is a rather low value, thus ensuring both dynamic
stability and the possibility for sediments to be deposited if available. Zones A12 and A13 are an
exception because, despite having the same bottom resistance, the erosion processes are triggered
by higher current velocities. The southern portion of the lagoon is characterized by the presence of
fishing valleys which are bounded by embankments and for this reason hydraulically impermeable.
This condition produces an effect similar to that of a cross-section narrowing on the flow between the
eastern and the western part of the lagoon, with a consequent increasing of current velocities near the
zones Al12 and A13.

In the western part of the lagoon area connected to the Lignano inlet, an important deepening of
the seabed toward depths approaching 1.5 m can be recognized. In particular, tidal flats A3, A6 and A8
are close to main channels characterized by higher values of depth and current velocities, while A4
and A5 are concession areas for shellfish farming since 2006. This intended use can make the bottom
more exposed to erosive mechanisms, due to the destabilization of sediment structures by fishing
gear, which cause an increased likelihood of renewed suspension during natural storms [75,76]. The
mismatch between the measured and theoretical state for the tidal flat A5 can be ascribed to its less
intensive use, which therefore does not significantly alter the critical shear stress. In fact, if a 0.7 Pa
is taken as threshold, the resulting limit depth would be equal to 0.91 m which is much closer to the
real depth.

Also the tidal flats in the eastern lagoon area tend to reach a depth of around 0.8-0.9 m, but on the
contrary in this case there is a significant erosive tendency with respect to the bathymetric data of 1964.
This condition happens even though the Primero basin is sheltered, with very small extensions on all
the directions and shallower depths than the rest of the lagoon, leading to limited wave field and a
maximum current velocities range which does not exceed 0.06 m/s, as can be seen from Table 4. This
case represents an example of how important it is to consider the strong interaction between local wind
waves and current, whose respective low values are sufficient, only if taken together, to overcome the
bed resistance.

Two of the examined areas, A14 and A20, located in the central area outside the surface covered
by seagrass, have deepened over time, despite the conceptual model missing this trend, providing
limit depths very similar to the original ones. The reason can be sought in a different bottom critical
shear stress or hydrodynamic condition, since area A20 is close to a channel that over time has been
filled and has disappeared.

6. Discussion

The considerations and results presented in the previous section corroborate the procedure
followed to define the conceptual model. The proposed approach is able to adequately address the
question of estimating a limit depth for the morphological evolution of tidal flats, and it can suggest if
they undergo an erosion trend or not over a medium-long period.

The model can be applied to shallow and confined basins, such as the coastal lagoon taken as
a case study; in these contexts, tidal flats are characterized by a very small slope and they can be
considered sufficiently uniform in depth. Their depth variation is related to the distribution of the total
bed shear stress resulting from the complex interaction between currents and local wind waves. A
methodology widely used to investigate the hydrodynamic and morphodynamic processes, consists in
applying a dedicated numerical modelling. In particular, this is usually done by coupling different
modules, as in the study of Petti et al. [51]: a hydrodynamic model to reproduce the flow field, a wind
wave model, and a morphodynamic model to compute the bed evolution. This approach is certainly
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more complete because it takes into account the variability of the phenomena both on the vertical
section and on the horizontal plane. However, it requires great computational effort especially in very
large domains, and it needs proper calibration and validation processes to be performed. Moreover,
from a morphodynamic point of view, it is possible to provide an estimation of the evolution trend
only for reduced time scales, at most an annual period or just over.

In order to predict tidal flats morphology for medium-long periods, such as the 45 years considered
in the analyzed case study, more simplified approaches are needed. This is the focus of many analytical
methods and theories, developed around the dynamic equilibrium of the cross-shore profile shapes,
as reported in the introduction. The present model starts from similar assumptions but it provides a
quantitative estimation in the morphological evolution of tidal flats, and not only a qualitative one
as in the dynamic model by Friedrichs and Aubrey [38]. Moreover, it extends the study proposed
by Fagherazzi et al. [47], considering the variability of the wind speed and the current velocity, and
also adding their vector composition through the angle ¢. In this sense, the conceptual model takes
into account the effects on the bottom shear stress induced by the interaction between waves and
current velocities on the horizontal plane. Recent outcomes for the generation process in shallow water
show that it is deeply affected by the role played by bed roughness and the variability of the wave
period [45,50]. The consequence is an important reduction in the main wave parameters, above all in
the wave orbital velocity and in the resulting wave bottom shear stress which tends to assume low
values, especially on the tidal flat shallow depths. In the present model, the evaluation of the total
maximum bed shear stress takes into account all of these issues.

The wind speed, the current velocity, the angle between their directions and the critical erosion
shear stress are required as input values by the model. These parameters can be quite easily deduced
from direct measurements, literature suggestions or as results from more simplified numerical modeling.
More details about the choice of these parameters are given below.

Wave motion is undoubtedly the dominant factor in tidal flats evolution, because the wave-induced
bed shear stress is often the main factor that controls the suspended-sediment concentration [7].
However, current velocity cannot be neglected as it can drag and move away sediments, which would
otherwise only be resuspended. To evaluate erosion mechanisms over the medium-long period, it is
important to choose morphologically representative values of both wind speed and current velocity to
be used in the conceptual model, similarly to Fagherazzi et al. [47].

In particular, the required values should account for both the characteristic magnitude of the
hydrodynamic forcing as well as the duration in which this forcing is strong enough [29]. The
astronomical tide component does not vary significantly in time, giving a current field that periodically
repeats alternating flood and ebb phases. In this sense, the tidal velocity oscillates from a minimum
to a maximum value over every cycle. On the other hand, the wave motion is strongly linked to
wind speed and its frequency, i.e., lower but more frequent wind speeds generate a weak wave
motion, as opposed to stronger but extreme events. A useful scale widely adopted for evaluating
coastal morphologies [5,30] is the 90th percentile velocity, in analogy to the procedure followed in the
application to the case study of the Marano and Grado lagoon.

Generally, the tidal flow direction is linked to level changes inside the basin and to the tidal
channel geometry, while the wave direction can be taken substantially coincident to that of the wind,
as only sheltered environments and locally generated waves are herein considered. These evidences
suggest the proper angle between current velocities and waves to be set.

The last input parameter is the critical threshold of bed resistance, which is a key factor to
interpreting the morphological evolution of tidal flats. In fact, erosion processes are triggered when
the resultant bed shear stress exceeds the critical erosion shear stress [45,46]. However, this important
parameter does not have a unique definition in literature, because it can take on very different values
within a wide range both from a spatial and a temporal point of view [63,64]. In this sense, it is the
most sensitive parameter which can also lead to quite important differences in the results provided by
the conceptual model, as can be observed in Figure 7.
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Equation (8), which is derived from the depicted curves, represents the main outcome of the
conceptual model and its validity is general if within the limits recommended for its application,
i.e., shallow depths and confined environments. The investigated ranges of both tidal flat depths
and current velocities are in fact quite short and they are compatible with the typical values of many
shallow lagoons. This is the case for example of the lagoons cited in the present paper [46,47,51,55],
which have all been the subject of morphodynamic studies to understand the relative role of waves
and current motion. In these contexts, the average depth of tidal flats is around 1 m where current
velocities are rather low and within the range 0.1-0.3 m/s.

Furthermore, the equation is the result of the regression of the points below the grey band that
establishes the upper limit of the exponential part, as outlined in Figures 5-7. This band indicates a
different relationship between the limit depth and the maximum bed shear stress and it can reflect
the prevailing of waves or current in the erosion mechanism. In particular, for intermediate wind
speeds both wind waves and tidal currents are relevant in the erosive process on shallow depths, even
if the major role is however played by the wave motion, as the current velocities are quite low. Depths
greater than about a few meters are reached only inside the lagoon channels where the flow is more
concentrated and it is able to engrave the seabed. In these conditions, where the hydrodynamics are
more energetic, the current is certainly the dominant forcing, but for this reason they are not suitable
for the conceptual model.

A further consideration concerns the dynamic equilibrium, which is defined as the balance
condition between erosion and deposition, so that no net sediment transport occurs. If the erosion
mechanism is relatively simple to define by comparing it with the critical stress for sediment
resuspension, this is not the same for the deposition process. In fact, this latter term is associated not
only with a relative shear stress, but also with the sediments supply, which can have a strong variability
both over time and in space [63,64]. For these reasons and given the complexity and the uncertainty
in quantifying the deposition rate, the herein presented conceptual model does not distinguish a
morphologically stable condition from a deposition one.

7. Conclusions

In this paper a new simple conceptual model has been proposed in order to investigate the
dynamic equilibrium of a tidal flat over a medium-long period. The theoretical approach provides
a quantitative estimation of a limit depth, which separates an erosion condition from a no-erosion
condition for tidal flats in sheltered basins. These contexts are generally characterized by shallow and
quite flat bottoms, continuously reshaped by the currents deriving from the periodic sea water level
variations, and the local wind waves. In particular, the wave field is deeply affected by bottom friction
dissipations, differently from the offshore generation process, leading to much lower bed shear stress.

In this sense, the contribution of the tidal current becomes fundamental in triggering the erosion
processes and the subsequent transport of sediments, until the limit depth, for which this mechanism
stops, is reached. If deposition and sediment supply are not considered, this limit depth corresponds
to the condition that makes the assigned erosion threshold equal to the maximum shear stress resulting
from the interaction between waves and current.

The limit depth is expressed by means of a dimensional equation which requires as input the
values of the critical shear stress, the current velocity and the angle between the flow and the wind
direction. This equation is related to an assigned wind speed and it gives an exponential trend of the
limit depth at varying current velocity, up to depth values of about 1.5 m. For values greater than this,
the dependence becomes linear and it involves current velocities higher than 0.2-0.3 m/s, that exceed
the range considered in the development of the present conceptual model. In this sense, its application
is suitable to provide a realistic estimation of the limit depth for the morphological evolution of a tidal
flats belonging to shallow and limited-fetch environments.

It has been furthermore verified that the vector composition of the current flow in relation to
the wave rays can deeply affect the erosion mechanism, configuring itself as an important additional
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variable that must be taken into account. To this purpose, three angle configurations between the waves
and the current direction have been considered: collinearity, orthogonality and a middle condition. In
particular, this last case which considers a generic angle of 45° does not actually lead to a condition so
different from the collinear case, while the curve of the limit depth tends to significantly decrease if
orthogonality is realized.

To validate the conceptual model, its application to a real context has been performed. The Marano
and Grado lagoon has been taken as a case study, starting from hydrodynamic data deriving from a
previous numerical modeling and two bathymetries surveyed 45 years apart. The comparison between
the measured erosion states and the ones theoretically predicted, gives encouraging results in support
of the usefulness of this new conceptual model. As a next step, the authors plan to determine the
analytical expression of the limit erosion depth for a tidal flat, in a dimensionless form, to generalize its
applicability as far as possible.
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